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Fast deterministic approach to exit-wave reconstruction
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We introduce a fast, dependable algorithm to solve for the exit surface wave of a specimen in coherent
diffractive imaging for a set of illumination conditions that are not unduly restrictive. It is shown that a direct
solution of the phase problem from a diffraction pattern is obtained efficiently and uniquely. The algorithm is
deterministic and is known a priori to converge to the correct solution in less than a predetermined number of
steps. It is based on the conjugate gradient least-squares method implemented with Fourier transforms and offers
the possibility of real-time solutions. We also extend the formulation to allow for imaging of extended objects in
a manner similar to ptychography.
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I. INTRODUCTION

The ability to retrieve the phase of a complex function
from its modulus is fundamental in the diverse fields of
astronomy, biology, materials science, and physics [1–5].
Considerable recent scientific activity has been directed
toward the complete reconstruction of the exit surface wave
of a specimen from measurements of diffracted intensity.
Coherent diffractive imaging (CDI) is one such technique
that seeks to restore the exit surface wave from intensity
measurements obtained by coherent illumination of an object.
CDI is particularly powerful because it has the capacity
to reconstruct the exit surface wave from a single inten-
sity measurement under Fraunhofer or Fresnel diffraction
conditions.

Numerous strategies have been proposed to perform the
restoration of phase information from measurements of inten-
sity data, the most successful of which are elaborations [6–11]
of the iterative scheme originally devised by Gerchberg and
Saxton [12]. Reconstructions of the exit wave using these
iterative approaches often suffer, however, from slow or erratic
convergence; in some cases, the iterative sequence simply fails
to converge. These approaches are nonsmooth, nonconvex,
nonlinear optimization problems and much attention and
effort has been directed toward ameliorating issues associated
with the stagnation of the iterative sequence and determining
whether the images that they generate are unique. One suc-
cessful approach has been to use multiple measurements, as in
ptychography, to overdetermine the problem. Such techniques
exclude, however, the possibility of single-shot imaging in
CDI, which has recently assumed particular significance in
the development of ultrafast imaging strategies using coherent
sources of x rays or electrons.

Despite the widespread use of iterative methods, the issue of
soundness and decidability is often raised. Elser has remarked
[10] that there currently exist “no practical algorithms for
phase retrieval” because the procedures that are employed in
practice provide no guarantee that a solution will be found
at a computational cost that grows modestly with the size
of the problem. A truly satisfactory algorithm, in the sense
discussed by Elser, should be deterministic, enabling bounds
to be placed on the number of steps required to obtain a

solution from an arbitrary starting guess [13]. Existing iterative
procedures do not fall strictly within any of the commonly
accepted definitions of “an algorithm” because they all admit
the possibility of stagnation; the procedure may terminate, in
the sense that the output of its final step is the same as the input
taken from the result of the previous iteration, yet the output
need not correspond to the target solution. No bounds may be
placed on the number of iterations required to obtain a solution
using these procedures, which means that they need never
terminate. They all require some level of human intervention
to ascertain whether the results that they provide should be
accepted or rejected. This intervention usually involves an
empirical mixture of a priori information about the target
image and an examination of the reproducibility of the output
of the procedure from randomly chosen starting points.

The procedure proposed by Martin and Allen [15] to
retrieve the exit surface wave of an scattering object from
its diffraction pattern satisfies the most significant criterion for
it to be regarded as a bona fide algorithm; determinism (i.e.,
it is not subject to randomness). Subject to the satisfaction of
some illumination conditions that prove to be, in practice, not
very restrictive, this formulation leads to the construction of an
overdetermined set of linear equations, guaranteeing a solution
using standard methods of computational linear algebra. This
approach does not, however, satisfy a subsidiary condition
identified by Elser for “practical algorithms” because the
minimum number of linear equations needed to solve the
problem is nvar, where nvar is the number of unknown variables,
and the solution of this set of equations possesses unfavorable
n3

var scaling characteristics. This is illustrated by the diffraction
data shown in Fig. 1(a), formed by illuminating a gnat’s
wing using the circular illumination shown in Fig. 1(b). By
construction, the gnat’s wing is confined to the region indicated
by Fig. 1(c). In a recent paper [16] the exit surface wave in
this region was determined by solving an overdetermined set
of 311 632 linear equations to obtain the exit surface wave
for the 51 026 pixels in the region indicated in Fig. 1(c).
The computational resources required for this retrieval were
quite demanding, requiring approximately 12 h of computer
time in single precision, using 70 GB of RAM on a 12-core
AMD Opertron 2.0-GHz computer.
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FIG. 1. (Color online) (a) The diffraction pattern formed by
illumination of a gnat’s wing with a laser, (b) assumed illumination
intensity and phase, and (c) the object area used for the iterative linear
reconstruction of a gnat’s wing transmission function. The data were
taken from Ref. [14] with details therein.

In the first section of this communication we present a
procedure to determine the exit surface wave in CDI that may
be regarded as a true “practical algorithm.” The physical model
of Martin and Allen [15] is adapted to exploit fully its linear
character, producing a solution with a computational scaling
of O(nvarN ln(N )) in time. The factor nvar indicates that up to
nvar iterations may be required to solve the linear equations
(in practice less). N is the number of pixels that the intensity
measurement occupies. Compared to recent demonstrations
of the Martin and Allen formulation in Ref. [16], this new al-
gorithm features substantially reduced memory requirements,
making its demands for computational resources comparable
to those of conventional iterative CDI techniques, such as the
hybrid input-output [7] or difference map [10] methods. The
new algorithm converges in a number of steps that is fewer
than the number of equations being solved and in a time that
is reduced by over two orders of magnitude on a standard
desktop computer compared with the result in Ref. [16].
The modest memory requirements also make it possible
to use a consumer-grade GPU to determine the solution,
achieving further efficiency gains of an order of magnitude
and reducing solution times to tens of seconds. A reduction
in computing time of several orders of magnitude might
be achievable using a high-performance computing facility,
permitting real-time reconstructions.

The second section of this communication extends this
algorithm to allow for the imaging of objects which are
larger than the illumination area of the beam. This eases
the restrictions outlined in Ref. [15] where the object imaged
must be finite and smaller than the illumination. It is shown
that a knowledge of the transmission function of the object
over a small region is sufficient to seed a ptychographic
reconstruction of an extended object using a simple extension
of the new algorithm, subject to the usual conditions relating
to the extent and position of the unknown portion of the trans-
mission function illuminated by the probe. We also show that
the ptychographic reconstruction obtained by this approach
exhibits robustness to statistical measurement noise because
of the rapid phase variation imprinted on the illuminating wave
by its transit through the specimen. In practice, this allows for

reconstructions to be obtained beyond the information limit
defined by the incident illumination.

II. THEORY

In this section we briefly outline the theory as discussed in
Refs. [14–16]. The approach may be regarded as a generaliza-
tion of Fourier holography. It does not assume a real object,
as can be seen by the strong departure from centrosymmetry
in Fig. 1(a), nor does it assume positivity. The autocorrelation
of an object’s exit surface wave can be obtained by taking the
inverse Fourier transform of the measured diffraction pattern,
which is a consequence of the Wiener-Khinchin theorem.
Symbolically, we write the exit-wave autocorrelation as

fe(r) ≡
∫

ψe(r + r′)ψ∗
e (r′)dr′ = F−1[I (q)], (1)

where I (q) is the measured diffraction pattern, ψe(r) is the exit
surface wave, and F−1 denotes the inverse Fourier transform
operation. This assumes that the whole diffraction pattern is
measured, as shown in Fig. 1(a). If the exit surface wave is
written as the sum of the illumination, ψillum (assumed known),
and a term expressing the modification due to the illumination
passing through the object, ψobj, then we may write

ψe(r) = ψillum(r) + ψobj(r). (2)

The exit-wave autocorrelation can be expressed as

fe(r) = fillum(r) + fcross(r) + fobj(r), (3)

where fcross(r) is given by

fcross(r) =
∫

ψillum(r + r′)ψ∗
obj(r

′)dr′

+
∫

ψobj(r + r′)ψ∗
illum(r′)dr′. (4)

Given that ψillum(r) is known and satisfies constraints outlined
in Ref. [15], then sufficient information exists in a region D of
the autocorrelation fe(r) to formulate a system of (in general
overdetermined) linear equations,

fcross(r)|r∈D = F−1[I (q) − Iillum(q)]|r∈D, (5)

where Iillum(q) is the intensity of the illumination in the
diffraction plane. The region D is shown in pale gray in
Fig. 2(b) and is the region of the exit-wave autocorrelation
which contains cross terms of the form given by Eq. (4) but
which excludes the area to which the autocorrelation of the
object wave is assumed to be confined (shown in dark gray).

This procedure leads to a set of linear equations of the form

Ax = b. (6)

Following Eq. (5), the vector b is constructed from the
pertinent values of fe(r) in the region D. The matrix A is
constructed from ψillum and has a Toeplitz plus Hankel-like
structure. The unknown values of the object wave in the
region to which the object is assumed confined are contained
in the vector x. The storage requirements of the matrix A
scale as the square of the number of unknowns in the vector
x, nvar. This rapidly leads to large storage requirements and to
the time required to solve the equations by direct methods of
linear algebra.

013816-2



FAST DETERMINISTIC APPROACH TO EXIT-WAVE . . . PHYSICAL REVIEW A 85, 013816 (2012)

FIG. 2. Domains of the various autocorrelation contributions as
pertains to Fig. 1 [and Eq. (4)]. We define the cross-correlation
function as P ⊗ Q ≡ ∫

P (r + r′)Q∗(r′)dr′. The region shaded pale
gray indicates the cross-correlation region, the region shaded dark
gray indicates the object wave autocorrelation region, and the
autocorrelation of the illumination wave is defined over the entire
region.

Here we will discuss an implementation of the conjugate
gradient algorithm [17] to solve the linear system of Eq. (6),
where the A matrix is never constructed explicitly. The matrix
elements need never be stored, since we require only matrix-
vector products of the form Ax′, where x′ is a trial vector. In
our implementation, the storage requirements depend linearly
on N .

Formally, the full solution of the conjugate gradient method
requires nvar iterations. For well-conditioned problems, how-
ever, the conjugate gradient method is known to converge in
a number of steps which is significantly less than nvar. For
the illumination conditions in Fig. 2(a), the system of linear
equations is overdetermined so the A matrix is nonsquare. In
this case we use the conjugate gradient least-squares method
(CGLS) [17], which is equivalent to solving the system of
linear equations

ATAx = AT b. (7)

The matrix product, ATA is never formed explicitly, avoiding
any ill conditioning associated with the matrix multiplication.
The CGLS algorithm begins with the following initialization:

x0 = 0, d0 = b, r0 = AT b, p0 = r0, t0 = Ap0. (8)

Here the initial guess is x0 = 0, but any starting guess
produces the same least-squares solution. We then iterate for
i = 1,2,3, . . . neq, until a stopping criterion is satisfied; this
may require significantly fewer than nvar steps. For each i,
the intermediate quantities that are constructed in the CGLS
algorithm are defined by

αi = ‖ri−1‖2/‖ti−1‖2, xi = xi−1 + αipi−1,

di = di−1 − αiti−1, ri = AT di ,
(9)

βi = ‖ri‖2/‖ri−1‖2, pi = ri + βipi−1,

ti = Api .

Here, ‖v‖ denotes the Euclidean norm of a vector v α, and
β are scalars. We define the residual at the ith iteration as
di = b − Axi , the residual error estimate as ri = AT b − Axi

and the estimate for the solution is xi . As mentioned previously,
an advantage of conjugate gradient methods is that the
algorithms only reference A through matrix-vector products,
which in sparse matrix representations is an efficient operation.
In the CGLS method as outlined in Eq. (9) there are two
matrix-vector products which must be computed for each
iteration. Assuming that the A matrix is not sparse and
the full matrix must be stored to compute the matrix-vector
products, the memory requirements remain the same as usual
direct methods; however, computation time can be shortened
compared to direct methods if a satisfactory stopping criterion
has been reached.

In the context of CDI, however, it is possible to recast
CGLS such that the matrix-vector products can be evaluated
efficiently without actually constructing A because of the
structure of A. Let us, first, consider Api = ti . To evaluate
the matrix-vector product of the A matrix with some arbitrary
vector p is trivial as this is the exact problem that we set out to
solve. Writing pi explicitly as ψ̃i(r) the matrix-vector product
is

Api ≡ ti(r) = ψillum(r) ⊗ ψ̃i(r)∗ + ψ̃i(r) ⊗ ψ∗
illum(r)

= F−1[�illum(q)�̃∗
i (q) + �∗

illum(q)�̃i(q)], (10)

where ⊗ is a correlation. As ψillum is known and the function
ψ̃ is the functional form of pi at the current iteration i,
this quantity may be calculated efficiently—as two Fourier
transforms and two vector products. Next, considerAT di = ri .
Computing the matrix-vector product for the matrix AT with
the ith residual vector di can also be done efficiently using
Fourier transforms as

(AT di) ≡ r(r) = di ⊗ ψ illum + ψ illum � di,

= F−1[�illum(q)D∗
i (q) + �illum(q)Di(q)], (11)

where � is a convolution. It is seen that to perform the matrix-
vector product of the matrix AT with the i th residual vector d
simply amounts to calculating a handful of Fourier transforms
and using the convolution and correlation theorems. We denote
the CGLS algorithm of Eq. (9) in conjunction with Eqs. (10)
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and (11) as iterative linear retrieval using Fourier transforms
(ILRUFT).

A. Preconditioning

The rate of convergence of congugate gradient methods de-
pends on the condition number of the A matrix. Furthermore,
the condition number indicates how robust the solution is to
inconsistencies in measured data, such as measurement errors
in the diffraction pattern. Preconditioning was used in Ref. [14]
to stabilize a solution using experimental data. Preconditioning
was not used for the reconstructions in this paper, but we
outline the mathematical details here for completeness. In
ILRUFT we seek to precondition the set of linear equations
so the retrieval is insensitive to the effects of spurious high-
frequency Fourier components. To do so, we seek to retrieve
a lower resolution ψobj(r) which could also be produced
with a convolution of ψobj with a Gaussian, p(r) � ψobj. This
is represented in matrix notation as the operation Px = x′.
Starting from Eq. (6) and inserting P−1P we obtain

AP−1Px = b, AP−1x′ = b, A′x′ = b, (12)

whereA → A′. It can be shown that the preconditioned matrix
vector products in ILRUFT are then

A′pi ≡ ti(r) = F−1[�illum(q)H ∗(q)�̃∗
i (q)

+�∗
illum(q)H (q)�̃i(q)] (13)

and

A′T di ≡ ri(r) = F−1[H ∗(q)�illum(q)D∗
i (q)

+H (q)�illum(q)Di(q)], (14)

where H (q) is the reciprocal of the Fourier transform of the
Gaussian that is used to reduce the resolution of ψobj(r).

B. Partial coherence

The effects of partial coherence are readily incorporated
within the ILRUFT algorithm. This is achieved by formulating
the procedure in terms of the object transmission function,
T (r), rather than an exit surface wave, which cannot be used
to characterize the scattering from a partially coherent source.
The mutual optical intensity of the illumination, J (r1,r2),
describes the statistical properties of the illumination in the
entrance surface of the sample in a quasimonochromatic
approximation, while T ∗(r1)J (r1,r2)T (r2) describes the exit
surface properties of the optical field.

The coherent mode expansion of J (r1,r2) in any plane
perpendicular to the optical axis takes the form [13]

J (r1,r2) =
∑

k

ηkψ
∗
e,k(r1)ψe,k(r2), (15)

where k = 1,2, . . ., and the real, non-negative parameter, ηk ,
represents the occupancy of two-dimensional mode ψk(r);
typically, only a few terms in the sum over k are required to
describe a partially coherent field. Following the conventions
established in Fig. 2(a), each of the modes in the exit surface
of the object, ψe,k(r), may be partitioned according to

ψe,k(r) = ψ
(1)
illum,k(r) + ψ

(2)
illum,k(r)Tobj(r), (16)

where ψ
(1)
illum,k(r) is the illumination outside the region as-

sumed to contain the object, shown in Fig. 1(c), ψ
(1)
illum,k(r)

is the illumination inside that region and Tobj(r) represents the
transmission function in the region assumed to contain
the object. This multiplicative representation of the effect of
the object on the illumination differs from that expressed in
Eq. (2) but is convenient for the inclusion of partial coherence
in the linear formalism.

For partially coherent illumination, the function fe(r)|r∈D
appearing in Eq. (5) then assumes the generalized form

fe(r)|r∈D =
∫ [∑

k

ηkψ
(1)
illum,k(r + r′)ψ∗(2)

illum,k(r′)

]
T ∗(r′)dr

+
∫ [∑

k

ηkψ
(2)
illum,k(r′)ψ (1)

illum,k(r′−r)

]
T (r′)dr′.

(17)

This reduces to the formulation obtained for fully coherent
illumination, Eq. (4), when restricted to r ∈ D, in the limit
ηk = δ1,k and ψobj(r) = ψ

(2)
illum,1(r)T (r). The discretization of

fe(r)|r∈D in Eq. (17) generates a set of linear equations of the
form Āt = b, where t represents a vector of sample values
of T (r) and b is defined in Eq. (5), in which the measured
intensities are now generated by partially coherent sources.

In practice, the matrix products Āt and ĀT t′ are constructed
by modal extensions of Eqs. (10) and (11). An input trial
vector is multiplied by the mode ψ

(2)
illum,k(r) to form �̃k,i(r)

[Eq. (10)] or Dk,i(r) [Eq. (11)]. The required matrix-vector
products Āt and ĀT t′ are formed from the weighted sum
of terms of the form Eqs. (10) and (11), respectively, with
weighting coefficients ηk . The increase in cost, relative to the
fully coherent case, scales linearly with the number of terms
that are included in the modal expansion. Typically, this factor
is less than 10 and depends only on the coherence properties of
the source rather than the dimensionality of the problem. The
favorable scaling characteristics of the ILRUFT algorithm are,
therefore, preserved within a partially coherent formulation.

III. EXPERIMENTAL TEST CASE

In this section we demonstrate and evaluate the ILRUFT
algorithm using experimental data. The experimental data is
the gnat’s wing data in Ref. [14]. The diffraction pattern,
illumination, and object area used in ILRUFT are shown in
Fig. 1. At high resolution (1200 × 1200 pixels) and using
single precision this data set requires 70 Gb of memory to
construct and store the A matrix explicitly. To solve the
problem using QR decomposition required approximately 12 h
of computing time, more if SVD is used. Using ILRUFT at
double precision the program requires less than 0.1 Gb of
memory and each iteration takes approximately 0.25 s.

The intensity and phase retrieved from the ILRUFT algo-
rithm, as a function of iteration, are shown in Fig. 3. Before
display the single regularization step described in Ref. [16] was
implemented but the unregularized result was carried forward
in the ILRUFT procedure. The regularization procedure is
simply the propagation of the computed exit surface wave to
the detector plane, the replacement of the modulus of this
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FIG. 3. The retrieved intensity (left) and corresponding phase
(right) of the exit surface wave from a gnat’s wing as a function of
ILRUFT iterate. The iterate number is inlaid on the figure. Before
display regularization is performed but the unregularized result was
carried forward in the ILRUFT procedure.

wave using the measured intensity in the diffraction plane, and
then the propagation back to the exit surface. It is a striking
feature of the linear method that an excellent estimate of the
solution is found in a handful of iterations; further iterations
effectively fit measurement noise and systematic errors. An
example of a systematic error that may be prominent in the
retrieved intensity is the misalignment of the illumination,
which is discussed in Ref. [16]. Figure 4 shows the residual
produced by ILRUFT (without regularization) as a function
of iterate number. The residual decays quite rapidly and
asymptotes to the value 3.3 × 10−3 after a handful of iterations.
Examining the regularized result, one could justifiably claim
to have obtained the full deterministic solution after less
than 200 iterations. This implementation of ILRUFT is based
on the CGLS method and, as such, brings with it a well-
established set of analytic tools regarding rates of convergence,
solution stability, and matrix preconditioning. These methods
are typically not available with conventional CDI techniques
because of their intrinsic nonconvex character. Furthermore,
the efficient evaluation of the matrix-vector product using
Fourier methods for the overdetermined problem can be
applied to more sophisticated iterative linear equation solvers.
This is not to suggest, however, that CGLS is poor or that
significant improvements in performance are required; on the
contrary, ILRUFT provides an excellent solution in under a

FIG. 4. The residual as a function of ILRUFT iterate for the
experimental gnat’s wing data. The residual was calculated without
regularization.

minute of CPU time. Implementing ILRUFT using state-of-
the-art linear equation solvers and massively parallel graphics
chips may, however, reduce the wall-clock solution time to
tenths of a second, making possible real-time deterministic
phase retrieval.

IV. PTYCHOGRAPHIC EXTENSION

As has been discussed, the primary advantage of ILRUFT
is its deterministic solution of a well-defined least-squares
problem, as well as its speed and computational efficiency.
However, the linear retrieval as introduced in Ref. [15] requires
that certain experimental and illumination conditions are met
in order to perform the inversion. The ILRUFT algorithm
divides the exit surface wave in the probe region into two
parts. The first part contains the scattering object, which
must satisfy certain conditions about its spatial extent relative
to the dimensions of the probe and its position within the
probe. The second part is assumed, following Ref. [15],
to be defined by the incident illumination, which passes
through the probe region with unit transmission. While our
previous studies have typically assumed that this illumination
is uniform and structureless in both amplitude and phase,
this configuration is not essential. Consequently, the exit
surface wave in the second part could be the result of a
highly structured incident illumination or, alternatively, of
the modification of a plane wave illumination by a highly
structured transmission function. The only requirements for
the solution of the transmission function in the first part
of the probe region are that the exit surface wave be well
characterized in the second part and that the illumination be
well characterized over the entire probe region. Ptychographic
reconstructions of extended regions may, as a consequence, be
achieved if the transmission function is known over a region
that is sufficient to seed an ILRUFT solution in a region over
which it is unknown, subject to the usual conditions relating
to the extent and position of the unknown part in the probe
region. In this section we present a modification of the linear
method using ptychographic principles to allow the imaging of
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FIG. 5. (Color online) Geometry of the experiment showing
the different probe positions at which each diffraction pattern
measurement is made.

extended objects. We label this ptychographic extension of the
ILRUFT algorithm PILRUFT. Consider the object shown in
Fig. 5. It is possible to solve for the exit surface wave from the
autocorrelation of the exit wave using an illumination as shown
in Fig. 5(a). Conversely, for centrosymmetric illumination, it is
not possible to solve for the exit wave for the geometry shown
in Fig. 5(b) as this violates the conditions outlined in Ref. [15].
Suppose, however, that the probe position indicated in Fig. 5(a)
is solved first and that the object exit surface wave is known in
that region. It is then also possible to solve for Fig. 5(b) using
a modified formalism derived from that described in Sec. II.
Starting from Eq. (2) the exit surface wave may be written as

ψe(r) = ψillum(r) + ψko(r) + ψuo(r), (18)

where ψko(r) is the known portion of the object wave obtained
from the probe position indicated in Fig. 5(a), translated
appropriately, and ψuo(r) is the unknown portion of the object
wave. The corresponding autocorrelation can be written as

fe(r) = fillum(r) + fcross(r) + fko(r) + fuo(r)

+ fillum,ko(r) + fko,illum(r), (19)

where fuo indicates the autocorrelation of the unknown object
wave, fko is the autocorrelation of the known object wave,
and fillum,ko and fko,illum are the cross-correlations of the
known object and illumination. The sum of cross-correlations,
fcross(r), is now given by

fcross(r) =
∫

ψillum(r + r′)ψ∗
uo(r′)dr′

+
∫

ψuo(r + r′)ψ∗
illum(r′)dr′

+
∫

ψko(r + r′)ψ∗
uo(r′)dr′

+
∫

ψuo(r + r′)ψ∗
ko(r′)dr′. (20)

As a consequence, Eq. (20) can be recast as a set of linear
equations, as was achieved previously for the probe position
indicated in Fig. 5(a). The A matrix is then constructed; now,
however, from the sum of the known illumination and the
known portion of the previously calculated exit surface wave.
Conceptually, this process may be regarded most simply as
involving the incorporation of the previously retrieved exit
surface wave as a part of the illumination that interferes with
the unknown exit surface wave when propagated to the far
field. The extension to multiple probe positions is obvious and
allows for the imaging of arbitrary sized objects.

FIG. 6. Numerical inputs to the PILRUFT algorithm, (a) illu-
mination amplitude and phase, (b) assumed object area, (c) object
intensity, and (d) object phase.

The assumption that the action of the illumination on the
object is multiplicative is critical, because it enables the object
to be freely translated within the beam. Furthermore, we also
assume that the probe step size is chosen to be sufficiently
small that the number of equations that need to be solved in
the augmented system is greater than the number of variables.
Supposing the above conditions are satisfied and that the first
probe position either satisfies the conditions of Martin and
Allen [15] or was obtained by other means (such as by an
independent iterative phase retrieval of a finite segment of the
object), the PILFUFT procedure then is well defined for any
sized object.

As a demonstration of PILRUFT, Fig. 6 shows the inputs
used for a PILRUFT reconstruction. The numerical grid
contained 300 × 300 pixels. The illumination had a diameter
of 80 pixels and the object was confined to a rectangle of side
length 100 × 66 pixels. The reconstruction used 15 horizontal
probe positions and 10 vertical probe positions. During the
reconstruction, the probe was raster scanned horizontally,
7 pixels at a time. On the completion of the horizontal
scan the probe was then translated vertically 7 pixels and a
new horizontal scan was performed. At each probe position
the ILRUFT algorithm was allowed to run until either the
residual changed by less than 1 part in 107 or the residual
was smaller than 10−19. At each step of the reconstruction,
the object wave in the area of the illumination defined by
Fig. 6(b) was obtained. This was subsequently averaged with
previous overlapping calculations, each of which were also
averaged. The full exit wave was then regularized as described
in Ref. [16]. Shown in Fig. 7 is a PILRUFT reconstruction for
various probe positions using perfect inputs, including no noise
or measurement errors. Clearly evident is a retrieved object
wave devoid of numerical artifacts which has been obtained at
the precision specified for each ILRUFT iteration.

The accuracy of the linear reconstruction that is
actually achieved depends critically on the quality of the
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FIG. 7. Results from the full PILRUFT reconstruction with
scanning in two dimensions. Images (a), (c), and (e) are the intensity
and (b), (d), and (f) are the phase of the object transmission function
for probe positions (x,y) = (1,1),(5,7), and (15,10).

characterization of the illumination. For the augmented
system of linear equations, where some region of the object
wave that has previously been solved for is now used
to redefine the illumination, this dependency apparently
places limits on the robustness of the PILRUFT algorithm.
Inconsistencies in the data, such as measurement noise or
inadequate convergence for the ILRUFT reconstruction,
have the potential to impact negatively on the PILRUFT
reconstruction, because errors propagate to subsequent probe
positions. To investigate error propagation we incorporated
measurement noise in the calculated diffraction pattern
for each probe position by including statistical errors of
0.5 and 1.0% on the brightest pixel. The results of the
PILRUFT reconstruction of the transmission function
with these noise levels are shown in Fig. 8 and appear
surprisingly robust. For a noise level corresponding to 0.5%
[Figs. 8(a)–8(h)] the object transmission function displays
some artifacts but, nonetheless, it provides a reasonable
reconstruction of both the amplitude and phase. Interestingly,
doubling the noise level to 1.0% [Figs. 8(i)–8(q)] still allows
the PILRUFT reconstruction to produce a qualitatively
accurate reconstruction of the object transmission function. A
significantly worse reconstruction was obtained (results not
shown) for a single probe position which used an expanded
beam to illuminate the object.

A. Robustness

The excellent phase reconstruction for the noisy simulation
shown in Fig. 8(q) demonstrates a striking robustness of the
PILRUFT algorithm to statistical measurement noise. This

FIG. 8. Results from the full PILRUFT simulation with scanning
in two dimensions. Results to the left [(a)–(h)] are for the 0.5%
noise levels, whereas those to the right [(i)–(q)] correspond to 1.0%
noise levels. The intensity (black background) and corresponding
phase (speckled background) of the computed exit wave are shown
as a function of probe position. Panels (g) and (h) show the full
transmission function for 0.5% noise and panels (p) and (q) show the
full transmission function for 1.0% noise. In (h) the bright speckle on
the bicycle is a result of phase wrapping.

robustness is most easily attributed to the overdetermined
nature of the ptychographic problem. In the reconstruction for
each probe position where overlap exists between previously
reconstructed parts of the transmission function and the current
reconstruction in the region defined to be “unknown,” the
data sets for each transmission function were averaged [see
Fig. 9]. This, in effect, averages out the uncorrelated noise
that is present on the reconstructed transmission function for
each probe position. The characterization of the exit wave is
then improved, which is then used to redefine the illumination
for subsequent probe positions. More importantly, however,
the rapid phase variation present in the exit surface wave
provides strong interference with the unknown portion of the
exit wave. This rapid variation in the phase provides a more
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FIG. 9. (Color online) Schematic of the overlap region describing
the averaging used in the reconstruction. Here, it is assumed that we
solve for the entire area defined by the right-hand side semicircle
of the illumination. The initial probe position reconstructs the black
region. The green (or dark gray in grayscale) region indicates the
overlap between the first and second probe positions and the light
gray region indicates new information about the specimen.

robust reconstruction, aiding convergence of conventional
iterative techniques [18,19], including in cases in which
statistical measurement noise is present in the data [20].
In the present case, the rapid phase variation coupled with
the overdetermined solution within the overlapping region
improves the stability and the robustness of the PILRUFT
reconstruction.

B. Resolution limits

The resolution limits of holographic techniques critically
depends on the Fourier components contained in the illumi-
nation. In the present case, with circular illumination, this
is defined by the sharpness of the circle’s edge. For focused
coherent illumination, like that found in scanning transmission
electron microscopy, this would be the aperture cutoff used to
form the probe. Using regularization incorporates nonlinear
data within the reconstruction. This, in effect, improves the
resolution of the reconstructed object beyond that allowed by
holography alone. Using PILRUFT includes this nonlinear
data in a linear fashion. The augmented illumination, which
contains the characterized illumination and part of the trans-
mission function, is used to interfere with the unknown portion

of the exit wave and contains Fourier components of higher
spatial frequency than those contained by the illumination
alone. The result of further ILRUFT reconstructions are,
without subsequent regularizations, at a higher resolution than
would be obtained if the illumination was expanded to cover
the entire specimen.

V. CONCLUSION

We have presented a deterministic phase retrieval algorithm
that scales modestly with the size of the problem provided that
certain illumination conditions are satisfied (which in practice
are not very restrictive). The approach here ensures sufficient
linear (in addition to nonlinear) information is available in the
inverse Fourier transform of the diffraction intensity to solve
the phase problem. In that sense it is simply a special case
of the most general CDI phase problem. ILRUFT is the only
algorithm that can claim to be a CDI algorithm in the strictest
sense; it is both deterministic and requires resources that scale
favorably with the size of the problem. Furthermore, ILRUFT
is amenable to all forms of illumination, provided that the
Fresnel imaging geometry is adopted for unstructured forms of
illumination. Problems of stagnation that plague conventional
techniques are not an issue in ILRUFT. In cases for which
stagnation is not a problem, ILRUFT remains computationally
competitive and obtains the solution in the same number or
less iterations as conventional techniques. It has also been
demonstrated that ILRUFT is numerically stable and practical
when used with noisy experimental data.

We have shown that ILRUFT can be modified to allow for
the imaging of extended objects in a pytchographic extension
we have designated PILRUFT. This modification improves the
robustness of the reconstruction with respect to unavoidable
experimental issues such as measurement noise. Finally,
unlike conventional techniques which provide a least-squares
solution for the measured intensity problem, ILRUFT and
PILRUFT obtain the least-squares solution for the unknown
object at the numerical precision of the machine (in the absence
of noise). The deterministic nature of PILRUFT ensures that
it can also be used to check the uniqueness of a conventional
ptychographic reconstruction.
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