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“We cannot solve our problems with the same
thinking we used when we created them.”

Albert Einstein (1879-1955)

Preface

In this thesis | present my doctoral work which | completed in a bit more than 3 years
working in the Theory Division of the Center for Free-Electron Laser Science. Changing
from mathematical and high-energy physics to atomic and many-body physics was chal-
lenging but | am very happy about my decision to switch to photon science. Already at
this point | would like to thank my supervisor Prof. Dr. Robin Santra who supported me,
challenged me to produce better and better scientific work and from whom | learned a
lot about both theory and experiment related to ultrafast and strong-field physics.

During my PhD | was fortunate enough to be a member of the collaborative research
center (SFB) 925: “Light induced dynamics and control of correlated quantum systems”.
This scientific structure not only facilitates communication but positively enforces col-
laboration between the members. Through this research center discussions with other
doctoral students arose and a collaboration emerged with the group of Dr. Michael Meyer
from the European XFEL GmbH about an experiment conducted at FLASH. For me, this
close collaboration provided insight into the experimental setup and the conditions at a
free-electron laser. It led to highly interesting and novel results in the collective excitation
of atomic systems in the XUV photon energy regime. | am grateful to Dr. Michael Meyer
who was also my second supervisor within the graduate school of the SFB 925.

| had the chance to benefit from the communicative and interdisciplinary environment
that the Center for Free-Electron Laser Science (CFEL) provides. During my doctoral
time | was given three chances to contribute actively to the scientific life at CFEL and to
teaching: Together with Stefan Pabst and Jan Malte Slowik, at the time colleagues in our
group, we organized an international workshop funded mainly by the Kérber Foundation
and supported by the SFB 925 and DESY. We invited young researchers and set the focus
on discussions between the scientists. Furthermore, through the DAAD RISE program
| had the opportunity to supervise a summer student, Matthew Tilley, with whom we
investigated an interesting project about nonlinear atom-photon interaction in the x-ray
regime. This supervision and collaboration was a great experience for me. Thirdly, | led
the exercise groups belonging to the lecture “Theory of photon-matter interactions” given
by Prof. Santra at the University of Hamburg.

My interest in light-induced phenomena in matter has been growing constantly over
the last three years, and | hope that this work will stand only at the beginning of more
exciting scientific studies and results to come.



Zusammenfassung

Die rasante Laserentwicklung und insbesondere die technologischen Fortschritte im Be-
reich der freien Elektronenlaser haben groBe Erfolge sowohl in der theoretischen als auch
in der experimentellen Atom-, Molekiil- und optischen Physik eingeleitet. Dank der ho-
hen Intensitaten und gleichzeitig kurzen Pulsdauern kann Licht-Materie-Wechselwirkung
unter extremen Bedingungen im nichtlinearen Regime im Hinblick auf die Dynamik und
die Eigenschaften der Materie untersucht werden. Die neuen Méglichkeiten der freien
Elektronenlaser im Rontgenbereich haben die Bedeutung der nichtlinearen Optik auch in
den Bereich der Rontgenstrahlung erweitert. Ich zeige in meiner Arbeit, wie der Bereich
des nichtlinearen Ansprechverhaltens ausgeschopft werden kann, um verborgene Informa-
tion tber Resonanzstrukturen zu erhalten, die im linearen Bereich nicht aufgelost werden
kann. Dies eroffnet Aussichten fiir zukinftige Anwendung in der Untersuchung von di-
versen, komplexen Systemen mithilfe von freien Elektronenlasern.

Gegenstand der vorliegenden Arbeit ist die Wechselwirkung von atomaren Systemen
mit einer abgeschlossenen duBeren Schale mit ultrakurzen und starken Laserpulsen. Das
Hauptaugenmerk bei der Untersuchung der Eigenschaften der Atomhiille liegt auf dem
nichtlinearen Antwortverhalten und den Korrelationen zwischen den Elektronen. Mehrere
Erweiterungen des Softwarepakets XCID fiir Mehrelektronensysteme werden beschrieben
und deren Anwendungen werden in verschiedenen Projekten demonstriert; neue Mog-
lichkeiten der numerischen Methode wurden durch die Implementierung der Berechnung
von Photoelektronenspektren und Eigenzustanden des Vielteilchen-Hamiltonoperators re-
alisiert. Das hier behandelte Forschungsgebiet umfasst 1) den Starkfeldbereich, in dem
das diabatische Verhalten in der Tunnelionisierung insbesondere fiir kiirzere Pulsdauern
als ein optischer Zyklus diskutiert wird; 2) das XUV Regime, in dem wir zum ersten
Mal zeigen, dass kollektives Verhalten im nichtlinearen Regime bei resonanter Anregung
neue Information preisgibt; und 3) den fir freie Elektronenlaser-Experimente relevanten
(harten) Rontgenbereich, in dem wir die Bedeutung der Mehrphotonenphysik im Hinblick
auf angestrebte zukiinftige Intensitaten verdeutlichen. Unsere Analyse des Experiments
bei FLASH (iber die riesige Dipolresonanz der 4d Schale von Xenon im nichtlinearen XUV
Regime enthiillt die Existenz von zwei unterliegenden Resonanzen. Zum ersten Mal recht-
fertigen Messungen der Zweiphotonen-Absorption die Vorhersage von Unterstruktur und
beweisen die Wichtigkeit der Korrelationseffekte im nichtlinearen Regime.

All diese Studien beschreiben Dynamik und Eigenschaften der Systeme nach der Wechsel-
wirkung mit einem bestimmten Puls. Wir stellen auch die inverse Frage: Wie muss der
Puls aussehen, um ein bestimmtes Photoelektronenspektrum zu erhalten? Das Ergebnis
der lonisierung soll optimiert werden, der Puls soll die Elektronen lenken. Zielsetzung
der koharenten Optimierung des Pulses ist, ein vorgegebenes Spektrum zu erhalten. Der
Lichtpuls kann in Bandbreite, Amplitude und Pulsdauer beschrankt werden, um experi-
mentelle Durchfiihrbarkeit sicherzustellen. Wir runden so das Gebiet der lonisierung von
Mehrelektronensystemen ab und identifizieren Moglichkeiten fiir zukiinftige Entwicklun-
gen.
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Abstract

Rapid developments in laser technology and, in particular, the advances in the realm of
free-electron lasers have initiated tremendous progress in both theoretical and experimen-
tal atomic, molecular and optical physics. Owing to high intensities in combination with
short pulse durations we can enter the utterly nonlinear regime of light-matter interaction
and study the dynamics and features of matter under extreme conditions. The capabilities
of x-ray free-electron laser sources have promoted the importance of nonlinear optics also
in the x-ray regime. | will show in my thesis how we can exploit the nonlinear response
regime to reveal hidden information about resonance structures that are not resolved in
the weak-field regime. This prospect points to many applications for future investigations
of various complex systems with free-electron lasers.

In the present thesis the interaction of atomic closed-shell systems with ultrashort and
strong laser pulses is investigated. Over a broad photon-energy range the characteristics
of the atomic shell are studied with a particular focus on the nonlinear response regime
and on electron correlation effects. Several computational extensions of the XCID pack-
age for multi-electron dynamics are presented and their applications in various studies
are demonstrated; a completely new capability of the numerical method is realized by
implementing the calculation of photoelectron spectra and by calculating eigenstates of
the many-electron Hamiltonian. The field of study within the present work encompasses
1) the strong-field regime, where the question of the adiabatic character in tunneling
ionization is discussed and analyzed, especially for the case of few-cycle pulses; 2) the
XUV regime, in which we show for the first time that the collectivity in resonant exci-
tation reveals new information; and 3) the (hard) x-ray regime, which is highly relevant
for x-ray free-electron laser experiments, and where we show how important two-photon
absorption in this regime can be at the envisaged high intensities at future hard x-ray
sources. Analyzing the experiment carried out at FLASH by physicists from the European
XFEL, our study of the well-known giant dipole resonance of the 4d shell in atomic xenon
in the nonlinear regime brings to light the existence of two underlying resonances. For the
first time, the experimental measurements of two-photon absorption of xenon legitimate
the theoretical prediction of its substructure and demonstrates that collective effects are
essential to describe the electronic response in the two-photon regime.

All of these studies are concerned with the dynamics and the result upon irradiation
with specific pulses. We address also the inverse question: How must the pulses be
shaped in order to achieve a certain photoelectron spectrum? We wish to optimize the
result of the ionization procedure and, thereby, to steer electrons. The coherent control
objective is discussed by forcing the pulse to generate a predetermined photoelectron
spectrum. The light pulses can be restricted in bandwidth, amplitude and duration so as
to assure experimental feasibility. In this way, we complete the picture of ionization of
multi-electron systems by strong and short laser pulses over a broad frequency range and
identify possible directions for future developments.
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Introduction

Remarkable progress in the realm of light-source development has shaped the physics
of the 20" and the beginning of the 21%* century. The power of producing coherent
electromagnetic radiation of high intensity evolved simultaneously with the quest for
ever increasing precision and for more information about the structure and dynamics
of matter. Modern light sources developed from the maser and the first laser, and
now lasers, synchrotron, terahertz and microwave sources span the frequency range
from radio frequencies to the ultraviolet (UV) and extreme ultraviolet (XUV). With
the extension of the laser to free-electron lasers the photon energy of the coherent
laser light can lie even in the soft to hard x-ray regime. These light sources provided
the ground for new tools and methods to study atoms and molecules interacting with
light. On the one hand light is utilized to investigate the structure and dynamics of
atoms; on the other hand it is also employed to control atomic degrees of freedom
and to steer electrons, in turn also leading to the generation of new types of light
sources. Light-matter interactions have been interesting to physicists, engineers and
chemists for a long time now and their investigation has opened new fields of study
in atomic, molecular, optical, and solid state physics, chemistry and engineering.

The present thesis deals with the theoretical investigation of atomic systems inter-
acting with intense light pulses, spanning a broad frequency range from the infrared
to the x-ray regime. In particular, the nonlinear response regime is investigated by
studying the interaction of strong laser pulses with atoms. In undertaking this type
of study one needs to employ a theoretical framework capable of efficiently describ-
ing the absorption, emission and scattering of photons by atoms. Thus, the essential
ingredients of the theory are threefold: the description of the atomic/electronic struc-
ture, of the light field and of their interaction. To this end, in the present work the
route of “first principles” or “ab initio” calculations is taken: the Schrédinger equation
is solved numerically. A central guiding principle of our approach is the predictive
character that our calculations shall have: we are not imperatively pursuing a high-
precision ab-initio theory, but focus more strongly on the qualitative validity of our
results. Regarding the light-field part it should be emphasized that the light is de-
scribed semiclassically and as a function of time only. Due to the exclusive time
dependence the electric field does not change over the spatial extent of the atom and,
consequently, our description remains in the dipole approximation. Yet, as will be
shown, regarding the photon-energy range the whole range of the spectrum can be
considered without any difficulty.



1 Introduction

One particularly important aspect of my thesis work regarding the electronic struc-
ture problem is the description of correlation effects between electrons and holes in
the atomic shell, which are created by the light, and the phenomena to which the col-
lective behavior leads. Whenever the dynamics are governed by significant quantum
many-body interactions the physics becomes much richer; it is not sufficient to con-
sider single electrons interacting with the light field. We start from the Hartree-Fock
ground state and truncate the configuration interaction (CI) space after the space of
one-particle—one-hole excitations: The full N-particle wave function for closed-shell
atoms is expanded in the one-particle—one-hole basis and, thus, we obtain the con-
figuration interaction singles (CIS) scheme. Therefore, the correlation between the
electron and the hole created in the shell is inherently contained within the descrip-
tion of the wave function. In this way, an effective two-particle theory is constructed.

Specifically, if we open all channels that can partake in a certain ionization or
excitation process and if we allow all the possible holes that can be created through
this process to interact via Coulomb interaction with the leaving electron we obtain
the “interchannel” coupling scheme, which will be of central importance within this
thesis. It is also possible to constrain the Coulomb interaction between the ejected
electron and the shell to the hole from which it initially originated. This scenario is
known under the name “intrachannel” coupling scheme. The investigation of both
schemes and the comparison of the results enables us to distinguish the impact of the
particle-hole interaction, i.e., the electron correlation effects, onto a certain process.
In order to avoid confusion we define here what correlation and/or collectiveness shall
signify: Whenever it is not possible to write the wave function as a single particle—
hole state, yet a superposition is required to describe the state of the system, there is
entanglement between different particle-hole states. The Coulomb interaction leads
to correlation between these particle-hole states and the wave function describes a
collective system far beyond a single-particle state.

We expand the N-electron wave function in the CIS basis and solve the time-
dependent Schrodinger equation through time propagation. Therefore, this compu-
tational method is called time-dependent configuration interaction singles or TDCIS.
Since we obtain the full N-electron wave function we can analyze it to extract infor-
mation about the process we want to describe: ionization probabilities, cross sections,
high-harmonic generation spectra, etc.

My doctoral work led to the following publications: The study of adiabaticity in
strong-field ionization is published in Ref. [1], the extension of the XCID package to
the calculation of photoelectron spectra is summarized in Ref. [2] and complemented
by the Erratum [3]. In the publication [4] the findings of our collaboration on the
collective excitation of the giant dipole resonance in xenon are presented, the subse-
quent theoretical analysis is published in Ref. [5]. The work on x-ray above-threshold
ionization (ATI) has been published in Ref. [6], and will appear in the Special Issue
on Frontiers of Free-Electrons Laser Science Series I1. The work on quantum optimal
control of photoelectron distributions has been submitted [7].

In the following, I briefly present an introduction to the processes and methods that
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are contemplated within my doctoral work, the theoretical basis of my calculations
and the structure of this thesis.

1.1 lonization of atoms

Photoionization is one of the most probable processes to happen when light inter-
acts with matter. It has been studied extensively from the very beginning of the
development of quantum theory [8-12], e.g. in argon or xenon [9, 13]. Since then,
its theoretical description has been refined constantly [10-12], and both theoreti-
cally and experimentally the ionization of atoms and molecules has served as a tool
to investigate the nature of the atomic shell and the molecular orbitals [9]. Espe-
cially nowadays with the development of new light sources such as free-electron lasers
(FELs) and attosecond light sources, the realm of strong-field physics, multiphoton
processes and the interaction of light with matter on an ultrashort timescale (fem-
toseconds to attoseconds) has become a focus of interest. These light sources provide
the experimental means to control and image atomic and molecular systems and to
test theoretical predictions of nonlinear processes [14-18].

The photon energies of FELs extend from the UV to the x-ray range, and the inten-
sities are such that they permit the investigation and control of inner-shell processes,
Auger decay or above-threshold ionization (ATT) [19, 20]. Typically, the duration of
FEL pulses are as short as a few femtoseconds (107'* s). The generation of high-
order harmonics (HHG) [21] and the development of ultrashort light sources provide
the tools for studying phenomena within atoms and molecules with a new quality
in time resolution. The forces acting on the atoms become comparable to the intra-
atomic forces, and the ultrashort pulse durations of the order of femtoseconds down
to attoseconds (10718 s) [22-24] reach the typical time scales involved in electronic
excitations (roughly between 50 as and 50 fs). All of these processes are directly
linked to the process of photo-excitation and -ionization.

With the mentioned pulse properties typical atomic timescales which extend from
a few attoseconds to tens of femtoseconds can be accessed in order to study electronic
dynamics in atoms, molecules and clusters [23, 25, 26]. In the strong-field regime,
multiphoton processes play a significant role, especially if the photon energies lie in
the UV to x-ray range [27-29]. In general, in this frequency range a diversity of
processes must be faced. The removal of a deep inner-shell electron is followed by
various processes depending on the atomic states and the photon energy [30]. If the
laser pulse is strong enough, also multiphoton inner-shell ionization [31] as well as
ATT processes can occur.

For relatively weak fields the light field can be treated as a perturbation and the
light-matter interaction can be classified within a few low orders of perturbation
theory. In this regime, which is commonly called the perturbative multiphoton regime,
the order of the interaction or, equivalently, the number of photons that are absorbed
is described by the corresponding order of perturbation theory.
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However, the strong-field or tunneling regime requires a nonperturbative description
because the potential resulting from the light field is of comparable magnitude as
the intra-atomic potential and, thus, cannot be treated as a small perturbation.
This leads to highly nonlinear processes, such as strong-field ATI, a process where
the intensity of the peaks observed for a certain order of photoabsorption cannot
be captured by the corresponding order of perturbation theory, and lowest-order
perturbation theory breaks down.

1.1.1 Strong-field ionization

The realm of strong-field physics has become a focal point of interest in the atomic,
molecular, and optical physics community over the last two decades. This was par-
ticularly supported by the rapid development of lasers so that the time-resolved in-
vestigation of electron dynamics in atoms and molecules has come into reach.

In particular, the process of tunneling ionization has been studied extensively. Ton-
ization in this regime is described in the following picture: The electric field, which
oscillates with a small frequency, bends the Coulomb potential in such a way that a
barrier of finite width is created through which the electron can tunnel and leave the
ion. This is shown schematically in the left panel of Fig. 1.1. Following the calculation
of the tunneling ionization rate for the ground state of hydrogen in a static electric

Figure 1.1: The two different ionization regimes depicted schematically for helium. Left
panel: Tunneling ionization, 7 < 1. The strong electric field (black-dashed line) tilts the
Coulomb potential (green curve) so that a barrier of finite width is generated (red curve).
The electron can tunnel through the barrier and leave the ionic core in the direction of
the barrier suppression. Right panel: Multiphoton regime, v > 1. Via the absorption of
several photons the Coulomb barrier is overcome and the electron can be ionized.
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field by Landau [32], Keldysh extended the theory to ionization by strong electromag-
netic fields [33]. Later, Ammosov, Delone, and Krainov (ADK) generalized the results
to slowly varying fields by introducing the quasistatic approximation and defining
the tunneling ionization rate by averaging over one optical period (ADK theory) [34].
A self-contained derivation of the tunneling rate in this approximation is presented
in Ref. [35]. In the original derivation [33] Keldysh introduced the parameter

7= Ip/(QUp>’

which is now known as the Keldysh parameter [36]. Here, I, is the ionization potential
and U, = I/(4w?) is the ponderomotive potential, which corresponds to the average
energy of a free electron oscillating in the electric field. Here, I is the intensity of the
light field and w is the central frequency. In this way, the Keldysh parameter sets into
proportion the frequency of the light field and the field amplitude, v = 2w+/1,/(21).
According to Keldysh, v divides the phenomenon of strong-field ionization into two
regimes: for v < 1 the ponderomotive potential is much larger than the ionization
potential and ionization is governed by tunneling ionization [32], while for v > 1
the process is governed by perturbative multiphoton ionization [37]. In the range of
v = 1 both effects compete with each other [38, 39]. In later publications the Keldysh
parameter has been connected to the notion of adiabaticity of the ionization process
[40, 41]. Far into the tunneling regime, the atomic response is considered to be purely
adiabatic. Adiabatic means in this context that the ionization rate at a given time is
solely defined by the instantaneous electric field. This classification will be analyzed
in detail in Ch. 4.

1.1.2 Multiphoton ionization

Multiphoton ionization [37] is a process where the system absorbs simultaneously
several photons to undergo ionization. This process was theoretically predicted very
early [42] and then also verified experimentally with lasers that interact with single
atoms [43, 44]. As long as the pulse intensities are not too high (for atomic systems
< 10Wem™2) the multiphoton process can be described successfully by perturbation
theory where the light represents a small perturbation with respect to the inneratomic
Coulomb potential. Of course, this approximation is invalid once the strength of the
light field is comparable to the inneratomic electric fields. Multiphoton ionization
has been studied extensively over the last decades [37, and references therein)].

In the regime, where the Keldysh parameter is much larger than one, ionization
can be understood as initiated by the absorption of multiple photons. This provides
the energy necessary to overcome the Coulomb potential and to leave the ion, see
Fig. 1.1, right panel. In the perturbative multiphoton regime cross sections can be
defined [45] for the description of the absorption or scattering of photon by atoms.
Cross sections link the transition matrix element for the particular transition from an
initial state to a final state to the photon flux, j = I /wphoton, Which is the number of
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incident photons per unit time and unit area. Here, I is the intensity and wphoton the
photon energy. For instance, the absorption of two photons is described in second-
order perturbation theory. For this purpose, the transition matrix element associated
with the transition induced by the interaction Hamiltonian ffint from an initial state
of the coupled atom-light system I to a final state F' is calculated. To this end, all
possible pathways leading to this final state by absorbing two photons have to be
taken into account. Through the absorption of one photon an intermediate state
M, is populated and a summation over all these possible intermediate states must
be carried out

M(2) _ Z <F’Hint‘Mres><eres‘[:[int’[> (11)
e E - EMres + %FMres + E[ ’

res

where F is the energy of the photon, F,;_ and I';_. are the energy and the width
of the intermediate state, respectively, and E; is the energy of the initial state. The
two-photon cross section, 0| is derived from the quantity |A/ }ZL 2

In general, for simplicity disregarding indirect channels, the rate equation for the
population evolving due to an N-photon ionization process reads

dPy

3 = L= Ex(0)le™5", (1.2)

thus involving the product of the generalized cross section for the N-photon process,
o™ and the intensity to the power N. Solving this differential equation formally by
integrating the ionization probability at time ¢ is obtained

Py(t) =1—exp (— /t de)jN) : (1.3)

—00

From this relation it follows that as long as the saturation regime is not reached, i.e.,
as long as the intensity is low enough and the cross section does not depend on the
intensity, the following relation holds: In Py = N1InI + Ino™) + const. This linear
dependence results in a straight line on a double-logarithmic scale and allows to read
off the order of the ionization process from the slope of the curve.

1.2 Photoelectron spectroscopy

Experimentally, photoelectron spectroscopy is a powerful tool to analyze and quantify
the processes that happen within complex systems upon irradiation and understand
the electronic structure [46, 47, 47-51]. One highly nonlinear process which was dis-
covered with photoelectron spectroscopy and which I have studied extensively within
my doctoral work is the ATI process. First observed in 1979 by P. Agostini et al.
[52] ATI is a highly nonlinear process where an electron absorbs more photons than
are necessary for ionization [53]. As a consequence a series of peaks can be observed
in the photoelectron spectrum, where the separation between two consecutive peaks
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corresponds to the energy of one photon. This phenomenon occurs in both regimes
mentioned above if the light intensity is high enough, in the (infrared) strong-field
regime and the perturbative multiphoton regime. Photoelectron spectroscopy was
also employed in early experiments with intense light sources in the 1980s to measure
the angular distribution in ATI of xenon [49] in order to better understand the ATI
phenomenon. Synchrotron radiation was used to obtain high-quality angular distri-
butions of electrons in the photoionization of atoms [50, 54]. Photoelectron spectra
(PES) and photoelectron angular distributions (PAD) contain not only fingerprints
of the interaction of the electrons with the electromagnetic fields, but also of their
interaction and their correlations with each other [55]. In particular, PAD can be used
to uncover electron interactions and correlations [56, 57]. Also, in recent experiments
using short and intense pulses photoelectron spectroscopy has been used to reveal
decay mechanisms and multiphoton excitations in deep shells of atoms [58] and to
understand the origin of the low-energy structure in strong-field ionization [51, 59].
PES reveal important information about electron dynamics and time-dependent phe-
nomena [14, 23, 60, 61].

On the theory side, photoelectron distributions can also help to extract informa-
tion and predict fundamental processes occurring during the interaction with the light
pulse. The applications of analyzing the photoelectron spectrum are manifold. Ex-
emplarily, I simply list a few of them: the photoelectron spectrum has been employed
to optimize attosecond pulse measurements [62], to steer electrons with light waves
[63], which opened the way to attosecond streaking techniques [30, 64], to reveal the
electronic structure of molecules [65], to study nonsequential and sequential double
ionization in complex atoms [66], and to scrutinize multielectron ionization dynamics

[67].

1.2.1 Calculation of photoelectron distributions

Generally, the calculation of the photoelectron spectrum can be done easily after the
pulse has ceased by projecting the photoelectron wave packet onto the eigenstates
of the field-free continuum. This corresponds to the Fourier transform of the wave
packet. However, this approach requires large numerical grids in the cases where
the electrons can travel a long distance while the pulse is still interacting with the
system. The application of this approach is very limited even in the single-active
electron (SAE) cases. For this reason, new methods were developed to calculate
the spectrum using wave packet information in a fixed spatial volume much smaller
than the volume that would be needed to fully encapsulate the wave packet at the
end of the strong-field pulse. Especially for strong and long ionizing light pulses
the detection of the photoelectron far away from the atom poses a computational
challenge in numerical experiments because propagating the outgoing photoelectron
wave packet requires large grid sizes.

In the weak-field limit, where the light-matter interaction can be treated pertur-
batively, the photoelectron spectrum has been calculated with methods that also
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include correlation effects. Most prominent examples are post-Hartree-Fock methods
that use reference states, e.g. correlation methods like the configuration interaction
[9, 68], the coupled clusters method [69] and the random-phase approximation [70-
72]. Furthermore, approaches constructing continuum wave functions, like R-matrix
theory [73], have been applied to calculate photoionization cross sections [74] and
photoelectron angular distributions [75]; taking into account the interaction of the
liberated electron with other atomic orbitals has led to the explanation of the giant
dipole resonance of the 4d subshell in xenon [9].

In the strong-field regime the description of the ionized wave packet is challenging
due to the nonperturbative interaction between the electrons and the light pulse.
Therefore, the calculation of photoelectron spectra is numerically more demanding
than in the weak-field limit. Moreover, many-body processes are often neglected
in the strong-field regime and SAE approaches have become a standard tool [76-79]
where correlation effects are omitted. Nevertheless, recently, extensions to many-
body dynamics have been presented, e.g., R-matrix theory [80-84], two-active electron
[85-87] and time-dependent restricted-active-space configuration interaction theory
[88, 89].

There exist several approaches to overcome the obstacle of large grids, e.g., by
measuring the electronic flux through a sphere at a fixed radius [90] or splitting the
wave function into an internal and an asymptotic part [91, 92] where the latter is then
analyzed to yield the spectrum. The first implementation of the flux method in the
strong-field case is the time-dependent surface flux (t-surff) method introduced by Tao
and Scrinzi [93]. It has recently been extended to the description of dissociation in
molecules [94]. Tong et al. [77] applied the splitting approach to strong-field scenarios.
With both methods double-differential photoelectron spectra can be calculated, i.e.,
the electron distribution as a function of kinetic energy and ejection angle. We
combine both the splitting and the t-surff methods with TDCIS in order to calculate
the PES and the PAD.

1.2.2 Collaboration theory—experiment: ATI in the XUV at FLASH

While I was implementing the calculation of photo-electron spectra we organized dis-
cussions with other doctoral students from the collaborative research center 925 in
order to foster collaborations within the project area “Ultrafast dynamics and corre-
lations in small quantum systems”. We realized that in photoelectron spectroscopy
experiments performed at the Free-Electron LASer in Hamburg (FLASH) the group of
Dr. Michael Meyer had measured electron yields of argon and xenon, which we could
model with our numerical methods. In the framework of this collaborative research
center our proposition was embraced by the principal investigators, and we decided
to start a collaboration on the photoelectron spectra and their interpretation. I im-
mediately started work with Dr. Tommaso Mazza, first by understanding how the
experiment had been conducted and what exactly had been measured. They were in
the process of analyzing and processing their data so that I was involved from an early
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stage on in the investigation of argon and xenon irradiated by strong XUV pulses. In
the experiment, one- and two-photon electron yields were collected at three different
photon energies as a function of pulse intensity over a broad intensity range. In fact,
because one photon already suffices to ionize the atom, the two-photon ionization
process that we studied at the photon energies used in the experiment is ATI. The
absorption of the second photon due to the high pulse intensity promotes the electron
to a kinetic energy which is larger by exactly the amount of energy of the absorbed
photon. After exchanging parameters about the experimental setup with Dr. Mazza
I performed iterations of calculations on argon by first determining the cross sections
of the relevant processes and then calculating the electron yields as a function of
pulse intensity along with the experimental specifications. Together we found a set
of parameters regarding the pulse duration, beam geometry and optical setup for
which we found nice agreement between theory and experiment. Using argon as a
calibrating system we proceeded with the interpretation of the xenon data where we
discovered surprising new information about the giant dipole resonance in xenon.

1.2.3 Collective phenomena

Obviously, the photon energies for the experiment were chosen in a manner that was
everything but random: they lie exactly in the range of the giant dipole resonance
of the 4d shell of xenon, which is the prime example of a collective atomic system.
With the newly developed strong XUV radiation available at the free-electron laser
we could investigate xenon in the nonlinear response regime. With the help of our
theoretical tools we could —for the first time in direct comparison with experiment
in this nonlinear regime — classify the impact of the collectiveness of the xenon shell
on the photon absorption process and study the resonance structure in more detail.
Collective phenomena have been under investigation for many decades now and the
interest in collectivity has grown because interesting material properties arise, e.g.,
superfluidity and superconductivity.

Indeed, numerous phenomena and basic properties of matter including resonant
behavior in nuclei, atoms, clusters and plasmas [95-97], interactions in electron gases
[98, 99] and superconductivity and superfluidity [100, 101] can be described in terms
of a collective many-body response to an external perturbation. Collective elec-
tronic behavior is well understood in the weak-field regime, consistent with linear
response theory [95, 102]. Since it is a characteristic feature in many-body systems,
important for developments in fields such as magnetism, superconductivity, photon-
ics and electronics there has been recently also increasing interest in the optically
nonlinear response of collective excitations. Significant advancements in photonics
[103-105], especially in electric field enhancement [97, 106] and harmonic generation
[107], have been mostly triggered by the recent development in tailoring materials on
the nanometer scale exploiting their resonant collective response to radiation [108].
In order to optimize the coupling between the nanostructure and the electromagnetic
field a detailed understanding of the underlying resonant response is essential. To this
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end, atomic samples provide a valuable benchmark for understanding more complex
systems, because they can be investigated more easily both from a theoretical and
an experimental perspective. In this sense, our choice of xenon, an atomic system
exhibiting strong collective behavior in the XUV, can be viewed as a case study or
model system for the understanding of more complex systems. The investigation of
larger systems with regard to their resonance behavior could be studied also in other
frequency regimes in the nonlinear response regime. Possibly revealed interesting
properties could be then exploited in material science or nanotechnology.

Of course collective effects or correlation phenomena are also abundant in atomic
and molecular systems: examples are autoionization, Auger decay, Fano resonances,
as mentioned above the giant dipole resonance in xenon, and interatomic Coulombic
decay [102, 109-111].

1.3 Quantum optimal control

In collaboration with Prof. Dr. Christiane Koch and Esteban Goetz from the Univer-
sitat Kassel, experts in optimal control theory, we elaborated a method combining
TDCIS and its capability to evaluate photoelectron distributions with a monotonically
convergent optimal-control algorithm to achieve specific PESs or PADs.

The controllability of quantum systems is an interesting topic of study [112]. While
it is natural to ask how the electron dynamics is reflected in the experimental ob-
servables, PES and PAD [113-117], it is intriguing to see whether one can control or
manipulate directly these observables by tailoring the light pulse. In other words,
we want to control the atomic system in such a way that we steer electrons and
produce photoelectrons of a specified energy and angular distribution. This type of
problem is known as the optimal control problem and has been theoretically tackled
by optimal control theory (OCT) [112]. With our capability to calculate photoelec-
tron distributions the opportunity arises to utilize them as observables for the optimal
control problem and thereby control the signature that the electron dynamics imprint
onto the PES. By tailoring the pulsed electric field in its amplitude, phase or polar-
ization [113-117] the electron dynamics can be controlled with their corresponding
signatures in the photoelectron spectrum. While OCT has been employed to study the
quantum control of electron dynamics before, in the framework of TDCIS [118] as well
as the multi-configurational time-dependent Hartree-Fock (MCTDHF) method [119]
or density functional theory (TDDFT) [120, 121], the PES and PAD have not been
tackled as control targets before. In fact, most previous studies did not even account
for the presence of the ionization continuum which of course for our purposes is in-
dispensable and whose description within grid methods has been studied extensively
[122-127].

We employed optimal control theory (OCT), adapting it to the specific task of
realizing photoelectron spectra with the given desired features. Optimal control of
the underlying quantum dynamics can be used to enhance certain desired features in
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the photoelectron spectra and the angular distributions.

1.4 Structure of this thesis

Within my doctoral work not only methodological developments were achieved, but
also the new capabilities that I contributed to the computational toolbox of our group
were employed immediately to study interesting and nontrivial problems. These tools
enabled us to tackle new questions regarding the ionization of many-electron systems.
My thesis work spans the broad photon-energy range from the infrared to the x-ray
regime. Different photon-atom interaction regimes are studied, from the infrared
strong-field regime to the perturbative multiphoton regime.

The first extension of the software package XCID, which was developed in our
group for the investigation of light-atom interactions including many-body effects,
deals with the calculation of eigenstates of the Hamiltonian. After introducing the
implementation of the Arnoldi algorithm, first in my own implementation of the
Lanczos algorithm in Sec. 3.1, then within the framework of ARPACK in Sec. 3.2, I
present its application to the strong-field ionization of helium in Ch. 4. My thesis
starts with a study in the infrared photon energy range. Using the instantaneous
eigenstates of the Hamiltonian I analyzed whether tunneling ionization can be un-
derstood as an adiabatic process. In the strong-field literature the tunneling regime
is always viewed as the adiabatic regime. However, we found that there is a single
diabatic state, in contrast to the adiabatic states, that is taken by the electron during
tunneling ionization. Therefore, already the tunneling regime should be interpreted
as a non-adiabatic phenomenon. In particular, I studied the highly interesting few-
cycle pulse case, where the ionization is always viewed as non-adiabatic. A single
diabatic state is identified, which is constructed in a diabatization procedure from
the field-free ground state that describes the ionization by a few-cycle pulse. Espe-
cially in this case, the ionization depends greatly on the form of the pulse because
the field amplitude changes dramatically from one field oscillation to the next. It is
not the short pulse duration that seems to make a difference but rather this immense
change of the field between two successive oscillations.

Next I present the implementation of the calculation of photoelectron distributions
within TDCIS in Ch. 5. The methods we employ are applicable to all types of ioniza-
tion, from the infrared strong-field regime to XUV and x-ray ionization. We follow two
approaches to calculate the spectrum without the need for huge grid sizes. The first
method employs the scheme of Tong et al. [77] where the photoelectron wave function
is absorbed by a real splitting function. The second method after Tao and Scrinzi
[93] measures the flux of the electron wave packet through a surface at a fixed radius.
With both methods the full angle- and energy-resolved photoelectron distribution is
obtained. Combined with the TDCIS scheme it is possible to analyze the dynamics
of the outgoing electron in a channel-resolved way and, additionally, to study the
dynamics of the bound electrons in the parent ion, i.e., to describe the correlation

11
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between the ejected electron and the remaining hole. As proof-of-principle applica-
tions I show the one- and two-photon (ATI) ionization spectra of argon in the XUV
energy regime and the strong-field phenomenon of Rabi splitting due to Rabi oscilla-
tions in the positive ion during the ionization process. It should be emphasized that
with this computational extension of the code it is now possible to directly analyze
the ejected electron, which, of course, carries also information about the remaining
ion. Previously, quantities linked to the remaining ion were calculated to infer char-
acteristics of the ionization or excitation process. In the case of ionization the study
of the spectrum of the emitted electrons is an obvious observable to understand the
underlying processes which can be directly compared to experimental measurements.

The next two chapters, Ch. 6 and Ch. 7, are devoted to our collaboration with the
group of Dr. Michael Meyer and our analysis of the two-photon ionization of argon and
xenon in the XUV. Apart from comparing our theoretical data to the experimental
measurements and calibrating the comparison using argon I theoretically analyzed the
two-photon cross section of xenon over a broad photon-energy range. I found that the
width of the curve and its shape reveal significant substructure which we could analyze
in detail owing to the TDCIS framework and the calculation of eigenstates using
ARPACK. Our investigation of the nonlinear response of xenon to XUV irradiation in
the range of the famous giant dipole resonance led for the first time to a substantiated
prediction of two resonances underlying the giant dipole resonance. Our results pave
the way towards a deeper understanding of collective behavior in atoms, molecules
and solid-state systems using nonlinear spectroscopic techniques enabled by modern
short-wavelength light sources. This insight opens up a whole new field considering
the importance that nonlinear effects and resonance phenomena have in technological
applications.

In the case of the optimal control problem in combination with TDCIS, presented
in Ch. 8, we encountered numerical problems when propagating the wave function
in the backward direction, which I analyzed and solved directly by implementing
the Lanczos propagation scheme (see Ch. 3). In order to steer electrons and to be
able to control certain features of the PES and PAD we combined an optimal control
algorithm with our TDCIS formalism using the wave-function splitting method (see
Ch. 5) to calculate photoelectron spectra and angular distributions. The optimization
target can be formulated to include specific desired properties in the PAD, in the PES,
or in both. The capabilities of our approach are demonstrated in test examples for
hydrogen under strong XUV radiation, maximizing the difference of emission in the
upper and lower hemispheres, in order to realize directed electron emission in the
multiphoton regime. Further studies on argon are currently being carried out and
a manuscript for submission to a peer-reviewed journal is being prepared. For the
first time, we employ a multichannel approach together with optimal control theory
to test the controllability of ionizing atoms. Our study illustrates that we will be
facing experimental challenges, as far as the pulse shaping and the intensities are
concerned. Nevertheless, due to its broad applicability this kind of control problem
will certainly receive a lot of attention once the technical and experimental capabilities
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that currently exist will have been developed even further.

Ending with the largest photon energies or the shortest wavelength, namely the
x-ray regime, in Ch. 9, I present our study of how x-ray ATI might be significant for
future experiments at hard x-ray free-electron lasers. In the quest of understanding
the structure of biologically significant molecules coherent diffraction imaging has
become an integral tool of structural biology and biophysics. Of course, high-intensity
signals are desirable in the measurements and for this reason the intensity of the FEL
pulses will also be increased in the future. In view of real-space image retrieval we
pose, therefore, the question to what extent the absorption of multiple photons in the
hard x-ray regime has to be taken into account. We find that at intensities around
10%* Wem =2 ATI of the core electrons becomes as probable as single-photon ionization
of the valence shells.

Finally, a short conclusion and outlook completes my thesis. 1 will use atomic
units, which are the natural units for processes occurring on atomic time and length
scales throughout this thesis, except when otherwise indicated. In atomic units the
mass, as well as the charge of the electron are set to unity, i.e., m. = 1, and |e| = 1.
Furthermore, the reduced Planck constant is set to one, h = 1. It follows that the

fine-structure constant o = ;—z = % ~ %, where ¢ is the speed of light. The Bohr
radius, or bohr, is the atomic unit of length, ag = 1-~ = 0.53 A and the Hartree

a mec

energy, or hartree, is the atomic unit of energy, Ej = mh2a2 = 27.21eV. The atomic
)

unit of time corresponds to the classical orbital period of the electron in atomic

hydrogen, ty = %15 = 24 as.

a? mec?
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As already alluded to in the introductory chapter we follow an ab-initio or first-
principles strategy for solving the light-atom interaction problem. No fitting proce-
dure is performed or any other additional information is added, rather the nonrela-
tivistic Schrodinger equation is solved numerically. For the purpose of a qualitative
and effective description of the atomic system one relies heavily on the convenient and
numerically feasible representation of the Hilbert space of the system under investi-
gation. Depending on the problem the choice of the basis set can be very different
from others. In our case we want to be able to describe electronic dynamics in an
atom, in particular ionization and excitation initiated by the absorption of a photon.
For this reason a high-quality representation of the continuum states is needed. In
this chapter I will present the theoretical background of our numerical method and
the time propagation employed to solve the differential equation.

2.1 Theoretical framework: configuration interaction

In general, the field-free N-electron Hamiltonian for an atomic system has the form

N f)2 7 N
2 Iy n;én ]rn — Ty | —

Ho i

N J/

where the single-electron part of the Hamiltonian, in the following denoted by ffo,
contains the kinetic energy 7' = Y $2/2, the nuclear potential Viye = — 3, Z/|#4]
and the potential at the mean-field level VMF The electron-electron Coulomb interac-
tion V,_. = 3 Zn 2w 1/|En — | completes the many-electron part of the Hamiltonian

H =Vee — Varr.

In order to solve the electronic structure problem a convenient basis set must be
found in which the wave function can be expanded. In quantum chemistry a widely-
used scheme is the configuration interaction [68, 128]: Starting from the Hartree-Fock
ground state |®f") the configuration space is built up by exciting electrons from the
occupied orbital and promoting them to an orbital which was previously unoccupied
(this is called a virtual orbital). This yields a one-particle-one-hole state |®¢) for
the N-electron system. Exciting a second electron and letting it occupy another
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Figure 2.1: Schematic term scheme of an atomic shell. The spheres symbolize electrons
and the open circles holes; the lines denote energy levels and the grey shaded area at the top
symbolizes the electronic continuum. Starting from the (closed-shell) Hartree-Fock ground
state |®g) through repeated one-particle-one-hole excitations the full CI space is built up:

b, be,d
| Zj,l:)v | Zj,l:,l)

one-particle-one-hole states |®¢), two-particle-two-hole states ]@Zf>, etc. The indices i, j, ...
symbolize occupied orbitals, a, b, ... denote virtual (i.e. initially unoccupied) orbitals.

previously unoccupied orbital yields a two-particle-two-hole state |®Z’jb), promoting

a third electron from an initially occupied orbital to a virtual orbital represents a
7b7
ik
in Fig. 2.1, where 4, j, k, . . . always denote the initially occupied orbitals and a, b, c, . . .

three-particle-three-hole state |®$"""), and so forth. This is visualized schematically
denote the virtual orbitals. Of course, this strategy works well only for closed-shell
(atomic) systems where the ground state can be represented by a single Slater deter-
minant.

It is clear that in order to describe multiply ionized systems one needs to include
the description of multiple holes and more than one ionized electron in the system,
and also the description of multiple, simultaneous excitations requires the inclusion
of multiple holes and multiple electrons occupying bound states within the system.
These phenomena are beyond the scope and the possibilities of the present work
because, for computational reasons that will become obvious below, we are going to
restrict the configuration space to the one-particle-one-hole basis, allowing only a
single electron at a time to be excited or ionized.

2.2 Time-dependent configuration interaction singles
(TDCIS) scheme

The configuration interaction basis set mentioned above and shown in Fig. 2.1 is com-
plete if all possible particle-hole excitations are taken into account. However, for our
purposes it is impossible to follow this logic and build up all excitations in an atom.
This is because, as mentioned above, we not only want to obtain the bound ground
states but also describe the electronic continuum. For this reason, the space of virtual
orbitals becomes very large, and with higher excitations this space grows immensely.
Therefore, our method for treating the electron dynamics within atoms relies on a
truncated CI method; it is based on the time-dependent configuration interaction
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a,b,c

singles TDCIS scheme [129]. Neglecting higher order excitations |<I>,Z’;’>, |
restrict the configuration space to states where one electron is excited to a previously

)y, WE

unoccupied state. Within the CIS framework the electron dynamics in atoms shall
be investigated during irradiation by laser pulses that interact with the shell. For
this purpose, the time-dependent Schrodinger equation is solved numerically by wave-
packet propagation while expanding the N-electron wave function in the configuration
interaction singles (CIS) basis. The TDCIS approach, implemented within the XCID
package [129, 130], allows for investigating the wave-packet dynamics and, in partic-
ular, the impact of correlation effects between the photoelectron wave packet and the
remaining ion. This is done as discussed in this thesis and e.g. in Refs. [131-134]. It
is versatile with respect to the electric field properties, and it has proven especially
successful for previous strong-field studies [132, 133, 135] and for the projects within
this dissertation.

2.2.1 Length and velocity form of the light-matter interaction

The time dependent Schrédinger equation of an N-electron system is given by
0 N 2 N
i 107 (1) = H) T (2)). (2.2)

Here, H(t) is the full N-electron Hamiltonian of Eq. (2.1) and [¥N(#)) is the full N-
electron wave function. As far as the light field is concerned, the Coulomb gauge for
the vector potential A, divA =0, is often chosen in the context of atomic physics. As
a consequence, the vector potential is divergence-free and purely transverse. Further-
more, adopting the dipole approximation, the vector potential is only time-dependent,
and higher order multipole effects are neglected.

There are two ways to describe the light-matter interaction with a Hamiltonian,
the length form and the velocity form. The former involves the electric field, £, and
the latter the vector potential, A. The relation between the two fields is given by

A(t) = — /_ £(r)dr, (2.3a)
d

E(t) = _EA(U' (2.3b)

The two descriptions are equivalent as long as no approximations are introduced.
For the length form the multipolar Hamiltonian as described in Ref. [136] enters the
Schrodinger equation, where the interaction with the light occurs through the dipole,
r - £(t), and higher orders of multipoles. As an example the Schrodinger equation
for a hydrogen atom is presented in dipole approximation, which in the length form
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reads

0 A1
Za‘yl— —5—;—1'6@) ‘I/l, (24)

where V¥; denotes the wave function in length form.

In the case of the velocity form in the Coulomb gauge the interaction Hamiltonian,
which contains the coupling between the light and the atomic system, is obtained
through the minimal coupling prescription, where the momentum p is replaced by
p+A. Consequently, the terms resulting from the kinetic energy in the field (p+ A)?
are p?/2, p- A, and A2 Thus, the Schrédinger equation in velocity form reads

iy, = p—2+ -A(t)—i—AQ(t)—l v (2.5)
ot " |2 TP r| Y '
where ¥, is the wave function in velocity form. The first term describes the kinetic
energy of the single electron, cf. the term Hy in expression (2.1). Again, the dipole
approximation has been used, so that the vector potential depends only on time and
not on the spatial coordinates.

To show that the two descriptions are equivalent we perform a unitary transforma-
tion of the wave function in length form in Eq. (2.4) with the prescription

U = AT, (2.6)

Inserting the right-hand side into the Schrédinger equation and exploiting the rela-
tions (2.3) leads indeed to the equation in velocity form

%%@:{%HV—A@W—E}WUZ{Hp+A®P—%}W% (2.7)

T 2
In this case, where A depends only on time, the Schrodinger equation can be trans-
formed in such a way that the term proportional to A2 vanishes. This is because it
contributes only a time-dependent but space-independent phase exp [—i/2 [ dTA?(7)]
on the wave function which has no effect on the observables. Now, the light-matter
interaction is described by the term p - A(t).

The Hamiltonian including the light-matter interaction takes on the form

A

H(t)= Hy+ H, +p - A(t), (2.8)

where p is the momentum operator and A is the vector potential. Unlike in previous
work on the TDCIS method [129, 134], we use the velocity form in this thesis except
in Ch. 4, where the electric field will be directly employed as variable and, therefore,
the dipole approximation will be used in the length form. Furthermore, the charge
of the electron is negative, ¢. = —1, so that |¢.] = 1. Only linearly polarized light
will be considered in this thesis.
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Since the light-matter interaction is present in a non-perturbative manner in Eq. (2.2)
all orders of the interaction are automatically included in our calculations. Also, the
interaction of closed-shell atoms with different photon energies or, alternatively, field
frequencies can be studied without any difficulty. Thus, this approach can cover all
frequency ranges from the infrared to x-rays in a non-perturbative way making it quite
versatile. In combination with the extension I built into TDCIS, namely the calcula-
tion of photoelectron spectra, our numerical toolbox enables us to study phenomena
in vastly different regimes of the light-matter interaction — from the weak-field to the
strong-field regime. This versatility will be exploited in all chapters of this thesis.
Especially in Chaps. 6 and 7 the comparison with experimental data will lie at the
focus of interest; our theoretical calculations in the x-ray regime presented in Ch. 9
and the photoelectron distributions in the XUV used as observables in Ch. 8 shall
render predictive power and stimulate future experiments.

2.2.2 Configuration interaction singles (CIS)

The Hartree-Fock ground state |®)) of an N-electron closed-shell system is con-
structed from the vacuum state |0) by applying the spin-orbital creation operators
¢l which create the spin orbitals |¢pe), i.e., &,]0) = |@po):

po?

N/2

DY) = H el |o (2.9)

The field-free one-particle Hamiltonian Hy has the form H, = D pEpD ol &l oCpors SO
that Ho|@pe) = £,]¢pe), where &, denotes the energy of the orbital |, ). Within the
CIS approach only one-particle-one-hole excitations |®%) with respect to the Hartree-
Fock ground state |®{Y) are considered. Therefore, the N-electron wave function (now
omitting the superscript N for better legibility) is expanded in the CIS basis as

(W (1)) = ()| DY) +Za )| ®%), (2.10)

where the index ¢ symbolizes an initially occupied orbital and a denotes an unoccu-
pied (or virtual) orbital to which the electron can be excited in the sense described
previously. Writing this in operator notation one obtains the configurations

Lo o a4
D7) = 7 (Cl+0z'+ + CZ—Cz‘—) Do), (2.11)
from the Hartree-Fock ground state . The anticommuting operators é;[m and ¢,, are
creation and annihilation operators, which create and electron in the spin orbital |, )

or annihilate an electron from this orbital, respectively. Since we aim at describing
closed-shell atoms in the Hartree-Fock ground state the total spin is not altered in
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the considered processes (S = 0, and there is no magnetic field involved), so that
only spin singlets occur. Therefore, and for the sake of readability, we hereforth drop
the spin index from now on and only treat the spatial part of the orbitals |¢,).

Inserting the wave function expansion (2.10) into the Schrodinger equation (2.2)
and projecting it onto the states |®g) and |®¢) yields the following equations of motion
for the expansion coefficients af(t):

idolt) = A(L) - D (@] 07}t (1), (2.12a)
I65(1) = (0 — 20)af(6) + S (@ Hy |28l (1)

+A() - ((‘P?I D |Po)ao(t) + Z@?I p |¢?>a?(t)) : (2.12b)

In this form the equations involve information about the configurations. In the fol-
lowing we assume that the electric field is polarized along the z-axis, such that the
light-atom interaction term simplifies to the projection of the momentum on the di-
rection of the vector potential, p,A.. Using the Slater-Condon rules [128] and writing
the one- and two-body matrix elements explicitly in terms of the spatial orbitals the
Egs. (2.12) read [134]:

idy = 2A(t) Y o pia, (2.13a)
iaf = (g, — €;)af + Z aﬁ-’,(%ai/ib — Vgirpi) + \/§A(t) Qg Pai + A(t) Zpab af
i'b b

— A(t) ) pria, (2.13b)
where the two-body matrix elements are given by

1
Vpgrs = /d?’x 4> gpj)(x)gpg(x')mgpr(x)gps(xl), (2.14)
and the matrix elements of the dipole operator, which is a one-body operator, are of
the form

Pab = <<pa|ﬁz|gpb> (215)

The differential equations (2.13) are solved by numerical time propagation either
using the Runge-Kutta algorithm of order four or the Lanczos propagation, which
will be discussed in the next chapter. Thus, the coefficients af(t) can be used to
analyze ionization and excitation processes in a channel-resolved manner. In this
way, quantities that can be inferred from the N-electron wave function, such as the
ionization probability, cross sections, and other quantities can be calculated. A special
quantity that can be calculated is the ion density matrix [129, 131].
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Now it becomes clear what the computational challenge is. Numerically heavy
computations reside in the Coulomb matrix elements (@ﬂfh@?}, which must be
calculated for all active occupied orbitals symbolized by the index ¢ and j, all virtual
orbitals indicated by a and b. In order to determine all the virtual orbitals that must
be included in our calculation, we define a cut-off energy E ., up to which the virtual
orbitals are calculated. Of course, one needs to assure that all physical states of
interest are included in the calculation in a manner that depends on the problem.

The self-consistent Hartree-Fock method to obtain the Hartree-Fock ground state
|®g) is performed by constructing the orbitals on a grid with non-uniformly dis-
tributed grid points [129]. Consecutively, the one-particle-one-hole states are built,
the Coulomb matrix elements are calculated and the Schrodinger equation is solved
through time propagation. In order to prevent reflections at the end of the grid dif-
ferent methods can be used. Some of them will be used and discussed within this
work: The complex-absorbing potential method (Chs. 4, 5, and 7), the smooth exte-
rior complex scaling (Chs. 4 and 7) and the wave-function splitting method (Chs. 5,
6, 8, and 9).

2.3 Multichannel physics and electron correlation
effects

One particular strength of the CIS approach is that it encapsulates many-body in-
teractions beyond mean-field physics by the effective two-particle description of both
electron and hole. By activating the 7*" orbital the electron there can participate
in the dynamics. The set of active occupied orbitals ¢ builds the space of chan-
nels through which excitation and ionization can occur. Therefore, the CI approach
automatically allows for the distinction and analysis of multichannel physics.

Within CIS the matrix elements that lead to two-body interaction are the Coulomb
matrix elements <<I>;‘|‘A/e_e|<1>§’) If we manually allow only for the matrix elements
with hole indices ¢ = j to be nonzero, we obtain the intrachannel picture, which is
visualized in Fig. 2.2 a). Physically, this means that the excited electron, although
interacting with the hole, cannot modify the ionic hole state (depicted by open circles)
in the remaining parent ion. In contrast to this restricted picture, there can be non-
vanishing matrix elements for two configurations whose hole indices are different from
one another, additionally to a different index of the excited electron, i = j and i # j.
This is called interchannel coupling and means that a simultaneous change of the
excited electron state and the ionic hole state through electron-electron correlation
is permitted. Fig. 2.2b) depicts this situation, which couples states with i # j and
a # b, is depicted. In this way a correlated particle-hole pair is created. We will
refer to the electron interaction and the entangled states to which it leads as electron
correlation effects: As a result of electron correlations collective states are formed,
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Figure 2.2: Schematic representation of the intrachannel (a) and the interchannel (b)
coupling in the atomic shell. The operator Vo (see. Eq. 2.1) couples different electronic
configurations. In the intrachannel coupling case the particle-hole interaction is confined
to states |®7), \CD?-) whose hole indices (symbolized by open circles) are equal, i = j. In
contrast, the interchannel coupling leads to non-zero Coulomb matrix elements for all pairs
of hole indices and virtual state indices, the cases ¢ = j as well as ¢ # j are taken into
account.

and the wave function cannot be written as a single particle-hole state —rather, it
must be described by a superposition of different particle-hole states.

In theory it is easy to switch interactions on and off artificially and to tailor the
Hamiltonian and the interaction matrix elements in such ways as to isolate the origin
of an effect from other possible sources. For example, by setting the matrix elements
((IJ?|X7e_e|CI>?> = 0if i # j, i.e., employing the intrachannel scenario, we obtain results
that cannot describe electron-hole correlation except for the hole where the electron
came from. In contrast, activating the full interchannel coupling <(I>§|\A/e_e|<b?) # 0
for all combinations of indices will produce other results. Comparing the results
produced with the two different schemes enables us to evaluate the impact of electron
correlation effects. This will be exploited in particular in Ch. 7, where correlation
effects in xenon are studied.

Furthermore, the Hartree-Fock-Slater (HFS) mean-field approach [137, 138] can be
used within TDCIS by utilizing the HFS potential instead of the calculated Coulomb
integrals to simulate a one-particle picture. The HFS approach is used in the software
package XATOM, an integrated toolkit [139, 140] for the description of x-ray ionization
of atoms, which was developed by Sang-Kil Son in our group. Briefly, in the HFS
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Figure 2.3: Abolute value of the HFS potential for carbon in a double-logarithmic plot.
Also shown are the two asymptotic potentials for small (Z/r) and large (1/r) distances
from the core.

picture the exchange interaction between the electrons is modeled by the local density
approximation. This results in an effective one-particle picture where the electron
experiences a mean-field potential V(r) created by all the electrons in the shell:

V) = -2 4 /d%'ﬂ + Vi (1) (2.16)

r |r — 1|
Here Z is the nuclear charge, and p is the electronic density of the Ng. electrons.
The Slater exchange potential is given by

373 1/3
Vex(r) = —= | = . 2.17
=52 (2.17)
For the case of large distances from the origin the Latter tail correction [141] can

be used to obtain the proper asymptotic potential for both occupied and unoccupied
orbitals:

V(e)=—(Z'+1)/r, if —Z/r+ /dsr'% + Vex(r) < —(Z'+ 1)/,
with the effective charge 7' = Z — Nge.. In this way, we obtain the asymptotic
behavior of Z/r for small radii from the ion (the electron can feel the nucleus as a
whole as a Coulomb attractor). Also, another asymptote of 1/r for large distances is
obtained (from afar, the Nee. — 1 positive nuclear charges are screened by the other
electrons and the electron experiences an effective Coulomb potential equivalent to
one unscreened charge).
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The strategy of comparing HFS results with full TDCIS results will be pursued in
Ch. 9. The HFS potential is calculated utilizing XATOM. In Fig. 2.3 the HFS potential
for carbon (nuclear charge Z = 6) which will be used for the x-ray ATI study is shown
together with the asymptotes 6/r and 1/r for small and large distances from the ion,
respectively.
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Additional features within TDCIS

New propagation method and diagonalization of the

Hamiltonian

As mentioned in the introduction the XCID package was extended by adding new
capabilities and by implementing new features, while adapting the software package
to the issues we encountered in the various projects. In this chapter I summarize two
additional computational methods: the first section deals with a stable propagation
scheme for forward and backward propagation and the second section with a method
for the calculation and analysis of eigenstates of the Hamiltonian.

3.1 Lanczos propagation

In Ch. 2 I alluded to the fact that time propagation is employed for the numerical
time integration of the Schrodinger equation (2.2). Common propagation schemes
for wave propagation in media and, in particular, for wave function propagation are
the split operator method [142, 143], the Chebyshev expansion method [144], and
Runge-Kutta algorithms of fourth order [145]. The latter are known to be stable if
the time step is chosen to be sufficiently small (in our cases a time step that usually
leads to convergence for moderate field strengths is, e.g., 0.05 a.u.).

In all projects presented in this work, except for the optimal control problem dis-
cussed in Ch. 8, the Runge-Kutta algorithm of fourth order was used and led to
converged results. The reason why the symmetry in time is of less importance and
why the precision of the Runge-Kutta propagation usually suffices is the following:
In standard atomic physics problems mere propagation of the Schrédinger equation
in the forward direction is performed in order to obtain the relevant observables and
dynamics, e.g. ionization yields, cross sections, electron spectra, etc. In contrast, the
optimization algorithm employed in Ch. 8, the Krotov algorithm, involves in addition
backward propagation which entails the need for further accuracy in propagation. It
is known, that the Runge-Kutta algorithm is not symmetric in time which obviously
leads to problems if the backward propagation is an essential ingredient of an iter-
ative method. For this reason, the Lanczos algorithm for Hermitian matrices was
implemented. The Arnoldi iteration or algorithm, which is called Lanczos algorithm
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in the case of Hermitian matrices, belongs to the Krylov subspace methods [146] and
has been used for atomic and molecular physics problems before [147, 148]. With
this development we are able to employ a stable propagation scheme for forward and
backward propagation of the wave function. In the following I give a brief overview
of the Lanczos algorithm as implemented within TDCIS.

3.1.1 Lanczos algorithm

Suppose that some of the eigenvalues of a large and sparse matrix A € K™, over
a field K, shall be calculated, which is either symmetric, if A € R, or Hermitian, if
A € C. If the matrix is large, full diagonalization is not the method of choice to
obtain the spectrum and the eigenvectors. Instead, the eigenvalues and eigenvectors
shall be approximated in an iterative manner such that the full diagonalization of A is
circumvented. Let A{,..., A, be the n eigenvalues of A, ordered by their magnitude.
The Rayleigh quotient
 x"Ax

R(x) = (3.1)

X*xX

gives us the smallest and the largest eigenvalues by the relations \; = m;%( R(x) and

An = r}gigl R(x) [146]. Let Vi be a subspace of K™*™ and let {q}} = {qi,q2,...,qx}
be an orthonormal basis of V. Arranging the vectors qi as columns in a matrix,
let us call it Q) the eigenvalues of Q% AQ, shall approximate the eigenvalues of A.
The Lanczos method generates the vectors qy iteratively, such that the eigenvalues
of the matrices Qf AQy = T}, € KF** with k < n, are, with k — k + 1, progressively
better approximations to the eigenvalues of A. To understand how the Lanczos al-
gorithm determines increasingly better eigenvalues consider the Rayleigh quotient of
the matrix T},

A > max R(Qry) = R(ug) = M, (3.2a)
y
An < m;(r)lR(Qky) = R(vi) = my. (3.2b)
y
with vectors ug, v € span{qi, ds, ..., qr}. R(X) increases most rapidly in the direc-
tion of the gradient )
= Ax — .
VR(x) - [Ax — R(x)x], (3.3)

from which it follows that VR(x) € span{x, Ax}. The largest eigenvalue of the
next iteration step My, will be larger than Mj, and therefore approach the “real”
eigenvalue of the original matrix A, if the next vector qi; is determined such that
VR(x) € span{qi,qs,- .., qr+1}- Following the same argument for the eigenvalue of
minimal magnitude, if also Vr(v;) € span{q',q?,...,q"™} then my1 < my, be-
cause R(x) decreases most rapidly in the direction of the negative gradient —V R(x).
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3.1 Lanczos propagation

Therefore, both requirements can be satisfied if qg,1 is chosen such that

span{qi, ..., Q1) = span {QM Aqy, Aq, . .. ,Ak(h} : (3.4)

This space, which results by applying successively higher powers of the matrix A, is
called Krylov space. Thus, now the problem is reformulated and the new objective is
to calculate efficiently orthonormal bases of these Krylov subspaces. In the following
the Lanczos algorithm is developed explicitly and applied to the time propagation of
the wave function.

3.1.2 Application to the Schrodinger equation and
implementation

In our case we wish to solve the time-dependent Schrodinger equation in the interac-
tion picture

10, W(1)) = H(t)| (1)) (3:5)

Formally this equation has the solution
(1) =U(t,02(0), (3.6)

e U(t,0) = T exp [—i /0 t dfﬁ(f)] (3.7)

is the time evolution operator. Here, 7 denotes the time-ordering operator

AT | HE)H() it <t
T[H(tl)H(tQ)] - {ﬁ(tg)H(t1> if o>ty (38)

Therefore, in an approximation we can write the wave function at the next time step
t+dt as
- 77 dt
(¢ + dt)) = e (D) g (1)) + O(ded). (3.9)

Since the Hamiltonian matrix can be very large, we do not aim at diagonalizing it
directly. Instead, the right hand side shall be approximated numerically, i.e., we want
to find an expression for the exponential operator acting on the wave function |¥(t))
which requires only matrix-vector or matrix-matrix multiplications for small and/or
sparse matrices. For this purpose, we make use of the fact that the Hamiltonian is
a Hermitian and even a real and symmetric matrix in the case where the splitting
method is used for the absorption of the wave function at the end of the grid, see
Ch. 5). We build up the Krylov space by acting on the starting vector |¥(0)) with
increasingly higher powers of the Hamiltonian operator

H™W(0)) = v, (3.10)
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where the set of N vectors v,,, n =0,1,... N —1, is the Krylov basis. N is, therefore,
the dimension of the Krylov space. The smaller the dimension N the more efficient
and numerically cheap this algorithm will be. The aim is to orthonormalize this basis
set. If we have a tridiagonal matrix

T=QTHQ, (3.11)

with @ being orthogonal, we can find an orthogonal matrix U (UTU = 1) that
diagonalizes T. Let us call the diagonal matrix D = UTTU. Then from D =
UTQTHQU it follows that

QTHQ =UDU". (3.12)
From the properties of diagonal matrices it follows that

e (3.13)
e ) ~ QU e P UTQT | W), (3.14)
Orthonormalizing the N vectors {v,} we obtain an orthonormal set of vectors {q,,}.

If we arrange them as columns in a matrix ) we know that the matrix QTI:I Q=T
is tridiagonal (QR factorization) [146]:

ag B
B a1 [
P ay P O
T = N y (3.15)
0 B

51\1—1 an

Thus, we wish to directly compute the elements of this tridiagonal matrix, {ay}i_;,
{Be}=, in an iterative way. Since HQ = QT we find

Hay, = Br—1di—1 + i + B, (3.16)
while Syqo = 0. Solving this equation for qg,q, if
r = (ﬁ - ak]l) — Br—1ar—1 # 0,

then qx1 = rg/Bk, where 5 = |r|. The vectors q; are called Lanczos vectors. We
see that we need three vectors to store the necessary quantities for the calculation
of the Lanczos vectors —the previous vector vy, the current vector qy, and the next
vector ry— and two more vectors to store the a and f coefficients. In this way the
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3.1 Lanczos propagation

Lanczos algorithm is obtained, where the starting vector is denoted by qo:

k=0; rp = do/|aol; fo=1; 11 = Hao; Q(:,1) =1,
do while (3, # 0)"
k=k+1
Vi = Qr—1; Ak = Te—1/Br—1; Q(:, k) = qi; (3.17)
ry :ﬁqk; Q= qg - Ty
Ty =T — Beo1Ve — el B = [T
end do

The tridiagonal matrix 7" is built up and is then diagonalized using the LAPACK
[149] routine for a sparse, general, symmetric matrix to yield the eigenvalues that
form the matrix D. Then the matrix product P = QU is calculated. Hence, we
arrive at the following expression for the time-propagated wave function:

e HI |G (1)) = P e PY PT Iy (1)) (3.18)

In practice, the algorithm which is implemented within TDCIS works as follows:

e At time step ¢ the time ¢ + d¢/2 is defined at which the Hamiltonian shall be
evaluated. The parameters N and the propagation time step dt are read in
from the input file (specified by the user), common sizes of N are on the order
of five to twenty vectors in order to obtain converged results. The starting
vector is created from the coefficients of the wave function at time ¢ (at the
very beginning this is the Hartree-Fock ground state).

e The subroutine performing the Lanczos iteration step described above is called.

e [t returns the matrix P and the eigenvalues of the tridiagonal matrix in the
matrix D. The matrix-vector multiplication Pe~*Pd PT|W¥(t)) is performed.
Exploiting the diagonal nature of D the operations result in vector-vector mul-
tiplications for all N columns, the dimension of the Krylov space.

e The propagated wave function at time step ¢ + dt is returned: |U(t + dt)).

Compared to the Runge-Kutta algorithm, when using the same time step dt =
0.05 a.u. the propagation consumes about 3/2 the time duration when using a Krylov
space dimension of N = 6.

The Lanczos-Arnoldi propagation method was tested for various propagation set-
tings and it was found that it yields the same results as the Runge-Kutta algorithm
with the additional feature of a higher precision of about 6 orders of magnitude when
used in the backward direction. This precision will be of great importance for the
stability of the optimization algorithm utilized in Ch. 8.

"Numerically, this is solved by a cut-off parameter: For instance, |3 > 10718,
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3.2 ARPACK - Arnoldi algorithm for the diagonalization
of the Hamiltonian

The diagonalization of large matrices is one of the most common procedures that are
treated numerically. In this respect the versatility of the software package ARPACK
is remarkable. It enables the user to solve eigenvalue problems of huge dimensions
providing many options. Therefore, we chose to implement ARPACK within XCID
and use the diagonalization strategy in combination with TDCIS in order to obtain
the eigenstates of the atomic systems under investigation. So far, within our group
the explicit Hamiltonian eigenvalue problem had not been in the focus of interest
but the investigations using TDCIS concentrated rather on ionization probabilities,
hole populations, the ion density matrix elements, the HHG yield or cross sections.
Therefore, the possibilities that ARPACK provides presented new features for our
computational approach.

Very large Hamiltonian eigenvalue problems can involve matrices with a rank on
the order of 10°. For example, when high energies are involved and strong fields
are considered, the necessary maximum angular momentum can be on the order of
Imax = 100. In combination with many active channels and around 1000 states in
total the rank of a million is easily achieved. Typically, these matrices are sparse,
but nevertheless an efficient diagonalization algorithm is indispensable. There are
LAPACK routines, a package for the numerical solution of linear algebra problems,
that can handle various types of sparse matrices, however the full diagonalization of
the whole matrix is often not required. For this reason, the iterative Arnoldi algorithm
was implemented in FORTRAN 77. The freely available package which received the
name ARPACK consists now of a collection of efficient subroutines for solving large-
scale eigenvalue problems, which partly also use LAPACK subroutines, and it contains
interfaces for the communication with the various subroutines [150, 151]. It requires
an inner product to be defined by the user and performs the matrix-vector operations
within the Arnoldi algorithm to solve a general eigenvalue problem

Ax = A\Bx.

Similarly to the Lanczos-Arnoldi algorithm described below the Arnoldi algorithm
employs Krylov techniques to construct subspaces of the eigenvector-space and obtain
good approximations to the exact space of eigenvectors. Again, the structure is very
closely related to the QR algorithm, where a matrix is decomposed into an orthogonal
matrix () and an upper triangular matrix R.

Depending on the request of the user it returns, eigenvalues, eigenvectors at either
end of the spectrum: eigenvalues with the smallest or largest magnitude, largest
or smallest real part etc. The package includes interfaces where the corresponding
parameters that have to be defined by the user can be handed over to the subroutines
of ARPACK. More details can be found in the ARPACK Users’ Guide [150]. The main
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difficulty of the programming task within TDCIS was to understand the structure
of ARPACK, the order of the subroutines necessary for the diagonalization and the
connection to the quantities of TDCIS. Assigning starting vectors and appropriate
dimensions of the eigenvalue problem as well as convergence studies posed a challenge
because of the large size and the partly excessive (for our needs) overhead that is
created by this powerful software package. This is also the reason why the Lanczos-
Arnoldi algorithm, discussed in the previous section, was implemented anew instead
of accessing the ARPACK routines.

For our purposes the use of ARPACK is interesting because we want to be able to
compute the eigenstates and the eigenvalues of the Hamiltonian. Our eigenproblem
has the following form:

[ﬁf + F(t)é] 0, (1)) = B (8)| W (1)), (3.19)

where H is the field-free Hamiltonian, F(t) is the electric field and 2 is the position
operator, so that F'(¢)Z is the dipole interaction between field and electron for a light
field which is polarized in the z-direction. FE,, are the eigenenergies belonging to the
eigenvector |W,) of the system. For each time ¢ the field has a certain value and
there is an instantaneous eigenvalue problem to be solved. The diagonalization of
the many-body Hamiltonian including an electric field will be applied directly in the
next chapter, Ch. 4, to a strong-field problem in helium. Through the diagonalization
the instantaneous eigenstates are obtained from which the diabatic states can be
constructed.

This diagonalization method is also very useful in a different context within the
present work. By diagonalizing the Hamiltonian for the xenon atom we performed a
more detailed characterization of the one-photon resonances in the XUV, which can
be performed by imposing an overlap criterion between the ground state and the
resonance state coupled by a dipole step. In this way, the relevant eigenstates that
form temporarily trapped resonances can be identified (see Ch. 7).
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Adiabaticity and diabaticity in
strong-field ionization

Physical Review A 87, 043422 (2013)

This chapter deals with the infrared end of the spectrum: the photon energy is
very small compared to the electron binding energy of the atoms, i.e. we apply
(strong) infrared pulses in order to study the dynamics of atoms. More precisely, in
this chapter the nature of electronic states is studied in the tunneling regime. This
regime is characterized by a quasistatic situation, which means that the oscillation
of the applied field is so slow that the electron encounters a superposition of the
potential associated with the instantaneous electric component of the optical field and
the atomic potential. In this case, ionization of an atom by a strong optical field is
often described in terms of electron tunneling through the potential barrier resulting
from this superposition of the atomic potential and the potential of the external
electric field. In the quasistatic scenario it is legitimate to calculate and analyze
the instantaneous eigenstates to the Hamiltonian that contains the instantaneous
electric field coupled to the atomic system. This will be done using ARPACK for the
diagonalization.

In the strict tunneling regime, where the Keldysh parameter is smaller than one,
v < 1 (cf. Ch. 1), the electron response to the optical field is said to be adiabatic,
and nonadiabatic effects are assumed to be negligible. Here, it is investigated to what
degree this terminology is consistent with a language based on the so-called adiabatic
representation. It is desirable to employ a well-defined language and utilize it in a
precise way in order to understand phenomena in related fields and make progress
across the disciplines.

4.1 Adiabatic representation

The adiabatic representation is commonly used in various fields of physics. For elec-
tronically bound states, the adiabatic representation yields discrete potential energy
curves that are connected by nonadiabatic transitions. When applying the adiabatic
representation to optical strong-field ionization, a conceptual challenge is that the
eigenstates of the instantaneous Hamiltonian form a continuum; i.e., there are no
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discrete adiabatic states. This difficulty can be overcome by applying an analytic-
continuation technique. In this way, we obtain a rigorous classification of adiabatic
states and a clear characterization of (non)adiabatic and (non)diabatic ionization
dynamics which we will define in the following and distinguish them clearly. More-
over, we distinguish two different regimes within tunneling ionization and explain the
dependence of the ionization probability on the pulse envelope.

Generally, when a time-dependent process is adiabatic, the state of the system
at any given time is always an eigenstate of the instantaneous Hamiltonian, which
depends on one or more external parameters (like the electric field). Consequently,
the energy eigenstates and their corresponding eigenenergies become parametrized
and lead to energy curves (or energy hyperplanes depending on the number of exter-
nal parameters). Nonadiabatic dynamics occur when transitions between adiabatic
curves start to appear. This is, particularly, the case when two adiabatic curves are
energetically close to each other and the external parameters are changed relatively
fast such that the system has no time to “instantaneously” respond to the change.
As a result, the system is not in one defined adiabatic state anymore but rather in a
superposition of several adiabatic eigenstates. In various fields of physics and chem-
istry the adiabatic representation has been used to study adiabatic and nonadiabatic
effects. Its application includes fields like Rydberg atoms [152, 153], molecular dy-
namics [154-156], atomic and molecular collisions [157-159], and ultracold gases and
trapped ions [160-162].

An important aspect in the adiabatic representation is the discreteness of eigen-
states which is essential to obtain a discrete set of energy curves. In the case of strong-
field ionization, however, the instantaneous eigenstates of the Hamiltonian form a
continuum. Therefore, the identification of a nonadiabatic effect happens rather in-
directly [163, 164]: either the spectrum of the photoelectron after the pulse or the
field dependence of the ionization rate is analyzed. Various results on nonadiabatic
behavior in strong-field ionization have been presented in the literature [165-167] and
there are many different usages of the terms “adiabatic” and “nonadiabatic”. By intro-
ducing an analytic continuation in the complex plane the instantaneous Hamiltonian
becomes non-Hermitian and tunneling states appear as discrete eigenstates. These
discrete states can be now used to apply the adiabatic representation to strong-field
ionization dynamics.

In the following, the adiabatic representation is strictly applied to strong-field ion-
ization and it is found that in the tunneling regime the ionization dynamics is defined
by a diabatic rather than an adiabatic behavior. Diabatic dynamics means that the
response of the system follows one specific diabatic state. Here, the diabatic states are
defined by the overlap with the field-free eigenstates. In this formulation we find that
the ionization dynamics can be divided into two regimes. Furthermore, with increas-
ing frequency we observe a transition from the diabatic to the nondiabatic regime.
In particular, we study the few-cycle limit and find a non-constant population as a
function of the optical frequency which has been interpreted in the literature as a sign
of a nonadiabatic process [41, 164]. T will show for a few-cycle pulse with a Keldysh
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parameter v < 1 that this effect rather represents a dependence on the form of the
pulse and can be fully explained by a diabatic picture depending on a single diabatic
state connected to the field-free ground state.

4.2 Adiabatic eigenstates

Whenever a system is given time to adjust to the parameters on which it depends,
the response is called adiabatic. In the following, we derive the quantum-mechanical
equations of motion in the adiabatic basis, which is given by the states that are
eigensolutions to the Hamiltonian of the system for a set of instantaneous parameters.

Let us study a system where the Hamiltonian depends on an external time-dependent
parameter €(t). The time-dependent Schrodinger equation has the form

0w (1) = A1) = { fo+ Ole(v)] } [2(1)). (4.1)

H, describes the atomic Hamiltonian, whereas U includes all external potentials and
is dependent on the parameter €(t). At a given time ¢, the instantaneous eigenstates,
which constitute the adiabatic basis, are defined by!

Ao+ 0] 19(0)) = Ea(0) (1)), (4:2)

To analyze adiabatic and nonadiabatic effects we expand the electronic wavefunction
in terms of the adiabatic eigenstates, |W(t)) = >, a,(t)|V,(¢)). Upon inserting this
expression into Eq. (4.1) and projecting onto the eigenstate |V,,(t)), the equation of
motion for the coefficient a, () reads

i, (t) + 1 Z A (8) (W ()]0 | W (1)) = i () i (2). (4.3)

The off-diagonal matrix elements (V,,(t)|0;|¥,(t)) introduce couplings between dif-
ferent adiabatic eigenstates, thus making the dynamics nonadiabatic [168]. In the
adiabatic approximation, where these couplings are considered to be very small, Eq.
(4.3) becomes

1t (1) + 10 (1) (W (1)W1, () = i (£) Era (1), (4.4)

which is solved with the initial condition «,,(0) = 1 by

() = exp [ iy / t dt’Em(tf)] explinm(t)], (4.5)

0

where ~,,(t) = zfot At (U, ()| W, (t')), so that the system evolves in a specific adia-

!The time dependence is implicit via the parameter €(t).
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4 Adiabaticity and diabaticity in strong-field ionization

batic eigenstate with a phase. If, on the other hand, (¥,,(t)|¥,(t)) cannot be ne-
glected, the whole sum in Eq. (4.3) has to be considered, so that different adiabatic
eigenstates get coupled and nonadiabatic motion emerges. We can use 0; = %86 and
express the off-diagonal coupling elements also in terms of the change in e:

Oe

U |0 ) = (U, |00
(U | W) = (V|0 ”>at

(4.6)

Considering a two-level system with an external perturbation proportional to e,
the Hamiltonian of the system takes the form

i=(0 )50 0)*56 5) @

J/ N J/

-~

f o

where A is an internal coupling parameter. In Fig. 4.1 the energy curves of the two
adiabatic states |¥;) and |Wy) of this system are shown as a function of the external
parameter e, assuming A = 1. The internal coupling between the diabatic states
1) = (1,0)" and |2) = (0,1)” results in the effect that the two adiabatic curves do
not cross. This phenomenon is known as an “avoided crossing”. We see that A is the
energy splitting between |W;) and |¥5) at the degeneracy point of the states |1) and
|2). If the parameter € is changed sufficiently slowly, the system will remain in a given
adiabatic state |U;) if, for € < 1 or € > 1, the system was in the state |¥;). Note that
in the vicinity of € = 1 the character of the adiabatic states changes from |1) to |2)
and vice versa. If € changes rapidly in the vicinity of € = 1, the system has no time to
change the character of its state; it makes a transition from one adiabatic state to the
other and follows the diabatic states |1) and |2), respectively. These jumps between
adiabatic curves make the resulting dynamics nonadiabatic. For a given value of the
external parameter, we can obtain the diabatic states also by choosing the adiabatic
cigenstates with the maximal overlap with the free states (¢ = 0). For € < 1, the
diabatic state |1) has the maximal overlap with the adiabatic state |W¥;), while for
¢ > 1 the overlap of state |1) with the adiabatic state |¥s) is maximal, and vice versa
for the diabatic state |2). Asymptotically, the states |1) and |2) correspond to the
states |¥;) and |¥s) before the avoided crossing, and vice versa after the crossing.
Near the crossing an interpolation is performed in order to obtain a continuous and
smooth state.

A system’s dynamics can of course also be formulated in other representations,
e.g., in a diabatic basis [169], where the diabatic states do cross (see the states |1)
and |2) in Fig. 4.1). Usually the basis is chosen such, that the off-diagonal couplings
in Eq. (4.6) vanish or are at least small [158, 170]. However, the diabatic basis,
which is derived from the adiabatic basis by a unitary transformation, is not unique
and there are many different approaches for reaching a diabatic representation [171—
173]. One practicable method of diabatization is a local diabatization method, which
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Figure 4.1: The energy curves of the two adiabatic states |¥;) and |¥3) are shown as
functions of the parameter e. Through the off-diagonal matrix element A/2 a nonadia-
batic transition is possible, whereupon the system follows the diabatic states |1) and |2),
respectively. (©) 2013 APS.

means that the diabatic state is constructed piecewise in a two-level model: At each
avoided crossing between two adiabatic states the diabatic state is followed. To this
end, the size of the overlap with the corresponding field-free state can be used as a
criterion. This method turns out to be fruitful for the description of diabatic and
nondiabatic strong-field ionization (see Sec. 4.4). Once a diabatic representation has
been found, one can ask with which rate transitions between diabatic states occur.
These transitions will be called nondiabatic.

In the following section we will make use of the fact that for weak perturbations the
adiabatic eigenstates can be approximated through the field-free eigenstates. There-
fore, the diabatic states exhibiting the maximal overlap with the field-free states are
also the adiabatic states. In this case, the nondiabatic transitions are exactly the
nonadiabatic transitions described above.

4.3 One-photon absorption

First, we analyze the case of one-photon absorption within the adiabatic representa-
tion. If the system is exposed to a weak electric field of the form F'(t) = F{ cos(wt) (in
the dipole approximation, see Sec. 4.4), with a frequency w, the system Hamiltonian
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4 Adiabaticity and diabaticity in strong-field ionization

is perturbed by the term F'(t) 2 [174], where Z is pointing in the direction of the field
(which is assumed to be linearly polarized). The Hamiltonian in Eq. (4.1) takes the
form

H(t) = Hy + F(t)3, (4.8)

where H, is the atomic Hamiltonian and the electric field F(t) is coupled classically
to the dipole operator 2 of the electron. The field F'(t) corresponds to the parameter
e of Sec. 4.2.

In the following, we show that in the adiabatic representation the off-diagonal
coupling elements in Eq. (4.3) are crucial for introducing transitions. Let {@20)};7:0
be the eigenstates of the field-free Hamiltonian, H, |\I/7(10)> = wn|\I/£LO)). For simplicity,
we assume that the initial and final states of interest in the one-photon transition are
nondegenerate. Performing static perturbation theory to first order, the adiabatic
eigenstates read [175]

(U F20)
W) = [00) 4 D = Pt ), (49)
k#n n

Inserting Eq. (4.9) in Eq. (4.6) with € being the field F', we obtain the nonadiabatic
coupling elements to first order in F':

|@”> OF (Wi |20}
r§: g oy = e L (4.10)

ot w, — wpy,

We are now ready to solve Eq. (4.3) including nonadiabatic coupling. We may treat
the operator Ve = %—f Or as a perturbing time-dependent operator and, hence,
analyze the states with time-dependent perturbation theory [175]. The first-order
correction to the zeroth-order coefficient [Eq. (4.5)] is given by

to LoF (002101
1 . i(wr—w; 7

Assuming wy > w;, we obtain the total transition probability per unit time

2 o Fo2 oo |
wi=)  —— =2y (V=)
f

f

wr —w; —w). (4.12)

This equation is exactly Fermi’s golden rule [176]. In the present approach it is
the nonadiabatic coupling that induces one-photon transitions between the field-free
eigenstates. Viewed in this way, the phenomenon of one-photon absorption is entirely
nonadiabatic. In the one-photon case, the states are well separated by a large energy
gap and there is no avoided crossing due to the weak field, which is only a perturbation
to the field-free states. Note that the adiabatic states coincide with the diabatic states
in the weak-field limit.
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Figure 4.2: The pure Coulomb potential of the helium atom (solid green curve, shifted by
the ionization potential I,) is tilted in the presence of the electric field (dotted black line)
and a barrier of finite width in z-direction is created (dashed red line). The dotted grey
line denotes the field-free ground-state energy.

4.4 Strong-field ionization of atoms

While in the case of one-photon ionization the photon energy necessarily exceeds
the ionization potential, we will now examine the situation where the atomic system
is irradiated by an intense electric field F(t) with a low photon energy, i.e., many
photons are needed to ionize the atom.

When applying a strong external field [see Eq. (4.8)] the effective potential seen
by an electron gets tilted, see Fig. 4.2. Therefore, a barrier of finite height is created
through which the electron can tunnel. If the electric field is so strong that the
electron’s energy lies above the barrier, the electron can just leave the atom without
tunneling. This effect is called above-barrier ionization [177, 178]. This tunneling
picture of a tilted potential relies on the length form of the light-matter interaction,
i.e., F(t)2. Furthermore, the form of the Hamiltonian [cf. Eq. (4.8)] is a result of
the dipole approximation, which holds in our case, because the size of the system of
interest (a few A) is much smaller than the wavelength of the light pulse (= 1 pm)
[136, 179].

In order to describe strong-field ionization dynamics, the Schrédinger equation of
the atom exposed to the field has to be solved nonperturbatively because perturbation
theory fails for these high field strengths. As shown in Sec. 4.2 in the adiabatic
case the system will follow a given adiabatic state without making any transition.
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4 Adiabaticity and diabaticity in strong-field ionization

However, in the presence of a static electric field, electronically bound states become
tunneling states, which means that there is ionization via tunneling.

In the following, we study helium as a concrete example to illustrate tunneling
ionization within the framework of the adiabatic representation.

4.4.1 Constructing adiabatic and diabatic states for helium

As already discussed (see Sec. 4.1), in strong-field ionization the spectrum forms a
continuum where a direct application of the adiabatic representation is inconvenient.
To overcome this problem, a rigorous analytical continuation of the Hamiltonian can
be performed by rotating the electron coordinates about an angle into the complex
plane; this procedure is called complex scaling [180]. Another way to generate dis-
crete eigenstates is to add a CAP to the Hamiltonian [181]. It can be shown that
the latter method, which is conceptually easier, is closely connected to the complex
scaling approach [182]. The key idea here is that for every tunneling state, i.e., every
adiabatic atomic state that allows the electron to tunnel through the field-induced
barrier, there exists a discrete eigenstate — a so-called Gamow vector [183] or Siegert
state [184] — of the instantaneous Hamiltonian. A Siegert state is associated with a
complex energy and lies outside the Hermitian domain of the Hamiltonian. In fact,
the associated wave function is exponentially divergent for large distances from the
atom. Complex scaling or the use of a CAP eliminates the divergent behavior and ren-
ders the tunneling wavefunction square integrable. Thus, by making the Hamiltonian
non-Hermitian, it becomes possible to calculate, within Hilbert space, the complex
Siegert energies of tunneling states. The imaginary part of the Siegert energy E
provides the tunneling rate I' of each Siegert state by the relation I' = —2 Im(F)
[185, 186].

In order to obtain the instantaneous eigenstates we solve Eq. (4.2) with the Hamil-
tonian in Eq. (4.8) including a CAP. This yields the adiabatic eigenstates and cor-
responding eigenenergies of the atom shown in Fig. 4.3. A more detailed descrip-
tion of the methods used is given in Sec. 3.2. We observe many avoided crossings
among the higher adiabatic eigenstates for field strengths in the range below 0.01 a.u.
(1 a.u.= 5.14 x 10° V/cm), while the ground state energy does not change signifi-
cantly. One might wonder whether for sufficiently slow ramping of the electric field
the atom follows the adiabatic ground state. Indeed, for field strengths up to 0.02 a.u.
the adiabatic ground-state energy seems to remain constant. But we know that the
electric field can mix a whole manifold of excited states into the field-free states.
When this happens, the adiabatic ground state loses the character of the field-free
ground state (cf. Fig. 4.1). Analyzing the avoided crossings involving the adiabatic
ground state around the field strength of 0.02 a.u., we find that the ramping of the
field has to be so slow that it lies in the radio frequency regime. Therefore, the system
does not follow the adiabatic ground state for the frequency range of light usually
employed in experiments (typically around 800 nm, corresponding to 4 x 10 Hz).

The electronic state follows the instantaneous eigenstate that has the maximal over-
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Figure 4.3: The real part of the energy of the first adiabatic eigenstates as a function of a
static electric field. The inset magnifies avoided crossings for small electric fields. (©) 2013
APS

lap with the field-free ground state. This is exactly the diabatic behavior described
in Sec. 4.2, where the electronic state jumps from one adiabatic state to the other,
keeping its field-free character. Here, we employ the diabatization method already
alluded to in Sec. 4.2, where we construct the diabatic state |\I/Z(-d)(t)> from the adia-
ba’(cé)c basis {|¥,(t))} using the criterion of maximal overlap with the field-free state
(W, 7)), ie.,

10D (£)) = | W, (t)), where (4.13)
(@ (1) TD)] > (@, (6)[ 0], Vim £ .

This can be done as long as there is one distinct adiabatic state with a prominent
character of the corresponding field-free state, so that the (orthogonal) complement of
adiabatic states which are mixed in is small and can be ignored. The procedure works
in principle also for excited states. However, for excited states the condition of a small
admixture breaks down already at low field strengths, such that this construction
method works best for the field-free ground state. The overlap of the corresponding
diabatic state |\I/(()d)) with the field-free ground state |\IJ((]O)) is always larger than 90%
for field strengths considered here (see Fig. 4.4¢). Figures 4.4a) and 4.4b) show the
real part of the energy and the tunneling rate of |\I/éd)> as a function of the electric
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Figure 4.4: (a) The real part of the energy of the diabatic state |\IJ(()d)>, and (b) its tunneling

rate, ' = —2Im(F), are shown as a function of the electric field. (c) The overlap of ]\I/((Jd))
with the field-free ground state. (©) 2013 APS

field. The shift of the real part of the energy is well approximated by a quadratic
behavior; for low field strengths below 0.1 a.u. the prefactor is in accordance with
the literature value of the polarizability of the helium ground state [187, 188]. As
expected, the tunneling rate increases considerably for sufficiently high field strengths.
For field strengths larger than 0.07 a.u. the ionization rate is well captured by the
analytic expression derived in the tunneling limit of the strong-field approximation

Studying the adiabatic eigenstates and the avoided crossings reveals the suitability
of the diabatic state constructed as shown above for the description of strong-field
ionization. The advantage of the diabatic basis is that the system follows one single
diabatic state, which gives a clear and intuitive picture for the explanation of the
physics in the tunneling regime.

4.4.2 lonization dynamics

So far, the analysis was performed for the spectrum of adiabatic eigenstates, i.e., for
static electric fields. Now we introduce dynamics by considering a Gaussian pulse of

the form
F(t) = f(t) cos(wt) = Fye /> cos(wt), (4.14)
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4.4 Strong-field ionization of atoms

where Fj is the peak strength of the electric field, 7 is connected to the full width of
the pulse at half maximum by 72 = FWHM?/(21n2), and w is the field frequency.

We want to calculate the ionization probability out of the diabatic state |\IJ((]d)>
when applying this pulse. Let us assume that we have found a diabatic basis in
which this particular diabatic state can be described by a coefficient a(()d). Then the
exact wavefunction reads U(t) = ), %(d) (t)\IIEd)(t). In analogy to the case of the
adiabatic representation, equations of motion can be obtained for the coefficients in
the diabatic basis where now coupling elements between the diabatic states imply
nondiabatic transitions [cf. Eq. (4.3)]. If, in a “diabatic approximation”, the nondi-

abatic transitions are neglected we obtain the following equation of motion for the

coeflicients:
d d INCA
i (1) = | B — i | (1), (4.15)
where (@ is the ionization rate of the diabatic state 7. From the ionization rate of

our distinguished diabatic state its population evolution Péd) (t) = |oz((]d) (t)
the pulse can be inferred. To this end, the equation of motion for the probability of
remaining in this particular diabatic state is calculated (we omit indices for the sake
of readability):

? during

dP d

— = )]’ = a”(0alt) + 6" (t)alt). (4.16)

Inserting Eq. (4.15) in this equation the following rate equation for the population is
obtained (cf. Ref. [179]):

P(t) = =T[F(t)] P(t), (4.17)

which can be analytically solved by separation of variables:

P(t):exp{— / s F[F(t’)]}, (4.18)

—00

with the initial condition P(t=—oc)= 1. Note that the rate depends on the external
field. Inserting the tunneling rate of the diabatic state in Eq. (4.18) we calculate
the diabatic ionization dynamics. Thereby we observe how much is ionized out of
|\If(()d)>. Deviations from Eq. (4.18) in the population dynamics can be attributed to
nondiabatic behavior, i.e., transitions to other diabatic states.

The results for four selected photon energies are shown in Fig. 4.5 for an electric
field amplitude of Fy = 0.25 a.u. The pulse duration is kept constant so that we can
study the ionization regime from few- to multi-cycle pulses. The exact result refers to
the numerical solution of the Schrédinger equation [see Eq. (4.1)], where all dynamics
are included, while the calculation of the diabatic curve via Eq. (4.18) involves only
the diabatic state |\If(()d)>. The gray-shaded areas in the background indicate the pulse
intensity. In the frequency range shown, the evolution of the ground state population
is well described by considering only the single diabatic state. For w = 0.3 — 0.8 eV
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Figure 4.5: Comparison of the ground-state populations calculated via numerical solution
of the Schrédinger equation and via the rate equation (4.18) for the distinguished diabatic
state for four different photon energies. The pulse intensities are highlighted in the back-
ground: the pulse amplitude is Fy = 0.25 a.u., and the pulse duration is 400 a.u. (= 10 fs).
© 2013 APS

[see Fig. 4.5a)—c)] the difference between the numerically exact and the diabatic
calculation is insignificant, while for w = 1.5 eV [see Fig. 4.5d)] the discrepancy
between the two methods becomes more noticeable. This is exactly the difference
which gives us a measure of nondiabaticity. To clarify this further, a comparison
between the two methods is shown in Fig. 4.6 for a peak field strength of 0.2 a.u. by
depicting the populations [Fig. 4.6a)] and the relative difference [Fig. 4.6 b)| between
them after the end of the pulse. One can clearly see that for sufficiently low energies
the total ionization probability is reproduced exactly by considering only the diabatic
state (region I). For higher energies around 1 eV (region II), the difference increases
significantly, indicating that nondiabatic effects start to become important.

4.5 Nondiabaticity and the special case of few-cycle
pulses

In order to find a common way of speaking we incorporate the Keldysh parameter
in our considerations, which has been used as an adiabaticity parameter. Following
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Figure 4.6: a) Ground-state population after the end of the pulse calculated via numerical
solution of the Schrédinger equation and from the single diabatic ground state as a function
of the photon energy, and b) relative difference between the two results, corresponding to
the degree of nondiabaticity of the ionization. The peak field strength is Fy = 0.2 a.u.,
and the pulse duration is 400 a.u. The corresponding Keldysh parameter ~ is shown for
different regions. (©) 2013 APS

our language of the adiabatic representation, the ionization in the tunneling regime,
v < 1, is diabatic rather than adiabatic. We conclude from Fig. 4.6 that in the region
where v ~ 1 the relative difference between the results calculated from the diabatic
ionization rate via Eq. (4.18) and from the solution of the Schrédinger equation is
greater than 10%. This is a clear sign of nondiabatic behavior. Already for v ~ 0.17
the diabatic ionization probability starts to differ slightly from the total ionization
probability. For a fixed pulse duration we can also divide the frequency range ac-
cording to the number of cycles in the pulse. Starting from the highest frequencies
studied here we have multi-cycle pulses, until we reach few-cycle pulses at a photon
energy of ~ 0.8 eV.

The dynamics for few-cycle pulses is commonly considered to be nonadiabatic (in
our language this translates to nondiabatic) [41, 164]. We find that even for few-
cycle pulses the tunneling is completely diabatic. In the framework of ADK theory
and other approaches [189] the ionization rate T'(t) is obtained by integrating over
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one period of the field [35]:

() = — /0 "o TIF(1) cosyl, (4.19)

s o7
where I'[F] is the instantaneous ionization rate. Hence, the fact that the ADK theory
of tunneling ionization and similar approaches cannot reproduce the correct (diabatic)
ionization rate for few-cycle pulses is not due to coupling to higher states [163, 164],
but rather because the pulse envelope changes dramatically within one cycle. In this
limit the rate cannot be averaged over one period as was done in Eq. (4.19), whereas
for multi-cycle pulses it can be used in combination with Eq. (4.18) yielding

t
P(t) = exp {—/ dt’ f[f(t’)]} . (4.20)
Analyzing region I in Fig. 4.6 further, we observe that the ionization probability is
not constant as a function of photon energy. But the population loss in region I is
well described by the ionization out of |\I/(()d)). According to our argument above, the
apparent frequency dependence is rather a dependence on the form of the pulse or
analogously on the relation between the cycles and the pulse envelope, which appears
in a pronounced way for few-cycle pulses. Preferably, to avoid confusion, we propose
that it could be called rather a form dependence. As we have seen, the ionization
behavior for few-cycle pulses can be well understood from the dynamics of a single
diabatic state.

We have studied the dynamics of tunneling ionization in atoms and have found
that, within the framework of the adiabatic representation, it is diabatic rather than
adiabatic. We have identified two distinct ionization regimes depending on their
diabatic behavior. In particular we have characterized the transition from the diabatic
to the nondiabatic regime.

In the low-frequency limit the total ionization probability is reproduced by the
contribution of the tunneling probability of one single diabatic state. This means
that in this regime there are no significant transitions to other diabatic states. For
few-cycle pulses, the ionization probability depends on the frequency for a fixed pulse
duration. However, this is not a nondiabatic effect, but the effect stems from the form
dependence of the pulse, and the consequent fact that the rate cannot be averaged
any longer over one period.

When nondiabatic transitions start to happen, the difference between the diabatic
state ionization probability and the total probability increases dramatically. For fre-
quencies in the range of the binding energy of the atom one-photon absorption can
occur which is a completely nonadiabatic and even nondiabatic process. Already
for parameters v &~ 0.17 the diabatic ionization probability starts to differ notice-
ably from the total ionization probability, even though the perturbative multiphoton
regime is not yet entered. From the perspective of the adiabatic representation, the
Keldysh parameter is found to be an approximate measure of diabaticity.
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In the present chapter we have seen that the analysis of the (instantaneous) eigen-
states of a system reveals interesting information. The diagonalization of the many-
electron Hamiltonian will be used again in Ch. 7 in a different context for the detailed
characterization of relevant eigenstates of xenon in the XUV excitation regime. In the
remainder of this thesis the calculation of photoelectron distributions will be of central
interest. We will leave the infrared strong-field regime and study the characteristics
of atomic systems interacting with strong laser pulses in the multiphoton regime in
detail. In particular, the photon energy will span the range from the XUV to the
X-ray regime.
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Calculation of photoelectron spectra
within the time-dependent
configuration interaction singles
scheme

Physical Review A, 89, 033415 (2014), 91, 069907 (2015)

The calculation of the angular and energy-resolved photoelectron distribution al-
lows for a direct comparison with experimental data. In this chapter I present the
extension of the time-dependent configuration interaction singles (TDCIS) method to
the computation of the photoelectron energy spectrum (PES) and the photoelectron
angular distribution (PAD) in photoionization processes. For this purpose, the calcu-
lation of the spectral components of the wave function of the outgoing electron was
implemented following two different computational approaches. The two different
methods which allow for the extraction of the asymptotic photoelectron momentum
are compared regarding their methodological and computational performance.

In the following I present the theoretical details of how the photoelectron distri-
bution is obtained within the TDCIS scheme: The wave-function splitting method
[77] is described in Sec. 5.1.1 and the time-dependent surface flux method [93] in
Sec. 5.1.2. In Sec. 5.2 the two methods are analyzed with respect to their efficiency
within TDCIS and are compared briefly. As first proof-of-principle applications, first
one-photon and above-threshold ionization (ATI) of argon following strong XUV irra-
diation are studied via energy- and angle-resolved photoelectron spectra in view of
our studies on multiphoton ionization in the XUV, while the second application deals
with the strong-field induced Rabi splitting in the photoelectron peaks due to the
coupling of an atomic resonance.

5.1 Computational methods

The theoretical framework of Ch. 1 is employed to expand the wave function in the
one-particle—one-hole basis

[W(t)) = ao(t)|Po) +Za?(t)l@?>. (5.1)
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The radial part of the spin orbitals is again denoted as |¢,). As introduced in
Ref. [134], for each ionization channel all single excitations from the occupied spin
orbital |p;) may be collected in one “channel wave function”:

Xi(6) = Y af ()l pa)- (5.2)

These channel wave functions may now be used to calculate all quantities in a channel-
resolved manner. This means that the wave function for each particular ionization
channel 7 are employed to obtain the spectral coefficients. In this way, effectively one-
particle wave functions are obtained, which will be used in the following to derive the
formulae for the photoelectron spectra.

During the time propagation, quantities that are needed for the calculation of the
photoelectron distribution are prepared using the channel wave function coefficients.
After the propagation, these quantities are then used in the subsequent analysis step
to determine the spectral components of the channel wave functions. At the end,
an incoherent summation over all ionization channels is performed to obtain the
photoelectron spectrum. The two analysis methods are described in the following.

5.1.1 Wave-function splitting method

The concrete implementation of the splitting method, originally introduced by Tong
et al. in Ref. [77], is described within our time-dependent propagation scheme. A
real radial splitting function that has the shape of a smoothed-out step function

§=[14e /A (5.3)

is used to smoothly split the channel wave function (5.2). The parameter r. deter-
mines the radius where the splitting function is centered, and A is a “smoothing”
parameter controlling the slope or smoothness of the function. At the first splitting
time step to the channel wave function is split into two parts (for each channel 7):

XG(to)) = (1 — ) |xi(t0)) + Slxi(t0)) = X6 (to)) + |Xa0ut(t0))- (5.4)

|Xi,in(t)) is the wave function in the inner region 0 < r < 7. and |x; out(t)) is the wave
function in the outer region r. < 7 < rpax. Then, the following procedure is performed
at to: The outer part of the wave function |x;ut(to)) is analytically propagated to a
long time T after the laser pulse is over using the Volkov Hamiltonian Hy (1) with
the time propagator

Oy (s, 11) = exp (—i/: ﬁV(T)dT> () = % B+A@,  (55)

under the assumption that far from the atom the electron experiences only the laser
field and not the Coulomb field of the parent ion. It is also assumed that, at the
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5.1 Computational methods

splitting radius, the electron is sufficiently far away to not return to the ion.

The inner part of the wave function |x;in(to)) is propagated on a numerical grid
using the full CIS Hamiltonian [see Egs. (2.12a) and (2.12b)]. For the splitting function
the ratio r./A > 1 must be chosen such that the ground state |®¢) is not affected
by the splitting: S|®q) = 0.

At the next splitting time t; the inner part of the wave function which was propa-
gated from ty to t; is split again. Thus, the following prescription is obtained:

Xiin(t5)) = [Xi(tj1)) = [Xiin(t42)) + [Xioue (41))- (5.6)

This is now repeated for every splitting time ¢;, until all parts of the electron wave
packet that are of interest have reached the outer region. Each |x;out(tj+1)) is again
propagated analytically to ¢t =T

Computationally, |x;out(t;)) is initially expressed in the CIS basis. For this purpose,
new expansion coefficients for the outer wave function are defined

5?(%) = <90a|‘§’b~<i(tj>>v (5'7)

and the wave function in the outer region is expressed as

|Xzout Zﬁa |90a (58)

In our original publication [2] one term in the equation of motion (EOM) was
omitted for the electron in the outer region. That term can only be neglected if
the driving field cannot induce changes in the ionic wave function. This is, however,
not always true. The EOM including the channel mixing in the ion is presented in
the following. In the meantime, the addendum has been published as an erratum
to our publication [3]. However, we have carefully verified that the results of our
publications are not affected by this additional term in the EOM.

Employing the splitting method the Eq. (2.12b) reads as follows for the inner part
and the outer part of the wave function, respectively:

ZO&? = (Sa — Ei)(l/g + Z 0421(21)(”‘/2‘(, — Uai’bi) + \/§A<t)&0 Pai + A(t) Zpab O./g

i'b b

—A() sz"i o, (5.92)
i57 = (ea — &)1 + A) Y pas B = Alt) Y pos 55, (5.9b)
b i

originally neglected

where pap, = (@a|D|¢s). This form of Eq. (4) from Ref. [2] in terms of spatial orbitals,
cf. Eq. (2.13), corresponds to Eq. (27) in Ref. [134]. The term involving (24 —Vairb: )
in Eq. (5.9a) vanishes for large distances as 1/r and can, therefore, be neglected (cf.
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5 Calculation of PES within TDCIS

Ref. [134]). This justifies the Volkov approximation for the outer part of the wave
function. The last term of the EOM for the outgoing electron, Eq. (5.9b), which
involves only hole indices, was neglected in Ref. [2]. The inner part in Eq. (5.9a)
is unaffected because it is propagated with the full Hamiltonian [129]. The time
evolutions of the ionic and the electronic part of the electron wave packet in the outer
region are decoupled. Therefore, they can be propagated with two time evolution
operators: The ionic part is propagated with U°*(Tt), while the electronic part is
propagated with the Volkov time propagator U®(T,t) = Uy(T\,t), see Eq. (5.5).
Thus, the time evolution for the coefficients split at time step t,, is

BT ) ZUabUTt)ﬁb() S USAT ) > USNT t,)B0(t,).  (5.10)

b J

The EOM corresponding to the ionic time evolution reads:

UL (1) = |—e0U" (t, ) — A(t) Y (pulple) Uil (t ta) | | (5.11a)

,L'/

U™ (tn, tn) = 0ij. (5.11b)

This must be solved by numerical propagation in time to large times T'. After having
found the propagator the channel mixing for the ¢ coefficients in Eq. (5.10) must be
performed once before calculating the PES as described in Ref. [2]. This means that
for each splitting time ¢,, the channel mixing must be carried out before coherently
summing up the contributions 5¢(T’;t,) from all splitting time steps.

Algorithmically, the coupling is done in an extra routine which is called before the
actual photoelectron distribution is calculated. Depending on the wave-function prop-
agation scheme, either Runge-Kutta of order four or Lanczos propagation, Eq. (5.11)
is solved by the Runge-Kutta algorithm or by direct diagonalization, respectively.
The latter is feasible because the size of the channel matrix is usually small for all
atomic species of interest. The matrix Ui, is propagated with the same propagation
time step as in the wave-function propagation from the first splitting time step ¢; to a
large time T'. During this propagation, if a propagation time step ¢, happens to be a
splitting time step, the multiplication in Eq. (5.10) of the matrix onto the coefficients
BT t,,) is performed for all splitting contributions from times smaller than the cur-
rent propagation time, ¢, < t, and the initial condition is reset for the matrix Usq,.
The full propagation of the matrix is performed by piecewise propagating between
two adjacent splitting time steps and applying the channel coupling matrix directly
on the coefficients. Through the consecutive multiplications on the fly no additional
storage of matrix elements is necessary.

Computational challenges

During the time propagation, at every splitting time step t;, which can be —and for
computational efficiency should be— a multiple of the actual propagation time step,
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5.1 Computational methods

the splitting function S is applied and the expansion coefficients B¢ from (5.7) are
calculated and stored. It is clear that the more splitting time steps are necessary,
the more the amount of data grows that must be stored in order to be analyzed later
on. This is in particular a problem if the propagation time step must be small (e.g.,
because of large field amplitudes or rapid field oscillations) or the total propagation
time itself is long (e.g., for long fields). Therefore, the splitting time step should be
chosen as large as possible. In fact, as will become obvious in Ch. 9 for the x-ray ATI,
where both the field frequency and the field amplitude are very high, this numerical
issue poses a real challenge and renders data analysis very demanding. Later, when
the spectrum is calculated, the coefficients [; are read in from the stored files, inserted
and used for the analysis.

However, a great advantage of this method is the size of the numerical grid used
for the calculations: Since the outer wave function is split from the inner part and
treated analytically, the grid size needed for the description of the wave function
is automatically reduced. Ome limiting factor for the grid size is the interplay of
the parameters for smoothness A and for the center of the splitting function r. as
mentioned above, because it must be guaranteed that the ground state, which is well
localized near the origin and cannot have any ionized contribution, is not affected
by the splitting function. Practically, this means that the splitting function must be
very small (on the order of 1075 — 107°) at the origin.

Analysis procedure

The next steps are now part of an additional analysis program. It is called after the
propagation is finished and since all necessary data are stored as described above the
analysis of the parts of the wave function that describes the ejected electron can be
performed.

The Volkov states [¥7) = |p") are eigenstates of the Volkov Hamiltonian given in
Eq. (5.5) and form a basis set in which the channel wave packet at time 7" can be
expanded:

o) = [Ep3Cpt)lp" )= [EpCmIpY) G2

In the velocity form the Volkov states are nothing but plane waves
Vi —3/2 ip-r
Vo (r) = (27) /2eipT

The photoelectron spectrum is obtained by calculating the spectral components of
the outer wave function. For this purpose, the following coefficients are evaluated:

Ci(p, t;) = /d3p’<p YO (T t)p™) (" Iious(t)) (5.13)

-~

ci(p’ts)
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5 Calculation of PES within TDCIS

First, the ¢;(p,t;) are calculated for each splitting time ¢;
cilpits) = (2) VY 51ty [ e P, o) (5.14)
where the orbital is now explicitly given in the spatial representation by

N /U/nayla (r)
(r[e|0) = (rlpa) = pa(r) = ===V m, (), (5.15)
and, thus, possesses a radial and an angular part. The multipole expansion for the
exponential function reads

—471'2@][ (pr) Z Yo () Yim (), (5.16)

m=—I

where j;(pr) denotes the spherical Bessel function of order . The orthonormality re-
lations of the spherical harmonics reduce the three-dimensional integrals in Eq. (5.14)
to one-dimensional radial integrals. Finally, propagating to a long time T after the
pulse, the coefficients are obtained:

Ci<p7tj) = <pV|UV(T7 tj)’Xi,out(tj» (517)

_ \/g exp <_% /t %dT [p+A(T)]2> (5.18)

J

S BE amO0) [, )i

These coefficients can be used to calculate the angle and energy distribution of the
ejected electron because at time T the canonical momentum equals the kinetic mo-
mentum. One can choose now a homogeneous momentum grid and calculate these
coefficients for each splitting time step. In order to obtain the full electron wave
packet at time 7" all contributions from all splitting times ¢; must be summed up
coherently to yield the coefficients C;(p) in Eq. (5.12) for each ionization channel i.
Then, incoherent summation over all possible ionization channels yields the photo-
electron spectrum as a function of the kinetic energy and the angle with respect to
the light polarization axis:

dEdQ —pZ}O (5.19)

The extra factor of p results from the conversion from the momentum to the energy
differential. As long as the time T is chosen to be after the pulse the result is T’
independent. Of course, one needs to choose a sufficiently large 1" such that the parts
of the electron wave function that one wants to record have entered the outer region
and can be analyzed.
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5.1 Computational methods

5.1.2 Time-dependent surface flux method (t-surff)

The second method for the calculation of photoelectron spectra is based on the ap-
proach presented by Tao and Scrinzi in Ref. [93] where it was used to calculate
strong-field infrared photoionization spectra in combination with infinite-range exte-
rior complex scaling [190]. In this approach the electron wave function is analyzed
during its evolution when crossing the surface of a sphere of a given radius r.. Again,
it is assumed that the wave function can be split into two parts: One part is bound
to the atom and is a solution to the full Hamiltonian, the other part can be viewed
as free from the parent ion and is a solution to the Volkov Hamiltonian. Therefore,
the method also relies conceptually on a splitting procedure. Nevertheless, and in
contrast to the splitting method, the wave function is not altered in this process. As
above, the key idea is to obtain the spectral components of the wave function by
projecting onto plane waves.

The surface radius r, is chosen such that the electron can be considered to be
free, and a sufficiently large time T after the pulse is over is picked by which the
electron with the kinetic energy of interest has passed this surface. (For very low-
energy electrons a correspondingly larger time has to be chosen.) At this time, the
channel wave function |y;) for each ionization channel 7 can be split into a bound part
(corresponding to the inner wave function in the splitting method) and an asymptotic
part, which describes the ionized contribution:

Xi(T)) = [Xiin(T)) + [Xious (1)) (5.20)

As in Sec. 5.1.1, the system Hamiltonian for distances larger than r. is approximated
by the Volkov Hamiltonian. Using the Volkov states of Sec. 5.1.1 and the propagation
to long times with the Volkov time propagator |¥y (1)) = Uy (T, —o0)[¥y), the outer
wave function is represented as follows:

D)) = [ @ 0(0) 195 (), (521

which vanishes for » < r.. Thus, the photoelectron spectrum is the sum, over all
channels, of the |b;(p)|?, where
2

2

‘ d3r U, T) Xiouw(r. T)| =: (WL (T)|0(7 = r¢) X0 (T))] "

r>Te

(5.22)

Here, the Heaviside step function € enters (adopting the notation by Tao and Scrinzi
[93]). In order to avoid the need for a representation of x; out(r, T") at large r (because
T is large, a fast electron moves far out during this time), this 3D-integral is converted
into a time integral involving the wave function only at » = r.. For that, the time
evolution of the asymptotic part of the wave function has to be known after it has
passed the surface. Inserting the Schrodinger equation where necessary and using the
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5 Calculation of PES within TDCIS

Volkov solutions in the velocity form outside the sphere with radius r. yields [93]

T
N , 1 . N
(VSN0 = ) ian(T)) =1 [ AU (O] =55~ A 7.6~ 0| im0
(5.23)
The commutator, which vanishes everywhere except at r = r., is easily evaluated in
polar coordinates (assuming linear polarization) and we obtain

—%A —iA(t) - V,0(7F — rc)} = ——8 726 (r—re)—= 5(7‘ 7¢)O0p+iA(t) cos(0)0(r—re.).

2r2
(5.24)
More details can be found in Ref. [93] as well as in Ref. [191]. The derivative in the
first operator term is shuffled to the left, via integration by parts, and the following
operator is obtained

—%5(7“ —71e) + &%5(7“ —7e) — %5(7“ —1.)0 + 1 A(t) cos(0)o(r — r.), (5.25)

where “%” means that the derivative acts to the left on the Volkov state and “0”
means that the derivative acts to the right on the channel wave function. In order to
implement this operator acting on the channel wave functions also the first derivative
of the wave functions with respect to r has to be calculated at the radius r.. After
the propagation, during which the coefficients of the channel wave functions x;(r, t)
as well as of their first derivatives [0, x;(r,t)|,=.| have been calculated, the expression
(5.23) can be computed. Since the multipole expansion is introduced [see Eq. (5.16)]
for the Volkov states also derivatives of the spherical Bessel functions have to be
calculated at the radius r.. This calculation is performed during the analysis step
for each angular momentum [. In the last term the cosine is expressed as a spherical
harmonic and the identity for the integral over three spherical harmonics is used

VL+1D)(20+1) .
/dQ }/23 m3<Q)Y227m2(Q>}/117m1(Q): 47T(2l3+1) llfmf,lzmgcllfg,l207
where the Clebsch-Gordan coefficients are given by Cllfgff lomy = (11, lama|lzms).

Thus, the spectral components in their final form are obtained:

(W (DO = re) | Xiout (T \/7 / dt exp <__ / dr [p + A(7)] ) (5.26)

xz{ {<mwzwmm—ymﬂm%mmmmwm>

]la(prc) }/anma(Qp) u/na,la(rc) Oé’:l (t)

/l: a - . . 2la+1 l}ma Z,O
Yo Un,y 1o(Te) At) a2 (t) lo(—z)l]l(prc) o1 O oCritonoYind Qo) ¢
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5.2 Application: Argon under strong XUV radiation

where the prime denotes the first derivative: j; (pr.) = 0.4i,(2) ’Z:m and u;, ; (rc) =
Or Uy 1,(T) ‘

Also in the case of the t-surff method the ansatz in Eq. (5.9) can be made in order
to account for the channel mixing according to the expression in Eq. (5.10), which
must be taken into account for each time ¢ before projecting onto the Volkov states
in Eq. (5.26). This means that, again the mixing must be calculated

ZUM (T, t,) Z USee(T, t,,) ZU“’“ (T, ta)ab(t,),  (5.27)

before evaluating the expression (5.26).

r=re’

Although the expression (5.26) may seem fairly complicated, it involves only quan-
tities evaluated at one single radius » = r.. The photoelectron spectrum is then

obtained as
2

dEdQ _p2| (W (DO = re)Xione(T))] (5.28)

where, as in the splitting method, the incoherent sum over all ionization channels
1 is performed. In the present implementation, a CAP absorbs the wave function
near the end of the numerical grid [181, 186, 192]. A CAP of the form W(r) =
O(r — rcap)(r — rcap)? is utilized, where 6 is again the Heaviside step function and
rcap is the radius where the CAP starts absorbing. It is added to the Hamiltonian in
Eq. (2.1) in the form —inW, where 7 is the CAP strength. As will be discussed in
Sec. 5.2.2 the absorption via a CAP has to be optimized carefully, because reflections
from the end of the numerical grid as well as from the CAP itself have to be minimized
in order to obtain an accurate photoelectron spectrum.

5.2 Application: Argon under strong XUV radiation

With two methods for the calculation of photoelectron spectra implemented in TDCIS,
one-photon and above-threshold ionization processes of argon in the XUV regime are
investigated (nuclear charge Z = 18). Motivated by an experiment carried out at the
free-electron laser facility FLASH in Hamburg [193] (for more details see Chapters 6
and 7) we assume a photon energy of 105 eV, which is far above the threshold for the
ionization out of the 3p and 3s subshells. In the following we examine the functionality
of the splitting and the surface flux methods by means of the specific example of
ionization of argon in the XUV.

5.2.1 Wave-function splitting method

In the splitting method, three parameters have to be adjusted: the splitting radius,
the smoothness of the splitting function and the rate at which the absorption is ap-
plied. A first criterion for verifying that the absorption through the masking function
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5 Calculation of PES within TDCIS

splitting relative diff. to CAP
dtep = 10 au. | 7.177 x 103 2.8 x 1073
dtep = 1 au. | 7.177 x 1073 2.8 x 1073
dtsp = 0.2 a.u. | 7.180 x 1073 2.4 x1073

Table 5.1: The ionization probability of argon for a pulse at 105 eV photon energy, 9 x
10'3 Wem ™2 peak intensity and 1.2 fs duration (FWHM) calculated via a CAP (converged
calculation) is compared to the ionization probability calculated via the splitting function
(rmax = 150 a.u., r. = 80 a.u., A = 10 a.u.) for different splitting times. The relative
difference is of the order 1073,

is performed correctly is the comparison of the total ground state population obtained
via splitting with the population obtained with the CAP. We use a Gaussian pulse
with 9 x 101 Wem ™2 peak intensity and 1.2 fs duration (full width at half maximum,
FWHM) at a photon energy of 105 eV. For this pulse a converged result for the CAP
strength = 1 x 1073, rpax = 150 a.u., and ry.c —rcap = 30 a.u. gives an ioniza-
tion probability of 7.197 x 1073 after the pulse. In the studied parameter cases the
agreement between the splitting results and that CAP result is better than 3 x 1073
relative difference (choosing, e.g., rm.x = 150 a.u., 7. = 80 a.u.,, A = 10 a.u., and
varying the splitting time step between 0.2 a.u. and 10 a.u.). With more frequent
absorption the agreement gets slightly better. The results for three different split-
ting time steps, for a grid size of 1., = 150 a.u., a splitting radius of r. = 80 a.u.,
and a smoothing parameter of A = 10 a.u., are summarized in Table 5.1 where also
the relative differences are given. The results are in agreement on the order of 1073
relative difference.

Analyzing the splitting method, it is found that the splitting radius r. and the
smoothing parameter A can be varied rather freely without changing the (physical)
spectrum. Although the total radial grid size can be chosen as small as 100 a.u. (cf.
Fig. 5.1) also a larger radial grid extension with r.x = 250 a.u. is chosen and the
splitting radius is varied in the wide range from 80 a.u. to 230 a.u. Exemplarily,
results in the direction § = 0 (along the XUV polarization axis) when the radial
grid size and splitting radius are varied are shown in Fig. 5.1(a). The spectrum
shows the one-photon absorption peaks at the energy corresponding to the difference
between photon energy and binding energy of the corresponding orbital (3s and 3p,
respectively). The second part of the spectrum, in Fig. 5.1(b), is separated from
the first part by the photon energy and is, therefore, attributed to above-threshold
ionization. The width of the peaks corresponds to the Fourier-limited energy width
according to TAw = 2.765 (all quantities in atomic units), where 7 is the duration of
the pulse intensity envelope (FWHM) and Aw is the bandwidth of the power spectrum
(FWHM). The figure shows that the spectrum is independent of the splitting radius
as long as around 30 a.u. are left to the end of the numerical grid for absorption.
Reducing the difference 7. — . to 20 a.u. produces artificial peaks near the physical
peaks. To estimate how large the absorption range must be let us consider an electron
with 200 eV kinetic energy. It covers a distance of roughly 4 a.u. per atomic unit
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Figure 5.1: The photoelectron spectrum of argon for a pulse with 105 eV photon energy,
9 x 10" Wem™2 intensity and 1.2 fs duration is shown for different radial grid sizes rmax
and splitting radii r.. The smoothing parameter is A = 10 a.u. and the splitting time
step is dtsp) = 0.2 a.u. Panel a) shows the one-photon absorption lines, panel b) shows the
energetically lowest ATTI lines for different splitting radii. All radii are given in atomic units.
The spectrum does not change under variation of the splitting radius as long as around
30 a.u. units are left for absorption. (¢) 2014 APS

of time. The numerical results show that the range over which the wave function is
absorbed by the splitting function must be much larger than this distance (almost 10
times larger) in order to avoid reflections. This can be understood if one considers
that the slope of the splitting function at a smoothing parameter of A = 10 a.u.
extends over a range of around 30 a.u. beyond the splitting radius to reach 95%
absorption of the wave function.

Since the splitting radius is not very crucial for the spectrum we proceed to the
variation of the other parameters. Spectra for various smoothing parameters A are
shown in Fig. 5.2. Here, the radial grid size is kept fixed at ry,.. = 150 a.u., the
splitting radius is 80 a.u., and absorption is performed every 10 a.u. of time. The
physical peaks are reproduced correctly for all A, the noise amplitude, however, is
changing. A value of A = 10 seems to be the optimum, for A = 15 the amplitude
of unphysical peaks is higher, while the steeper slope corresponding to A = 5 a.u.
produces higher oscillations near the physical peaks, which should be avoided.

The method is particularly sensitive to the splitting rate, i.e., how often the splitting
is applied. The more frequently the splitting function is applied the less noise is
obtained. This is shown in Fig. 5.3, where only the splitting time step is varied,
while the radial grid size is kept constant at 150 a.u., the splitting radius is set to
80 a.u. and the smoothing parameter is 10 a.u. It is found that the unphysical peaks
or artifacts do not contribute to the physical observables because they are orders
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Figure 5.2: The argon photoelectron spectrum is shown for different smoothing parameters
A. The pulse parameters are the same as for Fig. 5.1. The radial grid size is rpax = 150 a.u.,
the splitting radius is 80 a.u., and the splitting is applied every 10 a.u. of time. The 3p
and 3s peaks are not affected by the change of the slope of the splitting function, although
the numerical noise resulting from reflections from the splitting function changes. (©) 2014
APS

of magnitude smaller. The noisy oscillations result from numerical issues, e.g., the
higher the frequency of splitting the more reflections are accumulated from the slope
of the splitting function. For this reason, the choice of the slope of the splitting
function is coupled to the frequency of splitting. For more frequent absorption of the
wave function the steepness should be reduced. Since for every splitting time step
the new coefficients 3{(¢;) have to be calculated and stored during the propagation
and the quantities (5.17) have to be evaluated during the analysis step, it is not
convenient to perform the splitting at every propagation time step as mentioned in
Sec. 5.1.1. In the calculations shown the propagation time step is 0.05 a.u.

From the derivation of the splitting method in subsection 5.1.1 it can be seen that
the electron spectrum is normalized to the total ionization probability (because only
normalized wave functions are used). Therefore, the integrated spectrum represents
a good measure of the quality of the spectrum; the fully integrated spectrum must
agree with the total ionization probability. This can be verified for different parameter
specifications. The relative difference to the CAP result is found to be smaller than
2% in all studied parameter cases.

In the following a strong XUV pulse centered at 105 eV with 0.7 eV bandwidth
(FWHM) are applied, which corresponds to a Fourier-transform limited pulse with
108 a.u. (2.6 fs) duration. The peak intensity of the pulse is 1.0 x 10® Wem ™2,
In Fig. 5.4a) the full angle- and energy-resolved photoelectron spectrum of argon
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Figure 5.3: The argon photoelectron spectrum in the polarization direction is shown. The
variation of the splitting time step results in significant changes in the (numerical) oscilla-
tions. The pulse parameters are the same as for Figs. 5.1 and 5.2. At a fixed smoothing
parameter A = 10 a.u., rmax = 150 a.u., 7. = 80 a.u., the noise is suppressed by several
orders of magnitude for more frequent splitting. The one-photon peaks and ATI peaks do
not change significantly. (© 2014 APS

after one-photon absorption is shown. Since only linearly polarized light is applied
the system exhibits cylindrical symmetry about the polarization direction and is,
therefore, symmetric in the azimuthal angle . For this reason only the polar angle 6
needs to be considered as a variable together with the kinetic energy (or equivalently
the photoelectron momentum). Then, the angle 6 denotes the direction with respect
to the polarization axis. The peaks arise from ionization out of the 3s and 3p shells,
respectively. The lower panel of Fig. 5.4a shows the corresponding ATI spectrum. As
expected, the angular distributions feature the corresponding contributions from the
different channels, which can be seen in Fig. 5.4b in the four cuts along the fixed peak
energies: The one-photon peak from the 3s shell shows a cos @ behavior and, thus, a
p-wave character, the 3p peak has both an s- and a d-wave contribution, compatible
with a cos?# — 1 behavior. Analogously, the two-photon peak of 3s exhibits an s-
and d-wave character and the 3p peak a p- and f-wave character, i.e., showing also
an admixture of the third power of trigonometric functions, and exhibiting three
minima.

In a nutshell, the splitting method is a well-working tool for the calculation of
photoelectron spectra although the requirement to optimize three parameters (r., A,
dtsp1) can render calculations time-consuming and the storage of the splitting-time
wave-function components 3¢ can —depending on the problem— easily exceed several
gigabytes of disk space.
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Figure 5.4: The energy- and angle-resolved argon photoelectron distribution produced
with the splitting method is shown for an XUV pulse at 105 eV photon energy, 1.0 x
10> Wem ™2 intensity and 2.6 fs pulse duration. The grid size is rpmax = 100 a.u., r. =
20 a.u., A = 5 a.u., and dtg, = 10 a.u. The angle denotes the direction with respect to
the polarization axis of the pulse. The angular distribution reflects the change in angular
momentum by multiphoton absorption. (©) 2014 APS

5.2.2 Time-dependent surface flux method (t-surff)

Let us turn now to the t-surff method. The method depends on the radius r. where the
surface measuring the flux is placed and on the parameters of the absorption method.
As already mentioned in Sec. 5.1.2, in the present work the absorption is performed
with a CAP, which depends on two parameters: the CAP strength n and the radius
rcap where the CAP starts absorbing. For t-surff also the total propagation time
plays an important role. While the splitting method is not affected by a variation of
the propagation time (as long as it is longer than the pulse and long enough for the
electronic wave packet of interest to enter the absorption region), t-surff requires a long
propagation. This is shown in Fig. 5.5. The noise level decreases dramatically with
longer time propagation. On the other hand, the calculation of the spectrum itself
can be performed faster than with the splitting method, because no radial integrals
are involved. Instead, all quantities are evaluated at the radius r = r..
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Figure 5.5: The argon photoelectron spectrum calculated via t-surff is shown for different
propagation times (in a.u.). The pulse parameters are the same as in Figs. 5.1 to 5.3. The
computational parameter specifications are: ry,x = 250 a.u., rcap = 230 a.u.,, n = 1x 1073,

and r. = 180 a.u. The oscillations decrease by orders of magnitude for longer propagation.
(© 2014 APS
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Figure 5.6: The argon photoelectron spectrum along the polarization axis of the field,
calculated with t-surff, is shown for a pulse with 105 eV photon energy, 9 x 10" Wem ™2
intensity and 1.2 fs duration for different CAP strengths. The radial grid size is Tmax =
150 a.u., the CAP radius is rcap = 120 a.u., and r. = 100 a.u. The oscillations are due to
reflections from the end of the radial grid and/or the CAP. (©) 2014 APS
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Figure 5.7: The argon photoelectron spectrum for the same pulse as in Figs. 5.1 to 5.3
and Figs. 5.5 to 5.6 is shown along the polarization direction. The numerical parameters
are Tmax = 200 a.u., n =1 x 1073, rcap = 220 a.u., and the propagation time is 1000 a.u.
The distance rmax —7Tcap is varied in the range from 0 to 20 a.u. (©) 2014 APS

The method relies on an optimized CAP for the energy range of interest. However,
the CAP cannot guarantee a perfect absorption. Since the optimized CAP strength is
energy dependent [181] the t-surff spectrum can be optimized only for a limited energy
range. In Fig. 5.6 the energy spectrum for § = 0 is shown for different CAP strengths
n. It is clear that reflections from the CAP as well as from the end of the radial
grid leave a trace in the spectrum. A weak CAP cannot fully absorb a fast electron
before the end of the radial grid. On the other hand, a strong CAP will reflect the
electron. For the kinetic energies of the electrons considered here the optimized CAP
parameter lies at a value of about 1073. Of course, the other parameter that must
be optimized is the CAP radius rcap. It is found that the optimum is an absorption
range of 7. —rcap = 30 a.u. For t-surff also the distance of r. to rcap plays a role.
In Fig. 5.7 the spectrum is shown for different rcap — 7. values. For a distance of
rcap—7e = 20 a.u. the spectrum becomes less oscillatory and the noise level decreases
significantly in comparison to shorter ranges rcap — 7e.

A direct comparison of the spectrum in the direction # = 0 obtained by splitting
and t-surff, respectively, is shown in Fig. 5.8. The pulse characteristics are the same
as for the Figs. 5.1 to 5.3 and 5.5 to 5.7. The radial grid size is rp. = 250 a.u.
The splitting parameters are r. = 200 a.u., A = 10 a.u., dts = 0.2 a.u., and the
propagation time is 400 a.u. For the surface flux method a CAP strength of 1073,
a CAP radius of rcap = 220 a.u., a sphere radius of r. = 200 a.u. (according to
the optimum found for rcap — 7. = 20 a.u.) and a propagation time of 1000 a.u.
are chosen. The spectra agree quite nicely. The one-photon peaks exhibit a nearly
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Figure 5.8: The argon photoelectron spectra obtained with the splitting and the t-surff
methods for a pulse with 105 eV photon energy, 9 x 10" Wem ™2 intensity and 1.2 fs duration
along the polarization direction are compared. The radial grid size is rpax = 250 a.u. for
both methods. (©) 2014 APS

perfect agreement. The slight deviation in the two-photon spectrum calculated with
t-surff indicates that the CAP could be reoptimized for this energy range. However, for
both methods the spectrum has a very low noise level, up to ten orders of magnitude
smaller than the physical signal.

Summarizing, the t-surff method is in principle applicable with a CAP, although it
requires a good quality absorption over a broad energy range. Qualitatively, the t-surff
method reproduces exactly the same results as obtained with the splitting method. In
contrast to the splitting less memory capacity is used because only the wave function
and its first derivative at one single point need to be stored.

5.2.3 Rabi splitting

In all of the previous examples the channel mixing mentioned in Sec. 5.1.1 was not
of particular importance because the photon energy did not match any atomic reso-
nance. In the following we demonstrate exemplarily that our method can also describe
cases where two bound states are strongly coupled by a laser field. The influence of
the channel coupling will be inferred by comparing the results calculated with and
without the mixing described by Egs. (5.11).

An interesting phenomenon in the strong-field case where the interaction between
electrons and holes is important is the Rabi oscillation [175, 176] between bound
states and an autoionizing state [194, 195]. It is known that driving a resonance
between two resonance states will result in a double-peak structure [196, 197], where
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Figure 5.9: Argon photoelectron spectra calculated with the splitting method (A = 10a.u.,
dtgp = 0.2a.u., and 7. = 80a.u.). a) Spectrum calculated for a pulse of 0.7a.u. photon
energy, 4.6fs duration and an intensity of 1.4 x 10'3Wcem™2. The one-photon peak and
three ATI peaks are shown. b) Spectrum for the same pulse parameters, except for the
intensity, which amounts to 1.4 x 10> Wem™2. The peaks split when the channel coupling
is included in the calculation.

the two peaks are separated by the Rabi frequency. This has been studied for instance
within a neutral atomic system [198], for negative ions [199] or for coupling within
positive ions in the photoionization of a neutral atom [195]. An example of the latter
case shall be studied here. The photoelectron distribution is calculated for an argon
atom interacting with a laser pulse whose central energy is 0.7 a.u., which corresponds
to the energy spacing between the 3s and the 3p orbitals. When an electron of the
3p shell absorbs a photon and is ionized a hole is created in the 3p shell. Then,
a strong laser field can induce an excitation of a 3s electron to the hole in the 3p
shell. If the laser intensity is high enough the light induces Rabi oscillations of the
electronic population between the two shells and the photoelectron distribution is
expected to reflect this oscillation. The Rabi frequency depends on the peak electric
field strength, Ey, and the dipole matrix element of the two states involved, dss_s), is
[175]

Q35_3p = dss_3p - Bo = (ps3p|2]03s) E20, (5.29)

where the last equality holds because the light is assumed to be linearly polarized in
the z-direction. The transition matrix element between the two orbitals 3s and 3pq
amounts to 0.86 a.u. Of course, the effect of this oscillation will only be visible in the
spectrum if the Rabi splitting is large enough to be resolved compared to the energy
width of the photoelectron peaks.
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Figure 5.10: Argon photoelectron spectra calculated for the same pulse parameters as
in Fig. 5.9b) with the t-surff method (r. = 30a.u.). The one-photon peak and the first
ATI peak is shown. The splitting is visible when the channel coupling is included in the
calculation.

In order to investigate the emergence of the splitting in the photoelectron peaks
due to the Rabi oscillation between the 3s and 3p orbitals two intensity regimes
are considered. First results of the investigation are shown in Fig. 5.9. Panel a)
shows that for a low peak electric field strength of 0.02a.u., which corresponds to
an intensity of 1.4 x 10 Wem™2, and a pulse duration of 4.8fs the photoelectron
spectrum exhibits the usual one-photon and ATI peaks, separated from one another
by 0.7 a.u., the energy of one photon. There is no considerable influence of the channel
coupling and the curves calculated with and without including Egs. (5.11) lie on top
of each other. However, increasing the peak-field strength to 0.2a.u. yielding a peak
intensity of 1.4 x 10'® Wem ™2 alters the spectrum significantly. This is illustrated in
Fig. 5.9b). The Rabi frequency is Q35_3, = 0.16a.u. for these parameters, so that
a splitting of the peaks from the weak-field energy position is expected by ££/2 =
+0.08 a.u.~ +2.2eV for the first peak, :I:\/§Q/2 = +0.11a.u.~ £3¢V for the first
ATI peak, £1/3Q/2 = +0.14a.u.~ £3.8¢V for the second ATI peak, and so forth.
Indeed, the higher the order of the peak the broader it is and the more pronounced
the splitting becomes on the order of the above-mentioned energies. The peaks are
also shifted to slightly smaller energies with respect to the positions in the lower
energy case. This can be explained by the AC-Stark shift, because depending on the
field strength and the ionization probability of the 3p shell the energy position of the
doublets shifts toward lower energy [197].

In Fig. 5.10 first results calculated with the t-surff method are presented. The
splitting in the high-intensity case of 1.4 x 10 Wem™2 is demonstrated for the two
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first peaks. Also here, the splitting can be seen clearly in the first ATI peak. Compared
to the splitting method the height of the two Rabi-split peaks is different, both peaks
are equally high for t-surff while in the splitting calculation the first peak is lower.
However, the agreement between the splitting and the t-surff method is relatively
good as far as the positions of the peaks and their width are concerned. Therefore,
further studies on the convergence might be necessary in order to obtain the same
results for both methods and to investigate the asymmetry in the peaks in more
detail. For instance the dependence of the asymmetry on the coupling between the
decaying dressed states and the continua [195], which could be influenced by the pulse
duration, should be studied.

Nevertheless, in principle, both methods produce the expected strong-field effect
of the Rabi splitting in the photoelectron peaks. This shows that our method is
applicable in cases where the driving of resonances can change the hole state in the
ion which is then also reflected in the photoelectron spectrum.
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Multiphoton and above-threshold
ionization in the XUV energy range

This chapter and the following chapter present the results of our collaboration with
the group of Michael Meyer from the European XFEL GmbH. Experimental data
were calibrated, results from theory and experiment were compared and a deeper
theoretical analysis of the xenon resonance features in the XUV were conducted. In
this chapter I present the work on above-threshold ionization (ATI) in argon which
was used as a calibration for the xenon measurements presented in Ch. 7.

6.1 Argon: Experiment at FLASH

The experiment which was performed by the group of Michael Meyer in January 2013
at FLASH aimed at measuring sequential and non-sequential multiphoton absorption
and, in particular, above-threshold ionization of argon and xenon in the XUV photon
energy range [193]. For this reason, and especially in view of the giant dipole res-
onance in xenon and the two-photon resonance 2p — 4p in argon, the three photon
energies, 105 eV, 123 eV and 140 eV were chosen. The energy levels of argon are
shown schematically in Fig. 6.1a), the 2p shell is accessible with 2 photons, one- and
two-photon ionization out of the 3s and the 3p shells are possible. In Fig. 6.1b) the
possible Auger decay channels illustrated after a hole in the 2p shell has been created.

The maximum intensity of the FEL pulses in the experiment mentioned amounted
to 10 — 10 Wem™2. For these parameters the ponderomotive potential is (cf.
Sec. 1.1)

1
Up = m ~ 0.01 eV < Wphoton - (61)

From this expression it becomes obvious that in this case the ponderomotive energy
is much smaller than the photon energy. If, additionally, the pulse duration or the
duration of the interaction between the light with the system is much longer than the
atomic timescale the interaction of the system with the laser pulse can be described
by an effective cross section for one-photon processes and by generalized cross sections
for higher multiphoton processes [45]; this is often called the perturbative limit. In
the present parameter case one-photon processes strongly dominate which means that
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Figure 6.1: a) Argon energy levels schematically depicted. With all three relevant photon
energies 105 eV, 123 €V and 140 eV an electron from the 3s and the 3p level can be ionized
(denoted by solid arrows). The 2p electrons can be accessed only with two photons. 3s and
3p electrons can also absorb two photons if the pulse intensity is high enough and undergo
above-threshold ionization (denoted by dashed arrows). b) Possible Auger decay channels
after 2p core hole ionization with two photons.

the absorption cross section can roughly be approximated by the one-photon cross
section.

Figure 6.2 shows the depopulation of the relevant shells of argon as a function of
the electric field of a Fourier-transform limited pulse for a photon energy of 105 eV
and a pulse duration of 12 fs, which is sufficiently long to not span other relevant
resonances in argon. The total depopulation (red curve) as a function of the peak
electric field can be described almost perfectly by the one-photon depopulation out
of the 3p channel (blue dotted curve) which is modeled in first order perturbation
theory by the one-photon cross section for the 3p electrons given by the expression
P(t) =1—exp (—a(l)F), see Sec. 1.1.2. The resulting curve is shown in Fig. 6.2 as
a green dashed curve which coincides with the total ionization probability (solid red
curve). Therefore, it is possible for this particular problem to use rate equations which
involve (generalized) cross sections for calculating the electron yields in ionization.
The probability for ionization out of the 3s shell is smaller than for the 3p shell
by almost an order of magnitude. The corresponding above-threshold ionization
probabilities are smaller by more than two orders of magnitude for the largest peak
electric field shown. The slope of the one-photon ionization curves as a function of
the electric field is 2, while it is 4 for the two-photon process ATI. This evidences the
applicability of lowest-order perturbation theory, where the probability dependence
on the intensity is linear for one-photon ionization and quadratic for two-photon
ionization processes. At about 0.1a.u. of electric field strength the saturation regime
is reached, where the significant depletion of the ground state leads to a deviation
from this intensity dependence.

Using the splitting method within TDCIS to calculate photoelectron spectra resolved
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Figure 6.2: Depopulation of argon as a function of peak electric field. The pulse has a
duration of 12 fs and a center energy of 105 eV. The probability of ionization is shown for
the 3s and the 3p shell for the cases of one- and two-photon absorption. The two-photon
absorption is effectively above-threshold ionization. The total depopulation can be modeled
using the one-photon cross section for the 3p shell, because this process dominates for the
pulse used here and, hence, lowest order perturbation theory can be applied.

in angle and energy ! we are able to produce two-dimensional photoelectron distribu-
tions for a pulse with 105 eV photon energy. This is shown exemplarily in Fig. 6.3 for
a Fourier-transform limited pulse of 2.6 fs duration and of 10 Wem™2 intensity. The
pulse duration was chosen according to the bandwidth of the experimental pulses.

The photoelectron distributions reflect the energy position of the photoelectron
which amounts to the photon energy subtracted by the corresponding binding energy
of the electron in its orbital. In experiment, e.g., with angle-resolved photoemission
spectroscopy (ARPES) or velocity map imaging, the number of electrons emitted
within a certain energy bandwidth in a certain direction can be measured [46, 109].
The peak energy positions can be read off at the nicely visible one- and two-photon
circles (see arrows) from the z- or y-axes. On the right, the top figure shows the
one-photon peaks, where the 3s electrons are promoted to a p-state exhibiting a
cos? f behavior while the 3p electrons are in a state superposition of an s-state and
a d-state, reflected in two minima of the angular distribution. Due to the coherent
pulse that was used in the calculations the energy width of the peaks corresponds
to the Fourier-transform limited energy width for a pulse duration of 2.6 fs. The
ATI peaks shown in the bottom figure show a superposition of s- and d-states for
the 3s electrons and of p- and f-states for the 3p electrons resulting in an angular
distribution with three minima (one true root and two global minima). The energy

!(In fact, this was not the case in the actual experimental setup.)
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Figure 6.3: a) Angle-integrated PES presented in cartesian coordinates similar to a velocity
map image in experiment, the x-axis being the kinetic energy in = direction and the y-axis
in y direction. The z axis is defined as the polarization direction of the light. One can
distinguish the one-photon peaks and the ATI peaks as circles with the kinetic energy
corresponding to the photon energy minus the orbital binding energy, see red arrows. b)
Two-dimensional one-photon photoelectron peaks, and c¢) ATI (bottom) photoelectron peaks
of argon for a pulse of 105 eV, a pulse duration of 2.6 fs and an intensity of 10'® Wem ™2,
now as a function of the angle 6 with respect to the polarization direction (top view on
the spectra shown in Fig. 5.4). The angular distribution corresponds to a superposition of
spherical harmonics belonging to the angular momentum states arising in ionization.

width of the peaks corresponds to the Fourier-transform limited width multiplied by
v/2 as it should be for two-photon ionization [200]. The fully integrated spectrum,
over energy and angle, gives the total ionization probability of argon for the pulse
mentioned.

The photoelectron spectra were experimentally recorded using a magnetic bottle
spectrometer [4] which collects all electrons from all directions and guides them to
the detector. For this reason the angular dependence of the photoelectrons is lost
and only the energy dependence is measured. In Fig. 6.4 an angle-integrated photo-
electron spectrum measured at 105 eV photon energy is shown (unpublished results).
The experimental photoelectron spectra, such as in Fig. 6.4, were recorded for various
pulse intensities over several orders of magnitude. Electron yields were obtained by
summing over all electrons that are produced by the same process (i.e., by integrat-
ing/summing over the corresponding peaks).

This spectrum could in principle be compared to theory if the theoretical 2D spec-
trum is integrated over all angles which corresponds to collecting electrons from
all directions. For illustration of the underlying processes a theoretically calculated
angle-integrated photoelectron distribution is shown in Fig. 6.5 at a photon energy
of 140 eV and at a slightly larger intensity of 10'> Wem~2. At this photon energy
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Figure 6.4: Experimental photoelectron spectrum recorded at a photon energy of 105 eV
and a peak intensity of 5-10* Wem™2. One can clearly distinguish the one-photon peaks of
the 3s and 3p shells as well as the ATI peaks that are separated from the one-photon peaks
by exactly the energy of one photon. (Courtesy: Tommaso Mazza, unpublished results)
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Figure 6.5: Angle-integrated photoelectron distribution of argon at a photon energy of
140 eV as a function of energy, irradiated by a 2.6 fs pulse at an intensity of 10'°Wcm™2.
The dominating part of ionized population stems from the 3p and the 3s shells, which absorb
one photon (solid lines labeled in green). The ATI peaks are shown as well, magnified by
the factor 2000 for better visibility (dashed lines labeled in orange). The dotted peak at the
lowest kinetic energy which is magnified by the factor 7500 is attributed to the 2p shell. By
absorbing two photons a 2p electron is promoted to the continuum. Finally, a three-photon
peak from the 2p shell is observed around 170eV (fine-dotted, magnified by 6 - 10%).
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one-photon and ATI processes from the 3s and 3p shells are observed, as well as two-
photon ionization out of the 2p shell and even three-photon ionization which at this
intensity is weaker by 3 orders of magnitude.

6.2 Calculation of cross sections and electron yields

In order to meaningfully compare theoretical calculations of cross sections with exper-
imental electron yield data it is necessary to take into consideration all experimental
parameters: the duration and the statistics of the light pulses, the pulse energy and
the geometry of the pulse together with the geometry of the optical measurement
components. Because of the experimental pulse profile the light intensity varies over
the interaction region. Therefore, also the ionization probability depends on the posi-
tion within the electric field distribution. By volume integration the actual intensity
and accordingly the ionization due to the available intensity is taken into account. In
the calculation of cross sections Gaussian pulses, i.e., fully coherent pulses were uti-
lized, while in experiment the pulses produced at FLASH exhibit stochastic statistics.
For the correct calculation of cross sections within perturbation theory using coherent
light for processes induced by stochastic light the cross section must be multiplied
by the degree of coherence for stochastic light, which amounts to 2 for a two-photon
process.

The cross sections for the one- and two-photon absorption cases for the 2p, 3s and
3p shells were calculated by analyzing the angular momentum resolved ion density
matrix calculated with TDCIS. As can be seen in Fig. 6.2 the most probable ionization
event is a one-photon ionization process out of the 3p shell. The two-photon events
are suppressed by many orders of magnitude. Therefore, from the perspective of
perturbation theory, we can make the approximation that two-photon ionization is
the highest order effect that occurs. In this case, the orbital and angular resolved
ion density matrix can be used to unambiguously determine the ionization in each
channel for one- and two-photon ionization using the dipole selection rules. However,
if this approximation cannot be made the cross sections can be obtained by explicitly
calculating the photoelectron distribution, by the separation of the different processes
by the energy of the photoelectron and by subsequent integration over the angle over
the corresponding photoelectron peaks. This yields the ionized population due to the
process of interest.

6.2.1 (Generalized) Cross sections

In the framework of perturbation theory ionization cross sections are defined by the
ionization probability of the process divided by the fluence corresponding to the
process of interest. To provide an example, let us assume that we want to describe
the ionization probability of ionizing an electron out of the ground state with a

74



6.2 Calculation of cross sections and electron yields

single photon. As mentioned in Sec. 1.1.2 rate equations can describe the ionization
probability in this case. Therefore, the corresponding differential equation for one-
photon ionization by a light pulse with flux j7; has the form

dN,

ke oW (1) Ny (1), (6.2)

where N; denotes the ionized population by one photon, Ny the population of the
ground state, (! the one-photon cross section, and j;(¢) the time-dependent flux
§M(t) = I(t)/w, where I(t) is the light intensity and w the photon energy. In other
words, the flux is a measure of the number of photons that are available for ionization
processes per unit time and area.

An important criterion for the perturbative regime is that the ground state is
not depleted, i.e., the field is weak compared to the innneratomic potential and the
population of the system remains essentially in its ground state. If the approximation
is made that the ground state is far away from being depleted, i.e. Ny(t) = Ny = 1,
the equation is simplified and can be integrated

N® :0(1)/j1(t)N0(t)dt:a(l)/jl(t)dt, (6.3)

where Ny was set to 1 and o™ can be pulled out of the integral because it is time
independent. Consequently, only the integral over the flux must be carried out. For
all our purposes we use a Gaussian pulse with the intensity envelope

2

E
I(t) = 08—0 exp (—41n262/7%) | (6.4)
T

where ¢ is the speed of light, Ej is the peak electric field, and 7 is the pulse dura-

tion (FWHM). Integrating the flux over time we obtain the fluence for one-photon
absorption:

W _ T T2

8rhw \ 4In2" "

(6.5)

Inserting the fluence into Eq. (6.3) we obtain the expression for the cross section

ND

'
F’

O'(

(6.6)

so that the units are cm? as it should be for a cross section.

So far, we only considered one-photon ionization. The rate equation (6.3) must
be complemented by an additional term in the case that the ionized population can
also result from population transfer from the ground state by the absorption of two
photons. The two-photon ionized population is denoted by N®. In the following
we denote the generalized two-photon cross section by ¢®. Thus, the rate equation
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6 Multiphoton and above-threshold ionization in the XUV energy range

reads
NO = NO 4 N® = 5O / J1(t)No(t)dt + o / JadtNo(t) (6.7)
o [t +o® [ jia (6:5)

The fluence associated with two-photon absorption, F®), is given by integrating the
flux over time, F(® = [ j2dt. For the Gaussian intensity distribution (6.4) we obtain

E4
F® = (i) T _—0 6.9
87/ \ 8In2 (hw)?’ (6.9)
N®)
2) _

4s~1. The unit of the correspond-

and, accordingly, the unit of the fluence F® is cm™
ing cross section o? is, therefore, cm*s. Following this logic, higher order generalized
cross sections oV, where N is the number of photons needed for the ionization process,

have the dimension cm?VsV=1 [45].

Using TDCIS the depopulations due to one- and two-photon ionization processes,
N® and N@_ for the 2p, 3s and 3p shells are calculated in the perturbative limit,
i.e. for pulses that do not deplete the ground state (the total depopulation being
significantly less than a percent). The cross sections can be derived using formulae
(6.6) and (6.10). These cross sections are used in a rate equation model in order to
calculate electron yields for different light intensities. Equivalently, the corresponding
peak of the PES can be integrated over the angle and the energy in order to obtain
the ionized population.

6.2.2 Electron yields

In order to avoid very small numbers the units of the cross sections are conveniently

2NfSN—1

chosen to be cm . The relevant cross sections for the processes of interest in

the experiment were

e the one-photon ionization cross section for the 2p shell (first index 0) ogy,

e the one-photon ionization cross section for the 3s shell (first index 1) oy7, and
e the one-photon ionization cross section for the 3p shell (first index 2) o9y,

e the two-photon cross section for the 2p shell ogs,

e the two-photon cross section for the 3s shell oq5, and

e the two-photon cross section for the 3s shell ogs.

As above, the corresponding ionized populations are denoted by Pj;, where the

index i stands for the shell (0, 1, or 2), out of which the electron originated, and the
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6.2 Calculation of cross sections and electron yields

second for the ionization process (1 for one-photon, 2 for two-photon). The ground
state population is symbolized by F,. The time dependence of the populations and
the flux is omitted for the sake of legibility. Assuming that argon is predominantly in
the ground state, the coupled rate equation system for one- and two-photon ionization
of argon in the XUV has the following structure:

Py =- [(001 + 011+ 091)j1 + (002 + 012 + U22)]ﬂ Py (6.11a)
Por = o011 Py (6.11b)
Por = 002 Py (6.11c)
Py =011 Py (6.11d)
Pry = 01257 Py (6.11e)
Py = 02151 P (6.11f)
Py = 0221 Po (6.11g)

For consistency, the flux is calculated in photons per cm?

and per fs. This system
is solved for a variety of fluxes spanning the range used in experiment (many orders
of magnitude) with the Matlab software [201], using a differential equation solver
based on the Runge-Kutta algorithm of order 4 for a sufficiently long time interval
of [—47,47]. The resulting electron populations that correspond to each flux must
now be employed for integration over the actual interaction volume within the ex-
perimental setting. For this purpose, the experimental data were analyzed and the
theoretical yields were compared with the experimental yields in order to calibrate the
geometric parameters and overall uncertainties in the measurements. In an iterative
manner the yields were calculated for a set of possible experimental parameters in-
volved, i.e., focus, Rayleigh length, pulse length and volume integration region along
the propagation direction and perpendicular to it. The results were compared to the
experimental data sets. It was found that a pulse duration of 80 fs, a focus size of
(5+1) um (FWHM) and a Rayleigh length of 0.4 mm for the measurements result in
very good agreement with the slopes for the one- and two-photon ionization yields.
The integration range was 0.48 mm with an offset in the propagation direction of
0.13 mm for 105 eV and symmetric around the focus for 140 eV. The pulse geometry
did not significantly deviate from the Rayleigh geometry of a Gaussian beam. The
measurements at the other photon energies were performed at different intensity and
beam parameters.

Now, having calculated the electron yields as a function of intensity the volume
integration must be taken into account. Assume that the signal, i.e. the populations,
S(F) as a function of fluence is given. Due to the pulse intensity profile in the direction
perpendicular to the propagation direction, described by the radial coordinate p, and
the finite and extended region along the propagation direction z, in which the argon
gas and the light pulse interact, the volume integration must be performed along z
and p. In the following a Gaussian beam profile is assumed. Denoting the integration
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volume element by dV' we obtain the expression

/S(F)dv = /p dp dzS(F) = /dz dF p(F,z)|J(F,2)|S(F), (6.12)

where a coordinate transformation (p, z) — (F, z) is performed with the determinant
of the Jacobian transformation matrix

% Op
J(F,z):(g_g g_) (6.13)
OF 0z

The fluence distribution as a function of p and z is given by

F(p, 2) = Fpeax exp|—p* /w(2)"], (6.14)

4In2Npy
Tw?2(2)
focus, N, being the number of photons. The peak fluence is itself a function of z.

where Fieax = is the peak fluence that is taken for each distance from the

The function w(z) describes the divergence of the beam, i.e. it determines the spot
size at a distance z from the beam waist or focus wy

1+ (zi(])?] . (6.15)

By inverting Eq. (6.14) it can be seen that this function is invertible bijectively and

w(z)* = wg

yields p(F, z) when we take the positive (physical) solution. Eq. (6.12) becomes

Fpeak Zmax

/S(F)dV :/ dF S(F) {/ p(F, z)|J(F, z)|dz}, (6.16)
0 min

where the z-integration limits are given by the experimental gas volume conditions.

The z-integration can be performed analytically, the F-integration needs interpola-

tion for the F-grid (which is very cheaply implemented in Matlab).

Equivalently to the Matlab calculations for argon, the XATOM toolkit [139] can be
used to solve the rate equation system after inserting the cross sections that were
pre-calculated with TDCIS and use the program wvol int ? for volume integration.
Figure 6.6 shows the 3p one- and two-photon electron yields as a function of pulse
energy for a pulse of 80fs duration. As expected the yield decreases with increasing
photon energy, the yield curve for 105 eV lies above the 123 eV curve and the photon
energy of 140 eV produces the smallest one-photon yield. The same order of the curves
with energy holds also for the two-photon yield curves. The slope of the one-photon
curves is one, while it is two for the two-photon process, again in accordance with
perturbation theory. The saturation regime is only slightly entered at a pulse energy
around 10 pJ. Note that XATOM can additionally provide Auger decay rates for the
decay channels shown in Fig. 6.1b), that are not included in the rate equation system

2(written by Sang-Kil Son and Zoltan Jurek in our group)
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6.3 Comparison between theory and experiment

(6.11) because the Auger process leads to doubly ionized argon, a configuration which
lies outside the configuration space that is considered within CIS. The 2p Auger yield
is also shown in purple in Fig. 6.6. It is clear that the Auger yield is of the same order
as the two-photon above-threshold ionization, because two photons are necessary to
ionize the electron of the 2p shell. Consequently, the curve exhibits also a slope of
two, cf. Sec. 1.1.2.

0.01 | ;
S 0001 | l
s
o 0.0001
>
§ 1e-05
8
3 1e-06 105 eV 3p 1ph —— 1
105 eV 3pT ATl ——
1e-07 123 eV 3p_1 1ph .
123 eV 3p_' ATI
na L 140eV 3p ,1ph — |
1e-08 140 eV 3p ' AT ——

140 eV 2p™“ Auger
1 10
pulse energy (ud)

1e-09

Figure 6.6: Electron yields from one- and two-photon ionization of argon with a pulse of
80 fs duration and photon energies of 105, 123 and 140 eV as a function of pulse energy.
Due to the high photon energies the two-photon process is above-threshold ionization. The
purple line corresponds to the 2p two-photon ionization which leads to subsequent Auger
decay.

6.3 Comparison between theory and experiment

Using argon as calibrating system a single overall factor was determined which ac-
counts for the experimental apparatus uncertainty (nozzle parameters, sample den-
sity or pressure, transmission of the analyzer, detector gain, deviation from Gaussian
beam profile, etc.). These parameters affect the measurements differently over the
broad photoelectron energy range that was investigated. In particular, the mea-
surements of the one-photon and the two-photon energy ranges experienced different
experimental circumstances. Therefore, upon dividing the experimental ATI data by
this factor, which amounts to 2.1, the agreement between the experimental data and
the theoretical calculation was very good. The agreement is reflected in the slope
as well as the ratio between the one-photon and two-photon electron yields and in
the onset of saturation, which is visualized in Fig. 6.7. In this figure the comparison
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Figure 6.7: Comparison between theory and experiment: Electron yields as a function of
pulse energy at a photon energy of 140 eV. The dots denote the experimental data points,
the solid lines represent the corresponding theoretical curves. The 3p one-photon, ATI and
2p Auger yields are shown and are found to agree nicely between theory and experiment.

between theory and experiment is shown for the one- and two-photon electron yields
at the photon energy 140 eV; the experimental data are plotted as points (open or
full) while the theoretical calculations are drawn as solid lines. Both the theoretical
3p one-photon and ATI yields match the experimental data points nicely. At 140 eV
photon energy the 2p shell can be ionized by two photons and subsequent Auger de-
cay produces electrons with characteristic energies which can be separated from the
one- and two-photon yield.

Furthermore, it is interesting to study the interaction of argon with photons of
123 eV energy, because with this energy there is a resonance that can be excited
with two photons: The 2p — 4p transition can be induced by two-photon resonant
excitation at 123 eV. This process was calculated by using a pulse with a very narrow
energy bandwidth, in order to avoid excitations of other nearby lying states. The
cross section for the resonant two-photon excitation was found to be

o5 4y = 1.8-107% cm’s. (6.17)

Since argon is a relatively small system which does not exhibit strong electron
correlation effects we can rely on the calibration between theory and experiment
by fixing this single parameter as described above. The next, exciting example of
two-photon ATI will benefit from this calibration and underline the importance of
electron correlation effects in a much more complex system, namely xenon. This will
be discussed in the following chapter.
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Xenon above-threshold ionization
involving the giant dipole resonance

Nature Communications 6, 6799, (2015)
Physical Review A 91, 032503 (2015)

Figure 7.1: Graphical representation of a 4dy electron orbital in atomic xenon; the radial
wave function of a 4d electron is multiplied by the spherical harmonic Y5y(2) and visualized
as a function of the cartesian coordinates « and y (axes not shown).

This chapter highlights the results of the collaboration with the group of Dr. Michael
Meyer. Combining our theoretical approach with the data of the experiment legit-
imated our theoretical prediction of hidden resonance substructure in the atomic
example of collective excitation: the giant dipole resonance in xenon. Our results
were only made possible by a high-intensity study at FLASH. The evidence that our
findings provide shows, for the first time, the importance of collectiveness in xenon
in the nonlinear regime and establishes the existence of two underlying resonances
within the range of the giant dipole resonance. Most crucial for our study was the
nonlinearity of the effect, namely the two-photon ionization process in xenon as men-
tioned in the previous chapter. New information about the xenon shell emerged,
which was hidden for over 50 years, from the very discovery of the xenon giant dipole
resonance [202-204].
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7 Xenon ATI involving the giant dipole resonance

7.1 The giant dipole resonance (GDR)

In 1964, while the interest in absorption characteristics of inner shell electrons with
high angular momentum was growing, experiments in the XUV photon energy range
revealed an “unusual” feature in the photoabsorption cross section of the 4d electrons
in xenon [202-204] (nuclear charge Z = 54, the valence shells following the 4d shell of
xenon are the 5s and 5p orbitals). This feature was already at that time attributed to
the very nature of the 4d shell and received later the name “giant dipole resonance”
(GDR). The XUV photoabsorption spectrum of xenon was the topic of numerous
studies in the course of the last 50 years, both theoretically and experimentally. It is
understood as the interplay of two effects: Qualitatively the phenomenon of this huge
absorption resonance can be explained as originating from a shape resonance effect:
After absorbing a photon out of the 4d shell the electron is promoted predominantly
to an f-state. Thus, due to the centrifugal barrier it is trapped temporarily in a
resonance state in the electronic continuum near the ionic core [9, 205, 206] until
it can tunnel out and leave the ion. At the same time the xenon 4d shell is an
illustrative example of a many-body system showing collective electronic behavior;
its resonating character under XUV radiation is interpreted as the collective response
of all ten 4d electrons to an external weak-field perturbation[95, 102]. Only when
electron correlation effects within the 4d shell are included quantitative agreement
with experimental data is achieved. This means that the resonant excitation cannot
be explained as a purely independent-particle effect.

The giant dipole resonance and its impact on various observables has been studied
within TDCIS. One application involving the giant dipole resonance was a detailed
investigation of one-photon ionization [207]. In this work the focus lay in particular
on many-body effects. It was shown that within the interchannel coupling scheme the
experimental one-photon cross-section curve of xenon in the XUV is described quite
well, while in the intrachannel case the resonance is much narrower and red-shifted.
In Fig. 7.2 the one-photon cross sections are shown for both models. The full TDCIS
scheme exactly reproduces the position of the experimentally observed one-photon
cross section of xenon in the range of the giant dipole resonance. The height of the
peak is underestimated by the interchannel model while the width is overestimated
by 18% compared to the experimental cross section. This proves that, qualitatively,
the TDCIS theory captures the main features of the many-body effect that renders
the one-photon cross section curve broader and shifts it to higher energies.

A second application [208] proved that the many-body correlation effects leading to
the giant resonance have also a huge impact on the high-harmonic spectrum [208, 209],
i.e., a highly nonlinear phenomenon is greatly influenced by the interchannel coupling:
when including the interchannel matrix elements the yield of the HHG spectrum of
xenon is enhanced compared to the intrachannel scenario. The study demonstrates
that the enhancement stems from the two-body interchannel interaction when the
initially ionized 5p photoelectron returns to the ion: it can exchange energy with all
4d orbitals and promote one of them into a 5p vacancy. Thus, this effect can be fully
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Figure 7.2: One-photon photoabsorption cross section calculated with TDCIS using the
two models. The black line shows the interchannel and the red curve the intrachannel
calculation.

explained when taking into account the same type of correlations that leads to the
one-photon cross section curve.

In the following, we will go beyond the linear-response regime and legitimate the
predictability of our theoretical approach further by comparison with the experimen-
tal results that were obtained at FLASH. We will study the giant dipole resonance in
the two-photon regime, with the help of a process where the first photon is used to
excite the giant dipole resonance and the second photon ionizes the system.

7.2 Sensitivity of nonlinear photoionization to
resonance substructure in collective excitation

As stated above, the giant dipole resonance in the photoionization of the 4d shell
in xenon, which lies in the XUV energy range, is one of the most important and
well-studied example for collective effects in atomic systems. The recent advent of
high-brilliance light sources such as XUV and x-ray FELs has opened a door to studies
beyond the linear regime in these photon energy regimes. Now, the focus lies on
the nonlinear light-matter interaction and the corresponding response of the systems
under study. In particular, atomic xenon has been studied in various experiments
at FELs in a photon range between 93 eV to 5 keV [210-214]. Theoretical work has
been done to model the experimental results [215]. The ionization of xenon under the
unprecedented conditions at FELs has been the subject of several investigations [210—
216], that have stimulated speculations about the influence of collective effects on the
process of multiple ionization[210, 211]. Furthermore, a high-harmonic-generation ex-
periment on xenon [217] evidenced the impact of the 4d giant dipole resonance on a
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nonlinear optical process [208, 209]. Yet, all these observations can be well under-
stood, as far as collectiveness is concerned, considering the one-photon absorption
cross sections of the various charge states of xenon [213, 215, 218], i.e., in terms of
the spectral characteristics of its linear response.

However, exploiting the opportunities of new, intense light sources allows the inves-
tigation of the collective response mechanisms of many-body systems through their
nonlinear interaction with short-wavelength radiation. In the same beam time at
FLASH where the results on argon were obtained (described in the previous chapter)
xenon was investigated at the same photon energies of 105 eV and 140 eV, which
lie exactly in the range of the giant dipole resonance. One major objective of our
theory-experiment collaboration was to investigate whether and to what extent col-
lective behavior, i.e. many-body effects, plays a role in the nonlinear response regime
in the case where the photon energy is greater than the electron binding energies.
As shown in the present chapter, nonlinear spectroscopy provides the possibility of
unveiling substructures in the spectrum of collective excitations that cannot be re-
solved with linear spectroscopy. Already in the 1970’s a theoretical calculation of the
dielectric function of xenon in the range of the giant dipole resonance revealed two
energy poles [219]. However, in this investigation the results were not interpreted
as resonance states and these calculations were not further pursued. Our analy-
sis of nonlinear xenon ionization, i.e. the process of ATI, re-discovered two energy
poles, identified them as resonance states and, for the first time, evidenced that using
nonlinear spectroscopy these two underlying resonance states are emerging as clear
features in the ATI cross section.

Before the results of the joint work on above-threshold ionization of xenon in the
XUV, the theoretical model and the interpretation are presented, I outline the method-
ology of our approach.

7.2.1 Methodology

At the photon energies that were employed in the experiment, 105 eV and 140 eV, the
processes that can occur in atomic xenon are one- and two-photon ionization of the
4d, 5s and Hp shells and subsequently Auger decay following an inner shell vacancy.
With a lifetime of 3 fs the 4d hole decays via the Auger process [220]). Since the
pulse durations employed in the experiment are much longer than 3 fs the Auger
yields have to be taken into account (see caption of Figs. 7.5 and 7.6). Technically,
since the photon energies exceed the binding energy of the orbitals considered, the
observed two-photon process is above-threshold ionization. In Fig. 7.3 a schematic
representation of the levels of xenon and the ionization processes is given. Panel a)
shows simple one-photon ionization, panel b) the absorption of a second photon, i.e.
ATI. In order to compare theoretical results to experimental data we choose electron
yields as a function of pulse intensity as observable.

Employing nonlinear electron spectroscopy, namely by two-photon ionization of
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Figure 7.3: Schematic representation of the ionization processes and associated models.
a) Single-photon ionization process; b) two-photon, i.e., ATI process. (©2015 Nature Pub-
lishing Group

xenon, we demonstrate that the nonlinear process unveils otherwise unresolved as-
pects of the collective behavior of the system. For this purpose, we analyzed the
above-threshold ionization cross section over the whole range of the giant dipole res-
onance of xenon. Due to the photon-energy selected, the two-photon process occurs
through the giant dipole resonance as an intermediate step (Fig. 7.3). We will show
in the following that a model assuming a single intermediate state fails to describe the
obtained results. Instead, the resonance feature in the predicted energy dependence
of the two-photon process and its shape strongly suggest that more than one reso-
nance state underlie the giant dipole resonance. Although these states are unresolved
in the linear ionization of xenon, two-photon ionization turns out to be a sensitive
process for their observation.

For the theoretical calculation all necessary cross sections are calculated in an ab
initio manner within TDCIS. These cross sections are introduced into a rate equation
system that is similar to the argon case, see Ch. 6. The solutions of the rate equations
for various photon fluxes represent the ionization populations which are calculated
as a function of pulse intensity. In order to compare with the experimental data,
the electron yields are calculated through volume integration of the populations by
including the experimental parameters regarding the shape and intensity distribution
of the light pulses. The calibration factor which was identified with the help of the
argon data presented in Sec. 6.3 enters as the only normalization between theory
and experiment and accounts for experimental conditions beyond the simple beam
geometry.
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First-principles calculation of cross sections

First, an overview of the theoretical method is given. The full N-electron Schrédinger
equation, see Egs. (2.2) and (2.8), is solved numerically within TDCIS and the de-
populations in the 4d shell due to one- and two-photon absorption are calculated by
analyzing the ion density matrix elements and by distinguishing the depopulations
corresponding to the angular momenta of the final states [129]. The cross sections
for one- and two-photon absorption are calculated via the population in the corre-
sponding hole channels. As long as perturbation theory is valid and higher order
processes are negligible, these depopulations are distinguishable due to the different
angular momenta of the ejected electron according to the dipole selection rules. All
contributions from the 4dy, 4d+1, and 4d4, subshells are added.

As mentioned in Chapters 1 and 2 a particular strength in theoretical modeling is
the ability to switch on and off certain parts of the model and study the impact of
the corresponding feature. In the present case it is crucial that we can include and
distinguish certain electronic correlation effects that are mediated by Coulomb inter-
action. In particular, for the description of a collective response the system cannot
be written as a single particle-hole state, but instead a superposition of particle-hole
states is needed. The “full” or “interchannel” model' includes the coupling among
the holes in the 4d, 5s and 5p orbitals and the electron, see Figs. 7.4b) and 2.2b).
The corresponding Coulomb matrix elements between the particle-hole excitations
|®¢), |®b), cf. Sec. 2.3,

(D9 Vee| @), (7.1)
are included for all different index pairs (i,j) within the space of active orbitals
(4d, 5s, and bp), which means that (¢>§‘|\A/e_e|<1>?> # 0, for all i = j and © # j;
a, b are taking values for all virtual orbitals. In this way, superpositions of particle-
hole states, i.e. collective states, may be described. In contrast, in the case of the
“reduced” or “intrachannel” model® the elements with i # j are set to zero: therefore,
(P¢|Veee| @) = 0. Keeping only the elements (®¢|V,_|®?) # 0 results thus in the
description of coupling only with the very 4d orbital from which the electron was
ionized, see Figs. 7.4a) and 2.2a).

Summarizing our theoretical model, it captures many-body processes beyond lin-
ear response theory quite naturally, allowing the selective inclusion of those electronic
correlation effects that are responsible for collectiveness. As mentioned above for a
system characterized by collective behavior, the wave function is given by a coherent
superposition of particle-hole states [221], due to the strong particle-hole interac-
tion. Experimental results are compared with the full model, which describes the
collective response of the system by accounting for the electron-hole interaction in all
channels open to ionization, see Fig. 7.4b), and the reduced model, which confines
this interaction to the hole from which the electron was excited, see Fig. 7.4 a).

IBoth terms will be used on equal footing throughout this chapter.
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Figure 7.4: Schematic representation of the ionization processes and associated models. a)
one- and two- photon processes according to the reduced model, only including interaction of
the emitted electron with the hole from which it is excited; b) one- and two-photon processes
according to the full model, accounting for electron-hole interaction in all channels open to
ionization. (©2015 Nature Publishing Group
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Rate equations for theoretical yield calculation

The theoretical yields are obtained from the numerical solution of the following equa-
tions which are valid for the electron yield from the neutral target whose population
is denoted by Ny:

No(t) = = [yipn(t) + yapn(t)]
Yipn(t) = oW () - No(t), (7.2)
Yopn (1) = @ - j(t)* - No(t).

This system of rate equations is solved assuming a Gaussian pulse with 80 fs (FWHM)
duration. The one-photon cross section o™ and the two-photon cross sections o
entering the system of equations (7.2) are obtained both for the full and the reduced
model, cf. Fig. 7.4. As described in the previous chapter, Ch. 6, the rate equation
solutions (Y7,, Ya,s) are calculated over the very broad range of 9 orders of magnitude
of laser intensities that enter the equations by the flux j(¢) (cf. the rate equation
system 6.11):

Yiph = /dt Y1pn(t)

(7.3)
}/Qph = /dt y2ph(t)'
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Thereby the yields for the one- and two-photon ionization are obtained as a function
of flux. These results are numerically integrated over the volume of acceptance of the
electron analyzer in order to account for the spatial distribution of the FEL fluence.

In the following it is demonstrated how the nonlinear interaction of a many-body
system with intense XUV radiation can be used as an effective probe for characterizing
otherwise unresolved features of its collective response. The excellent agreement
between experiment and theory strongly supports the prediction that two distinct
poles underlie the giant dipole resonance.

Experiment and theory approach to nonlinear photoionization

Photoelectron spectroscopy permits the disentanglement of photoemission processes
from different orders of interaction. Owur first-principles calculations, on the other
hand, can interpret the effect of electron correlations in these different processes. In
experiment the relative yields of one-photon and two-photon ionization of the 4d shell
of xenon were measured by electron spectroscopy, cf. Fig. 7.3a) and 7.3b). They
are compared to the theoretical yields that are obtained from the rate equation solu-
tion. Analyzing the experimental data together with Dr. Mazza and employing the
calibration factor which was introduced in Ch. 6 the comparison for both scenarios,
intrachannel and interchannel coupling, was performed.

Electron spectroscopy of one- and two-photon ionization

For completeness and for a better understanding of the experimental data regarding
the energies involved in this xenon experiment, I present briefly some experimental
details, that can also be found in our publication in greater detail Ref. [4].

The experiments were performed at the BL2 beamline of FLASH [222, 223]. FEL
pulses at photon energies of 105 eV and 140 eV were focused down to a few microns
in front of the aperture of a magnetic bottle electron spectrometer. As already
mentioned in Ch. 6, the spectrometer was used to measure the kinetic energy of
the electrons that are produced by one-photon and two-photon absorption processes
in an effusive jet of xenon atoms. Electron spectra [Fig.(7.5)] were collected under
different intensity conditions. The spectra include features caused by one-photon
direct emission from the 5p, 5s and 4d shells as well as from NOO Auger decay [224].
At higher kinetic energies, the two-photon ionization from the 4d shell is observed in
a spectral feature which resembles in shape the 4d (one-photon) emission lines and
is separated from them by exactly the energy of one photon.

The relative yields from the 4d one- and two-photon ionization processes are ob-
tained by integrating the spectra over the corresponding kinetic energies regions, see
Tab. 7.1. They are shown as a function of the FEL intensity in Fig. 7.5. At low in-
tensities (I < 10 W ¢cm™2), the one- and two-photon ionization yields show a linear
and quadratic dependence, respectively. This confirms that the processes observed in
the experiment can be described within perturbation theory, cf. Ch. 6, expression 6.1
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Figure 7.5: Electronic level scheme and emission spectrum. Electron spectrum from XUV
ionized xenon atoms, recorded at hv = 105 eV with a FEL irradiance of (6 & 2) - 1012
W cm™2, is shown along with the energy level scheme for the xenon orbitals involved in
the ionization processes. The spectrum includes features coming from electron emission
caused by different processes represented by arrows: one-photon direct emission (black),
Auger emission (green) and two-photon direct emission (red). In the lower kinetic energy
(KE) region (KE < 50 eV) the spectrum is dominated by the contribution from the 4d
(one-photon) photoemission and by the subsequent Auger decays involving the 5s and
the 5p shells. The small features at KE between 80 and 100 eV arise from the one-photon
photoemission from 5s and 5p shells. The high energy feature is assigned to the two-photon
photoemission from the 4d shell. (©2015 Nature Publishing Group

one-photon | two-photon

105 eV | 33 =39 eV | 136 — 146 eV
140 eV | 68 — 74 eV | 206 — 216 eV

Table 7.1: Kinetic energy regions for the one- and two-photon ionized electron peaks from
the 4d shell electrons in xenon for 105 eV and 140 eV.

and Fig. 6.2. At higher intensities, the depletion of the neutral target induced by the
enhanced one-photon ionization leads to a pronounced saturation effect.

The SASE FEL pulses had a duration of 80 & 20 fs and up to 40uJ (at 105 eV) and
15 puJ (at 140 eV) energy per pulse. The bandwidth was about 1% at both photon
energies. The FEL pulses were focused onto the sample to produce a tight focusing
of 5+ 1ym FWHM which was determined in our comparison with the theoretical
solutions of the rate equations. In addition, a very effective filtering (> 4 orders
of magnitude) of any possible higher harmonic contamination (estimated < 0.3%)
that might be present in the FEL beam [222] was performed. The one-photon and
two-photon signals were collected for different FEL intensities under different MBES
settings as well as different conditions for the sample density. Two-photon electrons
were collected under higher sample density conditions and applying a retarding field
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7 Xenon ATI involving the giant dipole resonance

at the entrance of the MBES rejecting slow electrons to avoid detector saturation
induced by the one-photon signal. The intensity-independent normalization factors
defining the relative yields (sample density, transmission of the analyzer, detector
gain) are calibrated by comparing the experimental and theoretical results obtained
for the one-photon and two-photon ionization from the 3p orbital of argon, which is a
much less complex system exhibiting negligible correlation effects, thereby providing
a robust calibration reference (cf. Ch. 6).

The experimental intensity domains are not identical for the one-photon and the
two-photon yields that were collected in subsequent measurements due to consistent
variations of the SASE FEL intensity during the shifts. For the 105 eV case, where
electron yields are more severely affected by saturation effects at high intensities, the
experiment was performed under different focusing conditions to allow the investiga-
tion over a broader intensity range. All the experimental parameters concerning the
beam geometry and the pulse intensity distribution were taken into account when
integrating the signal over the interaction volume as described in the previous Chap-
ter 6.

7.2.2 Comparison between experimental and theoretical results

Combining the experimental results of electron spectroscopy with our theoretical
analysis allows to draw conclusions about the nature of the underlying processes. The
impact of collectiveness on the observable of the one- and two-photon cross sections
as well as of their mutual ratio can be distinguished by turning on and off electron
correlations through the matrix elements given in Eq. (7.1) . The experimental yields
are compared to the results of the calculations performed for the full and the reduced
model, respectively, obtained from the solutions of the rate equations (7.3). The
results are shown in Fig. 7.6, on the left for 105 eV and on the right for 140 eV photon
energy. The comparison between experimental points and rate equation solutions

employs our single normalization factor for all datasets (one-photon and two-photon
yields at 105 eV and 140 eV), cf. Sec. 6.3.

This comparison clearly shows that the full model (solid lines) reproduces the
intensity dependence of the experimental yields, whereas the reduced model (dashed
lines) fails to do so. This means that the inclusion of Coulomb coupling between all
possible electron-hole states, which is responsible for the collective electronic response
of the system, is an essential ingredient for the correct description of the two-photon
ionization process. The excellent agreement is evident in the ratio between the one-
photon and two-photon ionization yields at both photon energies over the whole
intensity range as well as in the onset of the saturation due to neutral target depletion.
The two points of photon energy measured in experiment are situated at different
positions within the giant dipole resonance range: one is nearly at the peak position,
the other at the tail. Importantly, there is no common scaling factor such that the
results from the reduced model could fit the experimental data at both energies. This
can be observed in Fig. 7.6 in the different ratios of the two model curves. Especially
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Figure 7.6: Intensity dependence of one-photon and two-photon photoemission yields.
Experimental electron yields as a function of FEL intensity are extracted by integrating the
electron spectra recorded at 105 eV (left panel) / 140 eV (right panel) photon energy in the
33—39 eV / 68—74 eV (one-photon 4d, plotted in black squares) and 136 —146 eV / 206—216
eV (two-photon 4d, plotted in red circles) kinetic energy ranges. At 105 eV photon energy
the one-photon 4d electron yield is extracted by subtracting the partially overlapping Auger
electron spectrum; the contribution of the latter is estimated from the literature [224] using
the two Auger peaks at 30 and 32 eV kinetic energy as a normalization reference. The
vertical error bars in the experimental two-photon yields represent the statistical error.
Horizontal error bars include uncertainty in the pulse energy, focal spot size and pulse
duration measurements. The slopes indicated with blue dash-dotted lines highlight the
linear and quadratic dependence of the one-photon and two-photon yields, respectively,
in the low-intensity region. The experimental yields are compared with theoretical yields
based on the full (solid lines) and the reduced (dashed lines) models for both one-photon
(bold lines) and two-photon (thin lines) yields. (©2015 Nature Publishing Group

at 140 eV the experimental results are described by the full model, which gives a
much larger cross section than the intrachannel model. This alone had led us already
to the conclusion that the curve must be broader than initially assumed.

The main conclusion of this investigation is: Interchannel coupling must be taken
into account in the nonlinear regime in order to correctly describe the experimental
results at both photon energies.

7.2.3 Theoretical analysis of the ATI cross section

Having validated our full model by the comparison with experimental yields at the
two distinct photon energies, the influence of collective effects on the one- and two-
photon ionization cross section is investigated over a wide photon energy range (see
Fig. 7.7). These cross sections are shown both for the reduced (dashed lines) and the
full model (solid lines). The scales are chosen such that the peak heights coincide for
the reduced-model curve. As already mentioned above, the broadening of the inter-
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7 Xenon ATI involving the giant dipole resonance

channel one-photon cross section (black solid line) with respect to the intrachannel
case (black dashed line) can be understood by the inclusion of the coupling among
different electron-hole states, a fact which is present in the literature [95] and which
is now reproduced by our interchannel calculations with TDCIS [207]. One observes
that the two-photon cross section for the reduced model is red-shifted and narrower
than the one-photon curve. This is indicated by the red arrow spanning the FWHM
and for reasons that are explained below this behavior would also be a naive guess
for the two-photon cross section. On the other hand, as a mostly unexpected and
counter-intuitive result, the full model predicts a significantly broader two-photon
cross section curve than for the one-photon case, demonstrated by the red arrow
which only spans half the FWHM. Moreover, the shape of the curve is peculiar, it
does not resemble a simple Lorentzian curve as can be seen in the inset of Fig. 7.7
which magnifies the interchannel ATI cross-section curve. The interchannel result is
very surprising.

In order to explain the origin of this fundamentally different behavior let us employ
a simplified model for the two-photon cross section under the assumption that a single
intermediate state can be populated resonantly in the two-step ionization process in
xenon. By applying it to both the intrachannel and the interchannel scenarios I will
show by a “phenomenological proof by contradiction” how the intrachannel result
can be explained and why the two models lead to so fundamentally different cross
sections.

If perturbation theory can be applied (see Sec. 6.1 for the conditions) and the
photon energy lies is the vicinity of a single, isolated one-photon resonance, which
can be considered as the intermediate state, the two-photon cross section can be
factorized into two one-photon cross sections. In general, the cross section for the
transition between the initial bound state and the final continuum state is obtained
as the modulus of the transition matrix element squared. In standard perturbation
theory, where the interaction of the atom with the light field described by H, can
be treated as a perturbation, the transition matrix element between the initial and
final states for two-photon absorption is given by:

<F’ﬁint‘Mres><Mres‘ﬁint’[>
E— Eres + %FM + EI

res

MF(—I = ) (74)

where I'y, . is the decay width of the resonance state M., and E is the photon
energy.

For a free-free transition the photoabsorption probability decreases monotonically
with photon energy. Let us assume for the sake of simplicity that the transition
matrix element from the intermediate state to the continuum follows (for not too
small photon energy values) a simple E~1%/4 dependence. As Bethe and Salpeter
show in Sec. 70 of their text book [8] the energy dependence E~'~7/2 results for the
photoabsorption cross section in the Born approximation (plane wave approximation
without any screening effect). Then, if it is assumed that the giant dipole resonance
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Figure 7.7: One- and two-photon cross sections for the full (solid lines) and reduced model
(dashed lines). The full-model ATI cross section exhibits a fundamentally different behavior
than the reduced-model curve: it is much broader than the one-photon cross section, see
the arrow spanning the half FWHM. The inset demonstrates the peculiar shape of the ATI
curve for the interchannel case.

enters as a single intermediate resonance state the cross section has the following

form

@) _ |{F x| GDR)(GDR | iy 1) |*

: (75)
E — Egpr + 5lapr + E1

Therefore, since the GDR exhibits mostly f-character (angular momentum [ = 3) the
exponent of the assumed energy dependence becomes —13/2 for the cross section.
This means that for a single, isolated intermediate state, the two-photon cross section
is obtained by multiplying the one-photon ionization cross section by the energy-
dependent factor. In that case, the two-photon cross section o(® factorizes into two
one-photon cross sections —one photon for exciting the giant dipole resonance from
the ground state and one photon for the transition from the resonance to the final
continuum state. According to this two-step picture with a single intermediate state
one expects a narrower two-photon peak that is shifted to lower energy, since the
one-photon cross section for exciting an electron from the intermediate state into the
continuum decreases monotonically with increasing energy.

This two-step picture is applied to the two-photon cross sections within the reduced
and the full model. The result for the reduced model is shown in Fig. 7.8a) (blue
curve). The one-photon ionization cross section (black curve) multiplied by 1/E'3/2
is shifted to smaller energies compared to the one-photon curve and exhibits also the
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Figure 7.8: Photon-energy dependence of the calculated cross sections. Photon energy
dependence of the one-photon (solid black line) and two-photon (dotted red line) cross
sections calculated with the reduced model (panel a) and the full model (panel b). The scales
on the left and right axes are chosen such that the maxima of the curves appear at the same
height as the one-photon cross section peak. The dash-dotted blue lines represent the result
for the two-photon cross section within the two-step model with one single intermediate
resonance state. In the case of the reduced model this approach captures the main features
of the two-photon cross section, while for the full model it breaks down. The inset shows the
full model two-photon cross section with two arrows indicating the energy position of the
two underlying resonances. They were further analyzed and calculated within the TDCIS
model [5]. This will be discussed in Sec. 7.3. (©2015 Nature Publishing Group

smaller width of the two-photon cross section peak (red curve). This means that for
the reduced model the behavior of the two-photon cross section can be qualitatively
understood in terms of a sequential process involving a single intermediate state. If
there are more than one intermediate state, all states must have nearly the same
resonance energy and overlap strongly with comparable widths.

However, in the full model this simple approximation breaks down. As shown in
Fig. 7.8 b) the resulting curve for the two-photon absorption cross section within this
simplified model (blue curve) is indeed shifted to a smaller energy. But the width
is also decreased in strong contrast to the calculated two-photon cross section curve
in the full model, which leads to a broadened red curve. Furthermore, the dashed
blue curve underestimates the experimental cross section especially at 140 eV by
a considerable factor. This demonstrates that this simple model does not capture
the physics of the full model if only a single resonance is taken into account as the
intermediate state. The picture of a sequential process involving a single intermediate
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in collective excitation

state does not hold: surprisingly, the two-photon cross section curve is much broader
than the one-photon cross section curve and exhibits a knee-type structure.

The fact that the two-photon cross section curve is significantly broader than the
one-photon cross section together with its shape provides evidence for the concept
of more than one resonance underlying the giant resonance [225, 226]. In this case
there must be a sum over all intermediate resonance states in the cross section ex-
pression (7.5)
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Furthermore, interference terms between overlapping resonances arise, whose relative
phase can broaden and change the shape of the cross section curve. Indeed, as
mentioned above, there was a hint that there are two energy poles of the dielectric
functions in the range of the giant dipole resonance [219], but the one-photon cross
section is not a sensitive observable for this fact. Clearly, the two-photon cross section
represents a more sensitive observable for testing this hypothesis of two resonances.
Motivated by these findings we performed a detailed characterization of the resonance
energies within TDCIS [5]. This will be discussed in the next section, Sec. 7.3.

The substructure, which emerges in the nonlinear process due to the cross terms in
the cross section expression (7.6), manifests the existence of more than one resonance
state underlying the giant dipole resonance. These states give rise to interference
terms resulting in a broadening of the two-photon absorption cross section curve.
Indeed, the experimental results cannot be explained, simultaneously at 105 and 140
eV, by the two-step picture with a single intermediate state (dash-dotted blue curve).
In particular, at 140 eV the cross section measured experimentally is approximately
12 times larger than predicted by the single intermediate state model, while at 105
eV it is larger by a factor of 2.2. As already briefly mentioned, there is no common
scaling factor that would adjust the theoretical results to the experimental results at
both energies simultaneously. For this reason, the comparison with the experimental
electron yields at two distinct photon energies, one near the peak and one at the tail
of the xenon GDR, fully legitimates the theoretical model and the prediction of the
two underlying resonances.

Summarizing, it was shown that the nonlinear response of an electronic system to
intense XUV radiation can be used to unveil information about the collective behav-
ior in many-body systems. The theoretical xenon two-photon cross section exhibits
a knee-type structure which is not visible in the one-photon cross section. Here, for
the first time, the agreement of a theoretical model with experimental results be-
yond the linear regime legitimates the prediction of two resonance states underlying
the giant dipole resonance. Our study demonstrates, employing xenon as a model
system, how the nonlinear interaction regime can be utilized to investigate collective
electronic behavior. This stands only at the beginning of the way towards a deeper
understanding of the collective response of many-body systems.
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7.3 Theoretical characterization of the underlying
resonances within the CIS scheme

The ATI cross section of the previous section provided the first hint to the fact that
there exist two underlying resonances (which was long known, but forgotten or over-
looked because the linear regime is not sensitive to the substructure) and that TDCIS
is capable of properly reproducing these resonances. These findings stimulated the
characterization of these resonances. As mentioned above, calculations in the 70’s
hinted at two energy poles in the range of the giant dipole resonance [219, 227].
Wendin studied the dielectric function of xenon in the range of the GDR using the
random-phase approximation with exchange (RPAE) and identified two energy poles
as the roots of the denominator of the dielectric function. Also in a later work
[228] two energies were found, but one of them is incompatible with experimental
observations of the cross section. However, these findings were not interpreted as
resonance states. Since the experimental observable in the linear-response regime
could not provide the necessary resolution to uncover the existence and positions of
these resonances the underlying structure of the xenon GDR remained hidden.

In the remainder of this chapter I will present the results on the characterization
of the underlying resonances that were obtained within the CIS framework. In order
to investigate the resonances in detail we employed two methods which yield similar
results: The first method makes use of the ARPACK software package [150, 151],
which I implemented into TDCIS (see Chapter 4), to diagonalize the many-electron
Hamiltonian using the smooth exterior complex scaling (SES). The second method,
which will not be explained here but can be found in Ref. [5], involves a Gabor analysis
of the wave-packet dynamics. The results of both methods are consistent with the
broad shape and the form of the ATI cross section curve. They lead us once more
to the conclusion that due to the strong entanglement between the excited electron
and the ionic core hole the resonance wave functions cannot be written as a single
particle-hole state: we are dealing with a collective excitation.

In the following I briefly describe the exterior complex scaling (ECS) method for the
diagonalization of the Hamiltonian and the results obtained from the analysis of the
resonance features. A straightforward approach to obtain the eigenstates of a system
is to diagonalize the full N-electron Hamiltonian. However, resonance states, also
known as Gamow vectors [183] or Siegert states [184], are exponentially divergent
in the asymptotic region, which renders it difficult to access them by a Hermitian
Hamiltonian. In order to overcome this obstacle several standard techniques such as
exterior complex scaling [180] and complex absorbing potentials (CAP) [181, 186], as
well as their equivalence [182], have been developed over the last decades. Thereby
the Hamiltonian becomes non-Hermitian and the associated resonance wave functions
are transformed into square-integrable functions. The SES consists of an analytic
continuation of the radial electron coordinate r into the complex plane, r — p, along
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the path [185]

) 1 4 e(m—r)/)\
_ 0
p(r)=r+(e" —1) |:7“ +1In <—1 Py . (7.7)
This mapping rotates the radial coordinate for r > rq smoothly into the complex plane
by the angle . With this method the resonance states can be clearly distinguished
as isolated poles above the rotated continua in the complex-valued spectrum. The
eigenenergies are obtained as the real part and the decay width of a state from the

imaginary part of the eigenenergies [185]:
E, = Re(E,) — il/2, (7.8)

where Re(FE,), T' € R*. This is further analyzed in Subsec. 4.4.1 and Ref. [5]. The
diagonalization of the Hamiltonian is performed using the iterative Arnoldi algorithm
within the ARPACK library. The resonances are found by the requirement to possess
a certain minimum overlap with the ground state coupled by a dipole step because

for our purposes only those resonances are interesting that are excited by one photon
(details can be found in Ref. [5]).

First, the resonances are analyzed in the effective one-particle model: In the in-
trachannel case, i.e. the reduced model of the previous section, three resonances are
found, which form a group around an energy with a real part of ~ 77eV and an
imaginary part of &~ —5.4 eV, which amounts to a lifetime of about 60 as. These three
resonances correspond to the three 4dy,,, [m| = 0, 1,2, channels. The real part of the
resonance group can also be recognized in the peak position and enhanced magnitude
in the one-photon cross section calculated within the reduced model, cf. the black-
dashed curve in Fig. 7.7. The fact that the three channels lead to slightly different
resonances is due to the different, nonspherical ionic potentials that the electrons in
the three 4d.,, orbitals experience.

On the other hand, activating the interchannel coupling reveals two underlying
resonance states, whose real parts lie at 74.3 and 107.6 eV, respectively. The corre-
sponding decay widths are ~25 eV and ~60 eV, i.e., the lifetimes amount to ~ 26 as
and ~ 11as. This means, that many-body correlations lead to resonances that can-
not be attributed to single ionization pathways. This is consistent with our finding
in Sec. 7.2.3 regarding the interference of two overlapping resonances. Also, the wave
function of the excited electron shows a prominent f-wave character for both reso-
nances so that the xenon GDR is dominated by 4d — €f transitions. This legitimates
our assumption in the simplified theoretical model of the two-photon cross sections
in Sec. 7.2.3.

In Fig. 7.9 the two-photon cross section is shown over the range of the GDR, the res-
onance energy positions within the full model are indicated by arrows. The resonance
positions are consistent with the substructure that is apparent in the two-photon cross
section curve. In the same figure the positions of the energy poles found by Wendin
[219] are indicated for comparison by blue dashed lines. The positions of the first
resonance energy coincide perfectly, while the second resonance energy within TDCIS
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Figure 7.9: The two-photon absorption cross section o(? of xenon produced with the full
model is shown in the range of the giant dipole resonance (cf. Sec. 7.2). The shape of
the curve contains an overlapping knee-type structure: The curve accommodates two res-
onances. The energy positions of the underlying resonances are indicated by black arrows
for the CIS model, and with blue dashed lines for Wendin’s results [219]. The first reso-
nance energy is the same for both calculations, while the second energy differs considerably.
(©2015 Nature Publishing Group

is larger by 15 eV when compared to Wendin’s calculation. It must be emphasized
that the two methods of calculation and the quantities used for obtaining the energy
poles are very different. While Wendin uses a one-channel approximation (together
with a random phase approximation with exchange) to evaluate the dielectric func-
tion matrix elements, here the many-body wave function in the CIS approximation
is utilized to extract the eigenstates of the system [2, 129]. Furthermore, there is
an approximation involved in Wendin’s approach: A collective resonance is found
where the many-body dielectric function, a complex-valued function, vanishes simul-
taneously for the real and the imaginary part. If the damping of the resonance is
sufficiently small, the resonance position can be estimated by the root of the real part
of the dielectric function [229]. This approximation adopted by Wendin in Ref. [219]
cannot be strictly applied for the xenon GDR because of the two rather broad reso-
nances involved. However, it is found that a fitting of the dielectric function with the
resonance positions within the CIS scheme yields consistent results.

It should —for the sake of completeness— also be mentioned that ground state corre-
lations are not included in our approach in contrast to Wendin’s work. He shows that
taking into account ground state correlations can result in a narrower cross section
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curve [219]. TDCIS slightly overestimates the width of the one-photon cross section
and, therefore, the width of the two-photon cross section might also be overestimated.
In principle, ground state correlations would not affect the spacing between the reso-
nances but they could lead to different transition matrix elements. This could result
in different interference behavior, which in turn could change the shape of the two-
photon cross section. This question which cannot be addressed at this point remains
a challenging task and further experimental measurements and theoretical investi-
gations are needed to determine the exact two-photon cross section. However, the
agreement between theory and experiment at two different points of the GDR (one
near the peak and one at the tail) is very good when more than a single intermediate
state are included, which leads to a broadening of the cross section.
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Quantum optimal control of
photoelectron distributions

The aim of the projects described in the previous chapters was to understand the dy-
namics and the characteristics of the system when irradiated by (strong) laser pulses.
In the present chapter we pose a different, one might even say inverse question. We
ask: What time dependence must the light field have in order to induce ionization dy-
namics toward a final state whose photoelectron distribution exhibits certain desired
properties?

One of the predetermined features that we impose on the distribution will be di-
rected electron emission, i.e., the control over the direction in which the electrons are
emitted. This information is available due to the implementation of photoelectron
distributions within TDCIS. Importantly, for our theoretical and computational ap-
proach it is not necessary to know the final state itself. Merely, the desired features
are reflected in the angle-integrated PES, the energy-integrated PAD, or both. The
energy-integrated PAD is given by integrating over energy or, equivalently, momen-
tum, cf. Eq. 5.19,

7 _ /w@ ’d (8.1)
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Analogously, the angle-integrated PES is obtained upon integration over the solid

angle,
dé T A5 (p)
— = in 6dod 8.2
dE p/o /0 apdq DY (8:2)

with p = V2E. The optimizations considered below are based on these measurable
quantities.

In the following I give an overview of first results for hydrogen from our collabora-
tion with Prof. Dr. Christiane Koch and Esteban Goetz. We extended our work also
to the multichannel case of argon. It has been submitted to a peer-reviewed journal. I
will briefly present the optimal control theory employed here and the numerical chal-
lenges emerging from the demanding iterative control algorithm using TDCIS for the
electronic structure information and the explicit time propagation. Then, our results

for the various control problems we studied and the interpretation of the optimal
fields will be shown.
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8 Quantum optimal control of photoelectron distributions

8.1 Optimal control theory

To allow for the direct optimization of features in the photoelectron spectra, we com-
bine Krotov’s monotonically convergent method for quantum optimal control [230]
with TDCIS to describe the electron dynamics and the wave function splitting ap-
proach to efficiently calculate the photoelectron spectra as described in Ch. 5 for
linearly polarized electric fields.

8.1.1 Optimization problem

Two different final time optimization functionals are considered in the following to
demonstrate the versatility of the approach:

i) First, the full three-dimensional photoelectron distribution is prescribed and a
field that produces (at least approximately) a given angle-integrated PES and
energy-integrated photoelectron angular distribution (PAD) is determined. Such
a detailed control objective is demanding and corresponds to a difficult control
problem.

ii) Next, the relative number of photoelectrons emitted into the upper hemisphere
compared to the lower hemisphere is maximized assuming that the polarization
axis of the light pulse runs through the poles of the two hemispheres. This
implies a condition on the PAD but does not restrict the energy dependence. The
corresponding control objective leaves considerable freedom to the optimization
algorithm and the control problem becomes much simpler.

Maximizing the relative number of photoelectrons emitted into the upper as op-
posed to the lower hemisphere corresponds to a maximization of the PAD’s asymmetry.
Asymmetric photoelectron distributions arising in strong-field ionization were studied
previously for near-infrared few-cycle pulses where the effect was attributed to the
carrier envelope phase [231, 232]|. Here, we pose the question whether it is possible to
achieve asymmetry in the PAD for multiphoton ionization in the XUV regime, where a
single photon is sufficient to ionize an electron, and we seek to determine the shaped
pulse that steers the electrons into one hemisphere. For better control spectral and
amplitude constraints are introduced.

Our goal is to find a vector potential A(t), which represents the control in our
case, that steers the system from the Hartree-Fock ground state | V(¢ = 0)) = |®g) to
an unknown final state |W(7")) whose PES or PAD displays certain desired features.
Mathematically, such an optimization target is expressed as a functional involving
the final time, J7[@out, gblut]. Here, @,y is a wave function that depends exclusively
on the wave function of the ionized electron, i.e., it depends on the outer parts of the
wave function, which were split from the total wave function at each splitting time
step (see Ch. 5).

As a first example, we seek to prescribe the angle-integrated PES and energy-
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integrated PAD together. The corresponding final time cost functional is defined as
I [Bout(T), Bh(T)] = A / [o(p, 7)) = oo(p))* &%, (8.3)
0

where o(p,T) = d?5(p)/dpdQ denotes the actual photoelectron distribution, cf.
Eq. (5.19) in Ch. 5, o¢(p) stands for the target distribution, and A; is a weight that
sets into relation the importance of J}l) [Pouts gblut] compared to additional terms in
the total optimization functional, e.g., frequency or amplitude constraints.

As a second alternative, we would like to control the relative number of electrons
emitted into the lower and upper hemispheres. This can be expressed via the following
final-time functional

w/2 400
~ ~ — ~ 2
JI(’Q) [onut (T)7 (ID(T)ut (T)] = 27T)\§ : / de/ |(100ut(p7 T)| p2 dp (84)
0 0
s +o0
+27T)‘(2+) / dg / {@out(p7 T) |2p2 dp )
w/2 0

where the boundaries of the integrals extend over the corresponding regions. We
obtain the probabilities of the photoelectrons emitted into the upper (first term) and
lower (second term) hemispheres, respectively, and /\g_) and Aé“ are the correspond-
ing weights. There are two different ways to obtain directed emission: By suppressing
the emission of the photoelectron into the lower hemisphere, without imposing any
specific constraint on the number of electrons emitted into the upper hemisphere, or
by maximizing the difference in the number of electrons emitted into the upper and
lower hemispheres.

The constraints on the vector potential A are implemented by an additional term
C]A], such that the functional is of the form

J = Jr[@ow(T), 3hu(T)] + C[A]. (8.5)

Without going into too much detail at this point, the constraints can include the
regularity and the finiteness of the vector potential, a limited spectral bandwidth of
the pulse and a maximum electric field strength that the field can acquire.

8.1.2 Krotov's method combined with wave-function splitting

The crucial novelty of the approach is the combination of an optimization algorithm
that iteratively calls the calculation of the photoelectron distribution, i.e., including
the propagation of the N-electron wave function. We utilize Krotov’s monotonically
convergent optimization algorithm for quantum optimal control. Depending on the
target functional and additional constraints (see above), the type of equation of mo-
tion can vary [230]. The iterative algorithm consists of a set of coupled equations
for the update of the control, which in our case is the vector potential, the forward
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8 Quantum optimal control of photoelectron distributions

propagation of the state and the backward propagation of the so-called co-state. The
co-state is determined by the functional derivative of the final-time target functional.
This state must be propagated backwards and enters the update equation for the
vector potential for the next iteration [230, 233]. The computational challenge when
combining Krotov’s method with the wave-function splitting approach arises from
the fact that the splitting method, which was introduced in Ch. 5 for the absorption
and analysis of the wave packet of the outgoing electron, must be performed in the
backward direction, thus resulting in a “glueing” procedure when propagating the co-
state backwards which will be discussed in detail in the following. In order to achieve
stable and more precise backward propagation the Lanczos algorithm is employed for
the time propagation of the wave function, see Ch. 3. The update equation for the
vector potential has the following form, with %k labeling the iteration step,

A(k+l)(t) — AWM (t) + )\i](kﬂ)(t) (8.6a)
_%S(t)A(k—H) % h(t) + %A(k—l—l)(t) ,

where the \’s are weights. Here, A+ x h(t) denotes the convolution of A and h(t)

AGD () = / AS () h(t — 7) dr, (8.6b)
with A(t) involving the constraint functions and
0H

(@) = s(t) Im{<x(k)(t) A \If(’““)<t>>}
= s(t) Im { (x O (@) p|w I (1)} (8.6c)

where s(t) is a shape function for the vector potential and |¥*+D(¢)) and |x*)(¢))
denote the forward propagated state and backward propagated co-state at iterations
k + 1 and k, respectively. In order to evaluate Eqs. (8.6), the adjoint state obtained
at the previous iteration, |x*)(¢)), must be determined using the old vector potential,
A®)(t). Tts equation of motion is found to be a Schrodinger equation [230]

0 -
i X)) = HOX({®), (8.7a)
with the “initial” condition at the final time T',

_ 8JT [Saout (T) ) @(T)ut (T)]
8<@Out (T) | .

IX(T) (8.7b)

The wave function is propagated to the final time ¢ = T to yield the total wave
function at the final time |¥(T")). However, only contributions of the outer parts, i.e.,
|@i.out(1')), enter the functional derivative because, by construction, the photoelectron
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8.1 Optimal control theory

distribution depends only on the wave function in the outer region. When starting the
iterative optimization procedure with a guess vector potential A(°)(¢), one propagates
the initial state |Wy) in the forward direction, i.e., for each channel i one obtains the
wave function |g5§2))ut(T)> at the final time, applying the splitting procedure at each
splitting time step.

8.1.3 Computational realization

In the following, U[t', 7, A(t)] denotes the evolution operator that propagates a given
state from time ¢ = 7 to t = ¢’ under the control A(t). We distinguish the time evo-
lution operators for the inner part, U [t', 7, A(t)], generated by the full Hamiltonian,
Eq. (2.8), and for the outer part, Uy [t', T, A(t)], generated by the Volkov Hamiltonian,
Eq. (5.5). During the forward propagation the wave-function splitting is applied as
described in Ch. 5. At the final time 7" the total outer part for each channel 7 consists
of the coherent sum over all splitting time contributions and, thus, reads

=2

Bt (1) Z (T 15) (8.8)

Here, N denotes the number of splitting times utilized during propagation, and the
last splitting time ¢y is chosen such that ¢t < T'. The best compromise between size
of the spatial grid, time step and duration between two consecutive splitting times is
discussed Chapter 5.

Since the outer wave function at the final time is known the functional derivative in
Eq. (8.7b) can be evaluated. Since our final time functionals all involve the product
Cout (P, T) - @5 (p, T) = o(p,T), Eq. (8.7b) can be written, at the kth iteration of
the optimization, as

X (P T) = p(p) Gl (P, T) (8.9)

where u(p) is a function that depends on the target functional under consideration.
According to Eqgs. (2.2) and (8.7a) |¥(¢)) and its adjoint |x(¢)) obey the same equation
of motion. This, together with Eq. (8.9), implies that also | )ZE’]?M(T )) is obtained by
coherently summing up the contributions from all splitting times,

zout Z |Xz out (810)

Conversely, the adjoint state originating at the splitting time ¢; and evaluated at the
same time is given by
k k
Xbou (P53 15) = p(P)# e (P 3 15) - (8.11)

The next step is to construct the adjoint state |x\¥(¢)) = |x! ln( ) + ‘Xz M (1) at
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an arbitrary time ¢ from all | Xz(gut(tji t;)). According to Eq. (8.10), at the final time
T, the total adjoint state is given by a coherent superposition of all outer parts
originating at the splitting times ¢;. Therefore, it suffices to store |801(',]f))ut(tj§ t;)) and
apply Eq. (8.11) to evaluate |X§,]Z)ut(tj§ t;)). Once all outer parts of the adjoint state
are evaluated at every splitting time, | ng) (t)) is obtained for all times ¢t by backward
propagation. In detail, |X§,lz)ut(tN§tN)> is propagated backwards from ty to ty_;
using the full Hamiltonian A, Eq. (2.8). The resulting wave function at t = ty_ is
|X§§21(tN—1)>- The outer part is given by Eq. (8.11), and the wave function at t = ty_;
is obtained by adding |X§§I)1(tN_1)) and |Xz(,lz)ut<tN—1; tn-1)),

(1)) = I ) + I (Evas tv)) -

Then, |Xl(-k) (ty_1)) is propagated backwards from ¢t =ty _; to t = tx_o using the full
)

(ty—2)), and summation yields the wave function at

Hamiltonian, resulting in |Xl(lf
t=1tn-2,

I (tn2)) = X (Ev—a)) + X0 (Evma; ta—a))

with |X§i)ut(tN—2> tn_2)) given by Eq. (8.11); and so forth for all splitting times,

k k k
(1)) = Dia®) + Diow (85:45)) (8.12)

until ¢ = . In this way |X§k) (t)) at time ¢ is obtained, analogously to |p(¢)). This
is required to evaluate Krotov’s update equation for the control, Eq. (8.6), where
the iteration label simply indicates whether the guess, A(®(t), the old, A®)(¢), or
the new control, A*+1(¢), enter the propagation of |x;(t)) and |;()), respectively.
A possible choice for the shape function s(¢), which controls the duration of the
pulse and a smooth switching on and off, in Eq. (8.6¢) is a Gaussian of the type
s(t) = el(t—te)/ sz“r], where T4, refers to the duration of the pulse and t. to the center
of the pulse in time.

From a numerical point of view the parameters chosen for the momentum grid
require particular attention for the optimization algorithm to work. This is due to
the transformation from the CIS representation to the Volkov basis (CIS-to—p trans-
formation) at each splitting time:

Piou (P T5t;) = /dgp/<pV|UV(T7tj)|plv><plv|90i,out(tj)> (8.13)
2 o o
= LTSS V@) x [ e ) o)

. L2
Here, [p ") denotes the Volkov state with momentum p and ¢y = —2% fde |:ﬁ+A(T)]
is the Volkov phase, cf. Eq. (5.18).

During the backward propagation, correspondingly, the inverse transformation is
required, i.e., the p—to—CIS transformation. This is because the inner products in
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Eq. (8.6¢) involve not only calculation of the overlap between the inner part in the
CIS representation and the outer part in the Volkov basis, but it also requires eval-
uation of the mixed terms, <Xz m( )\pz|gpllztp( t)) and <Xz Out( )|pz\goz’f:f1)( t)). In these
expressions, the projection of the momentum on the polarization direction has been
evaluated, such that the derivative in Eq. (8.6¢), OH JOA yields the z-component of
the momentum, cf. Eq. (2.12). Hence, at every time ¢, for each channel ¢ and at every
iteration step k + 1 one CIS-to—p transformation and integration over two degrees of
freedom has to be performed. This is due to the fact, that the splitting function
smoothly splits the wave function, such that the outer part is not exactly zero in
the inner region and, correspondingly, the inner part does not vanish over the whole
outer region. For this reason, finding the best balance between efficiency and accu-
racy in the p—to—CIS transformation is essential for the feasibility of the optimization
calculations.

The CIS-to—p transformation of the outer part is evaluated using Eq. (8.13). The
quality, i.e., the numerical accuracy of the transformation can be verified by apply-
ing it once and consecutively applying its inverse: Since the inverse transformation
involves integration over p, a significant error is introduced if the density of the mo-
mentum grid is insufficient. Because we are dealing with an iterative algorithm, the
error, which may be small for a single p-to—CIS transformation, accumulates during
the optimization procedure. These errors were found to yield optimized pulses ex-
hibiting unphysical jumps at the splitting times where the accuracy of the p—to—CIS
transformation is insufficient. Furthermore, insufficient accuracy destroys the mono-
tonic convergence of the optimization algorithm. The jumps disappear when the
number of the momentum grid points is increased and py.x is adjusted to the max-
imum momentum included in the wave-function calculation (corresponding to the
cut-off parameter mentioned in Sec. 2.2.2). Since the numerical effort significantly
increases with the number of momentum grid points in the evaluation of the inner
products on the right-hand side of Eq. (8.6¢), a computationally feasible compromise
must be found. The momentum grid parameters utilized in the simulations, which
allowed for a good compromise between efficiency and accuracy, are given below for
each project.

8.2 Applications

In order to test the toolbox the algorithm is applied to three different control objec-
tives. In this thesis, we restrict ourselves to hydrogen. First, the full photoelectron
distribution shall be retrieved, then the emission into one hemisphere is minimized,
which is defined relatively to the light polarization direction, and, eventually the
electron yield in one hemisphere is maximized while being minimized in the other
hemisphere.
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8 Quantum optimal control of photoelectron distributions

8.2.1 Optimization of the complete photoelectron distribution

As a first example the complete photoelectron distribution of hydrogen shall be op-
timized, i.e., a shape of the distribution is predetermined that shall be achieved both
for the variable of energy, see thick red curve in Fig. 8.1 a), and for the angle, see
red curve in Fig. 8.1 b). A random guess pulse is used to start the iteration. This
guess pulse produces a PES and PAD denoted by the black lines in the same Fig. 8.1.
One observes that the guess field is chosen in such a way that the agreement with
the target distribution is poor.

guess
target
iteration 150
iteration 724 — A

0.05 | a)
0.04 |
0.03 |
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. . N
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Figure 8.1: Optimal control of the complete photoelectron distribution for a hydrogen
atom: a) angle-integrated PES, and b) energy-integrated PAD. As the optimization proceeds
iteratively, the actual photoelectron distribution approaches the desired one (red solid line)
in both its energy dependence and angular distribution. The photoelectron distribution
obtained with the guess field (black lines) differs significantly from the desired distribution.

We start as usual from the Hartree-Fock ground state |®(). The grid parameters
are the grid size rp.x = 200 a.u., a mapping parameter of ¢ = 0.5 [129], and 800 grid
points are used. The Volkov basis is represented on an spherical grid in momentum
representation p. An evenly spaced grid in the radial coordinate p as well as in the
polar coordinate # is adopted. The energy cutoff as well as the size of the radial
component of the spherical momentum grid is E,.« = 6a.u. with 300 points. The
polar angle extends from 0 to 7 and is also sampled at 300 points. The splitting
radius is set to r. = 50 a.u., the total number of splitting times is N = 3 with a
smoothing parameter A = 5.0 a.u., cf. Ch. 5. The splitting procedure is applied
every 30 a.u. of time and a total integration time of 120 a.u. with a propagation
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Figure 8.2: Optimization of the full photoelectron distribution. a) Guess field Y (t)

chosen to start the optimization shown in Fig. 8.1. b) Optimized electric field obtained
(1)

after about 700 iterations. c) Final time cost functional J;’, decreasing monotonically as
the algorithm proceeds.

time step of At = 0.05 a.u. is utilized for the propagation.

By minimizing the functional defined in Eq. (8.3), we seek a vector potential
A, opt(t) that generates at every point p the photoelectron distribution oo (p), denoted
by red lines in Fig. 8.1. Here, no frequency or amplitude restrictions are imposed. In
Fig. 8.1 b) the corresponding PADs are shown for various iteration steps. As shown in
Fig. 8.2 ¢), after about 700 iterations the target distribution is realized with an error
of less than 2%. The optimization converges monotonically for this two-dimensional
target object, illustrated in Fig. 8.1. In Fig. 8.2 b) the optimal electric field is shown,
which has a larger amplitude than the initial field, shown in Fig. 8.2 a), and exhibits
a high-frequency oscillation.

8.2.2 Minimizing the emission probability into upper hemisphere

As a second application the probability of emission into the upper hemisphere shall
be minimized without imposing any specific constraint on the number of electrons
emitted into the lower hemisphere. Therefore, the final time cost functional is given
by Eq. (8.4) with A; > 0 and \j = 0. Again a hydrogen atom is considered in a
linearly polarized electric field along the z-axis, using the same numerical parameters
as in Sec. 8.2.1.
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Figure 8.3: Minimization of the probability of emission into the upper hemisphere for
hydrogen: (a) Guess and (b) optimized electric field for the optimization shown in Fig. 8.4.
Also for this target functional, Eq. (8.4), monotonic convergence of the optimization algo-
rithm is achieved (c).

In contrast to the example discussed in Section 8.2.1, no particular expression for
the target PES and PAD is imposed in this case. Only the probability of emission into
the upper hemisphere is required to be minimized regardless of the actual shape of
the angle-integrated PES or the energy-integrated PAD. The optimization prescription
described in Section 8.1.2 is employed. The iteration is initiated with the guess field
shown in Fig. 8.3a), which leads to a symmetric probability of emission for the two
hemispheres as illustrated in Fig. 8.4 by the black dashed curve. As the optimization
proceeds iteratively, the energy-integrated PAD becomes more and more asymmetric,
see Fig. 8.4, favoring emission with angles between 7/2 and 7 as desired and leading
eventually to almost complete extinction of the emission into the upper hemisphere.

The guess and optimized pulses are shown in Fig. 8.3a) and b). Again, monotonic
convergence of the final time cost functional is achieved, cf. Fig. 8.3¢). At the end of
the iteration procedure, the probability of emission into the upper hemisphere is two
orders of magnitude smaller than the initial configuration. As for the lower hemi-
sphere, the emission probability initially remains almost invariant as the algorithm
proceeds iteratively, see Fig. 8.4, while the probability of emission into the upper
hemisphere decreases very fast, and monotonically, as expected.

However, for a large number of iterations, the probability of emission into the
lower hemisphere starts to decrease as well. After about 150 iterations it reaches an
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Figure 8.4: Minimizing, for a hydrogen atom, photoelectron emission into the upper hemi-
sphere: Starting from the symmetric guess distribution, shown by the black dashed curve,
the probability of emission into the upper hemisphere decreases monotonically as the op-
timization proceeds iteratively. After 100 iterations the overall ionization probability is
decreased together with the ionization into the lower hemisphere, but the probability ratio
of ionization into the lower and the upper hemisphere is increased from 1 for the guess field
to about 40 for the field shown in Fig. 8.3b), which leads to the pink dash-dotted PAD.

emission probability of 2.3 x 10~*. This means that the overall ionization probability
is two orders of magnitude smaller than for the guess pulse.

This behavior can be easily explained. Our goal is expressed only in terms of the
probability of emission into the upper hemisphere to decrease, and we do not impose
any requirement on the ionization probability into the lower hemisphere. Therefore,
we do not expect predetermined changes in the probability of emission into the lower
hemisphere. More precisely, the optimization does exactly what the functional J:g?),
Eq. (8.4) with A\; > 0 and A\J = 0, targets. In fact, since the target functional
depends on the lower hemisphere alone, by construction, the algorithm calculates the
corrections to the field according to Eq. (8.6), regardless of how these changes affect
the probability of emission into the lower hemisphere.

To keep the probability of emission into the lower hemisphere constant or to max-
imize it, another optimization functional is required. This is investigated in the
following section.
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8 Quantum optimal control of photoelectron distributions

8.2.3 Maximizing the difference in the number of electrons
emitted into upper and lower hemisphere

In the last application, the control target of an asymmetric PAD is modified by im-
posing not only minimization of electron emission into the upper hemisphere, but
maximizing emission into the lower hemisphere. In this case, the target can be for-
mulated as maximizing the difference in probability for emission into the upper and
the lower hemisphere. It is expressed by the functional in Eq. (8.4) where now both
weights, Ag_) > 0 and Aé“ < 0, are non-zero and have different signs, corresponding
to maximization and minimization, respectively. Furthermore, the optimized pulse is
subject to an additional constraint with two available options: a spectral constraint,
and a constraint for the maximum peak electric field-strength.

We consider again a hydrogen atom, interacting with an electric field linearly po-
larized along the z-axis, using the same numerical parameters as in Sec. 8.2.1. Opti-
mization is carried out with and without restricting the spectral bandwidth of F.,(t).
Figure 8.5a) displays the symmetric energy-integrated PAD, the dashed black curve.
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Figure 8.5: Maximization of the difference in emission probability for the lower and the
upper hemisphere for hydrogen: a) Energy-integrated PADs are shown for several iterations
starting with the initial PAD which is shown magnified by the factor 800 for better visibility
(dashed gray line). After 233 iterations the asymmetry is considerably increased. The
overall ionization probability is also larger than initially. Although the probability for
emission into the lower hemisphere also grows, their difference increases. b) Guess pulse
yielding the initial PAD. ¢) Optimized field obtained with the spectral constraint. Note
that the amplitude is significantly larger than for the guess pulse, panel b).
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This PAD is obtained with the Gaussian guess field shown in Fig. 8.6 b) with a central
frequency of wy = 27.2¢eV. The admissible frequency components for the optimized
field E,(t) are chosen such that ‘Ez(wﬂ2 is vanishingly small for all |w| > wyax With
Wmax = Da.u.~ 136.1eV. Effectively, a frequency filter is employed filtering out the
large frequencies.

As in the previous two examples, the developed optimization approach leads to
monotonic convergence of the target functional, Eq. (8.4), with and without spectral
constraint. This is illustrated in Fig. 8.6. In Figs. 8.7a) and b) the spectra of the
pulses in the two cases, with and without frequency restriction, are shown. Even
though the spectra of the fields optimized with and without spectral constraint are
different the speed of convergence is roughly the same, and the maximum values
for J}Q) reached using the two fields are also very similar, cf. Fig. 8.6. This means
that the algorithm finds two distinct solutions. This result is encouraging because it
implies that the spectral constraint does not restrict the control problem too much.
In other words, more than one, and probably many, control solutions exist, and it
is just a matter of picking the suitable one with the help of additional constraints.
It also implies that most of the frequency components in the spectrum of the field
optimized without spectral constraint, and in particular the high frequencies above
140 eV are not essential for this control problem.

This can be further verified by removing a posteriori the undesired spectral compo-
nents in Fig. 8.7a) and re-calculating the PAD. The energy-integrated PAD obtained
with such a filtered optimized pulse remains asymmetric, and the value of the target
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Figure 8.6: Target functional J. (2), measuring the difference in probability for emission
into the upper and the lower hemisphere. It increases monotonically with and without
spectral or amplitude constraint. Both types of constraints lead to the same behavior of
the functional, which is very similar to the unconstrained case.
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Figure 8.7: Maximization of the anisotropy of emission for hydrogen: Spectrum of the
optimized electric field for the optimization shown in Figs. 8.5 and 8.6, a) without, and b)
with spectral constraint. The gray-shaded area depicts the spectral content of the initial
guess pulse. Beyond 90 €V the frequency components are negligibly small in the frequency-
constrained case.

functional J:(FQ) is decreased by only about 10%.

The peak amplitude of the optimized field is about one order of magnitude larger
than that of the guess field, cf. Fig. 8.5b) and c¢). The increase in peak amplitude
is connected to the gain in emission probability for the lower hemisphere by almost
three orders of magnitude. The optimized pulse thus ionizes much more efficiently
than the guess pulse.

Figure 8.8 a) compares the electric fields optimized with and without spectral con-
straints. Mainly at the peaks a huge difference is observed for the two fields. While
the electric field optimized without spectral constraint exhibits very sharp and high
peaks in amplitude, going far beyond one atomic unit of field strength, the frequency-
constrained optimized field is characterized by reasonable amplitudes and a much
smoother shape. The emergence of the high frequency components of the uncon-
strained field shown in Fig. 8.7a) now become clear because they are reflected in
the rapid changes in electric field strength around the peaks. Note that the differ-
ence in amplitude only appears during the first half of the overall pulse duration, see
Fig. 8.8a).

Figure 8.8 b) shows the energy-integrated PAD obtained upon propagation with the
two fields. One notes that, although the probability of emission into the lower hemi-
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Figure 8.8: Maximization of the difference of photoelectrons emitted into the lower and
upper hemispheres for hydrogen: a) Optimized electric fields with (A, # 0) and without
(A = 0) frequency restriction where the pink curve shows the same field as in Fig. 8.5¢).
b) Comparison of the energy-integrated PADs with and without frequency restriction.

sphere is larger for the unconstrained than for the constrained field, the same applies
to the probability of emission into the upper hemisphere. Therefore, the difference in
the number of electrons emitted into upper and lower hemisphere stays eventually rel-
atively close, which explains the similar behavior of the final-time functional observed
in Fig. 8.6a). The electron dynamics generated by the frequency-unconstrained field
leads to a slightly larger total probability of emission into both hemispheres, with
respect to that obtained with the frequency-constrained field. More precisely, propa-
gation with the unconstrained optimized field results in a total probability of emission
of 0.27, i.e., probabilities of 0.23 and 4.3 x 1072 for emission into the upper and lower
hemisphere, respectively. In comparison, a total probability of emission of 0.26 is
obtained for the frequency-constrained field, with probabilities of emission into the
upper and lower hemispheres of 0.22 and 3.9 x 1072, respectively.

The similar behavior in the frequency-restricted and unrestricted cases leads to the
conclusion that the spikes observed during the first half of the frequency-unconstrained
field do not have considerable impact on the final photoelectron distribution. In fact,
this can be easily understood by the short timescale on which the rapid change in
intensity occurs. This change happens so fast that the electronic system does not
have time to respond to the rapid variations of the field amplitude.

Additionally to the integrated quantities shown above, energy-integrated PAD and
angle-integrated PES, the full photoelectron distribution can be investigated. For
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Figure 8.9: Optimization in hydrogen with spectral constraints: a) Initial 2D photoelec-
tron distribution obtained with the guess pulse in Fig. 8.5b). The spectrum corresponds
to a usual one-photon and ATI spectrum. b) Highly asymmetric photoelectron distribution
obtained with the optimized field in Fig. 8.5¢).

the optimization involving spectral constraints the full 2D distributions are shown in
Fig. 8.9. In Fig. 8.9a) the photoelectron distribution is shown for the guess pulse,
while in Fig. 8.9b) the result for the optimized pulse is displayed. One clearly sees
in the photoelectron spectrum obtained with the optimized pulse that the energy
distribution becomes smeared out, the distinct ATI peaks disappear and there is
considerable electron yield at higher kinetic energies. The angular distribution is also
altered significantly and does not show the lowest partial wave components of one-
and two-photon ionization.

To rationalize how the asymmetry of electron emission is achieved by the optimized
field consider the interference of different pathways that lead to the probability of find-
ing an electron with a particular kinetic energy at a certain angle. For asymmetry
it is not sufficient to ionize with a combination of different frequencies because this
leads to different final energies. In order to achieve asymmetry in the photoelectron
distribution it is necessary to add coherently different final states of the outgoing
electron with opposite parity at the same kinetic energy. To quantify the contri-
butions from the various orders of photoabsorption, the partial wave decomposition
of the angle-integrated PES is analyzed in Fig. 8.10, comparing the results obtained
with the guess field to those obtained with the frequency-constrained optimized field.
In Fig. 8.10a) one sees that the initial pulse yields a distribution of the outgoing
electron where only partial waves of the same parity exhibit the same energy. In
contrast, Fig. 8.10b) reveals that the desired asymmetry in the energy-integrated
PAD is achieved through the mixing of various higher partial waves of opposite parity
at the same energy. Furthermore, the optimized field enhances the contribution of
states with higher angular momentum that have the same kinetic energy. In par-
ticular, the peaks for [ = 5 are dramatically higher than in the PES obtained with
the guess field. Note, that the energy distribution changes from distinct ATI peaks
to a quasi-continuous energy spectrum, which can already be inferred from Fig. 8.9.
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Figure 8.10: Maximizing the anisotropy of photoelectron emission for hydrogen: a) Partial
wave contribution to the angle-integrated PES, shown in Fig. 8.5 obtained with the guess
field. b) The same for the frequency-constrained optimized field. Additional higher partial
wave components in the PES are obtained with the optimized field compared to the PES
obtained with the initial field.

Interestingly, especially lower frequencies are mixed with a considerable intensity into
the pulse spectrum and, consequently, the main peak is located around the position
of the one-photon peak obtained with the guess pulse. All in all, restricting the pulse
spectrum to frequencies |w| < 5a.u. while permitting low frequency components in
the spectrum, cf. Fig. 8.7b), results in higher order multiphoton ionization leading to
comparable and quasi-continuous final energies in the PES. More angular momentum
states of opposite parity are mixed in order to achieve asymmetry. For hydrogen,
tailored electric fields to achieve asymmetric photoelectron emission have been dis-
cussed before in Refs. [232, 234]. While in these publications the carrier-envelope
phase dependence was studied for few-cycle pulses in our work we allow for complete
freedom, respecting our constraints, in amplitude, frequency and shape.

Summarizing, since the optimization approach requires forward and backward
propagation of the state and co-state, respectively, the wave function splitting of the
state turns into a wave function “glueing” for the co-state. This was the main con-
ceptual difficulty that had to be overcome. Our work provides the basic prescription
to efficiently optimize desired features in the angle-integrated photoelectron distri-
bution, in the energy-integrated photoelectron angular distribution, or both. Both
illustrations of our approach, achieving a whole predetermined 2D distribution and
maximizing the asymmetry of the energy-integrated photoelectron angular distribu-
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tion, demonstrate the capabilities of the numerical method. As further applications
of our method several investigations are going to be performed for multichannel cases,
such as argon and xenon with various optimal control objectives.
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Above-threshold ionization of light
elements in the x-ray regime

Journal of Physics B: Atomic, Molecular and Physics 48, 124001 (2015),
Special Issue on Frontiers of Free Electron Laser Science Series 11

So far, we studied the infrared regime in Ch. 4, we discussed the interaction of
intense XUV-laser light with many-electron systems in Chs. 5, 6, investigated xenon
in Ch. 7, which exhibits pronounced electron correlations and looked in Ch. 8 at
the optimal control problem with PES. We turn now to the x-ray regime and the
information that PES can provide in this photon-energy range. After ascertaining
that collectivity does not play a decisive role in this photon-energy range we proceed
by increasing the intensity of the x-ray pulses that interact with elements that are
abundant in organic molecules. The influence of ATI on the ionization probability is
then studied as a function of pulse intensity. The question we pose is: How important
is ATI in the hard x-ray regime? Hard x-rays are utilized for the purpose of coherent
diffractive imaging because due to the small wavelength they can provide high spatial
resolution down to a few Angstrom.

With higher photon energy the probability for photoabsorption by electrons of the
valence shell decreases significantly. In the x-ray regime the absorption probability
for electrons in the valence shells at low intensities is negligible compared to visible
or XUV light. For instance, already at 1keV a 2p electron in a carbon atom absorbs
with a cross section of only 107* Mb. This amounts to a cross section that is 3 orders
of magnitude smaller than for the core electrons [235]. The core electrons are more
likely to absorb because they have a larger binding energy. When it comes to very
high intensities electrons of the inner shells of atoms might absorb even more than
one photon despite of the high photon energy in the hard x-ray regime. Especially
for imaging experiments at XFELs this circumstance could be a problem because after
diffraction from a sample the real space image needs to be retrieved from the image
obtained in momentum-transfer space. For brighter illumination and a higher signal
intensity higher pulse intensities are needed, e.g., in order to image the interior of a
virus. ATI at such high intensities might be a process that can produce considerable
signal in the photon energy regime used in imaging experiments.

Photoelectron spectra (PES) are a most adequate observable for quantifying the
impact of ATIL. In the present chapter I present the investigation of the multi-photon
process of ATI for the light elements hydrogen, carbon, nitrogen and oxygen in the
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9 Above-threshold ionization of light elements in the x-ray regime

hard x-ray regime. Numerical challenges are discussed and Hartree-Fock-Slater calcu-
lations are compared to TDCIS calculations. Through this comparison the mean-field
potential approach is justified in this regime. A theoretical prediction of two-photon
above-threshold-ionization cross sections is presented for the mentioned elements.
Moreover, we study how the importance of above-threshold ionization varies with in-
tensity. We find that for carbon, at x-ray intensities around 10?3 Wem =2, which might
be reached soon at XFELs, two-photon ATI of the K-shell electrons is as probable as
one-photon ionization of the L-shell electrons.

0.1 Introduction

The development of XFELs in recent years has allowed the production of ultrashort
x-ray pulses at ever increasing intensities. Highly intense hard x rays are of particular
interest, e.g., for the purposes of molecular imaging at atomic resolution [236]. Antic-
ipating further developments in the direction of ultrashort x-ray pulses down to a few
hundred attoseconds time scale, XFELs will represent the ideal tool for single-molecule
imaging via coherent x-ray scattering [140, 237]. Further interesting applications of
highly intense and ultrashort pulses include the investigation of electronic dynamics
in atoms and (bio-) molecules which typically take place on a time scale between
attoseconds and tens of femtoseconds [22, 238].

The Linac Coherent Light Source (LCLS) XFEL has been running since 2009 at the
SLAC National Accelerator Laboratory in the United States and was the first XFEL
capable of producing hard x-rays [239]. Recently, the SACLA XFEL at the SPring-8
facility in Japan reached intensities of 102 Wem™2 at photon energy of 9.9 keV [240].
The European XFEL in Hamburg, Germany, is intended to produce light spanning
the range from the carbon K-edge (= 280€eV) to x-rays with photon energies up to
25 keV [241]. By focusing the pulses down to a few nanometers, XFELs can reach
intensities that are orders of magnitudes greater than previously achieved. Even
though the interaction probability of x-rays with matter is low [242], in this high-
intensity regime it is necessary to consider the importance of nonlinear processes
affecting electronic dynamics of atomic, molecular or solid-state target systems.

Here, we focus on the nonlinear effect of ATI (cf. Ch. 5). This process has been
studied extensively by now, especially in the range of infrared to visible and XUV
light [243-245]; however, less work exists for x-ray ATI in the high-intensity regime
[246], and mostly on hydrogen or hydrogen-like ions [247-250].

The purpose of this work is to examine the role and the magnitude of ATI in
the x-ray regime under the high-intensity conditions that will become available soon
at XFELs. To this end, photoelectron spectra are calculated in order to quantify
the effect of ATI (cf. Ch. 5). Since we expect correlation effects not to be very
relevant at x-ray energies we employ and compare two approaches for the electronic
structure: The first-principle calculations of the TDCIS [2, 129, 130] are compared
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to calculations treating the atomic potential on the Hartree-Fock-Slater (HFS) level.
Our capability of calculating angle-resolved PES is exploited by analyzing the spectra
in different directions. For the purposes of molecular imaging the most important
elements to consider are those commonly found in organic molecules. For this reason
carbon, nitrogen, oxygen and hydrogen are chosen as the focus of this study. The
two-photon ATI cross sections for these elements are calculated at the representative
and commonly used hard x-ray photon energies of 8 10 and 12 keV. An investigation
is also carried out to see at which intensities ATI makes an important contribution to
the overall ionization probability.

The description of light matter interaction in the x-ray regime is challenging both
from a numerical and technical point of view because the small frequencies require
narrow time sampling and large amounts of data are produced. After briefly describ-
ing the challenges faced during the investigation I will present both the two-photon
ATI cross sections for light elements and the results of an intensity study for ATI in
carbon.

9.2 Method and numerical challenges

The full N-electron Schrodinger equation is solved numerically within TDCIS, where
the wave function is expanded in the one-particle-one-hole basis, cf. Ch. 1. The PES
are calculated using the splitting method (see Ch. 5, Sec. 5.1.1) with special, con-
verged splitting parameters for the x-ray regime. In order to compute cross sections
for open shell atoms, we use here the HFS atomic potential [137]. The HFS potentials
for the various elements are calculated using the XATOM code [139].

During the investigation of the interaction of x-rays with atoms a variety of com-
putational and numerical challenges arise. The grid on which the wave function is
represented requires a large radius in order to efficiently apply the splitting method
to the high-energy wave packets produced. Grid sizes of around 120 Bohr radii were
found to be large enough. The number of grid points was chosen at approximately
10 points per de-Broglie wavelength in order to well represent the high-energy parts
of the outgoing wave function. Increasing the number of grid points further did not
influence the PES. It was found that for the x-ray photon-energy regime choosing a
maximum angular momentum of higher than 3 did not significantly affect the PES.

Because of the high photon energy the propagation time step used to propagate
the wave function needs to be very small. We found that using Runge-Kutta method
to the 4th order about 20 time steps per electric field oscillation are required to
prevent significant artifacts from appearing in the PES. As a consequence of the
small propagation time step the splitting function had to be applied very frequently.
Applying the splitting every 3 time steps is appropriate to remove artifacts due to re-
flections. However, this causes some practical problems as large amounts of data must
be stored. Certain parameters are found to be mostly unimportant for convergence.
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Figure 9.1: Photoelectron spectrum of neon for a Gaussian pulse with 10 keV photon
energy, at 102" Wem ™2 intensity and 0.48 fs pulse duration, using HFS (green) and TDCIS
(red). The one-photon ionization peak and the first two ATI peaks are shown. Each peak
consists of two subpeaks, the one at lower energy being associated with ionization from
the K shell (cf. Table 9.1), the other one corresponding to L-shell ionization. (©2015 IOP
Publishing

Consistently with the study in Ref. [2], the smoothing of the splitting function A has
little to no effect as long as the wave function close to the nucleus is not disturbed.

Obviously, using the HFS potential significantly reduces the computational time as
it removes the necessity to calculate the large number of Coulomb matrix elements,
i.e., the exact Coulomb interaction between the electrons. In order to find out if the
HFS approach is valid in the x-ray photon-energy range, neon was studied with both
methods before applying it to the elements carbon, nitrogen and oxygen, which are
more relevant for chemistry and biology than nobel-gas atoms. The binding energies
for the K shells for the elements under investigation are summarized in Table 9.1 [242].
For comparison, the energies obtained within our computational model are presented,
too. The L;2s shells have binding energies below 50 eV. Therefore, on the energy
scale we investigate in the present work the energy positions of the peaks arising from
the L12s and Ly2p shells, respectively, reflect essentially the photon energy.

In Fig. 9.1 we present the photoelectron spectrum of neon for a Gaussian pulse
of 10 keV photon energy and 0.48 fs pulse duration at an intensity of 10*! Wem =2

using the HFS potential (green) and the full TDCIS method (red). Except for the slight
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calculated | X-Ray Data Booklet
Carbon 290.9 284.2
Nitrogen 404.6 409.9
Oxygen 536.9 543.1
Neon 857.1 870.2

Table 9.1: Binding energies of the K shells for carbon, nitrogen, oxygen and neon. The
first column shows the binding energies calculated within the HFS approach, the second
column reproduces data taken from Ref. [242]. The binding energies of the Li2s shells are
below 50 eV for all elements considered here.

upward energy shift for HFS the shape and height of the peaks are the same. The noise
levels and artifacts present in the spectrum are also unaffected by the method used.
The comparison suggests that in the photon energy regime of hard x-rays the HFS
approach is well justified for open shell atoms with a similar Z value, namely carbon,
nitrogen, and oxygen. Our calculations for neon show that electron correlation effects
play a minor role for one- and two-photon absorption in this regime.

0.3 Results and Discussion

We calculated two-photon ATI cross sections for hydrogen and compared them with
previous work [247]. They are found to be in very close agreement. Using 10?° Wem ™2,
a relative difference of 2% was found at the photon energy of 10 keV and 7% at 8 keV.
With a slightly larger intensity of 3.5 x 102 Wem ™2 the cross section at 5 keV was
found to be 2.02 x 107% cm?s, which amounts to a difference of 1% compared to
Ref. [247].

Since the method employed here relies on the numerical solution of the Schrodinger
equation (2.2), no difficulties arise with sums over intermediate states, which appear
in a perturbative treatment [246]. Reference [247] demonstrates that the A? inter-
action, which is not included here, may be neglected in the photon-energy range of
current interest. As already indicated in Eq. (2.8) of the theory section 2.2, by the
exclusive time dependence of the vector potential in the atom-field coupling term,
p - A(t), all calculations were performed under the assumption of the dipole approx-
imation. However, under the conditions of short-wavelength x-rays this assumption
may no longer be valid. Indeed, the influence of nondipole effects especially on
angular correlations were studied in detail [250-253]. Zhou and Chu indicate that
nondipole effects significantly change the photoelectron angular distribution and that
the nondipole ATT spectra are enhanced in the high photon-energy regime [253]. On
the other hand, it was shown for the x-ray regime that when including all multi-
poles the total two-photon ATTI cross section differs less than an order of magnitude
from the cross section calculated in dipole approximation for sufficiently small nuclear
charge [250]. Therefore, although our values may underestimate the two-photon ATI
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9 Above-threshold ionization of light elements in the x-ray regime

cross section, we expect this underestimation in the integrated spectrum to be much
smaller than an order of magnitude (a factor of around 2 — 3) [254]. Nevertheless,
it would be desirable to possess an approach that includes the treatment of higher-
order multipole effects in the radiation-matter interaction. Extending the description
beyond the dipole approximation is feasible, however it would break the cylindrical
symmetry with respect to the light polarization axis which we exploit in the present
implementation of TDCIS. One then needs to describe the coupling of angular mo-
menta with the corresponding magnetic quantum numbers to higher multipole orders
which makes the computation more costly.

As far as the relativistic corrections for the ionized electron are concerned we briefly
estimate the relative correction for the energy range we are interested in. The first
order relativistic correction to the energy consists of the spin-orbit term and the
kinetic energy correction AFEy, = p*/(8¢?), where p is the momentum and c is the
speed of light. Since they are both of the same order [174] we examine for simplicity
the kinetic energy correction for an electron of 20 keV. Inserting the nonrelativistic
momentum /2E this correction amounts to approximately 2% of the nonrelativistic
kinetic energy. For this reason, within the precision mentioned above the relativistic
correction for the ionized electron can be neglected.

The two-photon ATI cross sections were found in the perturbative limit, i.e., by
assuring that the ionization probability is low enough to not deplete the ground state.
In the perturbative limit the ionization probability due to two-photon absorption is
given by

oA = 52 / J2dt, (9.1)

where ¢® is the two-photon cross section and .J is the photon flux in cm~2s~1; F(?
is the fluence for two-photon absorption. Assuming a Gaussian pulse the electric field
has the form

E(t) = Eycos(wt)e 22 /7 (9.2)

where Fj is the peak electric field, w is the central field frequency, and 7 is the pulse
duration. Then, the fluence F® is given by

Ej ™

e\ 2
Ve () 7 (03

The two-photon K-shell ATI cross sections for hydrogen, carbon, nitrogen, oxygen,
and neon at the hard x-ray energies of 8, 10, and 12 keV are presented in Table 9.2.
We find the expected increase in the two-photon ATI cross section for higher Z values
and a drop with larger photon energy. As mentioned previously, all cross sections were

F?

found under the dipole approximation, which is expected to slightly underestimate
the cross sections. The two-photon ATI cross section of beryllium was also calculated
at 10 keV photon energy to be

o) =1.25 x 107% cm’s. (9.4)
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B (keV) K-shell two-photon cross sections (cm?s)
Hydrogen Carbon Nitrogen Oxygen Neon
8 1.44 x 10756 | 1.64 x 107%2 | 3.21 x 10762 | 5.62 x 1072 | 1.65 x 107%
10 4.69 x 1077 | 4.61 x 1079 | 9.23 x 10793 | 1.70 x 10792 | 3.71 x 10~%2
12 1.72 x 107%7 | 1.79 x 10793 | 3.82 x 107 | 6.94 x 107% | 1.95 x 10752

Table 9.2: Two-photon ATI cross sections for the K shell of the light elements (E is the
photon energy). All were calculated from integrating the corresponding photoelectron peaks
at 10?2 Wem ™2 intensity and 0.12 fs of pulse duration.
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Figure 9.2: Photoelectron spectra of carbon for different angles: a) 0, b) /6, ¢) /3,
d) m/2. The spectra are calculated for a pulse centered at 10 keV photon energy, at an
intensity of 10%* Wem ™2 and 0.12 fs pulse duration. Note that the height of the K-shell
ATI peak is greater than or comparable to the one-photon L-shell ionization peak. (©2015
IOP Publishing

Because imaging of organic molecules is of particular interest we perform an inten-
sity study on carbon with an incoming photon energy of 10 keV in order to find the
regime in which the ionization due to two-photon ATI is of the same order as that
for one-photon ionization. As seen in Fig. 9.2, at an intensity of 10** Wem™2 the
depopulation due to K-shell ATI in the direction 6 = 0 becomes comparable and even
higher than valence one-photon ionization. The PES in the directions 7 /6, 7/3, and
7/2 are also shown (for better visualization only 15 orders of magnitude are shown).

Note, that a small peak around zero kinetic energy is observed. The emergence
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Figure 9.3: Photoelectron yield for carbon, shown for a pulse of 12 as duration and 3.5 -
10?2 Wem ™2 intensity with a photon energy of 10 keV after a sufficiently long propagation
time. The slow-electron peak (magnified in the inset) as well as the 1-photon peak and
the first two ATI peaks are shown for 4 different angles with respect to the polarization
direction. The height of the slow-electron peak is comparable to the first ATI peak in the
direction of 7/2. (©2015 IOP Publishing

of this peak has been studied in Refs. [255, 256] within the Kramers-Henneberger
framework in the case of the negative ion H~ interacting with VUV-XUV radiation
in the stabilization regime. It is found that the zeroth peak is of the same order as
the 2-photon peak. However, these studies deal with a completely different regime
of laser-matter interaction. In the present x-ray ATI study, the height of the peak
shown in Fig. 9.2 might be underestimated, because due to our splitting approach the
propagation time must be sufficiently large in order to detect all electrons of interest
in the splitting region. The results shown in Fig. 9.2 were produced in a calculation
where the propagation time was approximately 20 times shorter than necessary to
collect all electrons with a kinetic energy on the scale of 1 eV. In order to elucidate
this slow-electron peak further, a new calculation was performed, now involving a
pulse at 10 keV photon energy, of 12 as duration and 3.5 - 10?2 Wem ™2 intensity in
order to be able to propagate long enough and to observe the slow-electron peak in
its full height. The results are presented in Fig. 9.3. The emergence of the peak can
be attributed to the bandwidth of the pulse which spans the binding energy of the
valence electrons. This has also been discussed in Ref. [254]. After the absorption of
one photon by the valence shell of the atom the emission of a photon can occur and,
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Figure 9.4: Depopulation at different intensities due to two-photon ATI against one-photon
valence electron ionization for carbon, at 10 keV photon energy and 0.48 fs pulse duration.
The ionization probability was found by integrating the corresponding PES peaks. (©2015
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thereby, slow electrons are produced.

In Fig. 9.4 the ionization probability of carbon is shown as a function of intensity
for the case of one-photon ionization out of the L shell together with two-photon
ionization out of the K shell. We see the characteristic quadratic behavior of the
ATI peak as a function of the intensity and the linear behavior in the one-photon
valence ionization probability. Saturation effects do not play a role until the intensity
range near 10* Wem™2 is reached. In fact, one can see that at an intensity between
10% — 10%* Wem ™2 the fully angle- and energy-integrated K-shell ATI peak, i.e., the
ionization probability due to ATI out of the K shell, is comparable to the probability
to ionize with one photon out of the valence shells.

Summarizing, we have presented a prediction for the two-photon ATI cross sections
of the light elements carbon, nitrogen, and oxygen at hard x-ray energies common for
current experiments at XFELs. At intensities that one may reach for future hard x-ray
experiments, scientists should consider how ATI will affect their results. We conclude
that ATI remains a negligible fraction of ionization for intensities at the most recent
XFEL experiments with hard x-rays. However, we predict that with photon energies
at around 10 keV, when entering the regime of 102 Wem™2 and above, the ionization
probability of the core electrons by ATI approaches the same order of magnitude as
valence stripping by one-photon ionization for elements with a similar nuclear charge
Z as carbon. It is likely that the neglected nondipole effects enhance the ATI spectrum
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by less than an order of magnitude. Therefore, our results present a lower limit on
the importance of ATI and suggest that ATI be taken into account when entering this
high-intensity regime. In particular, we hope that the data presented can be a guide
for future experiments investigating imaging and nonlinear x-ray optics.
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Conclusions and Outlook

Within my doctoral work I studied the ionization of many-electron systems in various
photon-energy regimes. I focussed on the nonlinear response regime, i.e., I investi-
gated light-atom interactions where the intensity of the light pulses is sufficiently high
to induce multiphoton absorption processes. Such pulses are provided for instance
at FELs. In particular, I studied atomic xenon which is known to exhibit strong
correlation effects in the electronic shell. T showed for xenon as a model system that
nonlinear spectroscopy can be employed as a tool to broaden our knowledge about
the collective resonance behavior of atomic systems. We analyzed the spectroscopic
data of one- and two-photon absorption of xenon in the XUV which had been ob-
tained by the group of Dr. Michael Meyer at FLASH. With the help of our theoretical
model, which captures electron correlation effects in the atomic shell, we uncovered
underlying substructure in the XUV giant dipole resonance of xenon. For 50 years this
substructure had remained unresolved because linear spectroscopy had so far been
used to measure the collective resonance. The nonlinear process enabled us to detect
that the giant resonance consists of two resonances instead of a single one.

I extended the TDCIS method in three directions, which are summarized below with
their applications in our studies of atomic photoionization from the infrared to the
X-ray regime.

The implementation of two methods within TDCIS for the calculation of photoelec-
tron spectra, presented in Ch. 5 provided a practical tool for the characterization of
multichannel ionization over a broad range of photon energies. Both methods, the
splitting and the t-surff methods, can produce quantitative energy- and angle-resolved
spectra within our model. Subshell ionization of any higher order in multiphoton
ionization can now be quantified. We have applied and compared these methods
in the high-intensity XUV regime. Advantages of the splitting method are the good
absorption characteristics through the splitting function and the short propagation
time that is needed. A computational disadvantage is the long evaluation time of the
radial integrals. The t-surff method needs a longer propagation time. However, the
calculation of the photoelectron spectrum in the analysis step is much faster than
with the splitting method due to the evaluation at one point. The comparison of the
two methods shows that, in principle, the same spectra can be obtained after ap-
propriately optimizing the computational parameters. In principle, it is possible to
study processes ranging from the strong-field regime in the infrared range to the x-ray
regime by analyzing the photoelectron spectrum, although the infrared strong-field
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regime has not yet been a focus of our work.

Second, through the implementation of ARPACK within TDCIS we obtained the
eigenstates of the Hamiltonian and further characterized their properties by exploit-
ing the versatility of the iterative Arnoldi algorithm within software package to solve
large-scale eigenvalue problems. Depending on the problem, random starting vectors
can be used or a defined starting vector can be provided. The range of the spec-
trum that shall be calculated can be specified, for instance, the eigenvectors with
the smallest eigenvalues. The application in the tunneling regime revealed, strictly
speaking, that tunneling ionization is a nonadiabatic process and that in the case of
few-cycle pulses the dynamics can be described fully by using one single nondiabatic
eigenstate.

In a second application of the diagonalization of the many-electron Hamiltonian we
verified our discovery of two collective resonances underlying the famous giant dipole
resonance in xenon by further characterizing the resonance states. Through the diag-
onalization we theoretically analyzed their energy positions and lifetimes. Therefore,
we could present two results obtained with TDCIS that indicate strongly that the form
and the broadening of the two-photon cross section curve can be explained when tak-
ing into account the existence of more than one resonance: On the one hand, we
found excellent agreement between the experimental results and our full model cal-
culations of the two-photon cross section which exhibits a knee-type structure. On
the other hand the calculation of the resonance states reveals two complex resonance
energies. These resonances strongly overlap, and, therefore, interfere in the range of
the 4d giant resonance. In conclusion, experimental measurement techniques in the
nonlinear regime are sensitive to the influence of the two underlying resonances of
the giant dipole resonance in xenon.

Thirdly, the use of the Lanczos-Arnoldi propagation scheme rendered possible the
backward propagation which became more precise by orders of magnitude and more
stable. This precision and stability enabled us to study optimal control problems.
In this way, we not only calculate the impact an electric field has on the atom and
the dynamics it initiates, but we also ask how the field must be tailored in order to
achieve special features in ionization, e.g., to produce a certain photoelectron distri-
bution. In combination with the possibility to calculate photoelectron spectra the
stable backward propagation allowed for optimizing the anisotropy in the photoangu-
lar distribution of the electrons emitted after irradiation by a (strong) pulse centered
in the XUV photon-energy range. To this end, we have developed a quantum optimal
control toolbox, which combines the Krotov method with TDCIS to target specific
features in photoelectron spectra and photoelectron angular distributions that result
from the interaction of a closed-shell atom with strong XUV radiation. Constraints
on the frequency spectrum and the amplitude of the pulses can be imposed for further
control. Considering pure XUV pulses the use of a band-pass filter for the optimized
pulse is advisable, which filters out low frequencies. The results from this kind of op-
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timization will provide an insight into asymmetries of the photoelectron distributions
achieved in the pure multiphoton regime. While hydrogen has already been studied
as a test example for our various optimization objectives, further investigations of
multichannel systems, such as argon and xenon are envisaged, ongoing or planned.

The applicability of the tools I developed within my doctoral work and presented
in the present thesis is by far not exhausted.

One of the most natural applications that due to the shortness of time could not be
studied sufficiently is the strong-field ionization in the infrared regime, that means,
in the tunneling regime. The calculation of photoelectron spectra is evidently a
perfect tool to quantify the influence of electron correlation effects onto the strong-
field ATI spectra and study the cut-off and the rescattering process [257]. First
preliminary calculations on hydrogen and xenon in the strong-field regime suggest
that both the t-surff and the splitting methods yield reasonable results, e.g. can
reproduce the semi-classical cut-off at the value of 3.17 U,. What remains is to
perform convergence studies within the parameter space needed for the calculations,
and analyze the results.

Moreover, interesting applications arise from the study of the photoelectron spec-
trum through the fact that information about the coherence, the entanglement of the
ionic state, and the photoelectron can be extracted from the properties of the out-
going wave packet. Work in progress includes maximizing or suppressing ionization
out of predetermined orbitals in multichannel cases. The investigation of maximizing
the coherence in the ionization of xenon is also very promising in view of the deco-
herence properties on the attosecond time scale studied in Ref. [131]. In combination
with the optimal control toolbox we developed in collaboration with Esteban Goetz
and Prof. Dr. Christiane Koch this aspect can be analyzed further. With possible
extensions and further technical developments in the direction of temporal coherence
anticipated for free-electron lasers, such as FERMI or FLASH, coherent control could
be possible even at considerably higher intensities.

On a longterm perspective, it would be interesting to lift the restriction to closed-
shell atoms in order to extend the range of applicability of TDCIS. Even the extension
to a molecular version of TDCIS seems to be feasible which will enable interesting
new investigations. In the case of open-shell atoms also ground state correlations
can be treated, which are beyond the scope of our capabilities (as mentioned in
Ch. 7). Furthermore, going beyond the CIS scheme, namely to the so-called singles-
doubles scheme, could be envisaged in order to treat multiple excitations, satellite
phenomena and double-ionization processes. On the light-field side one could consider
light polarizations that go beyond the linear polarization. As already alluded to in
Ch. 9 this would break the cylindrical symmetry about the light polarization axis
and would require the mixing of many angular momenta together with their magnetic
quantum numbers. When breaking the cylindrical symmetry it is just a small step
to generalize the dipole interaction to higher multipole interaction terms. These
developments are not trivial at all and computationally very demanding.
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10 Conclusions and Outlook

But also in its present form the TDCIS framework in combination with the calcula-
tion of photoelectron distributions offers various possibilities to investigate correlation
phenomena, which are often resolved particularly well in the PAD. For instance, there
is work in progress of calculating and analyzing the ATI cross section of xenon in the
range of the giant dipole resonance in an angle-resolved manner in order to investi-
gate whether there is a preferred direction where the two underlying resonances are
resolved more clearly. If we can identify an angle where the two resonances split and
can be distinguished clearly, we could propose direct experimental measurements at
this angle in order to find the two resonances. Also, as an outlook for future in-
vestigations, it is both experimentally and theoretically feasible to combine multiple
photon energies and to study the resonance in deeper detail by exciting the resonance
with one XUV photon and by scanning along the range of the giant resonance with
the second photon. In view of our results regarding the two different underlying res-
onances, depending on the energy and the phase of the second photon the results are
expected to be very different and possibly to reveal more information on the features
of the resonances.

The study of light-induced phenomena, the dynamics and properties of atomic and
molecular systems (and matter in general) remains a thrilling subject; we showed that
by entering the nonlinear response regime new information can be obtained about
the systems under investigation. The study and control of matter with light over
its whole energy spectrum will certainly continue to surprise researchers and will
establish new routes toward technological applications.
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