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Abstract: We propose a novel approach for strong alignment of gas-phase
molecules for experiments at arbitrary repetition rates. A high-intracavity-
power continuous-wave laser will provide the necessary ac electric field of
1010–1011 W/cm2. We demonstrate thin-disk lasers based on Yb:YAG and
Yb:Lu2O3 in a linear high-finesse resonator providing intracavity power
levels in excess of 100 kW at pump power levels on the order of 50 W. The
multi-longitudinal-mode operation of this laser avoids spatial-hole burning
even in a linear standing-wave resonator. The system will be scaled up
as in-vacuum system to allow for the generation of fields of 1011 W/cm2.
This system will be directly applicable for experiments at modern X-ray
light sources, such as synchrotrons or free-electron lasers, which operate
at various very high repetition rates. This would allow to record molecular
movies through temporally resolved diffractive imaging of fixed-in-space
molecules, as well as the spectroscopic investigation of combined X-ray–NIR
strong-field effects of atomic and molecular systems.
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1. Introduction

Many experiments aiming at recording so-called “molecular movies” – the atomic-resolution
imaging of the intrinsic structural dynamics of molecules – rely on molecules fixed-in-space,
i. e., aligned or oriented samples of molecules [1, 2]. One of the most promising approaches is
coherent X-ray diffractive imaging, for instance, using short-wavelength free-electron lasers or
synchrotrons [3–6]. These modern light sources, especially upcoming free-electron lasers with
very large photon fluxes such as the European XFEL [7] or LCLS II [8], but also synchrotrons [9]
as well as table-top laser systems based on optical-parametric chirped-pulse amplification
(OPCPA) [10], operate at very high repetition rates with ten-thousands to millions of pulses
per second, sometimes in burst modes, which have to be matched by the high-intensity optical
control lasers.

The alignment of gas-phase ensembles of molecules exploits the interaction between the
anisotropic polarizability of the molecule and non-resonant linearly or elliptically, polarized
electric fields [2,11]. The electric field strengths necessary for strong (quasi) adiabatic alignment
are on the order of 1010–1012 W/cm2, even when exploiting very cold samples [12–14], and
must be applied over durations longer than, or at least comparable to, the rotation periods of the
molecules [15]. These range from tens of picoseconds for small molecules to nanoseconds or
even microseconds for larger molecules. Adiabatic mixed-field orientation requires the addition
of a moderate dc electric field and even longer laser pulses [12,16,17]. Three-dimensional control
requires elliptically polarized fields with fully controllable ellipticity [18, 19]. Traditionally,
injection-seeded Nd:YAG lasers operating at a repetition rate of some 10 Hz were used to provide
the necessary fields. Recently, we have demonstrated the use of chirped pulses from amplified
Ti:Sapphire laser systems at 1 kHz [13, 15] and the implementation of this amplified-chirped-
pulse technique at the Linac Coherent Light Source (LCLS) at 120 Hz [20]. Continuous-wave
(CW) lasers would allow for the control of molecules at arbitrary repetition rates. Furthermore,
they would enable long interaction times. For instance, molecules or particles traveling through
a 50 µm laser beam with a velocity of 100 m/s [21–23] would experience an effective pulse
duration of 0.5 µs. However, the use of CW lasers to provide the envisioned field strengths with
focal beam waists in excess of ω0 = 10 µm would require optical power levels of 30–300 kW,
respectively, with a beam quality that allows for such tight focusing with a Rayleigh length
comparable to the molecular beam diameter on the order of 1 mm.

100-kW-class CW lasers have been realized as fiber lasers [24], as CO2 lasers [25] and
as chemical deuterium fluoride lasers [26]. Coherent beam combining [27] is also a viable
approach to achieve laser output at this power level [28]. The thin-disk laser (TDL) geometry
has been shown to be suited for very high CW output powers in combinition with Yb3+-doped
gain materials [29]. Outputs exceeding 27 kW were demonstrated [30] and 100-kW-systems are
anticipated [30, 31]. However, so far these high output powers of thin-disk lasers and fiber lasers
are only available at beam qualities [24, 31] that do not allow for the tight focusing necessary to
achieve the envisioned focal intensities. In contrast, carbon dioxide and chemical lasers have
good beam qualities at even higher output power, but their demanding space requirements and
the possibly toxic gain materials are a significant drawback for using the setup as a mobile user
facility at modern X-ray light sources. Moreover, operating and propagating any laser at such
high output power levels imposes serious safety risks.

Here, we propose to provide the necessary field strength in an intracavity focus of a CW TDL



resonator. A resonator with low losses, low output coupler transmission, and high intracavity
power has a low stored excitation energy in the crystal, a high photon energy storage in the
resonator and comparably low output power. The required pump power levels are reasonably
low due to the strong enhancement in the active cavity and allow for a cost efficient system,
without an exceptional laser-safety risk. In combination with its small spatial footprint, such a
system is an ideal candidate for flexible and safe employment at modern light sources. A long
multiply-folded resonator allows for TEM00 operation and enables to focus the beam with the
necessary Rayleigh length of 1-mm.

2. Design criteria for an high-intracavity-power Yb3+-based continuous-wave laser

The envisioned aligned-molecule-imaging experiments impose a number of design criteria
on the TDL. These arise partly from the actual molecular physics and partly from the need
for integration of the alignment laser into the complex and constraining machinery of the
experimental setup, schematically shown in Fig. 1. The ultra-high-vacuum needs impose further
restrictions on the design of the setup.

In order to ensure the alignment of all probed molecules, the electric field intensity of
∼ 1011 W/cm2 utilized to control the molecules, has to be spatially and temporally smooth
and nearly constant over the diffraction volume. The latter is defined by the overlap of the
few-mm-diameter molecular beam and the 10-µm-diameter X-ray-beam. Such a homogeneous
field can be achieved inside the TDL resonator through multi-longitudinal-mode operation, as
depicted in the inset of Fig. 1. The different modes average out the field distribution around
the interaction point. For a few ten modes a longitudinally practically homogeneous field is
achieved in the resonator. Under these conditions, spatial hole burning could only occur close
to the end mirrors. Multi-longitudinal mode operation does not impose a serious challenge for
the bandwidth of the laser material or the resonator design. At a typical lengths of a TEM00
TDL of 1 m, hundreds of longitudinal modes fit into 1 pm of laser emission bandwidth in the
1 µm wavelength range. Yb3+-doped lasers typically exhibit emission bands with much broader
bandwidths in the nanometer range.

The laser beam needs to be focused to create the necessary field strength. At the same time,
the TDL beam needs to be larger than the X-ray beams, which are typically kept on the order
of 10 µm to avoid radiation damage [6, 32], and its Rayleigh length needs to be long enough to
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Fig. 1. (a): Concept for CW alignment of molecules: a high-finesse resonator in linearly
polarized TEM00 operation, focused inside of a vacuum chamber leads to the required focal
intensities for alignment of molecules. (b): Mode averaging in the resonator yields in smooth
intensity distribution and avoids spatial hole burning.



provide the necessary field strength over the width of the molecular beam of typically a few mm.
This results in an envisioned focal waist of the TDL of approximately 20–40 µm. Such small
focal spot sizes require sophisticated astigmatism compensation, which has to be considered in
the resonator design. Furthermore, a stable linear or elliptical polarization state is required.

The cold molecular beam has to be delivered to the intracavity focus and the degree of
alignment needs to be monitored, for instance, through velocity map ion imaging (VMI) [33]. At
the current state, the dimensions of the delivery mechanics and the VMI device require a clear
space of tens of cm3 around the focus. Moreover, the X-ray beam must pass the focus nearly
collinear with the TDL intracavity mode to achieve a good overlap with the volume of strongly
aligned molecules.

Finally, the laser wavelength must be off-resonant with respect to the molecular sample to
avoid excitation and radiation damage from the control beam. As the electronic transitions of
molecules are typically in the ultraviolet or visible spectral range and vibrational excitations in
the mid-infrared range, this requirement is usually fulfilled by Yb3+-based lasers with emission
wavelengths around 1 µm.

3. Experimental setup

In a first proof-of-principle experiment a TDL was set up in a short longitudinal resonator.
This allowed to characterize different gain materials at low output coupler transmissions with
respect to their losses and their efficiencies. The experiments were carried out utilizing a
Yb(7 %):Y3Al5O12 (Yb:YAG) disk (Dausinger+Giesen) with a thickness of 0.22 mm and a
Yb(3 %):Lu2O3 disk with a thickness of 0.25 mm [34]. Due to the different cation densities [35]
in both host materials, the different values for the Yb3+-doping correspond to a similar Yb3+-
density of ~1021 cm−3. Both disks were soldered onto copper-tungsten-alloy heat-sinks (20/80
for Yb:YAG and 10/90 for Yb:Lu2O3), which were cooled at a water temperature of 6 ◦C during
the experiments. The disks were pumped by 600 µm-core multimode fiber coupled InGaAs laser
diodes, which were imaged onto a 1.2 mm diameter pump spot on the disk. For the Yb:YAG
disk a pump wavelength of 940 nm corresponding to a broad Yb:YAG absorption band in this
wavelength range was chosen. The Jenoptik JOLD-75-CPXF-2P laser diode utilized for this
purpose had a maximum output power of 75 W and up to 56 W were used in the experiments.
In contrast, Yb:Lu2O3 provides a much stronger absorption at the zero-phonon line around
976 nm [36]. The corresponding JOLD-50-CPXF-2P pump laser diode provided up to 50 W
of output power which was fully utilized. The temperature of the pump diodes was adjusted to
fine-tune the emission wavelength for an optimum absorption of the pump power. After the 24
pump-light passes in our TDL module, more than 99 % of the pump power was absorbed. A
simple plane-concave resonator with a length of 60 mm and different output coupling mirrors
with radii of curvature (ROC) of 100 mm (ROC of the disks ≈ 2 m) was set up for efficient
multimode laser operation. The output-coupling mirrors had transmissions between 9.5×10−5

and 4×10−3 for all wavelengths between 1 µm and 1.1 µm. The output coupler transmissions
were initially measured with a spectrometer (Varian Cary 5000) and cross-checked by measuring
the transmission of the output of a Yb:Lu2O3 TDL operating at wavelength of 1080 nm through
these mirrors. The laser output power was measured with a Coherent LM-100 power meter. To
avoid damage of the disks we limited the maximum pump power to the value which resulted in a
disk surface temperature of ≈ 120 ◦C. For this purpose we monitored the surface temperature of
the laser disks with a SC645 thermographic camera (FLIR Systems). The measured values were
corrected by the temperature dependent emissivity of the respective gain material. The emission
spectra of the lasers were measured with a spectrometer (Ocean Optics HR2000), suitable for
the wavelength range between 950 nm and 1100 nm.



4. Experimental results

In Fig. 2 (a) the laser performance of the Yb:YAG and the Yb:Lu2O3 disks are shown for
three output coupler transmissions of 9.5× 10−5, 5× 10−4, 4× 10−3. The observed slope
efficiencies as well as the measured surface temperatures for these and other mirrors for a pump
power of 50 W are shown in Fig. 2 (b). As the surface temperature of Yb:Lu2O3 exceeded a
damage-critical temperature of 130 ◦C for the lowest output coupler transmission, the maximum
pump power was limited to 47 W for this mirror. For Yb:YAG and Yb:Lu2O3 maximum slope
efficiencies of 67 % and 72 % were measured at the highest output coupler transmission rate of
4×10−3 with a maximum output power of 36 W and 34 W, respectively. In this configuration,
the maximum optical-to-optical efficiency was 66 % and 68 %, respectively. It should be noted
that these Toc are significantly below the optimum Toc for maximum laser output for these
materials [36]. Thus, the efficiencies reported here are lower than previously reported [37].
However, from the measured efficiencies it can be concluded that the losses through the output
coupling mirror are significantly higher than the losses in the disks at these output coupler
transmissions. For both materials, this results in low surface temperatures even at pump powers
of 50 W, which range from around 50 ◦C for large output coupler transmissions to the highest
surface temperatures of 85 ◦C and 127 ◦C for Yb:YAG and Yb:Lu2O3, respectively, measured at
the lowest output coupler transmission rate of 9.5×10−5. Here, the losses in the disks mainly
cause a strong heating of the laser disks as they dominate over the output coupler transmission
losses. Despite this relatively strong heating, for both lasers no thermal roll over could be
observed, and maximum output powers Pout of 13 W and 10 W were reached, respectively.
From these numbers the intracavity power Pint was derived from the known output coupler
transmission Tout as

Pint =
Pout

Toc
. (1)

Both disks achieved their highest CW intracavity power of 137 kW for Yb:YAG and 105 kW for
Yb:Lu2O3 at minimized total resonator losses, i. e., at the lowest output coupler transmission rate
of 9.5×10−5. At such low output coupler transmissions the laser spectrum of Yb:YAG covers
wavelengths between 1050 nm and 1085 nm, while the Yb:Lu2O3 laser oscillates at wavelengths
between 1078 nm and 1082 nm. From the laser performance at different/lowest output coupler
transmissions, we derived the resonator round-trip losses by the Caird analysis [38]. The slope
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Fig. 2. (a) Laser performance of a 0.22 mm thick Yb:YAG disk and a 0.25 mm thick
Yb:Lu2O3 disk for different output coupler transmissions. (b) Slope efficiency and surface
temperature (Pp = 50 W) for different output coupler transmissions.
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Fig. 3. (a) Caird analysis of the Yb:YAG and Yb:Lu2O3 disk according to Eq. 3. (b)
Calculated intracavity power for internal losses of 2×10−4 for fixed pump powers against
additional losses.

efficiency ηsl of a laser follows from

ηsl = ηoc ·ηSt ·ηabs ·ηov. (2)

with the the output coupling efficiency ηoc = Toc/(Toc +Lint), the Stokes efficiency ηSt, the
pump absorption efficiency ηabs, and the pump-laser mode overlap efficiency ηov. The product of
the latter three can be abbreviated as total efficiency ηtot = ηSt ·ηabs ·ηov. Trivial rearrangements
lead to

1
ηsl

=
Lint

ηtot
· 1

Toc
+

1
ηtot

(3)

which allows to derive the resonator losses from a linear fit of the inverted slope efficiencies
versus the inverted output coupler transmission. It is known that the Caird plot may not lead to
reasonable results at higher output coupler transmissions, where the slope efficiency decreases
due to loss processes at high inversion densities which are not covered by the underlying rate
equations [39]. However, at the low output coupler transmissions used in our experiments, these
effects are negligible. The fit according to Eq. 3 is shown in Fig. 3 (a) and results in very low
round-trip losses of 1.7×10−4 for Yb:YAG and only slightly higher losses of 2.2×10−4 for
Yb:Lu2O3. The total efficiency amounts to 71 % for Yb:YAG and 77 % for Yb:Lu2O3.

Considering the slope efficiencies ηsl approaching the Stokes efficiencies ηst = λlas/λp
previously observed in TDLs [40] one might argue that the absorption efficiency ηabs and
the overlap efficiency of pump and laser mode ηov should be approaching unity. This condition
is fulfilled by deriving the intracavity losses from the ratio of the Stokes efficiency ηst and the
slope efficiency ηsl at the lowest output coupler transmission from

Lint,max =

(
ηSt

ηsl
−1

)
Toc (4)

Despite the higher Stokes efficiency of ηSt ≈ 0.9 > ηtot , even in this case the corresponding
losses are only slightly higher and amount to 2.4 × 10−4 for Yb:YAG and 2.9 × 10−4 for
Yb:Lu2O3. Nota bene, this is an upper level for the intracavity losses due to energy conservation.

The intracavity power considering realistic resonator losses of Lint = 2×10−4 plus additional
losses Ladd between 10−5 and 10−2 due to output coupler transmission or other intracavity
elements required e.g. for the polarization selection were calculated for pump powers Pp between



100 W and 600 W with

Pint =

(
1

Ladd +Lint

)
·ηst · (Pp −Pthr). (5)

This equation can be simplified by assuming a threshold power Pthr of zero, which is appropriate
as pump thresholds < 0.5 W were observed in all experiments. The resulting intracavity powers
are depicted in Fig. 3 (b).

5. Discussion

All measurements were performed in a short linear laser resonator to allow for both, efficient
multi-mode lasing and for easy evaluation of losses, which require knowledge of the specific
loss of all optical components. Under these conditions the gain-medium-specific resonator
losses Lint ≤ 2×10−4 can be nearly exclusively attributed to losses in the TDL assembly, i. e.,
the laser-medium disk with its dielectric coatings and the metallic contacting layer. While the
Yb:YAG disk showed in general better performance, our experiments do not provide conclusive
evidence about the material-specific advantage of Yb:YAG or Yb:Lu2O3. Using a pump power
of 54 W we achieved an intracavity power of 135 kW for Yb:YAG. This is to the best of our
knowledge the highest documented CW intracavity power for a pump power lower than 100 W.
Typically, such CW intracavity powers are only achieved using pump powers of 10 kW.

The slope efficiencies obtained with Yb:YAG and Yb:Lu2O3 of 0.66 and 0.72, respectively
are in good agreement with previous results at such low output coupling transmissions [36, 41].
The measured laser performance at various low output coupler transmissions below 4×10−3

allows to precisely determine an upper limit of the internal resonator losses of a few 10−4, which
is about an order of magnitude lower than previously assumed [41, 42]. This also demonstrates
the low losses of the thin-disk laser resonator and the excellent quality of the utilized disks,
which benefited from improvements in the crystal growth and in optical coating methods over
the last decade.

The results in Fig. 3 (b) reveal that intracavity power levels in excess of 0.5 MW can be
achieved at pump powers of a few 100 W, even at total resonator losses in the order of 10−3,
which would be five times higher than the intracavity losses of 2× 10−4 we determined for
multi-mode linear TDLs using state-of-the-art processed gain materials and standard resonator
mirrors. At such intracavity power levels, the required focal intensities for molecular alignment
in the order of 1010–1011 W/cm2 could be achieved at realistic intracavity focal diameters of
20–40 µm. Such diameters can be obtained between two concave cavity mirrors and do not
impose a particular challenge for the resonator design. Slightly larger intracavity foci have
already been demonstrated e.g. in enhancement cavities and conventional resonators [43, 44].

Figure 3 (b) also shows that minimized resonator losses are of crucial importance for achieving
high intracavity power levels at moderate pump power levels. We note that we operated our TDL
at output coupler transmissions in the order of 10−4. However, in the upcoming experiments
the resonator losses will be increased by additional resonator elements, for instance a Brewster
plate. At intracavity powers in excess of 100 kW even a very low transmission of 10−7 results in
leakage of more than 10 mW, which allows for a reliable determination of the intracavity power.
Moreover, we expect the main additional losses to occur due to depolarization at polarization
control elements, i. e., reflections at Brewster elements or transmission losses at mirrors with
a polarization dependent reflectivity. Both should increase resonator extraction efficiency and
thus avoid hot-spots in the cavity. Therefore, the disk temperatures should remain lower than
demonstrated here, even when using HR mirrors.

The considerations so far were independent of the pump spot diameter on the disk. We
have shown that further scaling of the intracavity power may lead to strong heating of the
disk. This can be circumvented by choosing larger pump spot diameters, which allows to use



significantly higher pump powers. Even though the alignment sensitivity increases strongly with
the laser mode diameter on the disks [45], TDL with centimeter-scale pump spot diameters are
reported [46]. Even in fundamental mode operation, a 4.7 mm pump spot diameter has been
reported at a pump power of up to 830 W [47]; this corresponds to pump power intensities on
the order of 5 kW/cm2. In this case the output coupler transmission was optimized for high
extraction efficiency, but at the maximum output power of 430 W the remaining pump power
deposited in the disk was still as high as 400 W. This pump power level should be sufficient for
our experiments.

The application of the laser for molecular alignment requires operation in vacuum and
polarization control. Preliminary results in vacuum (p = 5× 10−4 mbar) point towards an
increased operation stability due to the lack of atmospheric turbulence, in agreement with
previous reports [48,49]. Further experiments are required to explore further challenges, e. g., the
corresponding lack of convection cooling of the optical elements and mounts. For the alignment
experiments it would be sufficient to keep only the focal area of the resonator in a vacuum
chamber, but the required additional Brewster windows and polarization optics would add
complexity and increase the total resonator losses.

When operated in ultra-high-vacuum (10−9 mbar) and combined with a continuous cold
supersonic molecular beam [50], the demonstrated laser system will allow to strongly align and
orient molecules at “arbitrary” repetition rates. The continuous presence of aligned molecules
will enable the envisioned application of strongly controlled molecules in modern imaging
experiments at high-repetition rate X-ray facilities [6, 51].

6. Conclusions

We have demonstrated a thin-disk laser providing 135 kW of CW intracavity laser power. This
corresponded to an enhancement by a factor of 2500 with respect to the incident pump power of
54 W, enabled by the low losses of state-of-the-art-processed gain disks. The internal round-trip
losses of Yb:YAG and Yb:Lu2O3 disks were determined to be about 2×10−4. Calculations show
that our approach is scalable and will allow for megawatt-level CW intracavity powers, thus,
enabling field-strengths in excess of 1010 W/cm2 in a few-10-µm-diameter focus. Such ac electric
field strengths allow for adiabatic laser alignment or mixed-field orientation of molecules. While
pulsed lasers at comparably low repetition rates have been used for this purpose [2, 12, 13, 20],
our approach allows for adiabatic alignment at arbitrary repetition rates.

Coupled to a continuous molecular beam, such a setup could allow for the implementation of
reactive, chemical scattering investigations of aligned or oriented molecules [52], albeit limited
to the very small focal volume (10−9 cm3). Moreover, we point out that our laser would also
allow for the trapping of atoms and molecules using the polarizability interaction [11, 53]. It
would allow for few-Kelvin deep traps for typical small molecules [15] and even deeper traps for
larger, more polarizable molecules. This could also be utilized for in-vacuo trapping and guiding
of nanoparticles [54, 55]. The setup could be useful for many more strong-field experiments in
atomic and molecular physics, for instance, at high-repetition-rate FELs [56].
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