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SUMMARY

Angiotensin Il type 1 receptor (AT R) is a G protein-
coupled receptor that serves as a primary regulator
for blood pressure maintenance. Although several
anti-hypertensive drugs have been developed as
AT,R blockers (ARBs), the structural basis for AT{R
ligand-binding and regulation has remained elusive,
mostly due to the difficulties of growing high-quality
crystals for structure determination using synchro-
tron radiation. By applying the recently developed
method of serial femtosecond crystallography at an
X-ray free-electron laser, we successfully deter-
mined the room-temperature crystal structure of
the human AT{R in complex with its selective antag-
onist ZD7155 at 2.9-A resolution. The ATR-ZD7155
complex structure revealed key structural features
of AT{R and critical interactions for ZD7155 binding.
Docking simulations of the clinically used ARBs into
the AT{R structure further elucidated both the
common and distinct binding modes for these anti-
hypertensive drugs. Our results thereby provide
fundamental insights into AT;R structure-function
relationship and structure-based drug design.

INTRODUCTION

Cardiovascular disease remains one of the main causes of death
throughout the world despite impressive advances in diagnosis

and therapeutics during the past few decades. Hypertension is
the most common modifiable risk factor in cardiovascular dis-
ease, as myocardial infarction, stroke, heart failure, and renal
disease can be greatly reduced by lowering blood pressure (Za-
man et al., 2002). The best known regulator of blood pressure is
the renin-angiotensin system (RAS). Over-stimulation of the RAS
is implicated in hypertension, cardiac hypertrophy, heart failure,
ischemic heart disease, and nephropathy (Balakumar and Jaga-
deesh, 2014). A cascade of proteolytic reactions in the RAS can
generate various angiotensin peptides. Renin cleaves the pre-
cursor protein, angiotensinogen, releasing the inactive angio-
tensin |. Subsequently, angiotensin | is cleaved by angiotensin
converting enzyme (ACE) to generate angiotensin Il (Angll),
angiotensin Ill, and angiotensin 1-7. These peptides exert
diverse functions; angiotensins Il and Il act as vasoconstrictors,
while angiotensin 1-7 acts as a vasodilator (Zaman et al., 2002).
Angll is also responsible for cell migration, protein synthesis,
endothelial dysfunction, inflammation, and fibrosis (Ramchan-
dran et al., 2006).

In humans, Angll binds to two subtypes of angiotensin G pro-
tein-coupled receptors (GPCRs), angiotensin Il type 1 receptor
(AT4R) and angiotensin Il type 2 receptor (AT2R) (Oliveira et al.,
2007). Almost all physiological and pathophysiological effects
of Angll are mediated by AT4R (de Gasparo et al., 2000), while
the function of AT,R remains largely unknown (Akazawa et al.,
2013). AT4R exhibits multiple active conformations, thereby acti-
vating different signaling pathways with differential functional
outcomes (Shenoy and Lefkowitz, 2005). The G protein-depen-
dent signaling by AT¢R is vital for normal cardiovascular homeo-
stasis yet detrimental in chronic dysfunction, which associates
with cell death and tissue fibrosis and leads to cardiac
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hypertrophy and heart failure (Ma et al., 2010). Accumulating
evidence suggests that G protein independent B-arrestin medi-
ated signaling by AT{R confers cardio-protective benefits
(Whalen et al., 2011; Wisler et al., 2014).

Targeting the RAS cascade has proven to be effective in the
treatment of hypertension, as well as specific cardiovascular
and renal disorders. The most commonly used drugs include
renin inhibitors, ACE inhibitors, and AT{R blockers (ARBs).
ARBs, or sartans, are non-peptide antagonists and include the
well-known anti-hypertensive drugs losartan, candesartan,
valsartan, irbesartan, telmisartan, eprosartan, olmesartan, and
azilsartan, most of which share a common biphenyl-tetrazole
scaffold (Burnier and Brunner, 2000; Imaizumi et al., 2013; Miura
et al., 2013a; Miura et al., 2013b). These ARBs are now exten-
sively used for the treatment of cardiovascular diseases,
including hypertension, cardiac hypertrophy, arrhythmia, and
heart failure. There is additional interest in ARBs regarding their
efficacy in the treatment of blood-vessel diseases such as Mar-
fan-like syndrome, aortic dissection, and aortic aneurysms
(Keane and Pyeritz, 2008; Ramanath et al., 2009).

Previous functional studies on AT4R have provided numerous
clues into AT4R activation and inhibition mechanisms (Oliveira
et al., 2007). Despite its high medical relevance and decades
of research, the structure of AT{R and the binding mode of
ARBs, however, are still unknown, which limits our understand-
ing of the structural basis for AT4R function and modulation
and precludes the rational optimization of AT{R lead com-
pounds. One such experimental anti-hypertensive compound
is ZD7155, a high-affinity antagonist and precursor to the anti-
hypertensive drug candesartan. ZD7155 has a biphenyl-tetra-
zole scaffold similar to other ARBs and is more potent and
longer-lasting than the first clinically used ARB losartan (Jungg-
ren et al., 1996). While structures of several different GPCRs
have been reported, the determination of a new GPCR structure
remains a significant challenge. X-ray crystallography using syn-
chrotron radiation requires sufficiently large crystals in order to
collect high-resolution data. Our extensive efforts to solve the
AT4R structure were hampered by the limited size of micro-crys-
tals grown in the membrane mimetic matrix known as lipidic cu-
bic phase (LCP) (Caffrey and Cherezov, 2009). Nevertheless, by
applying the recently developed method of serial femtosecond
crystallography with LCP as a growth and carrier matrix for deliv-
ering microcrystals (LCP-SFX) into an X-ray free-electron laser
(XFEL) beam (Liu et al., 2013; Weierstall et al., 2014; Liu et al.,
2014a), we successfully determined the room-temperature crys-
tal structure of the human AT4R in complex with ZD7155 (AT{R-
ZD7155). Based on the AT{R-ZD7155 structure, we further
performed mutagenesis and docking simulations to reveal bind-
ing modes for clinically used anti-hypertensive drugs targeting
AT4R.

RESULTS

Structure Determination of AT,R-ZD7155 Complex
Using LCP-SFX Method

To facilitate crystallization, a thermostabilized apocytochrome,
bsexRIL (BRIL) (Chun et al., 2012), was fused to the amino termi-
nus (N terminus) of the human AT4R. Eleven residues were trun-

2 Cell 167, 1-12, May 7, 2015 ©2015 Elsevier Inc.

cated from the N-terminal region of AT{R (Met1, Thr7-Asp186), in
order to shorten the flexible N terminus while keeping both the
putative glycosylation site at Asn4 and the disulfide bond site
at Cys18 intact. Forty residues were truncated from the carboxyl
terminus (C terminus) after the cytoplasmic helix VIII (Figure 1A).
The effect of protein engineering on AT R function was evaluated
using radio-ligand binding and calcium mobilization assays, in
which neither the truncations nor BRIL insertion significantly
altered the functional and pharmacological properties of the
receptor for ligand binding and signaling (Figure 1B-1D). With
this engineered AT¢R, we obtained micro-crystals (maximum
size 40 x 4 x 4 pm®) in monoolein-based LCP, supplemented
with cholesterol (Figure S1A). These microcrystals diffracted to
only about 4-A resolution at a synchrotron source under cryo-
genic conditions. To improve the resolution and avoid radiation
damage and freezing, we took advantage of a recently devel-
oped LCP-SFX method and collected diffraction data at room
temperature at the Linac Coherent Light Source (LCLS) using
AT R micro-crystals (average size 10 x 2 x 2 um®) grown in sy-
ringes (Figures S1B and S1C). A total of 2,764,739 patterns were
collected by using ~65 pl of crystal-loaded LCP, corresponding
to ~0.35 mg of protein. Of these frames, 457,275 were identified
as crystal hits, corresponding to a hit rate of 17%. Of these crys-
tal hits, 73,130 frames (16%) were successfully indexed and in-
tegrated by CrystFEL (White et al., 2012) to 2.9-A resolution
(Table S1 and Figures S1D-S1F). The structure of the AT{R-
ZD7155 complex was refined to Ryon/Riree Of 22.8%/27.4%.
The final structure includes 289 out of 359 residues in the full-
length human AT+R (Figure 1A), and it has well-defined densities
for most ATR residues and for the ligand ZD7155.

Overall Architecture of ATR
AT4R, being the angiotensin |l octapeptide receptor, shares
some sequence similarity with other peptide receptors of class
A GPCRs, structures of which are known (sequence alignment
is shown in Figure S2), with the closest homology to the chemo-
kine receptors (e.g., 36% sequence identity with CXCR4) and
opioid receptors (e.g., 33% sequence identity with k-OR) (Wu
et al., 2010; Wu et al., 2012). AT+4R exhibits the canonical seven
transmembrane a-helical (7TM) architecture, with an extracel-
lular N terminus, three intracellular loops (ICL1-3), three extracel-
lular loops (ECL1-3), an amphipathic helix VIIl and an intracellular
C terminus (Figure 2A). The overall fold of the angiotensin recep-
tor AT4R is most similar to the chemokine and opioid receptors
(Figure 2B), with the lowest root mean square deviation for
80% of AT4R a-carbon atoms (RSMD¢,) of about 1.8 Atothe no-
ciceptin/orphanin FQ peptide receptor (NOP) (Thompson et al.,
2012). Despite the overall similarity, a number of structural differ-
ences in the transmembrane bundle were observed between
AT4R and other peptide GPCRs (Figures 2C and 2D). For
example, the tilts and extensions of the extracellular ends of he-
lices 1, V, VI, and VIl are substantially different among these pep-
tide receptors, while at the intracellular side, helices IV and V
adopt the most diverse conformations. The conformations of he-
lices Il and lll, however, are nearly identical for all these peptide
receptors.

The extracellular part of AT{R consists of the N-terminal
segment, ECL1 (Glu91-Phe96) linking helices Il and Ill, ECL2
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(His166 to lle191) linking helices IV and V, and ECL3 (lle270 to
Cys274) linking helices VI and VII (Figure 1A). Two disulfide
bonds help to shape the extracellular side of AT4R, with
Cys18-Cys274 connecting the N terminus and ECL3, and
Cys101-Cys180 connecting helix Il and ECL2, similar to the che-
mokine receptors CXCR4 and CCR5 (Wu et al., 2010; Tan et al.,
2013). Besides engaging in the conserved disulfide bonding,
ECL2 of AT4R exhibits a B-hairpin secondary structure, a com-

Figure 1. AT,R Construct Design and Func-
tional Characterization

(A) Snake plot of the BRIL-AT,R construct used for
crystallization. Residues that occupy the most
conserved positions on each helix in class A
GPCRs (X.50; B&W scheme) are colored in green.
The four cysteine residues that form two disulfide
bonds in the extracellular region are colored in
orange. Three critical residues for ZD7155 binding
are colored in red. All other residues that interact
with ZD7155 are colored in blue. Critical residues/
motifs for AT{R activation are colored in purple.
Truncated residues are shown as light gray, and
residues that do not have sufficient density in the
structure and therefore were not modeled are
shown in dark gray circles.

(B) Saturation binding of the non-peptide antago-
nist *H-candesartan to the wild-type HA-ATiR,
ABRIL-AT4R, and BRIL-AT4R.

(C) Competition binding of ZD7155 to the wild-type
HA-AT{R, ABRIL-AT4R, and BRIL-AT{R, per-
formed by displacement of *H-candesartan.

(D) Intracellular calcium responses for the wild-
type HA-AT,R, BRIL-AT,R, and ABRIL-AT4R. The
agonist Angll and the antagonist ZD7155 dose-
response curves for HA-ATR (circles), BRIL-AT R
(squares), and ABRIL-AT;R {diamonds) are shown
in closed and open symbols, respectively.

Error bars represent SEM.

mon motif among peptide GPCRs (Fig-
ure 2E). Intriguingly, ECL2 of AT{R was
found to serve as an epitope for the harm-
ful agonistic autoantibodies in pre-
eclampsia and malignant hypertension
(Unal et al., 2012; Xia and Kellems, 2013).

The intracellular portion of AT{R con-
tains ICL1 (Lys58 to Val62) linking helices
land 11, ICL2 (Val131 to Arg137) linking he-
lices Il and IV, ICL3 (Leu222 to Asn235)
linking helices V and VI, and the C-termi-
nal helix VIIl. As in many other class A
GPCRs, the conserved D(E)RY motif in
helix Il and the NPxxY motif in helix VII
of AT4R, both at the intracellular ends of
transmembrane domain, were proposed
to participate in receptor activation (Oli-
veira et al., 2007). However, the “ionic
lock” salt bridge interaction between
Arg®®® (superscript indicates residue
number as per the Ballesteros and Wein-
stein, 1995 [B&W] nomenclature) of the

D(E)RY motif and Asp/GIu®-2° at the cytoplasmic end of helix VI
is not possible in AT{R, because the human AT4R lacks an acidic
residue at the position 6.30.

The C-terminal helix VIIl of AT{R was shown to bind the cal-
cium-regulated effector protein, calmodulin (Thomas et al.,
1999). Integrity of this region is also important for receptor inter-
nalization and coupling to G protein activation and signaling
(Thomas et al., 1995; Sano et al.,, 1997). In most previously

Cell 7167, 1-12, May 7, 2015 ©2015 Elsevier Inc. 3
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Figure 2. Overview of AT R-ZD7155 Architecture and Structural Comparison with Other Peptide GPCRs

(A) Overall AT4R structure is shown as blue cartoon. ZD7155 is shown as spheres with carbon atoms colored green. Membrane boundaries, as defined by the
PPM web server (Lomize et al., 2012), are shown as planes made of gray spheres.

(B-H) superposition of AT4R with chemokine and opioid receptors, chemokine CCRS5 receptor, light cyan (PDB ID 4MBS); chemokine CXCR4 receptor, light pink
(PDB ID 30DU); 3-opioid receptor, gray (PDB ID 4N6H); k-opioid receptor, light green (PDB ID 4DJH); NOP receptor, light orange (PDB ID 4EA3), comparing the
whole structure (B), intracellular view (C), extracellular view (D), ECL2 (E), helix VIII {F), and the ligand binding pocket side (G) and top (H) views.

See also Figures S1 and S2 and Table S1.

solved GPCR structures, helix VIl runs parallel to the membrane
bilayer, however, in AT{R it angles away from the membrane,
resembling the orientation of this helix in CCR5 (Figure 2F).
Experimentally, the secondary structure of AT¢{R helix VIIl was
observed to be sensitive to hydrophobic environment, thereby
associating with the cytoplasmic side of the cell membrane via

4 Cell 167, 1-12, May 7, 2015 ©2015 Elsevier Inc.

a high-affinity, anionic phospholipid-specific tethering that
serves to increase the amphipathic helicity of this region (Mozso-
lits et al., 2002). As a separate peptide, helix VIl of AT41R showed
a higher affinity for lipid membranes that contained negatively
charged phospholipids rather than zwitterionic phospholipids
(Kamimori et al., 2005). A high concentration of positively
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Figure 3. Interactions of ZD7155 with AT;R

(A) Cross-section view of AT4R highlighting the shape of the ligand binding pocket.

(B) Zoomed-in view of the ligand binding pocket showing all residues within 4 A from the ligand ZD7155, along with the 2mFo-DFc electron density (blue mesh)
contoured at 1  level. In (A) and (B) ZD7155 is shown as sticks with yellow carbons.

(C) Schematic representation of interactions between AT,R and ZD7155. Hydrogen bonds/salt bridges are shown as red dashed lines. The residues shown by
mutagenesis to be critical for ligand binding are labeled red, those that are important for either peptide or non-peptide ligands binding are labeled in yellow, and
the residues that discriminate between peptide and non-peptide ligands are labeled in purple.

See also Figure S2 and Table S2.

charged residues (306-KKFKR-312) in helix VIl of AT R possibly
defines its orientation and explains its sensitivity to the negatively
charged lipids. Moreover, in AT4R there is no putative palmitoy-
lation site that is present in many GPCRs in this region, anchoring
helix VIl to the lipid membrane.

ZD7155 Interactions in AT,R Ligand-Binding Pocket

Small molecule antagonist ZD7155 was modeled into the prom-
inent and well-defined electron density inside the ligand-binding
pocket of AT{R (Figure 3A and 3B), interacting with residues
mainly from helices |, Il IIl, and VII, as well as ECL2. Side chains
of Arg1675°2 and Tyr35'%° were found to form ionic and
hydrogen bond interactions with ZD7155. The positively charged
guanidine group of Arg1675°2 forms an extensive interaction
network with the acidic tetrazole and the naphthyridin-2-one
moieties of ZD7155. Leveraging this information in mutagenesis
studies, we found that mutation of Arg1675°2 to alanine abol-
ished both the peptide and non-peptide ligands binding to
AT{R (Table S2). However, the Arg1675°2Lys mutant showed
only 2- to 3-fold reduced binding affinities for ZD7155, which

can be explained by the ability of lysine in this position to engage
in salt bridge and hydrogen bond interactions similar to Ar-
916752 although likely with less optimal interaction geometry.
The tetrazole moiety, or other acidic isostere in the ortho position
of the biphenyl group comprises the most common scaffold
among ARBs, and Arg1675°2 is a unique residue of AT{R
compared to other structurally similar peptide GPCRs (Fig-
ure S2). This observation suggests that Arg1675¢2 may play
an essential role in determining AT{R ligand-binding affinity
and selectivity. An additional hydrogen bond forms between
Tyr35"3° and the naphthyridin-2-one moiety of ZD7155. Our
data showed that the Tyr35"-*°Ala mutant abolishes the binding
capabilities of both peptide and non-peptide ligands with AT{R
(Table S2). Tyr'*%is a well conserved residue in the angiotensin,
chemokine, and opioid receptors (Figure S2). In the CCR5 struc-
ture, for example, Tyr37"® interacts with its ligand maraviroc
(Tan et al., 2013).

The ZD7155 binding site in AT R partially overlaps with known
ligand binding sites in the chemokine and opioid receptors (Fig-
ures 2G and 2H). Intriguingly, some of the residues that comprise

Cell 7167, 1-12, May 7, 2015 ©2015 Elsevier Inc. 5
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the ligand-binding pockets, including lle™-*°, Phe2, Trp?%°, and

Tyr"*3, can be found among these structurally similar peptlde
GPCRs (Figure $2). Residues Phe772°® and Trp84%%° from helix
Il of AT4R are conserved in the chemokine receptors CXCR4 and
CCR5 (Wu et al., 2010; Tan et al., 2013). Particularly, Trp8429° of
AT4R forms 7t-7t interaction with the naphthyridin-2-one moiety
of ZD7155, and mutation of Trp842%° to alanine abolished both
the peptide and non-peptide ligands binding to AT{R (Figure 3C
and Table $2). Residues lle31'*® and Tyr292"4® from helices |
and VIl of AT{R are conserved in the opioid receptors k-OR,
3-OR, and NOP. Additionally, residues Val108%* and
Leu112%35, which hydrophobically interact with ZD7155 in the
AT;R ligand-binding pocket, are replaced by Tyr108%3 and
Phe112%38 in CCR5 and form hydrophobic interactions with its
ligand maraviroc. In contrast, the position 3.32 in the aminergic
and opioid receptors is occupied by a conserved aspartic acid
that engages in a salt bridge interaction with ligands. Most of
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residues critical for ZD7155 binding,

Arg1675°2 Trp8428° and Tyr35"%° (Fig-
ure 5). Residues Phe77%%®, Tyr87%%, Ser105%2°, val108%%2
Ser109°%, Leu1123%5, Ala163%%Y, Phe1825°2, 1le288”-%, and
Tyr29274® also contribute to the receptor-ligand interactions
and shape the ligand-binding pocket. For example, one of the
common features among these ARBs is a short alkyl tail with
two-four carbons extending into a narrow hydrophobic pocket
formed by Tyr35"* Phe772°%, val108%%2, lle288"°, and
Tyr292”42 (Figure 5).

Losartan is the first clinically used ARB for the treatment of hy-
pertension. It is, however, a surmountable antagonist with lower
binding affinity to AT{R compared to the later developed ARBs
(Miura et al., 2011). Docking results suggest that Arg167ECH2
forms a salt bridge only with the tetrazole moiety of losartan
but lacks polar interactions with other groups (Figure 4 and Table
S$3). Although the derived imidazole moiety of losartan can also
contribute to polar interactions via methanol hydrogen bond to
Cys1805°® main chain or via nitrogen interaction with
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ZD7155

Irbesartan

HN/ N/N.

Telmisartan

Lys199542

Losartan

Valsartan

Lys199%42

Figure 5. Common and Distinct Binding Modes of Different ARBs with AT,R
The ARB chemical groups that are engaged in hydrogen bonding/salt bridging with Arg16752 and Tyr35'-*® are marked by red and purple dashed circles,
respectively. Pale red and pale purple dotted circles are used for groups with sub-optimal contacts as suggested by docking. The heterocyclic groups forming

7-T contacts with Trp8426°

are surrounded by light-blue dashed circles. The biphenyl-linker groups for hydrophobic interactions are outlined by green dashed

boxes, and the two-four carbons tails, extending into the hydrophobic pocket formed by Tyr35"% Phe772°%, Val108>22, 1e2887-%°, and Tyr292”%, are outlined
by dark-blue dashed circles. Specific interactions of candesartan and telmisartan with Lys199%? are shown by red arrows. Specific interactions between

Tyr925CH" and telmisartan, and between 11e2887°

See also Figure S3.

Tyr35'32, distances and angles for hydrogen bonding are sub-
optimal; this may explain the lower binding affinity and sur-
mountable property of losartan at AT{R. An active metabolite
of losartan, EXP3174, is predicted to bind in a similar pose as los-
artan, but instead of interaction with Cys1805°™2, its carboxyl
group could engage in a second salt bridge interaction with Ar-
g1675L2, similarly to ZD7155 (Table S3). In contrast, candesar-
tan is an insurmountable inverse agonist with a slow dissociation
rate from AT¢R (Takezako et al., 2004). The docking results indi-
cate that besides interacting with the tetrazole moiety of cande-
sartan, Arg1675°2 forms two salt bridges to the carboxylic
group of the benzimidazole moiety (Figure 4 and Table S3).
Moreover, Lys199%42 is predicted to form an additional salt
bridge with the tetrazole moiety, which can further stabilize can-
desartan binding. Telmisartan lacks the conserved tetrazole
moiety among ARBs. Instead, the carboxylic group of telmisar-
tan is predicted to form salt bridges with both Arg1675°"2 and
Lys199%42 (Figure 4 and Table S3). Moreover, unlike other
ARBs studied here, two consecutive benzimidazole moisties of
telmisartan extend to Tyr925CY" | making additional hydrophobic
and m-1t contacts, which are likely to contribute to its high po-
tency (Balakumar et al., 2012). This prediction was confirmed

and eprosartan are highlighted by orange dashed circles.

by our mutagenesis data, which showed a dramatic decrease
in affinity of telmisartan to the Tyr92 E°“'Ala mutant (Figure S3A).
Eprosartan is the most unique among the ARBs studied here,
lacking both the tetrazole group and one of the two benzene
rings of the biphenyl scaffold. As our docking results suggest,
eprosartan uses its two carboxyl groups to form salt bridges
with Arg1675°L2 (Figure 4 and Table S3). Additionally, the spe-
cific thiophen moiety of eprosartan forms hydrophobic interac-
tions with Pro285"%¢ and 11e288"° and reaches toward
Met2847-%%, Mutation of Met2847-% to alanine produced minimal
effect, slightly increasing the affinity for eprosartan binding, in
agreement with predicted interactions of this ligand with only
mainchain and C atoms of Met2847® (Figure S3B). On the other
hand, mutations Pro285"%Ala and 11e288"*°Ala induced a
strong decrease in the binding affinity of eprosartan (Figures
S3C and S3D), highlighting essential role of these residues in
eprosartan binding. Finally, both our crystal structure and dock-
ing results suggest that Lys199% retains some conformational
heterogeneity in AT{R. Docking with the flexible side chain of
Lys199°4? indicates that the amino group of this residue can
reach the acidic moieties of ARBs by forming salt bridges (as in-
teracting with candesartan and telmisartan) or water-mediated

Cell 7167, 1-12, May 7, 2015 ©2015 Elsevier Inc. 7
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pabilities of Lys199°%42 mutants (Table S2).

Mechanism of AT{R Modulation

Based on previous observations that mutations of either
Asn111%3% or Asn29574® induce constitutive activation of the re-
ceptor, it was proposed that the inactive conformation of AT{R is
stabilized by interactions between Asn111%3 and Asn2957-46.
Further, it was suggested that binding of Angll to the wild-type
(WT) receptor disrupts the hydrogen bonds between
Asn111%3% and Asn29574°, thus allowing Asn295”4° to interact
with the conserved Asp742°C (Balakumar and Jagadeesh,
2014; Unal and Karnik, 2014). Indeed, two intramolecular
hydrogen bonds are observed between Asn1113%® and
Asn2957-48 in the AT,R-ZD7155 structure (Figure 6A). Of partic-
ular interest, Asp742°°, Asn1113%® and Asn2957-4¢, together
with two other residues, Trp253%%® from the WxP motif and
Asn29874® from the NPxxY motif, belong to the putative sodium
pocket of AT{R (Katritch et al., 2014) as revealed by super-
position with the sodium site in the high-resolution structure of
3-OR (Figure 6B) (Fenalti et al., 2014). All residues lining this
pocket in AT{R are conserved exactly as in 3-OR, except for
Asn295’%% (Ser in 5-OR), which is observed at this position in a
GPCR structure for the first time; therefore, its presence and
the strong hydrogen bond interactions with Asn1113%® may
impact the sodium binding and functional properties of AT{R.
Moreover, the neighboring residue Phe772% from the ligand-
binding pocket of AT{R was also found to be critical for the in-
ter-helical interactions required for AT4{R activation (Miura
et al., 2003). Combination of Phe77%°*Ala and Asn111%%°Gly
mutations resulted in an almost fully active receptor (Miura
et al., 2008). Thus, multiple structural and functional data sug-
gest that the hydrogen bond network around Asn1113%® and
Asn2957%% as revealed in the current structure may play an
essential role in AT¢R activation, probably by relaying the confor-
mational changes in the ligand-binding pocket to the cyto-
plasmic domain coupling to the downstream signaling, although
further structural, functional, and biophysical studies are
required to fully understand the mechanism of AT{R modulation.

8 Cell 167, 1-12, May 7, 2015 ©2015 Elsevier Inc.

The angiotensin receptor AT4R is a therapeutic target of
outstanding interest due to its important roles in cardiovascular
pathophysiology. Several AT{R blockers have been developed
and clinically used as anti-hypertensive drugs. Although exten-
sive efforts were taken to delineate the pharmacophores of
AT4R ligands, structure-based drug design was still hindered
by the lack of structural information. By using an XFEL, we suc-
cessfully determined the crystal structure of the human AT{R in
complex with its antagonist ZD7155. Compared to the traditional
X-ray crystallography with cryo-cooled crystals, the LCP-SFX
method vields the room-temperature structure of the AT{R-
ZD7155 complex, which is likely to represent more accurately
the receptor conformations and dynamics in the native cellular
environment. The AT {R-ZD7155 complex structure reveals a va-
riety of key features of AT{R shared with other GPCR family
members, as well as many novel and unique structural charac-
teristics of the angiotensin receptor. Unexpectedly, three AT{R
residues, which have not been previously implicated in binding
small molecule ligands, were found to form critical interactions
with ZD7155; Arg1675°2 and Tyr35"-% are engaged in ionic
and hydrogen bonds, while Trp84%%° forms extensive rt- inter-
actions with the ligand. The antagonist-bound AT4R structure
was used further for docking of several anti-hypertensive ARBs
into the AT4R ligand-binding pocket, elucidating the structural
basis for AT4R modulation by drugs. Our extensive mutagenesis
experiments revealed that residues Tyr35'%°, Trp842°, Ar-
g1675°2, and Lys199°%? are critical for both peptide ([Sar’,
lle®]-Angll) and non-peptide (candesartan) binding. Residues
Phe182E°L2 and 112887 discriminate between the peptide
and non-peptide ligand (these mutants do not bind [Sar’, lle%]-
Angll but bind candesartan). Mutations of Ser109°*® and
Tyr292”42 slightly affected non-peptide (candesartan) binding
but not peptide binding (Table S2).

Among the naturally occurring amino acid variations in AT¢R,
reported in Uniprot (http://www.uniprot.org/uniprot/P30556),
Ala163*%°Thr, Thr2827**Met, and Cys289”-*°Trp are located
near the binding pocket for ARBs. These variants may directly
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alter binding of ARBs and therefore modify the anti-hypertensive
response to treatment with different ARBs in individuals carrying
these variations. In contrast, Leud8'-*?Val, Leu222'°val, and
Ala244%3°Ser, which are located closer to intracellular ends of
helices, may indirectly influence binding of ARBs or signaling
by AT{R. Finally, Thr336Pro and Pro341His are located in the
C-terminal tail that was not included in the crystalized construct.
These residues, however, are known to affect GPCR kinase-
dependent phosphorylation, an event that is necessary for
B-arrestin recruitment to AT{R.

Of particular interest, the atomic details of ECL2 and the extra-
cellular ligand-binding region, revealed in the current structure,
are expected to guide design of two different types of therapeu-
tic agents targeting AT{R, the anti-hypertensive ARBs exten-
sively interacting with Arg1675°-2 on the ligand-binding pocket
side of ECL2, and the peptide-mimicking antigens against auto-
antibodies, which bind to the extracellular side of ECL2 in pa-
tients with autoimmune disorders, such as preeclampsia and
malignant hypertension (Zhou et al., 2008; Fu et al., 2000). There-
fore, our results provide long anticipated insights into the AT{R
structure-function relationship and pharmacological properties
and demonstrate the potential for using the LCP-SFX method
at XFEL sources to accelerate structural studies of challenging
targets.

EXPERIMENTAL PROCEDURES

Protein Engineering for Structural Studies

The sequence of the human AT4R gene was optimized for insect cell expres-
sion and synthesized by GenScript. A thermostabilized apocytochrome
bseoRIL (BRIL) from E. coli (M7W, H1021, R106L) was fused to the N terminus
of the human AT4R, using overlapping PCR. The construct has truncations of
the AT,R residues 1, 7-16, and 320-359. The resulting BRIL-ATR chimera
sequence was subcloned into a modified pFastBac1 vector (Invitrogen), which
contained a haemagglutinin {(HA) signal sequence, a FLAG tag and 10 x His
tag, followed by a tobacco etch virus (TEV) protease cleavage site, before
the N terminus of the chimera sequence.

Protein Expression and Purification

BRIL-AT4R construct was expressed in Spodoptera frugiperda (Sf9) insect
cells using the Bac-to-Bac baculovirus expression system (Invitrogen). Cells
with a density of 2-3 x 10° cells per ml were infected with baculovirus at
27°C, and harvested at 48 hr after infection.

BRIL-AT4R in complex with ZD7155 (Tocris Bioscience) was solubilized
from isolated membranes using 1% {w/v) n-dodecyl-beta-D-maltopyranoside
(DDM, Anatrace) and 0.2% (w/v) cholesterol hemisuccinate (CHS, Sigma-
Aldrich). After purification by metal affinity chromatography BRIL-AT{R/
ZD7155 complex was desalted to remove imidazole using PD MiniTrap G-25
column (GE Healthcare) and then treated overnight with His-tagged TEV pro-
tease to cleave the N-terminal FLAG/His tags from the protein. The cleaved
FLAG/His tags and TEV protease were removed by TALON IMAC resin. The
protein was not treated with PNGase F and therefore remained fully glycosy-
lated. Finally, the purified protein was concentrated to 30 mg/ml with a
100 kDa cutoff concentrator (Vivaspin) and used in crystallization trials. The
protein yield and monodispersity were tested by analytical size exclusion chro-
matography (aSEC).

Lipidic Cubic Phase Crystallization

BRIL-AT4R in complex with ZD7155 was crystallized in LCP composed of
monoolein supplemented with 10% cholesterol (Caffrey and Cherezov,
2009). LCP crystallization trials were performed using an NT8-LCP crystalliza-
tion robot (Formulatrix). 96-well glass sandwich plates (Marienfeld) were incu-
bated and imaged at 20°C using an automatic incubator/imager (Rocklmager

1000, Formulatrix). The crystals grew in the condition of 100 mM sodium citrate
{pH 5.0-6.0), 300600 mM NH4H.PO,, 20%-30% {v/v) PEG400 and 2%-8%
(v/v) DMSO. The crystals were harvested using micromounts {MiTeGen) and
flash-frozen in liquid nitrogen for data collection at a synchrotron source.
These crystals diffracted only to about 4-A resolution, even after extensive
optimization of crystallization conditions.

Microcrystals for SFX data collection were prepared in gas-tight syringes
{Hamilton) as described (Liu et al., 2014b), using 100 mM sodium citrate (pH
5.0), 450 mM NH4H,PO,4, 28% (v/v) PEG400 and 4% (v/v) DMSO as a precip-
itant. Before loading microcrystals in the LCP injector the excess precipitant
was removed, and 7.9 MAG was added and mixed with LCP, to absorb the re-
sidual precipitant solution and prevent formation of a crystalline phase dueto a
rapid evaporative cooling when injecting LCP into vacuum (Weierstall et al.,
2014).

X-Ray Free Electron Laser Data Collection

Data collection was performed at the Coherent X-ray Imaging (CXI) end station
of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Labo-
ratory, using XFEL pulses of 36 fs duration focused to a size of 1.5 x 1.5 um?
by Kirkpatrick-Baez mirrors. A photon energy of 7.9 keV, an average pulse en-
ergy of 2.7 mJ and a transmission level of 16% resulted in a maximum dose of
75 MGy at the sample.

Microcrystals dispersed in LCP were delivered into the interaction region us-
ing an LCP injector (Weierstall et al., 2014) with a 50 um diameter nozzle at a
flow rate of 170 nl per minute. Diffraction patterns were collected on a Cor-
nell-SLAC Pixel array detector (CSPAD - version 1.5) (Hart et al., 2012) at a
rate of 120 Hz.

With a total sample volume of 65 ul, a total of 2,764,739 diffraction frames
were collected within 6.4 hr. Initial frames were corrected and filtered using
the software package Cheetah (Barty et al., 2014). A crystal “hit” was defined
as an image containing a minimum of 15 diffraction peaks with a signal to noise
ratio above 4. A total of 457,275 positive “hits” were further processed using
the CrystFEL software suite (version 0.5.3) (White et al., 2012). The detector
geometry was refined using an automated algorithm designed to match found
and predicted peaks to sub-pixel accuracy. By further refinement of parame-
ters (peak detection, prediction, and integration), a total of 73,130 images were
indexed, integrated, and merged into a final dataset. To reduce noise and out-
liers and thus improve data quality we have applied two data rejection criteria:
(1) per pattern resolution cutoff, and (2) rejection of patterns based on a
Pearson correlation coefficient threshold, as described in the Extended Exper-
imental Procedures. A resolution cutoff was estimated to be 2.9 A using acom-
bination of CC*(Karplus and Diederichs, 2012) and other parameters (Figures
S51D-81F). The final dataset had overall R, = 9.8%, and CC* = 0.872 in the
highest resolution shell.

Structure Determination

The structure was solved by molecular replacement with Phaser (McCoy et al.,
2007) using an automated script described in the Extended Experimental
Procedures.

Refinement and model completion were performed by repetitive cycling be-
tween Refmach (Murshudov et al., 1997) and autoBUSTER (Bricogne et al.,,
2009), followed by manual examination and rebuilding of the refined coordi-
nates in Coot (Emsley et al., 2010). Data collection and refinement statistics
are shown in Table S1.

Docking of ARBs into AT4R Ligand-Binding Pocket

Representative ARBs were docked into the AT4R crystal structure using an en-
ergy-based docking protocol implemented in ICM molecular modeling soft-
ware suite (Molsoft). Molecular models of compounds were generated from
two-dimensional representations and their 3D geometry was optimized using
MMFF-94 force field (Halgren, 1995). Molecular docking employed biased
probability Monte Carlo (BPMC) optimization of the ligand internal coordinates
in the grid potentials of the receptor (Totrov and Abagyan, 1997). To ensure
convergence of the docking procedure, at least five independent docking
runs were performed for each ligand starting from a random conformation.
The results of individual docking runs for each ligand were considered consis-
tent if at least three of the five docking runs produced similar ligand
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conformations (RMSD < 2.0 A) and Binding Score < —20.0 kd/mol. The unbi-
ased docking procedure did not use distance restraints or any other a priori
derived information for the ligand-receptor interactions.

Ligand Binding Assays

Ligand binding was analyzed using total membranes prepared from COS-1
cells transiently expressing HA-AT{R (wild-type), ABRIL-AT{R (crystallized
construct without BRIL), and BRIL-AT4R (crystallized construct) constructs.
Single mutants were constructed by a PCR-based site-directed mutagenesis
strategy as previously described (Unal et al., 2010). Protein concentration was
determined by Bio-Rad Protein Assay (Bio-Rad). For both saturation and
competition binding assays, 10 ug of homogenous cell membrane was used
per well.

Saturation binding assays with *H-candesartan were performed under equi-
librium conditions, with *H-candesartan (Amersham Pharmacia Biotech) con-
centrations ranging between 0.125 and 12 nM (specific activity, 16 Ci/fmmol) as
duplicates in 96-well plates for 1 hr at room temperature. Nonspecific binding
was measured in the presence of 10 uM candesartan (gift from AstraZeneca).
The binding kinetics were analyzed by nonlinear curve-fitting program Graph-
Pad Prism 5, which yielded the mean + SD for the Ky and Bmax values.

Competition binding assays were performed under equilibrium conditions,
with 2 nM ®H-candesartan and various concentrations of the ZD7155 ranging
between 0.04 and 1,000 nM. The binding kinetics were analyzed by nonlinear
curve-fitting program GraphPad Prism 5, which yielded the mean + SD for the
1C5q values.

Signaling Assays in Whole Cells

Calcium levels inside COS-1 cells transiently expressing different AT{R con-
structs were measured using a Fluorescent Imaging Plate Reader (FLIPR) Cal-
cium 5 assay kit (Molecular Devices). For the antagonist dose-response, the
cells were first treated with different concentrations of ZD7155 for 1 hr followed
by stimulation with 100 nM Angll. The EC5, values for Angll dose response
were 0.2, 2, and 12 nM for HA-AT4R, ABRIL-AT4R, and BRIL-AT1R, respec-
tively. The IC5q values for ZD7155 to inhibit Angll response were between 3
to 4 nM for all constructs. The curves from a representative experiment
wherein measurements are made in triplicate are shown as mean + SEM. Addi-
tional information is available in the Extended Experimental Procedures.

ACCESSION NUMBERS

The coordinates and structure factors have been deposited into the Protein
Data Bank under the accession code 4YAY.
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figures, and three tables and can be found with this article online at http://dx.
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