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Electromagnetic radiation in the extreme UV and soft x-ray spectral range is of 
steadily increasing importance in fundamental research and industrial applica-

tions. An optimum use of the available photons can only be achieved under con-
dition of a comprehensive beam characterization. Following that goal, this work 
addresses the pathway of extreme UV and soft x-ray radiation from its generation, 
through the beam transport by the beamline to the probe position. Experimen-
tally, those aspects are optimized at a laser-produced plasma source and at an 
arrangement for the generation of high-harmonics. Additionally, the coherence of 
laser beams is analyzed by measurements of the Wigner distribution function. This 
method is applied to the photon beam of the free-electron laser FLASH, resulting 
in the entire characterization of its propagation properties.
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A B S T R A C T

Electromagnetic radiation in the extreme UV and soft x-ray spectral
range is of steadily increasing importance in fundamental research
and industrial applications. For instance, the molecular structure
of certain proteins and viruses has become accessible by coherent
imaging techniques and already today, lithographic processes for
the microchip production are being adapted to that wavelength
range. For both examples, a comprehensive beam characterization
is an essential condition for an ideal use of the available photons.
Following that goal, this work addresses the pathway of extreme
UV and soft x-ray radiation from its generation, through the beam
transport by the beamline to the probe position. Experimentally,
those aspects are optimized at a laser-produced plasma source and
at an arrangement for the generation of high-harmonics. Addition-
ally, the coherence of laser beams is analyzed by measurements of
the Wigner distribution function. This method is applied to the
photon beam of the free-electron laser FLASH, resulting in the en-
tire characterization of its propagation properties.

Z U S A M M E N FA S S U N G

Elektromagnetische Strahlung im extremen UV und weichen Rönt-
genspektralbereich ist von stetig wachsender Bedeutung, sowohl
im Bereich der Forschung als auch in industriellen Anwendungen.
So konnte beispielsweise erstmals die Molekülstruktur bestimmter
Proteine und Viren entschlüsselt werden und bereits heute werden
die lithographischen Prozesse zur Herstellung von Mikrochips auf
diesen Wellenlängenbereich adaptiert. Dabei ist eine umfassende
Strahlcharakterisierung die Grundlage für eine ideale Nutzung der
Photonen. Unter dieser Zielsetzung behandelt die vorliegende Ar-
beit den gesamten Weg der extremen UV und weichen Röntgen-
strahlung, von ihrer Erzeugung, über die Strahlführung bis hin
zur Probenposition. Experimentell werden diese Aspekte an einer
Laser-produzierten Plasmaquelle beziehungsweise an einer Anord-
nung zur Erzeugung Hoher Harmonischen optimiert. Weiterhin wird
die Kohärenz von Laserstrahlen anhand der Wigner Verteilungs-
funktion analysiert. Die Methode wird auf den Photonenstrahl des
Freie-Elektronen Lasers FLASH angewendet und liefert eine voll-
ständige Beschreibung seiner Propagationseigenschaften.
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C O L O R S C A L E S

The following color scales are employed for the representation of
two-dimensional distributions. Each scale is applied in a specific
context as described below.
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Figure 0.1: Color scales employed in this work. Scale (a) is applied to depict
irradiance profiles, scale (b) visualizes the height of wavefronts
and scale (c) is used to illustrate Wigner and coherence distribu-
tions.
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1I N T R O D U C T I O N

In the electromagnetic spectrum, extreme ultraviolet (EUV) and soft
x-ray radiation is found between UV light and hard x-rays. Pho-
tons of this spectral region have very small absorption lengths in
all kinds of material due to the strong interaction with matter. This
fact together with the short wavelengths qualify this radiation as a
tool for structuring and the analysis with nanometer resolution.

UV

IR VUV

100gnm 10gnm 1gnm 0.1gnm

1geV 10geV 100geV 1gkeV 10gkeV

1gµm

Extremegultraviolet

Softgx-rays

Hardgx-rays

Wavelength

Photongenergy

Figure 1.1: Electromagnetic spectrum from the infrared to the hard x-ray
range. Adapted from [1].

An important application is the next-generation lithography which
further reduces the achievable feature size in computer chip produc-
tion [2, 3]. Surface analysis becomes extremely precise by means
of reflectometry and scatterometry [4, 5, 6] and also the binding
state of molecules can be studied by spectral investigations [7, 8, 9].
Microscopy with radiation at wavelengths in the water window
(λ = 2.3 . . . 4.4nm) allows highly resolved direct imaging of sam-
ples in aqueous environment [10, 11, 12]. With coherent diffractive
imaging (CDI) it is even possible to reconstruct the molecular struc-
ture of proteins and viruses [13, 14, 15]. Finally, ptychography is a
diffraction based technique that serves to image larger samples such
as biological cells in both, amplitude and phase contrast [16, 17].

Mostly, these applications are realized at the large scale facilities,
such as synchrotron sources or free-electron lasers (FELs). How-
ever, the demand for beam time is always too large to be satisfied
by these institutions and thus, people endeavor to transfer exper-
iments to their laboratories. This constitutes the need of compact
beam sources, as can be realized by the principle of laser-produced
plasmas (LPP) or high-harmonic generation (HHG). These systems

1



2 introduction

are much more affordable but provide a significantly lower bril-
liance. In order to acquire a sufficient number of photons on the
sample anyway, the efficiency of both, photon generation and beam
guidance needs to be at an optimum. The diffraction based imag-
ing techniques further require the photon beam to be fully coherent.
These three properties, beam generation, transport and coherence are
subject of this work and will be addressed employing both, com-
pact and large scale beam sources.

Beam transport and coherence can strongly affect the focusing
properties of the generated photons. An illustration of that effect
is given in figure 1.2, where the intensity profile of an EUV beam
is simulated at its mean focus position. In sub-figure (a), propaga-
tion parameters are employed as found for the photon beam of the
free-electron laser FLASH. As it will be discussed in detail in chap-
ter 6, a moderate astigmatic aberration is contained and the global
degree of coherence is relatively low. Easily, the beam transport
can be optimized by an alignment of the focusing optic, leading to
a significant reduction of the beam diameter, as apparent in sub-
figure (b). If additionally, the beam would be fully coherent as in
sub-figure (c), the same amount of photons would be concentrated
into a much smaller focus. This is one aspect that establishes the
need to characterize and ideally, to control those beam properties.

-40. -20. 0. 20. 40.

-40.

-20.

0.

20.

40.

x@µmD

y
@µm

D

(a) Astigmatic aberra-
tion
Low coherence

-40. -20. 0. 20. 40.

x@µmD
(b) No aberration

Low coherence

-40. -20. 0. 20. 40.

x@µmD
(c) No aberration

Full coherence

Figure 1.2: Influence of beam aberrations and coherence on focusing prop-
erties: (a) shows an intensity profile at mean focus position
with parameters as found for FLASH, (b) results if the astig-
matic waist difference vanishes and (c) follows if additionally,
the global degree of coherence is raised to unity.



introduction 3

beam generation In a first part, the brilliance of a laser-pro-
duced plasma is enhanced for gaseous target concepts. In contrast
to solid or liquid target materials, these sources are clean and ver-
satile but provide a comparably low conversion efficiency of laser
energy into EUV and soft x-ray radiation. The basic idea is to in-
duce supersonic effects in the gas jet leading to a local increase of
the particle density and thus, to a larger number of emitters.

Typically, the target gas is expanded into a vacuum environment
and the density drops rapidly in all directions. In order to weaken
this density loss, there exist strategies to laterally guide the target
gas by a concentric jet [18]. Ideally, here another atomic species
is employed which shows weak absorption of the generated soft
x-rays such as, for example, helium.

In the present approach, a low pressure helium atmosphere is
used to generate shock waves in the supersonic nozzle flow. As a
consequence, the so-called barrel shock evolves which is terminated
in axial direction by the Mach disc, a practically normal shock [19].
Passing through these structures, the target gas is recompressed,
and the particle density is raised. Focusing the laser beam into this
region, a higher number of gas atoms can be ionized resulting in a
brighter and smaller plasma.

After a discussion of the underlying gas dynamics in section 2.1.2,
the jet is characterized experimentally by Schlieren imaging and
wavefront measurements in chapter 4. The resulting effect on the
plasma is observed by a pinhole camera, and the increased source
brilliance is quantified by a diode measurement.

beam transport In chapter 5, the EUV beam transport within
the experimental arrangement of an HHG source is studied. In that
case, a toroidal grating combines spectral filtering and focusing in
order to produce a small individual spot for each harmonic. The
highest possible EUV intensity at sample position is achieved if the
beam is free from aberrations. Thus, the alignment of the optic
plays a major role.

Here, the effect of small deviations from perfect alignment is in-
vestigated. A simple theoretical description of low order aberra-
tions is found employing optical matrix methods. Experimentally,
this is confirmed by a Hartmann sensor that captures the EUV wave-
front of the aberrated beam. A scan of intensity profiles serves as
an additional cross-check. During online measurement of the wave-
front, the toroidal grating is subjected to an adjustment procedure.
This way, the beam power is concentrated in the smallest focal spot
diameter and the EUV intensity is maximized.



4 introduction

beam coherence The spatial coherence of the EUV beam gen-
erated by the free-electron laser FLASH is discussed in the third
part. This property of FEL radiation is of particular interest since
full coherence throughout the sample is demanded by many ex-
periments, such as coherent diffractive imaging or ptychography
[20]. However, recent studies have shown that successful CDI re-
sults could be achieved even with less coherent beams in case that
the mutual coherence function is known [21, 22].

The spatial coherence properties of free-electron lasers are ad-
dressed in many publications employing Young’s double pinhole
experiment [23], speckle statistics [24] or Hanbury Brown-Twiss in-
terferometry [25]. However, in these studies a comprehensive char-
acterization of the four-dimensional mutual coherence function is
only possible if the FEL beam follows the Gaussian Schell-model.
The complicated structure of the intensity profiles, as observed at
FLASH, questions that assumption.

Here, the formalism of the Wigner distribution function provides
an approach which is free from simplifications. As the Fourier trans-
form of the mutual coherence function, it can simply be transferred
into the latter and all spatial coherence parameters of interest can
be derived. Experimental access is provided by measuring inten-
sity profiles of the focused FEL beam at several positions. A tomo-
graphic reconstruction algorithm then yields the four-dimensional
Wigner distribution function.

After an introduction of the Wigner formalism in section 3.4 the
experiment at the free-electron laser FLASH is described in chapter
6 followed by a discussion of the results. Since the present setup
scans a three-dimensional sub-manifold of the four-dimensional
phase space only, some aspects of the beam might be missed, such
as the twist term. It is shown that replacing the fixed angle focusing
mirror with a rotatable toroidal mirror, the entire phase space of the
beam becomes accessible. The principle is demonstrated for several
modes of an IR laser.

As a theoretical basis of this work, chapter 3 gives an introduction
in the field of beam characterization. Prior to this, the fundamentals
of EUV and soft x-ray beam generation are discussed in chapter 2,
primarily with respect to the investigated sources.
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Our sun is likely to be the most prominent source of EUV and soft x-
ray radiation. However, these photons don’t reach us on earth due
to their strong absorption by the atmosphere and thus, they are
under investigation in satellite missions since 1959 [26, 27]. Today,
the sun is continuously imaged by the “Extreme ultraviolet Imaging
Telescope” [28] at four different EUV wavelengths uncovering the
dynamics of different ionization states of iron and helium [29].

Also on earth, EUV and soft x-ray radiation is of great scientific
interest and enables groundbreaking industrial applications, as dis-
cussed in the introduction. Thus, different beam sources covering
that wavelength range have been developed in the last few decades.

In 1895, W. C. Röntgen produced hard x-rays for the first time
employing a cathode ray tube [30]. Today, with modified x-ray
tubes it is possible to produce EUV radiation, too [31]. Also syn-
chrotrons, initially intended as particle colliders, emit radiation in
a broad spectral range (from hard x-rays to the IR). The mechanism
is based on the radial acceleration of charged relativistic particles
which is caused by bending magnets [32]. The second generation
of synchrotron light sources increased the photon yield by the wig-
gler which forces the particles to follow sinusoidal trajectories. In
the third generation, the amplitude of the transversely oscillating
particles is reduced by the undulator [33] and the emerging photon
beam interacts with the charged particle cloud. Here, the undula-
tor period defines a certain resonant wavelength and the spectral
purity of the emitted radiation increases.

The described synchrotron light sources represent large scale fa-
cilities. An example of a compact soft x-ray and EUV beam source
is given by the x-ray laser. Its realization is a peculiar challenge
due to the lack of appropriate mirrors to build a resonator [34, 35].
As active medium it employs a highly ionized plasma which can
be generated by a capillary discharge or by an optical laser pulse
focused onto a solid target. While first devices provided radiation
with a relatively poor coherence [36], nowadays this issue is over-
come and diffraction limited beams in the EUV and soft x-ray range
are generated [37, 38]. Still, these systems are rather complex and
their availability is limited to a few research groups only.

In contrast, compact beam sources based on laser-produced plas-
mas (LPP) and high harmonic generation (HHG) are commonly

5
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Figure 2.1: Classification of EUV and soft x-ray sources according to their
brilliances and the photon energy. Adapted from [1].

used. As they are relevant for this work, the principle of these
sources will be discussed in more detail in the following subsec-
tions. Furthermore, the concept of a free-electron laser (FEL) will
be described particularly since this large scale facility represents the
basis for the coherence measurements of chapter 6.

In order to classify and compare the radiation of soft x-ray and
EUV beam sources, the brilliance Br is a commonly used quantity
which is the numberNph of photons within a narrow spectral range
∆λ/λ emitted into a solid angle Ω from an area A within the time
scale τ (typically the wavelength range ∆λ is defined to be 0.1% of
the central wavelength λ) [1]

Br =
Nph

τ ·A ·Ω ·∆λ/λ
. (2.1)

The value of Br is given in the unit 1/(s ·mm2 ·mrad2 · 0.1%BW)

with 0.1%BW indicating the bandwidth of 0.1%. A distinction is
made between the peak brilliance, where τ denotes the pulse du-
ration and the average brilliance where τ is the inverse of the rep-
etition rate. Figure 2.1 gives an overview of the discussed beam
sources in terms of both, average and peak brilliance. Apparently,
free-electron lasers produce most brilliant beams, followed by syn-
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chrotrons of the third generation and the x-ray laser. The compact
beam sources based on laser plasmas and high harmonic genera-
tion provide a comparably lower brilliance. However, in relation to
synchrotrons of the second generation, their radiation is equally or
even more brilliant.

2.1 laser-produced plasma

A hot dense plasma emits a broad spectral range of electromagnetic
radiation including EUV and soft x-ray wavelengths. This peculiar
state of matter is found in the stars and, in laboratory scale, it can
be generated by irradiating a target material with an intense laser
beam. Since this can involve high particle energies of the order of
keV and densities approaching those of solids, it is referred to as a
hot dense plasma.

Solids, liquids and gases are used as target materials, whereas
basically, the source brilliance scales with the density. Thus, with
solids, the largest number of photons originating per volume can
be achieved. Respective target materials are deposited on rotating
cylinders [39] or quickly moving tapes [40] which provide repetition
rates of up to 1 kHz. Prominent elements are gold or tin for the
production of radiation at a wavelength of 13.5nm which is applied
in EUV lithography [41]. Furthermore, there are sources employing
cold gases in a solid phase such as an argon filament which emits
in the soft x-ray range 2 . . . 5nm [42]. Achievable plasma sizes with
solid targets are comparably small and of the order of several tens
of µm (FWHM).

A plasma of similar brilliance and extent is obtained with liquid
targets, e.g., xenon [43], methanol [44] or tin [41]. A fluid jet [45]
provides high target densities but might lead to size and bright-
ness fluctuations. Going one step further to individual microscopic
droplets [46], the advantage is the mass limitation such that the en-
tire target material is converted into a highly ionized plasma state
supporting source stability.

However, the disadvantage of solid and liquid target concepts
is the inevitable production of fast particles and ions with kinetic
energies of up to several hundred keV [47] which severely damage
optics in the beam path. There are mitigation strategies to slow
down the debris material like repeller fields [48] or localized gas jet
shields [49] but still, collector optics have a limited lifetime [2].

Contrarily, gaseous targets are almost free from debris [18]. Short
gas pulses with durations of µs . . .ms are expanded from a pressure
of several 10 bar into vacuum by a piezo-mechanical or electromag-
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netic nozzle, resulting in a supersonic jet. Different target gases
feature individual spectra of the resulting radiation, ranging from
emitters with characteristic spectral lines (low atomic number, e.g.,
nitrogen) to broadband emitters (high atomic number, e.g., xenon)
[50]. However, here, the conversion efficiency from laser energy
into EUV and soft x-ray energy is comparably low due to the low
density of the target material. Furthermore, achievable plasma sizes
of several 100µm are large. For metrology or scientific applications
though, these sources are very attractive due to their high cleanli-
ness and versatility [51, 8].

2.1.1 Physical properties of a plasma

Initially, the laser beam that irradiates the target material creates
ions by multiphoton absorption, tunneling or field ionization [52].
The resulting free electrons are accelerated by the strong electric
field leading to inverse bremsstrahlung and avalanche ionization. A
hot dense plasma state is generated. In competition to the heating
processes, deionization takes place in terms of diffusion and recom-
bination [52]. Depending on the electron temperature, a continuum
of electromagnetic radiation is produced due to bremsstrahlung
and recombination of free electrons with ions. Additionally, bound-
bound transitions within the ions contribute narrow lines to the
emission spectrum. A corresponding scheme is depicted in figure
2.2.

Photon energy
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Non-thermal radiation due 
to hot or suprathermal electrons

Figure 2.2: Scheme of the emission spectrum of a hot dense plasma [1].
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The thermodynamics within a hot dense plasma can be approx-
imated by the idealized state of a thermal plasma which is char-
acterized by a single electron temperature T and a corresponding
Maxwell velocity distribution. Within that simplification the plasma
may be treated as a blackbody that emits radiation with a continu-
ous spectrum. The assumption that photons are emitted carrying
discrete quanta of energy, with energy proportional to frequency,
leads to the spectral energy density [1]

Br = 3.146 ·1011
(
κT

eV

)3 ( hω/κT)3

e hω/κT − 1

photons/s
mm2mrad2 (0.1%BW)

, (2.2)

here, given in units of the brilliance with Planck’s constant  h and
the photon frequency ω. Typical electron temperatures for gas
targets irradiated by nanosecond laser pulses are 20 eV . . . 200 eV
[53, 54]. Corresponding spectral maxima of the Planck distribu-
tion are found at the photon wavelengths 2.2 . . . 22.0nm with peak
brilliances of 3.6 · 1015 . . . 3.6 · 1018 (s mm2mrad2 0.1%BW)−1.

In fact, a laser-produced plasma is far away from thermodynamic
equilibrium and a thermal plasma rather is an upper limit for the
spectral power density. However, mostly a two-temperature model
is already sufficient to adequately describe the continuum radiation
by a hot dense plasma which is then called near-thermal plasma [1].
Additionally to the thermal electrons a suprathermal component is
introduced which is raised by non-linear interactions such as res-
onant absorption. When these electrons undergo bremsstrahlung
or recombination they give rise to a high photon energy tail in the
emission spectrum as indicated in figure 2.2.

Line radiation is emitted when electrons change their energy state
within an ion from an outer to an inner electron shell. The resulting
photon energy corresponds to the transition energy of the electron
as described by Moseley’s law which is an extension of the Rydberg
formula [55]

1

λ
=

R∞
1+me/mnuc

(Zat − Ssh)
2

(
1

n21
−
1

n22

)
(2.3)

with the Rydberg constant R∞, the nuclear mass mnuc and the
atomic number Zat. The constant Ssh describes the shielding due
to electrons between the core and the considered electron. Further-
more, n1 and n2 are the principal quantum numbers of initial and
final state of the electron. In plasmas of species with low atomic
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numbers like nitrogen (Zat = 7), comparatively few free electrons
are produced and the emitted radiation is dominated by single spec-
tral lines. In contrast, elements with high atomic numbers like
xenon (Zat = 54) yield much more free electrons, resulting in a
spectrum of numerous closely packed lines and a significant ther-
mal contribution.

Another important plasma parameter is the electron plasma fre-
quency [1]

ωp =

(
e2 ne

ε0me

)1/2
(2.4)

at which the free electrons tend to oscillate (e is the electron
charge, ne the electron density, me the electron mass and ε0 the
vacuum permittivity). As a consequence, an incident electromag-
netic wave can propagate in the plasma only if its frequency ω is
greater than ωp and it is totally reflected if ω = ωp. This yields a
critical electron density [1]

nc =
ε0meω

2

e2
(2.5)

which is nc = 1 · 1021 cm−3 for a common Nd:YAG laser beam
with the wavelength 1064nm. Thus, when the plasma reaches the
critical electron density it can not further be heated what poses a
limit especially for solid and liquid target concepts. In order to
mitigate that limitation, a less intense pre-pulse can be used to heat
the target material and decrease its density precedent to the main
pulse [56].

2.1.2 Gas dynamics of jet targets

Supersonic gas jets employed as targets inherently exhibit strong
density gradients. Here, the basics of supersonic nozzle flows and
related shock phenomena are described theoretically, mainly based
on [57, 58]. As a result, density estimations of the target gas are pro-
vided corresponding to the experimental situation at a laser plasma
source.

Let us first consider the example of a compressible fluid that ex-
pands through a convergent-divergent nozzle, a so-called de Laval
nozzle as shown schematically in figure 2.3. In gas dynamics, the
basic equations to describe that problem are the conservation laws
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r

A

A
*

Figure 2.3: Sketch of a de Laval nozzle. A denotes the local cross sectional
area with the minimum value A∗ at throat position.

of mass and energy, formulated for compressible and isentropic
flows. It can be shown that these relations lead to the well-known
area relation between the local cross sectional area A, the throat
area A∗ and the local Mach number M [58]

A

A∗
=
1

M

[
2

χ+ 1

(
1+

χ− 1

2
M2
)] χ+1

2(χ−1)

. (2.6)

Here, χ = cp/cv is the ratio of specific heats (cp at constant pres-
sure and cv at constant volume) and the Mach numberM is defined
as ratio between the local flow velocity and the local speed of sound.
In the present example of a convergent-divergent nozzle, a gas is
accelerated in the convergent part according to the continuity equa-
tion. If the critical Mach number M∗ = 1 is reached at the throat
this results in supersonic velocitiesM > 1 in the divergent part, and
the thermal energy of the gas is efficiently converted into directed
kinetic energy. Concurrently, the gas density decreases according
to the relation [57]

ρ

ρ0
=

(
1+

χ− 1

2
M2
)− 1

χ−1

. (2.7)

The shape of the cross sectional area A/A∗ of a typical de Laval
nozzle is depicted in figure 2.4 together with the resulting distribu-
tion of density ρ/ρ0 (ρ0 stagnation density) and Mach number M
under the assumption of a diatomic gas with χ = 7/5.

Utilizing a supersonic gas jet as a target for laser-produced plas-
mas requires large particle densities for high conversions efficien-
cies of laser energy into EUV or soft x-ray energy. Thus, a com-
promise needs to be found between a directed, but rarefied flow



12 euv and soft x-ray sources

0.0

0.5

1.0

1.5

2.0

Critical position

0.0

0.5

1.0

1.5

2.0

Position in mean flow direction

A
re

a,
d

en
si

ty
,M

ac
h

nu
m

be
r A�A

*

M

Ρ�Ρ0

Figure 2.4: State functions of a flow in a de Laval nozzle: density ρ in terms
of its stagnation value ρ0, Mach number M and the local cross
sectional area A reaching A∗ at its throat position. A diamtomic
gas with χ = 7/5 is assumed.

at high Mach numbers and divergent but denser flow at low Mach
numbers. This can be achieved by adapting the nozzle geometry
[59].

Within this work, shock waves, as they can be observed in super-
sonic flows, are employed to further optimize the particle density
in a jet target. Within very short distances on the order of the mean
free path of the molecules, this phenomenon leads to an increase
in density, pressure and temperature while the Mach number de-
creases. Based on the conservation laws of mass, momentum and
energy it is possible to derive equations that relate the initial val-
ues of those properties with the conditions right behind a shock
wave. Here, it is sufficient to consider the change of the initial den-
sity ρ and Mach number M in case of a normal shock relative to
the flow direction. After passing through the shock structure these
properties are denoted as ρ̂ and M̂, as indicated in figure 2.5. The
corresponding shock relations read [57]

ρ̂

ρ
=

(χ+ 1)M2

2+ (χ− 1)M2
(2.8)

M̂ = 1−
M2 − 1

1+ 2χ
χ+1 (M

2 − 1)
. (2.9)
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ρM ; M ;^ ρ̂Flow direction

Conditions 
before shock

Conditions 
behind shock

Figure 2.5: Normal shock structure in a supersonic flow. Gas passing
through the shock experiences a decrease from the initial Mach
number M to M̂ and an increase in density from ρ to ρ̂.

Basically, high Mach numbers lead to a strong compression of
the fluid when passing through a shock. However, relation (2.8)
defines an upper limit for the density ratio that can be achieved in
connection with a shock wave. This limit is approached if M → ∞
and, for diatomic gases, it is ρ̂ρ → 6 (χ = 7/5). At the same time, the
Mach number behind the shock decreases to M̂→ 1/7.

Shock waves appear, e.g., when obstacles perturb a supersonic
flow or, vice versa, when objects travel with Mach numbers M > 1

through a gas at rest. In case of a supersonic jet that expands from a
stagnation pressure p0 into an atmosphere with a sufficiently large
background pressure pb, shock waves can be observed, too. At
a certain distance to the nozzle exit, the collision between the jet
particles and the surrounding gas particles leads to a shock struc-
ture which is called barrel shock, see figure 2.6. With respect to that
situation, Muntz et al introduced the rarefaction parameter [60]

ξ = d∗

√
p0 · pb
T0

(2.10)

where d∗ is the throat diameter of the nozzle and T0 denotes the
stagnation temperature. This parameter describes the interaction
between jet and background particles, i.e., how strong the expan-
sion flow is influenced by the surrounding gas. Muntz et al propose
a differentiation of the occurring flow into three regimes [60]:

◦ Scattering regime ξ 6 ξs
Molecules of the background gas interact with the freely ex-
panding jet by diffusion only, no distinct shock waves evolve.

◦ Transition regime ξs < ξ < ξc
Thick lateral shock waves develop and confine an undisturbed
core of the jet which is surrounded by a mixing zone of jet and
background particles.
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◦ Continuum regime ξc 6 ξ
The fully evolved barrel shock structure is present, as shown
in figure 2.6. The inner barrel shock waves and the Mach disk
spatially delimit the influence of the background gas.

In the continuum regime, the extent of the shock structure scales
with the nozzle pressure ratio p0/pb. In particular, within the range
15 < p0/pb < 17000 the distance lM = rM − r∗ between nozzle
throat and Mach disk is given by [61]

lM = 0.67 · de (p0/pb)1/2 (2.11)

where de is the exit diameter of the orifice. It should be noted
that this relation has been derived for nozzles with a constant diam-
eter, i.e., for a non-divergent geometry.

d
*

Jet boundary

Barrel shock

waves fan
Expansion

Mach disk

rM
*
r

r

p0 pb

Figure 2.6: Typical structure of a barrel shock as apparent at supersonic jets
in presence of a background gas. Here, a fluid is expanded from
a high pressure p0 through the conically diverging nozzle into
an ambient atmosphere of relatively low pressure pb. The de-
picted shock system represents the continuum regime. Adapted
from [19].

In the following, estimations are made for a gas jet with barrel
shock structures as it is under experimental investigation in this
work, too. This reasoning has been published already [50].

Nitrogen expands from a pressure of p0 = 11 bar into a helium at-
mosphere with a pressure of pb = 170mbar through a conically di-
verging nozzle (thickness ln = 1mm, throat diameter d∗ = 300µm
and exit diameter de = 500µm). At rest, both gases are at room
temperature T0 = 293K. In a simplification, a source flow is as-
sumed corresponding to the dotted cone in figure 2.6 with its apex
in a distance of r∗ = 1.5mm to the nozzle’s throat. According to
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equation (2.11) the Mach disk appears 2.7mm behind the nozzle
throat, i.e., rM = 4.2mm. The dimensionless area of the assumed
source flow is expressed in terms of the distance r to the virtual
source as A/A∗ = (r/r∗)

2. Solving equations (2.6) and (2.7) re-
sults in the state functions ρ/ρ0 and M along the symmetry axis
of the nozzle from throat position to the Mach disk, i.e., in the
range 1.5mm 6 r 6 4.2mm. The conditions directly behind the
Mach disk are determined by the shock relations (2.8) and (2.9). For
r > 4.2mm the flow is assumed to be incompressible (ρ = const.)
since the Mach number has decreased sufficiently below M = 1.
Thus, subsequent behavior of M is approximated by the continuity
equation M(r) = M̂ · (r/rM)2.
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Figure 2.7: State functions along the symmetry axis of a barrel shock: den-
sity ρ in terms of its stagnation value ρ0, and Mach number M.
The solid blue line for A/A∗ represents the cross sectional area
of the orifice whereas the dashed blue line indicates the subse-
quent conical source flow. Since this figure corresponds to the
real experimental situation investigated in chapter 4, the length
r is given in physical units.

The corresponding state functions ρ(r)/ρ0 and M(r) are depicted
in figure 2.7 with respect to the distance r to the virtual source.
Usually, the nozzle is operated with a background pressure on the
order of pb 6 10−4mbar and the plasma is generated in a distance
of 500µm to the nozzle exit. The conditions at the usual plasma
position, before and behind the Mach disk are given in the diagram.
It is revealed that due to the shock, a two times higher density
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is achieved in a larger distance to the nozzle as compared to the
typical plasma position. In practice, the density increase is even
higher since plasma production takes place a few 100µm besides
the symmetry axis of the nozzle. Here, without ambient gas the jet
is even more rarefied and with ambient gas the shock structure is
present.
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2.2 high-harmonic generation

High-harmonic generation (HHG) refers to a process where a strong
electromagnetic field at a frequency ω0 is converted into integer
multiples n ·ω0 due to a highly nonlinear interaction with a conver-
sion medium [62]. Second-harmonic generation has already been
demonstrated in 1961 [63] with a ruby laser beam (λ = 694nm)
propagating through a quartz crystal resulting in UV light at a
wavelength of 347nm. In 1987, the seventeenth harmonic (λ =

14.6nm) of an excimer laser beam (λ = 248nm) has been generated
by the HHG process with neon as conversion medium [64]. One
year later, even the 33rd harmonic of an Nd:YAG laser has been ob-
served [65]. An explanation of the observed processes was found
by Corkum [66] and Kulander et al. [67] in 1993 in terms of a qua-
siclassical model, the so-called three-step model. Shortly afterwards,
Lewenstein et al. found a fully quantum-mechanical description
confirming the quasiclassical results [68]. Today, the shortest man-
made electromagnetic pulses in the attosecond range are produced
by the HHG process [69].

Figure 2.8: Typical HHG spectrum generated in Xe revealing odd harmon-
ics of the fundamental wavelength λ = 1064nm up to 21

st order,
taken from [70].
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A typical HHG spectrum is shown in figure 2.8 revealing odd har-
monics of the laser’s fundamental frequency up to the 21

st order.
Three different spectral regions can be distinguished: the pertur-
bative regime shaped by rapidly decreasing low-order harmonics,
a plateau region with harmonics of equal intensity which ranges
down to the cut-off wavelength, where the following harmonics
quickly vanish.

In perturbation theory, the appearance of harmonics is explained
by a multiphoton absorption. Within the scope of that process,
the conversion efficiency decreases exponentially with the num-
ber of absorbed photons, standing in contradiction to the observed
plateau region. Here, the three-step model proposes a different
mechanism, which results in the generation of equally intense har-
monics terminated by a cut-off wavelength. In the following, the
three steps of this model are discussed in detail, i.e., ionization,
propagation and recombination.

2.2.1 The three-step model

2.2.1.1 Step I: Ionization

First step in the HHG process is the generation of a free electron
by ionization. Three different scenarios are possible: multipho-
ton absorption, tunneling through a potential barrier and barrier-
suppressed ionization as indicated in figure 2.9. These mechanisms
depend on the electromagnetic field E(t) = E0 cos(ωt) of the inci-
dent laser pulse which deforms the Coulomb potential of the atom,
i.e., the binding potential sensed by the electron

V (~r, t) = −
e2

4πε0r
+ e~E(t) ·~r. (2.12)

(a) γK� 1
Multiphoton absorp-
tion

(b) γK ≈ 1
Tunneling

(c) γK� 1
Barrier-suppression

Figure 2.9: Ionization mechanisms depending on the Keldysh parameter
γK.
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The dominant ionization process is determined by the Keldysh
parameter γK [71] which relates the ionization potential Ip of an
electron to the ponderomotive potential Up

γK =

√
Ip

2Up
with Up =

e2 E20
4meω2

. (2.13)

If γK � 1 the binding potential stays unperturbed and multi-
photon absorption is the only possible ionization mechanism. For
larger electromagnetic field strengths E0, the Keldysh parameter de-
creases to γK ≈ 1 and the Coulomb potential becomes significantly
deformed creating a finite potential barrier as shown in figure 2.9(b).
Here, tunnel ionization is possible if the period 2π/ω of the oscillat-
ing field is long compared to the tunnelling time. Shorter periods
will lead to increasing γK and multiphoton ionization again. Even
higher field strengths E0 (γK � 1) further suppress the potential
barrier below the ionization energy and the electron can classically
escape the ion.

2.2.1.2 Step II: Propagation

After the ionization, the electron can be regarded as a free charged
particle. Due to the oscillating homogenous electric field of the
laser E(t) = E0 cos(ωt), it is accelerated by the force F(t) = −eE(t)

to the velocity v(t) =
∫t
0−

e
mE(t

′)dt ′ + v0. Taking into account that
the ionization can happen at arbitrary phases ϕ and assuming a
vanishing initial velocity v0 = 0 at the ionization position x0 = 0,
the equations of motion are

v(t) = −
E0e

meω
[sin(ωt+ϕ) − sin(ϕ)]

x(t) = −
E0e

meω2
[cos(ωt+ϕ) − cos(ϕ) + sin(ϕ) ·ωt] , (2.14)

where x(t) denotes the spatial coordinate. The ponderomotive
potential Up introduced in equation (2.13) results from the mean
kinetic energy Ēkin = 1

2me ·
2π
ω

∫2π/ω
0 v(t)2dt of an electron which

is ionized at phase ϕ = 0. Another characteristic quantity is the
ponderomotive radius

a0 =
E0 e

meω2
(2.15)
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with typical values on the order of a few nanometers (for an elec-
tromagnetic field with λ = 800nm and I = 1016W/cm2).

Figure 2.10 shows trajectories x(t) for electrons which are born at
different phasesϕ of the electromagnetic wave. Apparently, ϕ plays
a major role: while at very small phases ϕ ≈ 0, the electron stays
close to the ion, for increasingϕ it quickly propagates away in space.
However, in most cases (except ϕ = 0.5 π) the electron recollides at
least once with the ion leading to an eventual recombination and
photon emission.
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Figure 2.10: Trajectories of electrons which are ionized at time t = 0 at dif-
ferent phases ϕ of the accelerating laser pulse (λ = 800nm).
The ponderomotive radius a0 is employed for scaling. Recolli-
sions with the parent ion are indicated by circles.

2.2.1.3 Step III: Recombination

When the electron happens to recombine with the parent ion, it
generally emits a photon carrying the kinetic energy of the electron
Ekin at the moment of recollision plus the ionization energy Ip

 hω = Ekin + Ip. (2.16)

As it is evident in figure 2.10, after ionization at t = 0 the duration
t0 until possible recombination becomes shorter with increasing ϕ.
More importantly, the slope of the trajectories at t0 varies with ϕ,
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i.e., the kinetic energy of the electron. This relation is illustrated in
figure 2.11 which is derived as follows: The numerical solution of
the equation x(t0) = 0 for various phases ϕ yields the recollision
time t0(ϕ) after ionization. Subsequently, the current kinetic energy
Ekin = 1

2mev(t0)
2 is derived. A maximum value of Ekin = 3.17Up

is found if the ionization happens at the phase ϕ = 0.1 π of the
driving electromagnetic field. Thus, the highest energy that can be
expected for a photon resulting from recombination is

 hωc = 3.17Up + Ip (2.17)

corresponding to a cut-off wavelength λc, as observed in the ex-
perimental spectra.
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Figure 2.11: Kinetic energy Ekin of an electron at recollision with the ion
and recollision time t0 after ionization, both depending on the
phase ϕ of the laser field when the free electron is born. The
maximum energy value 3.17Up is reached at a phase of 0.1 π.

2.2.2 Spectral properties of HHG radiation

So far, the spectral plateau region terminated by a cut-off wave-
length could well be explained. Now, the appearance of discrete
integer multiples of the driving frequency ω0 = 2π/T0 is derived
by considering a particle ensemble in a many cycle electromagnetic
field. Two different classes of conversion media are distinguished:
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◦ Inversion symmetry

The production of photons with a specific energy occurs repet-
itively in cycles with a duration of T0/2. In Fourier space, such
a process exhibits a discrete spectrum with a frequency sep-
aration of ∆ω = 2π/(T0/2) = 2ω0. Now consider two pho-
tons which have been generated with a time difference T0/2.
They annihilate each other due to destructive interference. In
contrast, a time difference T0 leads to constructive interfer-
ence. Thus, the lowest frequency of the HHG spectrum is
ω0 = 2π/T0 and it follows

ω = (2n− 1) ·ω0 with n = 1, 2, 3, . . . .

◦ Broken inversion symmetry

On the contrary, a broken inversion symmetry of the conver-
sion medium leads to the generation of even and odd multi-
ples of the fundamental frequency since the photon produc-
tion repeats every full laser cycle, i.e.,

ω = n ·ω0 with n = 1, 2, 3, . . . .
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2.3 free-electron laser

From classical electrodynamics it is known that the acceleration of
charged particles leads to the emission of electromagnetic radiation
[72, 73]. In a free-electron laser (FEL) relativistic electrons propa-
gate in an oscillating motion through a periodic magnetic field, thus
generating a photon beam. Particularly, the interaction between the
initially incoherent photon beam and the electron beam causes the
so-called microbunching within the electron cloud and as a conse-
quence, coherent radiation becomes amplified. This physical pro-
cess is referred to as self-amplified spontaneous emission (SASE) and
will be discussed in more detail after a brief review of the history
of FEL development.

The undulator which provides the periodic magnetic structure
has been investigated theoretically [74] and experimentally [33] in
the early fifties as a source for visible light and microwave radi-
ation. In 1977, the first free-electron laser emitted coherent light
from an undulator arrangement in combination with an optical res-
onator [75, 76]. In the following decades, efforts have been made to
increase photon energies into the UV and soft x-ray range [77, 78]
reaching the hard x-ray regime in 2009 [79]. Today, FELs deliver
pulses with durations of a few femtoseconds and peak powers on
the order of 1010W at wavelengths down to 1 Å [80], i.e., the most
brilliant radiation in the EUV and soft x-ray range which is cur-
rently available. Since these facilities reach lengths of several hun-
dred meters or even kilometers, present investigations aim to re-
alize more compact and even table-top sized free-electron lasers
[81, 82, 83].

2.3.1 Spontaneous undulator radiation

The scheme of an undulator is depicted in figure 2.12 as a top view
together with the sinusoidal trajectory of an electron cloud emit-
ting undulator radiation. In the following, the undulator equation
is derived which defines resonance wavelengths depending on the
electron’s kinetic energy and the undulator parameter Ku [84, 85].

A photon emitted at a wave crest travels with the speed of light
c while an electron propagates with the mean longitudinal velocity
v̄z < c. At time τ = λu/v̄z, when the electron reaches the next
wave crest, the photon has traveled the distance c · λu/v̄z > λu.
In order to interfere constructively with the next emitted photon,
the path difference between the first photon and the electron at
time τ needs to be an integer multiple of the photon wavelength λp.
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λp

λu

Figure 2.12: Schematic top view of an undulator with the trajectory of an
electron (black) producing undulator radiation (blue).

The undulator radiation interferes constructively if the following
condition is fulfilled

n · λp = λu

(
c

v̄z
− 1

)
with n = 1, 2, 3, . . . . (2.18)

Assuming thatNph photons are generated with equal field strength
E0 but different relative phases ϕj, their total intensity is given by

I ∝

∣∣∣∣∣∣
Nph∑
j=1

E0e
iϕj

∣∣∣∣∣∣
2

. (2.19)

While for coherent light, i.e. ϕj = n ·2π, the electric field strengths
E0 of Nph photons add up to Ecoh = Nph · E0, for an incoherent su-
perposition, i.e. random ϕj, this applies to the intensities Iincoh =

Nph · I0. Thus, the intensity of coherent radiation Icoh ∝ E2coh ∝ N
2
ph

increases much stronger than the intensity of incoherent radiation
Iincoh ∝ Nph and photons which meet condition (2.18) will domi-
nate the spectrum of the undulator radiation.

Formulating the condition for constructive interference in terms
of Lorentz factor γL = 1/

√
1− v2/c2 and undulator parameter Ku
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leads to the undulator equation [85] which specifies the fundamen-
tal resonant wavelength (n = 1)

λp =
λu

2γ2L

(
1+

K2u
2

)
(2.20)

with the dimensionless undulator parameter

Ku =
eλuB0
2πmec

. (2.21)

A deeper analysis reveals that only odd harmonics n · λp (n =

1, 3, 5, . . . ) are emitted on-axis [86]. Equation (2.20) defines a Lorentz
factor γL, i.e., a specific kinetic energy Ekin = γLmec

2 that an elec-
tron needs to emit coherent radiation with the wavelength λp.

Practically, the photon wavelength is controlled through γL by
variation of the electron energy with the accelerator [87]. Much
more quickly, λp can be influenced through a change of Ku by
variation of B0 with variable gap undulators [88]. Typical values
of the free-electron laser FLASH are Ku = 1.23, λu = 27.3mm
and Ekin = 1.2GeV which results in a fundamental wavelength of
λp = 4nm [89]. Lower electron energies allow tuning of the pho-
ton wavelength up to 45nm. The European XFEL, currently under
construction, will accelerate electrons up to 17.5GeV extending the
spectral range of the achievable radiation down to 0.1nm [80].

2.3.2 High-gain FEL radiation

In the infrared and visible spectral range, an FEL can be equipped
with an optical cavity such that a circulating electron beam spatially
overlaps with the produced photon beam and the latter will accu-
mulate more energy each cycle [90]. This way, an average FEL beam
power of more than 10 kW is achievable at IR wavelengths [91].

However, in the EUV and soft x-ray spectral range, this scheme
is not feasible due to the lack of appropriate mirrors to build a
resonator. Here, the electron bunch can travel only once through
the undulator. Thus, in order to produce a high power photon beam
at these wavelengths, all available electrons need to emit coherently.
This is the case if all electrons emit from the same position, or, if
individual electrons are longitudinally separated by distances of
the radiation wavelength. The latter situation appears due to the
interaction between the produced electromagnetic radiation and the
electron beam which is called microbunching.
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Figure 2.13: Microbunching mechanism induced by the co-propagating
electromagnetic wave. An electron traveling outside the mi-
crobunch experiences the Lorentz force FL dragging it into the
bunch. When the electron bunch propagated half an undulator
period λu/2 its transverse velocity vx is reversed. During the
same period the electromagnetic wave traveled λu/2+ λp/2 -
the magnetic field strength is reversed too and the mechanism
maintained. Reproduced from [92].

The mechanism of microbunching is illustrated in figure 2.13.
Electrons experience the Lorentz force due to the co-propagating
electromagnetic wave. Depending on the individual position of an
electron in the light wave, this results in an acceleration or a decel-
eration. This process effectively confines the electron distribution
into small microbunches. Now the electrons have a slightly lower
longitudinal velocity v̄z than the photon beam and thus, when the
electrons passed half an undulator period λu/2 the light wave has
advanced λu/2+ λp/2 [92]. Consequently, after half an undulator
period both are reversed, the transverse velocity of the electron and
the magnetic field, maintaining the direction of the Lorentz force,
and the microbunching continues.

At this point, the duration ∆t of an FEL pulse can be estimated
since spatially, the electromagnetic wave grows by one wavelength
λp for each of the Nu undulator periods

∆t = Nu ·
λp

c
. (2.22)

Thus, with Nu = 1000 undulator periods (as present at FLASH)
the pulse length varies between 13 fs . . . 150 fs for wavelength in the
range 4nm . . . 45nm.

In the course of the described mechanism, an electromagnetic
wave with wavelengths close to λp defined by the undulator equa-
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tion (2.18) is amplified. In the beginning, the radiation power P
grows linearly with respect to the propagation distance z until the
photon beam has become strong enough to modulate the electron
distribution to microbunches. Subsequently, the interaction between
photons and electrons leads to an exponential gain

P(z) ∝ ez/Lg . (2.23)

Lg denotes the gain length which is Lg = 2.5m for FLASH [93].
The exponential growth stops after ≈ 22 Lg [92] where the best
achievable modulation of the electrons is reached and the satura-
tion regime begins. The course of the gain curve throughout the
undulator is depicted in figure 2.14.
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Figure 2.14: Exponential gain of the photon pulse energy by the SASE pro-
cess. The development of microbunches in the electron cloud
is indicated. Reproduced from [85].

Since the entire process starts up from shot noise in the initial
electron beam, it has a statistical character and thus, it is called
self-amplified spontaneous emission. Individual SASE FEL pulses
differ in their intensity, temporal structure and spectral distribution
[94] and show a relatively broad spectral range [95]. This issue can
be overcome by seeding radiation which induces microbunching be-
fore the electrons enter the undulator section. For that purpose an
optical laser can be employed [96] or, in a self-seeding scheme, un-
dulator radiation filtered by a monochromator reduces the relative
bandwidth by a factor of 40-50 with respect to SASE [97].
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In the history of optics, light was first imagined as corpuscles which
propagated along light rays. In the year 1704 Newton followed that
picture but also attributed wave properties to the nature of light
[98] which had been particularized by Huygens some years before
[99]. About a century later, only the wave nature of light could ex-
plain interference effects observed by Young in his famous double
slit experiment [100]. In 1865 Maxwell finally announced a unified
mathematical description of light as an electromagnetic wave [101].
However, after some decades it turned out that light carries energy
in terms of quanta, as proposed by Einstein to explain the photo-
electric effect [102]. Thus, depending on the situation, light can be
regarded as both, as a wave to describe its propagation and as a
particle to characterize the interacting with matter.

In the frame of this work, light beams are characterized in terms
of ray and wave optics. In the following, basic matrix calculations
will be introduced describing the propagation of light rays through
optical systems. Furthermore, the wavefront and coherence prop-
erties of electromagnetic waves are discussed. Finally, the Wigner
distribution function is introduced that unifies the entire propaga-
tion properties of a light beam.

Mainly, this chapter is based on literature by Bastiaans [103, 104,
105, 106] and Mandel and Wolf [107]. A deeper insight into the
topic is provided by Torre [108].

3.1 matrix methods in ray optics

In the frame of geometric optics, a light ray in three-dimensional
space is described by the vector

~r =

(
~x

~u

)
=


x

y

u

v

 (3.1)

with the spatial vector ~x = (x,y) perpendicular to the optical axis
z, and the angular pointing direction ~u = (u, v) as depicted in figure
3.1 [109].

29
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Figure 3.1: Definition of the ray vector ~r.

Within the paraxial approximation, the propagation of a light ray
~r through static and lossless systems, e.g., through free space or
ideal lenses, corresponds to a matrix multiplication

~r ′ = S ·~r with S =

(
A B

C D

)
(3.2)

where A, B, C and D are 2x2 sub-matrices. A collection of ray
transformation matrices S is given in the appendix.
The propagation matrix S follows the symplecticity relation [104]

S · J · ST = J with J =

(
0 1

−1 0

)
and 1 =

(
1 0

0 1

)
(3.3)

and thus, S contains up to ten independent entries. For astigmati-
cally aligned systems, A, B, C and D are diagonal matrices reducing
the maximum number of independent entries to eight. From equa-
tion (3.3) it follows det(S) = 1.

A light beam, i.e., an ensemble of light rays ~ri, is described by
its centered second order moments comprised in the beam matrix
[104]

M =


〈
x2
〉
〈xy〉 〈xu〉 〈xv〉

〈xy〉
〈
y2
〉
〈yu〉 〈yv〉

〈xu〉 〈yu〉
〈
u2
〉
〈uv〉

〈xv〉 〈yv〉 〈uv〉
〈
v2
〉

 . (3.4)
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The entries of M are defined by the Wigner distribution function
as it will be discussed in section 3.4. From the beam matrix, a num-
ber of fundamental propagation parameters can be derived [109],
as summarized for the horizontal direction in equation (3.5). Equiv-
alent relations hold for the vertical direction by replacing x and u
by y and v.

Local beam diameter dx = 4
√
〈x2〉

Beam divergence angle θx = 4
√
〈u2〉

Waist position z0,x = −
〈xu〉
〈u2〉

Waist diameter d0,x = 4

√
〈x2〉− 〈xu〉

2

〈u2〉

Rayleigh length zR,x = 4

√
〈x2〉
〈u2〉

−
〈xu〉2
〈u2〉2

Beam quality factor M2x =
4π

λ

√
〈x2〉〈u2〉− 〈xu〉2 (3.5)

Combining these equations in a suitable way, the divergence an-
gle can be formulated as

θx =
d0,x

zR,x
(3.6)

and the beam quality factor in terms of

M2x =
π

4
·
d0,xθx

λ
. (3.7)

Propagation of the beam matrix M through an optical system S

corresponds to the matrix operation [104]

M ′ = S ·M · ST . (3.8)

Here, the example of a free space propagation Sprop(z) ·M ·STprop(z)

serves to describe the local beam diameter along the optical axis in
terms of the hyperbolic function

dx(z) = d0,x

√
1+

(
z− z0,x

zR,x

)2
(3.9)



32 theory of beam characterization

z

x

zR,x

d0,x

√2·d0,x

θx

z0,x

Figure 3.2: Local beam diameter dx(z) close to the waist position z0,x
with the propagation parameters: waist diameter d0,x, Rayleigh
length zR,x and divergence angle θx.

which is illustrated for the region around the horizontal waist po-
sition z0,x in figure 3.2 (for Sprop(z) see the appendix).

In the frame of a beam propagation through astigmatically aligned
optical systems S, the beam quality factor M2x is an invariant for
one-dimensional and separable beams, i.e., beams where all mixed
moments vanish [109]. For the limiting case of a Gaussian beam
[110] it holds M2 = 1, otherwise M2 > 1. In case of non-separable
beams, the more general quantity M4 = (4π/λ)2

√
det(M) is con-

served. Practically, knowledge of the M2 value for a particular
beam allows the estimation of the waist diameter after propagation
through optical systems.

If the mixed moment 〈xy〉 does not vanish, the principal axis
system of the near-field is rotated by the azimuth angle Θxy as
indicated in figure 3.3. The same applies to the far-field if 〈uv〉 6= 0
resulting in an azimuth angle Θuv which can be different from Θxy.

Near-field azimuth angle Θxy =
1

2
arctan

(
〈xy〉

〈y2〉− 〈x2〉

)
Far-field azimuth angle Θuv =

1

2
arctan

(
〈uv〉

〈v2〉− 〈u2〉

)
(3.10)

In order to transform a beam matrix M into the principal axis
system of the near-field, the rotation matrix Srot(Θxy) needs to be
applied which is given in equation (A.4). Subsequent derivation of
the beam diameters d ′x and d ′y defines the variance ellipse of the
near field, as it is depicted in figure 3.3.
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Figure 3.3: Arbitrary near-field intensity distribution I(~x) with the variance
ellipse which is defined by the beam diameters d ′x and d ′y in
the principal axis system and the azimuth angle Θxy.

3.2 the wavefront

Regarding a light beam as an electromagnetic wave, the wavefront
wz0(x,y) describes a continuous surface perpendicular to the mean
transport direction of energy at position z0 of the optical axis. Math-
ematically, it is defined as wz0(x,y) that minimizes the expression
[111]

∫∫
Iz0(x,y) ·

∣∣∣~S⊥(x,y, z0) − ~∇wz0(x,y)
∣∣∣2 dxdy (3.11)

with the two-dimensional Nabla operator ~∇ = (∂x,∂y) and the
transverse, intensity normalized Poynting vector

~S⊥(x,y, z0) =
1

Iz0(x,y)

(
Sx(x,y, z0)

Sy(x,y, z0)

)
which represents the energy flux direction of an electromagnetic
field in a plane defined by z = z0 [112].

Apparently, expression (3.11) is minimized by

~S⊥(x,y, z0) = ~∇wz0(x,y). (3.12)

Assuming an electromagnetic beam with the phase distribution
ϕ(x,y, z) described by

~E(x,y, z) = ~E0(x,y, z)eiϕ(x,y,z) (3.13)
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it can be shown that within the paraxial approximation |∂zEj| �
|kEj|, the transverse, intensity normalized Poynting vector is [113]

~S⊥(x,y, z0) =
1

k
~∇ϕ(x,y, z0) (3.14)

with the wave number k = 2π/λ. Thus, with equations (3.12) and
(3.14) the gradient of wavefront and phase are proportional to each
other and the following relation is found

wz0(x,y) =
1

k
ϕ(x,y, z0) + c0. (3.15)

However, there are special cases for which equation (3.15) does
not hold, i.e., if ϕ(x,y, z) shows discontinuities such as a phase vor-
tex. In that case, wz0(x,y) would not exhibit a continuous surface
standing in contrast to its definition. Here, minimizing expression
(3.11) leads to a plane wavefront.

3.2.1 Polynomial expansion of the wavefront

In order to classify a wavefront w(x,y) it is convenient to express it
as a composition of the contained aberrations. Especially for circu-
lar beams, a suitable complete sequence of orthogonal polynomials
is given by the Zernike polynomials which are defined in polar co-
ordinates [110]

Zmn (ρ,Θ) = Rmn (ρ) cos(mΘ)

Z−m
n (ρ,Θ) = Rmn (ρ) sin(mΘ) (3.16)

where m and n are non-negative integers with n > m. Rmn (ρ) are
the radial polynomials which are given by

(n−m) even :

Rmn (ρ) =

(n−m)/2∑
k=0

(−1)k(n− k)!
k!(n+m2 − k)!(n−m2 − k)!

ρn−2k

(n−m) odd :

Rmn (ρ) = 0. (3.17)

The definition range is confined by the unit circle 0 > Θ > 2π

and 0 > ρ > 1. The first ten Zernike polynomials are depicted in
figure 3.4 each representing an aberration.
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Figure 3.4: The first ten Zernike polynomials (from top to bottom, left
to right): piston, y-tilt, x-tilt, diagonal astigmatism, defocus,
aligned astigmatism, trefoil, y-coma, x-coma, trefoil.

With the complete set of functions Zmn it is possible to represent
any wavefront w(x,y) in the form

w(x,y) = a0 ·Z00(x,y)+a1 ·Z−1
1 (x,y)+a2 ·Z11(x,y)+ . . . . (3.18)

The relative value of the coefficients ai resembles the strength of
the corresponding aberration.
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3.3 coherence properties

The coherence properties of a light beam characterize the degree
of correlations within its electric field, i.e., whether the complex
valued time curve of E(~x, t) at different positions ~x and times t re-
semble each other. Coherence is required in order to generate inter-
ference effects with an electromagnetic beam. Vice versa, the degree
of coherence can be measured by analyzing this phenomenon. The
most prominent example of a corresponding approach is Young’s
experiment where two elementary waves are superimposed on a
distant screen [100]: the better the visibility of interference fringes,
the higher the coherence between both waves.

The mathematical tool to quantify the coherence within a beam
is the cross correlation function between the complex electric fields
E (~x1, t+ τ) and E (~x2, t). Here, the mutual coherence function (MCF)
or mutual intensity Γ is formulated in terms of the center vector
~x = (x,y) and the distance vector ~s = (sx, sy) between both points
~x1 and ~x2 as indicated in figure 3.5 [114]

Γ (~x,~s, τ) =
1

2
cε0

〈
E

(
~x−

~s

2
, t+ τ

)
E∗
(
~x+

~s

2
, t
)〉

(3.19)

where 〈. . . 〉 indicates the average over time, ∗ denotes the com-
plex conjugate, c is the speed of light and ε0 the vacuum permit-
tivity. Γ has the dimension of an intensity and in general, it is a
complex valued function. In particular, if ~s = 0 both points of the
electric field coincide and for a vanishing time delay τ, Γ results in
the intensity

Γ (~x, 0, 0) = I (~x) .

In the following, the time delay τ is omitted since here, only the
spatial coherence properties are under investigation.

A corresponding dimensionless quantity normalized by the in-
tensities

√
I (~x1) · I (~x2) is given by the local degree of coherence

γ (~x,~s) =
Γ (~x,~s)√

Γ (~x−~s/2, 0) Γ (~x+~s/2, 0)
. (3.20)

γ is complex valued too and the value of |γ| ranges between 0
and 1. |γ| = 1 corresponds to full coherence, |γ| = 0 to complete
incoherence and if 0 < |γ| < 1 the electric fields are said to be par-
tially coherent.
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Figure 3.5: To the definition of the mutual coherence function: the positions
~x1 and ~x2 are expressed by center and distance vector ~x = (~x1+

~x2)/2 and ~s = (~x2 −~x1).

Since Γ (~x,~s) and γ (~x,~s) might describe rather complex corre-
lations on a four-dimensional phase space, it is convenient to in-
troduce characteristic quantities resembling the properties of both
functions. The spatial decay of the MCF with increasing |~s| is given
by the coherence lengths lx and ly confining a region which can be
regarded as mutually coherent [115]

lx =

√
8

∫
(sx − 〈sx〉)2 |Γ (~x,~s) |2d2xd2s∫

|Γ (~x,~s) |2d2xd2s
(3.21)

with d2x = dxdy and d2s = dsxdsy. Correspondingly, ly is
derived. Both of these quantities are real valued. Finally, the global
degree of coherence

K =

∫
|Γ (~x,~s) |2d2xd2s(∫
|Γ (~x, 0) |d2x

)2 (3.22)

unifies the coherence properties of a beam in a single real value,
ranging between 0 for an incoherent beam and 1 for a fully coherent
beam.

3.3.1 Gaussian Schell-model beam source

A simple mathematical model function of Γ is given within the
Gaussian Schell-model, which is of fundamental importance in the
field of beam characterization. In good approximation, it can be
applied to a large number of experimental laser beams that exhibit
arbitrary degrees of coherence. In the following, the model will
be employed to derive a relation between coherence length, waist
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diameter and global degree of coherence. Since here, the mutual
coherence function is separable, i.e. ΓGS (~x,~s) = Γx(x, sx) · Γy(y, sy),
the following discussion is based on the two-dimensional distribu-
tion Γx(x, sx). However, equivalent relations hold for Γy(y, sy).

The mutual coherence function of a monochromatic Gaussian
Schell-model beam at its waist position is given by [107]

Γx (x, sx) =
√
I0 · exp

(
−
x2

2σ2x

)
· exp

(
−
(sx/2)

2

2σ2sx

)
(3.23)

with σx > σsx both real valued. The Gaussian distribution Γx de-
creases in x- and sx-direction with the standard deviations σx and
σsx . Employing equations (3.5) and (3.21), σx and σsx can be iden-
tified with beam diameter dx and coherence length lx according
to

dx = 4 σx and lx = 4 σsx . (3.24)

Normalization of the mutual coherence function following equa-
tion (3.20) leads to the local degree of coherence

γx(sx) = exp
(
−
(sx/2)

2

2

(
1

σ2sx
−
1

σ2x

))
= exp

(
−
(sx/2)

2

2σ2γx

)
(3.25)

which apparently does not depend on x. The newly introduced
real valued standard deviation σγx is related to beam diameter dx
and coherence length lx by

1

(4σγx)
2
=
1

l2x
−
1

d2x
. (3.26)

Here, the restriction dx > lx ensures that σγx is a real quantity
(compare definition (3.23)). Consequently, for a beam with a specific
diameter dx, the following intervals for coherence length lx and
standard deviation σγx can be formulated:

◦ Width of local degree of coherence σγx = 0 . . .∞
◦ Coherence length lx = 0 . . . dx.
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Figure 3.6: Coherence functions in the Gaussian Schell-model at constant
beam diameter and various degrees of coherence Kx.
(a)-(c): Mutual coherence function Γx(x, sx).
(d): Local degree of coherence γx(sx). The intensity distribution
Ix(x)/

√
I0 is valid for arbitrary Kx.

For a completely incoherent beam both quantities vanish and
γx ≡ 0 for all sx > 0. Full coherence is represented by σγx → ∞
and lx → dx and thus, the local degree of coherence spans until in-
finity γx ≡ 1. This case poses also the upper limit for the coherence
length, since values larger than the beam diameter lx > dx would
result in a complex valued σγx .

Computation of the global degree of coherence leads to the sim-
ple relation

K =
σsx
σx
·
σsy
σy

=
lx

dx
·
ly

dy
. (3.27)
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Obviously, K only depends on the ratios between coherence length
and beam diameter. Since here the beam is separable, the global de-
gree of coherence K is understood as a product of its horizontal and
vertical value Kx = lx

dx
and Ky =

ly
dy

.

The mutual coherence function Γx(x, sx) and local degree of co-
herence γx(x, sx) are depicted in figure 3.6 for a beam with constant
beam diameter dx = 4σx and three different degrees of coherence
Kx. In the chosen representation, Γx(x, sx) shows a circular shape
in case of full coherence. A lower degree of coherence involves a
shorter coherence length lx and thus, the extent of Γx(x, sx) is re-
duced in sx-direction.

Sub-figure 3.6(d) shows the local degree of coherence γx(sx) for
three different values of Kx. The intensity distribution Ix(x)/

√
I0 is

represented by a dashed curve and holds for arbitrary degrees of
coherence. Here, the width of γx(sx) is not restricted by the beam
diameter but exceeds it for Kx > 1/

√
2 and approaches infinity for

Kx = 1.
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3.4 the wigner distribution function

In the year 1932, Eugene Paul Wigner introduced the Wigner func-
tion as a quasiprobability distribution of a quantum mechanical par-
ticle depending on location x and momentum p [116]. Later on,
applications of the Wigner function were found in other scientific
fields too, such as in signal analysis and ultrafast optics, where the
phase space is comprised of time t and frequency f [117, 118]. In
optics, it is used to describe beam propagation in terms of ray en-
sembles [103, 105]. Since this formalism also includes interference
effects, the Wigner distribution function bridges the gap between
ray and wave optics [108].

The Wigner distribution function (WDF) of a quasi-monochroma-
tic paraxial beam is defined as two-dimensional Fourier transform
of the mutual coherence function [104]

h (~x, ~u) =
(
k

2π

)2 ∫
Γ (~x,~s) e−ik~u·~sd2s (3.28)

where k = 2π/λ denotes the mean wave number. The correspond-
ing back-transformation yields the MCF again

Γ (~x, ~u) =
∫
h (~x, ~u) eik~u·~sd2u (3.29)

with d2u = dudv. The value of h (~x, ~u) is always real since Γ (~x,~s)
is symmetric with respect to the ~s-coordinate Γ (~x,~s) = Γ∗ (~x,−~s).

Walther, who first introduced the Wigner distribution function in
the context of optics [119], denoted it as generalized radiance. This
implies the interpretation of h (~x, ~u) as amplitude of a ray passing
through the point ~x and having the direction ~u [105]. However,
h (~x, ~u) is not necessarily non-negative what limits the interpreta-
tion as a radiance to a certain extent.

Nevertheless, the integrals of h (~x, ~u) have a clear physical mean-
ing and result in near-field I(~x), far-field Î (~u) and the total power
P of the beam [104]

I (~x) =

∫
h (~x, ~u)d2u

Î (~u) =
1

(2π)2

∫
h (~x, ~u)d2x

P =

∫
h (~x, ~u)d2xd2u. (3.30)
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The moments of the Wigner distribution are derived by [104]

〈xiyjumvn〉 = 1

P

∫
xiyjumvn · h (~x, ~u)d2xd2u (3.31)

with the integer variables i, j,m and n. The first-order moments
〈x〉, 〈y〉, 〈u〉 and 〈v〉 define the centroid of the WDF with respect to
the corresponding variable. Choosing the coordinate system prop-
erly, these moments vanish, which is assumed in the following. The
second-order moments with i+ j+m+n = 2 are comprised in the
beam matrix M which is discussed in section 3.1. Here, the most
descriptive quantities are 〈x2〉 and 〈u2〉 resulting in local diame-
ter dx = 4

√
〈x2〉 and divergence angle θx = 4

√
〈u2〉 of the beam.

These values represent the extent of h (~x, ~u) in x- and u-direction.
Further beam parameters, e.g., waist diameter or Rayleigh length
are derived with the relations summarized in equation (3.5).

Figure 3.7: The Wigner distribution function contains both, the spatial in-
tensity distribution I(x,y) and directional information in terms
of the local Poynting vector ~S(x,y). The illustration shows an
arbitrary divergent Gaussian Schell-model beam with beam ra-
dius r0 = d0/2.

The transverse, intensity normalized Poynting vector ~S ′(x,y) is
derived by [108]

~S⊥(x,y) =
λ2

P

∫
~u · h(~x, ~u)d2u (3.32)

and with that the local wavefront is determined by relation (3.11).
The third component of the three-dimensional Poynting vector ~S(x,y)
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is given by Sz(x,y) = I(x,y)

√
1−

∣∣∣~S⊥(x,y)
∣∣∣2. An illustration of a

Wigner distribution is given in figure 3.7 for an arbitrary divergent
beam where spatial and directional intensity information are com-
bined.

Finally, application of Parseval’s theorem to equation (3.22) yields
the global degree of coherence formulated in terms of the Wigner
distribution

K =
λ2

P2

∫
h (~x, ~u)2 d2xd2u. (3.33)

3.4.1 Wigner distribution function of a Gaussian Schell-model beam

The Wigner distribution function hGS of a Gaussian Schell-model
beam source is specified by the mutual coherence function ΓGS
which is discussed in section 3.3.1. Since hGS = hx(x,u) ·hy(y, v) is
separable, the following discussion focuses on the two-dimensional
distribution hx(x,u). However, equivalent relations hold for hy(y, v).
Γx is transformed into the WDF by combining equations (3.23) and
(3.28)

hx(x,u) =
√
h0 · exp

(
−
x2

2σ2x

)
· exp

(
−
u2

2σ2u

)
. (3.34)

Here, a new standard deviation σu is introduced that quantifies
the decay of the Gaussian distribution along the angular axis u. In
other words, σu defines the divergence θx = 4σu of the beam. In-
terestingly, it results that the divergence θx of the beam is inversely
proportional to its coherence length lx

σu =
λ

(4π)
· 1
σs

or θx =
λ

(π/4)
· 1
lx

. (3.35)

Computing the horizontal component of the global degree of co-
herence K = Kx · Ky gives a direct connection to the beam quality
factor M2x

Kx =
4

π
· λ

d0,xθx
=

1

M2x
. (3.36)

This equation provides a clear interpretation of the coherence
with respect to the Wigner distribution: Kx is proportional to the in-
verse of the phase space volume Vx = π · d0,xθx. Thus, the smaller
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the extent of hx in spatial and angular direction, the larger is the
coherence. With Kx 6 1, this relation also defines the smallest pos-
sible phase space that a beam can occupy

π · d0,xθx > 4 λ (3.37)

which is only reached by a fully coherent beam.

3.4.2 Propagation of the Wigner distribution function

Propagation of the Wigner distribution through first-order optical
systems follows the matrix formalism of section 3.1. The ray trans-
formation (3.2) with the system matrix S from an input plane to an
output plane reads [105, 120]

hin(~x, ~u) = hout(A~x+B~u,C~x+D~u) (3.38)

or, as a back-transformation with the inverse S−1

hin(D~x−B~u,−C~x+A~u) = hout(~x, ~u). (3.39)

In that context, an important and simple example is the propa-
gation through free space by a distance z with A = 1, B = z · 1,
C = 0 and D = 1 (see the appendix). A known Wigner distribution
function h then transforms as

h(~x, ~u)|z = h(~x− z · ~u, ~u)|z=0 (3.40)

where |z denotes the z-position of the respective Wigner distri-
bution. This transformation represents a shear in ~x-direction. The
WDF of a Gaussian Schell-model beam hx(x,u) (see equation (3.34))
is illustrated in figure 3.8 at different propagation distances z. Ob-
viously, the shear transformation affects near-field and local beam
diameter while far-field and beam divergence stay unchanged. Con-
vergent and divergent beam are identified by the inclination of the
Wigner distribution.
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Figure 3.8: Free propagation of the Wigner distribution function hx(x,u)
depicted for a Gaussian Schell-model beam. While the far-field
Î(u) of the beam stays unchanged, the near-field I(x) is affected
by the shear transformation of the Wigner distribution.

3.4.3 Reconstruction of the Wigner distribution function for separable
and non-separable beams

In the following, a link between the WDF and measurable intensity
data is provided. Formulating expression (3.39) in Fourier space
(implied by ˜ ) yields [120]

h̃in(A
T~q+ CT~j,BT~q+DT~j) = h̃out(~q,~j) (3.41)

where ~q and ~j are the reciprocal coordinates corresponding to ~x

and ~u and T denotes the transpose of a matrix. With the relation
h̃(~q, 0) = Ĩ(~q) this leads to [121]

h̃ref(A
T~q,BT~q) = ĨA,B(~q). (3.42)

The derived equation corresponds to the projection slice theorem of
tomography which states that in Fourier space, intensity profiles rep-
resent slices of the Wigner distribution function, as defined by the
transformation matrices A and B [122, 123]. In other words, inten-
sity information of a beam can be employed to reconstruct its a pri-
ori unknown Wigner distribution. Particularly, a distribution ĨA,B
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can be mapped directly into the corresponding two-dimensional
plane in the reciprocal Wigner space. Now, in order to recover the
phase space information entirely, many different planes need to be
accessed. This involves an optical system which offers a suitable
variation of the system matrices A and B. Two possible realizations
will be presented in detail in section 6. In the following, the basic
example of a free-space propagation is described which is sufficient
to reconstruct the Wigner distribution of separable beams.

In general, i.e., for non-separable beams, equation (3.42) poses a
four-dimensional problem. However, in the case of separability, the
Wigner distribution beam can be formulated in terms of a product

h(x,y,u, v) = hx(x,u) · hy(y, v) (3.43)

and relation (3.42) splits into two independent two-dimensional
problems. Correspondingly, the intensity distribution follows the
same notation I(x,y) = Ix(x) · Iy(y). Considering a beam propaga-
tion through free space, this results in

h̃x(qx, z · qx)
∣∣
z=0

= Ĩx(qx)
∣∣
z

h̃y(qy, z · qy)
∣∣
z=0

= Ĩy(qy)
∣∣
z

. (3.44)

With a sufficient number of intensity profiles captured at differ-
ent positions z, the reciprocal Wigner phase space can be recovered.
Subsequently, the Wigner distribution function is derived at the ref-
erence position z = 0 by a Fourier back-transform.

The principle of this tomographic reconstruction is shown in fig-
ure 3.9. The basic relations between Wigner distribution and the
near-field profile are illustrated in real space and Fourier space.
The entire reconstruction procedure is described step-by-step with
experimental data in chapter 6.
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Figure 3.9: Scheme of the reconstruction of the Wigner distribution func-
tion. It is shown how the near-field profile at a position z = −zR
is related to the Wigner distribution at the reference position
z = 0.
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L A S E R - P R O D U C E D P L A S M A S O U R C E

A high brilliance of laser-produced plasma sources goes along with
a high particle density of the target material. Of course, this require-
ment is met by solid and liquid target concepts. Nevertheless, when
the electron density of the plasma reaches its critical value nc given
in equation 2.5, the incident laser beam is reflected and the heating
process stops. In that case, the density of solid or liquid targets is
even too high and needs to be lowered by a less intense pre-pulse
[56]. Furthermore, these target concepts always have the drawback
of a debris production demanding additional technical efforts for
its mitigation.

Here, the focus is put on gaseous targets providing clean, versa-
tile and compact sources but at a comparatively low brilliance. Typ-
ically, the resulting plasma reaches electron densities which are one
or two magnitudes below the critical density [54]. Thus, in order to
enhance the brilliance of these sources, the possibility is explored to
increase the particle density of the supersonic gas jet. The basic idea
is to generate shock waves which involve a local density increase up
to a factor of 6 as discussed in section 2.1.2. In particular, the barrel
shock structure evolves when applying a low pressure atmosphere
to the jet. Focusing a strong laser pulse into this enhanced density
region, a plasma is produced which is brighter and smaller than
before.

In the following, the setup of a laser-produced plasma source em-
ploying a jet target is described. Afterwards, the experimental tech-
niques to characterize gas jet and soft x-ray radiation are explained.
Finally, the results are presented which comprise a qualitative and
quantitative characterization of the observed shock structures and
the beneficial effect on the plasma generation.

This chapter is based on a previous publication [50] and has been
revised and extended partly.

49
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4.1 the laser-produced soft x-ray source

The setup of a standard soft x-ray source based on gas targets is
used [8]. It basically consists of a piezo-electrically operated Proch-
Trickl gas valve [124] mounted on a vacuum chamber, and a driving
Nd:YAG laser which emits radiation at the fundamental wavelength
1064nm with a pulse energy of 800mJ and a pulse duration of 6ns
(InnoLas SpitLight 600). The intensity profile of the unfocused laser
beam, measured by a CCD camera (Lumenera Lu160M), reveals a
beam diameter of 5.9mm (derived with equation (3.5)), correspond-
ing to a mean power density of 4.9 ·108W cm−2. Plasma production
takes place as soon as a critical power density of ≈ 1012W cm−2 is
reached in the focused beam at a sufficiently large particle density
[125]. This initiates the first ionization of the target gas followed by
avalanche ionization, creating large numbers of free electrons.

ln = 1 mm 

d  = 0.3 mmp0 = 11 bar

pb = 170 mbar

Barrel shock

Mach disc
Enhanced plasma

Typical plasma position

Laser beam

de =  0.5 mm

*

Figure 4.1: Principle of plasma generation employing jet targets: typically
the plasma is generated close to the nozzle under vacuum con-
ditions. Applying a background pressure pb induces the barrel
shock structure which enhances plasma generation due to a lo-
cal density increase.

The target gas is expanded through a divergent nozzle of coni-
cal shape. Over a length of ln = 1mm its diameter increases from
the throat diameter d∗ = 0.3mm to the exit diameter de = 0.5mm.
The nozzle is opened for a period of 1ms, generating an underex-
panded supersonic jet that expands from stagnation pressure p0 =

11 bar into vacuum, i.e., the background pressure pb is as low as
10−4mbar. The laser is focused into the gas as soon as the jet flow
is steady. The position where the plasma is produced is located
500µm, i.e., one diameter de behind the nozzle exit (see the typical
plasma position indicated in figure 4.1). Although the density is
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Figure 4.2: Characteristic emission spectra of various target gases, captured
with a soft x-ray spectrometer.

highest at the nozzle exit the plasma should not be generated closer
to the nozzle because of growing degradation effects.

By employing different target species, various spectra can be ob-
tained in the EUV and soft x-ray range. Noble gases with high
atomic numbers such as xenon, argon or krypton are broadband
emitters, while oxygen or nitrogen each produce several narrow
lines. Corresponding spectra can be found in figure 4.2, produced
by a system comparable to that described above and captured with
a soft x-ray spectrometer, which is described in detail in [8]. Here,
nitrogen is used in combination with a titanium filter, resulting in
a monochromatic emittance at λ = 2.88nm in the water window,
corresponding to the transition 1s2− 1s2p of the valence electron of
the N5+ ion [126].

In the approach pursued in this work, the background pressure
pb is increased to several tens of mbar in order to generate a bar-
rel shock in the supersonic jet. For this purpose, helium is utilized
as background gas due to its high transmissivity of photons gen-
erated by the plasma. In addition, the optical path length of the
resulting soft x-rays through helium is minimized by differential
pumping. Another advantage of using helium as a surrounding
gas is its large first ionization energy (24.6 eV) compared to that
of nitrogen (14.5 eV) [127]. Thus, the critical power density to drive
ionization by the incident laser beam is higher for helium, which en-
sures that only the target species nitrogen is ionized. Right behind
the shock system generated in the jet, the particle density increases.
In this manner, regions involving high densities of the target gas
are obtained at comparably large distances from the nozzle. Thus,
the plasma can be generated further away from the nozzle exit, and
degradation effects are minimized.
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4.2 gas jet and soft x-ray diagnostics

In order to characterize the supersonic gas jet and the evolving
shock structure, two different methods are employed: the Schlieren
technique for highly resolved qualitative imaging of density gradi-
ents and wavefront measurements with a Hartmann-Shack sensor
in order to quantify the density distribution, but at a lower resolu-
tion. Both methods are described in detail in the following subsec-
tions 4.2.1 and 4.2.2.

The plasma is imaged by a pinhole camera and the number of the
resulting soft x-ray photons is determined with a calibrated photo
diode. A description of these tools follows in subsection 4.2.3.

f1

White light
pointsource Nozzle

Knife edge 
(Schlieren only)

CCD or 
wavefront sensor

x
y

z

f1 f2 f2

Figure 4.3: Experimental setup for Schlieren and wavefront measurements.
The dotted lines represent the path of unrefracted light. The
dashed line indicates a light ray which is refracted by varying
distribution of gas density below the nozzle, thus hitting the
knife edge and darkening the image. In order to monitor wave-
front deformations, the CCD camera is replaced by a Hartmann-
Shack sensor and the knife edge is removed.

4.2.1 Schlieren imaging

Schlieren imaging is a common technique in fluid dynamics which
enables the qualitative measurement of density gradients [128]. The
experimental setup is schematically shown in figure 4.3. A pin-
hole with a diameter of 100µm is illuminated by white light, and
a focusing lens collimates the resulting beam, which then travels in
z-direction through the gas distribution of the jet target. The xy-
plane at z = 0 is imaged by a 4f setup to a CCD camera (Lumenera
Lu160M) and captured with an exposure time of 50µs. The camera
is synchronized with the gas jet at a repetition rate of 10Hz. Here,
imaging lenses with focal lengths of f1 = 160mm and f2 = 300mm
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Figure 4.4: Wavefront deformation induced by the gas jet. The distribution
of the optical density n(x,y, z) increases the optical path length,
resulting in the indicated wavefront deformation.

are used. A knife edge is moved close to the focal spot in between
the two lenses, eliminating half of the spatial frequencies in the
Fourier plane. The orientation of the blade determines which com-
ponent of the density gradient will become visible. For example, as
depicted in figure 4.3, a knife edge aligned with the x-axis gener-
ates contrast proportional to the gradient of the refractive index ∂n∂y
corresponding to the density gradient ∂ρ∂y . Note, however, that in
the Schlieren images shown below, the knife edge is aligned with
the y-axis so that density gradients within the jet are visualized in
radial direction, thus emphasizing the barrel shock.

4.2.2 Wavefront monitoring

A Hartmann-Shack wavefront sensor [129, 130] is used to obtain
quantitative information on the density distribution in the super-
sonic gas jet [59]. The experimental setup is mostly the same as
that depicted in figure 4.3 for Schlieren imaging. However, the
knife edge is removed and the CCD camera is replaced by the wave-
front sensor. An initially plane wavefront of a test beam that travels
through the target gas is deformed due to the spatial variation of
the refractive index n(x,y, z). The sensor splits the test beam into
many sub-beams by an array of micro lenses, each producing a spot
on a CCD camera (Lumenera Lu160M). The position of the spots
contains the information of the local wavefront gradient. Thus, the
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deformation of the wavefront can be recovered. The spatial resolu-
tion ∆x of the deformation in the x-direction of a measured wave-
front is equal to the pitch of the micro lens array 150µm divided
by the magnification factor f2/f1 = 1.88 of the 4f setup, yielding
∆x = 80µm.

The particle density distribution N(x,y) in the nozzle plane z = 0
is recovered from a measured shape w(x,y) of a deformed wave-
front as follows. The test beam integrates n(x,y, z) over the propa-
gation direction z of the light beam, resulting in a difference w(x,y)
in the optical path, as illustrated in figure 4.4. Now it is assumed
that in a plane corresponding to a constant y = y0, n(x,y0, z) is
approximated by a rotationally symmetric Gaussian shape with a
maximum value n0(y0) = n(0,y0, 0). Then the deformation of the
wavefront reads

w(x,y) =

∫
[n(x,y, z) − 1]dz

=

∫
[n0(y) − 1] · exp

(
−

x2

2σ(y)2

)
· exp

(
−

z2

2σ(y)2

)
dz

= [n0(y) − 1] ·
√
2πσ(y) · exp

(
−

x2

2σ(y)2

)
. (4.1)

The standard deviation σ(y) of n(x,y, z) is determined from the
shape of the measured deformation of the wavefront w(x,y) by a
Gaussian fit. The distribution of the refractive index in the plane
z = 0 containing the jet axis is recovered by

n(x,y, 0) − 1 =
w(x,y)√
2πσ(y)

. (4.2)

Conversion of the refractive index n(x,y, 0) into a particle density
N is done by using the Lorentz-Lorenz formula [110]

n2 − 1

n2 + 2
=
4

3
παN, (4.3)

where α, the polarizability of the considered gas particles, is de-
rived using the values n = 1.0002974 and N = 2.69 · 1019cm−3

for nitrogen under normal conditions [127] (at a temperature of
273.15K and a pressure of 1013.25mbar). In these calculations, the
surrounding helium atmosphere is neglected because of its low re-
fractive index which amounts to only a few percent as compared to
that of the nitrogen jet.
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4.2.3 Plasma characterization

Qualitatively, the plasma is characterized by a pinhole camera sys-
tem as sketched in figure 4.5(a). It consists of a phosphor coated
CCD camera (Lumenera Lu160M with 3 layers of phosphor P43

with a grain size of ≈ 1µm) in combination with a titanium-filtered
pinhole (100µm diameter, Ti-layer 200nm thick). This way, the in-
tensity distribution of radiation at the wavelength λ = 2.88nm is
captured. Here, the luminescent area A is approximated by an
ellipsoidal shape with the semi-axes a and b. Then, A = πab,
where a and b are defined as the full-widths at half-maximum of
the intensity in x- and y-direction. The uniformity of the plasma is
characterized by its eccentricity ε =

√
a2 − b2/a. Examples of the

intensity images are shown in figure 4.9 in combination with the
corresponding Schlieren images of the gas jet for the case of both,
gas issuing into vacuum and gas issuing into a background gas and
thus forming a barrel shock.

Plasma

Ti-filter

Pinhole
XUV 

CCD camera

(a)

Plasma

Ti-filter
Aperture

XUV 
photo diode

ωa

da

la

(b)

Figure 4.5: Principle of plasma characterization by pinhole camera (a) and
diode measurement (b).

Quantitatively, the peak brilliance Br of the plasma is derived by

Br =
Nph

τΩA
(4.4)

with the pulse duration τ, the solid angle Ω and the source area
A. The number of photons Nph with a wavelength of λ = 2.88nm is
determined by a calibrated XUV photo diode (International Radia-
tion Detectors, AXUV100) which is equipped with a titanium filter
(thickness 200nm, applied to a nickel mesh with transmissivity of
0.89). As shown in figure 4.5(b), only these photons reach the detec-
tor which propagate within a cone confined by a circular aperture
with diameter da in a distance la to the plasma. Thus, the solid an-
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gle is defined by the corresponding opening angle ωa = 2 tan da/2la
of the cone [131]

Ω = 4π sin2
ωa

4
. (4.5)

In good approximation, the lifetime of the plasma is assumed to
be τ = 6ns, which equals the duration of the exciting laser pulse.
Finally, the luminescent areaA is determined with a pinhole camera
as described above.

4.3 experimental results

First, the gas jet and the effect of a background pressure on the
resulting flow structure are investigated using the techniques de-
scribed in the previous section. The derived results are compared
to theoretical relations discussed in section 2.1.2. Subsequently, the
effect of the barrel shock on the plasma generation is explored and
the brilliance improvement of the soft x-ray source is quantified.

4.3.1 Characterization of the target gas jet

Depending on the stagnation and background pressure, the gas jet
may form various shapes, which are discussed in the following. In
previous studies of laser-produced soft x-ray sources the nozzle was
operated in the range p0 = 11 . . . 17 bar at a background pressure
of pb = 10−4mbar, i.e., practically without any background gas. In
this case, the emerging flow is in the scattering regime and does not
show any discontinuities. Independently of p0 the density distribu-
tion has a maximum value at the nozzle exit and rapidly falls off in
all directions. Corresponding Schlieren images are taken with the
knife edge aligned with the y-axis and can be found in figure 4.6
for the pressure range p0 = 11 . . . 17 bar.

With rising background pressure, particle collisions increasingly
affect the gas jet and retard its free expansion. At a certain distance
from the nozzle, this results in a shock which is directly connected
to a local decrease of the Mach number M. At the same time, the
local particle density increases. This becomes evident in regions in
the Schlieren images that show strong changes in intensity, imply-
ing high density gradients. As can be seen, for example, in figure
4.6(b), the shape of the resulting shock structure resembles a barrel,
why it is referred to as a barrel shock. In the downstream direction,
the barrel shock is terminated by the Mach disk, which is indicated
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Figure 4.6: Schlieren images indicating the supersonic flow structure of a
N2 jet as a function of stagnation and background pressure
(flow direction: top→ bottom).
(a) Scattering regime, no internal structures evolve; (b) contin-
uum regime with barrel shock structure, the Mach disk is in-
dicated by the arrow; (b) → (c) shock structure contracts for
increasing background pressure; (b) → (d) shock structure in-
flates for increasing stagnation pressure.

in the Schlieren image by an arrow. In the present Schlieren pic-
tures, the Mach disk is reproduced only weakly because the knife
edge was aligned perpendicular to the disk and only density gradi-
ents parallel to the disk were detected.

Increasing pb, as from figure 4.6(b) to 4.6(c), results in a confine-
ment of the gas flow towards the nozzle axis - the lateral shocks
approach each other and the Mach disk moves upstream. In con-
trast to this, increasing p0 has the opposite effect, i.e., the radius of
the barrel shock and the width σ of the density distribution increase
and the Mach disk moves downstream, see figures 4.6(b)-(d). These
two opposite effects allow generation of the same shock structure
at different combinations of the pressures, provided that the ratio
p0/pb stays constant.
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Figure 4.7: Distance between Mach disk and nozzle exit for various pres-
sure ratios. The points are derived from Schlieren images, the
violet curve represents the empirical relation (2.11) from Ashke-
nas and Sherman [61] and the blue curve represents the modi-
fied relation given in equation (4.6) with a = 0.4034.

From Schlieren images as shown in figure 4.6, the distance lM
between Mach disk and nozzle throat is derived for pressure ratios
in the range 18 6 p0/pb 6 340. In figure 4.7, the resulting data set
is compared to the empirical relation (2.11)

lM = 0.67 · de
(
p0
pb

)1/2
which has been derived by Ashkenas and Sherman [61] for a

non-divergent nozzle. Apparently, the experimental results deviate
from the depicted curve, especially for large pressure ratios. Most
likely, this can be attributed to a different nozzle geometry as in
the present situation. Here, a divergent orifice initially guides the
supersonic expansion of the gas before it expands freely into the
helium atmosphere. For that case, a relation of the form

lM = de

(
p0
pb

)a
(4.6)

reveals good agreement with the measured shock distances as it
is evident in figure 4.7. By a least-squares fit routine [132] the expo-
nent is derived to a = 0.4034.
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Figure 4.8: (a) Combination of quantitative wavefront and qualitative
Schlieren image of the N2 jet expanding from p0 = 11 bar into
a He atmosphere with pb = 170mbar.
(b) Density distribution N(x,y) of the N2 jet in the plane z = 0,
which results from the wavefront as described in section 4.2.2.

In figure 4.8, wavefront and Schlieren measurements are com-
pared with each other for a stagnation pressure of p0 = 11 bar and
a background pressure of pb = 170mbar. The results of both tech-
niques are well consistent. The particle density N(x,y) shows the
mean gas distribution inside the jet. In the downstream direction,
along the nozzle axis, N first decreases to Nmin = 4.0 · 1018 cm−3

and then increases again up to a maximum value of Nmax = 9.8 ·
1018 cm−3. Subsequently, the wave-like behavior of the particle den-
sity is repeated at lower density values. The observed maxima co-
incide approximately with the positions where the lateral shocks
interfere, forming a Mach disk.

Employing the relations of gas dynamics introduced in section
2.1.2, a rough theoretical estimate of the particle densityNmax ahead
and behind the Mach disk is now compared to the results obtained
with the wavefront sensor. Corresponding to the experimental sit-
uation, the density distribution along the symmetry axis of the gas
jet is depicted in terms of its stagnation value ρ0 in figure 2.7. There,
a normal shock induces a density increase from ρmin = 0.039 ρ0 to
ρmax = 0.170 ρ0 in a distance of lM = 2.7mm to the nozzle throat.
For the current pressure ratio of p0/pb = 64.7, this coincides with
the position of the Mach disk.

In order to derive absolute density values, the stagnation den-
sity ρ0 of the nitrogen jet is required. Following the ideal gas law
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p0 = ρ0RspT0 results in ρ0 = 12.65 kg/m3 with the specific gas con-
stant for nitrogen Rsp,N2 = 296.8 J/(kg · K) [127], the temperature
T0 = 293K and pressure p0 = 11 bar inside the vessel. Finally, par-
ticle densities ahead and behind the Mach disk are evaluated with
the molecular mass of nitrogen mN2 = 4.653 · 10−26 kg [127]. A
comparison between the theoretical estimation and the measured
values is given in table 4.1.

Table 4.1: Particle density ahead (Nmin) and after (Nmax) the barrel shock,
given on the symmetry axis of the jet. Comparison between the-
oretical estimate and measurement.

Theor. estimate Measurement

Nmin [1018 cm−3] 10.6 4.0

Nmax [1018 cm−3] 46.1 9.8

The estimated values are of the same order of magnitude but
larger than the experimental results. This discrepancy can be at-
tributed to the spatial resolution of the wavefront sensor which is
not able to resolve the high density value right behind a shock.
Furthermore, the estimate provides an upper limit of the particle
density, since in a simplification, a conical source flow has been as-
sumed. In fact, the stream lines of the flow are bended in lateral di-
rection, stronger than the cone geometry presumes. Consequently,
this results in a higher rarefaction of the gas and the typical bulbous
barrel shock. This explains why values of the estimated particle
densities, both of the maximum and the minimum, are higher than
the corresponding measured values.

4.3.2 Characterization of the plasma enhancement

The effect of an increase in target gas density on the plasma gen-
eration is illustrated in figure 4.9 for a stagnation pressure of p0 =

11 bar. Taking advantage of the barrel shock, obviously the bright-
ness of the plasma is raised, whereas its size has decreased in the
direction of the incident laser beam. Due to the increased target
density, there are more emitters of soft x-ray radiation in the same
volume. Besides, the absorption of laser energy is raised. Thus, the
power density of the beam decreases more rapidly below its critical
value and no further atoms are ionized. This confines the size of the
plasma in the beam direction and explains its smaller size. Another
mechanism causing the reduced size might be plasma defocusing
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Figure 4.9: Pinhole camera images of the plasma superimposed on
Schlieren images of gas jet at p0 = 11 bar. Left: under vac-
uum conditions pb = 10−4mbar. Right: with ambient He at-
mosphere pb = 170mbar. Both plasma images are an average
of 30 single-shots.

[133]. Due to an increased plasma density, a stronger defocusing
effect can be expected, limiting the ionization region.

During the experiments it turned out that generation of a plasma
right below the Mach disk, where the density is expected to be at
a maximum, is not the optimal position. It was found that even
brighter and smaller plasmas occur when the laser is focused onto
the edge of the jet at a location slightly above the Mach disk and
after the barrel shock (see figure 4.9). This behavior may be caused
by reabsorption of soft x-rays by the surrounding nitrogen particles.
The barrel shock is enclosed by a thin supersonic compressed layer,
which becomes thicker at the Mach disk [19], leading to increased
reabsorption.

In order to study the brilliance improvement depending on the
location of plasma generation with respect to shock structures in
the jet, the latter were varied by changing the background pressure
at a constant stagnation pressure (p0 = 11 bar). By lowering pb, the
radius of the barrel shock is increased; conversely, with increasing
pb, the radius of the barrel shock decreases. Thus, with the loca-
tion of the focus of the laser beam fixed, its relative location with
respect to high-density regions behind the shock is changed. In fig-
ure 4.10, intensity distributions of the plasma are shown for various
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Figure 4.10: Pinhole camera images of the plasma at a stagnation pressure
of p0 = 11 bar for various background pressures pb as given
below the individual figure. The average of 30 single-shots is
shown.

background pressures pb. In this, the location of plasma generation
is kept constant. An optimum is found at pb = 170mbar (see also
figure 4.9).

Unexpectedly, increasing both p0 and pb while preserving the
pressure ratio p0/pb, does not lead to a considerable further in-
crease of the brilliance of the source. Approaching high pressure
values (p0 → 17 bar), quite the reverse happens: the plasma ap-
pears even darker. It can be assumed that, in fact, more soft x-ray
photons are generated since the target density is increased. How-
ever, the density of the background gas is increased as well, which
leads to higher reabsorption of the generated photons. The latter
effect seems to dominate the former. It is expected that further ef-
forts at differential pumping can shorten the path length of the soft
x-rays through the outer helium gas so that the brilliance of the
source can further be increased.

Now, parameters characterizing the plasma in the optimal case
are compared with those of a plasma produced near the nozzle exit
with a jet in the scattering regime. In both cases the same stagnation
pressure of p0 = 11 bar is considered. Regarding the shape of the
resulting plasma, which is represented by its luminescent area, it
can be seen that the radiating area is reduced by a factor of 0.71
to A = 0.063mm2, and its eccentricity decreases slightly from ε =

0.91 to ε = 0.80 when a barrel shock is present. This results in
better brilliance and improves the coherence properties due to a
smaller source size and a more uniform shape. The number of
photons emitted per pulse and solid angle from the nitrogen plasma
at a wavelength of λ = 2.88nm is raised by a factor of 7.1 to a
value of 1.2 · 1013 sr−1. Based on these values the peak brilliance
can be computed. One finds an improvement by a factor of 10 to
a value of Br = 3.15 · 1016 photons(mm2mrad2 s)−1. This clearly
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demonstrates the advantage of utilizing the density increase across
a barrel shock system. An overview of the characteristic parameters
of the plasma is given in table 4.2.

Table 4.2: Comparison of plasma emission characteristics at λ = 2.88nm
obtained with a nitrogen jet issuing into vacuum (no barrel shock)
and into a background gas (with barrel shock).

Without With
Factor

barrel shock barrel shock

Radiating area [mm2] 0.088 0.063 0.71

Eccentricity [1] 0.91 0.80 0.88

Photons/(solid angle · pulse) [sr−1] 1.66 · 1012 1.18 · 1013 7.10

Peak brilliance [mm−2mrad−2 s−1] 3.15 · 1015 3.15 · 1016 10.0
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The high harmonic generation process converts electromagnetic ra-
diation into harmonics corresponding to integer multiples of the
fundamental frequency. All individually quasi-monochromatic har-
monics propagate collinearly with the incident laser beam. The
latter can be efficiently blocked by a thin metal filter which is trans-
parent to the generated EUV radiation [134]. In order to prepare a
beam which contains only a few or even single harmonics, multi-
layer mirrors with a wavelength-selective reflectivity are used [135].
Similarly, a reflection grating acts on the HHG beam by separat-
ing the harmonics into different diffraction angles [136]. Both tech-
niques can be combined with curved surfaces to refocus the diver-
gent HHG radiation to a probe position. However, such devices are
always a source of wavefront aberrations in case of slight misalign-
ments. As a result the radiation is not concentrated into the smallest
possible focus and the intensity on the probe does not reach its op-
timum value.

In this chapter, the propagation of single harmonics is studied
after passing a monochromator arrangement that aims to conserve
the pulse length. Aberrations contained in the resulting beam are
identified by the measurement of wavefronts and intensity profiles.

In a second part, the wavefront sensor is used for the alignment
of a toroidal grating that acts as both, as a monochromator and as
a focusing optic. Corresponding to the experiment, the astigmatic
aberration induced by that element is studied theoretically by ma-
trix methods.

Partly, the content of this chapter has been published already
[137]. All experiments have been conducted in close collaboration
with C. Ropers and S. Zayko at the HHG source of the University
of Göttingen.

65
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5.1 characterization of high harmonic beam

5.1.1 Experimental setup

The setup of the investigated HHG source is schematically depicted
in figure 5.1. A titanium sapphire laser generates ultra-short pulses
of infrared radiation which are focused into an argon filled cap-
illary (pulse energy 0.5mJ, pulse length 40 fs, mean wavelength
800nm, repetition rate 1 kHz). In the noble gas, the highly non-
linear HHG process results in odd harmonics up to the 51

st or-
der. After the conversion, the fundamental beam is absorbed by
a mesh-less aluminum filter of 200nm thickness. However, radi-
ation in the spectral range 17nm < λ < 60nm passes the filter
(transmissivity > 0.6) [138]. A toroidal grating generates a row
of individual foci for each harmonic (Jobin Yvon, reference num-
ber 540 00 910, sagittal radius Rs = 104.9mm, tangential radius
Rt = 1000mm, groove density g = 550mm−1, focal length in 0.
order ftor = 160mm). In −1. diffraction order, a slit allows propaga-
tion of single harmonics while all others are blocked. In the inves-
tigated setup, an identical toroidal grating ensures the preservation
of the ultra-short pulse duration [139]. It focuses and diffracts the
beam again, whereby in +1. diffraction order the optical path dif-
ference is compensated. Throughout the entire setup, ultra high
vacuum conditions are maintained, whereas the fundamental laser
beam is coupled into the system via a vacuum window.

For all demonstrated experiments, the 25
th harmonic has been se-

lected corresponding to a wavelength of λ = 32nm.

In the present investigation, two diagnostic tools are employed
for beam characterization, an EUV sensitive CCD camera and a
Hartmann type wavefront sensor [140, 113]:

◦ The chip of the CCD camera contains 1392× 1040 square pix-
els with an edge length of 6.45µm which provide a dynamic
range of 14 bit (SHT MR285MC). By a coating of a 4µm thick
phosphor layer (P43 with a grain size≈ 1µm) EUV radiation is
converted into visible light. A movable support allows man-
ual positioning of the system in a range of 200mm around
the focal position. During the experiment, intensity profiles
are captured at 40 different equidistant positions within an
exposure time of 8 s, thus comprising 8000 pulses of HHG ra-
diation.
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Figure 5.1: Setup of HHG source with two toroidal gratings in an arrange-
ment for compensation of the optical path difference. ~n denotes
the normal vector of the toroidal surface and the indicated an-
gles are α = 72.55◦ and β = 69.45◦.

◦ The Hartmann sensor is a combination of a back-thinned CCD
chip (Princeton Instruments PI-MTE: 1300B, 1340×1300 square
pixels, edge length 20µm, dynamic range 16 bit) with a pin-
hole array in a distance of 95mm to the chip (pinhole diame-
ter 75µm, pinhole pitch 250µm). The device is placed 420mm
behind the expected focal position of the HHG beam. In order
to accumulate a sufficient signal, an illumination time of 200 s
is necessary.
When the EUV beam reaches the pinhole array, it is divided
into many small sub-beams which then propagate individu-
ally in the direction of the local Poynting vector, each produc-
ing a spot on the CCD chip. The wavefront is then recon-
structed by a comparison between the resulting spot distribu-
tion and a reference distribution which is produced by a plane
wave. A detailed description of the principle of that sensor is
found in [113]. Here, an absolute reference is employed that
is generated numerically with Gaussian spots which are sepa-
rated by 250µm in both directions, horizontally and vertically.

5.1.2 Evaluation of intensity profiles

A selection of intensity profiles of the 25
th harmonic beam is shown

in figure 5.2. Here, the z-coordinate denotes the distance to the
second grating. The vertical and horizontal focus positions are
represented by sub-figures 5.2(b) and 5.2(c), corresponding to z =
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Figure 5.2: Normalized intensity profiles of the 25
th harmonic (λ = 32nm)

at arbitrary positions, where (b) and (c) represent vertical and
horizontal focus position, respectively.

315mm and z = 400mm. Apparently, both positions do not coin-
cide, revealing a strong astigmatic aberration.

Regarding the first intensity profile at z = 285mm, a substructure
of diagonal bright lines is evident. This pattern vanishes in the fol-
lowing beam profiles. It is possible that the grid structure is present
on the surface of the first toroid and is imaged by the second toroid
to the camera. Following the lens equation [141], the corresponding
imaging plane is found at z = 213mm which is close to the position
of the observed profile. Likewise, it is possible that this pattern is
originating from the aluminum filter.
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After computing the second order moments 〈x2〉 and 〈y2〉 of the
intensity distributions, the local beam diameters dx and dy are de-
rived by equation (3.5). A least squares fit routine [132] employ-
ing hyperbolic functions dx(z) and dy(z) as given in equation (3.9)
yields waist position z0, waist diameter d0 and beam divergence
θ separately for horizontal and vertical direction. An overview of
the beam parameters is given later in table 5.1 and an illustration
of these results is shown in figure 5.3. Additionally, the figure com-
prises the mean irradiance, which is derived by P0/A(z), where P0
is an arbitrary beam power and A(z) = π

4 dx(z)dy(z) is the beam
area approximated by an ellipse.
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Figure 5.3: Local beam diameters of the 25

th harmonic (λ = 32nm) in prox-
imity of the focus positions. Blue and violet dots represent mea-
sured values, the corresponding lines show the hyperbolic fit
functions dx(z) and dy(z). The mean irradiance depicted in
yellow color is computed employing dx(z) and dy(z).

The experimental data shows a small inconsistency at z = 390mm,
which can be explained by the experimental procedure. During the
measurement a spacer has been employed to double the accessible
interval and thus, the vacuum chamber had to be vented. After-
wards, the situation might slightly differ. Besides, for large beam
diameters dx > 1000µm the experimental values are below the hy-
perbolic prediction, which can be attributed to the noise level of
the camera: if the beam size increases, the signal-to-noise ratio de-
creases and regions with weak intensity become undetectable re-
sulting in an underestimation of the diameter.
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The results reveal a strong astigmatic aberration which is resem-
bled by a difference in waist positions of ∆z = z0,x − z0,y = 89mm.
As a consequence, the photons are not concentrated into the small-
est possible spot and the irradiance does not reach its optimum
value. The course of the computed mean irradiance nicely unveils
the most intense beam position which is situated shortly behind the
vertical waist position. In case of a coincidence of both waist posi-
tions, the attainable flux density would increase by a factor of 3.3.
This can be realized by an adjustment of the toroidal grating which
will be discussed in the upcoming section 5.2.

It is evident, that the waist diameter in horizontal direction d0,x =

249µm is significantly larger than in vertical direction d0,y = 105µm.
This fact stands in contrast to the expectations: independently from
the astigmatic aberration, the optical system should produce similar
waist diameters. Considering the transport of a non-monochromatic
beam through the arrangement, it results that a finite spectral width
leads to the observed spatial broadening. This phenomenon is also
denoted as spatial chirp. In the following, the effect is demonstrated
considering a comparable collinear setup where the toroidal grat-
ings are replaced by optical elements that combine the action of a
lens and a transmissive grating, as shown in figure 5.4.

The optical path through the depicted system is described in
terms of a two-dimensional light ray ~r = (x,u). While the lens
modifies the angle u depending on the distance x to the optical
axis, the grating changes u, independently of x, according to the
grating equation [1], which reads in the paraxial approximation

u ′ = u+mgλ (5.1)

where u is the incidence angle, u ′ the diffraction angle (both with
respect to the optical axis), m the diffraction order and g the grating
constant.

In summary, three different transformations act on ~r:

◦ Propagation by a distance z

(
x

u

)
→

(
1 z

0 1

)(
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Figure 5.4: Optical path through an arrangement of two identical focusing
gratings for different diffraction orders. A 1-to-1 imaging is
achieved if both gratings operate in the same order. In case of
differing orders (e.g. +1./0.), a light ray is imaged to a wave-
length dependent position.

Applying a propagation by 2f to the initial light ray ~r, followed
by the lens matrix, the grating transformation and another propaga-
tion by 2f leads to a modified light ray at the intermediate position
between both optical elements. A repetition of these transforma-
tions results in the ray vector ~r ′ at the expected focal position be-
hind the system. In case that both gratings operate in 0

th order, a
1-to-1 imaging is achieved and ~r = ~r ′. Considering both gratings
acting in different combinations of diffraction orders, a light ray
originating from position x is imaged as follows:

◦ +1./0. order x → x− 2 f g λ

◦ +1./-1. order x → x− 4 f g λ

◦ +1./+1. order x → x

Apparently, light that follows the path of +1./0. diffraction order
is imaged from its initial position x to a wavelength dependent loca-
tion x− 2 f g λ. This implies that the focus of a non-monochromatic
beam becomes broadened depending on its spectrum. Counterintu-
itively, in +1./-1. order this effect is not compensated but doubled.
In contrast, a ray that is diffracted in +1./+1. order undergoes a
1-to-1 imaging, as sketched in figure 5.4.

Now, an estimation is given for the lateral chirp due to the spec-
tral properties of the HHG radiation as observed in the experiment.
In the literature, harmonic pulses of the 27

th order generated by a
comparable laser system are observed to have a finite spectral width
of 0.24 eV corresponding to ∆λ/λ = 0.006 [142, 143]. For the present
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wavelength of λ = 32nm this results in a bandwidth of ∆λ = 0.2nm.
The linear dispersion relation in a distance lgr to a grating is [141]

D =
∆λ

∆x
=

cosβ
mg lgr

(5.2)

where β denotes the deflection angle, m is the diffraction order
and g the groove density. For the current geometry, it takes values
of D = −1.99 nm

mm and D = 1.7 nm
mm in respective focal planes of first

and second grating. Note, that the deflection angle is different for
both gratings (69.45◦ and 72.55◦). This results in a total spatial
broadening of ∆x = 100µm + 120µm, i.e., the spectrum of a single
point is projected to a 220µm broad intensity distribution. In order
to quantify the broadening of the entire focal spot, each point of it
must be considered. Mathematically, this resembles a convolution.
Convolving two Gaussians with the standard deviation σ1 and σ2,
respectively, results in a Gaussian with the standard deviation (σ21+

σ22)
1/2. Applying that relation to assess the diameter of the chirped

intensity distribution leads to

√
d0,y +∆x = 244µm (5.3)

standing in excellent agreement to the observed value of d0,x =

249µm.

5.1.3 Results from wavefront measurement

Under the same experimental settings as during the caustic scan,
the beam of the 25

th harmonic is investigated by the wavefront sen-
sor, too. From the measured spot pattern the employed evaluation
software [144] computes the wavefront in terms of a linear super-
position of the Zernike polynomials. Under the assumption of full
coherence, beam parameters such as waist diameter, divergence or
astigmatic waist difference are derived [145]. In the following these
properties are compared to the results from the precedent caustic
scan.

The wavefront of the 25
th harmonic is depicted in figure 5.5 where

tilt and defocus terms have been subtracted. The surface resembles
a saddle indicating a dominant astigmatic aberration. The related
difference in waist positions is computed to ∆z = 91mm, standing
in good agreement to the value ∆z = 89mm which is obtained by
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Figure 5.5: Wavefront of the 25
th harmonic in a distance of 420mm behind

the expected focus position of the system, where tilt and defo-
cus aberrations have been subtracted. Below, the intensity pro-
file of the HHG beam is indicated.

the evaluation of intensity profiles. Waist diameter and beam diver-
gence are derived as well, and a comparison of the beam parameters
resulting from caustic and wavefront measurement is given in table
5.1.

Both techniques agree well to each other in all parameters except
for the horizontal waist diameter d0,x. Compared to the wavefront
measurement, the value resulting from the caustic scan is twice
as large. Again, this discrepancy can be attributed to the lateral
chirp introduced by the gratings. For the wavefront sensor the fo-
cus behind the second grating appears as a virtual source which is
horizontally broadened due to dispersion. This effectively reduces
the horizontal degree of coherence. Nonetheless, the beam param-
eters are derived from the wavefront under the assumption of full

Table 5.1: HHG beam parameters for the 25
th harmonic (λ = 32nm). Com-

parison between results from caustic scan and wavefront mea-
surement.

Astigmatic
Waist diameter Divergence

waist difference

∆z [mm] d0,x / d0,y [µm] θx / θy [mrad]

Caustic 89 249 / 105 9.0 / 9.4

Wavefront 91 124 / 136 8.9 / 8.5
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coherence and thus, the obtained waist diameter becomes underes-
timated for the x-direction.

This effect can nicely be illustrated by the individual spots which
are captured by the wavefront sensor. The Hartmann sensor can
be considered as an array of pinhole cameras. Illuminated by the
HHG beam, each sub-aperture produces an image of the virtual
source on the CCD camera, see figure 5.6. Apparently, the grating
configuration that preserves the pulse length (-1./+1. order) leads
to spots which appear horizontally elongated. With a higher reso-
lution, this would resemble the spectrum of the 25

th harmonic. In
contrast, choosing 0. diffraction order for both gratings, no disper-
sion is introduced to the beam and the spots become round.
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Figure 5.6: Individual images of the 25
th harmonic captured by different

sub-apertures of the wavefront sensor, i.e., images of the vir-
tual source behind the monochromator. Below, a chirped pulse
results in broadened spots resembling the finite spectral band-
width. Above, the chirp is avoided by choosing 0. diffraction
order for both gratings.

5.2 alignment of toroidal grating

The alignment of a single grating is demonstrated experimentally
by online measurements of the wavefront. Subsequently, simple
calculations employing matrix methods provide a theoretical vali-
dation of the observed results.
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5.2.1 The experiment

In a prospective application, the HHG radiation of the investigated
setup should be employed for coherent diffractive imaging experi-
ments. For this, an ultra-short EUV pulse length is not necessary
unless ultrafast dynamic processes shall be investigated. Thus, in
the following the intermediate focus is provided as sample position
where at least 20 times more photons are available (the diffraction
efficiency of the grating into -1. or +1. order amounts to less than
5%). Additionally, with a single grating, the linear dispersion is re-
duced by ≈ 50% leading to a smaller horizontal waist diameter. In
order to further optimize that simplified setup, aberrations in the
25

th harmonic are characterized by the wavefront sensor as sketched
in figure 5.7. Here, due to the increased beam intensity, the highly
sensitive back-illuminated camera is replaced by a phosphor coated
CCD offering smaller pixels. Detailed specifications of both cam-
eras are given in section 5.1.1.
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Figure 5.7: Setup of HHG source with a single toroidal grating acting as
monochromator. ~n denotes the normal vector of the toroidal
surface.

During online monitoring of the wavefront, the incidence angle
α between the HHG beam and the normal of the toroid is slightly
increased in steps of ∆α = 0.05◦. The deflection angle β changes
according to the grating equation [1]

sinβ− sinα = mgλ (5.4)
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with diffraction order m and groove density g. In the course of
this alignment procedure, the effective radius of the optic decreases
in tangential direction and it increases in sagittal direction. As a
consequence, the beam experiences a stronger horizontal focusing
and a weaker vertical focusing. For a certain incidence angle α0,
both focal distances equal each other and the foci coincide. A selec-
tion of three wavefronts captured at different angles α is depicted
in figure 5.8.
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Figure 5.8: HHG wavefront of 25
th harmonic for different incidence angles

α with the resulting astigmatic waist difference ∆z. Here, tilt
and defocus terms are subtracted.

Apparently, already small variations of the incidence angle lead
to a significant change of the astigmatic aberration. The curvature
of the wavefront indicates that at an incidence angle of α = 72.20◦,
the beam is horizontally divergent and vertically convergent. At
α = 72.95◦ the situation appears vice versa. Thereby, the astigmatic
waist difference ∆z changes its value from 27mm to −22mm. In
between, at α = 72.65◦ the focusing of the optic is well balanced
and ∆z vanishes. However, the wavefront is not entirely flat due to
remaining higher order aberrations.

5.2.2 Comparison between experiment and theory

In the following, the astigmatic waist difference ∆z(α) is estimated
theoretically by matrix methods and then compared to the experi-
mental results.

The fundamental laser beam is assumed to be Gaussian with a
local diameter of 8mm before it is focused into the argon filled
capillary (focal length 200mm). Thus, the divergence is ≈ 8/200 =

40mrad and with equation (3.7) and M2 = 1, the focus diameter is
derived to d0 = 25µm. The 25

th harmonic is assumed to exhibit the
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same source diameter and a divergence which is 25 times smaller
than that of the incident laser beam

d0 = 25µm ; θ = 1.6mrad. (5.5)

With these properties, the HHG beam matrix M0 introduced in
equation (3.4) is derived at source position, where all mixed mo-
ments vanish. Now, ray transformation matrices as given in the
appendix are applied to the beam matrix M0 corresponding to the
experimental situation. First, M0 is propagated to the optic by
Sprop(320mm). Then, the toroidal grating Stg(α) acts on the beam
and a subsequent propagation by Sprop(z) finally yields the system
matrix S(z,α) that transforms a beam M0 from source position to a
distance z behind the optic (according to equation (3.8))

S(z,α) = Sprop(z) · Stg(α) · Sprop(320mm)

M(z,α) = S(z,α) ·M0 · S(z,α)T . (5.6)

Here, the beam matrix is propagated to the detector position
z = 1320mm. With M(1320mm,α) the waist positions z0,x(α) and
z0,y(α) are derived by relation (3.5) and the astigmatic waist differ-
ence ∆z(α) = z0,x(α) − z0,y(α) is computed. The resulting function
∆z(α) is depicted in figure 5.9 as solid blue line together with the
values resulting from measured wavefronts. At specific positions,
two values appear due to a repetition of the measurement.

The theoretical waist difference ∆z(α) appears slightly above the
experimental values. Although the relative incidence angle is ad-
justed very precisely, its absolute value might contain a small error.
A least squares fit routine [132] results a deviation of ∆α = −0.1◦.
The resulting shifted function ∆z(α−∆α) is plotted in figure 5.9 in
dashed style revealing good agreement to the measurement. Now,
the incidence angle for a vanishing waist difference is derived to
α0 = 72.69◦. It is expected, that for this angle the photons of the
beam are focused into the smallest beam area. In the following, the
achievable intensity depending on the incidence angle is estimated
in arbitrary units.

Following relation (3.5), from matrix M(z,α) the local beam di-
ameters dx(z,α) and dy(z,α) are derived. Approximating the beam
area A(z,α) = π

4dx(z,α)dy(z,α) by an ellipse, the mean irradiance
at position z is I(z,α) = P0/A(z,α) with an arbitrary beam power
P0. Now for a specific incidence angle α, the position zmax is de-
rived which yields the maximum value of I(z,α). This achievable
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Figure 5.9: Astigmatic waist difference against incidence angle. The theo-
retical curve ∆z(α) (solid blue line) lies slightly above the ex-
perimental values (blue dots). With a shift of ∆α = −0.1◦ best
agreement is obtained (dashed blue line). The achievable irradi-
ance Imax(α) is depicted in yellow color.

irradiance Imax(α) is depicted together with the astigmatic waist dif-
ference in figure 5.9 where the coordinate shift by ∆α is included.

As expected, the highest photon flux is obtained for an incidence
angle of α0 = 72.69◦ where the astigmatic aberration disappears.
It is revealed that already a small misalignment of 0.5◦ reduces
the achievable intensity by 50%. For CDI experiments this means
that carefully aligning the toroidal grating can reduce the necessary
exposure time by a factor of two. Furthermore, phase distortions
of the illumination function are minimized which helps to suppress
reconstruction errors for phase objects.



6C O H E R E N C E M E A S U R E M E N T S AT T H E
F R E E - E L E C T R O N L A S E R F L A S H

A high degree of coherence is a peculiar feature of laser beams, in-
cluding the EUV radiation generated at FELs. Ultra high intensities
can only be achieved with coherent radiation due to constructive
interference of photons. Furthermore, a fully coherent beam can be
focused into the smallest possible, diffraction limited spot. Apart
from that, the principle of many experiments relies on this particu-
lar property. A coherent beam strongly supports multi-photon pro-
cesses [146, 147, 148] and it is the necessary condition to produce
interference effects. The latter play an elementary role in coherent
diffractive imaging [13], ptychography [17] and related techniques
[149, 14].

Existing coherence studies pose simplifying assumptions on the
FEL beam [23, 24, 25], e.g., that it can be described by the Gaus-
sian Schell-model. Here, the four-dimensional mutual coherence
function (MCF) is determined for the photon beam of FLASH with-
out theoretical restrictions. In that approach, experimental intensity
profiles of the focused FEL beam are employed to reconstruct the
Wigner distribution function (WDF) which is the two-dimensional
Fourier transform of the MCF.

In the following, the measurement at FLASH and the reconstruc-
tion of the Wigner distribution function are described. The obtained
results are presented and compared to existing studies. The applied
algorithm is critically tested by synthetic beams providing an error
estimation. Furthermore, an extension of the experimental princi-
ple is proposed which is demonstrated with different TEM modes
of a near IR laser.

This chapter is based on a previous publication [150] and has
been revised and extended partly. All experiments at FLASH have
been conducted in close collaboration with B. Keitel, E. Plönjes and
M. Kuhlmann.

79
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6.1 experiment at flash

FLASH is a single-pass free electron laser based on the SASE (self-
amplification of spontaneous emission) process. It provides highly
intense, short-pulsed radiation in the wavelength range 47 . . . 4.2nm
[93, 151, 152]. Since the exponential amplification process in a SASE
FEL starts from shot noise generated by the electron bunch, the pho-
ton radiation itself is of stochastic nature and individual pulses dif-
fer in their intensity, temporal structure, and spectral distribution.

The measurements have been performed at beamlines BL2 and
BL3 of FLASH with the FEL operating in single pulse mode at 10

Hz repetition rate. The bunch charge of the electron beam was set
to values between 0.44 . . . 0.54nC and the soft x-ray photon beam
was generated with pulse energies in the range of 30 . . . 50 µJ. Two
circular apertures are positioned in the photon beam 18.8m and
23.3m behind the center of the last undulator, i.e., the expected
source position (see figure 6.9). During the experiments always two
apertures of equal size were used, available diameters are 10mm,
5mm, 3mm and 1mm. A general description of the FLASH user
facility can be found in [94].

z

x

y

Focal planeFEL beam

Phosphor screen

CCD cameraMicroscope 10x

Ellipsoidal mirror

Figure 6.1: Setup for measurement of intensity profiles at FLASH in top
view.

During the measurement campaign at beamline BL3, the FLASH
beam was tuned to a fundamental wavelength of 24.7nm. The beam
was attenuated by two filters, a 200nm thick, meshless Zr filter
and a 198nm thick, meshless Al filter to prevent saturation of the
phosphor screen in the experimental setup, shown in figure 6.1 and
described below. Thus, based on previous studies on the spectral
composition of the FLASH beam [153, 93] and the theoretical filter
transmissions [138], 80% of the beam energy are attributed to the
fundamental wavelength, 18% to the third harmonic and 2% to the
fifth harmonic. Since the fundamental dominates for this attenua-
tion scheme, the beam is treated as monochromatic at λ = 24.7nm.
During the measurements at BL2 (λ = 25.8nm) a 101nm thick Al
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Figure 6.2: Intensity profiles of the photon beam at FLASH at a wavelength
of 24.7nm, captured at BL3.

filter together with a 420nm thick Si filter were used, both self-
supporting. This filter combination leads to a strong suppression of
the harmonics and nearly 100% of the transmitted beam energy is
concentrated in the fundamental wavelength.

The experimental setup is shown schematically in figure 6.1. The
entire EUV beam path from undulator to the depicted screen is kept
under ultra high vacuum condition. At both beamlines BL2 and
BL3, the incoming FEL beam is focused by the ellipsoidal beamline
mirror producing a focal spot 2m behind the center of the mir-
ror [94]. The body of these mirrors consists of Zerodur and the
optical surface is coated by a 45nm thick carbon layer. The spec-
ifications from the manufacturer (Zeiss) are: semi axes X = Y =

624± 30mm and Z = 36500± 100mm, surface roughness < 0.5nm
(rms), tangential slope error < 0.3 arcsec (rms) and sagittal slope
error < 1.0 arcsec (rms) . A phosphorous screen (thickness 4µm,
grain size 1µm), which is movable under vacuum, intercepts the
beam at various positions along the caustic. Thus, the beam profiles
are converted into visible wavelengths. The screen is imaged by a
10× magnifying objective to a CCD camera with 1280× 1024 pixels,
each 6.45µm in size and with a dynamic range of 12 bit (Lumenera
Lm165M). Since single pulse exposures lead to saturation effects of
the phosphor screen the exposure time is 1500 . . . 1800ms compris-
ing between 15 and 18 pulses depending on the attenuation scheme
for the corresponding measurement. A motorized translation stage
allows for an automated movement of the detector in beam direc-
tion which covers a range of up to ±11 Rayleigh lengths around
the beam waist, corresponding to 250mm. An entire measurement
involves 145 different positions zi being distributed as



82 coherence measurements at the free-electron laser flash

zi = zR tanφi

with the mean Rayleigh length zR and equidistant angles φi. This
represents tight sampling close to beam waist becoming coarser fur-
ther out. For the reconstruction of the Wigner distribution this re-
sults in a uniform mapping of the phase space.

6.2 reconstruction of the wigner distribution func-
tion

Based on the relations of section 3.4.3, the reconstruction of the
2D Wigner distribution function hx(x,u) is discussed under the as-
sumption of a separable beam since this procedure can be illus-
trated in a descriptive fashion. Equivalent steps are taken for non-
separable beams, but in a 4D phase space. In the following these
two methods are also denoted as 2D-evaluation and 4D-evaluation.

At the beginning, the intensity distributions I(x,y)|z are pro-
cessed in terms of a background correction. A dark image is sub-
tracted and an additional offset of a few counts eliminates the re-
maining noise signal. A selection from the 145 background cor-
rected beam profiles is shown in figure 6.2. Corresponding to the
caustic evaluation in section 5.1.2, waist position z0 and Rayleigh
length zR are derived in terms of mean values for x- and y-direction,
i.e., z0 = 1/2 ·

(
z0,x + z0,y

)
. In the following, the position z0 is cho-

sen as the origin of the z-axis.

6.2.1 2D-evaluation for separable beams

The reconstruction procedure is illustrated in figure 6.3 in terms of
the following steps:

(a) Each intensity profile is transformed into a 1D distribution by
the integration

Ix(x)|z =

∫
I(x,y)|z dy.

(b) A Fourier transform is applied to the individual 1D intensity
profiles

Ĩx(qx)
∣∣
z
= F [Ix(x)]z .

(c) The projection slice theorem for free beam propagation (see sec-
tion 3.4.3)

h̃x(qx, z · qx) = Ĩx(qx)
∣∣
z



6.2 reconstruction of the wigner distribution function 83

(a) 1D intensity profiles Ix(x)|z =
∫
I(x,y)|z dy at positions z.

(b) Fourier transformed intensity profiles Ĩx(qx)
∣∣
z

shown in logarithmic
scaling.
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(c) WDF in reciprocal space h̃x(qx,z ·
qx) after mapping, shown in loga-
rithmic scaling.
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(d) A Fourier back-transformation re-
sults the WDF hx(x,u) in real
space.

Figure 6.3: Reconstruction of the Wigner distribution function for separa-
ble beams. For better visibility, some intensity profiles close to
focal position are omitted. In the reciprocal Wigner space de-
picted in (c), individual lines with slope z represent the Fourier
transformed intensity profiles.
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is employed to map the resulting data sets Ĩx
∣∣
z

into the recipro-
cal phase space of the WDF. A two-dimensional regular grid is
generated that contains 1292 cells. Now, the values of each dis-
tribution Ĩx

∣∣
z

are assigned to corresponding lines in h̃x with the
slope z. The arithmetic average is applied to cells, where more
than one value is allocated. In order to achieve a uniform distri-
bution, the z-values are rescaled by the mean Rayleigh length zR
[109]. The corresponding program code which was developed
for Wolfram Mathematica is given in chapter A.2.

(d) A 2D Fourier back-transformation of the obtained matrix

hx(x,u) = F−1
[
h̃x(qx, ju)

]
finally results the WDF in real space. The edge length of a cell
in spatial direction is given by the effective pixel size of the
detector ∆x. The width of a cell in angular direction is derived
by ∆u = ∆x/zR.

6.2.2 4D-evaluation for non-separable beams

In case of a non-separable beam, basically the same actions are per-
formed as described above, but in a higher dimensional space. The
same data set of 2D intensity profiles is employed, but here, they
are not converted into 1D distributions. The phase space is four-
dimensional and is constituted by a regular grid of 1294 cells. Con-
sidering a beam propagating through free space again, the Fourier
transformed 2D intensity profiles represent planes with the slope z
in the reciprocal 4D Wigner space. Particularly, the following steps
lead to the reconstruction of the Wigner distribution:

(a) A Fourier transform is applied to the individual 2D intensity
profiles

Ĩ(~q)
∣∣
z
= F [I(~x)]z .

(b) The projection slice theorem for free beam propagation (see sec-
tion 3.4.3)

h̃(~q, z · ~q) = Ĩ(~q)
∣∣
z

is employed to map the resulting data sets Ĩ
∣∣
z

into the recipro-
cal phase space of the WDF. The corresponding program code
is given in chapter A.2.

(c) A 4D Fourier back-transformation of the obtained matrix

h(~x, ~u) = F−1
[
h̃(~q,~j)

]
finally results the WDF in real space.



6.3 results 85

It should be noted that the present optical system serves to scan
a three-dimensional volume of the radiation field only. Thus, gaps
will remain in the 4D phase space after the mapping, possibly intro-
ducing an error in the reconstruction. This issue can be addressed
by an interpolation of the empty cells, assigning the mean value
of those adjacent entries which are non-zero. However, still certain
beam properties like the twist parameter [154] can not be recovered.
Thus, a more sophisticated optical system needs to be designed pro-
viding access to the entire 4D phase space of the beam. A possible
solution is presented in section 6.5.

6.3 results

Here, the experimental results are presented for the FLASH beam,
first, under typical beamline settings. The 4D Wigner distribution
function is reconstructed for a non-separable beam and addition-
ally, under the assumption of separability. First, the discussion is
focused on the beam propagation and the difference between both
evaluation methods. Then, the coherence properties are presented
in comparison with existing studies that employ Young’s double
pinhole [23]. Furthermore, it is demonstrated how the coherence of
the FEL beam is improved by smaller apertures.

6.3.1 Propagation properties of the FLASH beam

The following discussion is based on measurements at BL3, at a
wavelength of 24.7nm with the largest apertures of 10mm diam-
eter, which practically not influence the FEL beam. The position
of these apertures is indicated in figure 6.9. A selection of the ob-
tained beam profiles is shown in figure 6.2. While close to focal
position the intensity appears uniformly distributed, a horizontal
modulation develops for increasing distances. It is assumed that
this can be attributed to a slight corrugation of the surface of the
ellipsoidal beamline mirror which is currently under investigation
[155]. Thus, due to the orientation of the long axis, especially the
horizontal propagation characteristics are affected.

The 4D Wigner distribution function of the investigated FEL beam
is represented by the projections hx(x,u) and hy(y, v) in figure 6.4.
This way, the beam propagation is visualized separately for horizon-
tal and vertical direction. A comparison of this derived projection
with the 2D Wigner distribution for separable beams reveals com-
plete conformity (compare with figure 6.3).



86 coherence measurements at the free-electron laser flash

-50 -25 0 25 50

-4

-2

0

2

4

x@µmD

u
@m

ra
d

D

(a) hx(x,u) =
∫
h(~x, ~u)dydv
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(b) hy(y,v) =
∫
h(~x, ~u)dxdu

Figure 6.4: Wigner distribution function of the FLASH beam at a wave-
length of 24.7nm, captured at BL3. The figure shows projections
of the 4D distribution.

Apparently, while hx(x,u) is distributed smoothly in spatial di-
rection x, it shows a stripe structure in angular direction u. This
feature resembles the uniform near-field profile and the developing
horizontal modulation when approaching the far-field. In contrast,
hy(y, v) is distributed rather Gaussian like for both axes y and v

corresponding to the vertical properties of near- and far-field. Qual-
itatively, an astigmatic aberration can already be identified due to
different inclinations of the distributions hx and hy. While hor-
izontally, the beam appears convergent, in vertical direction it is
divergent and thus, both foci do not coincide.
h is real, since the value of P =

∫
h(~x, ~u)d2xd2u reveals a real

part on the order of 1 and an imaginary part on the order of 10−18.
Hence, the derived mutual coherence function follows hermitian
symmetry [108].

Table 6.1: Beam propagation parameters of FLASH as resulting from the
WDF (λ = 24.7nm). The results under assumption of a separable
beam are compared to those for a non-separable beam.

Evaluation
Waist diameter Divergence

Beam quality

method factor

d0,x / d0,y [µm] θx / θy [mrad] M2x / M2y

Separable 50 / 40 5.1 / 3.7 8.1 / 4.8

Non-separable 52 / 41 5.2 / 3.6 8.6 / 4.6
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From the 4D Wigner distribution, the 4x4 beam matrix M is de-
rived by computing the second order moments. In a next step, the
positions of the foci is derived to z0,x = 8.9mm and z0,y = −8.9mm.
Thus, the astigmatic aberration can be quantified in terms of the
waist difference ∆z = 17.8mm which is equivalent to 1.7 zR, where
zR is the mean Rayleigh length. The remaining beam propagation
parameters resulting from M are summarized in table 6.1 together
with the values that result under assumption of a separable beam.
At first sight, a comparison between both evaluation methods im-
plies that the beam can be regarded as separable. However, the
presented parameters are essentially the same since they do not
depend on the mixed moments such as 〈xy〉 or 〈yu〉. In fact, the
Wigner distributions derived for separable and non-separable beam
differ from each other which will become clear in the following.

In order to verify the computed Wigner distribution, it is prop-
agated to different z-positions by relation (3.40) and then the local
near-field is reconstructed by equation (3.30). A comparison be-
tween the resulting intensity distributions with the experimental
data reveals to what extent the WDF is consistent with the real
beam properties. This validation is conducted for both evaluation
methods, for separable and non-separable beams. The results are
found in figure 6.5, where all reconstructions are constituted by 129

x 129 pixels and the measured distributions have higher resolutions.
Obviously, the assumption of a separable beam allows a repro-

duction of intensity profiles, but in a simplified fashion. In con-
trast, the algorithm that assumes non-separability nicely restores
also small features, although the resolution is significantly lower
compared to the experimental data. In more detail, this can be seen
in figure 6.6, where horizontal sections of the profile at z = −44mm
are depicted. While at position y = −7µm both reconstructions
agree well to the measured distribution, in greater distances the 2D
reconstruction results in significant deviations.

The presented comparison between both evaluation methods re-
veals that the FLASH beam has to be treated as non-separable in
order to describe it properly. However, in the following section the
coherence properties are studied also under assumption of a sepa-
rable beam, revealing to what extent both methods differ.
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Figure 6.5: Reconstruction of intensity profiles from the WDF (a), (b) in
comparison with measured data (c) at z-positions −44mm,
0mm and 97mm (from left to right). Apparently, only the for-
malism for non-separable beams results in a satisfying repro-
duction of the FLASH beam.



6.3 results 89

-200 -100 0 100 200
0.0

0.2

0.4

0.6

0.8

1.0

x@mmD

I�I
0

(a) y = −7µm

2D reconstruction
4D reconstruction

Measurement

-200 -100 0 100 200
0.0

0.2

0.4

0.6

0.8

1.0

x@mmD
(b) y = −47µm

Figure 6.6: Horizontal sections I(x) of the intensity profile at z = −44mm
resulting from the reconstruction for separable and non-
separable beam together with measured data.

6.3.2 Coherence properties of the FLASH beam

The mutual coherence function results from a 2D Fourier transfor-
mation of the WDF (see equation (3.29)) and is given in terms of
sections |Γx(x, sx)| and |Γy(y, sy)| in figure 6.7. While for sx = 0

and sy = 0 these distributions represent the intensity I(x, 0) and
I(0,y) at mean waist position, for increasing sx and sy the decay of
the coherence is revealed. Equation (3.21) is employed to quantify
the coherence lengths lx and ly which are summarized in table 6.2
based on the 2D- and the 4D-evaluation. Since especially, the rela-
tion between these values and the beam size is relevant, the local
beam diameters dx and dy are listed in table 6.2, too. In figure 6.10,
the central coherent part of the FLASH beam is indicated by the
black ellipse whereas the white ellipse confines the intensity distri-
bution. The computed values indicate that the coherent fraction of
the beam amounts to lx/dx = 0.13 and ly/dy = 0.22 in horizontal
and vertical direction, respectively.

One-dimensional sections |γx(sx)| and |γy(sy)| represent the local
degree of coherence in figure 6.8. The standard deviation of these
distributions is derived by Gaussian fit functions as indicated in the
figure by solid curves.

Finally, employing equation (3.33) the global degree of coherence
is computed for a separable and a non-separable beam. All men-
tioned coherence parameters of the FLASH beam are summarized
in table 6.2, as resulting from 2D- and 4D-Wigner evaluation and
from Young’s experiment by Singer et al. [23].

Comparing both Wigner methods, apparently, the assumption of
a separable beam results in smaller coherence parameters while the
local beam diameter is rather the same. Thus, this simplification
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Figure 6.7: Mutual coherence function of the FLASH beam at a wavelength
of 24.7nm, captured at BL3. The figure shows sections in terms
of absolute values resulting for a non-separable beam.

results in an underestimation of the global degree of coherence K
by approximately 60%. As demonstrated in the precedent section,
the FLASH beam should be treated as non-separable in order to re-
semble all propagation features in an adequate fashion. Hence, for
further discussions, only those parameters are used that are derived
by the 4D-evaluation.

Considering the results from the 4D-WDF with respect to the
double pinhole experiment, coherence length l and standard devi-
ation σγ reveal similar values. Contrarily, the local beam diameter
that is evaluated by Singer et al. through PMMA imprints is sig-
nificantly lower than the value resulting from the Wigner evalua-
tion. At the three times shorter wavelength of 8.0nm for Young’s
experiment compared to 24.7nm in the present case, a significantly
smaller beam diameter is to be expected.

However, the multi pulse exposure in the Wigner experiment
might lead to an overestimation due to a pointing instability. On
the other hand, the evaluation of PMMA imprints can also result
in underestimated beam sizes [145]. In any case, the global degree
of coherence is strongly dependent on the derived beam diameter,
as relations (3.27) and (3.36) reveal. As a consequence, the value
K = 0.032 derived from the 4D Wigner distribution is one order of
magnitude lower than the result K = 0.42± 0.09 from Singer et al..

The difference between the results for the global degree of co-
herence is surprisingly large. One possible reason for that discrep-
ancy might be that the coherence properties have changed between
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Figure 6.8: Local degree of coherence at mean waist position of the FEL
beam given in terms of the sections |γx(sx)| = |γ(0, 0, sx, 0)| and
|γy(sy)| = |γ(0, 0, 0, sy)|. The standard deviations σγx and σγy

result from the depicted Gaussian fit functions. Evaluated for a
non-separable beam.

both experiments. Note, that the wavelength during Young’s exper-
iment (8.0nm) has been significantly lower than during the Wigner
measurements (24.7nm). Possibly, this has an effect on the global
degree of coherence.

Besides, it should be clarified that the applied Wigner formalism
characterizes a large ensemble of individual pulses. Thus, pulse-to-

Table 6.2: Coherence parameters of FLASH at mean waist position in com-
parison between Wigner formalism and Young’s double pinhole
experiment [23] (Young’s experiment: λ = 8.0nm, Wigner for-
malism: λ = 24.7nm, in both cases 10mm diameter apertures are
employed).

2D-Wigner 4D-Wigner Young’s experiment

Loc. beam diameter
63 / 54 67 / 53 17 / 17

dx / dy [µm]

Coherence length
7.5 / 9.7 9.0 / 11.6 10.0 / 12.2

lx / ly [µm]

Standard deviation
4.0 / 5.1 5.5 / 7.2 6.2 / 8.7

σγx / σγy [µm]

Degree of coherence
K

0.020 0.032 0.42
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pulse fluctuations in the coherence properties, as expected due to
the statistical SASE process, are averaged to mean values.

In contrast, during Young’s experiment individual pulses are an-
alyzed and many different values for the local degree of coherence
have been found. These fluctuations could be due to a pointing
instability but could also well be attributed to inherent coherence
fluctuations. However, in the Singer experiment only the most co-
herent pulses have been employed for evaluation which results in
the best coherence properties that can be expected for the FLASH
beam.

In section 6.4, an estimation is provided for these beam instabili-
ties and the resulting error in the Wigner evaluation.

6.3.3 Influence of apertures

In this section, the coherence properties of the FLASH beam should
be improved by application of circular apertures and thus by a con-
finement of the beam divergence. The position of these apertures is
shown in figure 6.9. As routinely used by FLASH users, diameters
from 10mm down to 1mm are employed. The effect on the beam
properties is studied by the derivation of the non-separable Wigner
distribution function at mean waist position.

Last undulator

Experimental hall

BL2
BL3

18.8 m

23.3 m

48.0 m

Circular apertures 

Figure 6.9: Sktech of the beam line at FLASH with the position of the cir-
cular apertures. In all experiments, two apertures of equal size
are employed. The available diameters are 10mm, 5mm, 3mm
and 1mm.

The results are summarized in table 6.3. As can be expected [156],
employing smaller apertures leads to improved coherence proper-
ties. Mainly, this is due to a reduction of the beam’s divergence
θ. Therefore, the Wigner distribution occupies less phase space in
angular direction and, as a consequence of the well-known Fourier
relations, the extent of the mutual coherence function scales up in
s-direction, i.e., the coherence length l grows. Since therefore, the
fraction l/d increases, also the global degree of coherence is raised.
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As the measurements at BL3 reveal, the waist diameter stays more
or less constant when applying smaller apertures. Thus, only the
divergence is influenced while the source properties of FLASH stay
unaffected.

Table 6.3: Coherence parameters of FLASH for various sizes of apertures.
The values result from measurement campaigns at beamlines
BL3 and BL2 and the corresponding Wigner analysis for non-
separable beams. Note the difference between the local beam
diameter dx, given at mean waist position and the waist diam-
eter d0,x, which deviate from each other due to the astigmatic
aberration.

Aperture 10mm 5mm 3mm 1mm

Beamline 3 3 3 2

λ[nm] 24.7 24.7 24.7 25.8

d0,x / d0,y [µm] 52 / 41 48 / 42 51 / 43 38 / 34

dx / dy [µm] 67 / 53 65 / 52 60 / 48 42 / 38

θu / θv [mrad] 5.2 / 3.6 5.1 / 3.3 3.8 / 2.8 2.5 / 2.3

lx / ly [µm] 9.0 / 11.6 9.1 / 11.7 10.2 / 12.6 15.3 / 18.3

K 0.032 0.034 0.056 0.198
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Figure 6.10: Coherent fraction of the FEL beam at mean waist position,
based on the 4D Wigner evaluation. Smaller apertures increase
the coherent area whereas the beam size decreases.
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For the smallest aperture with a diameter of 1mm, the coherence
lengths are increased by a factor of ≈ 1.6. In this case, also the waist
diameters have decreased to ≈ 78% of its previous value, what can
be attributed to the situation at a different beamline (BL2): although
the FEL operating parameters were reproduced nearly as before,
the beam properties might slightly differ since the beamline optic
was not the same. As a benefit from both, a reduction of beam
divergence and local beam diameter, the global degree of coherence
is increased by a factor of 6 to a value of K = 0.198.

An illustration of the discussed beneficial effect is shown in figure
6.10 where beam area and coherent area are indicated by ellipses.
These results are especially relevant for experiments that require
certain coherence properties. For instance, in order to achieve suc-
cessful CDI results, the coherence length should be at least twice as
large as the extent of the sample [20]. Thus, in a certain range, the
FLASH beam can be optimized to fulfill the experimental needs by
an appropriate aperture.

6.4 error estimations

As previously mentioned, the investigated FEL beam poses two is-
sues in the context of the applied Wigner algorithm: beam fluctua-
tions and non-separability. In the following, both effects are investi-
gated and corresponding errors are estimated for the derived beam
parameters.

6.4.1 Beam fluctuations

In a previous section, the global degree of coherence K has been de-
rived from the WDF. Surprisingly, the computed value is one order
of magnitude lower compared to the result from Young’s experi-
ment. One possible reason for this discrepancy lies in beam fluctu-
ations due to the statistical SASE process. It can be observed that
both, beam position and beam diameter vary from pulse to pulse.

Since single FEL pulses saturate the employed phosphor screen,
an accumulation of > 15 attenuated pulses is required to achieve a
linear response. In connection with a beam instability, this averag-
ing results in broadened waist diameter and divergence angle. As a
consequence, the Wigner distribution occupies a larger phase space
and the coherence K becomes underestimated.

Here, single pulse exposures are investigated in order to quan-
tify the pointing stability of the FLASH beam and the associated
error in K. In fact, these measurements were conducted in the
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Figure 6.11: Pointing stability of the FLASH beam. The diameters of the
ellipses correspond to positional stability σx, σy and angular
stability σu, σv.

non-linear regime of the phosphor screen. However, for the follow-
ing estimations this effect plays a minor role and can be neglected.
The experiment was carried out at BL2 at a photon wavelength of
13.5nm with 10mm apertures. A series of 30 single pulses is ob-
tained for both, the near-field at z = 0 and the far-field which is
approached by z = 114mm = 11.6 zR. For all intensity profiles, the
beam position and beam diameter is evaluated by the second order
moments method [157]. The results for the far-field are converted
into angular information through a division by the distance z. In
the following, first the pointing stability is characterized and then
the fluctuation of the beam diameter is evaluated.

The pointing stability of the FLASH beam is visualized in figure
6.11 in terms of point clouds that comprise the individual beam
centroids for near- and far-field. From these data sets, the beam
positional stability σx, σy and beam angular stability σu, σv is de-
rived by computing the standard deviation [158]. Ellipses with cor-
responding diameters illustrate these values.

It is assumed, that the fluctuations observed at BL2 are similar
to those at BL3, where most of the coherence measurements were
conducted. Now, in order to correct the previously obtained beam
diameters d0,x, d0,y and divergences θx, θy from the broadening
due to the pointing stability, the values of σx, σy, σu and σv are
subtracted. This way, the overrated phase space volume is rectified.

Now the global degree of coherence is derived by

K =
16 λ2

π2
· 1

d0,xd0,yθxθy
(6.1)
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Figure 6.12: Fluctuations of beam diameter and divergence. The half-axes
of the ellipse correspond to the standard deviations of the data
sets.

with both, the corrected beam propagation parameters and the
uncorrected. It turns out, that taking the pointing stability into ac-
count results in a 1.5 times larger value for K. This is a rather mod-
erate effect, only partly causing the observed difference between the
results from Wigner and double pinhole experiment.

The variation of the beam diameters dx, dy and divergences θx,
θy are illustrated in figure 6.12 together with the corresponding
averages and standard deviations. The observed fluctuations are
rather low and amount to ≈ 3% and ≈ 5% of the mean values in
the near-field and far-field, respectively.

Applying the Gaussian law of error propagation to equation (6.1),
a standard deviation ∆K can be estimated for the global degree of
coherence employing the relative uncertainties ∆dxdx , ∆dydy , . . .

∆K =

√(
∆dx

dx

)2
+

(
∆dy

dy

)2
+

(
∆θx

θx

)2
+

(
∆θy

θy

)2
·K

= 0.08 ·K. (6.2)

From these rough estimations the following facts can be con-
cluded:

◦ The pointing variations lead to an underestimation of the co-
herence K, the real value is 50% larger.

◦ Beam fluctuations allow the determination of K within an un-
certainty level of 8%.
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Thus, based on the 4D Wigner evaluation, the global degree of
coherence for the FLASH beam can now be specified by

K = 0.048± 0.004 (6.3)

for a wavelength of 24.7nm and apertures of 10mm diameter.
Apparently, these estimations do not explain the large difference
in K with respect to Young’s experiment (see table 6.2). Conse-
quently, pointing instability and coherence fluctuations can not be
the main reason for this discrepancy. As already mentioned in sec-
tion 6.3.2, an explanation for the remaining difference could be that
beam diameters are evaluated differently (Young - PMMA imprints
↔Wigner - phosphor screen). Furthermore, the double pinhole ex-
periment has been conducted at a significantly lower wavelength
(8.0nm) as compared to the measurement of the Wigner distribu-
tion (24.7nm). Thus, the coherence might have been lower in the
latter case.

6.4.2 Coverage of phase space

The presented results reveal that the FLASH beam is non-separable
and hence, the corresponding 4D Wigner formalism needs to be ap-
plied. In that case, a four-dimensional distribution is reconstructed
from a three-dimensional intensity measurement. Thus, gaps will
remain in the reciprocal phase space leading to a computed Wigner
distribution which possibly deviates from the true Wigner distri-
bution. This issue is addressed by the interpolation procedure de-
scribed in section 6.2 but cannot entirely be eliminated. Therefore,
the error of the derived beam properties due to the incomplete data
set should be classified.

For that purpose, a set of intensity profiles of a Gaussian Schell-
model beam is generated to benchmark the applied procedures.
Here, the same wavelength, waist positions, waist diameters and di-
vergences are used as present during the measurements at FLASH.
It can be expected that this simulated beam occupies a comparable
phase space as the FEL beam, and that the gaps remaining after the
mapping procedure are similar. The accuracy of the algorithm is
then estimated by a comparison between the computed coherence
parameters and their theoretical values.
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Figure 6.13: Wigner distribution function of a Gaussian Schell-model beam,
simulated with beam parameters as found for the FLASH
beam. The figure shows projections of the 4D distribution.

The intensity distribution of a Gaussian Schell-model beam is
given by [107]

I(x,y, z) =
I0

dx(z)dy(z)/(d0,x d0,y)
· exp

[
−8 x2

dx(z)2
+

−8 y2

dy(z)2

]
(6.4)

with the local beam diameter dx(z), as given in equation (3.9).
I(x,y, z) is evaluated with the same discretization and at the same
positions as during the experiment at FLASH, resulting in 145 in-
tensity profiles with a pixel size of 0.645µm. From the design pa-
rameters λ, d0,x and θu, the global degree of coherence is derived
by K = Kx · Ky with Kx = 4

π ·
λ

d0,xθu
and the coherence length by

lx = Kx · dx [107]. An overview of these values is given in table 6.4.
The computed Wigner distribution function of the Gaussian Schell-

model beam is depicted in terms of projections in figure 6.13. It
has been derived from the simulated intensity profiles with the 4D
formalism, i.e., without the assumption of a separable beam. Ap-
parently, the reconstruction does not show any artifacts. This is still
the case when a noise level is included, which is comparable to the
experimental data. Thus, the structures in the corresponding distri-
bution derived for the FLASH beam shown in figure 6.4 are very
likely not due to numerical errors and can be attributed to physical
properties.

In Table 6.4 all beam parameters derived for the Gaussian Schell-
model beam are summarized. It is revealed that from the Wigner
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Table 6.4: Beam parameters of a synthetic Gaussian Schell-model beam, de-
rived by the four-dimensional Wigner formalism. Design param-
eters are chosen corresponding to previous results for the FLASH
beam as summarized in table 6.1.

Design
parameters

Wigner
evaluation

d0,x / d0,y [µm] 52 / 41 52 / 42

θu / θv [mrad] 5.2 / 3.6 4.7 / 3.0

M2x / M2y 8.6 / 4.6 7.7 / 4.0

lx / ly [µm] 8.1 / 11.1 8.1 / 11.0

K 0.025 0.030

distribution function all predefined beam parameters can be recov-
ered with acceptably small deviations. For instance, the procedure
results in a global degree of coherence of 0.030 which is 20% above
the theoretical value of 0.025. All other beam parameters are repro-
duced with better accuracy.
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6.5 4d measurement

The measurements at FLASH have unveiled non-separability of the
investigated FEL beam which involves the need to scan its entire
4D phase space. However, the employed optical system suffices to
access a 3D sub-manifold only. This issue can be overcome by a suit-
able extension of the experimental setup offering one further degree
of freedom. In the following, a possible realization is proposed that
includes a rotatable toroidal mirror. The system is tested employing
a near IR laser with an adjustable resonator. Several TEM modes
are investigated and the derived Wigner distributions are compared
to theoretical predictions.

6.5.1 Experimental setup

In the visible range, a complete mapping of the 4D phase space of
non-separable beams can be achieved by a combination of a spher-
ical and a rotatable cylindrical lens [159]. Here, the experiment
should be applicable especially to wavelengths in the EUV range,
where no transmissive lenses are available. A convenient alterna-
tive is given by a toroidal mirror, acting as the only optical element.
Figure 6.14 shows a possible arrangement, where the mirror reflects
a laser beam under a small incidence angle. The subsequent beam
propagation is captured in terms of intensity profiles by a movable
CCD camera. Now, an additional degree of freedom is provided by
a rotation of the toroidal mirror about its normal axis.
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Figure 6.14: Setup for a 4D measurement of the Wigner distribution. A
distinction is made between the beam system with z < 0 and
the camera system with z > 0, whereas propagation parameters
in the camera system are denoted by a ′.
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Here, the proposed arrangement is used to capture the WDF of
a near IR beam provided by a diode pumped Nd:YVO4 laser at
the fundamental wavelength of λ = 1064nm. With an adjustable
hemispherical resonator, different TEM modes and their superposi-
tions can be generated. The employed toroidal mirror is made of
an aluminum alloy with the radii R1 = 300mm and R2 = 200mm
at a surface roughness 6 12nm and shape accuracy 6 1µm (as
specified by the manufacturer LT Ultra). A motorized stage allows
rotation within the range φ = −π . . . π about its symmetry axis.
The CCD camera offers 1280× 1024 pixels on a 2/3" chip with a dy-
namic range of 12 bit (Lumenera Lw160M). It is movable within dis-
tances of z = 70mm . . . 200mm to the mirror. In order to approach
isotropic mapping in reciprocal phase space, two sets of z-positions
are employed, distributed as

zx,i =
zR tanϕi − z0

1− 2/R1(zR tanϕi − z0)

zy,i =
zR tanϕi − z0

1− 2/R2(zR tanϕi − z0)
(6.5)

with the mean Rayleigh length zR in the beam system and equidis-
tant angles ϕi. These relations result from tanϕ = B/A, where A,
B are sub-matrices of the system matrix S which is derived in the
following discussion. ϕ is the angle of a target plane defined by the
general mapping equation (3.42). Here, the reflection angle at the
mirror has been approximated by α = 0.

Practically, the z-positions (6.5) represent tight sampling of the
beam waists behind the toroid, becoming coarser apart. During
the experiment, 1000 intensity profiles are captured at 100 different
z-positions with 10 equidistant rotation angles of the mirror.

6.5.2 Data evaluation

In order to retrieve the WDF from experimental data, the system
needs to be described by an ABCD-matrix. This is realized by

S(φ, z) = Sprop(z) · Soptic(φ) · Sprop(−z0)

Soptic(φ) = Stilt(α) · Srot(φ) · Storoid · S−1rot (φ) · S
−1
tilt (α) (6.6)

representing the propagation from mean waist position in the
beam system z0 to the camera position z. With the system ma-
trix S(φ, z), equation (3.42) defines the mapping procedure of 2D
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intensity information into the reciprocal 4D phase space. The cor-
responding program code which was developed for Wolfram Math-
ematica is given in chapter A.2. The reconstruction proceeds as
described in section 6.2. Finally, the derived Wigner distribution
function describes the laser beam at its mean waist position before
being reflected by the mirror.

Before the reconstruction starts, mean waist position z0 and Ray-
leigh length zR in the beam system need to be determined. Thus,
for the aligned case φ = 0, the parameters z ′0, z ′R and d ′0 are first
derived in the camera system, separately for x- and y-direction as
described in section 5.1.2. Then, a 2× 2 beam matrix is generated
at the horizontal waist position z ′0,x by

M ′x =

(
(d ′0,x/4)

2 0

0 (d ′0,x/4z
′
R,x)

2

)
. (6.7)

Transformation of M ′x into the beam system is accomplished by
the 2× 2 propagation matrix Sx = Sprop(z

′
0,x) · Soptic(φ = 0) and the

propagation relation

Mx = S−1x ·M ′x · (S−1x )T . (6.8)

From the resulting beam matrix Mx, the horizontal beam param-
eters z0,x and zR,x are derived by relation (3.5). Correspondingly,
this procedure is applied for the vertical direction and then, mean
values are computed for waist position and Rayleigh length in the
beam system.

6.5.3 Experiment and theory

In this section, it should be proved, that the presented setup is
capable of capturing the Wigner distribution function of complex
and non-separable beams. The aim is to generate specific Hermite-
Gaussian beams, also denoted as TEM modes, which can be de-
scribed theoretically. This way, a comparison can be drawn between
experimental results and theoretical descriptions.

The Wigner distribution function of a Hermite-Gaussian beam is
given by hnm(~x, ~u) = hn(x,u) · hm(y, v) with [108]

hn(x,u) =
(−1)n

π
exp

[
−
8x2

d20,x
−
8u2

θ2x

]
Ln

[
2

(
8x2

d20,x
+
8u2

θ2x

)]
(6.9)
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where θx = 4λ/(πd0,x) sets the divergence in relation to the waist
diameter and Ln denotes the Laguerre polynomial of degree n. Sin-
gle TEM modes result in a global degree of coherence K = 1 and in
a high order, they exhibit complex intensity profiles as can be seen
in figure 6.15. However, they are always separable. In contrast, the
uncorrelated superposition of a TEM10 and a TEM01 beam

hsp(~x, ~u) = h10(~x, ~u) + h01(~x, ~u) (6.10)

is non-separable. Here, the global degree of coherence is K = 0.5.
In this case, the intensity profile shows a ring structure as depicted
in figure 6.15(d).
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Figure 6.15: Intensity profiles of different TEM modes. The single modes
TEM10, TEM02 and TEM03 are shown in (a), (b) and (c). In
(d), an uncorrelated superposition of a TEM10 and a TEM01
beam is depicted.

Wigner distribution functions of Hermite-Gaussian beams are de-
picted in figure 6.16 as derived from theory and experiment up
to order n = 3. Qualitatively, it is revealed that the measured
data sets suffice to successfully reconstruct the WDF of the chosen
modes. Sub-figures 6.16(a) and 6.16(b) show the vertical and hori-
zontal projection resulting for a TEM10 beam, corresponding to a
Hermite-Gaussian mode of the order n = 1 and m = 0. Obviously,
the 4D distribution separates properly into horizontal and vertical
mode. Sub-figures 6.16(a) and 6.16(b) are produced from a TEM02

and TEM03 beam.
In summary, the theoretical distributions could well be repro-

duced in the experiment. However, numerical artifacts cannot en-
tirely be avoided leading to small deviations from a perfect recon-
struction. On the other hand, it is possible that the experimental
beam contains tiny contributions of deviant modes or amplified
spontaneous emission, too.



104 coherence measurements at the free-electron laser flash

-500 0 500

-2

0

2

y@µmD
v

@m
ra

d
D

-500 0 500

-2

0

2

y@µmD

v
@m

ra
d

D

(a) h0(y,v) from TEM10
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(b) h1(x,u) from TEM10
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(c) h2(y,v) from TEM02
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(d) h3(y,v) from TEM03

Figure 6.16: Wigner distribution functions of different Hermite-Gaussian
beams in theory (left) and experiment (right). h0 and h1 rep-
resent horizontal and vertical projections from the 4D WDF of
a TEM10 mode. h2 and h3 result from TEM02 and TEM03
beams.
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The Wigner distribution function of the non-separable superpo-
sition TEM10 + TEM01 is shown in figure 6.17. Projections of the
4D WDF are employed for visualization whereas in theory, both
projections are identical. Thus, only the horizontal distribution is
shown. Again, the theoretical prediction is well resembled by the
measurement. Here, the experimental distributions appear slightly
sheared in opposing directions indicating a small astigmatic aberra-
tion. This could be expected since the laser resonator was tweaked
strongly in order to produce this particular beam.
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(b) Experiment

Figure 6.17: Wigner distribution function of the uncorrelated superposition
TEM10 + TEM01 in theory (a) and experiment (b). Projections
from the 4D distribution are shown.

Quantitatively, the derived WDFs are characterized by the global
degree of coherence K. Theoretical and experimental values of
five different beams are given in table 6.5. A comparison shows
good agreement, only small variations of below 10% can be found.
As already mentioned, the investigated beams could contain small
amounts of parasitic modes leading to a slight reduction of the co-
herence. The same effect arises from amplified spontaneous emis-
sion, which was weakly present during the experiment. Thus, it can
well be that the accuracy of the algorithm is even better than 10%.

Table 6.5: Global degree of coherence K for different Hermite-Gaussian
beams in theory and experiment.

TEM00 TEM10 TEM02 TEM03
TEM10

+ TEM01

Theory 1 1 1 1 0.5

Experiment 0.95 1.06 0.98 0.90 0.46
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Finally, the presented results prove the capability of the system
to capture the Wigner distribution function of non-separable and
complex beam structures. The use of a reflecting optic allows ap-
plication to EUV and soft x-ray beams, as produced by FELs and
synchrotrons. However, then the employed toroidal mirror has to
meet additional requirements, i.e., surface roughness and shape ac-
curacy should amount less than the wavelength of the investigated
radiation.
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This work addresses EUV and soft x-ray radiation in terms of beam
generation, transport and coherence. Knowledge and control of
these three aspects are fundamental for corresponding applications,
such as EUV lithography, spectral analysis of molecules or high
resolution imaging in the water window with and without lenses.
Mostly, these methods have been developed at large scale facilities
as synchrotrons or FELs. However, further dissemination of such
enabling technologies requires availability of simple and compact
beam sources that provide a sufficient number of photons.

Thus, in a first part the brilliance enhancement of a clean laser
produced plasma source is demonstrated for the generation of wa-
ter window radiation. The idea is that by increasing the density of
a gaseous Nitrogen target, a higher number of particles is ionized
and more soft x-ray photons are produced. For that purpose, a low
pressure ambient atmosphere is applied to the supersonic gas jet
leading to a barrel shock. A plasma that is generated in an associ-
ated high density region becomes seven times brighter and slightly
smaller and hence, the source brilliance increases by one order of
magnitude. As a side effect, the erosion of the nozzle is minimized
since the optimized plasma is situated in a nearly four times greater
distance to it.

Generally, all applications of the plasma source benefit from that
optimization. In particular, it facilitates the construction of a com-
pact x-ray microscope with reasonable means [160]. Where so far,
only sophisticated liquid targets resulted in acceptable exposure
times, now a simple and clean target concept permits microscopic
x-ray imaging at magnifications up to 500x within minutes.

Besides the provision of a sufficient number of photons, a proper
beam transport is equally important to achieve an optimum inten-
sity at sample position. With a Hartmann type wavefront sensor,
this property is investigated at an HHG setup where toroidal grat-
ings achieve both, spectral filtering and focusing of EUV radiation.
In an online adjustment it is revealed that already a tiny misalign-
ment of these optical elements leads to significant aberrations and
a corresponding loss of intensity. A theoretical approach confirms
the observed results. The conducted alignment increases the high-
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est achievable intensity by a factor of two. For CDI experiments
this procedure is also crucial in order to achieve a flat phase distri-
bution at sample position which prevents reconstruction errors of
phase shifting objects.

The last part of this work focuses on coherence properties of EUV
beams. Employing the concept of the Wigner distribution func-
tion, this special property is characterized for the free-electron laser
FLASH by capturing intensity profiles behind the ellipsoidal beam-
line mirror. With respect to existing publications of interference ex-
periments, this investigation results in a surprisingly low value for
the global degree of coherence. The influence of pulse to pulse fluc-
tuations and a possible lack of experimental data is studied. Nev-
ertheless, these effects can not explain the observed discrepancy of
one order of magnitude entirely. It is conceivable that this discrep-
ancy is also a result of different wavelengths of the FEL beam, and
that in fact, the coherence is lower at a higher wavelength as it was
present during the Wigner measurement.

Since the employed setup provides access to a 3D sub-manifold
of the 4D phase space only, an extension of the measurement by a
rotatable toroidal mirror is proposed. The proper functionality is
proved with complex and non-separable beams provided by a near
IR laser that generates Hermite-Gaussian modes and their super-
positions. A comparison is drawn between theoretical expectations
and experimental results, revealing a good agreement. Application
of the system to FEL sources can easily be accomplished, since only
reflective optics are employed. In the future, the attainable knowl-
edge of the entire mutual coherence function provides the basis for
further developments in the field of coherent imaging. It enables
successful CDI experiments with less coherent beams, it improves
reconstruction procedures by providing an initial guess, and, by
knowing the illumination function, the influence of aberrations can
be eliminated.
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a.1 ray transformation matrices

The following ray transformation matrices can be found in [161, 162,
108].

◦ Free propagation by a distance z

Sprop(z) =


1 0 z 0

0 1 0 z

0 0 1 0

0 0 0 1

 (A.1)

◦ Cylindrical lens with focal lengths fx and fy

Slens =


1 0 0 0

0 1 0 0

−1/fx 0 1 0

0 −1/fy 0 1

 (A.2)

◦ Toroidal mirror with tangential radius Rt
and sagittal radius Rs

Storoid =


1 0 0 0

0 1 0 0

−2/Rt 0 1 0

0 −2/Rs 0 1

 (A.3)
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◦ Rotation by an angle φ about z-axis

Srot(φ) =


cos(φ) − sin(φ) 0 0

sin(φ) cos(φ) 0 0

0 0 cos(φ) − sin(φ)

0 0 sin(φ) cos(φ)

 (A.4)

◦ Tilt by an angle α about y-axis

Stilt(α) =



√
cos(α) 0 0 0

0 1√
cos(α)

0 0

0 0 1√
cos(α)

0

0 0 0
√

cos(α)

 (A.5)

◦ Toroidal grating with tangential radius Rt and sagittal radius
Rs, incidence angle α and deflection angle β

Stg =


Mmag 0 0 0

0 1 0 0

−2/R ′t 0 1/Mmag 0

0 −2/R ′s 0 1

 (A.6)

with

R ′t =
2 cos(α) cos(β)
cos(α) + cos(β)

Rt

R ′s =
2

cos(α) + cos(β)
Rs

Mmag =
cos(β)
cos(α)

β(α) = arcsin (mλg+ sin(α))

where m denotes the diffraction order and g the groove den-
sity.
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a.2 wigner reconstruction algorithm

Here, the program code is presented that is employed to reconstruct
the Wigner distribution function from intensity profiles. This algo-
rithm was developed within the environment of the Wolfram Math-
ematica 8 [132]. In order to preserve a reasonable length of this
chapter, the focus is put on the core components of the program.

Module A.1: The function Mapping2D has three arguments: distrib is a
list of one-dimensional, Fourier transformed discrete intensity
profiles, where each profile is measured at a position zi. m is
a list of the positions zi, divided by the mean Rayleigh length
zR. hsize is a positive integer that determines the size of the
computed 2D array. Mapping2D returns a 2D array h, repre-
senting the Wigner distribution of a separable beam in Fourier
space.

Mapping2D[distrib_,m_,hsize_]:=Block[{matrix=Table[0,{z,1,2},{k

,1,hsize},{l,1,hsize}]},

imax=Length[distrib[[1]]];

Do[

b=1/2*(hsize-m[[z]]*hsize);

If[-1<=m[[z]]<=1,

Do[

icoord=Round[(i-.5)/imax*hsize+.5];

jcoord=Round[m[[z]]*(i-.5)/imax*hsize+b+.5];

matrix[[1,jcoord,icoord]]=matrix[[1,jcoord,icoord]]+distrib[[z,i

]];

matrix[[2,jcoord,icoord]]=matrix[[2,jcoord,icoord]]+1;

,{i,1,imax}],

Do[

icoord=Round[((j-.5)/imax*hsize-b)/m[[z]]+.5];

jcoord=Round[(j-.5)/imax*hsize+.5];

matrix[[1,jcoord,icoord]]=matrix[[1,jcoord,icoord]]+distrib[[z,j

]];

matrix[[2,jcoord,icoord]]=matrix[[2,jcoord,icoord]]+1;

,{j,1,imax}]

]

,{z,1,Length[distrib]}];

matrix[[2]]=Table[

If[matrix[[2,j,i]]!=0,
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matrix[[2,j,i]],

1]

,{j,1,Length[matrix[[2]]]},{i,1,Length[matrix[[2,1]]]}];

matrix[[1]]/matrix[[2]]] �
Module A.2: The function Mapping3D has three arguments: fourier is a

list of two-dimensional, Fourier transformed discrete intensity
profiles, where each profile is measured at a position zi. m
is a list of the positions zi, divided by the mean Rayleigh
length zR. hsize is a positive integer that determines the size
of the computed 4D array. Mapping3D returns a 4D array h,
representing the Wigner distribution of a non-separable beam
in Fourier space.

Mapping3D[fourier_,m_,hsize_]:=Block[{h,hcount,ymax,xmax,b,k,l,i,

j},

h=ConstantArray[0.+0.I,{hsize,hsize,hsize,hsize}];

hcount=ConstantArray[0,{hsize,hsize,hsize,hsize}];

ymax=Length[fourier[[1]]];

xmax=Length[fourier[[1,1]]];

Do[

b=1/2*(hsize-m[[zi]]*hsize);

If[-1<=m[[zi]]<=1,

Do[

i=Round[(x-.5)/xmax*hsize+.5];

j=Round[(y-.5)/ymax*hsize+.5];

k=Round[(m[[zi]]*(x-.5))/xmax*hsize+b+.5];

l=Round[(m[[zi]]*(y-.5))/ymax*hsize+b+.5];

hcount[[l,k,j,i]]=hcount[[l,k,j,i]]+1;

h[[l,k,j,i]]=h[[l,k,j,i]]+fourier[[zi,y,x]];

,{y,1,ymax},{x,1,xmax}],

Do[

k=Round[(x-.5)/xmax*hsize+.5];

l=Round[(y-.5)/ymax*hsize+.5];

i=Round[((x-.5)/xmax*hsize-b)/m[[zi]]+.5];

j=Round[((y-.5)/ymax*hsize-b)/m[[zi]]+.5];

hcount[[l,k,j,i]]=hcount[[l,k,j,i]]+1;

h[[l,k,j,i]]=h[[l,k,j,i]]+fourier[[zi,y,x]];

,{y,1,ymax},{x,1,xmax}]
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]

,{zi,1,Length[fourier]}];

entries=Position[hcount,x_/;x>0];

Do[

h[[entries[[n,1]],entries[[n,2]],entries[[n,3]],entries[[n,4]]]]=

h[[entries[[n,1]],entries[[n,2]],entries[[n,3]],entries[[n

,4]]]]/hcount[[entries[[n,1]],entries[[n,2]],entries[[n,3]],

entries[[n,4]]]];

,{n,1,Length[entries]}];

h] �
Module A.3: Here, the mapping procedure of the 4D Wigner measurement

is described. First, the propagation matrices are defined and
the system matrix S is derived. Then, S is evaluated for all
captured intensity profiles with the corresponding parame-
ters (α, R1, R2, φ, z0, z, see section 6.5.2) which are com-
prised in the list parameters. The derived system matrices are
listed in the global variable Sn. The function Mapping4D has
two arguments: fourier is a list of two-dimensional, Fourier
transformed discrete intensity profiles. hsize is a positive inte-
ger that determines the size of the computed 4D array. Map-
ping4D returns a 4D array h, representing the Wigner distri-
bution of a non-separable beam in Fourier space.

Sprop[z_] := {

{1, 0, z, 0},

{0, 1, 0, z},

{0, 0, 1, 0},

{0, 0, 0, 1}};

Stilt[\[Alpha]_] := {

{Sqrt[Sin[\[Alpha]]], 0, 0, 0},

{0, 1/Sqrt[Sin[\[Alpha]]], 0, 0},

{0, 0, 1/Sqrt[Sin[\[Alpha]]], 0},

{0, 0, 0, Sqrt[Sin[\[Alpha]]]}};

Storoid[R1_, R2_] := {

{1, 0, 0, 0},

{0, 1, 0, 0},

{-2/R1, 0, 1, 0},

{0, -2/R2, 0, 1}};
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Srot[\[Phi]_] := {

{Cos[\[Phi]], Sin[\[Phi]], 0, 0},

{-Sin[\[Phi]], Cos[\[Phi]], 0, 0},

{0, 0, Cos[\[Phi]], Sin[\[Phi]]},

{0, 0, -Sin[\[Phi]], Cos[\[Phi]]}};

S[zcam_, \[Alpha]_, \[Phi]_, R1_, R2_, zbeam_] := FullSimplify[

Sprop[zcam].Stilt[\[Alpha]].Srot[\[Phi]].Storoid[R1, R2].Inverse[

Srot[\[Phi]]].Inverse[Stilt[\[Alpha]]].Sprop[zbeam]

];

Sn=Table[S[parameters[[n,6]],parameters[[n,4]]Degree,-parameters

[[n,5]]Degree,parameters[[n,2]],parameters[[n,3]],-(z0mean)

],{n,1,Length[parameters]}];

ScalingUV=1/(zRmean);

Mapping4D[fourier_,hsize_]:=Block[{h,hcount,ymax,xmax,k,l,i,j},

h=ConstantArray[0.+0.I,{hsize,hsize,hsize,hsize}];

hcount=ConstantArray[0,{hsize,hsize,hsize,hsize}];

ymax=Length[fourier[[1]]];

xmax=Length[fourier[[1,1]]];

Do[

Do[

i=Round[Sn[[n,1,1]](x-.5)/xmax*hsize + Sn[[n,2,1]](y-.5)/ymax*
hsize +.5 + 1/2 hsize(1-Sn[[n,1,1]]-Sn[[n,2,1]])];

j=Round[Sn[[n,1,2]](x-.5)/xmax*hsize + Sn[[n,2,2]](y-.5)/ymax*
hsize +.5 + 1/2 hsize(1-Sn[[n,1,2]]-Sn[[n,2,2]])];

k=Round[ScalingUV*Sn[[n,1,3]](x-.5)/xmax*hsize + ScalingUV*Sn[[n

,2,3]](y-.5)/ymax*hsize +.5 + 1/2 hsize(1-ScalingUV*Sn[[n

,1,3]]-ScalingUV*Sn[[n,2,3]])];

l=Round[ScalingUV*Sn[[n,1,4]](x-.5)/xmax*hsize + ScalingUV*Sn[[n

,2,4]](y-.5)/ymax*hsize +.5 + 1/2 hsize(1-ScalingUV*Sn[[n

,1,4]]-ScalingUV*Sn[[n,2,4]])];

If[1<=i<=hsize && 1<=j<=hsize && 1<=k<=hsize && 1<=l<=hsize,

hcount[[l,k,j,i]]=hcount[[l,k,j,i]]+1;

h[[l,k,j,i]]=h[[l,k,j,i]]+fourier[[n,y,x]];];

,{y,1,ymax},{x,1,xmax}];

,{n,1,Length[fourier]}];

entries=Position[hcount,x_/;x>0];
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Do[

h[[entries[[n,1]],entries[[n,2]],entries[[n,3]],entries[[n,4]]]]=

h[[entries[[n,1]],entries[[n,2]],entries[[n,3]],entries[[n

,4]]]]/hcount[[entries[[n,1]],entries[[n,2]],entries[[n,3]],

entries[[n,4]]]];

,{n,1,Length[entries]}];

h] �
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Electromagnetic radiation in the extreme UV and soft x-ray spectral range is of 
steadily increasing importance in fundamental research and industrial applica-

tions. An optimum use of the available photons can only be achieved under con-
dition of a comprehensive beam characterization. Following that goal, this work 
addresses the pathway of extreme UV and soft x-ray radiation from its generation, 
through the beam transport by the beamline to the probe position. Experimen-
tally, those aspects are optimized at a laser-produced plasma source and at an 
arrangement for the generation of high-harmonics. Additionally, the coherence of 
laser beams is analyzed by measurements of the Wigner distribution function. This 
method is applied to the photon beam of the free-electron laser FLASH, resulting 
in the entire characterization of its propagation properties.
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