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Abstract

With the discovery of the Higgs boson, a central objective of the LHC Higgs program is to

study its properties in detail by exploring different production and decay channels. This

requires precise theoretical predictions of inclusive cross sections as well as differential and

exclusive cross sections. In this thesis, we study perturbative uncertainties in the fixed-

order (FO) predictions of exclusive jet cross sections and obtain resummed predictions for a

new class of rapidity-dependent jet veto observables, focusing on Higgs production via gluon

gluon fusion (ggF) at the LHC. Experimental analyses at the LHC often use jet binning

and jet selection cuts to distinguish between different Higgs production mechanisms and

to separate signal from backgrounds. Such jet vetoes and jet selection cuts induce Sudakov

logarithms of the ratio of the veto scale and the hard scale in the process. In the limit of

very tight jet vetoes, these logarithms can become large and introduce large uncertainties

in the FO predictions of cross sections. By resumming these large logarithms to all orders,

the perturbative uncertainties can be considerably reduced. Whether in FO or resummed

predictions, a consistent treatment of uncertainties in different jet bins is required. In the

first part of the thesis, we studied in detail the perturbative uncertainties in the NLO

predictions for pp → H+2-jets via ggF for the vector boson fusion (VBF) selection cuts

used by ATLAS and CMS in their H → γγ analyses. Our study shows that, while applying

strong restrictions on additional emissions is expected to increase the sensitivity to the VBF

signal and reduce the ggF contribution, it is not necessarily beneficial for distinguishing the

VBF and ggF production modes because of the quickly increasing ggF uncertainties. In the

second part of the thesis, we introduce rapidity-dependent jet veto observables for which

the transverse momentum of a jet is weighted by a smooth function of the jet rapidity.

These jet-based observables provide natural and clean ways to veto central jets and can

yield valuable complementary information in the exclusive jet bins. Using Soft Collinear

Effective Theory (SCET), we study the factorization and resummation properties of these

rapidity-dependent observables and obtain predictions for the resummed H+0-jet cross

section at NLL′ with a veto on these observables. Because the experimentally relevant

region is an intermediate one, where both the resummed and the FO contributions are

important, we calculate the FO corrections at NLO and combine them with our resummed

predictions to obtain the full NLL′+NLO result for the H+0-jet cross section. We compare

our numerical predictions with the differential cross section measurement by ATLAS in the

H → γγ channel and find good agreement. At O(α2
s), these jet-based observables have

a non trivial dependence on the jet-algorithm due to clustering effects. In the final part,

we consider the corrections due to clustering of two collinear or soft particles into a single

jet which are an important input for predicting the cross section at NNLL′+NNLO. These

corrections are numerically significant for the jet radii currently used in experiments.



vi

Zusammenfassung

Nach der Entdeckung des Higgs-Bosons liegt das Hauptaugenmerk des LHC Higgs Pro-

gramms auf der exakten Vermessung seiner Eigenschaften durch Untersuchung der ver-

schiedenen Produktions- und Zerfallskanäle. Dies verlangt präzise theoretische Vorher-

sagen von inklusiven als auch differentiellen und exklusiven Wirkungsquerschnitten (WQ).

In dieser Arbeit untersuchen wir störungstheoretische (ST) Unsicherheiten in den Vorher-

sagen von exklusiven Jet-WQ in fester Ordnung der ST Reihe (FO). Wir erhalten resum-

mierte Vorhersagen für eine neue Klasse von Rapiditäts-abhängigen Jet-Veto Observablen,

wobei unser Fokus auf Higgsproduktion durch Gluonfusion (ggF) am LHC liegt. Experi-

mentelle Analysen beruhen häufig auf Jet-Binning in Kombination mit gewissen kinema-

tischen Schnitten, um die verschiedenen Produktionsmechanismen zu unterscheiden und

das Signal vom Untergrund zu separieren. Solche Jet-Vetoes und Jet-Selektionsschnitte

generieren Sudakov-Logarithmen abhängig vom Verhältnis der Skala des Jet-Vetoes zur

harten Skala des Prozesses. Im Grenzfall sehr kleiner Jet-Vetoes werden diese Logarith-

men sehr groß und bedingen große Unsicherheiten in der FO Vorhersage der WQ. Durch

Resummierung dieser großen Logarithmen zu allen Ordnungen der ST Reihe werden die

Unsicherheiten deutlich reduziert. Eine konsistente Behandlung der Unsicherheiten in den

unterschiedlichen Jet-Bins ist unabdingbar, sowohl für FO wie auch resummierte Vorher-

sagen. Im ersten Teil dieser Arbeit untersuchen wir im Detail die ST Unsicherheiten in

der Vorhersage von pp→ H+2-Jets durch ggF in nächstführender Ordnung (NLO) ST bei

Anwendung von Auswahlschnitten für Vektorbosonfusion (VBF), wie sie von ATLAS und

CMS in ihren H → γγ Analysen zum Einsatz kommen. Während starke Einschränkungen

auf die Emission weiterer Teilchen die Sensitivität auf das VBF Signal erhöhen und auf den

ggF Anteil reduzieren sollten, zeigt unsere Studie, dass ebensolche Einschränkungen nicht

zwangsläufig vorteilhaft für die Unterscheidung der VBF und ggF Produktionsmechanis-

men sind, eben gerade aufgrund der stark ansteigenden ggF Unsicherheiten. Im zweiten

Teil der Arbeit führen wir Rapiditäts-abhängige Jet-Veto Observablen ein, für die der

Transversalimpuls eines Jet mit einer glatten Funktion der Jet-Rapidität gewichtet wird.

Diese Jet-basierten Observablen erlauben zentrale Jets zu verbieten und bieten dennoch

komplementäre Informationen in den exklusiven Jet-Bins. Mit der Hilfe von "Soft Collinear

Effective Theory" (SCET) untersuchen wir die Faktorisierungs- und Resummierungseigen-

schaften dieser Rapiditäts-abhängigen Observablen und erhalten so Vorhersagen für den

resummierten H+0-Jet WQ in Ordnung NLL′ bei entsprechendem Veto auf diese Observ-

ablen kombiniert mit dem FO WQ auf NLO. Wir vergleichen unsere numerische Vorher-

sage mit den Messungen des differentiellen WQ von ATLAS im H → γγ Kanal und finden

gute Übereinstimmung. In O(α2
s) haben die Jet-basierten Observablen eine nichttriviale

Abhängigkeit vom Jet-Algorithmus aufgrund von “Clustering”. Zuletzt betrachten wir Kor-

rekturen aufgrund des “Clustering” von zwei kollinearen oder weichen Teilchen in einen Jet,

die einen wichtigen Beitrag zur Vorhersage von WQ in der Ordnung NNLL′+NNLO liefern

und numerisch von Relevanz für die experimentell genutzten Jet-Radien sind.
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Chapter 1

Introduction

The observation of a Higgs-like boson at the LHC is a huge success of science and in

particular of the Standard Model (SM) of particle physics – a theory used to understand

matter and forces in the universe and which predicted the existence of the Higgs boson. The

insight into the basic structure of matter reveals that everything in the universe is made up

of a few building blocks called the fundamental particles and is governed by four basic forces

– strong, electromagnetic, weak and gravitational. The SM provides a successful theory of

the strong, the electromagnetic and the weak interactions. Electromagnetic interactions

are mediated by photons, the strong interactions by massless spin-1 gluons (discovered at

DESY in 1979) and the weak interactions by spin-1 W+, W− and Z bosons (discovered at

CERN in 1983).

The formulation of the SM is based on Quantum Field Theory (QFT) which is a math-

ematical and conceptual framework describing the creation and destruction of particles

and their interactions. In a rather informal sense, QFT is the extension of quantum me-

chanics (QM), which deals with systems having an infinite number of degrees of freedom.

The motivation behind developing QFT was to put together QM and Special Theory of

Relativity (STR) for the proper quantum treatment of electromagnetic field. There is a

long and impressive history of theoretical and experimental advances in the field of QFT

and particle physics owing to the efforts of many scientists in the 20th century. QFT

was introduced by De Broglie, Heisenberg in 1920s and by Paul Dirac with the theory of

quantum electrodynamics (QED), which is an abelian gauge theory with the symmetry

group U(1). In the 1930s, the basic physical quantities in QED, such as the self-energy

of the electron gave infinite, divergent contributions when computed using perturbative

techniques. This “divergence problem” was solved for QED by Hans Bethe, Tomonaga,

Schwinger, Feynman and Dyson, through the procedure known as renormalization. The

concepts of ‘charge’ and ‘mass’ were understood with the idea that the ‘bare’ masses and

1
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charges of particles that appear in free field (non-interacting) equations are not experi-

mentally measured quantities and that ‘vacuum’ is populated by creation and annihilation

of virtual particles. The quantities that are measured in experiments are ‘renormalized’

masses and charges. Another important development was due to Feynman, who found a

representative way to study scattering of particles through “diagrams” and set of rules to

compute scattering matrices, amplitudes, decay widths and cross sections.

The theory for the strong interaction, which binds the protons and neutrons inside the nu-

cleus, was formulated as Quantum Chromodynamics (QCD). QCD is a non-abelian gauge

theory based on a local gauge symmetry SU(3). Yang and Mills formulated the first exam-

ple of a non-Abelian gauge theory, called the Yang-Mills theory to provide an explanation

for strong interaction. Following this in the early 1960s, the electromagnetic and weak

interactions were unified into the electroweak interaction in the Glashow-Weinberg-Salam

(GWS) model described by an SU(2) × U(1) group. The GWS model was shown to be

renormalisable by t’ Hooft and Veltman. In 1973, Gross, Wilczek and Politzer showed

that the attraction between quarks grows weaker as the quarks approach one another, and

correspondingly the attraction grows stronger as the quarks are separated. This discovery,

known as “asymptotic freedom” allows us to use perturbaion theory to predict QCD cross

sections at large energies.

In the 1960s, the concept of particles acquiring mass through symmetry breaking in mass-

less theories was put forward by Jeffrey Goldstone, Yoichiro Nambu and Giovanni Jona-

Lasinio. A theory able to finally explain mass generation for particles without breaking

gauge theory was published almost simultaneously by three independent groups in 1964:

by Robert Brout and Francois Englert [1], by Peter Higgs and by Gerald Guralnik [2, 3],

C. R. Hagen, and Tom Kibble [4]. The so-called “Brout-Englert-Higgs (BEH) Mechanism”

explains how massless bosons from the electroweak theory mix to produce three massive

weak bosons, and the massless photon field. The SM is thus a theory which combines the

strong interaction with the unified electroweak interaction through the symmetry group

SU(2) × U(1)× SU(3).

On July 4 2012 [5, 6], scientists at the LHC announced that they had found the Higgs

boson, a particle that is responsible for generation of mass, as proposed in 1964. In this

concept of mass generation, after the Big Bang, an energy field, now dubbed the Higgs

field, emerged that imparts mass to the subatomic particles. Pictorially, particles that

travel through this field slow down more while traversing the field and become heavier.

Because subatomic particles are either matter carriers called fermions or force-carrying

particles called bosons, the existence of the Higgs field implied an associated force-carrying

particle, called the Higgs boson, which is like a ripple in that field. The 2012 discovery at

the LHC left little doubt that the Higgs boson exists, and Higgs and his colleague, Fracois
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Englert, won the Nobel Prize in 2013 for the their theory of electroweak symmetry breaking

or the BEH mechanism.

After 2012, there have been several measurements of the properties of the discovered Higgs

boson, by exploring different production and decay channels as well as new physics searches

at the LHC. The LHC, being a proton-proton collision environment, a good understanding

of QCD is important for achieving the best possible predictions and description of any

events. Every interesting measurement at the LHC requires a certain number of selection

cuts on the QCD radiation (that is jets) to maximize the signal sensitivity, reduce QCD

background and to study specific Higgs production and decay modes. For example, in the

H → WW analyses, with leptonic W decays, experiments distinguish events according

to the number of jets in the final state. In particular, selecting events with zero jets

by imposing a jet veto, which defines what is called the “exclusive” 0-jet cross section,

significantly reduces the background. Such restrictions introduce additional theoretical

uncertainties in the cross section predictions that need to be understood. The transverse

momentum threshold for identifying jets, pcutT ∼ 25 − 30GeV, is substantially smaller

than the hard scale Q of the process. As a result, perturbative calculations of the cross

section with the jet veto involve terms enhanced by up to two powers of log (mH/p
cut
T )

(called Sudakov logarithms) for each power of αs beyond the leading-order cross section.

When pT is relatively unconstrained and pcutT ∼ Q, then these logarithms are of order

unity, and fixed-order QCD perturbation theory can be applied to predict the distribution.

However one needs to carefully take into account the uncertainties introduced in the fixed-

order predictions of exclusive cross sections due to such jet vetoes. However for tighter jet

vetoes, when pcutT ≪ Q, the logarithms overwhelm the αs suppression, and the perturbative

expansion must be resummed to all orders in αs to ensure that the distribution does not

diverge as pcutT → 0. Techniques exist to perform resummation for such exclusive cross

sections in QCD and in effective field theories (EFTs).

Generically in QCD a separation of scales is important for determining what parts of a pro-

cess are perturbative with the strong coupling constant αs ≪ 1 and what parts are nonper-

turbative with αs ∼ 1. A typical cross section for any process is “factorized” into parton dis-

tribution functions describing the density of partons inside the proton (non-perturbative)

and the hard interaction (perturbative). Any process at the LHC, involves widely separated

energy scales; for example the energy scale of the non-perturbative physics, intermediate

scales like the transverse momentum of jets and the mass of the particles produced like the

Higgs or W/Z bosons. The EFT approach allows us to study the low-energy dynamics,

independently of the details of the high-energy interactions. To build an EFT describing

physics at a given energy scale E, one makes an expansion in powers of Ei/Q, where Ei

are the various scales involved in the problem which are smaller than the hard scale Q.

To ensure that the physics for the full theory and the effective theory is the same at the
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boundary, there are matching conditions. First the heavy degrees of freedom are identified

and integrated out of the action which results in an effective action that describes non-local

interactions between lighter degrees of freedom. To obtain a local action, the effective ac-

tion is expanded in a set of local operators. In a “top-bottom” approach, one starts with a

full theory at a high energy and large renormalization scale µ, and evolves to lower energy

through renormalization group evolution (RGE) which results in a logarithmic dependence

on the ratio of the scales. In this thesis, we will compute cross sections in Soft- Collinear

effective theory (SCET) which is an EFT of QCD that describes the interaction of soft

particles with momentum psoft such that Q≫ psoft and collinear energetic particles in the

presence of a hard interaction. It provides a systematic way to factorize cross sections of

different processes at the LHC and allows to resum logarithms using RGE.

The success of LHC Run 1 strongly relied upon advanced QCD simulation tools to guide

experimental analyses, calculations in perturbative QCD upto the next-to-next-to-leading

order in different Higgs production and decay channels and sophisticated Monte Carlo

tools. There is, however, still a lot of work to be done in order to confirm that what has

been observed is indeed the SM Higgs boson responsible for the electroweak symmetry

breaking and not a close resemblance. Run 2 of the LHC with higher center-of-mass en-

ergy
√
s = 13, 14TeV is the beginning of the precision phase which means that a detailed

understanding of experimental and theoretical uncertainties in each of the channels is of

prime importance. This thesis aims at improving the evaluation of perturbative uncertain-

ties in the exclusive jet cross sections at the LHC, introducing more efficient observables

to veto central jets and providing resummed predictions for those jet veto observables in

the framework of SCET [7–10]

Structure of the thesis:

In chapter 2, we will briefly discuss the basics of perturbative QCD which includes the

parton model, running of the strong coupling constant αs, infrared and ultraviolet diver-

gences, DGLAP evolution and the origin and summation of large logarithms for exclusive

jet cross sections. In the second part we will discuss briefly the main features of the Higgs

Mechanism in the SM, the Higgs production and decay modes at the LHC and some recent

results by the ATLAS and CMS experiments. In chapter 3 we will estimate the uncer-

tainties in the exclusive jet cross sections induced by jet selection cuts and nontrivial jet

binning used in experiments. In particular, we will explain in detail and generalize the

so-called “Stewart-Tackmann” method to estimate such fixed-order uncertainties and ob-

tain perturbative uncertainties in the NLO predictions for pp→ H +2 jets via gluon gluon

fusion (ggF) with the selection cuts used by ATLAS and CMS experiments in the vector

boson fusion (VBF) analyses. These results have been published in [11]. In Chapter 4 we

will introduce a new class of rapidity dependent jet vetoes and discuss their factorization

and resummation properties in SCET. We will obtain resummed predictions at NLL′+
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NLO order for gluon fusion H + 0 -jet cross section with a veto on these observables. For

one of these observables, we also compare our numerical predictions with the recent dif-

ferential cross section measurement by the ATLAS experiment in the H → γγ channel.

This work is published in [12]. For more than one emissions (i.e. beyond NLL′) such

jet-based observables have a dependence on the jet-algorithm (and the jet radius R) due

to the clustering of two collinear or soft emissions into a single jet and due to soft-collinear

mixing. The corrections due soft-collinear mixing are O(R2) while those due to clustering

of correlated emissions within the collinear or soft sectors give rise to logarithms of R. In

chapter 5, we will consider these clustering logarithms in the beam and soft functions

at O(α2
s) which are important for R ≪ 1 currently used in experiments. A summary of

the results and future work of implementing the clustering corrections to obtain the full

NNLL′+ NNLO cross section is finally discussed in chapter 6.





Chapter 2

QCD and Higgs Physics

The first part of this chapter is an introduction to perturbative QCD, in particular the

soft and collinear divergences encountered in higher-order calculations, the origin of large

logarithms and the idea of resummation. The second part briefly explains the Higgs Mecha-

nism in the Standard Model, the Higgs production and decay channels and the recent Higgs

measurements at the LHC.

2.1 Introduction

Quantum Chromodynamics (QCD) is the SU(3) gauge field theory that describes the strong

interaction of colored quarks and gluons. The QCD Lagrangian is given by

L =
∑

q

ψ̄q,a(iγ
µ∂µδab − gsγ

µtCabAC
µ −mqδab)ψq,b −

1

4
FA
µνF

Aµν . (2.1)

The ψq,a are quark field spinors for a quark of flavor q and mass mq, with a color index

’a’ that runs from a = 1 to NC = 3, i.e. quarks come in 3 colors. Quarks are said to be in

the fundamental representation of the SU(3) color group. The AC
µ correspond to the gluon

fields with C running from 1 to N2
c − 1 = 8, i.e. there are 8 kinds of gluons. Gluons are

in the adjoint representation of the SU(3) color group. The tCab correspond to eight 3 × 3

matrices and are the generators of the SU(3) group. The quantity gs is the QCD coupling

constant. The field tensor FA
µν is given by

FA
µν = ∂µAA

ν − ∂νAA
µ − gsfABCAB

µAC
ν , [tA, tB] = ifABCt

C , (2.2)

where fABC are the structure constants of the SU(3) group.

7
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The fundamental parameters of QCD are the coupling gs or αs = g2s/4π and the quark

masses. In perturbative QCD, predictions of observables are expressed in terms of the

renormalized coupling αs(µ
2
R), a function of a renormalization scale µR. The coupling

satisfies the following renormalization group equation (RGE)

dαs

dτ
= β(αs(τ)) = −(b0α

2
s(τ) + b1α

3
s(τ) + b2α

4
s(τ) + ...) , (2.3)

where τ = log (Q2/µ2), b0 = (33−2nf )/(12π) is the 1-loop beta function coefficient and b1,

b2 are the 2-loop and 3-loop coefficients respectively. At leading order, Eq. (2.3) becomes

∫ αs(Q2)

αs(µ2)

dαs

α2
s

= −β0
4π

∫ τ

0
dτ1 (2.4)

yielding

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)
β0

4π log(Q2/µ2)
. (2.5)

This equation expresses the effective QCD coupling in terms of the experimental observable

αs(µ
2). The renormalization point µ is arbitrary. The minus sign in Eq. (2.3) indicates

that the strong coupling is large at small Q2 (that is large distance), where confinement

occurs but decreases to zero at large Q2, which is the origin of the asymptotic freedom.

In QED it is easy to define the charge of an electron as it is related to the large distance

behavior of the electric potential. This is not possible in QCD since the Q2 → 0 limit of

αs(Q
2) is not calculable in perturbation theory. So one has to choose an arbitraty point

µ and measure the effective coupling at that point. The conventional choice is to define

the coupling at µ2 = m2
Z . The deep inelastic scattering experiment designed to detect

point-like structure in the nucleon was the first to signal the need for asymptotic freedom,

so we will discuss it shortly next.

2.2 Deep inelastic scattering and the parton model

Quarks and gluons, the fundamental dynamic entities of QCD, are not observed as free

particles but confined inside the hadrons. Since the coupling constant of the strong in-

teraction decreases with increasing energy, perturbative QCD calculations with expansion

parameter αs can only provide accurate descriptions of high energy scattering processes but

they cannot explain the properties of low energy bound states i.e parton densities inside

the hadrons. The solution is “factorization” of different energy scales which allows us to

predict cross sections by separating the long-distance physics into functions describing the

distributions of partons in hadrons (with parton distribution functions PDFs) and short
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Figure 2.1: Deep Inelastic Scattering at tree level.

distance behaviour which describes the hard scattering process. Roughly, any cross section

can be expressed as a convolution between the PDFs f and the pertubative hard matrix

element H, that is, σ = f ⊗H. Deep inelastic scattering (DIS) was the first experiment

where factorization was studied in detail and proved.

In DIS, a massive hadronic state X is produced by the scattering of a lepton (an electron)

on a nucleon, e(k) +N(p) → e(k′) +Xhadronic. This process is shown in Fig. 2.1. Because

the lepton interacts with the nucleon only through the exchange of a photon, W or Z boson,

the cross section for this process factors into leptonic and hadronic tensors,

dσ =
d3k′

2s|k′|
1

q4
Lµν(k, q)Wµν(p, q) . (2.6)

where q is the four momentum of the exchanged photon. The leptonic tensor is known

and the hadronic tensor Wµν can be parameterized after imposing the parity and current

conservation as follows

Wµν = −
(
gµν −

qµqν
q2

)
W1(x, q

2) +
(
pµ + qµ

1

2x

)(
pν + qν

1

2x

)
W2(x, q

2) . (2.7)

The W’s are functions of Q2 = −q2 and the dimensionless ratio,

x =
−q2
2p · q ≡ Q2

2p · q . (2.8)

It is convenient to introduce dimensionless structure functions,

F1 ≡W1 , F2 ≡ (p · q)W2 . (2.9)

An important observation first made in the DIS experiments at SLAC was that for Q2 ≥
1GeV2, the structure functions F (x,Q2) become functions of x only, nearly independent

of Q2. Infact the experiments observed that the structure functions obey the relation
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F2(x,Q
2) = 2xF1(x,Q

2) known as the Callan-Gross relation. These features in the data

can be explained by assuming that the DIS experiment is dominated by the scattering

of a single virtual photon from point-like spin-half constituents of the proton called the

partons. This is beacuse if electric charges were uniformly distributed within the nucleon

then the wide-angle scattering would be very rare giving rise to structure functions that

decrease rapidly with Q2. The fundamental relation of the parton model for DIS is given

by

dσ(p, q) =
∑

i

∫ 1

0
dξ dσB (ξp, q) fi/N (ξ) , (2.10)

where dσ is the inclusive cross section for nucleon-electron scattering, dσB is the lowest-

order (Born) elastic parton-electron cross section where the parton’s momentum p is given

by a fraction ξ of the proton’s momentum, ξp with ξ between zero and one. The func-

tion fi/N are parton distributions which describe the probability of finding a parton (of

flavor i) in the hadron N . These parton distribution functions are universal and process-

independent in the sense that they are the same for all inclusive scattering processes.

2.3 e+e− → Jets

Higher-order QCD calculations are plagued by infrared (IR) divergences. To study these IR

divergences, we will compute the cross section for an example process of electron positron

annihilation into quark antiquark pair at next-to-leading order (NLO). Such a 1-loop cal-

culation will give us an idea of the origin of IR divergences and Sudakov logarithms in

QCD and will help us build our understanding of higher-order calculations in SCET which

reproduce exactly the same IR divergences as QCD.

This process contains no color charge in the initial state, and it is convenient to visualize this

process as an e+e− annihilating into a virtual photon, which then decays into either a muon

pair or a quark-antiquark pair. According to the Kinoshita, Lee and Nauenberg (KLN)

theorem, at any order in perturbation theory, if we sum over all quark and gluon final states

the resulting cross section should be finite even for massless quarks and gluons. However

the total cross section for the emission of a single real gluon, e+e− → qq̄g, is infinite.

The divergence in the real emission process comes from the energy of the gluon going to

zero or when the outgoing gluon and quark become parallel, referred to as the (infrared)

soft singgularity and collinear singularity respectively. This divergence is cancelled by the

virtual gluon correction to the quark-vector-boson vertex. The virtual corrections are UV-

finite after renormalization but are IR-divergent. A regularization procedure is required

that will control the IR divergences in the individual real and virtual contributions such
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Figure 2.2: Feynman diagrams for the decay of a virtual photon into a quark-antiquark pair and
a gluon.

that the sum is finite.

The Born cross section for the process e+e− → qq̄ is fairly straightforward to compute and

is the same as e+e− → µ+µ− with an additional color factor. The two-body differential

decay rate for γ∗ → qq̄ is given by

dΓ =
1

2Ecm
|M |2d6φ2 ,

d6φ2 =
d3p1

(2π)3(2E1)

d3p2
(2π)3(2E2)

(2π)4δ4(q − p1 − p2) . (2.11)

The leading order (LO) cross section for γ∗ → qq̄ is given by (where for massless particles

E1 = E2 = Q/2)

Γ(γ∗ → qq̄) = σ0 = 3αe2qQ , (2.12)

where eq is the charge of the quark.

We will now consider the decay of a virtual photon γ∗ into a quark-antiquark pair and a

real gluon as shown in Fig. 2.2. The 3-body differential decay rate is given by

dΓ =
1

2Ecm
|M |2dφ3 , (2.13)

where the three-body phase space factor is

dφ3 =
d3p1

(2π)32E1

d3p2
(2π)32E2

d3p3
(2π)32E3

(2π)4δ(q − p1 − p2 − p3) . (2.14)

Integrating over the three-momentum of particle 3 using the delta function, the phase space
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factor simplifies to

dφ3 =
(2π)4

8(2π)9
d3p1d

3p2
E1E2E3

δ(E1 + E2 + E3 −Q) and

∫
d3p1d

3p2
2E12E2

=

∫
2π2E1dE1E2dE2

∫ 1

−1
dz , (2.15)

where z = cos θ12 is the angle between particle 1 and 2. Further simplification yields

dφ3 =
1

4(2π)3
dE1 dE2 dE3 δ(E1 + E2 + E3 −Q) =

Q2dx1dx2
16(2π)3

, (2.16)

where we define

xi =
2Ei

Q
and pi · pj =

1

2
Q2(1− xk) . (2.17)

The differential cross section then becomes

dσ

dx1dx2
=

Q

32(2π)3
|M |2 . (2.18)

The amplitudes for this process from the Feynman diagrams given in Fig. 2.2 are

AR = ū(p2, s2) (−igsγρT a
ij) ǫρ

( i/pa
p2a

)
(−ieeqγµ) v(p1, s1) ,

BR = ū(p2, s2) (−ieeqγµ)
( i/pb
p2b

)
(−igsγρT a

ij) ǫρ v(p1, s1) , (2.19)

where pa = p2 + p and pb = p1 + p. The spin averaged matrix element squared is given by

|M |2 = |AR|2 + |BR|2 + 2ARBR = 32g2se
2e2q

(x21 + x22)

(1− x1)(1− x2)
. (2.20)

Combining Eq. (2.20), Eq. (2.18) and using the definition of σ0 from Eq. (2.12), the differ-

ential cross section becomes

1

σ0

dσ

dx1dx2
=

2αs

3π

x21 + x22
(1− x1)(1− x2)

. (2.21)

The αs correction to the Born cross section due to the emission of a real gluon is arrived

at by integrating the above differential cross section over the allowed region of x1 and x2.

The allowed phase space region for massless quarks and gluons is the triangular region:

0 ≤ x1 ≤ 1 and 1− x1 ≤ x2 ≤ 1. The integral thus becomes

σ(real) =
2αs

3π
σ0

∫ 1

0
dx1

∫ 1

1−x1

dx2
x21 + x22

(1− x1)(1− x2)
. (2.22)

We can see clearly that the integrand diverges as x1 or x2 goes to 1. The origin of the
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divergence can be seen by considering

(1− x1) ∼ p2 · p3 = E2ω(1− cos θ23) , (2.23)

where E2 and ω are the energies of outgoing quark and gluon respectively. The divergence

occurs when either the gluon becomes soft, that is, the energy of the gluon goes to zero

(ω → 0), referred to as the soft divergence, or the gluon becomes collinear to the quark

direction (cos θ23 → 1), called the collinear divergence, or both.

We need to decide some way of regularizing these IR divergences so that they can cancel

between the real and virtual corrections and give a finite cross section. Dimensional reg-

ularization can be used to regularize both the divergences. Calculations are performed in

N = 4−2ǫ dimensions and in the end after adding together the real and virtual corrections

one sets N = 4.

We need to recompute the Born term (γ∗ → qq̄) inN dimensions. The two body differential

decay rate in N dimensions is

dΓ =
1

2Ecm
|M |2d2N−2φ2 , (2.24)

where the 2-body phase space factor is given by

d2N−2φ2 =
dN−1p1

(2π)N−1(2E1)

dN−1p2
(2π)N−1(2E2)

(2π)NδN (q − p1 − p2) . (2.25)

In N dimensions the matrix element squared is given by

|M |2 = 32(N − 2)e2qe
2Q (2.26)

The Born cross section in N dimensions is

σ0,N = 3αe2qQ
Γ[2− ǫ]

Γ[2− 2ǫ]

(Q2

4π

)−ǫ
. (2.27)

We now need to compute the decay rate of a virtual photon into a quark antiquark pair

and a gluon in N dimensions. The three body decay rate in N dimensions is

dΓ =
1

2Ecm
|M |2d3N−3φ3 , (2.28)



14 2.3. e+e− → Jets

where the 3-body phase space is given by

d3N−3φ3 = (2π)NδN (Q− p1 − p2 − p)
dN−1k1

(2π)N−12E1

dN−1k2
(2π)N−12E2

dN−1k3
(2π)N−12E3

,

∫ ∫
dN−1p1
2E1

dN−1p2
2E2

=
2N−3πN−2

Γ[N − 2]
EN−3

1 dE1E
N−3
2 dE2

∫ 1

−1
dz(1− z2)N/2−2 . (2.29)

Here the 3-body phase space in 4 dimensions given in Eq. (2.15) can be generalized to N

dimesions. The amplitude squared in N dimensions is given by

|M |2 = 32g2Ne
2e2q

[
(1− ǫ)

( x21 + x22
(1− x1)(1− x2)

)
− 2ǫ(1− ǫ)

(2− 2x1 − 2x2 + x1x2
(1− x1)(1− x2)

)]
,

(2.30)

where gN = gs/µ
−ǫ is the N dimensional coupling.

Combining the phase space factor and the matrix element one arrives at

σDR(real) =
2αs

3π
σ0,N

( Q2

4πµ2

)−ǫ 1

Γ[2− ǫ]

∫ 1

0
dx1x

−2ǫ
1

∫ 1

1−x1

dx2x
−2ǫ
2

(1− z2

4

)−ǫ
|M |2 .

(2.31)

This differential cross section has a similar divergence structure for ǫ→ 0 as in the case of

4 dimensions. The total cross section after integrating over the allowed region of x1 and

x2 is

σDR(real) =
2αs

3π
σ0,N

[ 2
ǫ2

+
3− 2γE + 2 log (4π)− 2 log (Q2/µ2)

ǫ
+

19

2
− 3γE + γ2E − 7π2

6

+ (3− 2γE) log 4π + log (4π)2 + (−3 + 2γE − 2 log 4π) log
(Q2

µ2

)
+ log2

(Q2

µ2

)]
.

(2.32)

The 1/ǫ2 is a double singularity coming from soft and collinear divergences, while 1/ǫ

is a single pole when the gluon is either soft or collinear. We expect to get the same

divergences from the virtual corrections so that the cross section is finite. The logarithms

of Q2/µ2 here are called the Sudakov logarithms. Note that a similar calculation in SCET

will reproduce the same IR divergences and logarithms and matching QCD to SCET will

result in matching coefficients that are independent of the IR divergences.

Virtual gluon corrections: The virtual gluon corrections come from two sources, the

vertex correction and the self energy graphs. The self energy graph vanishes in dimensional

regularization, so for simplicity we only calculate the diagram shown in Fig. 2.3. Since the

final state is the same as the Born term and we are interested in the correction to the graph

given by A0, we need to compute Re(A0Av). The amplitudes for the Feynman digrams
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Figure 2.3: Left: Feynman diagram for the Born cross section γ∗ → qq̄, Right: Feynman diagram
for the virtual corrections to the Born cross section.

given in Fig. 2.3 are

Av = ū(p2) (−igγβT e
il)
i/pb
p2b

(−ieeqγµ)
( i/pa
p2a

)
(−igγαT e

ji)
(−igβα

k2

)
v(p1)ǫ

µ(q) ,

A0 = −ieeq ū(p2) γµ v(p1) ǫµ(q) , (2.33)

and the cross section is

σv =
1

16πQ

∫
d4k

(2π)4
(2A0A

∗
v) =

8

3
σ0g

2
s(−i)

∫
d4k

(2π)4
N(p1, p2, k, q)

(p1 − k)2(p2 + k)2k2
, (2.34)

where

N(p1, p2, k, q)

k2
=
q2

k2

[
− 2 + 8

(p1 · k)(p2 · k)
q4

+ 4
p2 · k − p1 · k

q2

]
=
q2

k2
N1(p1, p2, k, q) .

(2.35)

Here we have considered Feynman gauge. Using the Feynman parameterization given by

1

ab
=

∫ 1

0
dy

1

(ay + b(1− y))2
, (2.36)

the cross section can be reexpressed as

σv =
8

3
σ0g

2
s(−i)

∫
d4k

(2π)4
N(p1, p2, k, q)

(k2 − 2py · k)2k2
, (2.37)

where py = yp1 − (1− y)p2. Simplifying further using

1

c2d2
=

∫ 1

0
dx

2x

(cx+ d(1− x))3
, (2.38)
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In N dimensions the cross section has the form

σ(virtual) =
8

3
g2N (−i)

∫
dNK

(2π)N

∫ 1

0
dy

∫ 1

0

2xq2N1(k → K + xpy)

(K2 − C)3
, (2.39)

where

N1(k → K + xpy) = −2− 2x2y(1− y) + 2x+ (1− 2ǫ)
4

N

K2

q2
. (2.40)

The integrals over K, x and y yield

σ(virtual) =
2αs

3π
σ0,N

[−2

ǫ2
+

−3 + 2γE − 2 log (4π) + 2 log (Q2/µ2)

ǫ
− 8 + 3γE − γ2E +

7π2

6

+ (−3 + 2γE) log 4π − log (4π)2 − (−3 + 2γE − 2 log 4π) log
(Q2

µ2

)
− log2

(Q2

µ2

)]
.

(2.41)

Comparing this virtual contribution with the real in Eq. (2.32), we see that both have

exactly the same divergences and logarithms. Combining the real and virtual corrections,

the NLO correction to the Born cross section is

σDR(real) + σDR(virtual) =
2αs

3π
σ0

3

2
=
αs

π
σ0 (2.42)

The main point of this calculation is to explicitly see that the virtual correction has the

same IR divergences as the real one, and hence adding the two results in a finite cross

section for e+e− → qq̄ at next-to-leading order (NLO). This calculation also gives a basic

understanding of soft and collinear divergences which are a universal property of any QCD

process.

2.4 Resummation of large logarithms

Consider that the partons are now in the initial state for e.g. Drell Yan (qq̄ → l+l−X) or

Higgs production process (gg → HX). Consider the emission of a gluon in the collinear

limit as shown in the Fig. 2.4. For this case, we can write down the Sudakov decomposition

of the four momentum as

k = zp+ ξn+ kT , k′ = (1− z)p− ξn− kT , k2 =
−k2T
1− z

, ξ =
−k2T

2(1− z)
. (2.43)
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Figure 2.4: Emission of a gluon (in the collinear limit) from an initial state parton.

The amplitude for this process is

M1 = (−igs)[M(k)
i

/k
γµtau(p, s)ǫ∗µ(k

′, λ)] =
−gs
k2T

(1− z)[M(k)/kγµu(p, s)ǫµ∗(k′, λ)] .

(2.44)

The matrix element squared for this process is given by

|M |2 = 4παs

k2T
CF

1

2
Tr[M(k)/pM

†(k)](1 + z2) . (2.45)

The phase space factor is

dφ3 ∼
d3k′

(2π)32k′0
∼ 1

(4π)2
dz

1− z

d2kT
π

. (2.46)

Combining the phase space factor and the amplitude we get

σR1 (p) =

∫
dk2T
k2T

∫ 1

0
dz
αsCF

2π

1 + z2

1− z

1

Φ(p)
|M0(zp)|2 =

∫
dk2T
k2T

∫ 1

0
dz
αsCF

2π
P (z)σ0(zp) ,

(2.47)

where P (z) is the splitting function defined by

P (z) = CF
1 + z2

1− z
. (2.48)

σR1 (p) contains a soft singularity (z → 1) and a collinear singularity (kT → 0). The soft

singularity is cancelled by the virtual correction. Adding the real and virtual corrections,
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the total 1-loop cross section is given by

σR1 (p) =

∫
dk2T
k2T

∫ 1

0
dz
αsCF

2π
P (z)(σ0(zp)− σ0(p)) =

∫
dk2T
k2T

∫ 1

0
dz
αs

2π
P+(z)σ0(zp) .

(2.49)

Here we introduce the plus prescription P+(z) such that

∫
dzg+(z)f(z) =

∫
dzg(z)[f(z)− f(1)] implies

P+(z) = CF

[ 1 + z2

(1− z)+
+

3

2
δ(1− z)

]
. (2.50)

For kT → 0, the cross section diverges and thus is not collinear safe. This can be regularized

by a cut-off µ0. Then we can introduce a factorizations scale µ which separates the small

and large kT regions. The small kT region which diverges for µ0 → 0 is absorbed in the

parton distribution functions. In this way the 1-loop cross section can be rewritten as

σR1 (p) =

∫ µ2

µ2
0

dk2T
k2T

∫ 1

0
dz
αs

2π
P+(z)σ0(yzp) + σR1 (yzp, µ) . (2.51)

The 1-loop cross section σR1 (yzp, µ) is now finite due to the infrared cutoff µ. The density

of a quark inside a quark is given by

fq/q = δ(1− z) +

∫ µ2

µ2
0

dk2T
k2T

∫ 1

0
dz
αs

2π
P+(z) . (2.52)

The hadronic cross section in terms of fq/H(x, µ) is then defined as

σH(P ) =

∫ 1

0
dxfq/H(x, µ)σ1(xp, µ) , (2.53)

where fq/H(x, µ) = fq/q ⊗ fq/H that is

fq/H(x, µ) =

∫ 1

x

dz

z

[
δ(1− z) +

∫ µ2

µ2
0

dk2T
k2T

αsCF

2π
P+(z)

]
fq/H

(x
z

)
. (2.54)

Taking a derivative with respect to µ we obtain

µ2
∂fq/H(x, µ)

∂µ2
=

∫ 1

x

dz

z

αsCF

2π
P+(z)fq/H

(x
z

)
. (2.55)

This is the leading order form of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

equation [13] for the parton distribution fq/H(x, µ). The above formula is however incom-

plete, because it only sums up the leading logarithmic contributions from a single type of

splitting process – emission of a gluon from a quark line. There are other QCD branching

processes that can also contribute at the leading logarithmic level- quark-antiquark, or
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gluon pair production from a gluon, or gluon production from a quark. Including all of

these effects, the DGLAP equation becomes a matrix equation. The important thing here

to note is that the parton distributions now depend logarithmically on the scale Q. At

each higher-order in perturbation series, there is an additional logarithm arising from the

kT integration and this equation resums logarithms of the form αk
s log

k (µ/µ0) arising from

multiple emissions of a gluon from a quark line where the successive emissions are strongly

ordered in transverse momentum.

The hadronic production cross section for the Drell-Yan process or Higgs production and

other LHC processes, now including both scales, reads

σtot(µF , µR) =

∫ 1

0
dx1

∫ 1

0
dx2

∑

ij

fi(x1, µF )fj(x2, µF )σ̂ij(x1x2S, αs(µ
2
R), µR, µF ) . (2.56)

where i, j are the incoming partons with momentum fractions xi,j and the partonic energy

of the process is s = xixjS with S being the total energy. This is the collinear approxima-

tion where all partons are assumed to travel in the same direction as the incoming particle,

i.e. they don’t have a transverse momentum.

The cross section differential in transverse momentum qT of the boson V has terms of the

form (αsCF /k
2
T ) ln (Q

2/k2T ). In the kinematic region where qT ≪ Q, large logarithms arise

to all orders in the perturbative expansion and an all-order ressumation is needed to make

sensible predictions. Consider the approximation such that the soft and collinear gluons

are strongly ordered in kT as kT
2
i,1 ≪ kT

2
i,2 ≪ ... ≪ kT

2
i,N ≤ q2T ≪ Q2. The resummed

cross section in this approximation has the dominant contribution given by [14]

1

σ0

dσ

dq2T
=

1

q2T

[αsCF

2π
ln
(Q2

q2T

)
− α2

sC
2
F

8π2
ln3
(Q2

q2T

)
+ ...+

−1N−1

22N−2

αN
s C

N
F

πN
ln2N−1

(Q2

q2T

)]

=
αsCF

2πq2T
ln
(Q2

q2T

)
exp

[−αsCF

4π
ln2
(Q2

q2T

)]
. (2.57)

Due to the structure of the logs here, this approximation is called leading logarithmic

(LL) approximation. However the strongly-ordered case is not the only dominant one

in the small qT limit. There are equally important non-strongly ordered contributions

coming from the soft gluons whose transverse momentum vectorially add to give the overall

qT . To take into account such sub-leading logarithms, the resummation is performed in

fourier conjugated b-space imposing transverse momentum conservation. Following the

qT resummation in [14] , a method to systematically resum the logarithmically enhanced

contributions at small qT was set up by Collins, Soper and Sterman in [15, 16] called the

CSS formalism.

The phenomenological significance of transverse momentum resummation ranges from
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Drell-Yan pair production to Higgs production at the LHC. At the LHC, besides the total

cross section and the invariant mass distribution, the fundamental measurable used is the

transverse momentum of the boson or of the jets. The Higgs analyses at the LHC use

jet vetoes to minimize QCD background and to obtain cross sections with a fixed number

of jets in the final state. The default jet variable by which jets are currently classified

and vetoed is the transverse momentum pT of a jet. To obtain an exclusive 0-jet cross

section, the experiments put a cut on the maximum pT of the jets, that is, allow only

soft jets with pjetT < pcutT . For tight jet vetoes, pcutT ≪ mH , large Sudakov logarithms of

the form αn
s ln

m (pcutT /mH) with m ≤ 2n appear in the perturbative series and must be

resummed. The leading 0-jet Higgs production cross section with such a veto has the

following structure

σ0(p
cut
T ) = σB

(
1− 2αsCA

π
ln2

pcutT

mH
+ ...

)
(2.58)

where σB is the lowest-order cross section. Such large logarithms can be resummed in

SCET, where the cross section is factorized into calculable pieces and the resummation

is performed by renormalization group evolution (RGE). Schematically, a factorized cross

section in SCET has the structure,

σ(pcutT ) ∼ Hgg ×Ba ×Bb × S , (2.59)

whereHgg is the hard function which is determined by matching QCD onto the operators in

SCET. Ba and Bb are the so-called beam functions which describe the initial state radiation

in the na and nb light-cone directions. The beam functions are defined as Bi = Iij ⊗ fj ,

where Iij is the perturbatively calculable matching coefficient and f are the PDFs. S is

the soft function which describes the soft-radiation. The way the evolution works roughly

is as follows: One has the standard DGLAP evolution for PDFs from µΛ to µB, where µB
is the beam scale. Each of the beam, soft and hard functions are evaluated at their natural

scales (µB, µS , µH), and then evolved to a common scale µ which sums logarithms of the

ratio of the scales using RGE. We will discuss in detail the structure of the factorized cross

sections and resummation in the framework of SCET in chapter 4.

2.5 Spontaneous Symmetry breaking

Having discussed some of the basics of perturbative QCD calculations, and the origin and

summation of large logarithms in any differential cross section predictions, we will now

give a brief introduction of the Higgs Mechanism in the SM and the current status of the

Higgs measurements at the LHC.
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In the SM, the Brout-Englert-Higgs mechanism is essential to explain the generation of

mass for the gauge bosons. The electroweak interactions of fermions exhibit a symmetry

under the group SU(2)W ×U(1)Y . On contrast to the gauge bosons of the electromagnetic

and strong interactions, the W±, Z bosons of the electroweak interaction are found to

have larger masses. Because pure gauge theory requires all gauge fields to be massless,

adding an explicit mass term to the Lagrangian violates gauge invariance. Therefore,

the formulation of a gauge theory for the electroweak interaction requires a concept of

spontaneous symmetry breaking in which gauge fields are coupled with additional scalar

fields, which owing to their self interactions, acquire non-vanishing vaccum expectation

values (vevs).

To define spontaneous symmetry breaking , consider a Lagrangian that is invariant under

a group of transformations G. There are two possibilities for the ground state |0〉: only a

single ground state which is invariant under transformation or multiple degenerate ground

states which transform into one another under the group G. For multiple ground states,

choosing one of them causes the G symmetry to be spontaneously broken. Consider now

the spontaneous breaking of a global symmetry as an example. Consider a Lagrangian

describing the self-interaction of a complex scalar field φ(x) = 1/
√
2(φ1 + iφ2) given by

L = (∂µφ)†∂µφ− V (φ) , (2.60)

where

V (φ) =
λ

4

(
|φ|2 − µ2

λ

)2
=
λ

4
|φ|4 − µ2

2
|φ2|+ µ4

4λ
(2.61)

is invariant under global phase transformations. The coupling λ is positive so that the

energy is bounded from below. There are two possibilities for the sign of µ2. For µ2 < 0,

the field φ has a mass M2 = −µ2 and the potential V (φ) has a unique vaccum φ0(x) = 0.

When µ2 > 0, there are an infinite number of vacua that satisfy

√
φ21 + φ22 =

√
−µ2
λ

= v . (2.62)

From these we choose the ground state φ0 as φ1 = v and φ2 = 0. The perturbation around

this vaccum is described as

φ(x) =
1√
2

(
v + η(x) + iξ(x)

)
. (2.63)

Here η(x) and ξ(x) are real fields describing small deviations around v and the phase of

the field φ from the ground state. Inserting the above defined field into the Lagrangian
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yields

L =
1

2
(∂µξ)(∂

µξ) +
1

2
(∂µη)(∂

µη)− λv2η2 + higher order terms . (2.64)

Here η(x) is a scalar field with mass
√
2λv2 =

√
−2µ2 while ξ(x) is a massless scalar

field known as the Goldstone field. The excitations of ξ(x) results in the appearance of

new massless scalar particles called Goldstone boson. There is one scalar particle, called

a Nambu-Goldstone boson, for each generator of the symmetry that is broken. Goldstone

theorem says that for each broken generator of the original symmetry group, i.e. for each

generator that connects the vacuum states one massless spin-zero particle will appear.

Spontaneously breaking a continuous global symmetry gives rise to a massless (Goldstone)

boson. When a local gauge symmetry is broken, something special will happen and the

Goldstone boson will disappear and will be "eaten up" by the gauge bosons which become

massive.

2.6 Higgs Mechanism in the Standard Model

Among the electroweak gauge bosons only the photon is masless, while the other gauge

bosons are massive, so the SU(2)L ⊗ U(1)Y gauge symmetry must be broken down to

U(1)em. The breaking is accomplished via the Higgs mechanism which is also responsible

for the generation of fermion masses. To obtain gauge boson masses additional terms are

added to the Lagrangian of a scalar field

Lscalar = (Dµφ)†(Dµφ)− V (φ) , (2.65)

where

V (φ) = µ2(φ†φ) + λ(φ†φ)2 and Dµ = ∂µ + ig
1

2
τ̄ · W̄µ + ig′

1

2
Y Bµ . (2.66)

Since the Lagrangian should retain all symmetries only the SU(2)L⊗U(1)Y multiplets can

be added. We add an isospin doublet given by

φ =

(
φ+

φ0

)
=

(
φ1 + iφ2

φ3 + iφ4

)
. (2.67)

Any choice of vaccum that breaks a symmetry will generate a mass for the corresponding

gauge boson. The vacuum we choose has φ1 = φ2 = φ4 = 0 and φ3 = v

φ0 =
1√
2

(
0

v

)
. (2.68)
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The perturbation around this vaccum state is given by

φ(x) = exp
( i~ξ(x) · ~τ

v

)( 0

v + h(x)

)
. (2.69)

Here h(x) is the real field. To eliminate the unphysical (would be Goldstone boson) fields

ξ, we make a gauge transformation in the form

φ′(x) = U(ξ(x))φ(x) =

(
0

v + h(x)

)
(2.70)

where U(ξ) = exp
(
−i~ξ(x)·~τ

v

)
. This is called the unitary gauge. For simplicity, in what

follows we will continue to use the notation φ(x) for the field φ′(x) in the unitary gauge.

Plugging in the definition of φ(x) in the Lagrangina, the kinetic term becomes

(Dµφ)†Dµφ =
1

8
v2[g2(W 2

1 +W 2
2 ) + (−gWµ

3 + g′Y Bµ)
2] +

1

2
(∂µh)

2 + ... . (2.71)

The first term is the mass term M2
WW

+
µ W

−µ for the charged gauge boson field

W± =
1√
2
(W 1

µ ∓ iW 2
µ) with MW =

1

2
vg (2.72)

The second term mixes two neutral components of the gauge fields Wµ
3 and Bµ but after

diagonalization in the form

Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

, Aµ =
gW 3

µ + g′Bµ√
g2 + g′2

(2.73)

The Z boson acquires a mass 1/2M2
ZZµZ

µ where MZ = (1/2)v
√
g2 + g′2. Thus by sponta-

neous breaking of SU(2)L × U(1)Y → U(1)Q, three goldstone bosons have been absorbed

by W+, W− and Z bosons to form their longitudinal component and get their masses.

Since the U(1) symmetry is unbroken, the photon remains massless.

The kinetic part of the Higgs field comes from the covariant derivate term shown before,

while the Higgs mass and self-interaction parts come from the scalar potential. The SM

Higgs Lagrangian is given by

LH =
1

2
(∂µh)

2 − 2λv2

2
h2 − λvh3 − λ

4
h4 +

λv4

4
. (2.74)

From this we know that the Higgs boson mass is M2
H = 2λv2.

Fermion masses: The fermions in the SM consist of leptons and quarks. Fermion masses

can be generated by the Yukawa coupling λf of the Higgs field to the fermion field. Such
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a term is given by

LYukawa = −[l̄LλlφeR + q̄LλdφdR + q̄Lλuφ̄uR + h.c.] . (2.75)

Note that the first two terms give masses only to the down-type fermions. The charge-

conjugated Higgs field φ̄ = −iσ2φ∗ is needed to give masses to the up-type fermions. The

mass of the leptons is mL = λlv/
√
2. The mass eigenstates of quarks are obtained by

unitary transformation of the quark fields, the diagonalised mass matrix for up and down

type quarks is given by

mu =
v√
2
(UU

L )†λuU
U
R , µ =

v√
2
(UD

L )†λDU
D
R , (2.76)

where VCKM = UU
L

†
UD
L is the ‘Cabibbo-Kobayashi-Maskawa (CKM)’ quark mixing matrix.

2.7 Higgs boson discovery

At the LHC, the relevant Higgs boson production modes are gluon-gluon fusion (ggF),

vector boson fusion (VBF), production in association with a vector boson (V) and in

association with top quarks (ttH). The five most sensitive Higgs boson decay channels at

the LHC are the modes H → γγ, H → ZZ → 4l, H → WW , H → ττ and H → bb̄.

At lower Higgs masses, the dominant decay channels are ττ and bb̄ while the decay to

bottom pairs and W pairs become equal for Higgs masses of about 130GeV. In July 2012,

the ATLAS experiment with proton-proton energies of 7 TeV and 8 TeV observed a peak

with an invariant γγ or 4l mass of 126 GeV and a combined significance of 5.9σ [5]. The

channels which contributed to the statistical discovery are Higgs decays H → ZZ → 4l,

H → γγ and H → W+W− → 2l2ν. The CMS experiment observed a similar excess at a

mass of 125 GeV with a local significance of 5σ [6].

Fig. 2.5 shows the tree level diagrams of the four main Higgs production channels in pp

collision. The ggF is the dominant process over the whole mass spectrum followed by the

VBF which is an order of magnitude lower than ggF for a large range of the Higgs masses.

The remaining production processes have a very small cross section, much smaller than

those of ggF and VBF. We will now consider in detail the two most relevant production

mechanisms – ggF and VBF here.

Gluon gluon fusion: At tree level the Higgs hardly couples to light-flavor quarks and

has no coupling to gluons. The ggF process gg → H +X, shown by the top left Feynman

diagram in Fig. 2.5, is mediated by a virtual top quark loop and contributions from lighter

quarks in the loop are suppressed proportional to m2
q . The channel gg → H → bb̄ has
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Figure 2.5: Feynman diagrams for the Higss boson production. Top panel: gluon gluon fusion
(left) and vector boson fusion (right). Bottom panel: Higgs-strahlung or associated production with
a gauge boson (left) and associated production with top quarks (right).

a large branching ratio but is very hard to measure due to the dominating gg → bb̄

background. H → γγ is, in spite of the small rate, one of the main Higgs discovery channel

because mγγ can be reconstructed to O(1%). H → ZZ → 4l, works great, in particular

for muons, because of the fully reconstructed m4l and is called the ‘golden channel’ at the

LHC. H →W+W− has a large rate but a dominant background is tt̄ production. H → ττ

is problematic because if taus decay leptonically we can identify them in the detector, but

there will appear one or two neutrinos in the decay so reconstructing the τ momentum is

not possible.

Including the full dependence on the quark and Higgs boson masses, the cross section has

been calculated at the next-to-leading order (NLO) [17,18]. To a very good approximation,

the leading top-quark contribution can be evaluated in the limit mt → ∞ by matching

the Standard Model to an effective theory. In this approximation the cross section is

known at next-to-next-to-leading order (NNLO) [19, 20] and recently N3LO has also been

computed [21,22]. The NLO QCD corrections increase the leading-order prediction for the

cross section by about 80%, and the NNLO corrections further enhance the cross section

by approximately 20%. Besides considering the inclusive Higgs boson production cross

section at the LHC, it is important to study differential distributions in order to probe

the properties of the Higgs boson in a detailed way. A more exclusive account of Higgs

production is required because the experimental analyses often impose cuts in order to

improve the signal-to-background ratio and to distinguish between different production

and decay channels depending on the number of jets. By vetoing jets, one restricts the

phase space for additional emissions. This makes the cross section sensitive to soft and

collinear radiation, which induces Sudakov double logarithms of the jet-veto observable

that need to be resummed as explained in Sec. 2.4. Efforts have been made to obtain
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resummed predictions for the Higgs production cross section with a jet-veto for “H+0-jet”

upto NNLL′+ NNLO order in [23–25]. There has been activity in computing the Higgs

cross section in association with jets e.g. H+1-jet [26] at NNLL accuracy and in [27]

at NNLO. The gg → H+2-jets cross section is computed in [28] at NLO and the NLO

predictions have been matched to parton showers in [29,30] which provide leading-log (LL)

resummation. An all order resummation of soft gluon emissions in the presence of a central

jet veto is performed in [31,32].

Vector boson fusion: Higgs boson production via VBF qq → qqH, as shown in the

top-right of Fig. 2.5, proceeds by the scattering of two (anti-)quarks, mediated by t- or

u-channel exchange of a W or Z boson, with the Higgs boson radiated off the weak-boson

propagator. It has a very clear experimental signal due to the presence of two spectator

jets in the forward region. These characteristic features of VBF processes can be exploited

to distinguish them from overwhelming QCD backgrounds as well as from including gluon-

fusion induced H+2-jet production. The total cross section and differential distributions

for Higgs production via VBF has been computed upto NNLO in [33], the parton shower

effects have been studied in [34] and the NLO QCD result has been matched to parton

shower in [35,36]. After the application of specific selection cuts to enhance the VBF signal

over the ggF background, the VBF channel provides a clean environment not only for the

Higgs searches but also for the determination of the Higgs boson couplings at the LHC.

Current Higgs results: Both ATLAS and CMS have published in [37] a measured value

of the mass of the Higgs boson using the high precision H → γγ and H → ZZ∗ → 4l

channels, coresponding at
√
s = 7, 8TeV. The two collaborations joined forces to combine

these measurements and they obtained the Higgs mass, mH = 125.09 ± 0.24 (0.21 stat ±
0.11 syst.)GeV, the most precise measured value to date.

Distributions of the differential pp → H cross sections have been measured by ATLAS

[38, 39] as a function of the jet multiplicity Njet, the Higgs boson transverse momentum

pHT , the transverse momentum of the leading jet pTj1 and beam-thrust like observables

T jet
C (T1). The pTj1 and Njet measurements have been compared to theoretical predictions

as shown in the first two plots of Fig. 2.6. The last plot shows the measurement of cross

section in the H → γγ channel in bins of T jet
C for which theoretical predictions didn’t exist.

We have obtained the resummed predictions for T jet
C and we will present a comparison with

this measurement in chapter 4.

The signal strength which allows one to compare the measured cross sections (σ) of each

decay channel, to that predicted by the SM, (σSM ) is defined as

µfi =
σi ×BRf

(σi ×BR)SM
≡ µi × µf (2.77)
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where µi = σi/(σi)SM and µf = BRf/(BRf )SM denote the signal strength for production

and decay respectively. Studies of the production and decay properties of the Higgs boson

where the Higgs boson decays into vector bosons, (γγ, ZZ,WW,Zγ) and into fermions

(ττ, bb, µµ) were found to be compatible with µ = 1, corresponding to Standard Model

predictions. The new combination of all production and decay channels gives µ = 1.0±0.13

for CMS and 1.18± 0.10 for ATLAS.

Figure 2.6: Left: Differential cross section for inclusive Higgs production combining the H → γγ
and H → ZZ∗ channels, compared to theoretical predictions for pTj1. Middle: Measured Higgs
boson production cross sections in inclusive and exclusive jet multiplicity bins compared to different
theoretical predictions. Right: Differential cross section in H → γγ channel as a function of
T jet
C (T1). Figs. taken from Ref. [38,39]

Figure 2.7: Likelihood contours measured for H → {γγ, ZZ,WW, bb̄, ττ} indicating the best-fit
value to the data (+), 68% (full) and 95% (dashed) CL contours and the SM expectation. Fig.
taken from Ref. [40]

To measure the Higgs couplings to gauge bosons and fermions, the Higgs boson production

modes are probed with four signal strength parameters µV BF , µV H , µggF and µttH for each

production mode assuming SM value for the decay branching ratio (µf = 1) in Eq. (2.77).

The production processes can be categorised into two groups according to the Higgs boson

couplings to fermions (ggF and ttH) or vector bosons (VBF and VH). For each decay

channel f , the potential deviations from the SM can be tested with two signal strengths:
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the coupling to vector bosons µfV BF+V H ≡ (µV BF = µV H) and the coupling to fermions

µfggF+ttH ≡ (µggF = µttH), assuming SM values for the ratio of ggF and ttH cross sections

and the ratio of V BF and V H cross sections. Recent measurement of the couplings by

ATLAS in [40] is shown in Fig. 2.7. The SM expectation of µf = 1 is within 65% CL

contour of most of these measurements.

For such coupling measurements, it is crucial to distinguish between ggF and VBF pro-

duction mechanisms and for that as we will discuss in the next chapter it is important to

have precise theory predictions for cross sections with a fixed number of jets in the final

state. The focus of the next chapter will be to estimate uncertainties in the fixed-order

predictions of exclusive jet cross sections in particular considering the H+2-jet cross section

via ggF which is important for separating ggF and VBF.



Chapter 3

NLO Uncertainties in Higgs+2 jets

This chapter reviews and extends the procedure of estimating jet binning uncertainties and

is based on my work in [11]. In this, we present results for the NLO uncertainty in the H+2-

jet cross section after implementing the VBF selection cuts used in the H → γγ analyses

of ATLAS and CMS. Typical VBF selections include indirect restrictions or explicit vetoes

on additional jet activity, primarily to reduce non-Higgs backgrounds. We find that such

restrictions have to be chosen carefully and are not necessarily beneficial for the purpose of

distinguishing between the VBF and ggF production modes, since a modest reduction in the

relative ggF contamination can be easily overwhelmed by its quickly increasing perturbative

uncertainties.

3.1 Introduction

As discussed in the previous chapter, a central ingredient in measuring the properties of the

Higgs boson is to separate out the different production mechanisms via gluon-gluon fusion

(ggF) and vector boson fusion (VBF). To distinguish between different production processes

and to maximize the signal sensitivity, ATLAS and CMS in their analyses separate the

data into various exclusive selection categories, based on the number of jets (“jet bins”). In

particular, in their VBF analyses the experiments apply different kinematic selection cuts

to enhance the VBF signal and reduce the non-Higgs backgrounds as well as the sizable

contamination from ggF production. One selection category, designed to isolate a clean

VBF signal, is also the production in connection with two jets that are widely separated in

rapidity. A characteristic feature of the VBF process is that it is accompanied by few extra

gluon emissions, because of its color structure and incoming quarks. The same is not the

case for ggF production or generic non-Higgs backgrounds, so the VBF signal tends to be

29



30 3.2. Jet Binning Uncertainties

most significant in the exclusive 2-jet region of phase space with two forward jets and little

additional radiation. Therefore, when optimizing its significance, whether in a cut-based

approach or via multivariate techniques, one dominantly selects events from this region.

In general, placing a restriction on additional real emissions induces Sudakov logarithms

at each order in the perturbative series as discussed in the previous chapter. In the limit of

very tight restrictions, the logarithms become large and must be resummed to all orders in

the strong coupling constant αs to obtain a meaningful perturbative prediction. Often, the

experimentally relevant region is an intermediate one, where the logarithmic corrections

are already sizable but their resummation is not yet strictly necessary and a fixed-order

expansion can still be applied. In this case, however, it is important that the possible sizable

effects of higher-order logarithms are reflected in the perturbative uncertainty estimate for

the fixed-order prediction.

Due to the incoming gluons in ggF and the associated large color factor, the logarithmic

corrections in this intermediate region are indeed sizable. A numerically important ggF

contribution to the VBF-like 2-jet selection is the partonic gg → Hgg process, where

both incoming and outgoing gluons generate additional radiation. When restricting that

radiation by forcing the kinematics into the exclusive 2-jet region, the logarithmic correc-

tions can be expected to be large hence the perturbative uncertainties have to estimated

carefully.

In Ref. [41] a simple method was devised that explicitly takes into account the size of

the logarithmic corrections in the fixed-order uncertainty estimate (for which a simple

scale variation in the exclusive jet cross section is insufficient). It has been adopted in

Refs. [42, 43], and is being employed in various exclusive analyses at the LHC and the

Tevatron. It is sometimes referred to as the “ST method.” We applied this method to

provide robust uncertainty estimates for the NLO calculation [28,44] in the exclusive 2-jet

bin in ggF production that was used in the ATLAS and CMS 7 − 8TeV Higgs analyses.

We also discuss the application to more general cuts restricting to the exclusive 2-jet

region. The next section gives a discussion of uncertainties associated with jet-binning and

generalizes the basic procedure given in [41].

3.2 Jet Binning Uncertainties

Consider the inclusive N -jet cross section, σ≥N , for some process containing at least N jets.

We will assume that σ≥N is a sufficiently inclusive quantity such that it can be computed

in fixed-order perturbation theory. We are interested in the case where σ≥N is divided up
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into a corresponding exclusive N -jet cross section, σN , and a remainder σ≥N+1,

σ≥N = σN (excl. cut) + σ≥N+1(inverse excl. cut) . (3.1)

All three cross sections here have the same selection cuts applied that identify the leading

N signal jets. What defines σN to be “exclusive” is that the additional exclusive cut applied

to it restricts the phase space of additional emissions in such a way that σN is dominated

by configurations close to the N -parton Born kinematics. In particular, at leading order

(LO) in perturbation theory σLO≥N = σLON , while relative to these, σ≥N+1 is suppressed by

O(αs). In other words, σ≥N+1 requires at least one additional emission to be nonvanishing.

Hence, we can consider it an inclusive (N + 1)-jet cross section with at least N + 1 jets.

In the simplest case, σ≥N is divided into the two jet bins σN and σ≥N+1 by using a cut on

some kinematic variable, pN+1, which characterizes additional emissions, with pN+1 = 0

for a tree-level N -parton state. Typical examples would be the pT of the N + 1st jet or

the total |~pT | of the underlying N -jet system. The two jet bins then correspond to the

integrals of the differential spectrum dσ/dpN+1 above and below some cut,

σ≥N =

∫ pcut

0
dpN+1

dσ≥N

dpN+1
+

∫

pcut
dpN+1

dσ≥N

dpN+1

≡ σN (pcut) + σ≥N+1(p
cut) . (3.2)

In general, the jet bin boundary could be a much more complicated function of phase

space, for example in a multivariate analysis.

We are interested in the uncertainties involved in the binning. The covariance matrix for

{σN , σ≥N+1} is a symmetric 2×2 matrix with three independent parameters. A convenient

and general parametrization is to write it in terms of two components,

C =

(
(∆y

N )2 ∆y
N ∆y

≥N+1

∆y
N ∆y

≥N+1 (∆y
≥N+1)

2

)
+

(
∆2

cut −∆2
cut

−∆2
cut ∆2

cut

)
. (3.3)

Here, the first term is an absolute “yield” uncertainty, denoted with a superscript “y,”

which (by definition) is 100% correlated between the two bins σN and σ≥N+1. The second

term is a “migration” uncertainty between the bins and corresponds to the uncertainty

introduced by the binning cut. It has the same absolute size, ∆cut, for both bins and is

100% anticorrelated between them, such that it drops out when the two bins are added.

Hence, the total uncertainty for each bin is given by

∆2
N = (∆y

N )2 +∆2
cut

∆2
≥N+1 = (∆y

≥N+1)
2 +∆2

cut , (3.4)
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while the total uncertainty on their sum, i.e., on σ≥N , is given by the total yield uncertainty,

∆≥N = ∆y
≥N = ∆y

N +∆y
≥N+1 . (3.5)

Considering the perturbative uncertainties, the basic question is how each of the uncer-

tainties in Eq. (3.3) can be evaluated. The fixed-order prediction provides us with two

independent pieces of information, namely the variations obtained by the standard scale

variations, which we denote as ∆µ
≥N , ∆µ

N , ∆µ
≥N+1, and which satisfy ∆µ

≥N = ∆µ
N+∆µ

≥N+1.

Following Ref. [41], we start by assuming that the standard fixed-order scale variations can

be used to obtain a reliable estimate of the total uncertainties in the inclusive cross sec-

tions (which is of course the common assumption underlying any inclusive fixed-order

calculation). Hence, we impose the two well-motivated boundary conditions,

∆≥N = ∆µ
≥N , ∆≥N+1 = ∆µ

≥N+1 . (3.6)

Together with Eqs. (3.4) and (3.5), these lead to

(i) ∆µ
≥N = ∆y

N +∆y
≥N+1 ,

(ii) (∆µ
≥N+1)

2 = (∆y
≥N+1)

2 +∆2
cut . (3.7)

Thus, the question is how to divide up ∆µ
≥N+1 between ∆y

≥N+1 and ∆cut in order to satisfy

condition (ii). Condition (i) then determines ∆y
N . The nontrivial effect ∆cut can have is

on the size of ∆N as well as on the off-diagonal entries in Eq. (3.3), which determine the

correlation between ∆N and ∆≥N+1.

Clearly, the simplest is to neglect the effect of ∆cut altogether and to directly use common

scale variations to estimate the uncertainties, i.e., to take

∆y
N = ∆µ

≥N −∆µ
≥N+1 ≡ ∆µ

N , ∆y
≥N+1 = ∆µ

≥N+1 ,

∆cut = 0 , (3.8)

which leads to

direct: C =

(
(∆µ

N )2 ∆µ
N ∆µ

≥N+1

∆µ
N ∆µ

≥N+1 (∆µ
≥N+1)

2

)
. (3.9)

The direct scale variation choice is reasonable as long as the effect of ∆cut is indeed neg-

ligible. It is certainly justified if numerically ∆µ
≥N ≫ ∆µ

≥N+1, since any uncertainty due

to migration effects can be, at most as large as ∆µ
≥N+1 [by virtue of condition (ii)]. This

can happen, for example, when ∆µ
≥N is sizable due to large perturbative corrections in

σ≥N and/or the binning cut is very loose (i.e., is cutting out only a small fraction of phase
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space) such that σ≥N+1 is numerically small to begin with.

In perturbation theory, the effect of the binning cut is to introduce Sudakov double loga-

rithms in the perturbative series of σN and σ≥N+1, which have opposite sign and cancel

in the sum of the two bins, schematically,

σ≥N ≃ σB[1 + αs + α2
s +O(α3

s)
]
,

σ≥N+1 ≃ σB
[
αs(L

2 + L+ 1) + α2
s(L

4 + L3 + L2 + L+ 1) + O(α3
sL

6)
]
,

σN = σ≥N − σ≥N+1 , (3.10)

where σB denotes the Born cross section and L is a Sudakov logarithm, e.g., for Eq. (3.2),

L = ln(pcut/Q), where Q ∼ mH is a typical hard scale. As the binning cut becomes tighter

(pcut becomes smaller) the logarithms grow in size. Once the logarithms are O(1) numbers,

one is in the transition region and the logarithms will start to dominate the perturbative

series of σ≥N+1, and there will be sizable cancellations in σN between the perturbative

series for σ≥N and the logarithmic series in σ≥N+1. Eventually, the logarithms will grow

large enough to overcome the αs suppression and σN becomes negative, at which point one

is in the resummation region and the fixed-order expansion has broken down.

The perturbative migration uncertainty ∆cut can be directly associated with the pertur-

bative uncertainty in the logarithmic series induced by the binning, and so should not be

neglected once the logarithms have a noticeable effect. In particular, as demonstrated in

Ref. [41], the simple choice in Eqs. (3.8) and (3.9) can easily lead to an underestimate of

∆N in the region where there are sizable numerical cancellations between the two series in

σ≥N and σ≥N+1. Since in this region the dominant contribution to σ≥N+1 comes from the

logarithmic series, varying the scales in σ≥N+1 directly tracks the size of the logarithms,

which means we can use ∆cut = ∆µ
≥N+1 as an estimate for the binning uncertainty, which

is the basic idea of Ref. [41]. From Eq. (3.7), we then find

∆y
N = ∆µ

≥N , ∆y
≥N+1 = 0 ,

∆cut = ∆µ
≥N+1 , (3.11)

such that

ST: C =

(
(∆µ

≥N )2 + (∆µ
≥N+1)

2 −(∆µ
≥N+1)

2

−(∆µ
≥N+1)

2 (∆µ
≥N+1)

2

)
. (3.12)

Since ∆µ
≥N+1 is now used as ∆cut, the effective outcome is that one treats ∆µ

≥N and ∆µ
≥N+1

as uncorrelated.

More generally, we can introduce a parameter 0 ≤ ρ ≤ 1, which controls the fraction of
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ATLAS CMS loose CMS tight
anti-kT R = 0.4 anti-kT R = 0.5 anti-kT R = 0.5

2-jet selection pTj>25GeV for |ηj |<2.5 jet 1: pTj>30GeV, |ηj |<4.7 pTj>30GeV, |ηj |<4.7
pTj>30GeV for 2.5< |ηj |<4.5 jet 2: pTj>20GeV, |ηj |<4.7

∆ηjj = |ηj1 − ηj2| > 2.8 > 3.0 > 3.0
mjj > 400GeV > 250GeV > 500GeV

|ηH − (ηj1 + ηj2)/2| - < 2.5 < 2.5

∆φH−jj > 2.6 > 2.6 > 2.6

Table 3.1: VBF selection cuts we use, corresponding to the H → γγ analyses by ATLAS [5, 45]
and CMS [6]. CMS loose excludes events that pass CMS tight. The cut on ∆φH−jj in the last row
is treated specially as an exclusive binning cut.

∆µ
≥N+1 assigned to ∆y

≥N+1, such that

∆y
N = ∆µ

≥N − ρ∆µ
≥N+1 , ∆y

≥N+1 = ρ∆µ
≥N+1 ,

∆cut =
√

1− ρ2∆µ
≥N+1 , (3.13)

which leads to

ST (ρ): C =

(
(∆µ

≥N )2 + (∆µ
≥N+1)

2 − 2ρ∆µ
≥N∆µ

≥N+1 (ρ∆µ
≥N −∆µ

≥N+1)∆
µ
≥N+1

(ρ∆µ
≥N −∆µ

≥N+1)∆
µ
≥N+1 (∆µ

≥N+1)
2

)
.

(3.14)

From this one can easily see that ρ corresponds to the correlation between ∆µ
≥N and

∆µ
≥N+1. The choice ρ = 1 would be equivalent to the case in Eq. (3.9), while ρ = 0

reproduces Eqs. (3.11) and (3.12). Hence, from the above arguments one should take ρ to

be small. In the next section, we will explore the dependence on ρ in the ST method. We

will see that all choices ρ . 0.4 give very similar results, so we will use the default choice

ρ = 0 for our applications to H + 2−jets.

As a final comment, note that in general one could also take ρ to be a function of the

binning cut. For example, at large pcut the logarithms become small, in which case one

might want to reproduce the direct scale variation uncertainties in Eq. (3.9). However,

in this limit, typically ∆µ
≥N+1 becomes much smaller than ∆µ

≥N , which makes the precise

choice of ρ irrelevant there, and so it is consistent to use a fixed ρ = 0 everywhere.

3.3 Application to gg → H + 2 Jets

We now discuss the application of our method to the case of pp→ H+2 jet production via

gluon fusion (which for simplicity we denote as gg → H+2j, where a sum over all possible

partonic channels is implied). We will study the uncertainties in the exclusive H + 2 jet
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cross section as a function of two kinematic variables, pTHjj and ∆φH−jj .

We take
√
s = 8TeV and mH = 125GeV. We use MCFM [28, 44, 46] to compute the

NLO cross section, with the ggH effective vertex in the infinite top mass limit. We then

rescale the cross section with the exact mt dependence of the total Born cross section,

σB(mt)/σB(∞) = 1.0668. We use the MSTW2008 [47] NLO PDFs with their corresponding

value of αs(mZ) = 0.12018. For all our central value predictions we use µr = µf = mH ,

which was also used in Refs. [28,44]. In our analysis we implement the 2-jet selection and

VBF selection cuts summarized in Table 3.1, which are taken from the 7-8 TeV ATLAS

and CMS H → γγ analyses in [5, 6, 45]. However, note that we consider the cross section

for the production of an on-shell Higgs boson, without including any branching ratios or

cuts on the Higgs decay product, as the perturbative corrections are independent of the

Higgs decay modes.

The main inputs for MCFM are : the process definition (in our case gg → H + 2-jets),

order (NLO), Ecm, mH , mass of top quark, the factorization scale µF and renormalization

scale µR scales, PDF type, jet radius (ATLAS R = 0.4 and CMS R = 0.5 ) and jet

algorithm (anti-kT). Other options which MCFM provides and are important for us in

this analyses are a minimum pT to identify the two jets and maximum rapidity η for

the two jets, the rapidity separation and invariant mass of the dijet system. We define

a momentum four vector for each jet and events with two jets ordered in their pT are

preselected which further go through a set of selection criteria defined by the ATLAS and

CMS VBF category. An event is selected if each of the two jets have a minimum pT and

a maximum rapidity ηj and the two jets are separated with a rapidity gap as defined in

Table 3.1. The two jets should also fulfill the condition on their invariant mass which is

defined as ∆mjj =
√
(Ej1 + Ej2)2 − |~pj1 + ~pj2|2. An additional selection based on the

variable ∆φH−jj defined in the next section also applies. We obtain from MCFM a list of

histograms, with the differential 2-jet cross section in bins of the jet-veto observables like

∆φH−jj or pTHjj and the cumulant cross sections we plot are given by

σ2(pTHjj < pcutT ) =

∫ pcutT

0

dσ

dpTHjj
(pTj1, pTj2 > pcutT , ....) (3.15)

where the dots refer to the additional selection criteria we impose depending on ATLAS

and CMS VBF selection. We have to be careful while specifying the selection cuts in

order to obtain reliable predictions from MCFM in the exclusive limit pTHjj → 0 and

∆φH−jj → π, where the NLO predictions break down.
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Figure 3.1: Exclusive 2-jet cross section using the ATLAS VBF selection for various scale choices
as a function of pcutTHjj (left panel) and π −∆φcutH−jj (right panel).

3.3.1 Variables

pTHjj : We define pTHjj as the magnitude of the total transverse momentum of the Higgs-

dijet system,

pTHjj = |~pTj1 + ~pTj2 + ~pTH | . (3.16)

At Born level, pTHjj = 0 and so applying a cut pTHjj < pcutTHjj restricts the phase space

to the exclusive 2-jet region. At NLO pTHjj is equivalent to the pT of the third jet, so it

is a useful reference variable for a pT -veto on additional emissions, such as the central jet

vetoes applied in the H → WW and H → ττ VBF analyses (see e.g. Refs. [48–51]).It is

also considered directly, for example, in the 7-8 TeV H → ττ analysis [49].

The exclusive 2-jet cross section σ2(pTHjj < pcutTHjj) is shown in the left panel of Fig. 3.1

as a function of pcutTHjj and using three different combinations of the factorization and

renormalization scales, µr and µf . The solid line and blue band correspond to µr = mH

and varying µf = {2, 1, 1/2}mH . Similarly, we vary µf while keeping µr = mH/2 for the

dark green band and µr = 2mH for the light green band. One can see that the biggest

variation is due to the µr variation, while the µf variation only has a subdominant effect,

which was already noticed in Ref. [28]. Therefore, for simplicity we will take µr = µf = µ

and vary µ = {2, 1, 1/2}mH when showing the direct scale variations as reference in the

following.

We write the exclusive 2-jet bin defined by this cut in terms of the inclusive 2-jet cross

section, σ≥2, and the inclusive 3-jet cross section with the cut inverted as,

σ2(pTHjj < pcutTHjj) = σ≥2 − σ≥3(pTHjj > pcutTHjj) , (3.17)

where in all cases the remaining VBF selection cuts in Table 3.1 are applied (excluding the

cut on ∆φH−jj in this case).
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The restriction on pTHjj is infrared sensitive and induces Sudakov logarithms of the form

L = ln(pcutTHjj/mH) in the perturbative series of σ2 and σ≥3. In Fig. 3.1 we see that the

veto starts to have a noticeable effect below pTHjj . 50GeV, where the different scale

variations start crossing and we start to see cancellations between σ≥2 and σ≥3. In the

region below pTHjj . 20GeV, the logarithms have grown large enough for the NLO cross

section to go negative and the fixed-order perturbative expansion to break down. In the

intermediate region in between, the fixed-order prediction can still be used, but the direct

scale variation does not provide a reliable uncertainty estimate as it does not properly take

into account the effect of the binning cut.

∆φH−jj : As shown in Table 3.1, the VBF category in the H → γγ analyses by ATLAS

and CMS includes a cut ∆φH−jj > 2.6 radians (150 deg) (where the Higgs momentum is

represented by the total momentum of the diphoton system). Taking the beam direction

along the z-axes, ∆φH−jj is defined as

cos∆φH−jj =
(~pTj1 + ~pTj2) · ~pTH

|~pTj1 + ~pTj2||~pTH | . (3.18)

Momentum conservation in the transverse plane implies that events with only two jets

always have ∆φH−jj ≈ π, so the constraint ∆φH−jj > ∆φcutH−jj forces the kinematics into

the exclusive 2-jet region and restricts additional emissions. Hence, it behaves similar to

pcutTHjj and for π − ∆φcutH−jj → 0 induces large logarithms in the perturbative series. The

exclusive 2-jet cross section in terms of ∆φcutH−jj is written as

σ2(∆φH−jj > ∆φcutH−jj) = σ≥2 − σ≥3(∆φH−jj < ∆φcutH−jj) , (3.19)

with the remaining VBF cuts applied in all three cross sections. The right panel of Fig. 3.1

shows σ2(∆φH−jj > ∆φcutH−jj) plotted as a function of π − ∆φcutH−jj , where one can clearly

see the very similar behavior to the pcutTHjj case in the left panel. Here, the exclusive cut

on ∆φH−jj starts having a noticeable effect below π −∆φH−jj . 0.6, and the fixed-order

perturbative expansion breaks down below around π−∆φ . 0.2. In the transition region in

between, the direct scale variations again do not provide a meaningful uncertainty estimate,

because they neglect the effect of ∆cut.

3.3.2 Inclusive Scale Uncertainties

The two fixed-order scale variation uncertainties we require as inputs are ∆µ
≥2 and ∆µ

≥3.

In Fig. 3.1, one can already see that the scale variation is asymmetric at large values of

pcutTHjj and π − ∆φcutH−jj . In Fig. 3.2, we show the scale dependence of the inclusive 2-jet

cross section, σ≥2, where we plot it over a range of 1/4 < µr/mH < 4 for three different
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values of µf . We take µf = µr = mH , corresponding to the µr/mH = 1 point on the

blue solid line, as our central value for σ≥2, and consider the range 0.5 ≤ µr/mH ≤ 2 to

estimate the inclusive scale uncertainty. The maximum deviation from the central value is

given by the green dotted curve for µf = µr = 2mH . We use this maximum variation to

construct a symmetric uncertainty ∆µ
≥2, as shown by the uncertainty bar in the figure. It

corresponds to a relative uncertainty at NLO of 21%, which is similar to what was found in

earlier studies [28,44] where a somewhat looser VBF selection was used. The corresponding

uncertainty at LO is +76% and −40%.

1 2 4
0.1

0.15

0.2

0.25

0.25

0.3

0.5

µr/mH

∆σµ
≥2

σ
≥
2
[p
b
]

ATLAS 2-jet selectiongg→H+2j (NLO 8TeV)

mH =125GeV mjj >400GeV, ∆ηjj >2.8

µf =mH/2

µf =2mH

µf =mH

1 2 4
0.2
0.25

0.3

0.4

0.5

0.5

0.6

µr/mH

∆σµ
≥2

σ
≥
2
[p
b
]

gg→H+2j (NLO 8TeV)

mH =125GeV

CMS loose 2-jet selection

mjj >250GeV, ∆ηjj >3

µf =mH/2

µf =2mH

µf =mH

Figure 3.2: Inclusive 2-jet cross section over a range of µr/mH for ATLAS VBF selection (left
panel) and CMS loose selection (right panel). The three curves show different values of µf . The blue
solid, green dotted, and green dashed curves correspond to µf = mH , µf = 2mH , and µf = mH/2,
respectively. The uncertainty bars show the inclusive 2-jet scale variation uncertainty.
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Figure 3.3: Inclusive 3-jet cross section as a function of pcutTHjj (left panel) and π−∆φcutH−jj (right
panel) for the ATLAS VBF selection. The outer solid green lines show the inclusive 3-jet scale
variation uncertainty after symmetrization.

In Fig. 3.3, we illustrate the scale variation uncertainties for the inclusive 3-jet cross section,

σ≥3, for both pcutTHjj and ∆φcutH−jj , and using the ATLAS selection as example. (The results

for σ≥3 with the CMS selections look very similar except for the different overall scale.) The

blue solid line shows the cross section for µr = µf = mH , which we take as the central value

for σ≥3. The green dashed and dotted lines show the scale variations µr = µf = mH/2 and

µr = µf = 2mH , respectively. For simplicity, we symmetrize the uncertainty by taking half

of the difference between the up and down variations as the inclusive 3-jet scale uncertainty
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Figure 3.4: Perturbative uncertainties in the exclusive 2-jet cross section with the ATLAS VBF
selection as a function of pcutTHjj (left panel) and π −∆φcutH−jj (right panel) for different choices of
the correlation parameter ρ. Our default choice is ρ = 0.

∆µ
≥3, i.e., we keep the size of the band and move it to be symmetric about the central blue

line, which is shown by the outer solid green lines. The relative uncertainty is of O(70%)

and almost independent of pcutTHjj and ∆φcutH−jj . This rather large uncertainty is not too

surprising, since this is a leading-order H + 3j cross section, which starts at O(α5
s).

3.3.3 Exclusive Uncertainty

Having obtained the perturbative uncertainties ∆µ
≥2 and ∆µ

≥3 in the inclusive cross sections

from the usual scale variation, we now study the resulting uncertainty ∆2 in the exclusive

2-jet cross section according to the discussion in secjetbinreview. From Eq. (3.14) we have

in general

∆2
2 = (∆µ

≥2)
2 + (∆µ

≥3)
2 − 2ρ∆µ

≥2∆
µ
≥3 , (3.20)

where ρ is the assumed correlation between ∆µ
≥2 and ∆µ

≥3.

Dependence on ρ

We first investigate the dependence on the choice of ρ. In Fig. 3.4 we show the uncertainty

in the exclusive 2-jet cross section as a function of pcutTHjj and ∆φcutH−jj for different values

of ρ from 0 to 0.95. The outermost solid curves show the uncertainty obtained with our

default choice ρ = 0, which effectively assumes that ∆µ
≥2 and ∆µ

≥3 are uncorrelated. For

ρ . 0.4 the results are not very sensitive to the precise value of ρ, which is reassuring and

shows that ρ = 0 is in fact a safe choice on the conservative side.

As ρ increases further, the uncertainty bands in the transition region keep shrinking, and
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for ρ = 0.95, shown by the innermost dot-dashed lines, pinch near pcutTHjj ≃ 30GeV and

π −∆φcutH−jj ≃ 0.3. (For ρ = 1 the uncertainty goes exactly to zero around these points.)

This is because for ρ → 1, ∆µ
≥3 and ∆µ

≥2 become 100% correlated, which is equivalent

to the case of direct scale variation. (The only difference compared to the direct scale

variations we saw in Fig. 3.1 is that here we symmetrized the scale variations.)

One can also see that for large cut values, where the veto is not relevant and we approach

the inclusive 2-jet cross section, the choice of ρ becomes irrelevant, because the absolute

size of ∆µ
≥3 becomes numerically negligible compared to ∆µ

≥2.

Comparison to Efficiency Method

Another prescription to obtain fixed-order uncertainty estimates for exclusive jet cross

section, which is based on using veto efficiencies, was applied in Ref. [24] to the 0-jet case

at NNLO. We will refer to it as “efficiency method”. In Ref. [52] it was shown that for

the case of H + 0 jets at NNLO the ST method and efficiency method yield very similar

uncertainties, providing a good cross check on both methods.

The starting point in the efficiency method is to write the exclusive jet cross section in

terms of the corresponding inclusive jet cross section times the corresponding exclusive

efficiency, i.e., applied to our 2-jet case,

σ2 = σ≥2

(
1− σ≥3

σ≥2

)
≡ σ≥2 × ǫ2 ,

σ≥3 = σ≥2 (1− ǫ2) , (3.21)

where the logarithmic series induced by the jet binning now only affects the efficiency. The

basic assumption [24] one then makes is to treat the perturbative uncertainties in σ≥2 and

ǫ2 as uncorrelated (which one can think of as a multiplicative version of the ST approach).

One should be aware that this method does not satisfy one of our starting conditions,

namely the total uncertainty ∆≥3 for σ≥3 will not be given by its standard scale variation

∆µ
≥3 anymore. Nevertheless, it is a useful way to gain additional insights into the size of

higher-order corrections.

The 2-jet efficiency ǫ2 = 1 − σ≥3/σ≥2 is still an exclusive quantity. Similar cancellations

between the two perturbative series for σ≥2 and σ≥3 can happen in their ratio than in

their difference, so the direct scale variation for ǫ2 might not provide a reliable uncertainty

estimate. To circumvent this, in Ref. [24] the perturbative uncertainty in ǫ is instead

estimated by using three different schemes for how to write the perturbative result for ǫ,

which are all equivalent up to the desired order in αs, but differ in the higher-order terms



3.3. Application to gg → H + 2 Jets 41

0
0

1

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

pcut
THjj [GeV]

ǫ 2
(p

cu
t

T
H

j
j
)

ATLAS 2-jet selection

mjj >400GeV, ∆ηjj >2.8

gg→H+2j (NLO 8TeV)
mH =125GeV

Scheme (a)

Scheme (b)

Scheme (c)

0
0

1

1

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8 1.2 1.4

π − ∆φcut
H−jj

ǫ 2
(∆

φ
cu

t
H
−
j
j
)

ATLAS 2-jet selection

mjj >400GeV, ∆ηjj >2.8

gg→H+2j (NLO 8TeV)
mH =125GeV

Scheme (a)

Scheme (b)

Scheme (c)

Figure 3.5: Exclusive 2-jet efficiency for different schemes in the efficiency method for pcutTHjj

(left panel) and π −∆φcutH−jj (right panel) using the ATLAS VBF selection.

that are retained or not.

The inclusive 2-jet and 3-jet cross sections have the following perturbative structure

σ≥2 = α2
s

[
σ
(0)
≥2 + αs σ

(1)
≥2 + α2

s σ
(2)
≥2 +O(α3

s)
]
,

σ≥3 = α2
s

[
αsσ

(0)
≥3 + α2

s σ
(1)
≥3 +O(α3

s)
]
. (3.22)

At NLO, the pieces we have available are σ(0)≥2, σ
(1)
≥2, and σ(0)≥3. In scheme (a) one defines the

efficiency by keeping the full expressions in numerator and denominator, which at NLO

gives

ǫ
(a)
2 = 1− σ≥3

σ≥2
= 1−

αsσ
(0)
≥3

σ
(0)
≥2 + αsσ

(1)
≥2

+O(α2
s) . (3.23)

In scheme (b) one keeps the same number of terms in the perturbative series in the de-

nominator as in the numerator, which in our case amounts to dropping the σ(1)≥2 term in

the denominator,

ǫ
(b)
2 = 1− αs

σ
(0)
≥3

σ
(0)
≥2

+O(α2
s) . (3.24)

Finally, in scheme (c) one strictly re-expands the ratio to a given order in αs, which to

O(αs) unfortunately yields the same result as scheme (b). To produce another expression

with differing higher-order terms, the closest scheme (c) analog we can do is to keep the

O(α2
s) cross term that comes from expanding the denominator, so

ǫ
(c)
2 = 1− αs

σ
(0)
≥3

σ
(0)
≥2

(
1− αs

σ
(1)
≥2

σ
(0)
≥2

)
+O(α2

s) . (3.25)

In Fig. 3.5 we show the result for ǫ2 in the three schemes for both pcutTHjj and ∆φcutH−jj using
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Figure 3.6: Comparison of the ST method with the efficiency method for pcutTHjj (left panel) and

π −∆φcutH−jj (right panel) using the ATLAS VBF selection. The exclusive scale uncertainties from
both methods are consistent with each other. The uncertainties from the efficiency method are very
close to those from the ST method with ρ = 0.4.

the ATLAS VBF selection. The central lines show the results for µr = µf = µ = mH , while

the bands are obtained from varying µ = {2, 1/2}mH in each scheme. At NLO the central

values from the three schemes are quite close and still lie within the direct scale variation

of scheme (a), so their difference does not provide a useful uncertainty estimate here. The

direct scale variation in scheme (b) is very small and in scheme (c) abnormally large (which

is very similar to what was seen in Ref. [24]). Hence, in the end the most reasonable choice

to get an uncertainty estimate for ǫ2 is to just use the direct scale variation in scheme (a).

In Fig. 3.6 we compare the results of the ST and efficiency methods for the exclusive 2-

jet cross section σ2 for both pcutTHjj and ∆φcutH−jj using the ATLAS VBF selection. The

blue solid curve shows our usual NLO central value, which is equivalent to the central

value from scheme (a). The light orange solid curves are the uncertainties obtained in the

efficiency method by combining the scale uncertainties ∆µ
≥2 with the direct scale variations

in ǫ
(a)
2 treating both as uncorrelated. The dark orange solid curves show the default

ST uncertainties for ρ = 0, which are somewhat larger. The dashed lines show the ST

uncertainties for ρ = 0.4, which agree almost perfectly with the efficiency method. This

result is not surprising. Basically, to obtain the ǫ2 scale uncertainty we vary the scales

correlated in σ≥2 and σ≥3, which has the effect of reintroducing a certain amount of

correlation between ∆µ
≥2 and ∆µ

≥3 when considering σ2, which is also what a nonzero value

of ρ does. Overall, the good consistency between the various methods gives us confidence

in the reliability of our uncertainty estimates.
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3.4 Results

3.4.1 gg → H + 2 Jets Cross Section

In this section, we present our results for the exclusive pp → H + 2 jet cross section via

ggF at NLO, taking ST with ρ = 0 as our method of choice to estimate the perturbative

uncertainties. All our inputs are summarized at the beginning of Sec. 3.3. The ATLAS,

CMS loose, and CMS tight VBF selection cuts we apply are summarized in Table 3.1.

pTHjj and ∆φH−jj : In Fig. 3.7 we plot the result for the exclusive 2-jet cross section as a

function of pcutTHjj and ∆φcutH−jj for the 7-8 TeV ATLAS, CMS loose, and CMS tight VBF

selections. In all our cross section plots the solid blue central line shows the central-value

prediction obtained from µ = mH , while the outer orange solid lines show our uncertainty

estimate. For reference, the green dashed and dotted curves show the direct scale variation

for µ = mH/2 and µ = 2mH , respectively.

The overall picture is very similar for all three VBF selections and both binning variables.

For large values of pcutTHjj or π −∆φcutH−jj , the cross section σ≥3 that is cut away becomes

small and so the effect of ∆cut is negligible. In this limit the uncertainties reproduce

those in the inclusive 2-jet cross section, which here are determined by the µ = 2mH

variation. On the other hand, in the transition region, once the exclusive cut starts to

impact the cross section, the direct scale variations cannot be used any longer to estimate

uncertainties, which is exhibited by the crossing of the lines. As explained in detail in the

previous two sections, the reason is that the direct scale variation only gives an estimate of

the yield uncertainties, which effectively assumes the scale variations in the inclusive cross

sections to be 100% correlated (corresponding to ρ = 1). At the same time it neglects the

migration uncertainty in the binning, which becomes important as the exclusive cut gets

tighter. In the ST procedure, this effect is taken into account explicitly, which thus gives

more robust uncertainties for all values of pcutTHjj or ∆φcutH−jj .

In Table 3.2 we quote results for the cross sections and their percentage uncertainties for

specific cuts. For ∆φH−jj we use the current experimental value ∆φH−jj > 2.6. Compared

to the 21% in the inclusive 2-jet cross section with VBF cuts (σ≥2), we see a moderate

increase in the uncertainty in σ2(∆φH−jj > 2.6) to 26% for ATLAS and CMS tight, and

24% for CMS loose. For pTHjj we use a representative value of pTHjj < 30GeV, for which

the uncertainties increase substantially to 44% and 49% for ATLAS and CMS tight, and

moderately to 28% for CMS loose. Note that for a fixed cut the uncertainties increase with

a tighter VBF selection. This is also clearly visible in Fig. 3.7, where the region where

the cross section drops and the uncertainties grow large moves to larger values of pTHjj or
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Figure 3.7: Exclusive pp→ H +2 jet cross section via ggF at NLO for as function of pcutTHjj (left

panels) and π −∆φcutH−jj (right panels) for both ATLAS and CMS VBF selections.

π −∆φH−jj , going from CMS loose to ATLAS to CMS tight.
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Figure 3.8: Exclusive 2-jet cross section as a function of pcutTHjj with an additional cut ∆φH−jj >
2.6 using the ATLAS (left panel) and CMS loose (right panel) VBF selections.

3.4.2 Combination of Exclusive Cuts

As the cases of ∆φH−jj and pTHjj already show, one has to be careful when cutting on

variables which effectively force the kinematics in the exclusive 2-jet region and induce

large logarithms in the perturbative series. Whether implementing a cut-based approach

or in multivariate analysis (MVA), it is important to take into account the uncertainties

induced by the exclusive restriction. As an illustration of the application of the ST method

to a more general case, we now consider the case where we combine cuts on both pTHjj

and ∆φH−jj . Later in Subsec. 3.4.4, we will discuss how to propagate uncertainties into

MVAs.

Specifically, we study the exclusive 2-jet cross section as a function of pcutTHjj with an addi-

tional constraint that we select only events which already have ∆φH−jj > 2.6. Following

Eq. (3.1), the corresponding exclusive 2-jet cross section can be expressed as

σ2(∆φH−jj > 2.6, pTHjj < pcutTHjj) = σ≥2 − σ≥3(∆φH−jj < 2.6 or pTHjj > pcutTHjj) . (3.26)

Taking ρ = 0 for simplicity, the corresponding exclusive uncertainty is now given in terms

of the uncertainties obtained by scale variation in the inclusive cross sections as

∆2
2(∆φH−jj > 2.6, pTHjj < pcutTHjj) = ∆µ 2

≥2 +∆µ 2
≥3(∆φH−jj < 2.6 or pTHjj > pcutTHjj) .

(3.27)

In Fig. 3.8, we show σ2 as a function of the pcutTHjj with fixed ∆φH−jj > 2.6 for the ATLAS

and CMS loose VBF selections. As before, the cross section for µ = mH is the central solid

blue curve and the green dashed and dotted curves show the result of direct scale variation

by a factor of two, while the outer solid orange lines show the uncertainties obtained from

Eq. (3.27). As shown in Table 3.2, for pcutTHjj = 30GeV we now get 56%, 31%, and 53%

uncertainty for ATLAS, CMS loose, and CMS tight, which is slightly increased compared
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Selection σ [pb] Direct scale variation Combined incl. uncertainties
µ = mH µ = 2mH µ = mH/2 ST (ρ = 0)

ATLAS

σ≥2 0.21 ±21%
σ2(pTHjj < 30GeV) 0.15 −8% −29% ±44%
σ2(∆φH−jj > 2.6) 0.19 −17% −4% ±26%

σ2(pTHjj < 30GeV, ∆φH−jj > 2.6) 0.14 −5% −45% ±56%

CMS loose

σ≥2 0.41 ±21%
σ2(pTHjj < 30GeV) 0.35 −18% 0% ±28%
σ2(∆φH−jj > 2.6) 0.39 −20% +9% ±24%

σ2(pTHjj < 30GeV, ∆φH−jj > 2.6) 0.34 −16% −4% ±31%

CMS tight

σ≥2 0.12 ±21%
σ2(pTHjj < 30GeV) 0.08 −8% −35% ±49%
σ2(∆φH−jj > 2.6) 0.10 −19% −1% ±26%

σ2(pTHjj < 30GeV, ∆φH−jj > 2.6) 0.07 −7% −46% ±53%

Table 3.2: Perturbative uncertainties at NLO in the exclusive pp → H + 2 jet cross section via
gluon fusion for cuts on pTHjj and ∆φH−jj for both ATLAS and CMS VBF selections.

to not having the additional cut on ∆φH−jj . For large values of pcutTHjj the uncertainties in

Fig. 3.8 correctly reproduce the exclusive uncertainties for ∆2(∆φH−jj > 2.6) without the

cut on pTHjj .

3.4.3 Uncertainties in ggF-VBF Separation

The VBF production process is characterized by two forward jets with large rapidity sep-

aration and large dijet invariant mass. The VBF selection cuts used by the ATLAS and

CMS experiments enhance the VBF contribution, but a significant ∼ 25% ggF contribution

remains. Since the VBF cross section is known rather precisely, an important source of

theoretical uncertainty in the extraction of the VBF signal is the large perturbative uncer-

tainty in the ggF contribution. After subtracting the non-Higgs backgrounds (which are

of course another source of uncertainty), the measured cross section for Higgs production

after implementing the VBF selection is given by

σmeasured
2 (∆φcutH−jj) = σVBF

2 (∆φcutH−jj) + σggF2 (∆φcutH−jj) . (3.28)

For the purpose of extracting the VBF cross section, we effectively have to subtract the

theory prediction for σggF2 (∆φcutH−jj) from σmeasured
2 (∆φcutH−jj). Therefore, the relevant figure

of merit is ∆σggF2 (∆φcutH−jj)/σ
VBF
2 (∆φcutH−jj), i.e., the theory uncertainty in σggF2 measured

relative to the expected VBF cross section, σVBF
2 . In Fig. 3.9 we show the ggF uncertainty

relative to the VBF signal cross section over a range of pcutTHjj and ∆φcutH−jj using the ATLAS
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Figure 3.9: Theoretical uncertainties of the ggF contribution relative to the VBF cross section
as function of pcutTHjj (left panels) and ∆φcutH−jj (right panels) for the ATLAS VBF selection (top
panels) and CMS loose VBF selection (bottom panels). The solid orange lines show the perturbative

uncertainties in σggF
2 , the green dotted lines a flat 20% parametric uncertainty in σggF

2 , and the
dashed blue lines both contributions added in quadrature.

and CMS loose VBF selections. In these plots, the solid orange curve shows our results

for the NLO perturbative uncertainties (corresponding to the orange lines in Fig. 3.7).

For comparison, the green dotted curve shows a fixed 20% uncertainty in the ggF cross

section, i.e., taking ∆σggF2 = 0.2σggF2 , which for example could be due to PDF and αs

parametric uncertainties. Hence, the green dotted lines effectively track the size of the

ggF cross section relative to the VBF cross section (multiplied by 0.2). In the dashed blue

lines, both uncertainty contributions are added in quadrature.

In the region of low pcutTHjj or π − ∆φcutH−jj , the relative uncertainty coming from the ggF

contribution quickly increases below pTHjj . 30GeV and π −∆φH−jj . 0.4. This is de-

spite the fact that the relative ggF cross section quickly decreases there, as can be inferred

from the decrease in the dotted green lines. In this region, the total uncertainty shown by

the blue dashed curve becomes completely dominated by the perturbative ggF uncertainty.

Hence, one should be careful when implementing and optimizing either indirect restrictions

on additional radiation, like ∆φH−jj , or explicit pT -vetoes like pTHjj , since the gain in sen-

sitivity in the Higgs signal from reduced non-Higgs backgrounds must be weighed against
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the increased theoretical uncertainty in separating the ggF and VBF contributions.
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Figure 3.10: Exclusive 2-jet cross section over a range of mcut
jj for fixed pTHjj < 30GeV (left

panel) and fixed ∆φH−jj > 2.6 (right panel) for the ATLAS VBF selection.
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Figure 3.11: Perturbative uncertainties of the ggF contribution relative to the VBF cross section
over a range of mcut

jj for fixed pTHjj < 30GeV (left panel) and fixed ∆φH−jj > 2.6 (right panel)
for the ATLAS VBF selection.

The perturbative uncertainties in the exclusive 2-jet cross section also depend on the chosen

VBF cuts and increase with a higher cut on the dijet invariant mass, mjj . The reason for

this effect is that at higher mjj the effective hard scale in the process is also pushed higher

causing the logarithmic corrections at a given value of pcutTHjj to increase. This is seen

explicitly in Fig. 3.10, which shows the exclusive 2-jet cross section over a range of mcut
jj

using the ATLAS VBF selection for a fixed cut pTHjj < 30GeV or ∆φH−jj > 2.6, where

the curves have the same meaning as in Figs. 3.7 and 3.8. As expected, with a cut on

pTHjj < 30GeV, we see that the relative uncertainty in the ggF cross section grows for

larger mjj values, and reaches almost 100% for mjj & 800GeV. Note however that for

such large mjj cuts one might have to reevaluate whether µ = mH is still an appropriate

scale choice for this process. With a cut on ∆φH−jj > 2.6, the relative uncertainty in

the ggF cross section stays roughly constant for larger mjj presumably because this cut is

somewhat milder, which we also saw in the results in Table 3.2.

In Fig. 3.11 we show the ggF uncertainty relative to the VBF cross section analogous to
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Fig. 3.9. We can clearly see that in this case tightening the cut on mjj does improve

the separation of the ggF and VBF contributions, as the perturbative ggF uncertainty

relative to the VBF cross section, shown by the orange curves, decreases. In this case, the

overall reduction of the ggF contamination relative to the VBF cross section is stronger

than the increase in the perturbative uncertainties of the ggF contribution. Hence, care

must be taken when implementing and optimizing either indirect restrictions on additional

radiation, like ∆φH−jj , or explicit pT -vetoes like pTHjj or a central jet veto, and also in

applying more general cuts which restrict to the exclusive 2-jet region as in the case of

multivariate analysis.

3.4.4 Generalization to arbitrary cuts and application to MVAs

In this subsection, we will discuss a simple method to propagate the theory uncertainties

into multivariate analysis (MVA). This work was done in collaboration with the ATLAS

experimentalists Dag Gillberg and Florian Bernlochner and appeared in Ref. [53].

To apply our procedure of estimating uncertainties in jet-binning to MVAs, we need to

generalize our method to include arbitrary number of cuts. For this, the formalism of

Eq. (3.2) can be extended to further divide σ≥N+1 into an arbitrary number of bins,

σ≥N =

∫ pcut 1

0
dpN+1

dσ≥N

dpN+1
+

∫ pcut 2

pcut 1
dpN+1

dσ≥N

dpN+1
+ · · ·+

∫ pcutn

pcutn−1

dpN+1
dσ≥N

dpN+1

≡ σN (pcut 1) + σ≥N+1(p
cut 1, pcut 2) + · · ·+ σ≥N+1(p

cutn−1, pcutn) . (3.29)

This splitting divides the inclusive N -jet cross section, σ≥N , into n bins, whose uncer-

tainties and correlations can be described by a symmetric n × n covariance matrix with

n(n+1)/2 independent parameters. To construct this covariance matrix we use the bound-

ary conditions that the inclusive cross sections σ≥N and σ≥N+1(p
cut,∞) are uncorrelated,

which implements the ST procedure for a given pcut. This is not sufficient to determine

the complete matrix. For the remaining entries, a simple linear correlation model is used,

where the correlation κij between σ≥N+1(p
cut i,∞) and σ≥N+1(p

cut j ,∞) is given by

κij = 1− (1− ρ)
|pcut i − pcut j |
pcutn − pcut 1

. (3.30)

The parameter ρ determines the strength of the correlations between the inclusive N+1-jet

cross sections for different pcut. The dependence on this underlying correlation model is

tested below by using the three different values ρ = {50%, 90%, 99%}. As we will see, the

obtained uncertainty estimates are very insensitive to the precise choice of ρ.
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Figure 3.12: Comparison of the exclusive pp→ H +2 jet cross section via ggF from MCFM and
Powheg+Pythia8 H+0 jets as a function of π−∆φcutH−jj (where the cut value is given by the up-
per bin edges). Left: The normalized cumulant σ2/σ≥2. The histograms show the fixed-order results
from MCFM, corresponding to Fig. 3.7(b). The data points show Powheg+Pythia8 results for
different VBF selections, which only depend weakly on the precise VBF selection and agree well with
MCFM. Right: The relative ST uncertainties from MCFM (black solid histogram) are compared to
the resulting uncertainties (dotted histograms) after propagation to the Powheg+Pythia8 predic-
tion using Eq. (3.31). The resulting uncertainties closely agree with the MCFM input uncertainties
and do not depend on the correlation model assumed in the propagation. Figs. taken from Ref. [53].

ATLAS and CMS used Powheg gg → H + 0 jets at NLO [54–56] to model the hard

scattering process, interfaced with Pythia8 [57] for modelling of underlying event, parton

showering, and hadronization. In the left panel of 3.12 we compare the normalized cumula-

tive cross section for different values of ∆φcutH−jj between Powheg+Pythia8 and MCFM.

For both generators, the anti-kT algorithm with R = 0.4 is used to reconstruct the jets,

excluding the Higgs decay products, and a typical VBF phase space selection is applied.

Here, the first bin, which encloses the IR sensitive region, must be chosen large enough to

ensure that MCFM can still be used to estimate its uncertainties using the ST procedure.

Based on 3.7(b) and 3.7(f) we choose the first bin as (π −∆φH−jj) ∈ [0, 0.2]. The cumulant

shapes are in good agreement, also when the Powheg+Pythia8 VBF selection is varied.

When applying an exclusive 2-jet selection based on ∆φH−jj , the uncertainty of the event

yield N2 from Powheg+Pythia8 can be estimated from

(∆N2)
2 =

∑

i,j

Ĉij ni nj , Ĉij =
1

σiσj
Cij , N2 =

∑

i

ni , (3.31)

where Cij denotes the covariance matrix, σi the predicted cross section in the interval of

the ith bin, ni denotes the event yield of the Monte Carlo prediction in the ith bin, and the

sum runs over all bins that define the exclusive 2-jet phase space one is interested in. To

construct Cij , we use the MCFM uncertainties of Fig. 3.7(b) as inputs to the procedure

described above. The right panel of Fig. 3.12 compares the relative uncertainties calculated

from Eq. (3.31) for Powheg+Pythia8 for different correlation models, showing a good

agreement with the input MCFM uncertainties. Note in particular that the 2-jet inclusive

cross section uncertainty is recovered when calculating the cumulant over the full range of
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∆φH−jj . Eq. (3.31) is used in the following two sections to derive uncertainties for nonlinear

cuts on ∆φH−jj due to resolution effects and for selections based on a multivariate classifier.

In the context of a multivariate analysis, the effective cuts on ∆φH−jj and pTHjj introduced

by the nonlinear selection of phase space have to be studied carefully. In particular, if either

of the variables are used directly as learning input for the multivariate classifier, one has

to make sure that the final classification does not cut arbitrarily close into the infrared

sensitive regions, i.e. ∆φH−jj → π and pTHjj → 0. This can be prevented by transforming

either variable into an infrared safe form,

∆φ′H−jj =

{
∆φH−jj if ∆φH−jj < ∆φcutH−jj ,

∆φcutH−jj if ∆φH−jj ≥ ∆φcutH−jj ,
p′THjj =

{
pTHjj if pTHjj < pcutTHjj ,

pcutTHjj if pTHjj ≥ pcutTHjj ,

(3.32)

allowing the multivariate algorithm only to exploit the normalization difference in the

infrared sensitive region of phase space.

The procedure of deriving the exclusive 2-jet cross section uncertainties using a multivariate

selection based on a boosted decision tree was mainly done by the ATLAS experimentalists.

In this, the decision tree was trained to distinguish VBF like events in H → γγ and to

reject prompt diphoton background. As input for background, simulated prompt diphoton

decays by Sherpa are used. The signal was simulated using Powheg+Pythia8 for VBF

and ggF decays, both simulated at NLO. To all samples resolution effects were added using

the same simple normal resolution model as above. Six typical variables often used in VBF

analyses were chosen to train the decision tree.

Fig. 3.13(a) shows the distribution in ∆φH−jj for the simulated background and signal

decays. VBF events produce a topology which causes the Higgs and dijet system to be

more back-to-back than background and ggF events. The multivariate method will make

use of this to select a signal enriched region of phase space, and cut into this distribution.

Fig. 3.13(b) depicts the mγγ invariant mass distribution before and after a cut on the

multivariate classifier, illustrating the effect of the smearing model. Fig. 3.13(c) shows

the classifier OMVA: VBF signal peaks near the positive values, and background and ggF

accumulates near negative values. Finally, Fig. 3.13(d) depicts the ggF ∆φH−jj spectrum

for a progression of cuts on the classifier. The curves were normalized to have the same

number of events in the region of 0 − 0.2, which corresponds to the cutoff value used in

Eq. (3.32).

Cutting on the classifier separates the inclusive 2-jet cross section into an exclusive 2-jet and

an inclusive 3-jet part, similar as with a rectangular cut on ∆φH−jj or pTHjj . In Tab. 3.3

we list the uncertainties calculated from Eq. (3.31) for a progression of cuts and different
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(a) Signal and background ∆φH−jj
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(b) Signal and background mγγ
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(c) Multivariate classifier
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(d) ggF ∆φH−jj for a progression of cuts

Figure 3.13: Signal and Background distributions of the multivariate selection: 3.13(a) shows
∆φH−jj for background and VBF signal; 3.13(b) depicts the invariant diphoton mass spectrum for
diphoton background (grey), ggF (red), and VBF (blue) before and after an arbitrary cut on the
multivariate classifier. 3.13(c) depicts the multivariate classifier constructed from the six input
variables for background, ggF, and VBF following the same color code. 3.13(d) shows the ∆φH−jj

distribution without any cut, and a progression of cuts on the multivariate classifier, also quoting
the uncertainties on the integral obtained using Eq. (3.31). Figs. taken from Ref. [53]

slopes for the linear correlation model: Harder cuts on the classifier translate into a tighter

nonlinear selection in ∆φH−jj phase space. As expected, this increases the exclusive 2-jet

cross section uncertainty. The progressive harder cuts have a flat efficiency in ∆φH−jj

above the threshold of 0.2 (i.e. cut into this region without changing its shape), which is

important to obtain reliable uncertainties from Eq. (3.31). The dependence on the actual

details on the linear correlation model is small: Changing the bin-by-bin correlations of the

inclusive 3-jet cross section phase space by varying ρ from 50% to 99% has a practically

negligible effect on the estimated uncertainty.

The method described here was used in the ATLAS H → γγ measurement [58], to de-

termine the uncertainties for the two used VBF MVA selections. The uncertainties found

there were 28.3% and 48.4% for the loose and tight MVA category, respectively. The same
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Table 3.3: Relative perturbative uncertainties at NLO for gg → H + 2 jets after applying a
selection on the multivariate classifier OMVA. The uncertainty is calculated using generator level
∆φH−jj.

Cut ∆σ2/σ2 (ρ = 50%) ∆σ2/σ2 (ρ = 90%) ∆σ2/σ2 (ρ = 99%)
no cut 21.0% 21.0% 20.9%
OMVA > 0.2 26.6% 26.8% 26.9%
OMVA > 0.6 34.3% 34.6% 34.7%
OMVA > 0.8 40.8% 41.1% 41.1%

approach applied to the CMS MVA analysis [59] at reconstruction level gives an uncer-

tainty for the tight category of about 40%, which is similar to the ATLAS result. Our

procedure of estimating theory uncertainties was used in the ATLAS VBF analyses in

H → ZZ → l+l−qq̄ in [60] and H → γγ in [61–63].

3.5 Conclusions

The exclusive H+2-jet cross section for Higgs production via VBF is a key ingredient in

determining the Higgs coupling to gauge bosons. The typical VBF selection cuts used by

the ATLAS and CMS experiments include either indirect or direct restrictions on addi-

tional emissions in order to enhance the VBF signal over non-Higgs background and ggF

contribution. Such restrictions introduce a nontrivial jet binning, where the inclusive 2-jet

cross section (σ≥2) is effectively divided into an exclusive 2-jet bin (σ2) and a remaining

inclusive 3-jet bin (σ≥3). With such a jet binning one has to account for two sources of

perturbative uncertainties. In addition to the absolute yield uncertainty which is corre-

lated between the jet bins, there is also a migration uncertainty which is anticorrelated and

drops out in the sum of the bins. This migration uncertainty is associated with the per-

turbative uncertainty in the logarithmic series that is introduced by the exclusive binning

cut. As the binning cut becomes tighter, the logarithms grow large and eventually lead to

a breakdown of fixed-order perturbation theory, at which point a logarithmic resummation

becomes necessary. In practice, the experimentally relevant region typically lies inside the

transition region between the fully inclusive region (no binning) and the extreme exclusive

region (very tight binning). In this region, fixed-order perturbation theory can still be

applied. However, since the logarithms are already sizeable, one has to explicitly take into

account the migration uncertainty. This can be achieved using the ST method.

In this chapter, we studied in detail the application of the ST method for estimating NLO

perturbative uncertainties in pp → H + 2 jets via ggF, including its generalization and

validation against alternative prescriptions. We find that the perturbative uncertainties

are very sensitive to the exclusive cut and can quickly become sizeable. While applying
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a strong restriction on additional emissions is expected to increase the sensitivity to the

VBF signal, it is not necessarily beneficial for distinguishing the VBF and ggF production

modes because of the quickly increasing ggF uncertainties. Hence, it would be important

to include the perturbative uncertainties as a function of the binning cut when optimizing

the experimental selections.

We also considered the extension of the ST procedure to arbitrary number of cuts, where

to construct the covariance matrix, we assumed a set of correlation relations between the

N+1-th jet cross sections for different values of the binning cut. We compared the exclusive

pp→ H+2-jet cross section via ggF from MCFM with Powheg+Pythia8 H+0 jet cross

section as a function of π−∆φH−jj cut and found good agreement. We also found agreement

between our uncertainty estimates from MCFM and from applying our covariance matrix

to Powheg+Pythia8. As an application to MVAs, we studied the relative perturbative

uncertainties at NLO for gg → H + 2 jets after applying a selection on the multivariate

classifier and found that tighter selection cuts result in an increase in the exclusive 2-jet

cross section uncertainty.

In principle, by performing a higher-order logarithmic resummation, one can gain addi-

tional information, which allows for refined perturbative predictions and uncertainty esti-

mates, however it is technically more demanding for the exclusive H +2−jet cross section.

Our analysis of NLO uncertainties provides an important baseline for future studies and

can be extended to estimate uncertainties in fixed-order cross sections as well as resummed

predictions for different exclusive Higgs production processes.

For any exclusive jet cross section measurements at the LHC, jet vetoes play a crucial

part of the signal selection. In the following chapter we will discuss in detail the different

jet veto observables in particular rapidity dependent jet vetoes and the factorization and

resummation properties of such observables in the framework of SCET.



Chapter 4

Rapidity dependent jet vetoes.

This chapter is based on my work in [12]. In this chapter I will introduce rapidity dependent

jet vetoes and discuss their factorization and resummation properties in SCET. I will obtain

resummed predictions at NLL′+ NLO for the gluon fusion H+0-jet cross section with these

type of jet vetoes. For one of the jet-veto observables, we also compare our numerical

predictions with the differential cross section measurement by ATLAS in the H → γγ

channel and find good agreement.

4.1 Introduction

The jet-like characteristics of hadronic final states in an event can be described using

‘shape variables’. The idea is to define a quantity which describes the shape of an event,

for example whether the distribution of hadrons in the final state is pencil-like, planar,

spherical etc. The procedure is to define a kinematic observable X which measures a

particular aspect of the shape of the hadronic final state and to theoretically predict the

differential distribution dσ/dX and compare with the measurements. Some examples of

event shape observables are

Thrust : T = max
n

∑
i |pi · n|∑
i |pi|

.

C-parameter : C =
3

Q

∑

i

|~pT i|
2 cosh ηi

.

N-jettiness : τN =
2

Q2

∑

i

min{qa · pi, qb · pi, q1 · pi, q2 · pi...} .

beam thrust : τB =
1

Q

∑

i

min{qa · pi, qb · pi} . (4.1)
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Here qa, qb and q1...qn are a fixed set of massless reference momenta for the two beams and

the N signal jets. For almost collinear energetic jets, pi lies along the direction of qi. For

the case of e+e− → qq̄, T = 1 for two pencil-like jets and T < 1 for events with additional

jets (>2) in the final state. The kinematic range for C parameter is 0 ≤ C ≤ 1, with C = 0

for a perfectly two-jet-like final state and C = 1 for an isotropic distribution of final-state

momenta. For an event with at least N energetic jets, N -jettiness τN [64, 65] provides

an inclusive measure of how N -jet-like the event looks. In the limit τN → 0 the event

contains exactly N infinitely narrow jets and for τN ∼ 1, the event has hard radiation

between the signal jets. Requiring τN ≪ 1 constrains the radiation outside the signal and

beam jets providing an inclusive way to veto additional central jets. Beam thrust τB is the

limit of τN for processes where there is initial state radiation (ISR) from incoming partons

but no final state jets N = 0 (eg: Drell Yan, Higgs+0-jet). Thus beam thrust provides a

continuous measure of the zero-jettiness of an event.

Jet veto observables can in general be distinguished into two classes, inclusive and jet-

based. Inclusive variables, such as the ones defined above, do not depend on a specific jet

algorithm or jet size. Instead, they sum over all hadrons in the final state, and provide a

global view of the event, effectively measuring the sum of all emissions. For such inclusive

obseravables, the resummation has been performed upto NNLL and there are no issues

for extending to higher orders. However, experimentally it is challenging to measure or

contrain such inclusive observables due to pileup, underlying event and other issues. The

solution is to use jet-based observables which are more straightforward because they are

based on clustering final state hadrons into jets J(R) of radius R using jet-algorithms like

kT [66, 67] or anti-kT [68]. They provide a local view of the event and measure emissions

locally with an effective “resolution” size set by R. A common choice in current experiments

is pjetT with jets constructed using anti-kT algorithm. On the theory side, however, the jet-

algorithm dependence renders the resummation structure of jet-based observables more

involved at higher orders. Depending on the size of R, there are competing effects due

to clustering starting at O(α2
s) which can spoil the logarithmic resummation but we will

discuss more about such effects in Sec. 4.6 and compute them in chapter 5. We will mainly

focus on the jet-based observables from now on.

While a veto on additional jets can be desirable in many contexts, the application of a tight

jet veto is usually subject to both theoretical and experimental limitations. Theoretically,

applying a tight jet veto leads to Sudakov double logarithms of the jet-veto variable in

perturbation theory, which as the veto gets tighter (smaller veto cuts) become larger and

dominate the perturbative series, leading to increased theoretical uncertainties in the fixed-

order (FO) predictions [41]. This can be remedied by resumming the jet-veto logarithms

to all orders [23–25, 64, 65, 69–75]. This of course requires the considered jet-veto variable

to be resummable and under good enough theoretical control.
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Experimentally, jets can only be robustly reconstructed down to some minimum pT , which

limits how low one can go in the jet veto cut, i.e., how tight one can make the jet veto.

Furthermore, in harsh pile-up conditions low-pT jets are particularly hard to identify at

forward rapidities (beyond |η| ≥ 2.4), when a large part or all of the jet area lies in a

detector region where no tracking information is available.

In principle, one possibility would be to place a hard cut on the (pseudo)rapidity ηj of

the classified jets, i.e., one only considers and possibly vetoes jets within a certain range

of central rapidities, ηj < |ηcut|. Theoretically, such a hard rapidity cut represents a

nonglobal measurement. This means that a priori it is not clear how to incorporate it into

the jet-veto resummation at higher orders, and none of the present jet-veto resummations

for pTj actually includes such a rapidity cut. Another option, which avoids a hard rapidity

cut, is to raise the cut on pTj , and thus loosen the jet veto everywhere. Clearly, this may

also not be ideal since one now looses the utility of a tight jet veto for central jets.

Here, we discuss a class of jet-veto variables which explicitly depend on the jet rapidity

yj ,1

Tfj = pTj f(yj) , (4.2)

where f(y) is some weighting function of the jet rapidity. By classifying jets according to

Tfj and only allowing jets with Tfj < T cut, we effectively have a rapidity-dependent veto

on pTj ,

pTj <
T cut

f(yj)
. (4.3)

If the weighting function f(y) is chosen as a decreasing function of |y| this corresponds to

a veto which gets tighter at central rapidities and looser at forward rapidities. Effectively,

the contribution of forward jets is smoothly suppressed by the weighting function f(yj). At

the same time, f(yj) can be chosen such that explicit theoretical control is maintained. In

fact, all the variables we discuss can be resummed to a similar (and possibly higher) level

of precision as pTj . In this way, one can largely avoid the theoretical and experimental

limitations discussed above. (Of course, the lowest Tfj values that can be measured are

ultimately still limited by how well central jets can be measured.)

Apart from such practical considerations, given the usefulness of jet binning, it is clearly

beneficial to have several alternative and complementary ways to perform it, as this gives

the experiments a wider range of options for optimizing their analyses. One could even

optimize the form of f(y) to the needs of a given analysis. On the theoretical side, it allows

one to test jet-veto resummations in different and as of now unexplored regimes. Note that

1We consider the exact jet rapidity yj in the following, though the difference between ηj and yj due to
a nonzero jet mass is not important to our discussion, and in principle either could be used.
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two special cases we have already discussed above are no weighting, f(y) ≡ 1, for which

Tfj ≡ pTj , while f(y) = θ(|y| < ycut) is equivalent to a hard cut on the jet rapidity.

This chapter is organized as follows: in Sec. 4.2 we will define the weighting functions

for the four different rapidity dependent jet veto observables, T jet
B , T jet

Bcm, T jet
C and T jet

Ccm.

In the next Sec. 4.3, we will compute the NLO cross section for pp → HX differential

in the rapidity-dependent observables using fixed-order perturbation theory. In Sec. 4.4,

we will review the basic structure of SCET including the ingredients and the Lagrangian.

We will then derive the factorization formula for the generic process pp→ LX differential

in inclusive beam thrust and discuss the factorization for H+0-jet cross section with a

veto T jet
f < T cut in Sec. 4.6,. In Sec. 4.7, we will discuss the scale hierarchy between

the factorized components, RG evolution and the structure of the resummed cross section.

We will then provide the various inputs required to compute the NLL′ resummed cross

section in Sec. 4.8. Having obtained the resummed results, in Sec. 4.9 we will compute the

nonsingular corrections to the resummed cross sections using the NLO differential cross

section computed in Sec. 4.3. These corrections are important to match our resummed

cross section to the full fixed-order result. In Sec. 4.10, we will discuss how to estimate

the perturbative uncertainties in our resummed cross section predictions extending the

ST procedure discussed in chapter 3. And in Sec. 4.11, we provide numerical results at

NLL′+NLO for the H+0-jet cross section with TB and TC-type vetoes and compare our

theory predictions with ATLAS measurements. We conclude in Sec. 4.12.

4.2 Rapidity-dependent observables: T jet
B and T jet

C

Given the set of jets, J(R), identified by some jet clustering algorithm, we define

pjetT = max
j∈J(R)

pTj (4.4)

as the largest pTj of any jet. Requiring pjetT < pcutT vetoes any event having at least one jet

with pTj > pcutT . The so-defined 0-jet cross section then consists of events where all jets

have pTj < pcutT . It is important to note that despite that fact, this does not actually require

one to reconstruct jets with pTj < pcutT . Rather, one only has to be able to reconstruct jets

with pTj > pcutT which are to be vetoed. The resummation for a veto on pjetT is known to

NNLL and partially beyond [24,25,69–71,74].

For simplicity, we explicitly consider the 0-jet bin in the following. The extension to an

N -jet bin is obtained by simply removing from the set J(R) the N identified jets that have

been selected as the “signal” jets. pjetT is then defined as the largest pTj of any additional
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Figure 4.1: Left: Illustration of rapidity weighting functions for TBj (orange), TCj (green), and
pTj (blue dashed). The blue dotted lines show a fixed cut on the jet rapidity. Right: Phase-space
region in the pTj − yj plane selected by the different jet-veto variables. (Here we take Y = 0, so
TBj = TBcmj.)

unwanted jet (i.e. from additional initial-state or final-state radiation), which are to be

vetoed by requiring pjetT < pcutT .

We can generalize this to Tfj by defining

T jet
f = max

j∈J(R)
Tfj = max

j∈J(R)
|~pTj | f(yj) . (4.5)

We now distinguish between the Tfj value of any given jet j and T jet
f , which is the maximum

Tfj of all jets (or all additional jets for the case of N selected signal jets). In particular,

the “leading” jet is now determined by Tfj and not by pTj .2 We can then classify events

into jet bins according to T jet
f and define a 0-jet cross section by requiring

T jet
f < T cut , (4.6)

which consists of events where all jets have Tfj < T cut. The corresponding inclusive 1-jet

cross section defined by requiring T jet
f > T cut consists of all remaining events that have at

least one jet with Tfj > T cut. Similar to the pjetT case, this T jet
f binning now requires one

to be able to reconstruct jets down to Tfj > T cut, while jets below T cut do not have to be

reconstructed.

The four jet-veto variables we consider in the following are defined with their respective

2In principle, one could also measure the Tfj of the leading-pT jet. However, using this as a jet veto
would make things much more involved and we will not consider such mixed cases.
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weighting functions as follows:

TB : f(y) = e−|y−Y | , (4.7)

TBcm : f(y) = e−|y| , (4.8)

TC : f(y) =
1

2 cosh(y − Y )
, (4.9)

TCcm : f(y) =
1

2 cosh y
(4.10)

Here, Y denotes the rapidity of the hard system. For the 0-jet case, this is equivalent

to the nonhadronic final state, i.e. Y is the vector-boson rapidity for Drell-Yan or the

Higgs-boson rapidity in gluon-fusion Higgs production. By including Y in TB and TC , the

variables become longitudinally boost-invariant.3 On the other hand, TBcm and TCcm are

explicitly defined in the hadronic center-of-mass (cm) frame, i.e. the lab frame, which has

the advantage that one does not have to reconstruct Y .

The different rapidity weighting functions are illustrated in the left panel of Fig. 4.1 by

the orange (TBj) and green (TCj) lines. For comparison, the blue dashed line shows the

case of pTj (f(y) = 1) and the blue dotted line a hard rapidity cut. The weighting ∼ e−|y|

for TBj is the same as that for inclusive beam thrust, so we can think of TBj as the beam

thrust of a single jet and T jet
B as the maximum jet beam thrust (which was first discussed

in Ref. [70]). The rapidity weighting for TCj is the same as that for the C-parameter event-

shape in e+e− → dijets. It becomes equal to TBj at forward rapidities, while at central

rapidities it is much flatter and approaches pTj/2 for yj = 0. Experimentally, this has the

advantage that T jet
C can be measured to much smaller values. The region in the pTj − yj

phase space selected by the different variables is illustrated in Fig. 4.1 on the right. The

lines correspond to the given fixed value of Tfj . They separate the “0-jet” region (colored),

where the jet would be allowed by the corresponding jet-veto cut, and the “1-jet” region

(uncolored), where the jet would be vetoed.

The strict exponential weighting for TBj is distinguished by the fact that TBj is related to

the small light-cone component with respect to the beam axis of the total jet momentum.

More precisely, including the nonzero mass of the jet, mj , we have

pTj e
−|ηj | = |~pj | − |pzj | ,

mTj e
−|yj | ≡

√
p2Tj +m2

j e
−|yj | = Ej − |pzj | . (4.11)

Either of these variants can be used as alternative definitions of TBcm (and analogously

3They can be thought of as being defined in the frame where Y = 0, and in all other frames by boosting
from that frame.
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for TB), if this is desired or turns out to be advantageous for their experimental measure-

ment. Theoretically, all of these are distinct variables which however have a very similar

logarithmic structure at small T jet
B . The different treatment of the jet mass amounts to

having different jet clustering corrections for each variable and can be taken into account

systematically. They start entering at O(α2
s), which is beyond the order we are currently

working at. We will compute them in the next chapter.

The analogous discussion holds for TC(cm), which including nonzero mj can be defined in

terms of either combination of pTj or mTj and ηj or yj . Explicitly,

pTj

2 cosh ηj
=

p2Tj

2|~pj |
,

mTj

2 cosh yj
=
p2Tj +m2

j

2Ej
. (4.12)

Again, either of these variants could be used as alternative definitions of TCj . The AT-

LAS measurement [38] uses the last variant above in the Y = 0 frame, i.e., TCj ≡
mTj/[2 cosh(yj − Y )].

Note that 1/(2 coshx) = 1/(ex + e−x) → e−|x| for large |x|, such that at forward rapidities

TCj has the same behavior as TBj , as seen in Fig. 4.1. For this reason, its logarithmic

structure is closely related to that of TBj , and in particular the same technology can

be used to resum it to the same level of accuracy.4 The same reasoning also applies

more generally to any (continuous) weighting function f(y) that approaches e−|y| at large

rapidities. This gives considerable freedom in choosing other alternative rapidity weighting

functions yielding resummable jet-veto variables.

4.3 pp → HX process at NLO

The full H + 0-jet cross section differential in the Higgs rapidity Y and with a cut on

T jet
f < T cut can be written as

dσ0
dY

(T jet
f < T cut) =

dσresum0

dY
(T jet

f < T cut) +
dσnons0

dY
(T jet

f < T cut) , (4.13)

where the first term contains the resummed logarithmic contributions, which dominate at

small T cut, and the second term contains the “nonsingular” corrections, which are sup-

pressed relative to the leading terms by O(T cut/mH) and vanish in the limit T cut → 0.

4Analogously, in the context of e+e− → jets, the C-parameter event shape is closely related to thrust,
which makes it comparably easy to resum to the same high order as for thrust [76].
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The cross sections also depend on the jet algorithm and jet radius R, which we suppress

here to keep the notation simple.

In this section, we will compute the NLO pp → HX cross section differential in rapidity

Y and the above defined TB and TC-type jet veto observables. This fixed-order result is

required as an input to extract the nonsingular contributions, which are important at large

T cut to reproduce the right inclusive cross section. The nonsingular corrections will be

computed using subtraction method in Sec. 4.9.

Let us consider a process where a pair of hadrons of momenta Pa and Pb collide producing a

Higgs bosonH with a momentum q and a number of other particles with a total momentum

pX . Momentum conservation then reads

Pa + Pb = q + pX . (4.14)

A factorization formula relates this hadronic process hahb → HX to the partonic process

ab → HX ′ as discussed in Sec. 2.2. Here a and b are partons of momenta pa = ξaPa

and pb = ξbPb and X ′ stands for the final state particles except for the Higgs boson. The

momentum conservation for the partonic process is

pa + pb = q + p′X . (4.15)

where

p′X = Pa + Pb − q − (1− ξa)Pa − (1− ξb)Pb . (4.16)

The total energy in the center-of-mass system of the two colliding partons is

ŝ = (pa + pb)
2 = ξaξbE

2
cm , (4.17)

where E2
cm = (Pa + Pb)

2 .

Light Cone Coordinates and Kinematics : The natural coordinates for particles whose

energy is much larger than their mass are the light-cone coordinates. The light-cone basis

vectors n and n̄ satisfy the properties

n2 = 0 , n̄2 = 0 , n · n̄ = 2 . (4.18)

The natural choice is to take n̄ in the opposite direction to n and have

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1) . (4.19)
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A standard 4-vector in the light-cone basis is represented as

pµ =
nµ

2
n̄ · p+ n̄µ

2
n · p+ pµ⊥ . (4.20)

A momentum in these coordinates is represented by

pµ = (p+, p−, p⊥) , (4.21)

where the last entry is two-dimensional and the Minkowski p2⊥ is the negative of the Eu-

clidean ~p2⊥. We define

p+ = n · p , p− = n̄ · p . (4.22)

Assuming that the mass of the incoming protons is negligible compared to Ecm, and na and

nb are the light-cone vectors aligned with the beam directions, we can define the momenta

of the incoming protons as

Pµ
a =

Ecm

2
nµa , P

µ
b =

Ecm

2
nµb . (4.23)

The boson momentum can be written as

qµ = q−
nµa
2

+ q+
nµb
2

+ q⊥µ = qµa + qµb + q⊥µ . (4.24)

In the hadronic center-of-mass frame where Pa + Pb = 0 we can define

Pa = Ecm(0, 1, 0) , Pb = Ecm(1, 0, 0) , q = (q+, q−, q̄⊥) ,

pa = (0, p−a , 0) = (0, ξaEcm, 0) , pb = (p+b , 0, 0) = (ξbEcm, 0, 0) . (4.25)

where the components of q satisfy Q2 = q+q− − |~q 2⊥|.

The factorization formula for such a process is given by

σhahb→HX =
∑

ab

∫
dξadξbf(a/H)(ξa)f(b/H)(ξb)dσ̂ab→HX(ξa, ξb) , (4.26)

where f (h)k is the renormalized PDF of the parton k in the hadron H evaluated at the scale

µ2. The partonic cross section for this process is given by

σ̂ab =
1

2ŝ
|Mab|2dφ2 , (4.27)

where |Mab|2 is the matrix element squared, ŝ is the flux factor and dφ2 is the phase space
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factor. The phase space factor for ab→ Bk where k is a massless particle, is

dφ2 =
d4p

(2π)4
d4q

(2π)4
(2π)4δ4[(pa + pb)− (q + p)](2π)δ(q2 −Q2)(2π)δ(p2) . (4.28)

Writing the above expression in terms of the light-cone coordinates

dφ2 =
1

2(2π)2
δ(p−a − q− − p−)δ(p+b − q+ − p+)δ2(~p⊥ − ~q⊥)δ(q

2 −Q2)δ(p2)dp+dp−

d2~p⊥dq
+dq−d2~q⊥ ,

=
1

2(2π)2
δ(p−a − q− − p−)δ(p+b − q+ − p+)δ(q+q− − p+p− −Q2)δ(p+p− − |~p⊥|2)

dp+dp−|~p⊥|d|~p⊥|dΩ2dq
−dq+ ,

=
1

4(2π)
δ(p−a − q− − p−)δ(p+b − q+ − p+)δ(q+q− − p+p− −Q2)dp+dp−dq−dq+ .

(4.29)

Inserting the above phase space factor in Eq. (4.27) yields

σ̂ab =
1

16π

1

ξaξbE2
cm

|Mab|2δ
(
p+b − q+ − p+

)
δ
(
p−a − q− − p−

)
δ
(
q+q− − q2⊥ −m2

H

)
dq+dq−dp+dp− ,

=
1

16π

1

ξaξbE2
cm

|Mab|2δ
(
ξb − x̃b − p̂+

)
δ
(
ξa − x̃a − p̂−

)
δ
(
x̃bx̃a − p̂+p̂− − m2

H

E2
cm

)
dx̃adx̃bdp̂

−dp̂+ .

(4.30)

Here

x̃a,b =
q−,+

Ecm
, p̂+,− =

p+,−

Ecm
, za,b =

x̃a,b
ξa,b

. (4.31)

Inserting this in the factorization formula, the differential cross section can be written as

d4σ

dx̃adx̃bdp̂+dp̂−
=

1

16πE2
cm

∫
dξa
ξa

dξb
ξb
fa(ξa)fb(ξb)|Mab|2δ

(
ξb − x̃b − p̂+

)
δ
(
ξa − x̃a − p̂−

)

δ
(
x̃bx̃a − p̂+p̂− − m2

H

E2
cm

)
. (4.32)

The rapidity Y of the Higgs boson is defined as

Y =
1

2
log

q−

q+
=

1

2
log

x̃a
x̃b

then

x̃aEcm = q− = QeY , x̃bEcm = q+ = Qe−Y (4.33)

Using the definition of qµa,b and pi in Eq. (4.24), Eq. (4.33) and Eq. (4.20) , the beam thrust
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Figure 4.2: Feyman diagrams for pp → H at NLO. Diagram (a) is gq → Hq or gq̄ → Hg
channel, Diagram (b) is qq̄ → Hg channel and (c) has four possible diagrams for gg → Hg.

observable in Eq. (4.1) can be expressed as

τB =
1

Q

∑

k

|p̄kT |min{eY−y, e−Y+y} =
1

Q

∑

k

min{p+k eY , p−k e−Y } . (4.34)

Note that TB = QτB. The first equality rightly reproduces the f(yj) defined for TB in

Eq. (4.7).

To get the cross section differential in TB and TBcm we insert a measurement function of

the form

1 =

∫
dTBcm[δ(TBcm − p+)θ(p− − p+) + δ(TBcm − p−)θ(p+ − p−)] ,

1 =

∫
dTB[δ(TB − eY p+)θ(e−Y p− − eY p+) + δ(TB − e−Y p−)θ(eY p+ − e−Y p−)] . (4.35)

4.3.1 Higgs Production matrix elements

We obtain the tree level matrix elements for H + 1−jet cross section, ab → Hk, where a,

b and k are either quarks, antiquarks or gluons, from the tree level hard function in [26].

The partonic channels for the Higgs production are gq → Hq, gq̄ → Hq̄, qq̄ → Hg and

gg → Hg as shown in Fig. 4.2. Considering a and b as the initial state partons we introduce

the notation,

sab = 2pa.pb = 2ξaξbE
2
cm = ŝ ,

sak = 2pa.pk = 2pa.(pa + pb − q) = 2pa.pb + 2pa.q = ŝ− ŝzb ,

sbk = 2pb.pk = 2pb.(pa + pb − q) = 2pb.pa + 2pb.q = ŝ− ŝza . (4.36)
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The amplitudes for different production channels are

gq → Hq or gq̄ → Hq̄

|Mgq|2 =
8αs(µ)

3CACF

9π

√
2Gf

4Nc(N2
c − 1)

(∣∣∣ sab√
2|sbk|

∣∣∣
2
+
∣∣∣ sak√

2|sbk|

∣∣∣
2)
,

=

√
2Gfαs(µ)

3CF

36π

2− 2zb + z2b
2(−1 + za)(−1 + za + zb)

. (4.37)

qg → Hq or q̄g → Hq̄

|Mqg|2 =
8αs(µ)

3CACF

9π

√
2Gf

4Nc(N2
c − 1)

(∣∣∣ sba√
2|sak|

∣∣∣
2
+
∣∣∣ sbk√

2|sak|

∣∣∣
2)
,

=

√
2GfαS(µ)

3CF

36π

2− 2za + z2a
2(−1 + zb)(−1 + za + zb)

. (4.38)

qq̄ → Hg

|Mqq|2 =
8αs(µ)

3CACF

9π

√
2Gf

(2Nc)2

(∣∣∣ skb√
2|sba|

∣∣∣
2
+
∣∣∣ ska√

2|sba|

∣∣∣
2)
,

=

√
2Gfαs(µ)

3CF

36π

(2− 2za + z2a − 2zb + z2b )

−1 + za + zb
. (4.39)

gg → Hg

|Mgg|2 =
16αs(µ)

3C2
ACF

9π

√
2Gf

4(N2
c − 1)2

(∣∣∣ m4
H√

2|sabsaksbk

∣∣∣
2
+
∣∣∣

s2ab√
2|sabsaksbk

∣∣∣
2
+
∣∣∣

s2ak√
2|saksabskb

∣∣∣
2
,

+
∣∣∣

s2kb√
2|skbskasba

∣∣∣
2)

=

√
2Gfαs(µ)

3

36π

1

(−1 + za)(−1 + zb)(−1 + za + zb)

[
2 + z4a − 4zb + 6z2b − 4z3b + z4b

z3a(−4 + 2zb)z
2
a(6− 6zb + 3z2b ) + za(−4 + 6zb − 6z2b + 2z3b )

]
. (4.40)

4.3.2 Cross section differential in TBcm

Inserting the measurement function for TBcm in Eq. (4.32) we get

d3σ

dx̃adx̃bdTBcm
=

1

16πE2
cm

{[∫ dza
za

dzb
zb
fa

( x̃a
za

)
fb

( x̃b
zb

)∫
dp−

|Mab|2
E2

cm

δ
( x̃b
zb

− x̃b −
TBcm

Ecm

)

δ
( x̃a
za

− x̃a −
p−

Ecm

)
δ
(
x̃bx̃a −

TBcmp
−

E2
cm

− m2
H

E2
cm

)
θ
(
p− − TBcm

)]
+

[ ∫ dza
za

dzb
zb
fa

( x̃b
zb

)
fb

( x̃a
za

)∫
dp+

|Mab|2
E2

cm

δ
( x̃b
zb

− x̃b −
p+

Ecm

)

δ
( x̃a
za

− x̃a −
TBcm

Ecm

)
δ
(
x̃bx̃a −

TBcmp
+

E2
cm

− m2
H

E2
cm

)
θ
(
p+ − TBcm

)]}
. (4.41)
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Changing variables to dQ2 and dY and performing the dp− integral using the delta function

(the result for the dp+ integral is similar with a and b exchanged) we get

d3σ

dQ2dY dTBcm
=

1

16πE2
cm

[ ∫ dza
za

dzb
zb
fa

( x̃a
za

)
fb

( x̃b
zb

){ |Mab|2
E3

cm

δ
(
1− zb −

TBcmzb
Ecmx̃b

)

zb
x̃ax̃2b

δ
(
1− Tcm

Ecm

(1− za)

x̃bza
− m2

H

Q2

)
θ
(
1− za −

TBcm

Ecm

za
x̃a

)
+ a↔ b

}]
.

(4.42)

Performing the za (or zb) integrals we have

d3σ

dQ2dY dTBcm
=

1

16πE2
cm

∫
dza
za
fa

( x̃a
za

)
fb

(Ecmx̃b + TBcm

Ecm

)
|Mab|2

1

E2
cmx̃ax̃

2
b

x̃b
TBcm + Ecmx̃b

δ
(
1− TBcm

Ecm

(1− za)

x̃bza
− m2

H

Q2

)
θ
(
1− za −

TBcmza
Ecmx̃a

)
+

∫
dzb
zb
fa

(Ecmx̃a + TBcm

Ecm

)
fb

( x̃b
zb

)
|Mab|2

x̃a
TBcm + Ecmx̃a

1

E2
cmx̃ax̃

2
b

δ
(
1− TBcm

Ecm

(1− zb)

x̃azb
− m2

H

Q2

)
θ
(
1− zb −

TBcmzb
Ecmx̃b

)
. (4.43)

Now we perform the Q2 integral

d2σ

dY dTBcm
=

1

16πE2
cm

∫
dza
za
fa

( x̃a
za

)
fb

(Ecmxb + TBcm

Ecm

) 1

TBcm + Ecmx̃b
θ
(
1− za −

TBcmza
Ecmx̃a

)

|Mab|2
( 2zaQi

2zaQi − TBcm(1− za)eYEcm

)
+

∫
dzb
zb
fa

(Ecmx̃a + T Bcm

Ecm

)
fb

( x̃b
zb

)

1

TBcm + Ecmx̃a
|Mab|2θ

(
1− zb −

TBcmzb
Ecmx̃b

)( 2zbQj

2zbQj − TBcm(1− zb)e−YEcm

)

(4.44)

where

Qi =
TBcm(1− za)e

Y

2za
+

1

2

√
(TBcm(1− za)eY

za

)2
+ 4m2

H ,

Qj =
TBcm(1− zb)e

−Y

2zb
+

1

2

√
(TBcm(1− zb)e−Y

zb

)2
+ 4m2

H . (4.45)

After expressing x̃a and x̃b in terms of Q and Y as x̃a = QeY and x̃b = Qe−Y , the left over

z integral can be performed numerically over the PDFs (using LHAPDF) and the resulting

H+0-jet cross section differential in rapidity Y and TBcm is obtained.

The steps that lead to the cross section differential in rapidity Y and each of the T jet
B , T jet

C

and T jet
Ccm observables are analogous and the calculation is shown in App. B.1, App. B.2

and App. B.3 respectively.
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4.4 Introduction to SCET

We will now review the basic structure of SCET and the general structure of the factor-

ization formulae and resummation in this framework.

A typical proton proton collision process at the LHC involves physics from very large

energy scales down to very low energy scales and in such cases Effective Field Theories

(EFT) can be used to describe physics at different scales. Broadly, in any collision process

at the LHC, there are two scales involved, the momentum scale of the hard interaction Q

and the scale of hadronization and non-pertubative physics, ΛQCD ≪ Q. There are other

intermediate scales involved like the jet mass mJ or the pT of the jets. To eliminate huge

QCD backgrounds, experiments often impose stringent jet vetoes to measure exclusive jet

cross sections where a fixed number of jets with pjetT < pcutT are allowed. For small values of

pcutT , large Sudakov logarithms of the ratio of pcutT and the hard scale are introduced as we

discussed in Sec. 2.4. Higher-order corrections to the cross section are enhanced by such

large logarithms of the scale ratios and hence such logarithms need to be summed. This

requires factorization of the cross sections into different components relevant at different

energy scales. SCET is an EFT of QCD which allows to systematically derive factorization

theorems and perform the resummation of large Sudakov logarithms. It reproduces the

full infrared singularity structure of QCD.

The basic degrees of freedom of SCET are collinear and soft quarks and gluons. Soft

degrees of freedom have momentum psoft ≪ Q and they have no preferred direction so each

component of pµsoft has an identical scaling. Collinear degrees of freedom describe particles

having large energy and small invariant mass moving in some preferred direction. The

most convenient coordinate system used to define the momenta and directions of particles

in SCET is the light cone coordinates defined in Sec. 4.3. For example, for pp→ HX, we

need two collinear sectors na and nb along the directions of the two incoming proton beams

and Pa and Pb their corresponding momenta (as defined in Sec. 4.3). If λ is the ratio of

a small scale to the hard scale Q of the process, then the momentum of a proton moving

along na direction scales as pa = Q(λ2, 1, λ) where p− ∼ Q corresponds to the large energy

of the collinear parton, p⊥ ∼ λQ is an intermediate momentum scale while p+ ∼ λ2Q is

a small residual momentum. There can be additional light cone directions nj describing

more collinear jets in the final state. The hard degrees of freedom are integrated out at

µ ∼ Q, and below this scale only the soft and collinear modes are the relevant degrees of

freedom. Depending on the scaling of the collinear and soft degrees of freedom, a given

process or a measurement (of kinematic observables) fall into two categories SCETI -like

and SCETII -like.

SCET I and SCET II : Consider an example process of proton-proton collisions at the
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Figure 4.3: Left: Degrees of freedom for SCETII type theories (e.g. pp collisions), Right: Degrees
of freedom for SCETI type theories (e.g. e+e− → jets). Fig taken from [77].

LHC. The partons inside the proton, in the rest frame of the proton, are non-perturbative

with momentum scaling pµ ∼ (ΛQCD,ΛQCD,ΛQCD). Boosting the parton along the −z by

an amount κ = Q/ΛQCD causes the scaling to become

pµc = (
Λ2
QCD

Q
,Q,ΛQCD) . (4.46)

Here, the scaling p−c ≫ p⊥c ≫ p+c is called the collinear scaling. Describing this scaling

with a dimensionless parameter λ = ΛQCD/Q,

pµc ∼ Q(λ2, 1, λ) . (4.47)

With this notation the scaling of the soft momenta is,

pµs ∼ Q(λ, λ, λ) . (4.48)

These soft and collinear degrees of freedom can be represented with a picture as shown

in Fig. 4.3. The hyperbolas are lines of constant p2 ∼ p+p−. The hyperbola corre-

sponding to p2 ∼ Q2 denotes the hard region but these modes are integrated out when

constructing SCET. On the p2 ∼ ΛQCD hyperbola, there are collinear modes cn (which are

non-perturbative) and soft modes s. Since these modes live at the same invariant mass p2

we need another variable namely p−/p+ which is the rapidity eY to distinguish them. This

example where the soft and collinear modes in the theory have the same scaling for p2 is

known as SCETII -type theory. This theory is fit for observables with measurements of p⊥
like pjetT or pHT

Consider now an example process e+e− → qq̄. The collimated energetic constituents of

the first jet will have a ⊥-momentum parametrically smaller than their large-momentum,
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p⊥ ∼ ∆ ≪ p− ∼ Q. The two jets aligned in the direction (1,±ẑ), will have the scaling

pµn = (
∆2

Q
,Q,∆) = Q(λ2, 1, λ) , pµn̄ = (Q,

∆2

Q
,∆) = Q(1, λ2, λ) . (4.49)

In order to have a jet of hadrons and not a single hadron or a small number of hadrons

we must have ∆ ≫ ΛQCD. To derive the soft scaling consider two jets with jet masses

m2
J = (

∑
i p

µ
i )

2 ∼ p+p− ∼ ∆2, then in one hemisphere we have

(pn + pus)
2 = p2n + 2pn · pus + p2us ∼ ∆2 . (4.50)

From this, the ultrasoft mode should scale like

pµus ∼ (
∆2

Q
,
∆2

Q
,
∆2

Q
) = Q(λ2, λ2, λ2) . (4.51)

Fig. 4.3 shows the degrees of freedom in the p+p− plane and as before the hard modes

with momenta p2 ∼ Q2 are integrated out and the two types of collinear modes cn and

cn̄ live on the p2 ∼ ∆2 hyperbola. The ultrasoft modes live on a different hyperbola with

p2 ∼ ∆4/Q2. When the collinear and soft modes live on hyperbolas with parametrically

different scaling, then the theory is SCETI type. This theory is used to measure observables

that depend on the plus and minus components of momenta, like beam thrust TB or T jet
B

and T jet
C or N -jettiness τN .

4.5 Ingredients and SCET Lagrangian

Collinear Spinors: Consider the expansion of the Dirac spinors u(p) and v(p) with

pµ = (p0, p1, p2, p3), in the collinear limit. We have p− = p0+ p3 ≫ p1,2⊥ ≫ p+ = p0− p3 so

σ · p
p0

= σ3 + ... (4.52)

Keeping only the leading terms gives us the spinors

un(p) =

√
p−

2

[
U
σ3U

]
, vn(p) =

√
p−

2

[
V

σ3V ,

]
(4.53)

where U =

[
1

0

]
and V =

[
0

1

]
. Note that /nun = 0 and /nvn = 0. We also define the

projection operators,

Pn =
/n/̄n

4
, Pn̄ =

/̄n/n

4
(4.54)
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such that Pn + Pn̄ = 1 and Pnun = un and Pnvn = vn. The QCD Dirac field ψ can then

be decomposed as

ψ = Pnψ + Pn̄ψ = ξ̂n + φn̄ . (4.55)

The fields satisfy the following relations

/nξ̂n = 0 , Pnξ̂n = ξn , /̄nφn̄ = 0 , Pn̄φn̄ = φn̄ and
¯̂
ξn/n = 0 ,

¯̂
ξnPn = 0 ,

¯̂
ξnPn̄ =

¯̂
ξn where ¯̂

ξn = ξ̂†nγ0 (4.56)

Having defined ξ̂n = Pnψ, the corresponding relations for the spinors un = Pnu(p) and vn =

Pnv(p) do not precisely reproduce the lowest order expanded results given in Eq. (4.53),

instead we have,

un =
1

2

[
1 σ3

σ3 1

]
√
p0

[
U

σ·p
p0

U

]
=

√
p0

2



(
1 + p3

p0
− (iσ̄×p̄⊥)3

p0

)
U

σ3

(
1 + p3

p0
− (iσ̄×p̄⊥)3

p0

)
U


 =

√
p−

2

[
Ũ
σ3Ũ

]
,

(4.57)

where the two component spinor is

Ũ =

√
p0

2

[(
1 + p3

p0
− (iσ̄×p̄⊥)3

p0

)
U
]
. (4.58)

The same derivation holds for V .

Collinear Fermion propagator: After considering the expansion of the spinors in the

collinear limit, we will now consider the expansion of the fermion propagator. Here p2+i0 =

n̄ · p n · p+ p2⊥. Both the terms are ∝ λ2 and so there is no expansion in the denominator

and we have,

i/p

p2 + i0
=
i/n

2

1

n · p+ p2
⊥

n̄·p ± i0
(4.59)

This leading collinear propagator should be obtained from the time-ordered product of

the effective theory field, 〈0|T ξ̂n(x)ξ̂n̄(0) |0〉. The λ power counting of the field ξ can be

determined by dimensional analysis (knowing the power counting of the action from the

propagator) and is given by ξn ∼ λ.

Collinear gluons and ultrasoft fields: Consider the full theory covariant gauge gluon

propagator and label the fields by Aµ
n to denote that these are the n-collinear momenta

∫
d4xeik·x 〈0|TAµ

n(x)A
ν
n(0) |0〉 =

−i
k4

(k2gµν − τkµkν) . (4.60)
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Figure 4.4: Matching heavy to light (b→ ueν̄) current at tree level and 1-loop.

Here τ is the covariant gauge fixing parameter. By dimensional analysis, the power counting

of Aµ
n is the same as the collinear momentum Aµ

n ∼ kµ ∼ (λ2, 1, λ). The same logic used

to derive the scaling of ultrasoft gluon fields gives Aµ
us ∼ kµus ∼ (λ2, λ2, λ2).

Matching QCD onto SCET: Consider as an example the process b → ueν̄ where a

heavy b quark decays to an energetic collinear u quark. This decay has the weak current

JQCD = ūΓb. Without additional gluons we can match this QCD current onto a leading

order current in SCET by considering the heavy b field to be the HQET field hv and the

lighter u field by the SCET field ξn : ξnΓhv. Next consider the case with an extra A−
n

gluon attached to the heavy quark. This process shown in Fig. 4.4 leads to an offshell

propagator that must be integrated out. The full theory amplitude for this process is

Aµ
nξ̄nΓ

i(/k +mb)

k2 −m2
b

igTAγµhv = −g(n
µ

2
n̄ ·An)ξ̄nΓ

[mb(1 + /v) + /q]

2mbv · q + q2
TAγµhv ,

= ξ̄n
−gn̄ ·An

n̄ · q Γhv . (4.61)

Here the incoming b quark carries momentum mbv
µ so k = mbv

µ+ q. Also the gluon field

can be written as

Aµ
n =

nµ

2
n̄ ·An︸ ︷︷ ︸
O(λ)0

+
n̄µ

2
n ·An︸ ︷︷ ︸
O(λ2)

+ Aµ
⊥︸︷︷︸

O(λ)

(4.62)

where we can keep only the O(1) term. The final simplified expression is obtained by

expanding the numerator and denominator in λ. In summary, the propagator was offshell

by Q2 and so was integrated out leading to an operator for one collinear gloun coming

out of the vertex. Let us now consider the situation of multiple gluon emissions from the

heavy quark. We again have offshell propagators and the generalization to k gluons with

momenta q1...qn yields

ξ̄n
∑

perm

(−g)k
k!

(
n̄ ·Aq1...n̄ ·Aqk

[n̄ · q1][n̄ · (q1 + q2)]...[n̄ ·
∑k

i=1 qi]

)
. (4.63)

Finally by summing over the number of possible gluon emissions, we can write the tree
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level matching of the QCD current to the SCET current as JSCET = ξ̄nWnΓhv where

Wn =
∑

k

ξ̄n
∑

perm

(−g)k
k!

(
n̄ ·Aq1...n̄ ·Aqk

[n̄ · q1][n̄ · (q1 + q2)]...[n̄ ·∑k
i=1 qi]

)
. (4.64)

Here Wn is the momentum space Wilson line built from collinear An gluon fields. In

position space the corresponding Wilson line is

W (0,−∞) = P exp
(
ig

∫ 0

−∞
dsn̄ ·An(n̄s)

)
. (4.65)

where P is the path ordered operator which puts fields with larger arguments to the left.

SCET Lagrangian: To construct the SCET lagrangian we begin with the standard QCD

lagrangian for massless quarks and expanding ψ and the covariant derivative D in the

collinear limit gives

L = (φ̄n̄ +
¯̂
ξn)
( /̄n
2
in ·D +

/n

2
in̄ ·D + i /D⊥

)
(φn̄ + ξ̂n) . (4.66)

Simplifying using the projection matrix identities for collinear spinors,

L =
¯̂
ξn
/̄n

2
in ·Dξ̂n + φ̄n̄i /D⊥ξ̂n +

¯̂
ξni /D⊥φn̄ + φ̄n̄

/n

2
in̄ ·Dφn̄ . (4.67)

The field φn̄ corresponds to the spinor components subleading in the collinear limit. There-

fore we will not consider a source term for φn̄ in the path integral. At tree level doing so

gives

dL
dφn̄

= 0 → φn̄ =
1

in̄ ·Di
/D⊥

/̄n

2
ξ̂n . (4.68)

Plugging this into the Lagrangian

L =
¯̂
ξn

(
in ·D + i /D⊥

1

in̄ ·Di
/D⊥

) /̄n
2
ξ̂n . (4.69)

We have to still separate the collinear and ultrasoft fields and the momentum components.

In Heavy Quark Effective Theory (HQET), there are two relevant momentum scales, the

mass of the heavy quark m and ΛQCD. The scale m is separated from ΛQCD by writing

p = mv + k, where k is the residual momentum k ≪ m. The variable v then becomes a

label on the effective theory. Analogous to HQET, in our case the momentum p can be

split as

pµ = pµl + pµr (4.70)
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where pµl ∼ Q(1, 0, λ) and pµr ∼ Q(λ2, λ2, λ2). This allows us to rewrite the hatted collinear

field ξ̂n(x) as

ξ̂n(x) =

∫
d4p

(2π)4
e−ip·xξ̃n(p) =

∑

pl 6=0

∫
d4pr
(2π)4

e−ipl·xe−ipr·xξ̃n,pl(pr)

=
∑

pl 6=0

e−ipl·xξn,pl(x) (4.71)

where

ξn,pl(x) =

∫
d4pr
(2π)4

e−ipr·xξ̃n,pl(pr) . (4.72)

We also define a label momentum operator such that

Pµξn,pl(x) = pµl ξn,pl(x) . (4.73)

Note that Pµ and pµl only contain the components P̄ = n̄·P ∼ p−l ∼ λ0 and P⊥ ∼ p⊥µ
l ∼ λ.

The main advantage of the label operator is that it provides a definite power counting for

derivatives. It can also remove the label sum as follows

ξ̂n,pl(x) =
∑

pl 6=0

e−ipl·xξn,pl(x) = e−iP·x
∑

pl 6=0

ξn,pl(x) = e−iP·xξn(x) . (4.74)

Differentiating an arbitrary collinear field φ̂n(x) yields

i∂µφ̂n(x) = i∂µ
∑

p 6=0

e−ip·xφn,p(x)

=
∑

p 6=0

e−ip·x(Pµ + i∂µ)φn,p(x) = e−iP·x(Pµ + i∂µ)φn(x) . (4.75)

Changing i∂µφ̂n(x) → (Pµ + i∂µ)φn(x) and ξ̂n → ξn and keeping the leading order terms

in the covariant derivative, the lagrangian becomes

L(0)
nξ = e−ix·P ξ̄n

(
in ·D + i /Dn,⊥

1

in̄ ·Dn
i /Dn⊥

) /n
2
ξn , (4.76)

where the collinear covariant derivatives are iDµ
n,⊥ = Pµ

⊥+gAµ
n⊥ and in̄ ·Dn = P+gn̄ ·An.

The equation of motion for a Wilson line in position space, in̄ ·DxW (x,−∞) = 0, can be

transformed to momentum space

in̄ ·DnWn = (P + gn̄ ·An)Wn = 0 . (4.77)

With this definition, the action of in̄ ·Dn on a product of Wn and some operator O is

in̄ ·Dn(WnO) = [(P + gn̄ ·An)Wn]O +WnPO =WnPO . (4.78)
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Figure 4.5: The attachment of ultrasoft gluons to a collinear quark line.

So we have the operator equation in̄ · DnWn = WnP̄ and with W †W = 1 we have the

identities,

in̄ ·Dn =W †
n

1

P
Wn ,

1

in̄ ·Dn
=W †

n

1

P
Wn . (4.79)

These identities allow us to rewrite the Lagrangian as

L(0)
nξ = e−ix·P ξ̄n

(
in ·D + i /Dn,⊥W

†
n

1

P
Wni /Dn⊥

) /n
2
ξn . (4.80)

The full leading order SCETI Lagrangian consists of a single set of quark and gluon collinear

modes in the n direction, and quark and gluon ultrasoft modes give by

L(0) = L(0)
nξ + L(0)

ng + L(0)
us , (4.81)

where the collinear gluon Lagrangian can be found in [10] and the ultra soft Lagrangian is

L(0)
us = ψ̄usi /Dusψus −

1

2
Tr{Gµν

usG
us
µν}+ τusTr{(i∂µAµ

us)
2}+ 2Tr{c̄usi∂µiDµ

uscus} . (4.82)

where iDµ
us = i∂µ +Aµ

us.

4.6 Factorization in SCET

We will now explore the factorization between the collinear and soft modes.

4.6.1 Ultrasoft collinear factorization

At leading order in λ, only the ultra soft (usoft) gluons (n ·Aus) can couple to n-collinear

quarks and gluons. Considering Fig. 4.5 with only one ultrasoft gluon, the collinear quark

propagator is

n̄ · p
n̄ · p n · (pr + k) + p2⊥ + i0

=
n̄ · p

n̄ · p n · k + i0
. (4.83)
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Together with the nµ from the vertex, this corresponds to the eikonal propagator for the

coupling of ultrasoft gluons to an energetic particle. A graph with multiple usoft gluon

emissions gives ΓYnun where Γ is the structure at the vertex, un is the collinear quark and

Yn =

∞∑

m=0

∑

perms

(−g)mn ·Aa1(k1)...n ·Aam(km)T am ...T a1

n · k1n · (k1 + k2)...n · (
∑

i ki)
. (4.84)

corresponds to the momentum-space formula for an ultrasoft Wilson line Yn. It is possible

to show that all the leading order ultrasoft-collinear interactions within SCETI can be

encoded through the non-local interactions contained in the Wilson line by considering the

BPS field redefinitions given by

ξn,p(x) = Yn(x)ξ
(0)
n,p(x) , Aµ

n,p(x) = Yn(x)A
(0)µ
n,p (x)Y †

n (x) . (4.85)

Implementing this at the Lagrangian level, it can be shown that the collinear quark L(0)
n,ξ

and gluon Lagrangian L(0)
ng completely decouples from the n ·Aus usoft gluon field.

4.6.2 Factorization formula for Drell-Yan like processes

Consider the case of an inclusive process such as pp→ XL, where X is the hadronic final

state and L is any color singlet final state e.g. H, V etc. In the soft and collinear limit

the factorized cross section can be expressed as dσ = H ⊗ f ⊗ f ⊗ I ⊗ I ⊗ ΠiJi ⊗ S.

Here Ji denote the different jets in the final state, S describes the soft radiation and

B = I ⊗ f are the beam functions which describe the initial state radiation. In any QCD

or SCET factorization, soft gluons decouple from the collinear particles through the eikonal

approximation. However, the eikonal approximation is not applicable to soft gluons whose

momenta p satisfy |p+p−| ≪ p2⊥ ≪ Q2 , called the Glauber gluons. For the factorization

to hold, the contribution from glauber modes should be power suppressed. Here, we derive

the factorization formula in the absence of glauber gluons. However it was shown in [78,79]

that the glauber gluons give rise to leading power corrections in the factorization. For the

jet-based observables (T jet
B and T jet

C ) we are interested in, these corrections are O(R2)

and hence power suppressed for the jet radii currently used in experiments. The steps here

mainly sketch the matching of QCD onto SCET operators leading to the Wilson coefficients

encoding the hard interaction, the beam functions which contain the PDF dependence and

account for the collinear initial state radiation and the soft functions which describe the

accompanying soft radiation. Let us now work through the steps that lead to such a

factorization formula for this process with no additional hard jets in the central region.

We closely follow the derivation in Ref. [64].



4.6. Factorization in SCET 77

Figure 4.6: Definition of hemispheres for pp→ XL process (fig. taken from [64]).

The full theory matrix element can be factorized into a leptonic and hadronic part,

M(pp→ XL) =
∑

J

LJ 〈X| J |pp〉 . (4.86)

Here LJ contains the electroweak matrix element and the sum runs over all the color-

singlet 2-particle QCD currents J . The cross section for this process differential in some

observable O in the center-of-mass frame of the collision is

dσ

dq2dY dO
=

1

2E2
cm

∫
d2~qT
2(2π)4

∫
dΦL(2π)

4δ4(q − pL)
1

4

∑

spins

∑

X

|M |2δ(O − fO(X))

(2π)4δ4(Pa + Pb − q − pX)

=
1

2E2
cm

∑
LJJ ′(q2, Y )WJJ ′(q2, Y, O) (4.87)

where Pa,b are the incoming proton momenta, pX and pL are the total hadronic and

leptonic momenta. In the first equality, dΦL is the leptonic phase-space, the last delta

function is the overall momentum conservation and the delta function with the observable

O is the measurement function, similar to the one defined in Eq. (4.35). The delta function

δ4(q−pL) defines the measured momentum q as the total leptonic momentum. The second

equality follows from Eq. (4.86), where the leptonic tensor does not depend on ~qT after

expansion of the delta function for ~qT = 0, and is given by,

LJJ ′(q2, Y ) =

∫
dΦLL

†
JLJ ′(2π)4δ4

(
q−
na
2

+ q+
nb
2

− pL

)
, (4.88)

and the hadronic tensor is

WJJ ′(q2, Y, O) =

∫
d2~qT
2(2π)4

∑
〈pp| J† |X〉 〈X| J ′(0) |pp〉 (2π)4δ4(Pa + Pb − q − PX)

δ(O − fO(X)) . (4.89)

We can divide the phase space into two hemispheres a and b as shown in the Fig. 4.6 and
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then divide the total hadronic momentum as pµX = Bµ
a + Bµ

b where Bµ
a and Bµ

b are the

total hadronic momenta in hemispheres a and b respectively. Bµ
a and Bµ

b have collinear

and soft momentum components and are given by

B+
a = na ·Ba = na · ba + na · ka , B+

b = nb ·Bb = nb · bb + nb · kb , (4.90)

where ks = ka + kb is the total soft momentum and bµa (bµb ) is the total momentum of

the energetic collinear particles in hemisphere a (b). We are interested in a cross section

differential in beam thrust-type observables, because T jet
B can be thought of as the beam

thrust of a jet, while T jet
C behaves exactly the same as T jet

B in the collinear limit. We can

define beam thrust in terms of the new variables as τB = (B+
a +B+

b )/Q, which is analogous

to our definition of τB in Eq. (4.34) (with Y = 0). The hemisphere hadronic momenta is

obtained from the states |X〉 using the momentum operators p̂µa,b

p̂µa |X〉 = Bµ
a (X) |X〉 , p̂µb |X〉 = Bµ

b (X) |X〉 . (4.91)

So considering O = {B+
a , B

+
b }, the hadronic tensor is given by

WJJ ′ =

∫
d2~qT
2(2π)4

∫
d4xe−iq·x

∑

X

〈pp| J†(X) |X〉 〈X| J ′(0) |pp〉 δ[B+
a − na ·Ba(X)]

δ[B+
b − nb ·Bb(X)]

=

∫
dx+dx−

(4π)2
e−i(q+x−+q−x+)/2 〈pp| J†

(
x−

na
2

+ x+
nb
2

)
δ[B+

a − na · p̂a]

δ[B+
b − nb · p̂b]J ′(0) |pp〉 . (4.92)

where in the second equality, the integration over qT is performed and Eq. (4.91) is used

to carry out the sum over X thus eliminating the dependence on X.

The next step is matching the QCD current J onto the SCET current by integrating out

the hard modes at the scale Q. The matching takes the form

J(x) =
∑

n1,n2

dω1dω2e
−i(b̃1+b̃2)·x

[∑

q

Cαβ
Jqq̄(b̃1, b̃2)O

αβ
qq̄ (b̃1, b̃2, x) + Cµν

Jgḡ(b̃1, b̃2)Oggµν(b̃1, b̃2, x)
]
,

(4.93)

where CJ are the Wilson coefficients which depend on

b̃µ1 =
ω1n

µ
1

2
, b̃µ2 =

ω2n
µ
2

2
, (4.94)

where ω1,2 and n1,2 are not specified but will be set to ωa,b = xa,bEcm and nµa,b respectively.

α, β are the spinor indices and µ, ν are vector indices. The SCET operators Oαβ
qq̄ and Oggµν
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contain the collinear quark and gluon fields and at leading order are given as

Oαβ
qq̄ (b̃1, b̃2;x) = χ̄

(0)αj
n1,−ω1

(x)T [Y†
n1
(x)Yn2

(x)]jkχ
(0)βk
n2,−ω2

(x) ,

Oµν
gg (b̃1, b̃2;x) =

√
ω1ω2B(0)µc

n1,−ω1⊥
(x)T [Y†

n1
(x)Yn2

(x)]cdB(0)νd
n2,−ω2⊥

(x) , (4.95)

where the fields are defined as

χn,ω = δ(ω − Pn)W
†
nξn , Bµ

n,ω⊥ =
1

g
[δ(ω + Pn)W

†
n(y)iDµ

n⊥Wn(y)] , (4.96)

with iDµ
n⊥ = Pµ

n⊥ + gAµ
n⊥, are the composite n-collinear quark and gluon fields. The soft

Wilson lines are a result of the field redefinition, as given in subsec. 4.6.1. The matching

coefficients can be obtained by computing the renormalised matrix elements on both sides

of Eq. (4.93) and comparing the results.

Since the Lagrangian factorizes into independent collinear and soft sectors, the momentum

operator can also be written as the sum of independent operators acting on each sector,

p̂a = p̂a,na + p̂a,nb
+ p̂a,s and similarly for p̂b. The measurement function can also be

factorized into measurement acting on collinear and soft sectors separately as follows

δ(B+
a − na · p̂a) =

∫
db+a dk

+
a δ(B

+
a − b+a − k+a )δ(b

+
a − na · p̂na)δ(k

+
a − na · p̂sa) (4.97)

and similarly for B+
b . It is thus possible to factorize the matrix element into na-collinear,

nb-collinear and soft matrix elements.

Let us look at the contribution from the gluon operator Ogg (because we are interested in

the Higgs production) for which the x integral takes the form

∫
dx+dx−

(4π)2
e−i(q+x−+q−x+)/2ei(b̃1+b̃2)·x 〈PnaPnb|O†νµ

gg (x)δ[B+
a − na · p̂a]δ[B+

b − nb · p̂b]

Oν′µ′

gg (0) |PnaPnb〉 =
∫
dωadωbδ(ωa − q−)δ(ωb − q+)

∫
db+a db

+
b dk

+
a dk

+
b δ(B

+
a − b+a − k+a )

δ(B+
b − b+b − k+b )

[
δn1naδ(ω1 − ωa)δn2nb

δ(ω2 − ωb) + a↔ b
][
δn′

1
na
δ(ω′

1 − ωa)δn′

2
nb
δ(ω′

2 − ωb)

+ a↔ b
]
× ωaθ(ωa) 〈pna | Bµc

na⊥
(0)δ(b+a − na · p̂na)δ(ω − Pna)Bµ′c′

na⊥
(0) |pna〉 ×

[
a→ b , c→ d

]

× 〈0| T̄ [Y†
na
Ynb

(0)]cdδ(k+a − na · p̂a,s)δ(k+b − nb · p̂b,s)T̄ [Y†
nb
Yna(0)]

d′c′ |0〉 , (4.98)

where in the second step, the x integral has been performed. For the x integral, the collinear

and soft matrix elements in the last two lines are abbreviated as Mωa(x
−), Mωb

(x+) and

Ms(x
+, x−) respectively. To perform the x integrals, we take the residual fourier transform
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of the matrix elements,

Mωa(x
−) =

∫
dk+

2π
eik

+x−/2M̃ωa(k
+) , Mωb

(x+) =

∫
dk−

2π
eik

−x+/2M̃ωb
(k−) ,

Ms(x
−, x+) =

∫
dk+s dk

−
s

(2π)2
ei(k

+
s x−+k−s x+)/2M̃s(k

+, k−) (4.99)

After defining the Fourier transformed variables, the x integrals can be performed,

∫
dx+dx−

(4π)2
ei(ωa−q−)x+/2ei(ωb−q+)x−/2Mωa(x

−)Mωb
(x+)Ms(x

−, x+) =

∫
dk+

2π

dk−

2π

dk+s dk
−
s

(2π)2
M̃ωa(k

+)M̃ωb
(k−)M̃s(k

+, k−)δ(ωa − q− + k− + k−s )δ(ωb − q+ + k+ + k+s )

= δ(ωa − q−)δ(ωb − q+a )Mωa(0)Mωb
(0)Mωs(0) . (4.100)

In the last step, we use q± − k± − k±s = q±[1 +O(λ2)]. The collinear matrix element now

reduces to the gluon beam function given by,

ωaθ(ωa) 〈pna | Bµc
na⊥

(0)δ(b+a − na · p̂na)δ(ω − Pna)Bµ′c′

na⊥
(0) |pna〉 =

gµµ
′

⊥

2

δcc
′

N2
c − 1

ωa(−θ(ωa))

∫
dy−

4π
eib

+
a y−/2 〈pna | e−ip̂+nay

−/2eip̂
+
nay

−/2Bc
na⊥µ(0)e

−ip̂+nay
−/2δ(ω − Pna)Bµc

na⊥
(0) |pna〉

=
gµµ

′

⊥

2

δcc
′

N2
c − 1

ωaBg

[
ωab

+
a ,

ωa

P−
a

]
(4.101)

where p̂+na
= na · p̂na and with eip̂

+
nay

−/2Bc
na⊥µ(0)e

−ip̂+nay
−/2 = Bc

na⊥µ(y
−na/2). The gluon

beam function is defined as

Bg

[
ωab

+
a ,

ωa

P−
a

]
= −θ(ωa)

∫
dy−

4π
eib

+
a y−/2 〈pna | e−ip̂+nay

−/2Bc
na⊥µ

(y−n
2

)
δ(ω − Pna)Bµc

na⊥
(0) |pna〉

(4.102)

and similarly the soft matrix elements define the gluon hemisphere soft function given by

Sgg
ihemi(k

+
a , k

+
b ) =

1

N2
c − 1

〈0| {trcolorT [Y†
na
(0)Ynb

(0)]δ(k+a − na · P̂a,s)δ(k
+
b − nb · P̂b,s)

T [Y†
nb
Yna(0)]} |0〉 . (4.103)

Putting all the pieces together, the hadronic tensor for the gluon initial state is given by

WJJ ′gg(q
2, Y, B+

a , B
+
b ) = HJJ ′gg(b̃a, b̃b)

∫
dk+a dk

+
b q

2Bg[xaEcm(Ba − k+a ), xa]

Bg[xbEcm(Bb − k+b ), xb]× Sgg
ihemi(k

+
a , k

+
b ) (4.104)

where the hard function contains the color structure and the Wilson coefficients. For

simplicity, we only considered gluonic initial states, however for the full hadronic tensor
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and the hard function, we also need the contributions from Oqq̄ and the expression can

be found in [64]. Adding the contributions from different quark flavors and gluons, the

hadronic tensor becomes

WJJ ′(q2, Y, B+
a , B

+
b ) =

∑

q

WJJ ′qq̄(q
2, Y, B+

a , B
+
b ) +WJJ ′gg(q

2, Y, B+
a , B

+
b ) , (4.105)

where the hadronic tensor for the quark contributions can be found in [64].

Inserting back all the components, the differential cross section reads

dσ

dq2dY dB+
a dB

+
b

=
∑

ij

Hij(q
2, Y )

∫
dk+a dk

+
b q

2Bi[xaEcm(Ba − k+a ), xa]Bj [xbEcm(Bb − k+b ), xb]×

Sij
ihemi(k

+
a , k

+
b ) , (4.106)

where the hard function is given by

Hij(q
2, Y ) =

1

2E2
cm

∑

JJ ′

LJJ ′(q2, Y )×HJJ ′ij

(
xaEcm

na
2
, xbEcm

nb
2

)
. (4.107)

Eq. (4.106) is the factorization formula for the process pp→ XL.

The initial state physics is characterized by three distinct scales µΛ ≪ µB ≪ µH . At µΛ,

the incoming proton contains partons of type k described by the PDFs fk(ξ′, µΛ). Evolving

µΛ to higher scales sums up single logarithms with the DGLAP evolution and changes the

type k and momentum fraction ξ′ of the partons. At the scale µB the measurement probes

the proton, breaking it apart identifying a parton j with momentum fraction ξ according

to fb(ξ, µB). The radiation emitted by the parton builds up an incoming jet described by

the function Iij (which are calculable perturbatively and are given in App. A.2) forming

the beam function,

Bi(t, x, µB) =
∑

j

∫ 1

x

dz

z
Iij(t, z, µB)fb(

x

z
, µB)

[
1 +O

(Λ2

t

)]
, (4.108)

where z = x/ξ and ta,b = ωa,bb
+
a,b = xa,bEcmb

+
a,b is the transverse virtuality. By measuring

beam thrust, we measure the virtuality of the hard parton in the initial state.

The factorization formula in Eq. (4.106) also applies to Higgs production via gluon fusion,

the only difference being in the hard function, which must be changed accordingly. The

structure of the factorization formula for pp → HX with no additional hard jets, and
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differential in inclusive beam thrust is,

d2σ

dTBcmdY
= σ0Hgg(mt,m

2
H , µ)

∫
dtadtbBg(ta, xa, µ)Bg(tb, xb, µ)× Sgg

(
TBcm − e−Y ta + eY tb

mH
, µ
)

(4.109)

where

xa,b =
mH

Ecm
e±Y , σB =

√
2GF m

2
H

576πE2
cm

. (4.110)

The hard function is determined by matching QCD currents onto SCET, and can be

obtained from the IR-finite part of the MS renormalized ggH form factor. It is the same

as for threshold Higgs, and is given by

Hgg(mt,m
2
H , µ) = |CggH(mt,m

2
H , µ)|2 . (4.111)

where CggH , given in Eq. (A.2).

4.6.3 Application to jet-based observables

In order to obtain a similar factorization formula for the rapidity-dependent jet observables

T jet
B and T jet

C , the inclusive beam thrust measurement in the proof sketched for Drell-Yan

(and for Higgs production in Eq. (4.109)) needs to be generalized to jet-based observables

as well. As we saw in Eq. (4.97), the measurement factorized into collinear and soft

components that act independently on the soft and collinear sectors. This must hold true

for jet-based observables too so that the matrix elements can be factorized into independent

beam and soft functions. Schematically, it was shown in [70], that any generic measurement

function M can be separated into collinear and soft sectors as follows,

M = Ma ×Mb ×Ms + δM . (4.112)

The operators Ma, Mb and Ms act only on na-collinear, nb-collinear, and soft fields

respectively assuming that the mixing between the sectors is taken care of by the correction

term δM. These mixing terms are O(R2) and are small for small jet radii currently used

in experiments, so that the factorization formula holds at leading order. For inclusive

observables like beam thrust, δM = 0. The measurement function reads (referring to

Eq. (4.35))

M(TB) = δ
(
TB −

∑

i

|~pT i|e−|yi−Y |
)
. (4.113)
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Since the inclusive observables sum over all particles, the full TB can be written as a sum

of collinear and soft contributions TB = TBa + TBb + TS (as in Eq. (4.97)), so that the

measurement function can also be factorized into measurement acting on each sector as

follows

Ma = δ(TBa − p+eY ) , Mb = δ(TBb − p−e−Y ) , MS = δ(TBS −
∑

m∈soft

min{p+eY , p−e−Y }) .

(4.114)

Let us now consider jet-based observables like pjetT T jet
B and T jet

C defined before. The

measurement function for such observables involve more subtleties due to the jet algorithm

effects that need to be understood well. The measurement function for such observables is

a product of theta functions so that the maximum condition in Eq. (4.5) is satisfied,

M(pjetT ) =
∏

j∈jets

θ
(
|~pTj | < pcutT

)
,

M(T jet
B ) =

∏

j∈jets

θ
(
|~pTj |e−|yj−Y | < T cut

)
,

M(T jet
C ) =

∏

j∈jets

θ
( |~pTj |
2 cosh (yj − Y )

< T cut
)
. (4.115)

Separating into independent collinear and soft sectors, the measurement function for a

general kcut is given by

M(kcut) = Mjet
a (kcut)Mjet

b (kcut)Mjet
S (kcut) + δMjet(kcut) . (4.116)

The functions Mjet
i contain the independent contraint on the collinear and soft sectors,

while the left over contribution takes into account the case where there is a mixing between

the collinear and soft sectors. A contribution such as |kc+ks < kcut| which is a part of this

correction term must however be power suppressed in order that the factorization of the

cross section into collinear and soft components still hold. It has been shown in [70] that for

a jet radius R ∼ λ, δMjet is indeed proportional to R2 and therefore power suppressed for

R ≪ 1. To understand these jet-algorithm dependent contributions to the measurement,

it is useful to express the measurement function as

Mjet = (Ma +∆Mjet
a )(Mb +∆Mjet

b )(MS +∆Mjet
S ) + δMjet . (4.117)

Here ∆Mjet
i is defined to contain the jet-algorithm effects within the same sector i.e.

clustering of two collinear or soft emissions into one jet. These typically have the form

αN
s logN−1R and are important at small values of the jet radius R. These arise from

correlated emissions as shown in the right side of Fig. 4.7. δMjet is a mixing term which

arises due to a soft particle clustering with an na or nb-collinear particle as shown by the

left panel of Fig. 4.7 and is proportional to R2. These corrections become important for



84 4.6. Factorization in SCET

cs sc

Figure 4.7: Left: soft and collinear particles clustering into one jet contributing to δMjet. Right:
clustering within the collinear and soft sectors contributing to ∆Mjet.

R ≫ λ. At O(αs) there are no jet algorithm effects as there is only a single emission,

either soft or collinear. A detailed calculation of the clustering effects for the beam and

soft function will appear in the next chapter. Let us now discuss in detail the factorization

and resummation properties of jet-based observables.

The factorization formula for the jet-based observables is a simple product of the different

functions, instead of the convolution in case of inclusive observables. If R2 ≪ 1, the

resummed contribution for the case of a veto T jet
B,C < T cut can be factorized to all orders

in perturbation theory as

dσresum0

dY
(T jet

B,C< T cut) = σBHgg(mt,mH , µ)Bg(mHT cut, xa, R, µ)×Bg(mHT cut, xb, R, µ)

SB,C
gg (T cut, R, µ) +

dσRsub
0

dY
(T jet

B,C< T cut, R) , (4.118)

The only difference between T jet
B and T jet

C to all orders is their dependence on different

soft functions, SB,C
gg . The beam functions Bi are the same for both observables, because

they describe the effects of collinear initial-state radiation, i.e. emissions with forward

rapidities, where the T jet
B and T jet

C measurements are equal up to power corrections (cf.

left panel in Fig. 4.1). This can be seen explicitly by expressing the variables TB,C in terms

of plus and minus momenta in one of the two collinear sectors,

TBj = p+j , TCj =
p+j p

−
j

p+j + p−j
, (4.119)

with p−j ≫ p+j and therefore TCj = TBj+O(p+j /p
−
j ), where p+j /p

−
j ∼ T /mH is a power cor-

rection. The O(R2) corrections from δMjet
f are collected in the dσRsub

0 piece in Eq. (4.118).

They start contributing at O(α2
s) and so are not yet needed for now. Note that another

source of possibly factorization-violating contributions for hadronic observables is related

to the interaction between spectator particles mediated by Glauber modes. Usually, these

are not considered in perturbative predictions of jet cross sections. As argued in [79], for
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jet-based observables these effects are suppressed at least as O(R2), and we therefore also

neglect them here.

For T jet
Bcm and T jet

Ccm, the resummed contribution obeys a similar factorization of the form

dσresum0

dY
(T jet

Bcm,Ccm< T cut) = σBHgg(mt,m
2
H , µ)Bg(mHT cuteY, xa, R, µ)

×Bg(mHT cute−Y, xb, R, µ)S
B,C
gg (T cut, R, µ) +

dσRsub
0

dY
(T jet

Bcm,Ccm< T cut, R) . (4.120)

Here, the hard, beam, and soft functions are the same as in Eq. (4.118), the only difference

is that the beam functions are evaluated at different arguments. The soft function SB,C
gg

is precisely the same as in Eq. (4.118) because it is a vacuum matrix element and, unlike

the beam functions that involve the incoming proton states, has no reference to the frame

other than through the measurement function itself. By a change (boost) of the soft

integration momenta, the soft measurement function for T jet
Bcm,Ccm can therefore always

be transformed into that for T jet
B,C , respectively. (Technically, this is a consequence of the

RPI-III invariance [80, 81] of the soft function.) The beam functions on the other hand

are related to the ones in Eq. (4.118) by a simple rescaling of T cut. This is because for

jets made of na(nb)-collinear particles we have yj > 0 (yj < 0) in the Y = 0 frame and

correspondingly yj > Y (yj < Y ) in the lab frame. According to Eqs. (4.7)-(4.10) for na,b-

collinear jets we therefore have TCcm = TBcm = TBe∓Y , respectively. A detailed discussion

of the analogous frame-dependence for inclusive beam thrust can be found in [64].

4.7 Resummation of large logarithms in SCET

By implementing a jet veto cut TBcm < T cut, the resulting 0-jet cross section contains large

double logarithms of the form αN
s lnM T cut/mH with M ≤ 2N . The factorization formula

above allows to resum these logarithms in SCET. These logarithms are split up as follows

ln2
T cut

mH
= 2 ln2

mH

µ
− ln2

T cutmH

µ2
+ 2 ln2

T cut

µ
(4.121)

where the first, second and third term on the right-side are contained in the hard, beam

and soft functions respectively. The singular cross section with these logarithms has the

following structure

lnσ0(T cut) ∼
[
L
∑

m

cLLm (αsL)
m +

∑

m

cNLL
m (αsL)

m + αs

∑

m

cNNLL
m (αsL)

m + · · ·
]

(4.122)
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Sgg
B µS

µB

ΛQCD

µH

µ
Hgg

f

Bg

Figure 4.8: RG evolution of the beam, soft and hard scale to a common scale µ.

where LL, NLL and NNLL corresponds to leading logarithm, next-to-leading log and next-

to-next-to leading log respectively. A resummed cross section is accurate upto LL, NLL

or NNLL order if it includes the tower of logarithms upto the first, second and third term

respectively. The summation happens in the exponent of the cross section as was shown

in Eq. (2.57). These logarithms can be resummed by evaluating all functions at their

natural scales i.e. hard function at µH = mH , soft function at µS = T cut and beam

functions at µB = tcut ∼
√
T cutmH and then RG evolving them to the common scale µ

as shown in Fig. 4.8 which resums the logarithms. The common choice of the scale µ is

{mH , 2mH ,mH/2}.

Table 3.1 shows the various orders in resummed perturbation theory and the corresponding

accuracy needed for the matching (to the fixed-order cross section), and the anomalous

dimensions that enter the singular corrections.

Log Fixed-order corrections Resummation input
counting: matching nonsingular γµH,B,S Γcusp β PDF

LL LO - - 1-loop 1-loop LO

NLL LO - 1-loop 2-loop 2-loop LO

NLL′ NLO - 1-loop 2-loop 2-loop NLO

NLL′+ NLO NLO NLO 1-loop 2-loop 2-loop NLO

NNLL′+NNLO NNLO NNLO 2-loop 3-loop 3-loop NNLO

As shown in Fig. 4.8, there are three separated scales in the process µΛ ≪ µB ≪ µH . At

the hadronic scale µΛ, the incoming parton is described by the PDFs, and the evolution

from µΛ to µB is the standard DGLAP evolution summing single logarithms. The evolution

for µ > µB sums up the double logarithms of the ratio of µB and µ and is given by the
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RGE

µ
d

dµ
ln[Bg(t

cut, x, µ,R)] = γgB(t
cut, µ,R) (4.123)

Note that, the RGE for jet-based observables takes a product form, as a consequence of

the simple multiplicative structure of the factorized cross section. Like the beam function,

the evolution for the soft function from µS to µ and for the hard function from µH to µ is

given by a similar RGE

µ
d

dµ
ln
[
CggH(mt,m

2
H , µ)

]
= γgH(m2

H , µ) ,

µ
d

dµ
ln
[
SB,C
g (T cut, R, µ)

]
= γgS(T cut, R, µ) , (4.124)

The generic all-order structure of the anomalous dimensions, as the sum of a noncusp part

and an explicitly µ-dependent cusp part, is fixed by RG invariance of the cross section and

the well-known Sudakov form of the hard function, which is completely independent of the

specific observable. Specifically, we have

γgH(m2
H , µ) = Γg

cusp[αs(µ)] ln
−m2

H−i0

µ2
+ γgH [αs(µ)] ,

γgB(t
cut, R, µ) = −2Γg

cusp[αs(µ)] ln
tcut

µ2
+ γgB[αs(µ), R] ,

γgS(T cut, R, µ) = 4Γg
cusp[αs(µ)] ln

T cut

µ
+ γgS [αs(µ), R] . (4.125)

The RG invariance of the cross section moreover requires that the soft anomalous dimension

of SB
gg and SC

gg is the same to all orders in perturbation theory, and hence it is the same

for all four observables we consider. Integrating Eq. (4.123) from µ0 to µ by changing the

variables to αs with d lnµ = dαs/β[αs] gives

ln
B(tcut, x, µ,R)

B(tcut, x, µ0, R)
= ηB(µ0, µ) ln (t

cutµ−2
0 ) +KB(µ, µ0) (4.126)

Solving further yields

Bg(t
cut, x, R, µ) = UB(t

cut, µB, µ)Bg(t
cut, x, R, µB) (4.127)

with the evolution factor given by

UB(t
cut, µB, µ) = eKB(µB ,µ)

( tcut
µ2B

)ηB(µB ,µ)
. (4.128)
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with

KB(µB, µ) = +4Kg
Γ(µB, µ) +Kγg

B
(µB, µ) , ηB(µB, µ) = −2ηgΓ(µB, µ) (4.129)

and

Kg
Γ(µ0, µ) =

∫ αs(µ)

αs(µB)

dα

β[α]
Γg
cusp[α]

∫ α

αs(µB)

dα

β[α]
, Kγg

i
(µ0, µ) =

∫ αs(µ)

αs(µB)

dα

β[α]
γgi [α],

ηgΓ(µ0, µ) =

∫ αs(µ)

αs(µB)

dα

β[α]
Γg
cusp[α] . (4.130)

Analogous to the RG-evolved beam function, we can write the RG-evolved hard and soft

functions as

Hgg(mt, q
2, µ) = UH(q2, µH , µ)Hgg(mt, q

2, µH) , (4.131)

SB
gg(T cut, µ) = US(T cut, µS , µ)S

B
gg(T cut, µS) , (4.132)

with the corresponding RG evolution factors given by

US(T cut, µS , µ) = eKS(µS ,µ)
(T cut

µS

)ηS(µS ,µ)
, (4.133)

UH(q2, µH , µ) =
∣∣∣eKH(µH ,µ)

(−q2−i0
µ2H

)ηH(µH ,µ)∣∣∣
2
. (4.134)

and

KS(µS , µ) = −4Kg
Γ(µS , µ) +Kγg

s
(µS , µ) ,

KH(µH , µ) = −2Kg
Γ(µH , µ) +KΓg

H
(µH , µ) ,

ηS(µS , µ) = +4ηgΓ(µS , µ) , ηH(µH , µ) = +ηgΓ(µH , µ) , (4.135)

Explicit analytic expressions for the Kg
Γ, Kγg

i
and ηgi as well as the anomalous dimensions

and beta functions relevant for NLL resummation can be found in Ref. [23].

Writing out the evolution factors explicitly, the resummed cross section with a veto on

T jet
B,C reads

dσresum0

dY
(T jet

B,C< T cut) = σBHgg(mt,m
2
H , µH)Bg(mHT cut, xa, R, µB)×Bg(mHT cut, xb, R, µB)

SB,C
gg (T cut, R, µS)× U0(mH , T cut, µH , µB, µS)

+
dσRsub

0

dY
(T jet

B,C< T cut, R) , (4.136)
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and for a veto on T jet
Bcm,Ccm, we have

dσresum0

dY
(T jet

Bcm,Ccm< T cut) = σBHgg(mt,m
2
H , µH)Bg(mHT cuteY, xa, R, µB)

×Bg(mHT cute−Y, xb, R, µB)S
B,C
gg (T cut, R, µS)×

U0(mH , T cut, µH , µB, µS) +
dσRsub

0

dY
(T jet

Bcm,Ccm< T cut, R) .

(4.137)

Here, the total evolution factor, combining the individual hard, beam, and soft ones, is

U0(mH , T cut, µH , µB, µS) = UH(m2
H , µH , µ)U

2
B(mHT cut, µB, µ)US(T cut, µS , µ) .

The dependence on the common arbitrary scale µ cancels exactly between the individual

Ui due to RG consistency. Note that the Utot is the same in Eqs. (4.136) and (4.137),

because according to Eq. (4.128)

UB(mHT cuteY, µB, µ)UB(mHT cute−Y, µB, µ) = U2
B(mHT cut, µB, µ) . (4.138)

Hence, the only difference between the T jet
B,C and T jet

Bcm,Ccm cross sections is the Y -dependence

in the arguments of the fixed-order beam functions in Eqs. (4.136) and (4.137).

In the next section we will provide the different ingredients for predicting the full differential

cross section at NLL′+ NLO i.e. the beam, soft and hard functions at NLL′ and the non-

singular corrections for matching the resummed cross section to fixed-order.

4.8 Ingredients at NLL′

The resummation at the NLL′ level includes the NLL RG evolution and in addition the

fixed order one-loop expressions for the hard, beam and soft functions. The latter provide

the exact O(αs) boundary conditions for the RGEs, which are formally a NNLL effect, but

are important for matching to the full NLO cross section. The O(αs) hard function can

be taken directly from [23] and is given in App. A.1.

At fixed O(αs), theBi(t
cut, x, R, µB) can be obtained by integrating the one-loop differential

t-dependent beam function [23, 82], because the T jet
B,C measurement function for a veto on

the emission of only one gluon is simply a theta function, θ(t < tcut), of the virtuality t.

Therefore, the one-loop gluon matching coefficient is

I(1)
gj (t

cut, z, R, µB) =

∫ tcut

0
dt I(1)

gj (t, z, µB) , (4.139)
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which is given in App. A.2. We stress that this only holds for the one-loop fixed-order

contributions. The resummed beam function in Eq. (4.127) is different from integrating

the resummed differential t-dependent beam function already at NLL due to the differ-

ent renormalization structure. At two loops (and beyond) an explicitly R-dependent jet

clustering correction term must be added to the integrated bare t-dependent beam func-

tions [83, 84] to obtain the correct bare results for the T jet
B,C-type observables. Since these

R-dependent jet clustering corrections affect the UV divergences, the two-loop anomalous

dimension of the beam function as well as its NNLL evolution explicitly depend on R. We

will compute the R-dependent correction to the 2-loop anomalous dimension in chapter 5.

Similarly, the one-loop soft function for T jet
B < T cut can be obtained by integrating the

one-loop soft function differential in beam thrust [23], see App. A.3.1. The one-loop soft

function for T jet
C < T cut is explicitly calculated in App. A.3.2. (It is directly related to the

integrated one-loop soft function for the C-parameter event shape in e+e− collisions.)

For the RG evolution at NLL, we require the cusp anomalous dimension to two loops [85],

and the noncusp anomalous dimensions to one loop. The one-loop coefficients of the

noncusp anomalous dimensions in Eq. (4.125) are the same as for the corresponding beam

thrust results [23]. To see this, note that at O(αs)

γ
g(1)
B = −µ d

dµ
Z

g(1)
B , γ

g(1)
S = −µ d

dµ
Z

g(1)
S , (4.140)

and the one-loop MS counterterms, Zg(1)
i , for T jet

B,C < T cut and inclusive beam thrust are

also simply related by integration.

4.9 NLO Nonsingular with subtraction method

In the previous section we have discussed the ingredients for the resummed part of the

T jet
f -veto cross section to NLL′ order. To incorporate the full O(αs) corrections of the

fixed-order (FO) cross section at NLO, we must add the O(αs) nonsingular contribution in

Eq. (4.13), which is particularly relevant for large T cut. The FO nonsingular contribution

differential in T jet
f is defined by the difference of the differential FO result in full QCD and

the corresponding FO singular contribution,

dσnons0

dT jet
f dY

=
dσFO0

dT jet
f dY

− dσsing0

dT jet
f dY

. (4.141)

The FO singular terms in turn are given by a strict expansion of the resummed part

of the cross section to a given fixed order in αs(µFO), where µFO ≡ µr = µf ∼ mH
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is the renormalization and factorization scale of the FO cross section. Suppressing the

dependence on T jet
f and Y , we thus have

dσsing0 (µFO) ≡ dσresum0 (µH , µB, µS)
∣∣∣
FO in αs(µFO)

= dσresum0 (µH = µB = µS = µFO) .

(4.142)

A priori, Eq. (4.142) is only true up to higher orders in αs(µFO). However, we always

reexpand the product of fixed-order contributions to the hard, beam, and soft functions

entering in dσresum0 in Eqs. (4.136) and (4.137), such that Eq. (4.142) holds exactly. For

the NLO singular this means that

dσresum0 ∝ H(0)B(0)
a B

(0)
b S(0) +H(1)B(0)

a B
(0)
b S(0) +H(0)B(1)

a B
(0)
b S(0) +H(0)B(0)

a B
(1)
b S(0)

+H(0)B(0)
a B

(0)
b S(1) , (4.143)

where the superscripts (0) and (1) indicate the LO and NLO fixed-order contributions to

H(µH), B(µB), and S(µS), respectively. In this way we ensure that when turning off the

resummation in the NLL′ result by setting µH = µB = µS = µFO, we exactly reproduce

the NLO singular cross section. The resummed result differential in T jet
f and evaluated at

µFO can be obtained by taking the derivative of the resummed cumulant cross sections in

Eqs. (4.136) and (4.137) with respect to T cut.

We can get the non-singular corrections to the full differential cross section by performing

subtractions at NLO, i.e. subtracting the right singular contributions from the full cross

section to obtain finite correction. The singular terms in the T jet spectrum are proportional

to δ(T jet) and ln T jet/T jet for T jet → 0. Once the non-singular contribution is defined as

dσnons0

dT jet
f dY

(µFO) =
dσFO0

dT jet
f dY

(µFO)−
dσresum0

dT jet
f dY

(µH = µB = µS = µFO) , (4.144)

we can integrate this subtraction from Tδ upto some T cut to obtain the cumulant as follows

dσnonsing0

dY
(T cut) =

∫ T cut

Tδ

dσnons0

dT jet
f dY

(µFO) (4.145)

where Tδ ∼ 0.01. The differential fixed-order cross section dσFO0 /dT jet
f dY is computed for

the four observables in Eq. (4.44), Eq. (B.16), Eq. (B.8) and Eq. (B.22). The integral is

cut off by Tδ, since the integrand is given by the difference of two diverging integrands

and this cut-off is the error we make in determining the nonsingular. The numerical

integral of the subtraction only encounters an integrable singularity for T cut → 0. To

check that the subtraction works, and the nonsingular does not contain any 1/T jet we

plot dσnonsing/d ln T jet = T jetdσnonsing/dT jet which goes to 0 for T cut → 0 in Fig. 4.9 as

expected. Fig. 4.9 shows that for small values of T cut, the singular contribution dominates
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Figure 4.9: The absolute value of the full, singular and nonsingular constributions to the T jet
B

and T jet
C spectrum for H+0-jet.

the full cross section, while at larger T cut the non-singular corrections become significant.

These non-singular terms must be added to the resummed cumulant in each bin of T cut

to get the right inclusive cross section for T cut → ∞. This type of subtraction has been

recently generalized to full NNLO in [86].

The resummed contribution is evolved to an imaginary hard scale, which avoids large cor-

rections in the hard function when evaluated at a timelike argument q2 = m2
H [87–90].

For consistency, we have to include the same evolution also in the nonsingular contribu-

tions [23,25], which at NLO simply amounts to multiplying it by the hard evolution factor.

The final NLO nonsingular contribution is then given by

dσnons0

dY
(T jet

f < T cut) =
H

(0)
gg (−iµns)
H

(0)
gg (µns)

UH(−iµns, µns)×
dσ

nons(1)
0

dY
(T jet

f < T cut, µns) ,

(4.146)

where we introduced µns to denote the scale at which the nonsingular contributions are

evaluated. Combined with the resummed contribution according to Eq. (4.13), this yields

the complete cross section for a T jet
f veto at NLL′+NLO. We have also compared our

inclusive NLO cross section for T cut → ∞ with MCFM and found agreement for all the

four observables.

4.10 Scale choices

In this section, we will discuss how to choose appropriate beam and soft scales as a func-

tion of T cut. For this purpose, we have to compare the relative size of the singular and

nonsingular contributions in relation to the full FO cross section in different regions of T jet
f .

For this comparison, we integrate over the full Y -range. The two plots in the first row of
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Fig. 4.10 show the magnitude of the differential singular, nonsingular, and full FO cross

sections for T jet
B(cm) and T jet

C(cm). The curves for T jet
Bcm, T jet

Ccm are displayed in light colors and

for T jet
B , T jet

C in darker colors. In the second row of Fig. 4.10, we plot the magnitude of the

ratio of the singular and nonsingular contributions to the full NLO cross section for both

T jet
B and T jet

C .
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Figure 4.10: Comparison of the singular, nonsingular, and full NLO cross sections differential
in T jet

f and integrated over all of Y . The two plots in the first row show the magnitude of the

differential cross sections for T jet
B and T jet

C on a logarithmic scale. The plot in the second row
shows the ratios of nonsingular and singular contributions to the full NLO cross section for both
T jet
B and T jet

C .

Note that the singular differential contribution is identical for all four T jet
f variables, be-

cause the difference between T jet
B(cm) and T jet

C(cm) only appears as a constant (T jet
f -independent)

term in the soft function and does not affect the singular spectrum. Also the (explicit) to-

tal Y dependence resides in the T cut-independent part of the NLO singular contribution of

the T jet
Bcm and T jet

Ccm vetoed cross section and drops out in the spectrum [which can be seen

from Eq. (4.137) together with Eqs. (A.8) and (A.9)]. The full FO cross section, however,

depends on the specific measurement function and is different for all four observables. We

therefore observe significant differences when comparing the nonsingular contributions for

T jet
B and T jet

C in Fig. 4.10. The nonsingular contributions for T jet
Bcm and T jet

Ccm (light green

dotted lines) are slightly larger than the corresponding ones for T jet
B and T jet

C . This is due

to Y -dependent terms that are not captured by the resummed singular contributions and

are thus part of the nonsingular contributions in Eq. (4.144).
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The plots show that the nonsingular contributions are power suppressed for small values

of T jet
f , become comparable to the singular contributions around T jet

f ∼ 60GeV, and

exceed the FO cross section beyond T jet
f & 70GeV. Based on these observations, we

can distinguish three different regions according to the relative size of the singular and

nonsingular contribution to the full FO cross section at increasing T jet
f : resummation,

transition, and fixed-order regions. (In principle, there is a fourth nonperturbative regime

T jet
f . ΛQCD, which is however not relevant for our discussion.)

In the resummation region, i.e. at low values T jet
f ≪ mH , the singular contribution dom-

inates and must be resummed while the nonsingular contributions are power corrections

suppressed by T jet
f /mH . To correctly resum the large logarithms in this region, the scales

should follow their canonical relations as dictated by the factorization of the jet-vetoed

cross section,

µH = −imH , µB =
√
mHµS , µS = T cut . (4.147)

At large values of T cut & mH/2, the singular and nonsingular contributions are equally

important and there are large cancellations between the two, which would be spoiled if the

resummation is kept on. Hence, in this region the resummation must be turned off, which

is achieved by letting all scales approach a common FO scale,

|µH | = µB = µS = µns = µFO , (4.148)

which then ensures that the result correctly reproduces the total cross section [cf. Eqs. (4.144)

and (4.146)]. By keeping the hard scale at an imaginary value, this becomes the π2-

improved FO cross section, which exhibits an improved perturbative convergence.

In the transition between the resummation and fixed-order regions, both the resummed

logarithmic corrections as well as the nonsingular FO contributions are numerically im-

portant. To optimally describe this region, which is often also the experimentally most

relevant one, we employ profile scales [91,92] that incorporate the constraints in Eq. (4.147),

towards small values of T jet
f and provide a smooth interpolation to µFO at large values of

T jet
f . For our choice of profile scales and the related estimation of perturbative uncertain-

ties we adapt the discussion of the pjetT -veto in [25] to our present case, where we have

virtuality-like (SCET-I) as opposed to pT -like (SCET-II) scale relations.

For the central profiles we take

µH = −iµFO , µns = µFO

µS(T cut) = µFOfrun(T cut/mH) ,

µB(T cut) =
√
µS(T cut)µFO = µFO

√
frun(T cut/mH) , , (4.149)



4.10. Scale choices 95

where the common profile function frun(x) is as in [25],

frun(x) =





x0
[
1 + (x/x0)

2/4
]

x ≤ 2x0 ,

x 2x0 ≤ x ≤ x1 ,

x+ (2−x2−x3)(x−x1)2

2(x2−x1)(x3−x1)
x1 ≤ x ≤ x2 ,

1− (2−x1−x2)(x−x3)2

2(x3−x1)(x3−x2)
x2 ≤ x ≤ x3 ,

1 x3 ≤ x .

(4.150)

The first regime in Eq. (4.150) for x ≤ 2x0 is the nonperturbative regime, where we

let the scales µB and µS approach fixed values
√
x0µFO > ΛQCD and x0µFO > ΛQCD

respectively as x → 0. For x ∼ ΛQCD/mH , corresponding to T jet
f ∼ ΛQCD, our purely

perturbative predictions are insufficient to correctly describe the cross sections, since here

nonperturbative corrections can become of O(1). In practice, this region is irrelevant and

has no effect on the cumulant jet-vetoed cross sections that we are interested in.

The second line in Eq. (4.150) corresponds to the resummation region and yields the

canonical scaling in Eq. (4.147). The third and fourth lines describe the transition region.

They provide a quadratic scaling for a smooth transition to the FO region (last line), where

all the scales are equal and the resummation is turned off.

To fix the profile parameters xi in Eq. (4.150) we first choose a value for x3, where the

resummation is turned off completely. This should happen roughly after the point, where

the singular spectrum vanishes (the singular cumulant has a maximum) so the nonsingular

spectrum is equal to the full result. In addition, it should certainly happen before the

point, where the singular spectrum has the same magnitude but opposite sign as the full

and the nonsingular becomes twice the size of the full result, since at this point there is

clearly an O(1) cancellation between singular and nonsingular. Hence, for T jet
B we choose

x3 = 0.6 corresponding to T jet
B = 75GeV. For T jet

C we choose x3 = 0.55, since here the

singular-nonsingular cancellations set in a bit earlier. For x = T jet
f /mH . 0.1 the physical

scales are separated by an order of magnitude (and the nonsingular are suppressed by an

order of magnitude). Hence, a natural choice for x1 is of O(0.1). We use x1 = 0.15 for T jet
B

and x1 = 0.1 for T jet
C , which ensures that the size of the transition region, x3 − x1, is the

same for both and also long enough for the scales to smoothly transit to the FO region.

The midpoint of the transition region, x2, is then fixed by setting x2 = (x3 − x1)/2. Note

that although the strict canonical scaling stops at x1, the resummation is still important

all the way through the transition region, at least until x2, and starts to get turned off

beyond. To summarize, our central profile parameters for T jet
B(cm) are

µFO = mH , x0 = 2.5GeV/µFO ,

{x1, x2, x3} = {0.15, 0.375, 0.6} , (4.151)
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and for T jet
C(cm) they are

µFO = mH , x0 = 2.5GeV/µFO ,

{x1, x2, x3} = {0.1, 0.325, 0.55} . (4.152)

The resulting central profiles for µB and µS are shown in the first row of Fig. 4.11 by the

green and orange solid lines.

4.10.1 Fixed-order and resummation uncertainties

A key aspect of precision cross section predictions is to reliably estimate the perturbative

uncertainties. A convenient and physically motivated way to parametrize the theoretical

uncertainties in jet-vetoed cross sections is in terms of fully correlated (yield) and fully an-

ticorrelated (migration) components [11,23,25,41], as we have already discussed in Sec. 3.2.

We will apply the same procedure here.

First, the resummation uncertainty ∆resum corresponds to the intrinsic uncertainty in the

resummed logarithmic series induced by the jet veto (or jet binning) cut. It must be anti-

correlated between the cross section that survives the jet veto (the 0-jet bin) and the cross

section that is vetoed (the ≥ 1-jet bin), such that it cancels in the total inclusive cross

section given by their sum. Hence, we can identify ∆resum with the migration uncertainty.

Second, the fixed-order uncertainty, ∆FO, comes from scale variations in the FO contribu-

tions of the full resummed cross section, such that for large T cut it reproduces the FO scale

variation uncertainty of the total cross section. It is identified with the yield uncertainty,

and effectively probes the size of higher-order nonlogarithmic terms at any value of T cut.

Note that despite its naming, at small T cut it does so within the resummed prediction.

The total uncertainty in the Higgs+0-jet cross section is then given by

∆2
0(T cut) = ∆2

FO(T cut) + ∆2
resum(T cut) . (4.153)

To evaluate ∆FO, we take the collective variation of all scales µi up and down by a factor

of 2, as shown in the second row of Fig. 4.11. This is done by setting µFO = {2mH ,mH/2}
in Eq. (4.149). At large T cut values, this yields the standard scale variation of the (π2-

improved) FO cross section. By varying µFO, all the ratios between the scales µH , µB,

and µS are kept fixed, so that the arguments of the logarithms that are resummed in

the evolution factors Ui remain unchanged. We stress that the scales do not represent

physical input quantities. Rather, the changes observed in the cross section resulting from

the scale variations are simply an indicator of the possible size of higher-order corrections.
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Figure 4.11: Profile scale variations as described in the text. The two plots in the first line show
the variations of the beam and soft scales used to estimate the resummation uncertainty. The plot
in the second row shows the collective variation of all scales by a factor of two, which is used to
estimate the FO uncertainty.

In particular, one should not attribute any meaning to possibly asymmetric up/down

variations in the cross section. Instead, we take the maximal observed deviation from the

central value as our perturbative uncertainty estimate. Thus, we adopt

∆FO(T cut) = max
v∈VFO

|σv0(T cut)− σcentral0 (T cut)| (4.154)

for the FO uncertainty in Eq. (4.153), where VFO denotes the variations µFO = {2mH ,

mH/2}.

Next, to estimate the resummation uncertainty, ∆resum, we vary the profile scales for

µB and µS defined in the previous section about their central profile while keeping |µH | =
µFO = mH fixed. The aim is to vary the logarithms in the resummation factors Ui, in order

to estimate the potential size of higher-order corrections in the resummed logarithmic series.

At the same time, the scales must retain the natural scale hierarchy in the resummation

region (as obeyed by the central scales),

µFO ∼ µH ≫ µB ∼ √
µHµS ≫ µS , (4.155)

for all variations.
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First, we define a multiplicative factor

fvary(x) =





2(1− x2/x23) 0 ≤ x ≤ x3/2

1 + 2(1− x/x3)
2 x3/2 ≤ x ≤ x3

1 x3 ≤ x

, (4.156)

which approaches 2 for T cut → 0 and 1 for T cut → x3mH , where the resummation is

turned off. The up and down variations of µS are then parametrized as

µvaryS (x, α) = fαvary(x)µS(x) = µFO f
α
vary(x) frun(x) . (4.157)

For the µB variations we define

µvaryB (x, α, β) = µvaryS (x, α)
1/2−β

µ
1/2+β
FO = µFO

[
fαvary(x) frun(x)

]1/2−β
, (4.158)

where the parameter β modifies the exact canonical relation of the beam and soft scales

in Eq. (4.147), to allow for a variation of µB independent of µS . The central scales in

Eq. (4.149) correspond to setting α = β = 0. The µB and µS variations we will perform

are illustrated in the first row of Fig. 4.11, and are discussed in detail in the following. Note

that all µB and µS variations turn off at large T cut (beyond x3), such that the resummation

uncertainty vanishes by construction when the resummation itself is turned off.

The arguments of the logarithms resummed in the overall evolution factor, Eq. (4.138), are

given by the ratios of the three scales µH , µB, and µS . Because of cancellations due to RG

consistency the two relevant independent scale ratios entering the resummed logarithms

are

µ2B
µ2H

∼ T cut

mH
,

µ2S
µ2B

∼ T cut

mH
. (4.159)

This can be seen best by setting the arbitrary common renormalization scale µ = µB, such

that UB = 1 and we are left with only two independent evolution factors UH and US ,

which resum logarithms of the scale ratios in Eq. (4.159). (The third possible scale ratio

µS/µH ∼ T cut/mH is not independent as it can never appear alone in the evolution.)

We use the same α for both µB and µS , which ensures that we never violate the parametric

scaling µ2B ∼ µSµH when changing µS . Varying α while keeping β fixed in this setup then

induces equal changes to the logarithms of the scale ratios in Eq. (4.159) of the form

ln
µ2B
µ2H

→ ln fαvary + ln
µ2B
µ2H

,

ln
µ2S
µ2B

→ ln fαvary + ln
µ2S
µ2B

. (4.160)
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On the other hand, varying β with α fixed induces changes in the logarithms of equal

magnitude but opposite sign,

ln
µ2B
µ2H

→ (1− 2β) ln
µ2B
µ2H

,

ln
µ2S
µ2B

→ (1 + 2β) ln
µ2S
µ2B

. (4.161)

Hence, separate variations of α and β independently probe the resummation of both types

of logarithms. (Changing them together, would effectively double-count the variation for

one or the other set of logarithms.)

The precise range of α and β values is to some extent arbitrary. For our analysis of the

resummation uncertainty ∆resum we choose the four parameter sets

(α, β) = {(+1, 0), (−1, 0), (0,−1/6), (0,+1/6)} , (4.162)

which fulfill the requirements in Eq. (4.155). The α variation is shown by the dashed

curves in the first plot of Fig. 4.11. It yields the typical factor of 2 variation in the soft

scale for T cut → 0, and a corresponding factor
√
2 in µB. The β variation modifies the

canonical relation between µB and µS “half-way” from µ2B = µ
1/3
S µ

2/3
H to µ2B = µ

2/3
S µ

1/3
H ,

and is shown by the dotted lines in the right plot of Fig. 4.11. For most of the relevant T cut

range, all four variations have an effect of similar size on the scale ratios in Eq. (4.159).

For T cut → 0, the β variation generates roughly a factor of 2 variation in µB, while keeping

µS fixed. (Since for small T cut the scales µH , µB, and µS are widely separated, this still

maintains the required scale hierarchy.)

We then define the overall resummation uncertainty as the maximum absolute deviation

from the cross section evaluated with central profiles when performing the µB and µS

profile scale variations,

∆resum(T cut) = max
v∈Vresum

|σv0(T cut)− σcentral0 (T cut)| , (4.163)

where Vresum denotes the set of four variations in Eq. (4.162). This resummation uncer-

tainty together with the fixed-order uncertainty in Eq. (4.154) then determines the total

uncertainty of the 0-jet cross section as given in Eq. (4.153).

Finally, we should mention that in principle one should also vary the other profile param-

eters x0 and {x1, x2, x3} in Eqs. (4.151) and (4.152). However, at the NLL′+NLO order

we are working, the resulting cross section variations are much smaller than those from

varying µFO, α, β. This could change at higher orders, at which point these additional

profile parameter variations should be included.
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Figure 4.12: Cumulant NLL′ resummed and NLO nonsingular cross sections as a function of
T cut. The two plots in the first row show the comparison between the two variants of TB-type
and TC-type veto cross sections, respectively. The last plot shows the comparison between the
corresponding contributions to TC and TB-veto cross sections. The resummation/FO scales in the
cross sections displayed here are given by the central profiles.

4.11 Results

In this section, we present numerical results for the Higgs+0-jet gluon-fusion cross sections,

σ0(T jet
f <T cut), using the four rapidity-weighted observables T jet

f = T jet
B , T jet

Bcm, T
jet
C , T jet

Ccm

for the jet veto. For all our cross section predictions we employ the MSTW 2008 PDFs [93]

together with their corresponding default value of αs(mZ). We use LO PDFs at NLL

and NLO PDFs at NLL′+NLO, such that the PDF order agrees with the perturbative

order of the FO cross section components. For all our results, we set mH = 125GeV and

Ecm = 8TeV, except for the comparison of the T jet
C -binned cross section to the ATLAS

data, where we use mH = 125.4GeV as in the measurement.

We first display the resummed NLL′ and nonsingular NLO contributions separately and

the full NLL′+NLO results given by their sum for the jet-vetoed (cumulant) cross sections

as a function of T cut in Fig. 4.12. In the first row we compare the two observables of T jet
B,C

type, respectively. In the second row of Fig. 4.12 we compare the same results for T jet
B and

T jet
C with each other.
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The NLL′ resummed contribution to the T jet
Bcm cumulant cross section (blue dashed curve)

is larger than the one to the T jet
B veto cross section (blue solid curve). This is due to the

additional Y -dependent terms present in the factorization formula for T jet
Bcm in Eq. (4.137)

(which with the resummation switched on also depend on T cut). As a consequence, the

nonsingular contribution to the T jet
Bcm cumulant (green dashed curve) is slightly more nega-

tive than the one for T jet
B (green solid curve), so that the sum of resummed and nonsingular

contributions for each observable reproduces the same total cross section for T cut → ∞.

This can be seen directly from the combined NLL′+NLO cross section in solid and dashed

dark orange curves that approach the same constant value for large T cut. For T cut → 0 on

the other hand the Sudakov resummation forces the NLL′+NLO cross section to vanish.

Note that for the cross sections integrated over the full Y range shown in Fig. 4.12 the

difference between the resummed NLL′+NLO predictions with a T jet
Bcm and a T jet

B veto is

hardly visible. The same discussion holds for the comparison between T jet
Ccm and T jet

C shown

in the second plot of Fig. 4.12.

In the second row of Fig. 4.12, we see that the NLL′+NLO cross section for T jet
C < T cut

is larger and approaches the total cross section sooner than the one for T jet
B < T cut. This

difference in the shape of the cumulants arises due to the larger constant term in the

NLO soft function SC
gg than in SB

gg [cf. Eqs. (A.14) and (A.20)], which enters as part

of the resummed NLL′ contribution to the cross section, Eq. (4.136). Since the total

cross section at large T cut has to be the same for both observables, the larger singular

contribution for T jet
C must eventually be compensated for by its nonsingular contribution

when integrated over a large enough range of T jet
C < T cut, which is indeed more negative

than for T jet
B < T cut.

To analyze the differences between the two versions of the T jet
B,C-type variables in more

detail, we compare in Fig. 4.13, the T jet
B and T jet

Bcm cross sections integrated over different

|Y | ranges (bins). The plots in the first row of Fig. 4.13 show the spectrum and cumulant

cross sections for T jet
B(cm) in the |Y | ≤ 2 bin, respectively. Qualitatively they look very

similar to the corresponding plots for |Y | ≤ ln(Ecm/mH) (i.e. the full Y range), except for

the somewhat reduced total cross section in the right panel of Fig. 4.13 due to the reduced

Y range. In particular, the T jet
B < T cut and T jet

Bcm < T cut vetoes again yield practically the

same NLL′+NLO cross sections.

The differences between T jet
B and T jet

Bcm get more pronounced at larger Higgs rapidity Y .

(The decrease in the overall normalization of all cross sections in the right panels of Fig. 4.13

for larger Y is due to the PDF suppression.) The T jet
B(cm) spectra in the left panels of

Fig. 4.13 show that the singular-nonsingular cancellations happen at lower T jet
B now, which

means that following the discussion in Sec. 4.10, the parameters in the profile scales have

to change accordingly. For the resummed cross sections in the 2 ≤ |Y | ≤ 3 and |Y | ≥ 3
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Figure 4.13: The plots on the left show the differential distributions for T jet
B(cm) for the |Y | ≤ 2

(first line), 2 ≤ |Y | ≤ 3 (middle), and |Y | ≥ 3 bins (last line) to be compared with the first plot
in Fig. 4.10, where the cross sections have been integrated over the full Y range. The plots on the
right show the integrated T jet

B(cm) cumulants for the |Y | ≤ 2 (first line), 2 ≤ |Y | ≤ 3 (middle), and

|Y | ≥ 3 bins (last line) to be compared with the first plot in Fig. 4.12, where the cross sections have
been integrated over the full Y range.

bins shown in the middle and last row of Fig. 4.13, we therefore set our profile parameters

to {x1, x2, x3} = {0.1, 0.325, 0.55} and {x1, x2, x3} = {0.1, 0.275, 0.45}, respectively. As

observed in the right panels of the second and third row of Fig. 4.13, the T jet
B and T jet

Bcm

cumulants for the 2 ≤ |Y | ≤ 3 bin start to differ in their shape: the separation between

the respective resummed and nonsingular contributions is increased and the NLL′+NLO

T jet
Bcm result considerably deviates from the one for T jet

B at small T cut values. These effects

are even more enhanced for the |Y | ≥ 3 bin. For very small values of T cut (. 2GeV) the

NLL′+NLO T jet
Bcm cumulants in the higher Y bins turn slightly negative. This unphysical

effect is formally higher-order and due to a lack of Sudakov suppression of the large non-
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Figure 4.14: Cumulant cross sections for T jet
B < T cut (left panel) and T jet

C < T cut (right panel).
The (overlapping) green and blue bands represent the NLL and NLL′+NLO predictions with the
corresponding uncertainty (±∆0) from scale variations according to Sec. 4.10.1, respectively. The
dashed and dotted lines indicate the respective default predictions using our central profiles for the
resummation/FO scales as explained in Sec. 4.10.

singular corrections meaning that the resummation for T jet
Bcm is less effective than for T jet

B .

The above conclusions from the analysis of the Y -binned cross sections likewise hold for

the T jet
C(cm) observables.

In Fig. 4.14, we finally present the resummed Higgs+0-jet cross section predictions along

with their perturbative uncertainty bands (±∆0) obtained by the scale variations defined

before. To study the convergence of our resummed predictions and validate out uncertainty

estimates, we show the NLL bands in green color and the NLL′+NLO bands in blue color

for T jet
B < T cut (left panel) and T jet

C < T cut (right panel).

We observe a substantial decrease in uncertainties going from NLL to NLL′+NLO, which

is mostly due to NLO singular matching corrections, which partly cancel the scale vari-

ation from the NLL resummation factors. Both NLL′+NLO bands have an overlap with

their NLL pendants that is consistent with our uncertainty estimates. We emphasize how-

ever that more solid conclusions about the order-by-order convergence of the perturbative

predictions can be drawn once also the next higher order, i.e. NNLL′+NNLO, is known,

which is left for future work.

At T cut ∼ 25GeV, we find a perturbative uncertainty of about 20% for our NLL′+NLO

predictions, which is largely driven by the sizable FO uncertainties. It is also comparable

with the precision obtained for the pjetT -vetoed cross section at the same order in [25].

Similar to the case of pjetT , we also expect a substantial improvement in the precision for

T jet
B,C when eventually going to NNLL′+NNLO. For T cut ∼ 100GeV, we find a perturbative

error of about 13%, which effectively equals the scale variation uncertainty of the total π2-

improved NLO cross section.
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ATLAS H → γγ measurements [38]. See the text for further details on the applied corrections.

Last but not least, in Fig. 4.15 we compare our prediction at NLL′+NLO in bins of T jet
C

with the recent ATLAS measurement in the H → γγ channel [38]. Currently, the mea-

surement has an underlying technical cut on reconstructed jets of pTj ≥ 25GeV, which

effectively moves events between the first two bins. We correct for this effect by applying

an extrapolation factor from Monte Carlo simulation.To directly compare with the mea-

surements, we multiply our predictions by the H → γγ branching ratio of 0.228±0.011 [53]

and apply several correction factors as given in [38]: The diphoton kinematic acceptance

and photon isolation efficiency are essentially independent of T jet
C , while nonperturbative

corrections due to hadronization and underlying event are practically irrelevant. Finally,

we also add the contributions from other production channels as estimated in [38], and

which are shown by the green dotted lines. For the uncertainties in our NLL′+NLO pre-

dictions we propagate the ∆FO and ∆resum uncertainties by taking the differences of our

cumulant predictions at the two bin edges separately for each profile variation. We also

add in quadrature an 8% uncertainty for PDF+αs uncertainties (which we take to be the

same as for the total cross section since they are mostly independent of TCj). 5

4.12 Conclusions

In this chapter, we briefly discussed different types of jet-veto obseravables and introduced

the rapidity-dependent jet-vetoes T jet
B(cm) and T jet

C(cm) which have two different types of ra-

pidity weighting and related resummation properties. We gave a brief overview of the

SCET Lagrangian, factorization and resummation in the framework of SCET in particular

5At present this extrapolation introduces a nonnegligible MC model dependence. To minimize this
in the future, it would be advantageous to try to reduce the lower cut on reconstructed jets as much as
possible and/or slightly increase the lowest TCj bin edge.
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we sketched the proof of factorization formula for Drell-Yan cross section differential in

inclusive beam thrust. We extended it to predict factorized cross section for Higgs pro-

duction differential in the rapidity-dependent observables T jet
B and T jet

C . We also discussed

the resummation of these cross section with a veto T jet
f < T cut. Since their resummation

structure is notably different than for the pjetT observable, rapidity-weighted T jet
f -binned

cross sections yield valuable complementary information on the properties of additional jet

production in a given hard process. Experimentally, such generalized jet vetoes have the

advantage to provide efficient methods to veto central jets, while relaxing the phase space

constraints (and therefore the requirements on the measurement) for jets with increasingly

forward rapidities.

As a concrete example we considered Higgs+0-jet production through gluon fusion at the

LHC, and presented cross section predictions at the NLL′+NLO level for all four jet-veto

variables. We computed the NLO cross section differential in rapidity Y and the four

T jet
f observables, and used subtraction method to obtain the nonsingular corrections to

the H+0-jet cross section. We analyzed the theoretical uncertainties in the NLL′+NLO

cross section via combined scale variations of the different involved resummation and FO

scales. We find that the level of theoretical precision that can be reached for such rapidity-

weighted jet-veto observables is comparable to what is currently possible for pjetT vetoes.

Comparing our analytic predictions for the T jet
C -binned cross section with a recent ATLAS

measurement in the H → γγ channel [38] we find good agreement. Hence, there are

strong motivations that rapidity-dependent jet-vetoes, like the T jet
B(cm) and T jet

C(cm) variables

discussed here, should be measured in other hadron collider processes such as Drell-Yan,

diphoton, and weak diboson production at different invariant masses and rapidities of the

produced color-singlet state. This will provide stringent tests of our understanding of jet-

veto resummations and jet production in general. In turn, such generalized jet vetoes can

be utilized to optimize signal selections in experimental analyses that rely on jet-binning,

such as Higgs property measurements or new-physics searches.

As mentioned in Sec. 4.6.3, at O(α2
s), there are corrections to the factorization formula due

to clustering and soft-collinear mixing effects. These corrections were absent at NLL′ when

there was a single emission. However going to NNLL′+ NNLO requires us to take into

account these corrections. We particularly consider corrections due to the clustering of two

soft or collinear particles into a single jet which contributes to ∆M jet in Eq. (4.117) and

give rise to terms like αn
s ln

n−1R. These are important for small jet radii typically used in

current experiments. In the next chapter we will compute these clustering corrections in

the soft and the beam functions at NNLO.





Chapter 5

Clustering corrections in the beam

and soft functions

In this chapter, we will compute the leading jet clustering corrections in the soft function

and partly in the beam function (for one color structure) at O(α2
s) for the two jet-based

observables T jet
B and T jet

C . These give rise to logarithms of the jet radius R in the cross

section predictions at NNLL′+ NNLO, and are important for the typical jet radii currently

used in the experiments.

5.1 Introduction

As discussed in the previous chapter, for jet-based observables at O(α2
s), a non-trivial

clustering can take place between two emitted partons leading to some dependence on

the jet radius R. This dependence on the jet algorithm can arise due to the clustering

of two particles within the same (soft or collinear) sector or the mixing between the soft

and collinear sectors. The correction to the measurement function is given by (as in the

previous chapter)

Mjet = (Ma +∆Mjet
a )(Mb +∆Mjet

b )(MS +∆Mjet
S ) + δMjet

SC , (5.1)

where, δMjet
SC arises from the clustering of a soft and collinear particle into a single jet,

and is an O(R2) effect. ∆Mjet contains two contributions: first arising from the correlated

emissions which give rise to logarithms of R and are remnants of a collinear divergence

(for R → 0) between the two particles. Second arising from the independent (uncorre-

lated) emissions within each sector which are of O(R2) like the soft-collinear mixing. The

107
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measurement function for the clustering arising from two independent emissions has the

form

∆Mindep = ∆Mindep
CC +∆Mindep

SS + δMSC ∼ O(R2) , (5.2)

where SS, CC denote the independent emissions from soft and collinear sectors respectively

and SC denotes the soft-collinear mixing. The factorization formula holds only upto the

soft-collinear mixing terms, therefore they should be small and this is true if R ∼ λ ≪ 1.

For the current experimental analyses, R = {0.4, 0.5}, so the correction due to ∆Mindep

including the soft-collinear mixing are indeed power suppressed. In this limit however, the

corrections due to correlated emissions giving rise to logarithms of R become important,

which we will compute for the beam and soft functions in this chapter. These corrections

are relative to the global jet-algorithm independent measurement function, so one natural

choice is to define the global measurement as the inclusive beam thrust one which is

independent of jet algorithm effects. Such a measurement is given by

Mi(T cut) = θ
( ∑

m∈ithsector

Tfm < T cut
)
, (5.3)

where i denotes the collinear or soft sectors. We choose the inclusive measurement as

the global one because the soft and beam functions are known upto NNLO [84, 94]. The

measurement function for the clustering correction relative to this inclusive measurement

is

∆Mjet
i (T cut) = θ(∆R12 < R)θ(T jet

f < T cut) + θ(∆R12 > R)θ(Tf1 < T cut)θ(Tf2 < T cut)

− θ(Tf1 + Tf2 < T cut) . (5.4)

Here if the two particles are within a jet radius R, i.e. ∆R12 < R, then they are clustered

into a jet and T jet
f which is the observable for the clustered pair, is contrained to be less

than T cut. If the particles are more than R apart, the constraint is imposed on the Tf
of each particle. The last term is the inclusive measurement which is subtracted so that

Mi + ∆Mjet
i is equivalent to the full measurement. This measurement can be simplified

further, with the relation T jet
f = Tf1 + Tf2, except for the case where the two particles

are in the opposite hemispheres and still cluster which is an O(R4) effect. Neglecting such

higher order effects, the measurement function becomes

∆Mjet
i (T cut) = θ(∆R12 > R)

[
θ(Tf1 < T cut)θ(Tf2 < T cut)− θ(Tf1 + Tf2 < T cut)

]
.

(5.5)

This measurement function holds for both soft and beam functions.

The bare clustering corrections are UV-divergent and contribute to the two-loop beam
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Figure 5.1: At O(α2
s), there are 5 classes of diagrams. Here the endpoints of the gluons can be

attached to the points on the Wilson lines labeled by a ‘×’ in any order. Diagram (a) contains a
correlated contribution when the gluons attach to two different Wilson lines and an independent
(uncorrelated) emission contribution with both the gluons attaching the same Wilson line (which
we don’t consider). Diagrams (b), (c) have a three-gluon vertex, and diagrams (d), (e) and (f)
correspond to vaccum polarization with gluon loop, quark loop and a ghost loop respectively.

and soft anomalous dimension. For the soft function, we need to compute the clustering

corrections separately for the two observables T jet
B and T jet

C because the measurement

function is different. The beam function being the same for both T jet
B and T jet

C (the

measurement function for T jet
C being equal to T jet

B at forward rapidities as discussed in

subsec. 4.6.3), the clustering corrections are exactly the same and so it is sufficient to

compute them only for T jet
B . Because the beam function clustering correction is the same

for T jet
B and T jet

C , from RG consistency, the 1/ǫ coefficient of the clustering correction in

the soft function should be the same for both the observables and this will serve as a cross

check of our results. However the non-divergent constant terms can be different for T jet
C

and T jet
B . Let us first start with the clustering corrections in the soft function.

5.2 Clustering corrections in the Soft function

We obtain the non-Abelian matrix elements for the bare 2-loop soft function from [94]. To

compute the clustering corrections from correlated emissions, we consider all the diagrams

shown in Fig. 5.1 except a part of the first diagram which has two independent (uncorre-

lated) emissions. This part with two independent (uncorrelated) emissions contributes to

the ∆Mindep
SS and is of O(R2). We don’t include these independent emission diagrams in
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our calculation as they give rise to corrections that are O(R2) suppressed for small values

of the jet radius R. These have been computed in Ref. [70] and combined with ∆σindepCC

and ∆σindepSC in order to obtain a finite contribution proportional to R2.

In order to compute the clustering corrections from correlated emissions, we use the mea-

surement function defined in Eq. (5.5). The clustering correction in the soft function is

given by

∆S(2)(k1, k2) =
ddk1
(2π)d

ddk2
(2π)d

Aj(k1, k2)∆Mjet(k1, k2)C(k1)C(k2) , (5.6)

where k1 and k2 are the momenta of emitted gluons, C(k) = 2πδ(k2)θ(k0) is the cut

propagator and the amplitude obtained by adding all the non-Abelian diagrams is given

by [94]

AA(k1, k2) =
C2
Ag

4µ4ǫ

k−1 k
+
1 k

−
2 k

+
2 (k1.k2)

2(k−1 + k−2 )
2(k+1 + k+2 )

2

[
− (−1 + ǫ)k−1 k

+
1 k

−
2 k

+
2 (k

+
1 k

−
2 − k−1 k

+
2 )

2

− 2(k1.k2)
2(k−1 + k−2 )(k

+
1 + k+2 )(k

−
1 (2k

+
1 + k+2 ) + k−2 (k

+
1 + 2k+2 )) + k1.k2(k

−
1 + k−2 )

(k+1 + k+2 )((k
−
1 )

2k+2 (2k
+
1 + k+2 ) + k+1 (k

−
2 )

2(k+1 + 2k+2 ) + 2k−1 k
−
2 ((k

+
1 )

2 − k+1 k
+
2 + (k+2 )

2)))
]

Af (k1, k2) =
2CATfnfg

4µ4ǫ

(k1.k2)2(k
−
1 + k−2 )

2(k+1 + k+2 )
2

[
2k1.k2(k

−
1 + k−2 )(k

+
1 + k+2 )− (k+1 k

−
2 − k−1 k

+
2 )

2
]
.

(5.7)

Rewriting the d-dimensional phase-space integral in terms of different light-cone compo-

nents, we get

ddk1
(2π)d

ddk2
(2π)d

C(k1)C(k2) =
1

(16π2)2
eγE2ǫ

Γ(1− ǫ)2

(π1/2Γ(1/2− ǫ)

Γ(1− ǫ)

)−1
∫ ∞

0
dk+1 dk

+
2 dk

−
1 dk

−
2

× (k+1 k
−
1 k

+
2 k

−
2 )

−ǫ

∫ π

0
d∆φ sin∆φ−2ǫ . (5.8)

Plugging this back into Eq. (5.6), the clustering correction in the soft function is given by

∆S(2)(k1, k2) =
1

(16π2)2
eγE2ǫ

Γ(1− ǫ)2

(π1/2Γ(1/2− ǫ)

Γ(1− ǫ)

)−1
∫ ∞

0
dk+1 dk

+
2 dk

−
1 dk

−
2 (k

+
1 k

−
1 k

+
2 k

−
2 )

−ǫ

×
∫ π

0
d∆φ sin∆φ−2ǫAj(k1, k2)∆Mjet(k1, k2) . (5.9)

The above equation gives the soft function correction in terms of the momenta k1 and

k2 of the emitted gluons. It can be re-expressed in terms of the observables T jet
B or T jet

C

and a suitable set of coordinates which can be related to the jet radius dependence in the

measurement function. We will first compute the clustering corrections for T jet
B .
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5.2.1 Clustering for T jet
B

The constraints from the measurement function given in Eq. (5.5) depend on ∆R which is

defined as ∆R =
√

∆y2 +∆φ2, where y is the rapidity and φ is the azimuthal angle. In

order to express the amplitude and phase space in terms of these, the coordinates we use

for T jet
B are

y1 =
1

2
log

k−1
k+1

, y2 =
1

2
log

k−2
k+2

, yt =
1

2
(y1 + y2) , ∆y = y1 − y2

z =
k+1

(k+1 + k+2 )
=

TB1

TB1 + TB2
, TT = k+1 + k+2 = TB1 + TB2

cos∆φ =
k⊥1 .k

⊥
2

|k⊥1 ||k⊥2 |
=

1/2(k+1 k
−
2 + k+2 k

−
1 )− k1.k2√

k+1 k
−
1 k

+
2 k

−
2

. (5.10)

In terms of these coordinates, the amplitude becomes

ATB
A = 4g4C2

Aµ
4ǫ 1

(cosh∆y − cos∆φ)(cosh∆y − (1− 2z) sinh∆y)[
(1− z + z2) cos∆φ cosh∆y − (1− 2z) cos∆φ sinh∆y − z(1− z)+

(1− ǫ)z2(1− z)2 sinh∆y2

(cosh∆y − cos∆φ)(cosh∆y − (1− 2z) sinh∆y)

]
,

ATB
f = 4g4CATfnfµ

4ǫ
[ 1

(cosh∆y − cos∆φ)(cosh∆y − (1− 2z) sinh∆y)

]2 z(1− z)

2[
1− 2 cos∆φ cosh∆y + 2(1− 2z) cos∆φ sinh∆y + (cosh∆y − (1− 2z) sinh∆y)2

]
.

(5.11)

The measurement function can be expressed in terms of the variables TT and z as

∆Mjet(T cut) = 2θ(∆R12 > R)
[
θ(TB1 < T cut)θ(TB2 < T cut)− θ(TB1 + TB2 < T cut)

]

= 2θ(∆R12 > R)θ
[
T cut < TT < T cut 1

max (z, 1− z)

]
. (5.12)

We have multiplied by 2 to account for the case where both the gluons are in the other

hemisphere (i.e. TB is equal to the minus component of momenta). Finally the soft function

correction for the T jet
B veto in terms of the variables defined in Eq. (5.10) is

∆S(2)(T cut) =
4

(16π2)2
eγE2ǫ

Γ(1− ǫ)2

(π1/2Γ(1/2− ǫ)

Γ(1− ǫ)

)−1
∫ ∞

0
dTT

∫ 1

0
dz

∫ ∞

0
dyt

∫ ∞

−∞
d∆y

∫ π

0
d∆φ

T −1−4ǫ
T

z(1− z)
(z2(1− z)2)−ǫe−4ǫytATB

j ∆Mjet sin∆φ−2ǫ . (5.13)
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The only dependence on TT is in the measurement functions. Integration over TT gives

∫ ∞

0
dTTT −1−4ǫ

T θ
[
T cut < TT < T cut 1

max (z, 1− z)

]
= (T cut)−4ǫ (1−max [z, 1− z]4ǫ)

4ǫ

= (T cut)−4ǫ(− log[max (z, 1− z)]− 2 log2[max (z, 1− z)]ǫ) .

(5.14)

The integral over yt can also be performed as the matrix element and measurement function

are independent of yt. This integral yields,

∫ ∞

0
e−4ǫytdyt =

1

4ǫ
. (5.15)

With the remaining integrals, the soft function correction is given by

∆S(2)(T cut) =
8

(16π2)2
eγE2ǫ

Γ(1− ǫ)2

(π1/2Γ(1/2− ǫ)

Γ(1− ǫ)

)−1 1

4ǫ

∫ 1

0
dz

∫ ∞

−∞
d∆y

∫ π

0
d∆φ

1

z(1− z)
(z2(1− z)2)−ǫATB

j θ(∆y2 +∆φ2 > R2)(T cut)−4ǫ

(− log[max (z, 1− z)]− log2[max (z, 1− z)]ǫ) sin∆φ−2ǫ . (5.16)

We evaluated the integrals in Eq. (5.16) and obtained

∆S(2)(T cut) =
(αs

π

)2( µ

T cut

)4ǫ{ 1

4ǫ

[
C2
A

(
B1 logR+ f1(R)

)
+ CATfnf

(
B2 logR+ f2(R)

)]

+ C2
A

(
C1 logR+ C2 log

2R+ f3(R)
)
+ CATfnf

(
C3 logR+ C4 log

2R+ f4(R)
)}

,

(5.17)

where the coeffficients B1, B2, C1, C2, C3, C4 and the functions f1−4(R) are computed

below.

In order to extract the logR coefficients B1, B2 and the functions f1(R), f2(R), we can

simplify the above integral by expanding in the ǫ→ 0 limit,

∆S(2)(T cut) =
8

(16π2)2
1

4ǫ

1

π
(T cut)−4ǫ

∫ 1

0
dz

∫ ∞

−∞
d∆y

∫ π

0
d∆φ

1

z(1− z)

ATB
j (− log[max (z, 1− z)])θ(∆y2 +∆φ2 > R2) . (5.18)

The left over integrals are finite and the result is of the form a logR+c+O(R2). To extract

the coefficients B1 and B2 of the leading logR terms, we can expand the amplitudes in

the small R limit, which implies we expand in the small ∆R limit. This allows us to

obtain B1 and B2 analytically, though the constant terms we get are not right (because we

neglect higher R effects). Expanding the amplitudes in Eq. (5.11) in the small ∆R limit,

by keeping only the O(1/∆R2) terms, and dropping the higher O(∆R2) dependence, we
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get

ATB
fR = 4g4CATfnfµ

4ǫ 4

∆R4

[z(1− z)

2

(
∆R2 − 4z(1− z)∆y2

)]
,

ATB
AR = 4g4C2

Aµ
4ǫ 2

∆R2

[
(1− z + z2)− z(1− z) +

2z2(1− z)2∆y2(1− ǫ)

∆R2

]
. (5.19)

These amplitudes can be integrated over d∆y and d∆φ using the master integrals,

∫ ∞

−∞
d∆y

∫ π

0

d∆φ

π

1

∆R2
θ(∆R > R) = − logR+ log 2π ,

∫ ∞

−∞
d∆y

∫ π

0

d∆φ

π

2∆y2

∆R4
θ(∆R > R) = − logR+ log 2π +

1

2
. (5.20)

Carrying through the integrals we get

∫ 1

0
dz

∫ ∞

−∞
d∆y

∫ π

0

d∆φ

π

log[max (z, 1− z)]

z(1− z)
θ(∆R12 > R)ATB

AR = 4g4C2
A

µ4ǫ
[−1

36
(131− 12π2 − 132 log 2) log

( R
2π

)
+

1

72
(−13 + 12 log 2)

]
,

∫ 1

0
dz

∫ ∞

−∞
d∆y

∫ π

0

d∆φ

π

log[max (z, 1− z)]

z(1− z)
θ(∆R12 > R)ATB

fR =

4g4CATfnfµ
4ǫ
[ 1

18
(23− 24 log 2) log

( R
2π

)
+

1

36
(13− 12 log 2)

]
. (5.21)

The above analytic result gives

B1 =
1

18
(131− 12π2 − 132 log 2) , B2 =

−1

9
(23− 24 log 2) . (5.22)

To obtain the right constants and the R-dependence, we consider the full amplitudes as

given in Eq. (5.11) and perform the integrals in Eq. (5.18) numerically at different values

of the jet radius R to get the constant and R-dependent functions F1(R) and F2(R) from

fitting the result.

For the non-divergent ǫ0 terms, we can extract the coefficients C1−4 analytically in the

small R limit as before. Considering Eq. (5.16), the master integrals for ∆y and ∆φ are
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given by,

∫ ∞

−∞
d∆y

∫ π

0
d∆φ

∆φ−2ǫ

∆φ2 +∆y2
θ(∆φ2 +∆y2 > R2) =

1

2
π log 4π2 − π logR+

ǫ
(π3
12

+
1

4
π log2 4− π log2 π − π log 4 logR+ π log2R

)
+O(ǫ2) ,

∫ ∞

−∞
d∆y

∫ π

0
d∆φ

2∆y2∆φ−2ǫ

(∆φ2 +∆y2)2
θ(∆φ2 +∆y2 > R2) =

π

2
+ π log 2 + π log π − π logR

+ ǫ
(π
2
+
π3

12
+ π log2 2 + π log 2− π log2 π − π logR− π log 4 logR+ π log2R

)
+O(ǫ2) .

(5.23)

Here, in order to simplify the result, we have kept only the leading terms in ǫ. The integrals

for ∆φ and ∆y in Eq. (5.16) with (ATB
j → ATB

jR) are performed using the above formulae

and then the left over z integral is trivial. We then expand Eq. (5.16) to ǫ0 considering

the full amplitudes from Eq. (5.11), and integrate the expression numerically at different

values of R in order to obtain the R-dependent functions F3(R) and F4(R) from fitting.

Thus the final result for the clustering corrections in the soft function for T jet
B is

∆S(2)(T cut) =
(αs

π

)2( µ

T cut

)4ǫ{ 1

4ǫ

[
C2
A

{ 1

18
(131− 12π2 − 132 log 2) logR+ f1(R)

}

+ CATfnf

{−1

9
(23− 24 log 2) logR+ f2(R)

}]
+ C2

A

(
C1 logR+

C2 log
2R+ f3(R)

)
+ CATfnf

(
C3 logR+ C4 log

2R+ f4(R)
)}

, (5.24)

where

C1 =
1

216
[1580− 132π2 − 864ζ[3]] , C2 =

1

72
[131 + 12π2 + 132 log 2] ,

C3 =
1

108
[−245 + 24π2 − 36 log 2] , C4 =

1

36
[23− 24 log 2] . (5.25)

and the R-dependent functions f1(R), f2(R), f3(R) and f4(R) are defined as

f1(R) = F1(R)−B1 logR , f2(R) = F2(R)−B2 logR

f3(R) = F3(R)− C1 logR− C2 log
2R , f4(R) = F4(R)− C3 logR− C4 log

2R (5.26)

where F1−4(R) are the best fit curves as shown in Fig. 5.2. The data points in the top

panel of Fig. 5.2 are obtained by performing the integrals in Eq. (5.18) numerically at

different values of the jet radius R for the two color structures C2
A (in orange) and CATfnf

(in blue). The orange (C2
A) and the blue (CATfnf ) solid curves in Fig. 5.2 are the best fit

curves (F1(R) and F2(R) respectively) with the parametric form,

F (R) = a logR+ b log2R+ f(R) (5.27)
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Table 5.1: Coefficients for the fitting functions F1(R), F2(R), F3(R), F4(R), F5(R) and F6(R)
for the soft function and G1(1, R), G2(z,R) for the beam function. Each Fi(R) is plotted in Fig. 5.2
and Fig. 5.3 and G1(1, R), G2(z,R) is plotted in Fig. 5.5.

Observable function a b c d e f g

T jet
B,C F1(R) -4.385 0 -0.937 0.653 -0.011 0.0002 0.0013

T jet
B,C F2(R) -0.707 0 0.747 0.019 -0.0004 -0.0001 -0.0008

T jet
B F3(R) -3.525 1.096 -0.549 0.813 -0.340 -0.064 0.496

T jet
B F4(R) -0.306 0.1767 0.363 0.003 -0.001 -0.0097 -0.00002

T jet
C F5(R) -3.525 1.096 -0.479 6.675 -6.29 5.35 8.59

T jet
C F6(R) -0.306 0.1767 0.382 -0.020 0.023 -0.030 -0.035

T jet
B,C G1(1, R) -0.189 0.0883 0.273 -0.0076 0.00015 -0.0043 0.00036

T jet
B,C G2(0.1, R) -1.464 0 -3.092 -17.059 19.68 -21.98 -22.478

T jet
B,C G2(0.5, R) -0.198 0 -0.306 -2.139 2.461 -2.753 -2.802

where

f(R) = c+ dR2 + eR4 + fR2 logR+ gR4 logR .

where a = {B1, B2} and b = 0 for the 1/ǫ terms, a = {C1, C2} and b = {C3, C4} for the

ǫ0 terms. The other coefficients obtained from fitting are as shown in the Table. 5.1. We

have also cross-checked that we obtain the right coefficients B1, B2 and C1−4 by letting

them float free in the fit.

The plots in the lower panel of Fig. 5.2 similarly show the data points obtained by ex-

panding Eq. (5.16) to O(ǫ0) and integrating it at different values of R. The corresponding

best fit curves are represented by functions F3(R) and F4(R) respectively, having the same

parametric form as in Eq. (5.27), with a = C1 or C3 and b = C2 or C4 and the other

coefficients as given in Table. 5.1.

The correction to the two loop soft anomalous dimension is given by

∆γ
(2)
S (T cut, µ) =

(α2
s(µ)

π

)2
C

(2)
T , (5.28)

where

C
(2)
T =

( µ

T cut

)4ǫ[
C2
A

{ 1

18
(131− 12π2 − 132 log 2) logR+ f1(R)

}
+

CATfnf

{−1

9
(23− 24 log 2) logR+ f2(R)

}]
. (5.29)

The soft anomalous dimension from these clustering effects is cancelled by the anomalous

dimensions of the beam function leaving a fixed-order contribution that has a logarithm

of the ratio of the beam and soft scales.
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Figure 5.2: Top panel: Plot for the 1/ǫ terms in Eq. (5.24) as a function of the jet radius R for
C2

A and CATfnf color structures, showing both data points and the corresponding best fit curves
F1(R) and F2(R). Bottom panel: Plot for the ǫ0 terms in Eq. (5.24) as a function of R for C2

A

and CATfnf color structures, showing both data points and the corresponding best fit curves F3(R)
and F4(R).

5.2.2 Clustering for T jet
C

Let us now compute the clustering corrections for T jet
C , the steps being analogous to T jet

B

though more tedious. The measurement function for T jet
C is analogous to Eq. (5.5) and is

given by

∆M jet(T cut) = θ(∆R12 > R)
[
θ(TC1 < T cut)θ(TC2 < T cut)− θ(TC1 + TC2 < T cut)

]

= θ(∆R12 > R)θ
[
T cut < T ′

T < T cut 1

max (z′, 1− z′)

]
, (5.30)

where

T ′
T = TC1 + TC2 , z′ =

TC1

TC1 + TC2
. (5.31)

In place of TT and z defined earlier, we have for T jet
C , T ′

T and z′ while the other variables

∆y, ∆φ and yt remain the same as defined in Eq. (5.10). In order to express the correction

in the soft function given by Eq. (5.9) in terms of these new variables, we have from the
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definition of T jet
C ,

TC1 =
k+1 k

−
1

k+1 + k−1
, TC2 =

k+2 k
−
2

k+2 + k−2
, (5.32)

which implies we can express k+1 and k+2 as

k+1 = TC1(e
−2y1 + 1) = z′T ′

T (e
−(2yt+∆y) + 1)

k+2 = TC2(e
−2y2 + 1) = (1− z′)T ′

T (e
−(2yt−∆y) + 1) . (5.33)

The amplitudes in Eq. (5.7) can be expressed in terms of these new set of variables as,

ATC
A = 4g4C2

Aµ
4ǫ 1

(cosh∆y − cos∆φ)(cosh∆y − (1− 2z̃) sinh∆y)[
(1− z̃ + z̃2) cos∆φ cosh∆y − (1− 2z̃) cos∆φ sinh∆y − z̃(1− z̃)+

(1− ǫ)z̃2(1− z̃)2 sinh∆y2

(cosh∆y − cos∆φ)(cosh∆y − (1− 2z̃) sinh∆y)

]
,

ATC
f = 4g4CATfnfµ

4ǫ
[ 1

(cosh∆y − cos∆φ)(cosh∆y − (1− 2z̃) sinh∆y)

]2 z̃(1− z̃)

2[
1− 2 cos∆φ cosh∆y + 2(1− 2z̃) cos∆φ sinh∆y + (cosh∆y − (1− 2z̃) sinh∆y)2

]
,

(5.34)

where z̃ is given by

z̃ =
z′[(cosh∆y − sinh∆y)2e∆y + e2yt ]

e2yt + e∆y(1 + z′[−1 + (cosh∆y − sinh∆y)2])
, (5.35)

The phase space factor from Eq. (5.9) in terms of these variables is given by

Φ =
eγE2ǫ

Γ(1− ǫ)2

(π1/2Γ(1/2− ǫ)

Γ(1− ǫ)

)−1
∫
dk+1 dk

−
1 dk

+
2 dk

−
2 (k

+
1 k

−
1 k

+
2 k

−
2 )

−ǫ sin∆φ−2ǫd∆φ =

eγE2ǫ

Γ(1− ǫ)2

(π1/2Γ(1/2− ǫ)

Γ(1− ǫ)

)−1 −4

T ′
T (−1 + z′)z′

{e−2(∆y+2yt)(e∆y + e2yt)2(1 + e∆y+2yt)2

T ′4
T (−1 + z′)2z′2)}−ǫ sin∆φ−2ǫdT ′

Tdz
′d∆ydytd∆φ . (5.36)

Combining the above phase space factor with the amplitude and measurement function,

the full correction to the soft function for T jet
C is given by

∆S(2)(T cut) =
4

(16π2)2
eγE2ǫ

Γ(1− ǫ)2

(π1/2Γ(1/2− ǫ)

Γ(1− ǫ)

)−1
∫ 1

0
dz′
∫ ∞

−∞
d∆y

∫ ∞

−∞
dyt

∫ π

0
d∆φ

1

z′(1− z′)
(z′2(1− z′)2)−ǫ{e−2(∆y+2yt)(e∆y + e2yt)2(1 + e∆y+2yt)2}−ǫ sin∆φ−2ǫ

ATC
j θ(∆R2 > R2)(T cut)−4ǫ(− log[max (z′, 1− z′)]− 2 log2[max (z′, 1− z′)]ǫ) .

(5.37)
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The result of performing these integrals is the same as given in Eq. (5.17), with different

coefficients which we will compute below.

In order to extract the 1/ǫ terms, we can expand the phase-space factor in the ǫ→ 0 limit.

For the logR coefficients B1 and B2, we also expand the amplitude and phase space in the

small ∆R limit. This simplifies the phase space factor to

lim
ǫ→0,∆y→0

Φ = Φ0 =
−4(e−4yt(1 + e2yt)4T ′4

T (−1 + z′)2z′2)−ǫ

T ′
T (−1 + z′)z′

. (5.38)

Expanding the amplitudes in Eq. (5.34) in the small ∆R limit, we obtain the same expres-

sions as for T jet
B in Eq. (5.19),

ATC
fR = 4g4CATfnfµ

4ǫ 4

∆R4

[z′(1− z′)

2

(
∆R2 − 4z′(1− z′)∆y2

)]
,

ATC
AR = 4g4C2

Aµ
4ǫ 2

∆R2

[
(1− z′ + z′2)− z′(1− z′) +

2z′2(1− z′)2∆y2(1− ǫ)

∆R2

]
. (5.39)

This is as expected, because the 1/ǫ coefficients which contribute to the anomalous dimen-

sions for T jet
C should be the same as T jet

B , because the beam functions are the same. As for

T jet
B , the yt dependence in the small ∆R limit occurs only in the phase space factor Φ0.

Integrating over yt we get,

∫ ∞

−∞
−4(e−4yt(1 + e2yt)4)−ǫT ′−1−4ǫ

T

(−1 + z′)z′
dyt = − 4T ′−1−4ǫ

T

(−1 + z′)z′

( 1

2ǫ
− π2

3
ǫ+O(ǫ2)

)
. (5.40)

The T ′
T integral can also be performed over the measurement function as in the case of

T jet
B . The soft function correction for T jet

C after the yt and T ′
T integrals in the limit of

(ǫ,∆R) → 0 is given by

∆S(2)(T cut) =
4

(16π2)2

∫ 1

0
dz′
∫ ∞

−∞
d∆y

∫ g

0
π
d∆φ

π

( 1

2ǫ

) 1

z′(1− z′)

ATC
jRθ(∆y

2 +∆φ2 > R2)(T cut)−4ǫ(− log[max (z′, 1− z′)]) . (5.41)

These integrals are again finite and of the form a logR+ c+O(R2). The integrals over ∆y

and ∆φ can be performed using the master formulae given in Eq. (5.20) and we checked

that we obtain the same coefficients as for T jet
B in Eq. (5.22). To determine the constant,

we can consider the integral over the full amplitude,

∫
ATC

j =

∫
(ATC

j −ATC
jR) +

∫
ATC

jR (5.42)
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where the integral over the difference is given by

∆Ssub(R) =
(αs

π

)2( µ

T cut

)4ǫ
4j

∫ 1

0
dz′
∫ ∞

0
d∆y

∫ ∞

0
dyt

∫ π

0

d∆φ

π

(− log[max (z′, 1− z′)])

z′(1− z′)

θ(∆R2 > R2)
[ ATC

j

4g4jµ4ǫ
{e−2(∆y+2yt)(e∆y + e2yt)2(1 + e∆y+2yt)2}−ǫ

−
ATC

jR

4g4jµ4ǫ

(
e−4yt(1 + e2yt)4

)−ǫ]
. (5.43)

and where j = C2
A or CATfnf , ǫ ∼ 10−5. We use a subtraction method here because the

yt integral cannot be performed analytically when we consider the full amplitude and the

phase space (i.e. we cannot factor out the 1/ǫ divergence). The difference A − AR gives

a finite result in the limit R → 0. To obtain the right constant, the known result of the

integral over AR needs to be added back. We found that this constant and the R-dependent

functions (given by F1(R) and F2(R) in Fig. 5.2) obtained in this way agree with T jet
B as

expected.

For the non-divergent ǫ0 contribution, the logR coefficients C1−4(R) can be computed as

for T jet
B using the master integrals in Eq. (5.23) and the amplitudes in Eq. (5.39). We

know from Eq. (5.40), that there is no ǫ0 coefficient from the phase space. The logR and

log2R coefficients that we obtain analytically for T jet
C happen to be the same as given in

Eq. (5.25). For the constant, we perform the subtraction integral, ATC −ATB given by,

∆STC (R) =
(αs

π

)2( µ

T cut

)4ǫ
4j

∫ 1

0
dz′
∫ ∞

0
d∆y

∫ ∞

0
dyt

∫ π

0
d∆φ

1

z′(1− z′)
(z′2(1− z′)2)−ǫ

θ(∆R2 > R2)
[ ATC

j

4g4jµ4ǫ

{
e−2(∆y+2yt)(e∆y + e2yt)2(1 + e∆y+2yt)2

}−ǫ eγE2ǫ

Γ(1− ǫ)2

(π1/2Γ(1/2− ǫ)

Γ(1− ǫ)

)−1
(− log [max (z′, 1− z′)]− 2ǫ log2 [max (z′, 1− z′)]) sin∆φ−2ǫ

−
∫
dzδ(z − z′)

1

π

ATB
j

4g4jµ4ǫ
e−4yt(− log [max (z, 1− z)])

]
, (5.44)

where j = C2
A or CATfnf and ǫ ∼ 10−5. Here the subtracted term ATB

j only contains the

right 1/ǫ terms which cancel with T jet
C and the remaining finite O(ǫ0) result can be plotted

at different values of R to obtain an R-dependent function. The result of Eq. (5.44) is

plotted in Fig. 5.3, where the orange and blue data points are for the color structures C2
A

and CATfnf respectively. Functions F5(R) and F6(R) parameterized by Eq. (5.27) are the

corresponding best fit curves indicated by the orange and blue solid lines in Fig. 5.3. Thus
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Figure 5.3: The plots show the numerical result of the integrals in Eq. (5.44) for C2
A and CATfnf

color structures plotted as a function of the jet radius R and the corresponding best fit curves F5(R)
and F6(R).

the final result for the clustering corrections in the soft function for T jet
C is

∆S
(2)
C (T cut) =

(αs

π

)2( µ

T cut

)4ǫ{ 1

4ǫ

[
C2
A

{ 1

18
(131− 12π2 − 132 log 2) logR+ f1(R)

}

+ CATfnf

{−1

9
(23− 24 log 2) logR+ f2(R)

}]
+ C2

A

(
C1 logR+

C2 logR
2 + f5(R)

)
+ CATfnf

(
C3 logR+ C4 logR

2 + f6(R)
)}

, (5.45)

where C1, C2, C3 and C4 are as defined for T jet
B in Eq. (5.25) and the functions f1,2(R) are

as defined in Eq. (5.26) and

f5(R) = F5(R)− C1 logR− C2 log
2R , f6(R) = F6(R)− C3 logR− C4 log

2R . (5.46)

The correction to the soft anomalous dimension from clustering for T jet
C is the same as

T jet
B given in Eq. (5.28).

5.3 Clustering corrections in the Beam function

For the clustering corrections in the beam function, we will only consider here the CATfnf

contribution from the diagrams in Fig. 5.4 which allows us to check the consistency while

the full calculation including the C2
A color structure is analogous and is left for future.

The general setup for computing the clustering corrections in the beam function is similar

to the soft function with the measurement function given by Eq. (5.5). Because we defined

the clustering corrections relative to the inclusive beam thrust measurement, we can follow

the approach used in computing the partonic gluon beam functions at O(α2
s) in [84] to

obtain the amplitudes for the Feynman diagrams given in Fig. 5.4. The On-Shell diagram
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Figure 5.4: Diagrams contributing to the calculation of CATfnf color structure in the clustering
correction for the beam functions at O(α2

s). The full amplitude is obtained by adding the contribu-
tion from all these graphs including the mirror graphs for (b), (c) and (e).

method as discussed in [84] is used to compute these diagrams in which all possible cuts

are evaluated by putting the particles crossing the cut on shell. For the beam functions,

there is an additional measurement delta function, δ(ω − P̄n), as we saw in Eq. (4.102)

which fixes the sum of the minus momenta of all particles in each hemisphere to be equal

to ω = zp−. With this constraint, the correction in the gluon beam function in terms of

the momenta k1 and k2 of the emitted gluons is given by,

∆Bbare
g/g (k1, k2, z) =

( π1/2−ǫ

Γ[1/2− ǫ]

)( π1−ǫ

Γ[1− ǫ]

)∫ ∞

0
(k+1 k

−
1 k

+
2 k

−
2 )

−ǫδ(k−1 + k−2 − (1− z)p−)

dk+1 dk
+
2 dk

−
1 dk

−
2 ×

∫ π

0
(1− cos2∆φ)−ǫAB,nf∆Mjet(k1, k2)d∆φ , (5.47)

where AB,nf is the amplitude for the diagrams given in Fig. 5.4 taken from Ref. [84] and

p− is the total partonic n-collinear momentum. We use the coordinates defined for T jet
B in

Eq. (5.10) to express Eq. (5.47) in terms of z, TT , ∆y, yt and ∆φ. To avoid confusion, we

rename the variable z defined in Eq. (5.10) by z1. The clustering correction in terms of

these variables is

∆Bbare
g/g (T cut, z) =

( π1/2−ǫ

Γ[1/2− ǫ]

)( π1−ǫ

Γ[1− ǫ]

)∫ ∞

0
dTT

∫ 1

0
dz1

∫ ∞

−∞
dyt

∫ ∞

−∞
d∆y

∫ π

0
d∆φ

(e4ytT 4
T z

2
1(1− z1)

2)−ǫ4T 3
T z1(1− z1)e

4yt(1− cos2∆φ)−ǫ

δ
(
z1TT e2yt+∆y + (1− z1)TT e2yt−∆y − (1− z)p−

)
AB,nf∆Mjet(T cut) .

(5.48)

The TT dependence can be factored out and the integral over TT can be performed over
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the measurement function as in the case of the soft function (Eq. (5.14)). Performing the

yt integral using the delta function in z we get

∆Bbare
g/g (T cut, z) =

( π1/2−ǫ

Γ[1/2− ǫ]

)( π1−ǫ

Γ[1− ǫ]

)∫ 1

0
dz1

∫ ∞

−∞
d∆y

∫ π

0
d∆φ(e4y

′
tT 4

T z
2
1(1− z1)

2)−ǫ

4e4y
′
tT 3

T z1(1− z1)(1− cos2∆φ)−ǫAB,nf
1

2p−(1− z)
, (5.49)

where

y′t =
1

2
log
( (1− z)p−

TT (z1e∆y + (1− z1)e−∆y)

)
. (5.50)

The integral in Eq. (5.49) is proportional to (1− z)−1−2ǫ which can be expressed in terms

of the plus distribution identity as,

1

(1− z)1+2ǫ
=

−1

2ǫ
δ(1− z) + L0(1− z) +O(ǫ) . (5.51)

To compute the δ(1 − z) coefficients, we can take the z → 1 limit which simplifies the

amplitude AB,nf to a great extent. In order to extract the logR coefficients analytically,

we expand the amplitude in the small ∆R limit as for the soft function. As before, the

integrals over ∆φ and ∆y can be performed using the master integrals in Eq. (5.20) and

the left over z1 integral is trivial. To obtain the constant and an R-dependent function,

we perform the integrals in Eq. (5.49) numerically at different values of R, after expanding

the integrand in the ǫ → 0 limit. The 1/ǫ term thus obtained in Eq. (5.52) is −1/2 times

that for the soft function in Eq. (5.24). From the factorization formula, the consistency

relation for the anomalous dimensions is given by 2γgB + γgH + γgS = 0. Because the hard

function has no R-dependence, the divergence in the soft function due to clustering effects

is exactly cancelled by that in the beam functions for ∆Bg/g = (−1/2)∆Sg which is the

result we obtained for the CATfnf color structure.

For the O(ǫ0) terms, we follow the same procedure as in the soft function to obtain the

coefficients of logR and log2R analytically and the function g1(z = 1, R) from fitting. For

the L0(1− z) terms, we need to keep the full z dependence in the amplitude, but we can

consider the amplitude in the small ∆R limit to compute the logR coefficient analytically.

To obtain the constant and the R-dependence, for each value of z, the integrals in Eq. (5.49)

are performed numerically at different values of R and an R-dependent function g2(z,R)

is obtained by fitting the data for each value of z.

The final result for the corrections due to clustering in the bare partonic gluon beam
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Figure 5.5: Plot for the coefficient of L0(1− z) and δ(1− z)ǫ0 terms in Eq. (5.52) as a function
of the jet radius R and the corresponding best fit curves g1(1, R) and g2(z,R) for z = {0.1, 0.5}.

function for CAnfTf contribution is given by

∆Bbare
g/g (tcut, z) = −

(αs

π

)2( µ2
tcut

)2ǫ
CATfnf

[
δ(1− z)

{ 1

4ǫ

[ 1

18
(−23 + 24 log 2) logR+ f2(R)

]

+
2

72

(
− 68 + 4π2 + 23 log 2 + 12 log2 2

)
logR+

1

72

(
− 23 + 24 log 2

)
log2R

+ g1(z = 1, R)
}
+ L0(1− z)

{−2

72
(−23 + 24 log 2)Pgg(z)(1− z) logR

+ g2(z,R)
}]

(5.52)

where tcut = zp−T cut, f2(R) is the best fit curve as given in Eq. (5.26) and

g1(1, R) = G1(1, R)−A1 logR−A2 log
2R , g2(z,R) = G2(z,R)−A3 logR . (5.53)

with

A1 =
2

72

(
− 68 + 4π2 + 23 log 2 + 12 log2 2

)
, A2 =

1

72

(
− 23 + 24 log 2

)
,

A3 =
−2

72
(−23 + 24 log 2)Pgg(z)(1− z) . (5.54)

G1(1, R) and G2(z,R) are the best fit curves as shown in Fig. 5.5 with the parametric

form given in Eq. (5.27). We have chosen z = {0.5, 0.1} for illustration. We find that

the coefficient of the logR term in Eq. (5.52) is proportional to the gluon-gluon splitting

function as was shown in the case of clustering corrections for pjetT in Ref. [25].
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5.4 Conclusions and Outlook

In this chapter, we computed the clustering logarithms in the soft function and partially

in the beam function at O(α2
s) for the jet-based observables T jet

B and T jet
C . At one-loop

when there is a single emission, there are no clustering and jet algorithm effects. At O(α2
s),

jet algorithm dependent corrections can arise due to the clustering of two collinear or soft

particles into a single jet. These corrections give rise to logarithms of the jet radius R

and are UV-divergent thus contributing to the 2-loop anomalous dimensions for the soft

and beam functions. This divergence is cancelled between the soft and beam functions,

leaving a logarithm of the ratio of the beam and soft scales in the cross section. For the

soft function, we calculated these corrections and found that T jet
B and T jet

C have the same

anomalous dimensions while the non-logarithmic constants differ between the two. For

the beam function, we computed the corrections considering the O(α2
s) diagrams which

contribute to CATfnf color structure and checked that this result correctly cancels the

divergence in the soft function for the same color structure. The clustering corrections for

the C2
A contribution in the beam function is left for future work.

Considering the H+0-jet cross section at NNLL′+ NNLO, the clustering corrections con-

tribute to the two loop non-cusp anomalous dimensions and the 2-loop constants for the

beam and soft functions. After cancellation of the divergence, the left over term has a loga-

rithm of the ratio of the beam and soft scales and because for the T jet
f veto, µB ∼

√
mHT cut

and µS = T cut, the clustering effect in the cross section has the form

∆σ(T cut) = σB

(αs

π

)2[1
2
ln
(mH

T cut

)
C

(2)
T (lnR) + ∆C(R)

]
. (5.55)

where C(2)
T contains the logarithms of R that contribute to the anomalous dimension (e.g.

Eq. (5.28)) and ∆C(R) is the 2-loop constant. At each order, there is a contribution from

the clustering correction which multiplies the resummed cross section and has the form,

∆U (n)(R, T cut) = exp
[(αs

π

)n
Cn(R)

1

2
log
(mH

T cut

)]
. (5.56)

where Cn(R) ∼ C
(n−1)
n lnn−1R + C

(n−2)
n lnn−2R + · · · + C

(1)
n lnR + C

(0)
n (R). C(0)

n (R) are

the finite non-logarithmic terms. If one considers R ∼ mH/T cut, then these logarithms

are large and need to be resummed. For pjetT , the leading α3
s coefficients were computed

in [95] and found to be small. It is unknown if these coefficients are related or one needs

to calculate them at each order which can make resummation challenging.

The resummation for the H+0-jet cross section at NNLL′ requires determining the hard,

beam and soft functions upto O(α2
s), the anomalous dimensions of each upto O(α2

s) and

the cusp anomalous dimension upto O(α3
s). The NNLO result for the hard function, the
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two-loop result for the non-cusp hard anomalous dimension and the three-loop result for

the gluon cusp anomalous dimension are known. The two-loop soft function was partially

known without the jet-algorithm effects. We have calculated these jet clustering effects

and the 2-loop soft anomalous dimension for both T jet
B and T jet

C in this chapter. The

anomalous dimension for the beam function can be determined from the soft function using

RG consistency. The O(α2
s) matching kernels for the gluon beam functions were calculated

in [84] for inclusive beam thrust which can be used to obtain the beam functions for T jet
B .

However the full O(α2
s) result for the T jet

B beam functions requires the clustering corrections

and the 2-loop constants. We have computed these corrections for diagrams contributing

to CATfnf color structure in this chapter. The only remaining input requires extending

this general setup and implementing it for the other color structure which is left for future

work. With all these inputs and extracting the NNLO nonsingular contributions, we can

obtain the numerical results for the full NNLL′+ NNLO resummed H+0-jet cross section

with a veto T jet
f < T cut.





Chapter 6

Conclusions

In this thesis, we have studied perturbative uncertainties in the fixed-order predictions

of exclusive jet cross sections relevant for Higgs measurements at the LHC and obtained

resummed cross section predictions for new types of rapidity-dependent jet veto observables

in the framework of Soft Collinear Effective theory (SCET). In particular, we studied and

generalised the techniques to estimate theoretical uncertainties induced due to non-trivial

jet binning and jet veto cuts and applied them to estimate the perturbative uncertainties

in the NLO predictions for pp → H+ 2 jets cross section via gluon gluon fusion (ggF),

implementing the vector boson fusion (VBF) selection cuts used by ATLAS and CMS.

We introduced and discussed a new class of jet veto observables for which the transverse

momentum of a jet is weighted by a smooth function of the jet rapidity and provided

resummed predictions for the H+0-jet cross section at NLL′+ NLO order. To extend these

predictions to NNLL′+NNLO, we also computed the corrections due to jet clustering effects

in the soft functions and partly in the beam functions at O(α2
s). More details of the work

presented in this thesis is summarised in the following.

NLO Uncertainties in H+2-jets

Jets are relevant in multiple contexts in the Higgs measurements at the LHC. Separating

data into “jet bins” and measuring cross sections with a specific number of jets in the final

state, is useful to enhance the Higgs signal from backgrounds. Cuts on the kinematics of

jets help in discriminating between the different Higgs production mechanisms in particular

between VBF, which is accompanied by two forward jets, from ggF. With the typical ex-

perimental selection cuts used by ATLAS and CMS, the VBF sample is contaminated by a

25% fraction from H+2-jet production via ggF, which has large perturbative uncertainties.

In the first part of this thesis, we performed a detailed study of these uncertainties. We

gave a general discussion of jet binning uncertainties, reviewing and extending the so-called

ST procedure of estimating fixed-order uncertainties in exclusive jet cross sections. A jet

127
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binning (veto) cut introduces Sudakov logarithms in the cross section and it is important

to take into account the possible sizable effects of the higher-order logarithms in the cross

section predictions. Such a jet binning cut divides the total inclusive cross section (σ≥0)

into an exclusive 0-jet cross section (σ0) and an inclusive 1-jet cross section (σ≥1). The

uncertainties induced by such a binning can be parametrized in terms of fully correlated

and fully anti-correlated components of a covariance matrix. The correlated component

corresponds to the overall yield uncertainty for all bins and the anti-correlated component

is the migration uncertainty introduced by the binning cut which drops out in the sum

over the bins (σ0 + σ≥1). Using this method, we estimated the perturbative uncertainties

in the exclusive cross section for H+2 jets via ggF, by implementing the VBF selection cuts

used by ATLAS and CMS in their H → γγ analyses. Our method can be applied to all

decay channels which use similar VBF selection criteria. We used MCFM to compute the

NLO H+2-jets cross section as a function of two kinematic variables pTHjj and ∆φH−jj .

We observed that the uncertainties in the exclusive 2-jet cross section for pcutTHjj < 30GeV

are about 44% and 49% for ATLAS and CMS tight which is substantially larger than

the 21% uncertainty in the inclusive cross section. Similarly for ∆φH−jj > 2.6, we see a

moderate increase in uncertainty to 26% for ATLAS and CMS tight. As an illustration to

the application of our procedure for more complicated cut-based or multivariate analyses

(MVA), we also considered a combination of cuts on both ∆φH−jj and pTHjj , and found

that the uncertainties can get larger than 50%. These uncertainties should be carefully

taken into account in the theoretical predictions of cross section as well as in experiments

which impose indirect restrictions or jet veto cuts on additional emissions.

In order to estimate the uncertainties in separating the ggF-VBF cross sections, we also

studied the uncertainties in the ggF cross section measured relative to the expected VBF

cross section i.e. ∆σggF2 /σV BF
2 . We found that the relative uncertainty coming from the

ggF contribution quickly increases below pTHjj < 30GeV and π − ∆φH−jj < 0.4, which

means that tighter selection cuts are not always beneficial as the reduction in the ggF

contamination can be easily overwhelmed by the increasing perturbative uncertainties.

Together with the ATLAS experimentalists, we also applied our method to construct a

covariance matrix for estimating uncertainties in cross sections with arbitrary number of

selection cuts. We compared the uncertainties in the exclusive pp→ H+2-jet cross section

via ggF from MCFM, with the uncertainties obtained by applying our covariance matrix to

the H+0-jet cross section prediction from Powheg+Pythia8 as a function of π−∆φcutH−jj

and found good agreement. We devised a method to propagate the uncertainties into a

multivariate selection and found that harder cuts on the MVA classifier impose tighter

constraints on the ∆φH−jj phase space leading to increased theoretical uncertainties.

Rapidity dependent jet vetoes

Jet selection cuts and jet vetoes typically lead to Sudakov logarithms and larger uncer-
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tainties in the fixed-order cross section predictions. In the first part of the thesis, we

studied a method to explicitly take into account these logarithmic corrections in the fixed-

order uncertainty estimates. However, as the vetoes get tighter, these logarithms become

larger and dominate the perturbative series eventually leading to the breakdown of the

fixed-order predictions, in which case a systematic resummation of these logarithms is nec-

essary. In the second part of this thesis, we considered the resummation of the H+0-jet

cross section with a veto on a new class of rapidity-dependent observables using SCET.

We introduced two types of jet-based observables, T jet
B and T jet

C , for which the transverse

momentum of a jet is weighted by a smooth function of the jet rapidity, the weighting

function being different for each. Each of the two TB and TC-type observables were further

classified into two observables, depending on the frame they were defined in, as T(B,C) cm

defined in the hadronic center-of-mass frame i.e. lab frame and TB,C as the one defined

in a frame boosted with respect to the lab frame. These observables are useful both from

experimental and theoretical point of view. With a jet veto observable like pjetT commonly

used in current experiments, the jets can be reconstructed down to some minimum pT ,

which ristricts how low one can go in the veto cut. Furthermore, low pT jets are hard to

identify at forward rapidities in harsh pile-up conditions. A better and cleaner way is to

use rapidity dependent jet vetoes for which the rapidity weighting function can be chosen

such that the veto gets tighter at central rapidities and looser at forward rapidities. Such

jet vetoes are theoretically well motivated as they can also provide complementary ways

to divide the phase space into exclusive jet bins.

The full H+0-jet cross section with a veto TB,C < T cut consist of two components, the

resummed logarithmic contribution which is dominant at small values of T cut and the

nonsingular corrections which are suppressed by O(T cut/mH) and become important at

large T cut to obtain the full inclusive cross section. We computed the pp→ HX cross sec-

tion differential in the TB,Bcm and TC,Ccm observables at NLO and used NLO subtraction

method where we used the singular cross section as the “subtraction term” to cancel the

divergences in the full NLO predictions and obtain the finite non singular corrections. We

studied the factorization of the H+0-jet cross section into hard, beam and soft functions

for TB,C-type observables in the framework of SCET and obtained resummed predictions

for the H+0-jet cross section at full NLL′+NLO. To evaluate the uncertainties in our re-

summed predictions, we considered the covariance matrix as before and associated the

resummation uncertainty with the migration uncertainty and the fixed-order uncertainty

with the overall yield uncertainty. We obtained the fixed-order uncertainties by collectively

varying the fixed-order scale by a factor of two, keeping the scale ratios in the logarithms

fixed. For the resummation uncertainty, we vary the profile scales for the beam and soft

functions in order to estimate the size of higher-order corrections in the logarithmic series.

The resummation uncertainty corresponds to the intrinsic uncertainty in the resummed

logarithmic series caused by the jet veto cut and vanishes at large T cut where the resum-
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mation of logarithms become unimportant. The resummation uncertainty together with

the fixed-order uncertainty then determines the total uncertainty in the resummed H+0-

jet cross section. At NLL′+NLO, we find an uncertainty of about 20% at T cut ∼ 25GeV

which is comparable to pjetT at the same order, but we expect reduced uncertainties going

to NNLL′+ NNLO. We also compared our NLL′+NLO numerical results in bins of T jet
C

with the recent ATLAS measurements in the H → γγ channel and found good agreement.

Clustering corrections

At O(α2
s), for the jet-based observables we considered, there are corrections arising due

to the clustering of two soft or collinear particles into a single jet or due to the mixing

between the soft and collinear sectors. The soft-collinear mixing gives rise to corrections

of O(R2) in the cross section and for large values of the jet radius (R ∼ 1), these become

O(1) contributions which inhibit the soft-collinear factorization. The standard jet radii

used in the Higgs analyses are R = 0.4 for ATLAS and R = 0.5 for CMS. With these

values the soft-collinear mixing contributions are power suppressed while the corrections

arising due to the clustering of two soft or collinear particles that introduce terms of the

form αN
s logN−1R, are numerically important. In the last part of this thesis, we computed

these clustering corrections in the soft function and partly (only for the CATfnf color

structure) in the beam functions at O(α2
s). Our calculation of the clustering corrections

in the soft function for T jet
B and T jet

C , resulted in the same anomalous dimensions for the

two, as expected (the beam functions being the same for T jet
B and T jet

C ), but different

non-logarithmic constants. The bare corrections due to clustering are UV-divergent and

we checked for one color structure (CATfnf ) that this divergence cancels between the

soft and the beam functions. The calculation for the remaining color structures in the

beam function is left for the future. With these clustering corrections, we can compute

the O(α2
s) beam and soft functions for T jet

B and T jet
C and can extend the resummation

to NNLL′ order. Including the NNLO nonsingular contribution, we can obtain the full

NNLL′+NNLO resummed result for H+0-jet cross section with TB,C-type jet vetoes.

The Run 2 of the LHC is the beginning of the precision phase where precise predictions

of fixed-order cross sections which take into account the effects of jet binning and jet veto

cuts and resummed predictions for different jet veto observables and processes is of prime

importance. Our work aimed at providing methods to estimate uncertainties in the fixed-

order cross section predictions and obtaining resummed predictions for new class of jet

veto observables using SCET. These methods of estimating uncertainties have been used

in the ATLAS VBF analyses for different channels and in the theory predictions of cross

sections. The new class of rapidity dependent observables can prove to be good central jet

vetoes, and we propose that they should be measured and tested against theory predictions

in other SM processes such as Drell-Yan, diphoton and weak diboson production.



Appendix A

Hard, beam and soft functions

A.1 Hard Function

The hard function is defined as

Hgg(mt, q
2, µ) = |CggH(mt, q

2, µ)|2 , (A.1)

where CggH is the Wilson coefficient from matching the full ggH form factor in the SM

onto the ggH current in SCET. For on-shell Higgs production it is evaluated at q2 = m2
H .

At one loop,

CggH(mt, q
2, µ) = αs(µ)F

(0)
( q2

4m2
t

){
1 +

αs(µ)

4π

[
C(1)

(−q2 − i0

µ2

)
+ F (1)

( q2

4m2
t

)]}
,

(A.2)

where the coefficients C(i) and F (i) up to i = 2 can be found in [23]. For our NLL′

resummed predictions we need the NLO coefficient

C(1)(x) = CA

(
− ln2 x+

π2

6

)
, (A.3)

and we used

F (0)(z) =
3

2z
− 3

2z

∣∣∣1− 1

z

∣∣∣ arcsin2(
√
z) , (A.4)

F (1)(z) = 5CA − 3CF +O(z) , (A.5)

where the terms neglected in Eq. (A.5) have a numerically very small effect as m2
H ≪ 4m2

t .
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A.2 Beam function

We expand the beam function matching coefficients in Eq. (4.108) as

Iij(tcut, z, R, µ) =
∞∑

n=0

[αs(µ)

4π

]n
I(n)
ij (tcut, z, R, µ) . (A.6)

At tree level we have

I(0)
ij (tcut, z, R, µ) = δij δ(1− z) . (A.7)

We can obtain the one-loop matching coefficients for the gluon beam function by integrating

the beam thrust matching coefficients Igj(t, z, µ) in [23] over t from 0 to tcut. The results

read

I(1)
gg (t

cut, z, R, µ) = 2CAθ(z)
[
ln2

tcut

µ2
δ(1− z) + Pgg(z) ln

tcut

µ2
+ Igg(z)

]
(A.8)

and

I(1)
gq (t

cut, z, R, µ) = 2CF θ(z)
[
Pgq(z) ln

tcut

µ2
+ Igq(z)

]
, (A.9)

where

Igg(z) = L1(1− z)
2(1− z + z2)2

z
− π2

6
δ(1− z)− Pgg(z) ln z , (A.10)

Igq(z) = Pgq(z) ln
1− z

z
+ θ(1− z)z . (A.11)

The LO gluon splitting functions are defined as

Pgg(z) = 2L0(1− z)
(1− z + z2)2

z
,

Pgq(z) = θ(1− z)
1 + (1− z)2

z
, (A.12)

and

Ln(x) =

[
θ(x) lnn x

x

]

+

= lim
ǫ→0

d

dx

[
θ(x− ǫ)

lnn+1 x

n+ 1

]
(A.13)

denotes the usual plus distributions.
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A.3 Soft functions

A.3.1 Soft function for T jet
B(cm)

The soft function for T jet
B(cm) can be obtained by integrating the beam thrust soft function

Sgg(k, µ) in [23] over 0 < k < T cut. Through NLO this yields

SB
gg(T cut, µ) = 1 +

αs(µ)CA

π

(
−2 ln2

T cut

µ
+
π2

12

)
. (A.14)

A.3.2 Soft function for T jet
C(cm)

In this appendix we calculate the soft function SC
gg at one loop. The bare one-loop soft

function for a generic (differential) measurement function M(T ) and two (incoming) gluons

is given by [96]

Sbare(1)
gg (T ) = 4CA g

2
(eγEµ2

4π

)ǫ∫ ddp

(2π)d
(p+p−)−1 × 2πδ(p2)θ(p0)M(T , p+, p−) , (A.15)

where p is the momentum of the emitted soft gluon.

At one loop the soft measurement function for T jet
C according to Eq. (4.9) reads

M(T jet
C , p+, p−) = δ

(
T jet
C − |~pT |

eY + e−Y

)
= δ
(
T jet
C − p+p−

p+ + p−

)
. (A.16)

Inserting this in Eq. (A.15) and simplifying we get

Sbare(1)
gg (T jet

C ) =
αsCA

π

(eγEµ2)ǫ

Γ(1− ǫ)

∫
dp+dp−

θ(p+)θ(p−)

(p+p−)1+ǫ
× δ
(
T jet
C − p+p−

p+ + p−

)
. (A.17)

Integration over p+ and p− yields

Sbare(1)
gg (T jet

C ) = −αsCA

π

(eγEµ2)ǫ

Γ(1− ǫ)

Γ(ǫ)2

Γ(2ǫ)
(T jet

C )−1−2ǫ . (A.18)

Expanding (T jet
C )−1−2ǫ in terms of plus distributions and subtracting the 1/ǫ divergence,

the M̄S renormalized one-loop piece of the differential soft function reads

S(1)
gg (T jet

C ) =
αsCA

π

[
− 4

µ
L1

(T jet
C

µ

)
+
π2

4
δ(T jet

C )

]
. (A.19)

As expected, replacing CA → CF , this result agrees with the one-loop soft function for the
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C-parameter event shape in e+e− → qq̄ [76]. For the T jet
C -veto we integrate over T jet

C and

find

SC
gg(T cut, µ) = 1 +

αs(µ)CA

π

(
−2 ln2

T cut

µ
+
π2

4

)
, (A.20)

where we also added the trivial tree-level contribution.

This result only differs from the one in Eq. (A.14) for T jet
B in the T cut-independent constant,

while the logarithmic term is dictated by the RG structure and is the same for all four

observables we consider.
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NLO H+0-jet crosss section

B.1 H+0-jet cross section differential in T jet
B

The measurement function for T jet
B is

1 =

∫
dTB[δ(TB − eY p+)θ(e−Y p− − eY p+) + δ(TB − e−Y p−)θ(eY p+ − e−Y p−)] . (B.1)

Inserting the measurement function for T jet
B in Eq. (4.32) we have

dσ

dTB
=

1

16πE2
cm

∫
dza
za

dzb
zb
fa

( x̃a
za

)
fb

( x̃b
zb

) |Mab|2
E2

cm

δ
( x̃b
zb

− x̃b −
p+

Ecm

)
δ
( x̃a
za

− x̃a −
p−

Ecm

)

δ
(
x̃bx̃a −

p+p−

E2
cm

− m2
H

E2
cm

)[
δ(TB − eY p+)θ(e−Y p− − eY p+) + δ(TB − e−Y p−)

θ(eY p+ − e−Y p−)
]
δ
(
e2Y − x̃a

x̃b

)
dx̃adx̃bdp

+dp− . (B.2)

Changing variables to

p+ = p̃+eY p− = p̃−e−Y x̃a = xae
Y x̃b = xbe

−Y , (B.3)

the differential cross section becomes

dσ

dTB
=

1

16πE2
cm

[ ∫ dza
za

dzb
zb
fa

(xaeY
za

)
fb

(xbe−Y

zb

) |Mab|2
E2

cm

δ
(xb
zb

− xb −
TB
Ecm

)
δ
(xa
za

− xa −
p̃−

Ecm

)

δ
(
xbxa −

TB p̃−
E2

cm

− m2
H

E2
cm

)
θ
(
p̃− − TB

)
dp̃− +

dza
za

dzb
zb
fa

(xbe−Y

zb

)
fb

(xaeY
za

) |Mab|2
E2

cm
(xa
za

− xa −
TB
Ecm

)
δ
(xb
zb

− xb −
p̃+

Ecm

)
δ
(
xbxa −

TB p̃+
E2

cm

− m2
H

E2
cm

)
θ
(
p̃+ − TB

)
dp̃+

]

δ
(
e2Y − e2Y

xa
xb

)
dxadxbde

2Y . (B.4)
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Doing the p̃− (p̃+ for the other branch) and the zb(za) integrals using the delta function

we have

dσ

dTB
=

1

16πE2
cm

[ ∫ dza
za
fa

(xaeY
za

)
fb

((Ecmxb + TB)e−Y

Ecm

)
|Mab|2δ

(
xbxa −

TBp−0
E2

cm

− m2
H

E2
cm

)

θ
(
p−0 − TB

) z′b
Ecm + TB

+ {a↔ b, p−0 → p+0 }
]
δ
(
1− xa

xb

)
dxadxb2dY , (B.5)

where

p−0 =
xaEcm(1− za)

za
, p+0 =

xbEcm(1− z′b)

z′b
, z′b =

Ecmxb
Ecm + TB

(B.6)

Now performing one of the x integrals using the delta functions we get

dσ

dTB
=

2

16πE2
cm

[ ∫ dza
za
fa

(xeY
za

)
fb

((Ecmx+ TB)e−Y

Ecm

) |Mab|2
Ecm

δ
(
x2 − TBx(1− za)

zaEcm
− m2

H

E2
cm

)

θ
(x(1− za)Ecm

za
− TB

)
+ {a↔ b}

]
xdxdY . (B.7)

Performing the z integral using the delta functions we get

dσ

dTBdY
=

2

16πE2
cm

[ ∫
fa

(xeY
z′a

)
fb

((Ecmx+ TB)e−Y

Ecm

) |Mab|2
Ecm

θ
(x(1− z′a)Ecm

z′a
− TB

)

E2
cmz

′
a

x2E2
cm − TBxEcm −m2

H

+ {a↔ b}
]
dx , (B.8)

where

z′a =
EcmTBx

−m2
H + E2

cmx
2 + EcmTBx

. (B.9)

As for the case of TBcm the x integral can be performed numerically over the PDFs to get

the final cross section differential in Y and TB.

B.2 Differential cross section for T jet
C

The measurement function for T jet
C is given by

1 =

∫
dTC δ

(
TC − p+p−

p+eY + p−e−Y

)
. (B.10)
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Inserting the measurement function in Eq. (4.32),

d4σ

dx̃adx̃bdp+dp−
=

1

16πE2
cm

∫
dza
za

dzb
zb
fa

( x̃a
za

)
fb

( x̃b
zb

) |Mab|2
E2

cm

δ
( x̃b
zb

− x̃b −
p+

Ecm

)

δ
( x̃a
za

− x̃a −
p−

Ecm

)
δ
(
x̃bx̃a −

p+p−

E2
cm

− m2
H

E2
cm

)
δ
(
TC − p+p−

p+eY + p−e−Y

)

δ
(
e2Y − x̃a

x̃b

)
dTCde2Y . (B.11)

Rescaling p− to p−e2Y and doing the x̃a, p+ and p− integrals using the delta functions we

get

dσ

dTC
=

1

16πE2
cm

∫
dza
za

dzb
zb
fa

( x̃be2Y
za

)
fb

( x̃b
zb

) |Mab|2
E2

cm

δ
(
x̃2be

2Y − p+0 p
−
0 e

2Y

E2
cm

− m2
H

E2
cm

)

δ
(
TC − p+0 p

−
0 e

2Y

p+0 e
Y + p−0 e

Y

)
E2

cmx̃bdx̃bde
2Y , (B.12)

where,

x̃a = x̃be
2Y , p+0 = x̃b

(1− zb
zb

)
Ecm , p−0 = x̃b

(1− za
za

)
Ecm . (B.13)

Defining x̃b = e−Y xb the differential cross section becomes

dσ

dTC
=

2

16πE2
cm

∫
dza
za

dzb
zb
fa

(xbeY
za

)
fb

(xbe−Y

zb

)
|Mab|2δ

(
x2b

(−1 + za + zb
zazb

)
− m2

H

E2
cm

)

δ
(Ecmxb(−1 + zb)(−1 + za) + TC(−zb + za(−1 + 2zb)

−zb + za(−1 + 2zb)

)
xbdxbdY . (B.14)

Performing the xb integral using the delta function we get

dσ

dTC
=

1

16πE2
cm

∫
dza
za

dzb
zb
fa

(x′beY
za

)
fb

(x′be−Y

zb

)
|Mab|2|

zazb
−1 + za + zb

|

δ
(Ecmx

′
b(−1 + zb)(−1 + za) + TC(−zb + za(−1 + 2zb)

−zb + za(−1 + 2zb)

)
dY , (B.15)

where x′b = mH/Ecm

√
zazb/(−1 + za + zb). To simplify the za integral, we transform the

variables za, zb as za = 1/(1 + z1) and zb = 1/(1 + z2) which results in

dσ

dTCdY
=

1

16πE2
cm

∫
dz1

1 + z1

dz2
1 + z2

1

|1− z1z2|
fa

(eYmH(1 + z1)
√
1/(1− z1z2)

Ecm

)

fb

(e−YmH(1 + z2)
√

1/(1− z1z2)

Ecm

)
δ
(TC(z1 + z2)−mHz1z2

√
1

1−z1z2

z1 + z2

)
.

(B.16)

where one of the z1 or z2 integrals is performed using the delta function, and the other one

is used to integrate over the PDFs numerically.
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B.3 Differential cross section for T jet
Ccm

The measurement function of TCcm is

1 =

∫
dTCcmδ

(
TCcm − p+p−

p+ + p−

)
. (B.17)

Inserting the measurement function in Eq. (4.32)

d4σ

dx̃adx̃bdp+dp−
=

1

16πE2
cm

∫
dza
za

dzb
zb
fa

( x̃a
za

)
fb

( x̃b
zb

) |Mab|2
E2

cm

δ
(xb
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− x̃b −
p+

Ecm

)

δ
( x̃a
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− x̃a −
p−

Ecm

)
δ
(
x̃bx̃a −

p+p−

E2
cm

− m2
H

E2
cm

)
δ
(
TCcm − p+p−

p+ + p−

)
dTCcm .

(B.18)

Rescaling p+ = p̃+e−Y , p− = p̃−eY , x̃b = xbe
−Y and x̃a = xae

Y

d4σ

dxadxbdp̃+dp̃−
=

1

16πE2
cm

∫
dza
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dzb
zb
fa

(xaeY
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)
fb

(xbe−Y
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) |Mab|2
E2

cm

δ
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p̃+

Ecm

)

δ
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p̃−

Ecm

)
δ
(
xbxa −
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E2
cm
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H

E2
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)
δ
(
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p̃+e−Y + p̃−eY

)

δ
(
e2Y − e2Y

xa
xb

)
dTCcmde

2Y . (B.19)

Doing the xa, p̃− and p̃+ integrals we get

dσ

dTCcm
=

1

16πE2
cm

∫
dza
za

dzb
zb
fa

(xbeY
za

)
fb

(xbe−Y
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) |Mab|2
E2

cm

δ
(
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p̃+0 p̃
−
0

E2
cm

− m2
H

E2
cm

)

δ
(
TCcm − p̃+0 p̃

−
0

p̃+0 e
−Y + p̃−0 e

Y

)
xbdxb2dY , (B.20)

where

xa = xbe
2Y , p̃+0 = xb

(1− zb
zb

)
Ecm , p̃−0 = xb

(1− za
za

)
Ecm . (B.21)

Now performing the xb integral we get

dσ

dTCcmdY
=

1

16πE2
cm

∫
dza
za

dzb
zb
fa

(eYmH

√
zazb/(−1 + za + zb)

Ecmza

)
fb

(e−YmH

√
zazb/(−1 + za + zb)

Ecmzb

)

δ
(TCcm + eYmH(−1 + za)(−1 + zb)

√
zazb/(−1 + za + zb)

e2Y zb + za(−1 + zb + e2Y zb)

)
| zazb
−1 + za + zb

| .

(B.22)

The za and zb integral can be performed as in the T jet
C case shown before.
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