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Abstract

Bose-Einstein correlations between identified charged pions are measured for p+Pb colli-
sions at

√
sNN = 5.02 TeV with the ATLAS detector with a total integrated luminosity of

28 nb−1. Pions are identified using ionisation energy loss measured in the pixel detector.
Two-particle correlation functions and the extracted source radii are presented as a func-
tion of average transverse pair momentum (kT) and collision centrality. Pairs are selected
with a pseudorapidity between -1.5 and 1.5 and with an average transverse momentum
0.1 < kT < 0.8 GeV. The effect on the two-particle correlation function from jet frag-
mentation is studied, and a new method for constraining its contributions to the measured
correlations is described. The measured source sizes are substantially larger in more central
collisions and are observed to decrease with increasing pair kT. Linear scaling of the volume
with the average multiplicity in the acceptance region |η | < 1.5 is observed. The scaling of
the extracted radii with the mean number of participants is also used to compare a selection
of initial-geometry models.
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1 Introduction

While hydrodynamic models are applied successfully to nucleus-nucleus (A+A) collisions, the extent
to which they can describe p+Pb collisions remains a topic of active debate. Femtoscopy, the method
of using final-state interactions to probe the space-time extent of a particle-emitting source, provides
important input to this discussion [1].

Correlation functions of outgoing particle pairs are often studied in A+A collisions as a function of rel-
ative pseudorapidity (∆η) and azimuthal angle (∆φ). For |∆η | & 2 the jet contribution does not appear,
and the correlation function C(∆η,∆φ) is then seen to be independent of ∆η [2–7]. These long-range
correlations are known as the “ridge”. The pair production is often decomposed into Fourier modes:
dN/d∆φ ∼ 1 + 2Σnvn (paT )vn (pbT ) cos(n∆φ). The measured vn components are consistent with hydrody-
namic evolution.

Recent observations of the ridge in p+Pb [8–10] and pp [11, 12] collisions, where the system size is much
smaller than in Pb+Pb, raise questions over the interpretation of the vn as being purely of hydrodynamic
origin. Both hydrodynamic [13–16] and initial-state [17–21] models, as well as a hybrid scenario [22],
are able to describe the observed v2 and v3 in p+Pb collisions.

The Hanbury Brown and Twiss (often abbreviated as “HBT”) method originated in astronomy [23, 24],
where space-time correlations of photons due to wavefunction symmetrisation are used to measure the
size of distant stars. The procedure can be adapted to the tiny sources encountered in hadronic colli-
sions if identical-particle Bose-Einstein correlations are instead studied in relative momentum space [25].
Measurements of these Bose-Einstein correlations in pp collisions at

√
s = 0.9 GeV and

√
s = 7 GeV

have been produced by ATLAS [26], CMS [27], and ALICE [28]. At both energies the source radii are
observed to decrease with rising transverse pair momentum kT. It is also observed that the radii increase
with particle multiplicity but saturate at the highest multiplicities.

Although Bose-Einstein correlations are the most straightforward to measure experimentally, any non-
trivial interaction can be used in principle to image the source density. The term femtoscopy is often
used to refer to any measurement that provides spatio-temporal information about a hadronic source [29].
The measured source radii are interpreted as the dimensions of a nuclear source at freeze-out, after all
interactions between final-state particles and the bulk have ceased; thus, they are sensitive to the space-
time evolution of the event. In particular, an increase in radii at low momentum indicates radial expansion
since higher momentum particles are more likely to be produced earlier in the event [30]. The results of
femtoscopic measurements in p+Pb systems are of significant interest because they can provide insight
into the extent to which hydrodynamics applies in such small systems. While femtoscopic methods
have already been applied to p+Pb systems at the LHC [31, 32], this analysis presents new data-driven
techniques to constrain the significant background contribution from jet fragmentation, referred to in this
note as the “hard process” background.

The results presented in this analysis are shown for collision centralities ranging from 0% to 80%, in
centrality intervals no greater than 10% (see Sect. 3.1 for centrality definition). For a pair’s average
four-momentum k, the pair pseudorapidity ηk is selected from |ηk | < 1.5 and the results are shown as
a function of transverse pair momentum 0.1 GeV < kT < 0.8 GeV. One- and three-dimensional source
radii are presented as a function of the average charged-particle multiplicity, and the scaling of the system
size with the number of initial nucleon participants is also investigated, using the predictions of three
initial-geometry models.
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2 ATLAS detector

The ATLAS detector is described in detail in Ref. [33]. The inner detector (ID), which is immersed in
a 2 Tesla axial magnetic field, is used to reconstruct charged particles within |η | < 2.5 1. It consists of
a silicon pixel detector, a semi-conductor tracker (SCT) made of double-layered silicon microstrips, and
a transition radiation tracker made of straw tubes. A particle travelling from the interaction point with
|η | < 2 crosses at least 3 pixel layers, 4 double-sided micro-strip layers and typically 36 straw tubes.

The forward calorimeter (FCal), covering a pseudorapidity region of 3.1 < |η | < 4.9, is used to measure
the centrality of each collision. The FCal uses liquid argon as the active medium with tungsten and copper
absorbers.

The Minimum Bias Trigger Scintillators (MBTS), consisting of two arrays of scintillation counters, are
positioned at z = ±3.6 m and cover 2.1 < |η | < 3.9. They are used for the MinBias Level-1 trigger [34]
as well as to impose a constraint on the event selection.

3 Data analysis

3.1 Event and track selection

This analysis uses data from the LHC 2013 p+Pb run at
√

sNN = 5.02 TeV with an integrated luminosity
of 28.1 nb−1. The Pb ions had an energy per nucleon of 1.57 TeV and collided with the 4 TeV proton
beam to yield a centre-of-mass energy

√
sNN = 5.02 TeV with a longitudinal rapidity boost of 0.465 in

the proton direction relative to the ATLAS laboratory frame. Events are required to satisfy the Level-1
MinBias trigger and to have a hit on each side of the MBTS. The difference in time between the activity
in each side can be no greater than 10 ns. Only a single reconstructed primary vertex (PV) is allowed,
which is required to have at least two good tracks. Events which have more than one reconstructed vertex
(including secondary vertices) with either more than 10 tracks or a scalar sum of track pT greater than 6
GeV are rejected.

Event centrality is determined following the procedure in Ref. [35], using the total transverse energy in
the Pb-going side of the FCal. The use of the FCal for measuring centrality has the advantage that it is not
sensitive to multiplicity fluctuations in the kinematic region covered by the inner detector, where the fem-
toscopic measurement is performed. For each centrality interval the average charged-particle multiplicity
〈dNch/dη〉 is measured and the corresponding average number of participating nucleons 〈Npart〉 is derived
using methods and data also described in Ref. [35]. Since this analysis uses finer centrality intervals (no
wider than 10%), a linear interpolation is used to construct new values based on the published results.
The values and errors from this procedure are tabulated in Sect. 6.2.

Reconstructed tracks, taken from |η | < 2.5 at pT > 0.1 GeV, must originate from hits near the interaction
point. A minimum of one pixel hit is required, and if the track crosses an active module in the innermost
layer, a hit in that layer is required. For a track pT greater than 0.1, 0.2, or 0.3 GeV there must be at least 2,
4, or 6 hits in the SCT, respectively. The transverse impact parameter with respect to the primary vertex,

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe.
The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).
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dPV
0 , must be such that |dPV

0 | < 1.5 mm. The corresponding longitudinal impact parameter must satisfy
|zPV

0 sin θ | < 1.5 mm. Neither |dPV
0 | nor |zPV

0 sin θ | can be larger than 3 times its uncertainty as derived
from the covariance matrix of the track parameter fit.

3.2 Particle identification

Particle identification (PID) is performed through measurements of the energy loss dE/dx acquired from
the ionization charge deposited in the pixel clusters crossed by a track. Relative likelihoods that the
track is a π, K , and p are formed by fitting the dE/dx distributions to

√
s = 7 TeV pp data in several

momentum intervals [36]. Three PID selection levels are defined: one designed to have a high efficiency
for pions, one designed to result in high purity, and a middle ground which was chosen as the nominal
selection level. The efficiency and purity of these selections are studied in a p+Pb sample generated using
Hijing [37] and simulated with the GEANT4 package [38]. The sample is reconstructed with the same
conditions as the data. The resulting purity of pairs in the nominal selection is shown in Fig. 1. The
results are also evaluated at the looser and tighter PID definitions, and the variation is incorporated into
the systematic uncertainty.
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Figure 1: Purity of identified pion pairs, from fully simulated Hijing p+Pb events, as a function of the pair’s average
transverse momentum kT and pseudorapidity ηk .

3.3 Pair selection

Track pairs are required to have |∆φ| < π/2 to avoid an enhancement in the correlation function arising
primarily from dijets. This enhancement is not present in the signal region but can influence the results
by affecting the overall normalization factor in the fits. For a pair’s average momentum k = 1

2

(
pa + pb

)
the pseudorapidity ηk must lie inside |ηk | < 1.5 (a narrower window than the track selection of |η | <
2.5). When analyzing track pairs of opposite sign, selections on the invariant mass are applied such

that ���mππ − mρ0
��� > 150 MeV,

����mππ − mK 0
S

���� > 20 MeV, and ���mKK − mφ(1020)
��� > 20 MeV, where mab is

the pair’s invariant mass calculated with particle masses ma and mb . These selections are applied when
forming both the same- and mixed-event distributions.
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3.4 Correlation function

The two-particle correlation function is defined as the ratio of two-particle and single-particle momentum
spectra:

C
(
pa ,pb

)
≡

dNab

d3pad3pb

dNa

d3pa
dNb

d3pb

, (1)

for pairs of particles with four-momenta pa and pb . Utilising the correlation function as defined in this
way has the experimental advantage that most of the single-particle efficiency, acceptance, and resolution
effects cancel in the ratio.

It is of physical interest to evaluate the correlation function as a function of the relative momentum2

q ≡ pa − pb in intervals of average momentum k ≡ 1
2

(
pa + pb

)
. The relative momentum distribution

A(q) ≡ dN
dq

���same
is formed by selecting pairs of particles from each event in an event class, which is

defined by the collision centrality and z position of the primary vertex. The background B(q) ≡ dN
dq

���mix
is constructed by event mixing, that is, by selecting one particle from each of two events in the same event
class as A(q). The ratio of the distributions defines the correlation function:

Ck(q) ≡
Ak(q)
Bk(q)

. (2)

The relative momentum correlation functions are studied as a function of qinv ≡
√
−qµqµ and the three-

vector q. When working in all three dimensions, a longitudinally co-moving frame (LCMF) with the pair
of particles is used such that kz = 0. The coordinate axes are defined according to the “out-side-long”
convention [39–41]:

qout ≡
kT · q
|kT |

=
|pa

T |
2 − |pb

T |
2

2kT
, (3)

qside ≡
(ẑ × kT ) · q
|kT |

= −
ẑ ·

(
pa
T × pb

T

)
kT

, (4)

qlong ≡ẑ · q =
paz Eb − pbz Ea√

k2
0 − k2

z

. (5)

2 While q here refers to the relative four-momentum, it is also used generically to refer to either the Lorentz invariant qinv or
three-vector q. The correlation function is studied in terms of both these variables but the description of the analysis is nearly
identical for both cases.
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3.5 Parameterization and fitting of the correlation function

In the approximation that all particles are identical pions created in a fully chaotic source and that they
have no final-state interactions, the correlation function is enhanced by the Fourier transform of the source
density. This description is useful for guiding intuition, but is not sufficient for a complete analysis. The
Bowler-Sinyukov formalism [42, 43] is used to account for final-state corrections:

Ck(q) = (1 − λ) + λK (q)CBE(q) , (6)

where K is a factor for final-state corrections, and CBE(q) = 1 + F [Sk] (q) with F [Sk] (q) denoting the
Fourier transform of the two-particle source density function Sk(r). A number of factors influences the
value of the experimental parameter λ, which is constrained between 0 and 1. Including non-identical
particles decreases this parameter, as does coherent emission. Products of weak decays or long-lived
resonances are emitted at a length scale greater than can be resolved by the momentum resolution of the
detector, and also lead to a decrease in λ. These additional contributions to the source density are not
Coulomb-corrected in the Bowler-Sinyukov form. When describing pion pairs of opposite charge, there
is no Bose-Einstein enhancement and CBE → 1.

The particular choice of the correction factor K (q) is determined using the formalism in Ref. [44], under
the approximation that the Coulomb correction is effectively applied over a Gaussian source density of
radius Reff:

K (qinv) = G(qinv)
[
1 +

8Reff
√
πa

2F2

(
1
2
,1;

3
2
,
3
2

;−R2
effq2

inv

)]
, (7)

where G(qinv) is the Gamow factor [45] G(qinv) = 4π
aqinv

(
e

4π
aqinv − 1

)−1
, a = 388 fm is the Bohr radius of

two pions, and 2F2 is a generalised hypergeometric function.

The Bose-Einstein enhancement in the correlation function is fit to an exponential form,

CBE(q) = 1 + e−| |Rq | | , (8)

where q refers to either qinv or q depending on whether it is applied to the one- or three-dimensional
correlation function, and R is a diagonal matrix in one or three dimensions whose components are the
source radii. The double-bar expression | |Rq | | indicates the vector magnitude of Rq in three dimensions
and the absolute value of Rinvqinv in one dimension. This function corresponds to an underlying Cauchy
source density. A Gaussian enhancement is found to not describe the data as well as an exponential,
which is also observed in the pp results in Ref. [26]. The choice of form for F [Sk](q) must be taken into
account when interpreting source radii, and there is no simple correspondence between results using one
form and those using another.

A negative log-likelihood ratio L is minimised that assumes the bin contents of A and B are Poisson
distributed and C is best fit to the ratio of their means:

−2 lnL = 2
∑
i

[
Ai ln

(
(1 + Ci ) Ai

Ci (Ai + Bi + 2)

)
+ (Bi + 2) ln

(
(1 + Ci )(Bi + 2)

Ai + Bi + 2

)]
. (9)
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The factor −2 makes this statistic approach χ2 in the high-statistics limit. Here A and B are the quantities
in Eq. 2 when considered as histograms, such that Ai and Bi are the contents in bin i. Ci is shorthand for
C(qi ) where qi is the bin centre and C(q) is the fitting function describing the correlation. The statistical
uncertainties in the fit parameters of C(q) are selected from the points in the parameter space where
−2 lnL = min (−2 lnL) + 1.

4 Hard-process contribution

Additional non-femtoscopic enhancements to the correlation functions at qinv . 0.5−1 GeV are observed
in both +− (opposite charge) and ±± (same charge) pairs. This section describes the Monte Carlo (MC)
generators used to study these structures and presents the study performed to constrain their description.

4.1 Monte Carlo generators

Four Monte Carlo generator-level samples are used to study the background described in this section at the
truth level. No subsequent simulation is performed, as the effects of the reconstruction were studied using
full simulation and found to be negligible. In each of the following samples, 50 million minimum-bias
events are generated at a centre-of-mass energy per nucleon-nucleon pair of

√
sNN = 5.02 TeV.

1. Hijing p+Pb [37]
The same settings as in the nominal ATLAS p+Pb reconstructed simulation (as described in Sect. 3.2)
are used, except that the minimum hard-scattering pT is adjusted as described in Sect. 4.2. A boost
is applied along the collision axis in the proton-going direction to match the frame of the measured
p+Pb system.

2. Hijing pp
The generator is run with all of the same settings as the p+Pb sample, except that both incoming
particles are protons and no boost is applied.

3. Pythia 8 pp [46]
The default ATLAS tune “UE AU2-CTEQ6L1” is used with Pythia 8.209, which utilises the CTEQ
6L1 parton distribution function (PDF) from LHAPDF6 [47].

4. Herwig ++ pp [48]
The NNLO MRST PDF [49] was used with Herwig ++ 2.7.1.

4.2 Data-driven estimate of hard process backgrounds

The non-femtoscopic enhancement is more prominent at higher kT and lower multiplicities. This suggests
that the correlation is primarily due to jet fragmentation. This attribution is verified by studying corre-
lation functions in Hijing where the contribution from jets can be removed by increasing the minimum
hard-scattering pT from 2 to 20 GeV, as demonstrated in Fig. 2.

The amplitude of the hard-process contribution tends to be larger in Monte Carlo generators than it is
in the data. Thus, attempting to account for it by studying the double-ratio Cdata(q)/CMC(q) leads to a
depletion that is apparent in the region where the Bose-Einstein enhancement disappears [26]. Another
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Figure 2: Correlation functions of truth-level charged particles from Hijing for +− pairs (top) and ++ pairs (bottom).
The generator is run with the minimum hard-scattering pHS, min

T at the default setting of 2 GeV (left) and turned up to
20 GeV (right) to remove the contribution from hard processes. The gaps in the opposite-sign correlation functions
are a result of the selections described in Sect. 3.3, which remove the largest resonance contributions.

commonly used method is to parameterize the mini-jet contribution using MC and allow one or more
parameters of the description to be free in the fit [31, 32].

The analysis presented in this note avoids both of these strategies and instead develops a data-driven
method to constrain the correlations from jet fragmentation. Opposite-sign correlation functions are used
to predict the jet contribution in the same-sign correlation function. This has two clear difficulties. Firstly,
resonance decays appear prominently in the opposite-sign correlations. The most prominent of these are
removed by selections on the invariant mass of the opposite-sign pairs (as described in Sect. 3.3), and the
fits ignore opposite-sign structure below qinv = 0.2 GeV. Secondly, jet fragmentation affects the opposite-
sign correlations at a different level than it does for same-sign pairs. This is in part because opposite-sign
pairs are more likely to have a closer common ancestor in a jet’s fragmentation into hadrons.

To account for the remaining differences between +− and ±± pairs, a study of the correlation function
comparison is performed in Pythia 8. Hijing, which uses Pythia 6, was found to describe the charge
comparison inadequately. Fits are performed to a stretched exponential function of the form

C(qinv) = N
(
1 + λbkgde−|Rbkgdqinv |

αbkgd )
, (10)
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where N is a normalization factor and the other parameters depend on the charge combination and on
kT. First, αbkgd is determined with fits to same-sign correlation functions. The fits are well described by
a Gaussian form (αbkgd = 2) at kT . 0.4 GeV. The shape parameter αbkgd is only very weakly dependent
on multiplicity, so a function is fit to parameterize αbkgd as a function of kT. The fits to correlation
functions are performed again with αbkgd fixed to the same value in same- and opposite-charged pairs, and
a comparison is made between the width parameters R+−

bkgd and R±±bkgd. The width of the jet fragmentation
correlation for same-sign pairs is found to be roughly proportional to that for opposite-sign pairs:

R±±bkgd = ρR+−
bkgd . (11)

This proportionality begins to break down at low kT, but in this kinematic region hard processes contribute
little to the correlation function (i.e. λbkgd is small). The multiplicity of charged particles, Nch, is the
number of truth-level charged particles for pT > 0.1 GeV and |η | < 2.5. The ρ parameter is extracted as
a kT- and multiplicity-independent factor. Finally, R±±bkgd is also fixed from R+−

bkgd using the value of ρ, and
the fits are performed again to parameterize the relationship between the amplitudes:

λ±±bkgd = µ(kT)
(
λ+−

bkgd

)ν (kT)
. (12)

At each kT, µ and ν are fit to describe four multiplicity intervals (26 ≤ Nch ≤ 36, 37 ≤ Nch ≤ 48,
49 ≤ Nch ≤ 64, and 65 ≤ Nch). The power-law scaling of Eq. 12 is found to provide a good description of
the relation between the same- and opposite-sign amplitudes across all four multiplicity intervals studied.
The multiplicity-independence of µ and ν is important to justify the use of these parameters in p+Pb.

Since this study is done with Pythia 8 in a pp system, Hijing is also used to compare the correspondence
between opposite- and same-sign pairs in both pp and p+Pb. While the mapping is mostly consistent
between the two systems, it is found that µ is larger in p+Pb than in pp by 8.5% on average. When the
mapping is applied to the data, this factor is also taken into account, and the standard deviation of this
factor is incorporated into a systematic uncertainty.

With αbkgd(kT), µ(kT), ν(kT), and ρ determined from generator-level samples, the mapping can be
applied to the p+Pb data. As illustrated in Fig. 3, the +− correlation function is fit to Eq. 10 for
qinv > 0.2 GeV, with αbkgd fixed from Pythia 8 and λ+−

bkgd and R+−
bkgd as free parameters. The µ, ν, and ρ

are used to infer λ±±bkgd and R±±bkgd, which are fixed before the femtoscopic part of the correlation function
is fit to ±± data.

In three dimensions, qinv is calculated from q and the average kT in each bin. The same parameters used
to describe the hard-process contribution in the invariant correlation function are also used in the 3D fit.

The full form of the correlation function fit to ±± data including the hard-process background description
is

C(q) = N
[
1 − λ + λK (qinv)CBE(q)

] (
1 + λ±±bkgde−|R

±±
bkgdqinv |

αbkgd
)
, (13)

where q refers generically to either qinv or q.

9
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Figure 3: Correlation functions in p+Pb data for opposite-sign (teal circles) and same-sign (red squares) pairs. The
opposite-sign correlation function, with the most prominent resonances removed, is fit to a function of the form in
Eq. 10 (blue dashed line). The violet dotted line is the estimation of the jet contribution in the same-sign correlation
function, also of the form of Eq. 10, and the dark red line is the full fit of Eq. 13 to the same-sign data.

5 Systematic uncertainties

Systematic uncertainties are determined to account for the hard-process background description, PID, the
effective Coulomb correction size Reff , charge asymmetry, and two-particle effects.

One of the largest sources of uncertainty in femtoscopy in small systems in high-energy collisions comes
from forming an accurate description of the background contribution from hard processes. For the uncer-
tainty in the hard-process contribution three effects are considered. The variation in the translation from
pp to p+Pb is taken as an uncertainty in the amplitude, as mentioned in Sect. 4. Additionally, the ampli-
tude of C+−(qinv)

/
C±±(qinv) is studied in both Pythia and Herwig. Herwig predicts not nearly enough

difference between +− and ±± to describe the data. Thus, instead of using the ratio between the two
generators’ predicted scalings, the standard deviation of the ratio amplitude (across a selection of kT and
multiplicity intervals) is used as a systematic variation. The hard-process amplitude λbkgd is scaled up and
down by 12.3%, the quadrature sum of the relative variation from the pp to p+Pb distinction (4.1%) and
from the generator difference (11.6%). Additionally, in three-dimensional fits the mini-jet contribution is
described by mapping q onto qinv, which uses the average kT in the interval. The choice of kT is varied
up and down by one standard deviation of the values in that kT interval (typically about 30 MeV).

The analysis is repeated at both a looser and a tighter PID selection definition, and the variation is in-
cluded as a systematic uncertainty. The effect on the radii is at the 1-2% level for the lower kT intervals,
but becomes more significant at higher momentum intervals, where there are relatively more kaons and
protons and the dE/dx separation is not as good.
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kT [GeV] 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8
λbkgd 3.1% 2.8% 4.4% 5.4% 7.8% 11% 16%

Effective Coulomb size Reff 4.6% 5.2% 5.4% 4.3% 3.9% 3.7% 3.6%
Pion identification 0.1% 0.21% 0.43% 1.3% 1% 3.2% 2.1%
Charge asymmetry 1% 0.37% 0.29% 0.13% 1.3% 2.6% 1.6%

Minimum q in fit 0.45% 0.44% 0.98% 0.68% 1.3% 1.5% 0.54%
All 5.6% 5.9% 7.1% 7.1% 9% 12% 16%

Table 1: The relative systematic uncertainties in Rinv in the 1-5% centrality interval. The quadrature average of the
upper and lower systematic errors is divided by the nominal value to compute the relative uncertainty. The uncer-
tainty is dominated by the hard-process background description and the contribution from the effective Coulomb
size Reff is also significant at low kT.

kT [GeV] 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8
λbkgd 2% 3.7% 6.6% 9.4% 12% 16% 20%

Effective Coulomb size Reff 1.4% 1.2% 0.98% 0.86% 0.87% 0.83% 0.74%
Pion identification 1.1% 2.7% 4.7% 4.2% 3.8% 4.1% 3.4%
Charge asymmetry 0.66% 0.73% 0.069% 0.83% 0.087% 2.2% 1.8%

Minimum q in fit 0.82% 1.2% 1.5% 1.7% 0.71% 0.68% 0.42%
All 2.9% 4.9% 8.3% 11% 13% 16% 20%

Table 2: The relative systematic uncertainties in Rinv for the 60-70% centrality interval, as in Table 1. The uncer-
tainty is dominated by the hard-process background description.

The non-zero effective size of the Coulomb correction Reff should only provide a bin-by-bin difference of a
few percent, even with a value up to several fm, since the Bohr radius of pions is nearly 400 fm. However,
since the parameter changes the qinv width over which the Coulomb correction is applied, varying this
parameter can affect the source radii from around 1% (peripheral) to 6% (central). The nominal value
of 3 fm lies in the middle of the measured radii. The Reff is varied down to 1 fm and up to 6 fm, and
the change in the radii is included in the systematic uncertainties. This range is chosen as a conservative
estimate, as it encompasses the majority of the results.

A small difference between positive and negative charge pairs is observed, attributable to detector effects
such as the orientation of the overlap of the inner detector component staves. The nominal results use
all of the same-sign pairs, and a systematic variation accounting for this charge asymmetry is chosen to
overlap the results for both of the separate charge states.

Single-particle correction factors cancel out in the ratio A(q)/B(q). However, two-particle effects on the
track reconstruction can affect the correlation function. In the reconstructed Hijing sample, the truth-level
and reconstructed correlation functions are compared, and a depletion in the first few qinv bins is observed.
A minimum q cutoff is applied in the fits to avoid being affected by these detector effects. The sensitivity
of the results to this limit is checked by taking qmin

inv = 30 ± 10 MeV in the 1D fits, and symmetrising the
effect of the variation from |q|min = 25 to 50 MeV in the 3D fits.

The relative systematic uncertainties in Rinv are shown for a central interval (1-5%) in Table 1 and a
peripheral interval (60-70%) in Table 2. The relative systematic uncertainties are also tabulated for the
3D radii Rout (Table 3), Rside (Table 4), and Rlong (Table 5) averaged over centrality.
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kT [GeV] 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8
λbkgd 2% 3% 4.4% 6.9% 8.2% 9.8% 13%

Effective Coulomb size Reff 3.5% 4.2% 4.7% 5.1% 4.5% 3.6% 2.2%
Pion identification 0.51% 1.2% 1.6% 1.5% 1.5% 4.5% 17%
Charge asymmetry 1.4% 1.4% 0.93% 0.87% 1.2% 1.3% 1.1%

Minimum q in fit 1.3% 1.4% 0.75% 0.37% 0.17% 0.24% 0.67%
kT in background 0.18% 0.89% 0.31% 0.28% 0.17% 0.11% 0.16%

All 5% 6.4% 7.4% 9.2% 9.9% 12% 22%

Table 3: The relative systematic uncertainties in Rout, averaged over centrality. The quadrature average of the upper
and lower systematic errors is divided by the central value, which is averaged equally over centrality intervals from
0% to 80%. The values in the “All” row are averaged over centrality in the same way but include all systematic
variations added in quadrature.

kT [GeV] 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8
λbkgd 1.6% 2.5% 3.5% 5.3% 6.6% 8.4% 11%

Effective Coulomb size Reff 2.5% 2.4% 2.4% 2.3% 2% 2.2% 3.1%
Pion identification 0.25% 0.84% 1.2% 1.4% 1.9% 7.2% 34%
Charge asymmetry 0.97% 0.85% 0.47% 1% 1.4% 1.6% 3%

Minimum q in fit 0.47% 0.85% 0.49% 0.33% 0.22% 0.27% 0.93%
kT in background 0.045% 0.44% 0.097% 0.11% 0.27% 0.55% 1.2%

All 3.3% 4.1% 4.8% 6.2% 7.4% 12% 36%

Table 4: The relative systematic uncertainties in Rside, averaged over centrality in the same manner as in Table 3.

kT [GeV] 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8
λbkgd 1.8% 2.8% 3.5% 5% 6.1% 7.9% 11%

Effective Coulomb size Reff 3.2% 3% 2.6% 2.2% 1.8% 1.6% 2.3%
Pion identification 0.5% 0.95% 0.93% 0.78% 1.4% 5.2% 24%
Charge asymmetry 0.77% 0.81% 0.46% 0.75% 1.2% 1.1% 2%

Minimum q in fit 0.38% 0.8% 0.42% 0.27% 0.21% 0.24% 0.63%
kT in background 0.043% 0.52% 0.076% 0.11% 0.26% 0.52% 1.1%

All 4.1% 4.8% 4.9% 5.8% 6.8% 9.9% 27%

Table 5: The relative systematic uncertainties in Rlong, averaged over centrality in the same manner as in Table 3.
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6 Results

This section first shows examples of fits to correlation functions and discusses the evaluation of two
quantities, 〈dNch/dη〉 and 〈Npart〉, for each centrality interval. The remainder of the section presents
results for extracted invariant and 3D source radii as a function of kT, 〈dNch/dη〉, and 〈Npart〉.

6.1 Fit examples

An example of a fit to C(qinv) was included in Fig. 3, using the functional form of Eq. 13. The fit in the
same-sign correlation function reasonably describes the data, although the statistical uncertainties are so
small that a small departure of the correlation function from the exponential description can be detected.
Slices of a three-dimensional (3D) fit of C(q) to the three-dimensional variant of Eq. 13 are shown in
Fig. 4. The apparently imperfect fit along the qout axis is characteristic of qside ≈ qlong ≈ 0, and away
from this slice the agreement of the fit with the data improves.
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Figure 4: Example of the 3D fit showing slices along each axis in q-space. The blue line indicates the description
of the contribution from hard processes and the red line shows the full correlation function fit. The test statistic
−2 lnL = 22369 and there are 19805 degrees of freedom in the fit.

6.2 Centrality: Npart and average multiplicity

The mean Npart (〈Npart〉) in each centrality interval is extracted using the procedure in Ref. [35]. The values
used for 〈Npart〉 are shown in Table 6 for each of the three models evaluated. The Glauber 〈Npart〉 are also
used to perform a linear interpolation for 〈dNch/dη〉 in finer centrality intervals than those available in
Ref. [35]. The interpolation is justified with the result in Ref. [35] that charged particle multiplicity
is proportional to 〈Npart〉 in the peripheral region. The average charged particle multiplicities within
|η | < 1.5 that are extracted using this interpolation are also shown in Table 6.
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Centrality 〈Npart〉
Glauber 〈Npart〉

GGCF ωσ = 0.11 〈Npart〉
GGCF ωσ = 0.2 〈dNch/dη〉

0–1% 18.22+2.62
−1.01 24.18+1.52

−2.07 27.42+1.58
−4.48 58.07 ± 0.09 ± 1.86

1–5% 16.10+1.66
−0.90 19.52+1.24

−1.32 21.41+1.46
−1.98 45.78 ± 0.09 ± 1.33

5–10% 14.61+1.21
−0.82 16.49+1.00

−1.00 17.46+1.13
−1.08 38.53 ± 0.06 ± 1.12

10–20% 13.05+0.82
−0.73 13.77+0.79

−0.81 14.11+0.86
−0.79 32.34 ± 0.05 ± 0.97

20–30% 11.37+0.65
−0.63 11.23+0.62

−0.67 11.17+0.68
−0.62 26.74 ± 0.04 ± 0.80

30–40% 9.81+0.56
−0.57 9.22+0.50

−0.54 8.97+0.60
−0.49 22.48 ± 0.03 ± 0.75

40–50% 8.23+0.48
−0.55 7.46+0.41

−0.43 7.15+0.54
−0.39 18.79 ± 0.02 ± 0.69

50–60% 6.64+0.41
−0.52 5.90+0.36

−0.34 5.60+0.47
−0.30 15.02 ± 0.02 ± 0.62

60–70% 5.14+0.35
−0.43 4.56+0.32

−0.26 4.32+0.41
−0.23 11.45 ± 0.01 ± 0.56

70–80% 3.90+0.24
−0.30 3.5+0.22

−0.18 3.34+0.29
−0.16 8.49 ± 0.02 ± 0.51

Table 6: 〈Npart〉 for each centrality interval in the Glauber model as well as the two choices for the Glauber-Gribov
model with colour fluctuations (GGCF), along with the average multiplicity within |η | < 1.5. Asymmetric system-
atic uncertainties are shown for 〈Npart〉. The uncertainties in 〈dNch/dη〉 are given in the order of statistical followed
by systematic.

6.3 One-dimensional results

The results from fits of C(qinv) to Eq. 13 for the invariant radius Rinv are shown in Fig. 5 in four selected
centrality intervals. The clear decrease in size with increasing kT that is observed in central events is not
significant in peripheral events. Taken at face value, this suggests that central events undergo transverse
expansion, since in hydrodynamic models higher-pT particles are more likely to freeze out earlier in the
event. Another way of understanding this trend as evidence for transverse expansion is that there is a
smaller homogeneity region for particles with higher pT [30]. At low kT, ultra-central (0-1%) events have
an invariant radius significantly greater than peripheral (70-80%) events by a factor of about 2.6. This
difference becomes less prominent at high kT.

Invariant radii are also shown for all centralities in Fig. 6, as a function of the cube root of average
dNch/dη. For both kT intervals shown, the scaling of Rinv with 〈dNch/dη〉1/3 is close to linear but with
a slightly increasing slope at higher multiplicities. Rinv has a steeper trend versus multiplicity at lower
kT.
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Figure 5: The exponential invariant radii Rinv as a function of kT. The vertical sizes of the boxes are the quadrature
sum of the systematic uncertainties described in Sect. 5, and statistical uncertainties are shown with vertical lines.
The horizontal positions of the boxes are the average kT in each interval, and the widths of the boxes indicate the
standard deviation of kT.
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Figure 6: Exponential fit results for Rinv as a function of the cube root of average charged particle multiplicity,
〈dNch/dη〉1/3, where the average is taken over |η | < 1.5. The systematic uncertainties from the background
amplitude and pion identification are shown as error bands while the systematics from charge asymmetry, Reff ,
and q-cutoff are indicated by the height of the boxes. The horizontal error bars indicate the systematic uncertainty
from 〈dNch/dη〉 as tabulated in Sect. 6.2.
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6.4 Three-dimensional results

The three-dimensional radii Rout, Rside, and Rlong are shown as a function of kT in a selection of four
centrality intervals in Fig. 7. The 3D radii exhibit an even steeper drop-off from low to high kT in central
events relative to what is observed for the invariant radii in Fig. 5. This trend is present, but not as strong,
in peripheral events.

The radii are also shown as a function of the cube root of average multiplicity in Fig. 8, which probes
the relationship between the size and the source density at freeze-out. Linear scaling is observed with
different intercepts at different values of kT, in a qualitatively similar way to the scaling of Rinv with
〈dNch/dη〉 in Fig. 6.
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Figure 7: Exponential fit results for 3D source radii as a function of kT. A selection of four non-adjacent centrality
intervals are shown. The vertical size of the boxes are the quadrature sum of the systematic uncertainties described
in Sect. 5, and statistical uncertainties are shown with vertical lines. The horizontal positions of the boxes are the
average kT in each interval, and the widths of the boxes indicate the standard deviation of kT.

The ratio Rout/Rside (Fig. 9) is often of interest since, in models with radial flow, Rout includes components
of the source’s lifetime but Rside does not (see, for instance, the discussion in [1]). A value of Rout/Rside
less than 1 is observed with a decrease at increasing kT. In the region where the systematic uncertainties
are small, the ratio is observed to remain constant over centrality. As explained in [50], several improve-
ments to naive hydrodynamic models—primarily pre-thermal acceleration, a stiffer equation of state, and
shear viscosity—all result in more sudden emission. Thus, a value of Rout/Rside . 1 does not necessarily
rule out collective behaviour.
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Figure 8: The scaling of the 3D exponential radii with the cube root of charged-particle multiplicity. Systematic
uncertainties from the hard-process description and pion identification are shown in bands while those from charge
asymmetry, Reff , and the minimum cutoff in the fits are represented by the height of the boxes. Statistical uncer-
tainties are included but are smaller than the markers. The horizontal error bars indicate the systematic uncertainty
from 〈dNch/dη〉 as tabulated in Sect. 6.2.
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Figure 9: The ratio of exponential radii Rout/Rside as a function of kT. The vertical size of the boxes are the
quadrature sum of the systematic uncertainties described in Sect. 5, and statistical uncertainties are shown with
vertical lines. The horizontal positions of the boxes are the average kT in each interval, and the widths of the boxes
indicate the standard deviation of kT.
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Figure 10: The product RoutRsideRlong for two kT intervals plotted against the average multiplicity. The systematic
uncertainties from the background description and pion identification are shown as error bands while the systematic
uncertainties from charge asymmetry, Reff , and q-cutoff are indicated by the height of the boxes. The horizontal
error bars indicate the systematic uncertainty from 〈dNch/dη〉 as tabulated in Sect. 6.2.
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Figure 11: The scaling of the product RoutRsideRlong with 〈Npart〉 calculated with three initial geometry models:
standard Glauber as well as Glauber-Gribov (GGCF) for two choices of the colour fluctuation parameter ωσ . The
systematic uncertainties from the background description and pion identification are shown as error bands while
the systematics from charge asymmetry, Reff , and q-cutoff are indicated by the height of the boxes. The horizontal
error bars indicate the systematic uncertainties in 〈Npart〉 as tabulated in Sect. 6.2.

The product of 3D radius parameters, RoutRsideRlong, is shown in Fig. 10 as a function of the average
multiplicity. The scaling of the volume with the multiplicity is nearly linear, which implies a constant
freeze-out density. Fig. 11 compares the volume scaling with 〈Npart〉 for the standard Glauber model as
well as for two choices of the Glauber-Gribov colour fluctuation (GGCF) model [51]. The parameter
ωσ controls fluctuations in the nucleon-nucleon cross section within the Glauber-Gribov model. It is
observed that a model that includes non-zero fluctuations in the proton size must be used in order to
maintain a linear scaling of the volume with 〈Npart〉. At kT > 0.6 GeV, this linear scaling no longer holds
even for the ωσ = 0.2 model. The values and systematic uncertainties for 〈Npart〉 in each model are listed
in Sect. 6.2.

7 Summary and conclusions

Bose-Einstein correlations of identified pions are used to image the freeze-out source density of p+Pb
collisions at

√
sNN = 5.02 TeV with ATLAS. Correlation functions in relative momentum space are fit to

extract source radii as a function of collision centrality and pair kT. A data-driven technique is developed
for constraining the contribution of jet fragmentation in the correlation function. The measured radii are
observed to decrease with increasing kT in central events, a pattern consistent with collective expansion.
This decrease is found to be weaker in peripheral events. The ratio Rout/Rside is observed to be less than
one, suggestive of an explosive evolution of the source. Linear scaling of RoutRsideRlong with average
charged particle multiplicity is observed, which implies a constant freeze-out density. With a model of
the initial collision geometry that incorporates fluctuations in the size of the proton, a linear scaling of the
source volume with 〈Npart〉 is observed.
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