Accelerator Laboratory: Introduction to Beam Diagnostics and Instrumentation

Gero Kube, Kay Wittenburg
DESY / MDI

- Introduction
- Beam Position Monitor
- Transverse Emittance / Beam Profile

37th ICFA Advanced Beam Dynamics Workshop, Frascati, Italy
Diagnostics and Instrumentation

instrumentation
- catchword for all technologies needed to produce primary measurements of beam parameters

diagnostics
- making use of these instruments in order to
 - operate the accelerators
 - orbit control
 - improve the accelerator performance
 - feedback, emittance preservation
 - deduce additional beam parameters or performance indicators of the machine by further data processing
 - chromaticity measurements, betatron matching, … (examples for circular accelerator)
 - detect equipment faults

outline
- emphasis on beam instrumentation

H. Schmickler, Introduction to Beam Diagnostics, CAS 2005
Beam Instrumentation for...

- **beam position**
 - orbit, lattice parameters, tune, chromaticity, feedback,…

- **beam intensity**
 - dc & bunch current, coasting beam, lifetime, efficiencies,…

- **beam profile**
 - longitudinal and transverse distributions, emittances,…

- **beam loss**
 - identify position of losses, prevent damage of components,…

- **beam energy**
 - mainly required by users,…

- **luminosity (collider)**
 - key parameter, collision optimization,…

and even more: charge states, mass numbers, timing…
Beam Monitors: Physical Processes

- **influence of particle electromagnetic field**
 - **non-propagating fields**, i.e. electro-magnetic influence of moving charge on environment
 - → beam transformers, pick-ups, …
 - **propagating fields**, i.e. emission of photons
 - → synchrotron radiation monitors, (OTR), …

particle electromagnetic field

- relativistic contraction characterized by Lorentz factor $1/\gamma$

- electric field lines in LAB frame

- proton: [image]
- electron: [image]
Beam Monitors: Physical Processes

- non-propagating field

\[\text{Observer} \]

\[\rho = 40 \text{ mm} \]

- propagating field
 (synchrotron radiation)

\[\text{E}_{\text{kin}} = 20 \text{ GeV} \]
\[\rho = 370 \text{ m} \]
Beam Monitors: Physical Processes

Coulomb interaction of charged particle penetrating matter

→ viewing screens, residual gas monitors, …

![Graph showing electron energy loss](image)

Bethe Bloch Equation („low-energy approximation“)

- **constants:**
 - N_A: Avogadro number
 - m_e, r_e: electron rest mass, classical electron radius
 - c: speed of light

- **target material properties:**
 - ρ: material density
 - AT, ZT: atomic mass, nuclear charge
 - I: mean excitation energy

- **particle properties:**
 - Z_p: charge
 - β: velocity, with $\beta = \frac{p}{Me}$, where p is the proton momentum [GeV/c]

Electrons: Bremsstrahlung

![Diagram showing Bremsstrahlung](image)
Beam Monitors: Physical Processes

- **nuclear or elementary particle physics interactions**
 - beam loss monitors, luminosity monitors...

electrons
- simple (point) objects
- interaction cross sections into final states can be calculated precisely

hadrons
- constituent nature (collection of quarks and gluons)
- interaction cross sections not precisely calculable

- **interaction of particles with photon beams**
 - laser wire scanners, Compton polarimeters, ...

electrons: Compton scattering

hadrons: laser photo neutralization (H- beam)

applied for high power H- beam profile diagnostics
Signal Processing

- **system approach**

 ![Diagram of a signal processing system](image)

 Input $x(t)$ → **System Response** $h(t)$ → **Output** $y(t)$

 time domain

 frequency domain

- **monitors probing (non-propagating) el.magn. field**

 - **input**: beam current spectrum $I(\omega)$

 - **system response**: monitor impedance $Z(\omega)$

 - **output**: voltage $U(\omega)$

- **design task**

 proper impedance matching to maximize monitor output → sensitivity

- **monitor input**

 - radiation spectrum
 - secondary particles
 -...

37th ICFA Advanced Beam Dynamics Workshop, Frascati, Italy, 23./27. October 2015

Gero Kube & Kay Wittenburg, DESY / MDI
Beam Position Monitor
(BPM)
Beam Position Monitors

short version of E-XFEL BPM specification

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Beam Pipe Length</th>
<th>Beam Type</th>
<th>Single Bunch Resolution (RMS)</th>
<th>Train Averaged Resolution (RMS)</th>
<th>Optimum Resolution Range</th>
<th>Relaxation Crosstalk Range</th>
<th>x/y Crosstalk Tolerance (RMS)</th>
<th>Bunch to Bunch Crosstalk Tolerance (RMS)</th>
<th>Trans. Alignment Tolerance (RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard BPM</td>
<td>219</td>
<td>mm</td>
<td>mm</td>
<td>Button</td>
<td>50 µm</td>
<td>± 3.0 mm</td>
<td>± 10 %</td>
<td>10 µm</td>
<td>10 µm</td>
<td>200 µm</td>
</tr>
<tr>
<td>Cold BPM</td>
<td>102</td>
<td>78 mm</td>
<td>170 mm</td>
<td>Button/Re-entrant Cavity</td>
<td>50 µm</td>
<td>± 3.0 mm</td>
<td>± 10 %</td>
<td>10 µm</td>
<td>300 µm</td>
<td></td>
</tr>
<tr>
<td>Cavity BPM Beam Transfer Line</td>
<td>12</td>
<td>40.5 mm</td>
<td>255 mm</td>
<td>Cavity</td>
<td>10 µm</td>
<td>± 1.0 mm</td>
<td>± 2 %</td>
<td>1 µm</td>
<td>1 µm</td>
<td>200 µm</td>
</tr>
<tr>
<td>Cavity BPM Undulator IBFB</td>
<td>117</td>
<td>10 mm</td>
<td>100 mm</td>
<td>Cavity</td>
<td>1 µm</td>
<td>± 0.5 mm</td>
<td>± 2 %</td>
<td>1 µm</td>
<td>0.1 µm</td>
<td>50 µm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>200 mm</td>
<td>255 mm</td>
<td>Cavity</td>
<td>1 µm</td>
<td>± 1.0 mm</td>
<td>± 2 %</td>
<td>1 µm</td>
<td>0.1 µm</td>
<td>200 µm</td>
</tr>
</tbody>
</table>

specification charge range: 0.1 – 1 nC

different BPM types to meet different requirements

courtesy: D.Nölle (DESY)
Beam Position Monitor

- **most common: capacitive pickups**
 - signal generation via beam electric field
 - popular design: **button-type pickup**
 - simple, cheap, ...
 - moderate resolution

- **operation principle**
 - electric field induces image charge on pick-up
 - pick-up mounted isolated inside vacuum chamber
 - amount of induced charge depends on distance between beam and pick-up

- **button pickup: high pass characteristics**

not well suited for long bunches
- especially: low energy hadron beams, i.e. heavy ion beams
- small coupling between pickup and bunch

P. Forck, “Lecture Notes on Beam Instrumentation and Diagnostics”, JUAS 2011

Gero Kube & Kay Wittenburg, DESY / MDI

37th ICFA Advanced Beam Dynamics Workshop, Frascati (Italy), 23./27.October 2015
BPM Signal Generation

- Induced charge on BPM button: $Q_{\text{ind}}(t)$
- BPM button, Ø2a
- E-bunch
- Chamber geometry
- Beam charge & bunch length

- Image charge
- Button voltage
- Signal behind cable

37th ICFA Advanced Beam Dynamics Workshop, Frascati (Italy), 23./27. October 2015

Gero Kube & Kay Wittenburg, DESY / MDI

EDIT 2015, Frascati (Italy), 23./27.October 2015
BPM Signal Calculation

Beam Instrumentation System Simulator (B.I.S.S.)
- calculation from BPM signals in time- and frequency domain
- study influence of various parameters
BPM Signals

observation (1): signals are short with small modulation
- single bunch response → nsec or sub-nsec pulse signals
- beam position information → amplitude modulated on large (common mode) beam intensity signal!

BPM building blocks

BPM Pickup
- RF device, EM field detection, center of charge
- symmetrically arranged electrodes or resonant structure

Read-out Electronics
- analog signal conditioning
- signal sampling (ADC)
- digital signal processing
- data acquisition and control system interface

RF device, EM field detection, center of charge symmetrically arranged electrodes or resonant structure

trigger, CLK & timing signals provides calibration signals or other drift compensation methods
timing, trigger signals

courtesy: M. Wendt (CERN)
BPM Signals

observation (2): nonlinearities

- synchrotron radiation emission
 → pickups mounted **out of orbit plane**
- vacuum chamber not rotational symmetric
 → $\varepsilon_{\text{hor}} \gg \varepsilon_{\text{vert}}$ (SR emission in hor. plane)
 → injection oscillations due to off-axis injection (allows intensity accumulation)

especially BPMs for circular e-accelerators

courtesy: A. Delfs (DESY)

Position Map

Pump channel

button pickup (cut)

PETRA-III BPM close to ID

correction of strong non-linearities in beam position required
Position Reconstruction

two common monitor geometries
- difference in position reconstruction

linac-type

\[
x = \frac{P_1 - P_3}{K}\]

\[
y = \frac{P_2 - P_4}{K}\]

storage ring-type

\[
x = \frac{(P_1 + P_4) - (P_2 + P_3)}{K}\]

\[
y = \frac{(P_1 + P_2) - (P_3 + P_4)}{K}\]

position information
- requires knowledge of monitor constant \(K_x, K_y\)
- rule of thumb (circular duct)

37th ICFA Advanced Beam Dynamics Workshop, Frascati (Italy), 23./27. October 2015
Gero Kube & Kay Wittenburg, DESY / MDI
Monitor Constant Calculation

- arbitrary geometries
 - no simple rule of thumb calculation

strategy for calculation
- start with position raster for point beam
- for each beam position \((x_0, y_0)\)
 - calculate induced charge onto buttons
 - e.g. via boundary element method:
 - build position map
 - for each \((x_0, y_0)\) assign \(\Delta x, y / \Sigma\) values

- sensitivity: slope at origin

plot values along \((x, y)\)-axes

monitor constant: \(K_{x,y} = S_{x,y}\)
Narrowband Signals: Cavity BPM

Linac: high resolution BPM for short bunches and single pulses
- **requirement:** increase in BPM signal strength
- **standard BPMs:** intensity signals which have to be subtracted to obtain position information
 - difficult to do electronically without some of the intensity information leaking through

cavity BPM: collect directly position information
- bunch excites several resonating modes while passing a pillbox-like cavity
 - short bunches deliver wide spectrum of frequencies
- monopole mode $TM_{01}(0)$: beam intensity
 - maximum at center
 - strong excitation
- dipole mode $TM_{11}(0)$: beam position
 - minimum at center
 - excitation by beam offset
 - slightly shifted in frequency wrt. monopole mode

task: antenna design to couple out dipole mode
- **amplitude:** position information \rightarrow only absolute value!
- **phase** (wrt. monopole mode): sign information \rightarrow simultaneous measurement required!

Gero Kube & Kay Wittenburg, DESY / MDI

Beam Dynamics Workshop, Frascati (Italy), 23./27. October 2015
Cavity BPM

cavity frequency spectrum

- **q**: beam charge, **r**: beam offset
- **problem**: monopole mode (TM01) leakage into dipole mode (TM11)
 → suppression of monopole mode required

37th ICFA Advanced Beam Dynamics Workshop, Frascati (Italy), 23./27.October 2015
Cavity BPM

suppression of monopole mode

- dipole mode (TM11) signal coupled out via waveguide
 → choose outcoupling at position of large TM11 electric field amplitude
- design waveguide with cutoff frequency above \(f_{01} \) (monopole mode) resonance

influence of outcoupling waveguide

- Monopole Mode
- Dipole Mode

narrow-band electronics for signal processing

→ B. Keil, Proc. DIPAC’09, Basel (Switzerland) 2009, TUOC01, p.275
→ D. Lipka, Proc. DIPAC’09, Basel (Switzerland) 2009, TUOC02, p.260

EDIT 2015, Frascati (Italy), 23./27.October 2015

Gero Kube & Kay Wittenburg, DESY / MDI
Comparison of BPM Types

<table>
<thead>
<tr>
<th>BPM Type</th>
<th>Application</th>
<th>Precaution</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoe-Box</td>
<td>p-synchrotrons, heavy-ion</td>
<td>long bunches, fRF < 10 MHz</td>
<td>very linear, no x-y coupling, sensitive for broad beams</td>
<td>complex mechanics, capacitive coupling between plates</td>
</tr>
<tr>
<td></td>
<td>accelerators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Button</td>
<td>p-linacs, all e-accelerators</td>
<td>fRF > 10 MHz</td>
<td>simple mechanics</td>
<td>non-linear, x-y coupling, possible signal deformation</td>
</tr>
<tr>
<td>Stripline</td>
<td>colliders, p-linacs, all e-accelerators</td>
<td>best for β ≈ 1 short bunches</td>
<td>directivity, „clean“ signal, large signal</td>
<td>complex 50 Ω matching, complex mechanics</td>
</tr>
<tr>
<td>Cavity</td>
<td>e-linacs (e.g. FELs), short bunches, special applic.</td>
<td>very sensitive</td>
<td>high frequency</td>
<td>very complex</td>
</tr>
</tbody>
</table>

Forck, "Lecture Notes on Beam Instrumentation and Diagnostics", JUAS 2011

Gero Kube & Kay Wittenburg, DESY / MDI

37th ICFA Advanced Beam Dynamics Workshop on Future Light

EDIT 2015, Frascati (Italy), 23./27.October 2015
two-photon exchange in lepton scattering

- compare e+p and e-p elastic scattering

R. Milner et al., „The OLYMPUS experiment“, Nucl. Instrum. Methods A741 (2014) 1
OLYMPUS Target Chamber BPMs

target chamber BPMs:

- Round: Ø 60.325 mm button diameter 10.8 mm

Monitor Profile

Position Map

Sensitivity

- Horizontal: $k_x = 21.412486$ mm
- Vertical: $k_y = 21.412486$ mm

Monitor Profile

Position Map

Sensitivity

- Monitor constant $k = 15.1183$ mm

37th ICFA Advanced Beam Dynamics Workshop, EDIT 2015, Frascati (Italy), 23./27.October 2015
Monitor Constant Measurement

BPM test stand

U. Schneekloth et al., Proc. IBIC 2014, Monterey (Ca), USA, (2014) 324

- **test stand**
 - vertical scanning device
 - 2 precision movers (micro screws) on top
 - wire antenna (Ø 0.2mm) centered in BPMs, stretched by weight, damped movement

- **electrical input signal**
 - 500 MHz cw signal induced on wire
 - electrical wire length: \(\frac{3}{4} \lambda \) of 500 MHz (standing wave)
 - essential: solid ground connections

- **signal readout**
BPM Test Stand

- wire antenna

- RF generator
- power amplifier
- weight
- nylon chord
- solder tag

3rd ICFP Advanced Beam Dynamics Workshop, Frascati (Italy), 23./27. October 2015
Tasks: BPMs

- **calculate BPM signals using B.I.S.S**
 - get a first impression about BPM signal forms
 - chamber geometry influence
 - non-linearities
 - output impedance

- **calculate monitor constants for OLYMPUS BPMs**
 - use rule-of-thumb formulae for both geometries
 - compare with simulation results

- **measure OLYMPUS BPM monitor constants** (both geometries)
 - define electrical center of both BPM bodies (origin)
 - perform 1-dim. scan along one axis
 - max. wire position: ± 15 mm (!!!)
 - measure signal amplitudes from each button
 - calculate Δ/Σ from measured signals
 - plot Δ/Σ versus wire position and compare with simulation results
 - determine monitor constant from slope at origin

(measure 2-dim. position map)
Transverse Phase Space: Beam Size and Emittance
Accelerator Key Parameters

light source: spectral brilliance

- measure for phase space density of photon flux
- user requirement: high brightness
 → lot of monochromatic photons on sample
- connection to machine parameters

collider: luminosity

- measure for the collider performance
- relativistic invariant proportionality factor between cross section σ (property of interaction) and number of interactions per second
- user requirement: high luminosity
 → lot of interactions in reaction channel
- connection to machine parameters

requirements

- design of small emittance machine
 → proper choice of magnet lattice
- preserve small emittance
 → question of stability
 → require active feedback systems / careful design considerations

for two identical beams with emittances $\varepsilon_x = \varepsilon_z = \varepsilon$
Transverse Emittance

- **projection of phase space volume**
 - separate horizontal, vertical and longitudinal plane

- **accelerator key parameter**
 - defines luminosity / brilliance

- **linear forces**
 - any particle moves on an ellipse in phase space \((x,x')\)
 - ellipse rotates in magnets and shears along drifts
 - but area is preserved: **emittance**

- **transformation along accelerator**
 - knowledge of the magnet structure (beam optics)
 - transformation from initial \((i)\) to final \((f)\) location

 - single particle transformation
 - transformation of optical functions

\(\alpha, \beta, \gamma, \varepsilon: \text{Courant-Snyder or Twiss parameters}\)
Transverse Emittance Ellipse

propagation along accelerator
- change of ellipse shape and orientation → area is preserved

beam envelope:
- minimum in envelope → minimum in β → $\beta' = 0$ → $\alpha = 0$

beam waist:
- minimum in envelope → minimum in β → $\beta' = 0$ → $\alpha = 0$
Emittance and Beam Matrix

Beam matrix

transformation of beam matrix

via Twiss parameters

statistical definition

εrms is measure of spread in phase space

root-mean-square (rms) of distribution

εrms useful definition for non-linear beams

→ usually restriction to certain range
 (c.f. 90% of particles instead of \([-\infty, +\infty]\))
Emittance Measurement: Principle

- Emittance: projected area of transverse phase space volume

- Not directly accessible for beam diagnostics

\[F = \pi \varepsilon \]
\[\sqrt{\varepsilon \gamma} \]
\[-\alpha \sqrt{\frac{\varepsilon}{\gamma}} \]

- Measured quantity
 - Beam size
 - Beam divergence
 - Divergence measurements seldom in use → restriction to profile measurements

- Measurement schemes
 - Beam matrix based measurements → determination of beam matrix elements:
 - Mapping of phase space → restrict to (infinitesimal) element in space coordinate, convert angles \(x' \) in position

37th ICFA Advanced Beam Dynamics Workshop on Future Light Sources, EDIT 2015, Frascati (Italy), 23./27. October 2015

Gero Kube & Kay Wittenburg, DESY / MDI
Circular Accelerators

- **emittance diagnostics in circular accelerators**
 - circular accelerator: periodic with circumference \(L \)
 - one-turn transport matrix: \(R(s+L) = R(s) \)
 - Twiss parameters \(\alpha(s), \beta(s), \gamma(s) \) uniquely defined at each location in ring
 - measurement at one location in ring sufficient to determine \(\varepsilon \)
 - measured quantity: beam profile / angular distribution

- **classification**
 - imaging
 - beam size
 - interference
 - beam size
 - projection
 - beam divergence

37th ICFA Advanced Beam Dynamics Workshop, Frascati, Italy
starting point: beam matrix

emittance determination
- measurement of 3 matrix elements $\Sigma_{11}, \Sigma_{12}, \Sigma_{22}$
- remember: beam matrix σ depends on location, i.e. $\Sigma(s)$
 → determination of matrix elements at same location required

access to matrix elements
- profile monitor determines only
- other matrix elements can be inferred from beam profiles taken under various transport conditions
 → knowledge of transport matrix R required

measurement of at least 3 profiles for 3 matrix elements
- measurement: profiles
- known: transport optics
- deduced: matrix elements

→ more than 3 profile measurements favourable, data subjected to least-square analysis

37th ICFA Advanced
Beam Dynamics
Workshop
Frascati (Italy), 23./27.October 2015
Gero Kube & Kay Wittenburg, DESY / MDI
Beam Matrix based Measurements

„quadrupole scan“ method

- use of variable quadrupole strengths
 - change quadrupole settings and measure beam size in profile monitor located downstream

\[Q \ (f = 1/K) \quad S \ (\text{drift space}) \]

\[\Sigma_{11} \text{ depends quadratically on quadrupole field strength} \]

\[R = SQ \]

G. Penco et al., Proc. EPAC’08, Genoa (Italy), p.1 23 6

37th ICFA Advanced Beam Dynamics Workshop, Frascati (Italy), 23./27.October 2015

Gero Kube & Kay Wittenburg, DESY / MDI
Beam Matrix based Measurements

"multi profile monitor" method

- fixed particle beam optics
 → measure beam sizes using multiple profile monitors at different locations

example:
emittance measurement
setup at FLASH injector (DESY)
courtesy: K. Honkavaara (DESY)

task
beam profile measurement
Storage Ring: Profile Measurement

circular accelerator
- only non- or minimum-invasive diagnostics → otherwise beam loss after few turns

e-/e+ ring
- working horse: synchrotron radiation
- problem: heat load @ extraction mirror

hadron ring
- **wire scanners**: scan of thin wire across the beam
- detect beam-wire interaction as function of wire position

HERA e SyLi monitor
- problem: heat load @ extraction mirror
- $T_{max} = 1200°C$

residual gas monitor:
- residual gas ionization / luminescence

Gero Kube & Kay Wittenburg, DESY / MDI

37th ICFA Advanced Beam Dynamics Workshop, Frascati (Italy), 23./27. October 2015

Linac or Transport Line: Profiles

linear machine
- single pass diagnostics → interaction with matter (care has to be taken)

hadron accelerators
- working horse: screen monitors
 → scintillating light spot intensity corresponds to beam profile
- wire harp
 → extension of wire scanner
courtesy: U. Raich (CERN)

electron accelerators
- screen monitors → lower resolution (?)
- working horse: OTR monitors
 → even potential for sub-micron beams

σ = 1.44 μm

G. Kube et al., Proc. IBIC 2015, Melbourne (Australia), TUPB012

37th ICFA Advanced Beam Dynamics Workshop on Future Light Sources

EDIT 2015, Frascati (Italy), 23./27.October 2015

Gero Kube & Kay Wittenburg, DESY / MDI
OTR Monitors

working horse: Transition Radiation
electromagnetic radiation emitted when a charged particle crosses boundary between two media with different optical properties

visible part: Optical Transition Radiation (OTR)
beam diagnostics: backward OTR
typical setup: image beam profile with optical system

radiation generation
→ virtual photon reflection at boundary
(perfect conductivity)

advantage: fast single shot measurement
linear response (neglect coherence !)
disadvantage: high charge densities may destroy radiator → limitation on bunch number

37th ICFA Advanced Beam Dynamics Workshop, Frascati (Italy), 23./27.October 2015
Gero Kube & Kay Wittenburg, DESY / MDI
OTR Monitors at FLASH

K. Honkavaara et al., Proc. PAC 2003, p.2476

Gero Kube & Kay Wittenburg, DESY / MDI

EDIT 2015, Frascati (Italy), 23./27.October 2015

optical system

<table>
<thead>
<tr>
<th>magnification</th>
<th>f / mm</th>
<th>a / mm</th>
<th>b / mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>0.382</td>
<td>200</td>
<td>724</td>
<td>276</td>
</tr>
<tr>
<td>0.25</td>
<td>160</td>
<td>800</td>
<td>200</td>
</tr>
</tbody>
</table>

37th ICFA Advanced Beam Dynamics Workshop, Frascati, Italy
Example of Beam Images (matched)

1 bunch, 1 nC, Solenoid 277 A, ACC1 on-crest

Example of Beam Images (matched) courtesy: K. Honkavaara (DESY)

Gero Kube & Kay Wittenburg, DESY / MDI

Beam Dynamics Workshop, Frascati (Italy), 23./27.October 2015
Screen Monitors

principle

- radiator
 - scintillator / OTR screen
 - generation of light spot: intensity distribution reflects particle beam density (i.e. linear light generation mechanism)

- optical system / CCD
 - imaging / recording of light spot

- target mover
 - move screen in / out of particle beam

- illumination
 - check system performance

screen monitor setup

- radiator → Al2O3:Cr (Chromox) screen (thickness 1.0 mm / 0.5 mm / 0.3 mm)
- CCD → USB camera
- optics → CCTV lens

Gero Kube & Kay Wittenburg, DESY / MDI

37th ICFA Advanced Beam Dynamics Workshop - Future Light

EDIT 2015, Frascati (Italy), 23./27. October 2015
Size Measurement: Resolution

fundamental resolution limit

- point observer detecting photons from point emitter
 → location of emission point?

high resolution:
(i) small λ
(ii) high NA

image of point source

point-like object

Airy pattern:
→ Point Spread Function

magnification M

resolution broadening: additional contributions

- depth of field
- radius of curvature
 → mainly for synchrotron radiation based diagnostics

http://www.astro.ljmu.ac.uk
Emittance Measurement Test Setup

- emittance of laser beam
 - “multi-profile monitor“ method
Emittance Measurement Test Setup

test setup

![Image of test setup with labeled components: Screen Monitor, moveable Lens, Laser, Aperture, Attenuator.]

calibration / resolution targets
 - check system performance of detector system

Gero Kube & Kay Wittenburg, DESY / MDI

37th ICFA Advanced Beam Dynamics Workshop on Future Light

EDIT 2015, Frascati (Italy), 23./27. October 2015
Emittance Measurement Test Setup

readout: PHYTEC Vision Demo 2.2

- CCD control parameters
 - gain
 - exposure time

- histogram
 - control of 8 bit ADC

Gero Kube & Kay Wittenburg, DESY / MDI
Emittance Measurement Test Setup

analysis: ImageJ → freeware

image analysis
projections
access to data
basic fitting routines
Tasks: Emittance Diagnostics

- **estimate the image resolution for an optical synchrotron radiation profile monitor**
 - modern 3rd generation light source: \(E = 6 \text{ GeV}, \lambda_{\text{obs}} = 500 \text{ nm}, \sigma_y = 10 \mu\text{m} \)

 \(\rightarrow \) assume „self diffraction“, i.e. aperture limitation imposed by radiation angular distribution \((1/\gamma)\)

- **derive the single particle transport matrix for a drift space**
 - assume paraxial approximation

 \(\rightarrow \) \(\sin(x') \approx x' \)

- **calculate the evolution of the beam size after a drift space**
 - use the beam matrix transformation together with the transport matrix \(R \) for a drift space

- **investigate the performance of the CCD**
 - spatial calibration

 \(\rightarrow \) dot grid target \((0.5 \text{ mm spacing})\)
 - resolution

 \(\rightarrow \) Siemens star, USAF 1951 target

- **measure the emittance of the laser beam**
 - measure spot sizes for different distances of the lens
 - analyse the horizontal profiles as function of the lens position
 - calculate the laser beam emittance

 \(\rightarrow \) use the simplest way with only 2 values
 - (repeat with a different scintillator thickness)