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Abstract: Fiber-optic Cherenkov radiation has emerged as a wavelength 

conversion technique to achieve isolated spectrum in the visible wavelength 

range. Most published results have reinforced the impression that CR forms 

a narrowband spectrum with poor efficiency. We both theoretically and 

experimentally investigate fiber-optic Cherenkov radiation excited by few-

cycle pulses. We introduce the coherence length to quantify the Cherenkov-

radiation bandwidth and its dependence on propagation distance. Detailed 

numerical simulations verified by experimental results reveal three unique 

features that are absent when pumped with often-used, long pulses; that is, 

continuum generation (may span one octave in connection with the pump 

spectrum), high conversion efficiency (up to 40%), and broad bandwidth 

(70 nm experimentally obtained) for the isolated Cherenkov radiation 

spectrum. These merits allow achieving broadband visible-wavelength 

spectra from low-energy ultrafast sources which opens up new applications 

(e.g. precision calibration of astronomical spectrographs). 
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1. Introduction 

Fiber-optic Cherenkov radiation (FOCR), also known as dispersive wave generation or non-

solitonic radiation, describes the radiation from a fiber-optic soliton when perturbed by 
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higher-order fiber dispersion [1–5]. First theoretically studied in 1986, FOCR has attracted 

renewed research interest in company with the advent of photonic crystal fibers (PCFs) whose 

properties can be flexibly engineered [6]. For example, controlling a PCF’s hole-size and 

inter-hole spacing results in two zero-dispersion wavelengths (ZDWs) which in turn give rise 

to two FOCR bands [7]. As a matter of fact, deliberate designs allow the presence of three 

ZDWs [8]; such a PCF would accommodate a variety of novel phenomena arising from 

phase-matched interactions between soliton and the resulting FOCR [9]. To date, most of 

FOCR research in PCFs is carried out in the context of suppercontinuum generation since 

FOCR extends the spectrum towards shorter wavelength [10–18]. Supercontinuum generation 

requires that the pump pulse propagate in the anomalous dispersion regime and form a higher-

order soliton. To achieve a SC without substantial spectral gaps, the pump’s center 

wavelength needs to be close to the fiber’s ZDW so that the generated FOCR merges with the 

spectral components building up from other nonlinear effects. As this wavelength separation 

increases, FOCR manifests as an isolated spectrum that corresponds to a wavelength up-

conversion or down-conversion of the pump depending on the sign of the third-order 

dispersion [7,19–22]. The up-conversion FOCR is of particular importance due to its 

capability of converting near-infrared (NIR) ultrafast lasers (e.g., Ti:Sapphire laser) to their 

counterparts in the visible wavelength range. The resulting ultrafast sources are desired in 

many applications, such as multi-photon microscopy, fluorescence spectroscopy, and optical 

coherence tomography. It is widely believed that FOCR generates resonant, narrowband (i.e., 

~10 nm in the visible wavelength range) spectrum with relatively low conversion efficiency 

(~10%). These two drawbacks have hampered many real-world applications that demand high 

photon flux with a broadband coverage. Recently, we have explored the dependence of these 

two quantities (i.e., bandwidth and conversion efficiency) on the NIR pump-pulse’s 

parameters (such as duration and pulse energy), and have demonstrated FOCR featuring high 

efficiency (>40%), broadband spectrum (>50 nm), and low threshold (<100 pJ for pulse 

energy) [23]. Such a dramatic improvement results from using few-cycle pump pulses to drive 

the radiation. 

Generation of few-cycle laser pulses and their applications for investigating ultrafast 

processes in physics and chemistry have received a great deal of research attention [24]. 

While FOCR excited by few-cycle pulses has been pursued for different purposes (e.g., 

investigation of soliton-trapped FOCR [25] and synthesis of single-cycle pulses [26]), a 

thorough and detailed study of FOCR emphasizing bandwidth and conversion efficiency in 

this new regime is yet absent. 

In this paper, we both theoretically and experimentally investigate FOCR in the few-cycle 

regime. In Ref. [23], we have identified three characteristic propagation scales: 1) initial 

buildup stage in which FOCR acquires most (>90%) of its energy; 2) quasi-independent 

propagation with minimal interaction with its host soliton; and 3) strong interaction with the 

host soliton that is decelerated by stimulated Raman scattering (SRS). Since the FOCR 

spectrum splitting and trapping that take place in the 3rd stage has been well studied, we 

rather focus on the first two stages. 

2. Underlying physics in the initial buildup stage: phase-matching revisited by 

introducing coherence length 

Propagation of an ultrashort pulse inside an optical fiber is well modeled by the generalized 

nonlinear Schrödinger (GNLS) equation [27] 
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where ),( tzA  represents the input pulse’s amplitude envelope. 
n
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)(
 is evaluated at 

the central frequency 0  of the input pulse.   is the nonlinear parameter of the fiber and 

)( the fiber’s dispersion curve. )(tR describes both the instantaneous electronic and delayed 

molecular responses (i.e. SRS) of fused silica, and is defined as 

 ( ) (1 ) ( ) [( ) ( ) ( )].R R a c a b bR t f t f f f h t f h t       (2) 

Typical values of 
Rf , 

af , 
bf , and 

cf are 0.245, 0.75, 0.21, and 0.04, respectively [28]. 

Isotropic Raman response ( )ah t and anisotropic Raman response ( )bh t  are defined as 
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where 
1 , 

2 , and
b  have values of 12 fs, 32 fs, and 96 fs, respectively. ( )t  is the Heaviside 

step function. If higher-order dispersion (i.e. 
n , 2n ), self-steepening, and SRS are absent 

Eq. (1) under 
2 0   supports fundamental soliton solution with propagation 

constant 2/)1()()( 0010 PfRs   . The peak power 
0P  and full-width-half-

maximum (FWHM) duration 
0T are related by the soliton area theorem, i.e., 

2

0 2 0(1 ) 3.1Rf P T   . 

Optical soliton—a non-dispersive pulse with the propagation constant ( )s  —is a 

consequence of interplay between anomalous dispersion and self-phase modulation (SPM). 

Higher-order dispersion exerts perturbation onto a soliton and enforces it to shed away energy 

carried out by a dispersive pulse; the pulse travels with a propagation constant which 

coincides with the fiber’s dispersion curve )( . Evidently, two sources contribute to the 

FOCR at position z z  : 1) the FOCR at z , which propagates z distance and acquires an 

extra phase due to fiber dispersion; and 2) the new radiation emitted by the soliton as it moves 

from z  to z z  . Depending on their phase difference, these two fields add up constructively 

or destructively. If the phase-matching condition, i.e. )()(  s , is satisfied for any 

frequency, the two fields stay in-phase all the time and the generation of FOCR is maximized. 

In reality, however, the phase-matching condition only holds at a certain discrete frequencies. 

This is owing to the fact that ( )s   is a linear function of frequency (that is why soliton is 

non-dispersive) while )(  could be highly oscillatory for specially engineered dispersion. 

These phase-matched frequencies grow up monotonically along the propagation due to 

constructive interference. In contrast, non-phase-matched frequencies experience destructive 

interference and thus are strongly suppressed given enough propagation distance. Such a 

phase-sensitive mechanism explains why FOCR is widely regarded as a resonance process 

and forms a narrowband spectrum—a popular image one bears in mind. To describe phase-

mismatch caused spectral narrowing, we introduce a new quantity 
cL —coherence length—

defined as ( ) / ( ) ( )c sL        . Plugging in the expression of the soliton’s propagation 

constant, after a little math, the coherence length can be expressed as a function of fiber’s 

dispersion and input soliton peak power, 
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Apparently cL characterizes the fiber length where a   phase-slip accumulates between the 

CR radiated by a soliton located at 
cLz  and the radiation that emerges at z  and then 
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propagates to 
cLz  . A destructive interference between these two radiations diminishes the 

efficient power buildup of a FOCR. 

It is noteworthy that the physical picture behind FOCR is quite universal in nonlinear 

optics, especially in illustrating (2) -initiated nonlinear phenomena, such as second-harmonic 

generation, sum-frequency generation, difference-frequency generation, etc. For example, 

when driven by femtosecond pulses, optical rectification—a degenerate difference-frequency 

generation—gives rise to generation of broadband spectrum located at terahertz regime. In 

fact, we have borrowed the concept of coherence length from the terahertz community. In the 

context of ultrafast terahertz generation, coherence length quantifies the matching between the 

terahertz pulse’s phase-velocity and the optical pulse’s group velocity [29]. This velocity-

matching is intrinsically equivalent to phase-matching required for efficient three-wave (i.e. 

terahertz frequency and two optical frequencies for optical rectification) mixing in a 
)2( nonlinear process. 

For a (2) nonlinear process, it is the thickness of the nonlinear crystal that largely 

determines phase-matching bandwidth. Thus a thinner crystal is desired to achieve broader 

bandwidth at the cost of a decrease in conversion efficiency. Since FOCR shares a similar 

physical mechanism, one may ask whether such a tradeoff between bandwidth and conversion 

efficiency also exists for FOCR. Answering this question necessitates numerically solving the 

GNLS equation. 

3. Continuum generation in the few-cycle regime 

To investigate the effect of coherence length, we perform simulations for a fundamental 

soliton propagating in a PCF. The mode-field diameter of the PCF is 1.2 µm. The group-

velocity dispersion shown in Fig. 1(a) indicates that the PCF has a ZDW at 0.71 µm. Also 

plotted in the same figure are the coherence lengths for three fundamental solitons with 

different FWHM duration (i.e. 
0T ) or center wavelength (i.e. 

0 ) which are specified in the 

legend of Fig. 1(a). These three curves share similar features: 

(1) The coherence length goes to infinity at the phase-matching wavelength which is 

shorter than the soliton center wavelength due to a positive third-order dispersion 

(i.e. 
3 0( ) 0   ). 

(2) Similar to a (2) nonlinear process, the FOCR phase-matching bandwidth depends on 

propagation distance. At the vicinity of the phase-matching wavelength, which is 

practically useful, the phase-matching bandwidth decreases with the increase of 

propagation distance. 

(3) Below a certain distance 
conL  (we refer to it as continuum length hereafter; see the 

label in Fig. 1(a) as an example), phase mis-match  is achieved for a continuous, 

broad wavelength range covering hundreds of nanometers. For shorter soliton 

duration (equivalent to increasing soliton peak power) or increasing soliton center 

wavelength blue-shifts the phase-matching wavelength while the continuum length 

decreases accordingly. 

The broad phase-matching bandwidth around the continuum length strongly suggests that 

a continuum might build up spanning between the phase-matching wavelength and the soliton 

center wavelength. To verify such a prediction, we take each of the three fundamental solitons 

as the input and numerically solve the GNLS equation. Figures 1(b)–1(d) record the resulting 

spectral evolution for these three solitons propagating up to 10 cm; the spectra normalized to 

their peak power at each position are shown in logarithm scale. Despite calculated for 

different inputs, the corresponding spectra evolve following a similar pattern: 

#140545 - $15.00 USD Received 4 Jan 2011; revised 22 Feb 2011; accepted 10 Mar 2011; published 23 Mar 2011
(C) 2011 OSA 28 March 2011 / Vol. 19,  No. 7 / OPTICS EXPRESS  6639



 

Fig. 1. (a) the PCF’s group velocity dispersion and calculated coherent length for three 
fundamental solitons with different peak power or center wavelength (see the legend). 

conL labels the continuum length for the blue curve; (b)-(d) spectrum evolution along 

propagation distance for fundamental solitons with different FWHM duration or different 

center wavelength (as indicated in each figure). The spectrum intensity is shown in logarithm 
scale. The double-arrow line marks the continuum that connects the phase-matching 

wavelength and the soliton center wavelength. 

(1) As the soliton enters the PCF, higher-order dispersion together with other nonlinear 

effects (e.g., self-steepening and SRS) initiates the FOCR, which primarily extends 

to the shorter wavelength as predicted by the coherence length shown in Fig. 1(a). 

(2) The blue edge of the radiation eventually reaches the phase-matching wavelength. 

Meanwhile, a continuum (marked by the double-arrow line in each figure), spanning 

between the soliton’s center wavelength and the phase-matching wavelength, forms 

at the distance close to the calculated continuum length 
conL . 

(3) At the distance of about 2 conL , the continuum nearly vanishes and an isolated 

spectrum builds up which stays almost unchanged for further propagation. 

(4) The phase-matching wavelength (i.e. the FOCR peak wavelength) obtained by 

numerically solving the GNLS equation is always shorter than predicted by Eq. (3). 

This discrepancy arises from the spectral recoil effect: to preserve the entire-
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spectrum’s center-of-mass, the emitted FOCR red-shifts the soliton spectrum, which 

in turn emits new FOCR at even shorter wavelength [14]. Consequently, the resulting 

FOCR is further blue-shifted with a broader bandwidth compared to the prediction 

from Eq. (3). 

Generation of continuum highly depends on input soliton’s duration. A comparison 

between Fig. 1(b) and Fig. 1(c) reveals that using a shorter, few-cycle pulse as the input favors 

continuum generation accompanied by higher power conversion efficiency and better spectral 

flatness. For most reported FOCR experiments, which exploit input pulses of ~100-fs 

duration, the continuum generation is extremely weak and thus not observed. 

4. Higher conversion efficiency in the few-cycle pulse regime 

Results in Fig. 1 confirm the physical picture described in section 2; that is, FOCR at a 

propagation distance zz  includes two parts: the radiation accumulated before z  and new 

radiation as the soliton travels from z to zz  . Note that the new added radiation )(CRE  

is proportional to z  as well as to the soliton’s spectral amplitude at  . Therefore, a soliton 

with shorter duration extends more in the spectral domain which enhances FOCR generation, 

leading to a higher conversion efficiency as indicated by comparing Fig. 1(c) with Fig. 1(b). 

The simulation performed in last section has assumed fundamental solitons as the input, 

which possess low pulse energy. For example, the soliton centered at 0.75 µm with 20-fs 

duration (i.e. the simulation input for generating Fig. 1(b)) is of only 12 pJ. The typical pulse 

energy in FOCR experiments is normally at ~1 nJ level. In this scenario, the input hyperbolic 

secant pulse becomes a Nth-order soliton rather than a fundamental soliton; the soliton order 

N is given by 

 ,)1(32.0 002

2

00 TETPfN R     (4) 

where 
0E  is the soliton’s energy. When perturbed by higher-order dispersion and SRS, a Nth-

order soliton becomes unstable and breaks into N fundamental solitons with different peak 

powers and durations [30]. The resulting jth ( Nj 1 ) fundamental soliton has the peak 

power, duration, and energy given by 22

0 /)122( NjNPPj  , 0 / (2 2 1)jT T N j   , and 

2

0 /)122( NjNEE j  , respectively. While all these fundamental solitons participate in the 

FOCR, their contributions differ dramatically. The first (corresponding to 1j ) fundamental 

soliton, which possesses the shortest duration and highest peak power, has the strongest 

spectral amplitude at a given frequency and thus dominates the FOCR yield [31]. The 

coherence length may be extended to the following expression which is also valid for higher-

order soliton as an input: 
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Equation (4) indicates that, if soliton energy 
0E  is fixed, soliton number N decreases with a 

reduction of soliton duration 
0T . A less N results in a larger jP , a shorter jT , and a larger 

jE , 

which in turn lead to a stronger FOCR carrying more shed energy. In other words, using a 

shorter soliton as the excitation pulse improves FOCR conversion efficiency. 
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Fig. 2. Dependency of FOCR conversion efficiency on input pulse duration for different pulse 

energy. An optimum duration in maximizing conversion efficiency exists for a given input 
pulse energy; the optimum duration becomes shorter with increasing pulse energy. The orange 

dashed line indicates the duration that corresponds to a pulse of 10 cycles centered at 0.8 µm. 

From above analysis, one might speculate that, with input pulse energy fixed, conversion 

efficiency may monotonically increase as the input pulse duration decreases. As a matter of 

fact, this is not true. It has been well known that, if 
0T  is so small that the resulting soliton 

number is much less than 1, fiber dispersion overtakes the nonlinearity and no soliton can 

form. As a result, FOCR is absent. Therefore there must be an optimum pulse duration that 

maximizes conversion efficiency for a given input energy. Figure 2 plots dependency of 

FOCR conversion efficiency on input pulse duration for different pulse energy. Evidently, an 

optimum duration in maximizing conversion efficiency exists for a given input pulse energy, 

and it becomes shorter with increasing pulse energy. More specifically, the optimum duration 

decreases from 18 fs to 12 fs as the input pulse duration increases from 80 pJ (red line with 

diamond marker) to 150 pJ (green line with square marker); the conversion efficiency at the 

optimum duration goes up from 10% to 24%. For a given duration, increasing input pulse 

energy always improves conversion efficiency. The dashed, orange line marks the duration 

corresponding to 10 carrier oscillation cycles at 0.8 µm. The fact that the optimum duration is 

less than 10 optical cycles even for a moderate energy level (80 pJ - 150 pJ) indicates that 

FOCR in the few-cycle regime is highly desirable to achieve higher conversion efficiency and 

stronger FOCR pulse. The soliton order ranges 1.5 – 2 at the optimum duration. 

5. Broader bandwidth in the few-cycle regime 

In the physical picture that qualitatively describes FOCR generation and evolution, the 

emitted FOCR linearly propagates inside the fiber, only experiencing fiber dispersion. Such a 

model is valid when the conversion efficiency is low so that the resulting weak FOCR pulse 

creates negligible nonlinear effects. Apparently this is not the case for FOCR in the few-cycle 

regime featuring high conversion efficiency. In this new regime, FOCR pulse may carry 

~40% of the total input energy [23], strong enough to cause nonlinear effects (e.g., SPM) 

which in turn reshape the FOCR pulse and broaden its optical spectrum. 

#140545 - $15.00 USD Received 4 Jan 2011; revised 22 Feb 2011; accepted 10 Mar 2011; published 23 Mar 2011
(C) 2011 OSA 28 March 2011 / Vol. 19,  No. 7 / OPTICS EXPRESS  6642



0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

C
o

n
v
e
rs

io
n

 e
ff

ic
ie

n
c
y

0 2 4 6 8 10 12 14 16 18 20
0  

50

100

150

200

250

Propagation distance [mm]

F
O

C
R

 b
a
n
d
w

id
th

 (
F

W
H

M
)[

n
m

]

0.43 0.47 0.51 0.55
0

0.2

0.4

0.6

0.8

1

0.4 0.6 0.8 1 1.2
0

0.5

1

0.4 0.6 0.8 1 1.2
0

0.5

1

propagation of
full spectrum

propagation of
FOCR in (b)

(a)

(b)

(c)

 

Fig. 3. Evolution of FOCR conversion efficiency and spectral bandwidth along propagation 

distance for a 10-fs hyperbolic secant pulse centered at 0.8 µm with 300-pJ pulse energy. Insets 
(a) and (b) plot spectra corresponding to the maximum and minimum bandwidth. Further 

propagation of spectrum recorded in (b) up to 2 cm results in the FOCR spectrum shown as the 

blue, solid line in inset (c). If we propagate only the FOCR spectrum (i.e., spectrum in 0.4-0.6 
µm), the corresponding spectrum at 2-cm distance is denoted by the red, dashed curve. See the 

text for details. Note that the spectra are shown in linear scale. 

Figure 3 plots the evolution of FOCR conversion efficiency and spectral bandwidth along 

propagation distance for an input 10-fs pulse of hyperbolic secant shape centered at 0.8 µm 

with 300-pJ pulse energy. The spectral bandwidth is FWHM of the optical spectrum located in 

the range of 0.4-0.7 µm. The spectra at 0.8 mm, 4 mm and 20 mm are presented as inset (a)-

(c), respectively. A comparison of FOCR spectral bandwidth reveals a three-stage evolution, 

which normally does not coincide with the aforementioned three-stage process in terms of 

conversion efficiency: 

(1) 0-0.8 mm: rapid growing of spectral bandwidth due to continuum generation as a 

result of large phase-matching bandwidh. At the end of this stage, the FOCR 

continuum partially overlaps with the red-shifted soliton spectrum, forming a smooth 

supercontinuum (spectrum in inset (a) of Fig. 3) which spans more than one octave. 

The spectrum between 0.4 and 0.7 µm accounts for ~20% of the total input energy. 

(2) 0.8-4 mm: fast narrowing of the spectrum within 0.4-0.7 µm due to the reduced phase-

matching bandwidth as propagation proceeds beyond the coherence length. The 

continuum’s short-wavelength edge concentrates more and more energy, while the 

longer-wavelength side diminishes during propagation, leading to the formation of an 

isolated FOCR spectrum. This stage ends up with a FOCR spectrum of 23 nm 

bandwidth, which carries 35% of the total input energy. As the spectrum in inset (b) 

of Fig. 3 shows, the narrowband FOCR spectrum and its host pumping spectrum are 

well separated with a spectral gap of ~300 nm. 

(3) 4-20 mm: gradual broadening of the isolated FOCR spectrum up to 53 nm. The 

constant conversion efficiency in this stage indicates that there is no further energy 

exchange between the isolated FOCR spectrum and the residual pump. In the time 
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domain, the residual pump pulse travels faster than the FOCR pulse. Their temporal 

separation increases during propagation and thus the nonlinear interaction between 

them diminishes continuously. To verify that the FOCR pulse propagates almost 

independently from the residual pump pulse in this stage, we seed the GNLS 

equation with the FOCR spectrum at 4-mm distance (i.e. the isolated spectrum within 

0.4-0.6 µm in inset (b) of Fig. 3), and propagate it for 16 mm; the resulting spectrum 

is plotted in inset (c) as the red, dashed curve. Clearly, the two spectra perfectly 

overlap on the short wavelength side (0.43-0.47 µm) and deviate slightly on the long 

wavelength side (0.47-0.55 µm) while they possess the same energy (i.e., integrated 

area under both curves). The deviation arises from cross-phase modulation (XPM) 

exerted by the residual pump pulse whose trailing tail overlaps with the FOCR 

pulse’s leading tail. Propagating in the normal dispersion region, the FOCR pulse 

develops positive chirp; that is, its leading tail corresponds to the longer wavelength. 

That explains why such XPM only modifies the FOCR’s long wavelength side, 

leaving the other side unaffected. The results shown in inset (c) also indicate that 

main mechanism for the FOCR spectral broadening from 23 nm to 53 nm is 

attributed to the nonlinear effects (e.g., SPM and self-steepening) caused by the 

FOCR pulse itself. Apparently, a higher FOCR conversion efficiency—a 

consequence when pumped in the few-cycle regime—results in a stronger FOCR 

pulse which facilitates the broadening process. 

Note that the concept of coherence length explains the buildup of the FOCR in the first 

two stages. In the third stage in which CR emission stops, coherence length is not meaningful 

since interaction between CR and the pump pulse is absent. As for further propagation beyond 

20 mm, part of the residual pump develops into a soliton (hereafter, we refer it as Raman 

soliton) which continuously shifts towards longer wavelength driven by SRS, and as a result, 

slows down. Eventually the FOCR pulse catches up with the decelerating Raman soliton; their 

strong nonlinear interaction splits the FOCR spectrum into two well-separated parts. The 

shorter wavelength part will be captured by the Raman soliton. Detailed studies on FOCR 

spectral splitting and trapping have been presented in Refs. [23] and [25]. 

6. Experimental results 

Using a home-built 85-MHz Ti:Sapphire laser emitting ~10-fs pulses to pump a commercially 

available PCF, we have experimentally investigated FOCR in the few-cycle regime. The PCF 

has a ZDW at 710 nm with a dispersion curve shown in Fig. 1(a). A detailed description of the 

whole setup can be found in Ref. [23]. 

Figure 4(a) records the FOCR spectra generated by three PCFs with different lengths: 2 

mm, 4 mm, and 2 cm; the input pulse energy coupled into these fibers is fixed at 300 pJ. 

While the coupled spectrum [inset in Fig. 4(a)] is not of hyperbolic shape, the experimental 

results well reproduce the main features of the three-stage evolution discussed in session 5 

and depicted in Fig. 3: 

(1) As expected for the case of a 2-mm PCF, a broadband continuum develops at the 

pump’s short wavelength side—a signature for the first stage. 

(2) At the output of the 4-mm PCF, a narrowband (20-nm FWHM), isolated FOCR 

spectrum builds up; the resulting spectral recoil pushes the residual pump spectrum 

toward longer wavelength [see Fig. 1(d)]. The experimental FOCR spectrum is close 

to the theoretical prediction [inset (b) in Fig. 3] in terms of FWHM bandwidth (20 

nm vs. 23 nm) and spectral shape. 

(3) Emanating from the 2-cm PCF, the narrowband FOCR spectrum broadens to 50 nm 

due to its nonlinear propagation. SRS continuously red-shifts the residual pump 

spectrum, from which a Raman soliton gradually emerges. 
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Fig. 4. (a) Evolution of FOCR spectrum with increased PCF length, labeled as 2 mm, 4 mm, 

and 2 cm, respectively. The input pulse energy is fixed at 300 pJ. Inset shows the laser 
spectrum coupled into the fiber (i.e., the optical spectrum at the beginning of the PCF). (b) 

Evolution of FOCR spectrum with increased input pulse energy for the 2-mm long PCF. 

The dependence of continuum generation on input pulse energy is also explored using the 

2-mm PCF. Figure 4(b) plots the resulting spectra as we vary input pulse energy. Similar to 

the spectral evolution with respect to increased PCF length, a continuum appears with the 

input pulse energy increased; further increase results in an isolated FOCR spectrum growing 

up at the continuum’s short wavelength side. Such an evolution trend also indicates that the 

continuum length becomes shorter with increased input pulse energy. 

As the results in Fig. 2 show, using few-cycle pulses to excite FOCR enhances its 

conversion efficiency, leading to a stronger FOCR pulse; the corresponding stronger 

nonlinearity eventually leads to a broader FOCR spectrum in the visible wavelength range. In 

other words, FOCR excited by few-cycle pulses allows achieving broadband visible-

wavelength spectra from relatively low-energy ultrafast sources. For example, scaling up the 

repetition rate of a Ti:sapphire femtosecond oscillator beyond 1 GHz is inevitably 

accompanied by low pulse energy (<1 nJ). Such high repetition-rate sources are desired in 

many applications, such as frequency metrology, optical arbitrary waveform generation, and 

high speed A/D conversion, to name a few. To demonstrate that FOCR in the few-cycle 

regime constitutes a powerful wavelength up-conversion tool to efficiently convert a NIR, 

GHz laser source into its broadband counterpart in the visible wavelength range, we switch to 

a home-built, 1 GHz Ti:sapphire oscillator as the pump source, centered at 0.83 µm with ~140 

nm bandwidth and ~800 mW average power. Figure 5 presents the FOCR spectra generated 

by 10-cm PCFs with different ZDW, i.e., 710 nm, 735 nm, and 750 nm. The maximum 

powers coupled into these fibers are 210 mW, 250 mW, and 190 mW, respectively [see the 

figure legend that specifies each fiber’s ZDW and coupled power]. The relatively low 

coupling efficiencies into these PCFs are due to chromatic dispersion caused by the singlet 

coupling lenses. Higher coupled powers are expected if achromatic coupling lenses are 

employed. The FOCR spectrum, its center wavelength mainly determined by the phase-

matching condition, shifts toward longer wavelength along with increasing the PCF’s ZDW. 

Indeed, 10-cm length of PCF is enough to substantially slow down the Raman soliton 

(emerging from the residual pump) so that it has a considerable overlap with the FOCR pulse; 

the overlap-introduced XPM manifests as amplitude modulation onto the FOCR spectra 

shown in Fig. 5. With 20-30% conversion efficiency, the resulting FOCR spectra, locating in 

the visible wavelength range, exhibit a bandwidth of 50-70 nm. 
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Fig. 5. FOCR spectra generated by 10-cm PCFs with different ZDWs, i.e., 710 nm (red curve), 

735 nm (green curve), and 750 nm (blue curve). The one with 750-nm ZDW is a polarization 

maintaining (PM) PCF. 

Recent years have seen growing research interest in optimizing femtosecond-laser based 

frequency combs for astrophysical spectrograph calibration (―astro-combs‖) [32–40]. Through 

precision radial velocity (PRV) observation, astro-combs hold the promise to enable the 

search for Earth-like extra-solar planets (exoplanets), direct observation of cosmological 

deceleration, and the study of temporal variation of fundamental constants. Astro-combs in 

the visible wavelength range are of particular importance because, in this wavelength region 

(400-600 nm), emission from Sun-like stars provides the largest photon flux as well as high-

quality spectral features most suited for PRV observation [41]. While astro-combs in the blue 

and green have been demonstrated via second harmonic generation of NIR source combs, they 

exhibit narrow bandwidth (2 nm for the green astro-comb [37] and 15 nm for the blue [40]). 

In this scenario, the broadband, highly efficient, GHz FOCR in the few-cycle pulse regime 

emerges as a powerful wavelength up-conversion tool to implement a broadband astro-comb 

in the visible wavelength range. As a proof-of-concept, we have demonstrated a broadband 

green astro-comb using this method [42]. 

7. Discussion and conclusion 

In this paper, we have both theoretically and experimentally studied FOCR in the few-cycle 

regime, with a focus on its evolution before spectral splitting due to the decelerated Raman 

soliton. Although FOCR originates from (3)  nonlinear susceptibility of an optical fiber, its 

buildup and initial evolution resembles well-known )2( nonlinear effects, such as second-

harmonic generation, sum-frequency generation, difference-frequency generation, and optical 

rectification. A universal feature of these phenomena is that they all require phase-matching to 

achieve efficient power conversion. At the initial evolution stage of FOCR, its bandwidth is 

determined by phase-matching condition in a manner similar to (2)  nonlinear process; that is 

longer propagation leads to narrower bandwidth. Inspired by such a resemblance, we have 

introduced the coherence length for continuum generation—a characteristic phenomenon only 

evident for FOCR in the few-cycle regime. Coherence length also elucidates the physical 

mechanism behind the formation of an isolated FOCR spectrum that builds up at the short 

wavelength side of the continuum and experiences spectral narrowing. Inside a )2( medium, 

normally the effect of )3(  is negligible and spectral broadening due to SPM is absent. 

Therefore spectral bandwidth is nearly exclusively determined by the phase-matching 

condition. In contrast, after the spectral narrowing due to limited phase-matching bandwidth, 
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FOCR is broadened as a consequence of nonlinear propagation. Such a nonlinear spectral 

broadening process is enabled by the high conversion efficiency achieved by exciting FOCR 

with few-cycle pulses. 

In summary, we have demonstrated (both theoretically and experimentally) that FOCR in 

the few-cycle regime exhibits three unique features that are absent when pumped with often-

used, long pulses: (1) continuum generation (may span one octave in connection with the 

pump spectrum), (2) high conversion efficiency (up to 40%), and (3) isolated FOCR spectra 

with broadband (70 nm experimentally obtained) coverage. Dependence of coherence length 

on fiber dispersion [see Eq. (3)] suggests that these three features can be engineered by 

tailoring the fiber’s dispersion—a manufacturing flexibility readily provided by PCFs. For 

example, during the nonlinear propagation in which FOCR acquires more bandwidth, large 

normal dispersion quickly stretches the FOCR pulse up to hundreds of fs within a couple of 

centimeters, which dramatically reduces its peak power, weakens the nonlinear effects (e.g. 

SPM), and thus diminish the spectral broadening. Apparently, such a pulse-stretching effect 

can be suppressed by reducing the amount of normal dispersion in the FOCR spectral region. 

Consequently, the strengthened nonlinear effects will enhance the spectral broadening 

process. Furthermore, a reduced normal dispersion increases the coherence length, implying 

that constructive addition between the existing FOCR and newly emitted radiation takes place 

within a longer propagation distance. As a result, more input energy transfers to the FOCR, 

giving rise to an even higher conversion efficiency, which in turn benefits FOCR’s spectral 

broadening. 

Acknowledgments 

This work was supported under National Aeronautics and Space Administration (NASA) 

grants NNX10AE68G, NNX09AC92G and National Science Foundation (NSF) grants AST- 

0905592 and AST-1006507. 

 

#140545 - $15.00 USD Received 4 Jan 2011; revised 22 Feb 2011; accepted 10 Mar 2011; published 23 Mar 2011
(C) 2011 OSA 28 March 2011 / Vol. 19,  No. 7 / OPTICS EXPRESS  6647




