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We provide type IIB string embeddings of two axion variants of natural inflation. We use a combination
of RR 2-form axions as the inflaton field and have its potential generated by nonperturbative effects in the
superpotential. Besides giving rise to inflation, the models developed take into account the stabilization of
the compact space, an essential condition for any semirealistic model of string inflation.
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I. INTRODUCTION

Recent observational progress has drastically transformed
cosmology into a quantitative science [1–4]. From these
measurements we derive increasingly strong evidence for
cosmological inflation, a very early epoch of accelerated
expansion lasting for about 60 e-foldings of the scale factor.
Recently, the BICEP2 Collaboration reported the first

measurement of B-mode polarization of the cosmic micro-
wave background (CMB) at large angular scales [5]. If this
result stands after further corroboration and turns out to be
primordial, then in the context of inflation it corresponds to
a detection of primordial gravitational waves with a tensor-
to-scalar ratio r ¼ 0.16þ0.06

−0.05 . Further results quantifying the
polarized foreground emissions from e.g. galactic dust
along the lines of [6–8] will help settle this question in
the future.
The number of e-folds of slow-roll inflation

Ne ¼
Z

ϕNe

ϕe

dϕffiffiffiffiffi
2ϵ

p ð1:1Þ

can be related to the tensor-to-scalar ratio, r, via the Lyth
bound

r ¼ 16ϵ ∼ 0.003
�
50

Ne

�
2
�
ΔϕNe

MP

�
2

: ð1:2Þ

If we take the B-mode detection for the time being as
signaling primordial inflationary tensormodes with r≳ 0.1,
then the Lyth bound [9,10] tells us that the field excursion
during inflation was super-Planckian: ΔϕNe

≫ MP.
1

Inflation is known to be sensitive to the high-scale effects
of a possible UV completion of the low energy theory;
however, large and small fieldmodels are affected to different
extents by this UV sensitivity. In small-field inflation
ΔϕNe

≲MP clearly requiring the tuning of dimension-6
operators to avoid Oð1Þ contributions to the slow-roll
parameter η ¼ V 00=V. To see this, note that a generic infla-
tionary model will contain dimension-6 operators of the type
δV6 ∼ V0ðϕÞϕ2=M2

P. In a small-field model the starting-
point inflaton potential necessarily has the form

V0ðϕÞ ¼ V0

�
1þ

ffiffiffiffiffiffiffi
2ϵ0

p ϕ

MP
þ η0

2

ϕ2

M2
P
þ � � �

�
≃ V0

¼ const ð1:3Þ

at small field values ϕ ≪ MP. Hence, δV6 ∼ V0ϕ
2=M2

P
corrects η by an Oð1Þ value, destroying slow roll.
Large-field inflation in contrast is UV sensitive to an

infinite series of dangerously irrelevant operators. Clearly,
we must appeal to a protective symmetry to save the inflation
direction in the scalar potential. This by definition will
almost amount to an effective shift symmetry which is
broken at leading order by the inflationary scalar potential
itself. While this notion of a protective shift symmetry in
large-field inflation is certainly natural in the bottom-up
Wilsonian sense (corrections from self-interactions of infla-
ton fluctuations die out at large field values, and quantum
Einstein gravity correction scale ∼V=M4

P; V
00=M2

P ≪ 1),
realizing such a shift symmetry and establishing control
over its breaking clearly requires high-scale information
mandating the embedding into a theory of quantum gravity.
At present there is not a unique and well understood

theory of quantum gravity. However, string theory con-
stitutes the most prominent candidate, with many nontrivial
intricate results concerning its mathematical structure, the
right low-energy field content to potentially accommodate
our local universe, and a successful microscopic description
of a large part of black hole physics. This provides a clear
motivation to study inflation and in particular its large-field
varieties in string theory. The requirement of realizing a
well-respected shift symmetry typically leads us to consider
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1The field excursion can be reduced to sub-Planckian, if we

allow for a nonmonotonic ϵ [11]. These types of models have
received revived interest due to the BICEP2 result. We wish to
note that there is no problem with having enough e-folds even
withΔϕNe

≪ 1 and ns ≃ 0.96 at the pivot scale per se. The actual
limitation is that a smaller field excursion implies a faster change
in ϵ which in turn implies a larger deviation from nearly scale
invariance, which is harder to accommodate given the now ≃7
e-folds measured by PLANCK [11–13].
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the many string theory axions from higher-dimensional
p-form gauge fields, or their mirror-dual partners of
complex structure moduli, as good inflaton candidates.
However, many sectors of the theory display a periodicity
under shift of the p-form axionic fields aðpÞ → aðpÞ þ 2π
while the kinetic terms of these axions

Lkin ¼ f2ð∂μaðpÞÞ2 ð1:4Þ

imply

f ∼
MP

Lp ≪ MP ð1:5Þ

for 10d to 4d compactifications with volume V ¼ L6 in
string units. The periodicity range of the canonically
normalized axion field

ϕðpÞ

MP
¼ f

MP
aðpÞ ∼

aðpÞ
Lp ≲ 1 ð1:6Þ

is sub-Planckian in controllable compactifications requiring
large volume and weak string coupling [14]. This discrete
shift symmetry with sub-Planckian period is broken by the
presence of quantized p-form fluxes or (dual) brane con-
figuration, which unwraps the discrete shift symmetry into a
system of multiple nonperiodic branches: the full system
with fluxes or branes shows monodromy in the potential
energy of the axion on each branch, while periodicity is
retained when summing over multiple branches [15–26].
An alternative to monodromy proper arises in the

presence of at least two axions [27–36]. Nonperturbative
effects provide cosine potentials with typical sub-Planckian
periodicities 2πf1 and 2πf2,

V ¼ Λ4
1

�
1 − cos

�
p1

f1
ϕðpÞ
1 þ p2

f2
ϕðpÞ
2

��

þ Λ4
2

�
1 − cos

�
q1
f1

ϕðpÞ
1 þ q2

f2
ϕðpÞ
2

��
: ð1:7Þ

An alignment of the pi; qi [27] or a hierarchy like e.g. q1 ≪
p1; q2 with p2 ¼ 0 [32,33] (a fully nonperturbative variant
of [28]) drives the emergence of a mass hierarchy in the
axionic sector, which is translated into the appearance of an
effective super-Planckian axion decay constant feff ≫
MP ≳ f1; f2. The arising effective single-field inflaton
potential realizes the original idea of natural inflation [37].
A crucial step for any construction of large-field inflation

in string theory consists of showing the compatibility of the
shift symmetry and field-range extension mechanism with
the process of moduli stabilization. The moduli potential
tends to backreact on the inflationary vacuum energy. This
generates corrections to the inflaton potentials, which
energetically lead generically to the flattening of a naive
potential shape as inferred from the pure large-field
mechanism itself [38]. Generically, the inflationary vacuum

energy may very well participate in moduli stabilization
which often can enhance the stability of the compactifica-
tion while showing the flattening effect [26,38]. If we
restrict ourselves to the supersymmetric setup provided by
Calabi-Yau (CY) flux compactification, stabilization of the
volume moduli often requires nonperturbative effects. For
this reason, CY compactifications often lead to problems
with having the inflationary vacuum energy participating in
moduli stabilization, requiring a (moderate) separation of
scales between the moduli potential and the inflaton sector.
This, however, is an artifact of our restricting to CY
compactifications in the first place.
In this paper we are discussing several methods of

embedding an aligned or hierarchical axion potential of
the type (1.7) into type IIB string theory compactified on
CY manifolds with 3-form flux fixing the complex struc-
ture moduli and the axio-dilaton [39]. Because of the
arguments discussed above, and those expressed in Sec. IV
A, we will restrict ourselves to the use of 2-form R-R sector
axions C2 which provide a rather well-protected shift
symmetry in the context of type IIB on CY orientifolds
with O7 planes and D3=D7-branes [16,40,41].
The paper is organized as follows. In Sec. II, we discuss

natural inflation models in the two axions case. We will
demonstrate that [27,28,32,33] actually stem from the same
origin. We embed such models in a supergravity framework
in Sec. III. In Sec. IV we discuss their string theoretic
derivation. We will study both the Kachru-Kallosh-Linde-
Trivedi (KKLT) mechanism [42] and the large-volume
scenario [43] for combining Kähler moduli stabilization
with nonperturbative effects from gaugino condensation on
D5-branes or ED3-ED1 instanton from Euclidean D3-
branes providing the axion potential for the 2 R-R sector
C2 axions. Finally we conclude in Sec. V.

II. NATURAL INFLATION FROM TWO AXIONS

A. A common origin

In this section we discuss the two mechanisms that
generate effective super-Planckian decay constants from
fundamental sub-Planckian ones, following the works
[27,32,33]. We show that actually both models (as well
as [28]) come from the same origin and only correspond to
different deformations of the underlying potential, or
different breaking of the same shift symmetry.
Consider a two axion potential of the form

V ¼ Λ4
1

�
1 − cos

�
p1

~f1
ϕ1 þ

p2

~f2
ϕ2

��

þ Λ4
2

�
1 − cos

�
q1
~f1
ϕ1 þ

q2
~f2
ϕ2

��
; ð2:1Þ

where the axions ϕ1 and ϕ2 have canonical kinetic
terms and all decay constants are sub-Planckian:
~f1
p1
;
~f2
p2
;
~f1
q1
;
~f2
q2
< MP.
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We start our discussion by imposing an alignment
condition on the above scalar potential which ensures
the presence of flat direction by arranging for
V ¼ Vðϕ1 þ ϕ2Þ. Then the determinant of the second
derivative matrix vanishes everywhere, signaling the pos-
sibility of a flat direction detVij ¼ 0.2 Hence all that is left
is to find a region where the gradient Vi is small, and we
have the flat region desired for inflation, provided that the
other eigenvalues of Vij are positive. This happens natu-
rally at the origin of field space in (2.1). Slow-roll inflation
requires deforming the flat direction slightly. We can
achieve this in two nonequivalent directions away from
the flat limit—either we relax the alignment condition in
the spirit of Kim-Nilles-Peloso (KNP) or we introduce a
subdominant scalar potential providing the slowly varying
deformation away from flatness as in Dante’s inferno and
hierarchical axion inflation. We will now discuss both
possibilities in more detail.

B. KNP

We start by discussing the KNP mechanism. As was
mentioned above, in the perfect alignment limit p2

p1
¼ q2

q1
the

mass matrix is singular. With inflation model building in
mind one deforms this condition to allow for small
misalignment,

p2

p1

≡ r and
q2
q1

≡ rð1þ δÞ with δ ≪ 1: ð2:2Þ

This has the effect of lifting the flat direction in a way
suitable for slow-roll inflation provided δ is sufficiently
small. One must note that for sufficiently small δ,
the alignment mechanism holds for generic values of the
various parameters in Eq. (2.1), as can be seen from the fact
that the determinant of the mass matrix

detM2 ≡m2
1m

2
2 ¼ Λ4

1Λ
4
2

p2
1q

2
1r

2

~f21 ~f
2
2

δ2 ð2:3Þ

becomes singular in the limit of perfect alignment (δ ¼ 0),
signaling the presence of a flat direction.
To leading order in δ, the mass eigenvalues are

m2
1 ¼

p2
1q

2
1r

2

~f22 þ ~f21r2
Λ4
1Λ

4
2

p2
1Λ

4
1 þ q21Λ

4
2

δ2 and

m2
2 ¼

~f22 þ ~f21r2

~f21 ~f
2
2

ðp2
1Λ

4
1 þ q21Λ

4
2Þ; ð2:4Þ

which keeping in mind that the axions’ masses are of the
form Λ4=f2 implies that the large effective decay constant,
corresponding to the eigenvalue m2

1, scales as

f2eff ¼
~f22 þ ~f21r2

q21r
2δ2

: ð2:5Þ

And so, by considering two almost aligned axions with
originally sub-Planckian decay constants, one generates an
effective super-Planckian decay constant as is required for
natural inflation for the price of tuning an alignment of the
original axion decay constants. This extension of the field
range without requiring a super-Planckian fundamental
domain constitutes the main advantage of this model, when
compared with the original single-cosine realization of
natural inflation [37].

C. Hierarchical axions

The hierarchical axions (HA) model (and its close cousin
Dante’s inferno) corresponds to setting p2 ¼ 0 in (2.1). By
definition there is no alignment whatsoever, and the
deformation of the potential that will allow for inflation
corresponds to introducing a hierarchy in the decay con-
stants by having p1 ≪ q1. The mass matrix at the global
minimum is such that

detM2 ¼ Λ4
1Λ

4
2

p2
1q

2
2

~f21 ~f
2
2

; ð2:6Þ

so in the limit p1 → 0 an exact shift symmetry is
recovered and for q1 ≫ p1 the symmetry is broken such
that inflation ends at a stable minimum at the origin,
provided that

Λ2

Λ1

>
ffiffiffiffiffi
p1

q1

r
: ð2:7Þ

The effective axion masses in the limit q1 ≫ p1 are

m2
1 ¼

Λ4
1

~f22

�
p1q2
q1

�
2

; m2
2 ¼

Λ4
1p

2
1

~f21
þ Λ4

2

�
q21
~f21

þ q22
~f22

�
;

ð2:8Þ

and so we see that the mass spectrum is hierarchical, with
m1 ≪ m2. Integrating out the heavy mode results in a
single effective axion potential with an effective decay
constant,

feff ¼ ~f2
q1

q2p1

: ð2:9Þ

The model generates super-Planckian effective decay
constants similar to KNP, but replaces the tuned align-
ment with a hierarchy between the decay constants. It

2In mathematics detVij ¼ 0 is called the Monge-Ampère
equation. Starting from such an equation is much more general
than our discussion here. The Monge-Ampère equation provides
an excellent starting point for model building and model
classification. We intend to return to this in future work.
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further keeps the entire inflationary analysis in a sub-
Planckian domain avoiding the functional fine-tuning
necessary in large field models. The advantages of the
model as laid out in [32] are threefold: utilizing (i) only
nonperturbative effects, (ii) the smallest number of
axions, and (iii) the least amount of tuning of the input
parameters. These advantages make the model specifi-
cally tractable from the string theoretic point of view.
Both the KNP alignment and the hierarchical axions

mechanism produce an effectively single-field inflaton
potential of the form VðϕÞ ¼ Λ4

eff ½1 − cosðϕ=feffÞ� with
an effective enhanced field range feff ≳MP. Hence, its
observational predictions for the spectral index ns of
curvature perturbation and the tensor-to-scalar ratio r agree
with those of natural inflation itself [31]. In particular, for
feff ≳ 10MP the scalar potential in the 60 e-fold range
approaches that of m2ϕ2 inflation with ns ¼ 1 − 2=Ne ≃
0.967 and r ¼ 8=Ne ≃ 0.13, while for feff ≲ 5MP the
model becomes of small-field type with ns growing
more red and leaving the Planck 95% region, while the
tensor-to-scalar ratio drops to (currently) unobservable
levels.

III. SUPERGRAVITY EMBEDDINGS

In this section we provide explicit ways to build the field
theory models [27,32,33] described above into supergrav-
ity. The goal of this approach is to provide a stepping stone
to the realization of these inflationary models in string
compactifications of type IIB string theory which we
present in Sec. IV.

The minimal model requires two chiral multiplets Xm ≡
bm þ icm whose dynamics are determined by the canonical
Kähler potential

K ¼ 1

4
ðX1 þ X1Þ2 þ

1

4
ðX2 þ X2Þ2 ð3:1Þ

and the nonperturbatively generated superpotential

W ¼ W0 þ Ae−p1X1−p2X2 þ Be−q1X1−q2X2 : ð3:2Þ
In the case p2 ≠ 0 one has the KNP alignment mecha-

nism giving rise to a super-Planckian axion, while if one
chooses from the start p2 ¼ 0 inflation will proceed
through hierarchies in the parameters p1; q1, and q2. The
structure of the scalar potential will be similar in both cases,
and so we analyze them simultaneously whenever possible.
The scalar potential can be made to have a hierarchy

between the terms stabilizing the real parts of X1 and X2

and those generating the inflationary potential, thereby
decoupling the heavy fields from the inflationary dynamics.
The F term potential

V ¼ eKðDIWDIW̄ − 3jWj2Þ; where

DIW ¼ ∂IW þW∂IK ð3:3Þ

can be written as

V ¼ V0 þ V1 þ V2; ð3:4Þ
where

V0 ¼ eb
2
1
þb2

2W2
0ð−3þ 2b21 þ 2b22Þ; ð3:5Þ

V1 ¼ 2eb
2
1
þb2

2W0fAF2½p1; p2� cos ½p1c1 þ p2c2� þ BF2½q1; q2� cos ½q1c1 þ q2c2�g; ð3:6Þ
and

V2 ¼ A2F3½p1; p2� þ B2F3½q1; q2� þ 2ABe−ðp1þq1Þb1−ðp2þq2Þb2þb2
1
þb2

2 cos ½ðp1 − q1Þc1 þ ðp2 − q2Þc2�
× ð−3þ 2ðp1 − b1Þðq1 − b1Þ þ 2ðp2 − b2Þðq2 − b2ÞÞ: ð3:7Þ

For the sake of short formulas we have defined the b1 and b2 dependent quantities

F2½m; n�≡ e−mb1−nb2ð−3þ 2b1ð−mþ b1Þ þ 2b2ð−nþ b2ÞÞ;
F3½m; n�≡ e−2mb1þb2

1
−2nb2þb2

2ð−3þ 2ðm − b1Þ2 þ 2ðn − b2Þ2Þ: ð3:8Þ

Both in the KNP and in the hierarchical regimes we
focus on regions of parameter space where jW0j ≫
jAe−p1X1 j; jAe−p1X1−p2X2 j; jBe−q1X2−q2X2 j so that one can
stabilize b1; b2 at high scale before analyzing the infla-
tionary potential. This hierarchy in the superpotential
descends into the scalar potential: V0 ≫ V1 ≫ V2. In these

simple supergravity models the need for this hierarchy
derives from the desire to analytically minimize the
potential in a controlled way, and it is not a fundamental
requirement of these models since we expect the alignment/
hierarchical mechanisms to produce a super-Planckian
direction even in the absence of this hierarchy in W.
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This situation will change once we consider stringy
embeddings of this idea, as we will see in Sec. IV, since
this tuning will be related to parametric decoupling of the
moduli vacuum.
We note in passing, that more generally parametric

decoupling is an overly conservative criterion which may
be relaxed in concrete string embeddings. The moduli
potential may backreact appreciably during the inflaton
evolution, which due to energetic reasons generically leads
to a flattening of the inflaton potential expected from the
parametrically decoupled limit [38]. In particular, if pertur-
bative high-scale mechanisms serve to fix all the moduli,
inflation may even participate and help with moduli stabi-
lization allowing for significant yet controllable flattening
effects [26]. The nonperturbative mechanisms of volume
stabilization we use here are more sensitive to backreaction
effects. This limits the amount of controllable flattening
achievable and motivates us to restrict ourselves to the limit
of parametric decoupling for the sake of explicitness.
Note that the combined minimum of the three cosine

terms above and the moduli potential usually is an anti–de
Sitter (AdS) vacuum. As discussed in many of the dS

vacuum constructions in string theory in recent years, we
need to add an uplifting contribution from e.g. an anti D3-
brane [42], D-terms with field-dependent Fayet-Iliopoulos
(FI) terms [44,45] or dilaton dependent nonperturbative
effects [46]

δVuplift ¼
C
Vp ; with p ¼ Oð1Þ > 0; ð3:9Þ

to the scalar potential to lift the AdS minimum to a near
Minkowski state hVF þ δVuplifti≃ 0. Provided we already
arranged for sufficient hierarchy between the moduli
masses and the axion mass scales arising from the three
cosine terms in VF in the prior AdS vacuum, this will
survive an uplifting term of the above type. Hence, we will
from now on tacitly assume the presence of such an
uplifting term in our setups, which justifies the form
VðϕÞ ∼ 1 − cosðϕ=fÞ for the three cosine terms arising
from the moduli potential.
The structure of the F-term potential, Eq. (3.3), implies

that a three cosine potential is inevitable in supergravity,
modifying Eq. (2.1) to

V ¼ Λ4
1

�
1 − cos

�
p1

~f1
ϕ1 þ

p2

~f2
ϕ2

��
þ Λ4

2

�
1 − cos

�
q1
~f1
ϕ1 þ

q2
~f2
ϕ2

��

þ Λ4
3

�
1 − cos

�
p1

~f1
ϕ1 þ

p2

~f2
ϕ2 −

q1
~f1

ϕ1 −
q2
~f2
ϕ2

��
: ð3:10Þ

Even though this will alter the expressions for the mass
eigenvalues, which will receive Λ3 dependent contribu-
tions, the existence of a mass hierarchy remains and the
large effective decay constants are still given by Eqs. (2.5)
and (2.9) for the KNP and HA cases, respectively.
Noting that V0 depends only on the combination y≡

b21 þ b22 we see that the tree level action stabilizes y at

hyi ¼ 1=2; ð3:11Þ

and so b1; b2 must lie in a circle of radius 1=
ffiffiffi
2

p
centered at

the origin of the ðb1; b2Þ plane. This is illustrated in Fig. 1.
At this level there is still one flat direction left in the
ðb1; b2Þ plane as well as two in the ðc1; c2Þ. Since V0 is
independent from p2, this result applies to both the KNP
and the hierarchical axion mechanism. The flat directions
will be lifted by the next-to-leading order contribution to
the potential, V1, which we analyze separately in the two
regimes.

A. KNP alignment mechanism

We start by studying the vacua of V1 in KNP in the limit
of perfect alignment, p2

p1
¼ q2

q1
≡ r, where we know there will

be one unfixed direction in the c plane. We will then follow

[27] and allow for a slight misalignment which will lift the
remaining flat direction in a way suitable for inflation. This
procedure is more subtle here than in the field theory case
since the leading contribution to the potential, V0 leaves the
angular direction in the ðb1; b2Þ plane unfixed. One there-
fore has to ensure that by allowing for a slight misalignment
in the decay constants in order to realize inflation, one is not
simultaneously destabilizing the angular direction in
the ðb1; b2Þ.
In the alignment limit we have

V1 ¼ −4W0e
1
2
−zðp1þb1Þ

p1

�
Ae

zq1
p1 ð1þ zÞ cos ½p1ðc1 þ rc2Þ�

þ Bez
�
1þ z

q1
p1

�
cos ½q1ðc1 þ rc2Þ�

�
; ð3:12Þ

where for algebraic simplicity we have set p1 ¼ q1 and
defined z≡ p1b1 þ p2b2. This potential will simultane-
ously stabilize z and the axionic combination c1 þ rc2. The
minimum is located at hzi ¼ 0 and hc1 þ rc2i ¼ 0. This
implies that the vacuum in the b plane lies at the
intersection of the circle b21 þ b22 ¼ 1=2 and the straight
line passing through the origin p1b1 þ p2b2 ¼ 0. By
construction, in this limit, the same linear combination
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of c1; c2 appears in the potential and so the orthogonal
combination is exactly flat.
The introduction of a slight misalignment δ in the

axionic decay constants,

p2

p1

≡ r and
q2
q1

≡ rð1þ δÞ; ð3:13Þ

which will generate the inflationary potential, will also
perturb the b vacuum. This can in extreme cases lead to the
destruction of the bminimum or in more mild ones lead to a
shift in the minimum’s position. Since for inflationary
purposes δ ≪ 1, the b vacuum survives the introduction of
a misalignment, with its position shifting by a small factor
proportional to the smallness of the misalignment of the
decay constants δ,

hzi ¼ −δ
Brp1q21ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2
p

ðAp2
1 þ Bq21Þ

: ð3:14Þ

This fixes the remaining flat direction in the b plane in the
misaligned regime in a similar way to what was described
before. The only difference is that the straight line intersect-
ing the circle in the b plane no longer passes through the
origin. The effect of the misalignment in the stabilization of
the real part of the fields X1 and X2 is therefore negligible.
The potential for the axions then admits the following

expansion:

V1 ¼ −4W0

ffiffiffi
e

p fA cos ½p1ðc1 þ rc2Þ�
þ B cos ½q1ðc1 þ rð1þ δÞc2Þ�g; ð3:15Þ

which coincides with the field theory model of
Eq. (2.1), with the identifications Λ4

1 ¼ 4W0A
ffiffiffi
e

p
and Λ4

2 ¼ 4W0B
ffiffiffi
e

p
.

B. Hierarchical axions mechanism

Just as in the KNP case, for the hierarchical axion
inflation model, the potential is generated by Eq. (3.6), but
now with p2 ¼ 0. Anticipating that inflationary model
building will require q1 ≫ q2; p1 we can expand V1 as

V1 ¼ −4W0ðA
ffiffiffi
e

p
cos½p1c1�

þ Be1=2þzðz − 1Þ cos½q1c1 þ q2c2�Þ; ð3:16Þ

where z≡ −q1b1 − q2b2.
V1 is simultaneously responsible for stabilizing the

angular direction in the b plane (or equivalently stabilizing
z) and giving rise to inflation. To leading order in a q1
expansion, we find that hzi ¼ 0, implying that the b
vacuum is the same as in the aligned KNP regime. In this
case the potential then simplifies to the desired form

V1 ¼ −4W0ðA
ffiffiffi
e

p
cos½p1c1� þ B

ffiffiffi
e

p
cos½q1c1 þ q2c2�Þ:

ð3:17Þ

One then concludes that the model of Eqs. (3.1) and (3.2)
does indeed provide a supergravity description of the two
axion versions of natural inflation of [27] and [32,33].
Generically this did not have to be the case since the
structure of supergravity requires a model that initially
involves four fields: two axions and two saxions/moduli,
whose masses are closely linked. What we have shown is
that the mechanism that allows for the generation of a
potential suitable for inflation simultaneously guarantees
that there is a mass hierarchy between the lightest axion and
all the saxions/moduli. When trying to embed these models
in string compactifications we will therefore be looking for
the generic structures of (3.1) and (3.2), the adequate mass
hierarchies, and tunable parameters.

0.5

0.0

0.5

b1
0.5

0.0

0.5

b2

0.0197

0.0196

0.0195

FIG. 1 (color online). Scalar potential in the ðb1; b2Þ plane for fA; B;W0; r; δ; b1; a1g ¼ f0.002; 0.001; 1; 2; 0.1; 0.1; 0.05g. Right: V0;
left: V1. Note the hierarchy between the two contributions to V.
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IV. NATURAL INFLATION IN STRING
COMPACTIFICATIONS

A. Axions in string compactifications

We confine our discussion to flux compactifications of
type IIB string theory on O3/O7 orientifolds of warped
Calabi-Yau 3-folds with 3-form NS-NS and R-R flux. We
assume a choice of 3-form fluxes such that they stabilize
the complex structure moduli and the type IIB axio-dilaton
supersymmetrically at a high mass scale while generating
an effectively constant superpotential W0 [39].
For the stabilization of the Kähler moduli we consider

nonperturbative stabilization à la KKLT [42] involving
gaugino condensation on D7-brane or D5-brane stacks or
Euclidean D3-brane (ED3) instantons, or the large volume
scenario (LVS) involving a combination of the leading
Oðα03Þ correction to the CY 3-volume and an ED3-brane
instanton or D7-brane stack.
At the N ¼ 2 level prior to imposing the O7 projection,

the Kähler moduli sector consists of h1;1 2-cycle moduli
tj ¼ vj þ ibj. Here the bj ¼ R

Σ2j
B2 denotes the NS-NS 2-

form axions bj arising from the NS 2-form B-field on the
h1;1 2-cycles Σ2j

, while the vj denote the 2-cycle geometric
volumes in string units. The tree-level Calabi-Yau volume
V is then given by

V ¼ 1

6
kijkvivjvk: ð4:1Þ

Imposing the O7 projections projects the Kähler moduli
sector into an O7-even and odd subspaces with respective
dimensions h1;1þ and h1;1− ¼ h1;1 − h1;1þ . Moreover, this

forces a rearrangement of the real scalars into a ¼
1…h1;1þ 4-cycle moduli

Ta ¼
1

2
kabcvbvc þ i

Z
Σa
4

C4 þ
1

2ðSþ S̄Þ kaβγG
βðGγ þ ḠγÞ

ð4:2Þ

and α ¼ 1…h1;1− 2-form axion multiplets

Gα ¼ S̄bα þ icα; ð4:3Þ

where the type IIB axio-dilaton is S ¼ e−ϕ þ iC0 and we
have O7-odd 2-form R-R and NS-NS axions

cα ¼
Z
Σ2α

C2 and bα ¼
Z
Σ2α

B2: ð4:4Þ

For the case of a single Kähler modulus h1;1þ ¼ 1 and h1;1− ≥
1 odd 2-form axion moduli we can invert the relation
between T and t and acquire tðT;GαÞ. This gives a 4d
N ¼ 1Kähler potential of the Kähler moduli (see e.g. [47])

K ¼ −3 ln
�
T þ T̄ þ 1

2ðSþ S̄Þ k1βγðGþ ḠÞβðGγ þ ḠγÞ
�
:

ð4:5Þ

Guided by this example, we conjecture that for CY
manifolds with a volume of Swiss-cheese form with h1;1þ >
1 Kähler moduli we may find cases where the Kähler
potential takes the form (see e.g. [48])

K ¼ −2 lnV; with V ¼ cL

�
TL þ T̄L þ 1

2ðSþ S̄Þ kLβγðGþ ḠÞβðGγ þ ḠγÞ
�

3=2

−
X

i¼2…h1;1þ

ci

�
Ti þ T̄i þ

1

2ðSþ S̄Þ kiβγðGþ ḠÞβðGγ þ ḠγÞ
�

3=2
: ð4:6Þ

The Swiss-cheese type 4-cycle intersection numbers then
are positive cL; ci > 0. Because of the mixing between the
Gα and τ in K the results for the full ðTa; Gα; τÞ-sector
Kähler metric and its inverse are a bit lengthy. The full
expressions are given in Eqs. (C.11) and (C.12) of
Appendix C in [40].
We can now see from the form of e.g. Eq. (4.5) that the

projection dictated by the O7 action leads to a breaking of
the shift symmetry which the B2 axions enjoyed at the four
dimensional N ¼ 2 level. If moduli stabilization proceeds
via terms in the superpotential, then W must be a hol-
omorphic function of the chiral N ¼ 1 superfields. Hence,
superpotential stabilization of the moduli generically sta-
bilizes the Ta and Gα separately. The manifest dependence

of K on the B2 axions being ∼ImGα hence breaks the shift
symmetry of the B2 axions. This fact renders the NS-NS 2-
form axions unsuitable for large-field inflation in these
constructions.
If volume moduli stabilization had proceeded directly

via stabilizing some of the geometric 4-cycle volumes e.g.
by corrections to K, this could have restored the B2 shift
symmetry for theGα involved. However, we will not pursue
this opportunity here, and in our constructions the Gα will
always appear in W nonperturbatively.
This leaves the C4 and C2 R-R axions as potential

inflaton candidates. Nonperturbative stabilization à la
KKLT of the Ta Kähler moduli then implies that the C4

axions ∼ImTa acquire the same mass scales as their
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moduli partners ReTa. In the LVS we require only a
fraction of the Ta to appear in W via nonperturbative
effects. For those which do not appear inW but get fixed by
Kähler corrections, this allows one to split the mass
scale of their C4-axion partners from their moduli mass
scale [49]. In such cases, we may use C4 axions as inflaton
candidates.
Generically, however, we find the C2 axions are least

coupled to the process of volume stabilization regardless
whether this proceeds nonperturbatively in W or perturba-
tively in K. Hence, we focus on 2-axion models of large-
field inflation driven by the R-R C2 axions of two Gα

multiplets.

B. Embedding into string compactifications

In this section we try to build explicit models of the KNP
and HA mechanisms using the orientifold odd axions of
string compactifications. This analysis is a little more
involved than the supergravity case since not only do we
have to generate a suitable potential for the axions, but we
must also stabilize the geometry of the compact space. To
achieve this we combine the KKLT or LVS setups with
superpotential terms originating from gaugino condensa-
tion on D5 branes [41,50],

W ¼ W0 þ Ae−aT þ Pe−p1G1−p2G2 þQe−q1G1−q2G2 ;

ð4:7Þ

where T can be chosen as needed between the even moduli
in each setup.

1. Inflating in KKLT

In the simplest case of KKLT moduli stabilization, we
consider a single even modulus model, such that the
volume of the compact space is given by V ¼ t3, where
t is the 2-cycle volume. Allowing for nonzero intersection
between the orientifold even and the odd sectors, one can
write the Kähler potential in terms of the Kähler coordi-
nates as

K ¼ −3 log
�
T þ T̄ þ k1

2ðSþ S̄Þ ðG1 þ Ḡ1Þ2

þ k2
2ðSþ S̄Þ ðG2 þ Ḡ2Þ2

�
− log ½Sþ S̄�: ð4:8Þ

The kinetic part of the scalar field Lagrangian then
reads

Lkin ¼ KIJ̄∂μΨI∂μΨJ̄ ¼ κij∂μψ i∂μψ i; ð4:9Þ
where Ψ denotes the chiral superfield basis,
Ψ ¼ fT;G1; G2; Sg, and ψ the real scalar field basis of
moduli space ψ ¼ fτ; ρ; b1; c1; b2; c2; s; C0g. The
kinetic matrix for the real degrees of freedom, ignoring
the dilaton for the moment, admits the following
expansion:

κij ¼

0
BBBBBBBBBBBB@

3
4τ2

0 0 0 0 0

0 3
4τ2

0 0 0 0

0 0 − 3k1
4gsτ

0 0 0

0 0 0 − 3k2
4gsτ

0 0

0 0 0 0 − 3gsk1
4τ 0

0 0 0 0 0 − 3gsk2
4τ

1
CCCCCCCCCCCCA

;

ð4:10Þ

where we keep only the leading terms in V in each diagonal
entry and neglected off-diagonal terms.3 We then see that
requiring positivity of κij leads us to consider compacti-
fications with k1; k2 < 0. If these conditions are not met,
the G multiplets become ghosts.
The scalar potential resulting from Eqs. (4.7) and (4.8)

can be written as V ¼ V0 þ V1 þ V2, which after mini-
mizing the 4-form axion at ρ ¼ −πþaðb1c1k1þb2c2k2Þ

a
becomes

V0 ¼
9W2

0ðb21k1 þ b22k2Þ2
64τ5gs

þ AW0e
−aτþab2

1
k1

2gs
þab2

2
k2

2gs

�
−
ags
4τ2

−
9ðb21k1 þ b22k2Þ2

32τ5gs
þ 3aðb21k1 þ b22k2Þ2

16τ4gs

�

þ A2e−2aτþ
ab2

1
k1

gs
þab2

2
k2

gs

�
a2gs
12τ

þ 9ðb21k1 þ b22k2Þ2
64τ5gs

−
3aðb21k1 þ b22k2Þ2

16τ4gs

þ a2ðb21k1 þ b22k2Þ2
16τ3gs

−
að−3gs þ ab21k1 þ ab22k2Þ

12τ2

�
; ð4:11Þ

3The full expression of the kinetic matrix up to order 1=V2 is somewhat complicated and not very illuminating. By presenting only the
leading diagonal terms one can understand the behavior of the eigenvalues of κij in terms of the intersection numbers k1 and k2 and get a
simple estimate of their order of magnitude.
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V1 ¼ e−
b1p1
gs

−b2p2
gs P cos ½c1p1 þ c2p2� ×

�
−
aAe−aτþ

aðb2
1
k1þb2

2
k2Þ

2gs gs
4τ2

−
9Ae−aτþ

aðb2
1
k1þb2

2
k2Þ

2gs ðb21k1 þ b22k2Þ2
32τ5gs

þ 9W0ðb21k1 þ b22k2Þ2
32τ5gs

þ 3aAe−aτþ
aðb2

1
k1þb2

2
k2Þ

2gs ðb21k1 þ b22k2Þ2
16τ4gs

−
aAe−aτþ

aðb2
1
k1þb2

2
k2Þ

2gs ðb1p1 þ b2p2Þ
6τ2

−
3Ae−aτþ

aðb2
1
k1þb2

2
k2Þ

2gs ðb21k1 þ b22k2Þðb1p1 þ b2p2Þ
8τ4gs

þ 3W0ðb21k1 þ b22k2Þðb1p1 þ b2p2Þ
8τ4gs

þ aAe−aτþ
aðb2

1
k1þb2

2
k2Þ

2gs ðb21k1 þ b22k2Þðb1p1 þ b2p2Þ
4τ3gs

�
þ ½P → Q;p1 → q1; p2 → q2� ð4:12Þ

and

V2 ≈ −P2
ðk2p2

1 þ k1p2
2Þ

12τ2k1k2
e
2ðb1p1þb2p2Þ

gs −Q2
ðk2q21 þ k1q22Þ

12τ2k1k2
e
2ðb1q1þb2q2Þ

gs

− PQ
ðk2p1q1 þ k1p2q2Þ

6τ2k1k2
e
b1ðp1þq1Þþb2ðp2þq2Þ

gs cos ½c1ðp1 − q1Þ þ c2ðp2 − q2Þ�: ð4:13Þ

Note that while Eqs. (4.11) and (4.12) are exact,
for the sake of short formulas in Eq. (4.13) we have
displayed only the first nonvanishing terms in a 1=τ
expansion.
A successful string inflation model must not only

give rise to inflation but also be able to keep the
noninflationary moduli fixed. In the current context
this requires a separation between the physical mass
scales of the τ, ρ b1 and b2 fields and the c1 and c2
axions. This scale separation is also a prerequisite
for the classical stability of the vacuum: after
uplifting the KKLT vacuum of V0 is separated from
decompactification by a barrier with a height

Vbarrier ∼ jVKKLTj ∼ W2
0

V2 . Since any inflationary energy
density constitutes an extra form of uplifting, one

must have V inf < Vbarrier ∼
W2

0

V2 . The twin requirements
of scale separation and vacuum stability therefore
impose the following hierarchy on the scalar potential:

V0 ≫ V1 þ V2; implying P;Q ≪
W0ffiffiffi
τ

p : ð4:14Þ

Provided this is met one can minimize V0 and
V1 þ V2 separately, which constitutes a considerable
simplification in the search for the F-term potential’s
vacuum.
The leading contribution to the potential, V0, depends

only on the volume modulus τ and on the quadratic
combination b21k1 þ b22k2, and is essentially the generali-
zation of the KKLT potential for compactifications with
orientifold odd axions intersecting the volume modulus.
Extremizing V0 we find that the KKLT minimum is
approximately located at

e−aτþ
aðb2

1
k1þb2

2
k2Þ

2gs ≈
3W0

2aAτ

�
1þ

−3þ 4a b2
1
k1þb2

2
k2

2gs

2aτ

�
: ð4:15Þ

As in the supergravity versions of these two axion models,
the real partners of the axionic fields are Kähler stabilized at
leading order in a circle of fixed radius, determined by the
solution to ∂V0∂bi ¼ 0,4 with the angular direction unfixed.
The V1 þ V2 component of the scalar potential depends

on both τ and b21k1 þ b22k2 as well as on various linear
combinations of b1 and b2 and on the c axions, in both the
KNP and hierarchical axions scenarios, and so V1 þ V2

will lift the remaining flat direction in the b plane.
Unfortunately, the structure of the potential complicates
the minimization process as soon as one moves away from
the (tachyonic) origin of the b plane. This renders our
efforts to find analytic expressions for the location of the
ðb1; b2Þ vacuum futile and forces us to resort to numeric
methods. In any case, the qualitative picture is identical to
that of the supergravity models described in the previous
section, and at the end of the process one ends up with all
the moduli, volume included, stabilized in a consistent way.

a.KNP alignment mechanism.—At the KKLT minimum,
the dominant contribution to V1 is

4Because of the structure of the potential we have not been able
to find an analytic expression for the vacuum expectation value of
k1b21 þ k2b22 that gave a good agreement with the numerical
results while still being compact enough to be spelled out here.
We therefore proceed with the analysis numerically, keeping in

mind that in the cases of interest one finds aðb2
1
k1þb2

2
k2Þ

2gs
∼

Oð−a fewÞ, in accordance with the requirement k1; k2 < 0,
derived from the absence of ghosts.

TOWARDS NATURAL INFLATION IN STRING THEORY PHYSICAL REVIEW D 92, 023515 (2015)

023515-9



V1 ≈ −PW0

3gs − 2ðb1p1 þ b2p2Þ
8τ3

× e
b1p1þb2p2

gs cos ½c1p1 þ c2p2�
þ ½P → Q;p1 → q1; p2 → q2�; ð4:16Þ

which together with the cosine term from V2, Eq. (4.13),
constitutes the inflationary potential V inf .
Defining the misaligment parameter δ in terms of the

superpotential parameters as

p2

p1

≡ r and
q2
q1

≡ rð1þ δÞ; ð4:17Þ

one can map this stringy model onto the field theory
analysis of Sec. II. The potential for the canonically
normalized c axions

ϕ1 ¼ ~f1c1 and ϕ2 ¼ ~f2c2 ð4:18Þ

can then be written, upon uplifting, as

V inf ¼ Λ4
1

�
1 − cos

�
ϕ1

~f1=p1

þ ϕ2

~f2=ðp1rÞ

��
þ Λ4

2

�
1 − cos

�
ϕ1

~f1=q1
þ ϕ2

~f2=ðq1rð1þ δÞÞ

��

þ Λ4
3

�
−1 cos

�
ϕ1

~f1=ðp1 − q1Þ
þ ϕ2

~f2=ðrp1 − ð1þ δÞrq1Þ

��
; ð4:19Þ

where Λ1;Λ3, and Λ3 can be read off Eqs. (4.13) and (4.16)
and therefore scale as

Λ4
1 ∼O

�
W0P
τ3

�
; Λ4

2 ∼O
�
W0Q
τ3

�
; Λ4

3 ∼O
�
PQ
τ2

�
:

ð4:20Þ

From Eq. (4.10) one also defines

~f1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3k1;2gs

2τ

r
; ð4:21Þ

and so one finds that the large effective decay constant is
then written in terms of the compactification parameters as

feff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~f2
2 þ r2 ~f1

2

q
rq1δ

: ð4:22Þ

If there are no large asymmetries either in the intersection
numbers, k1 ∼ k2, or in the superpotential exponents, r ∼ 1,

one finds feff ∼
~f1
q1δ
. Working in a region of parameter space

where k1 ∼ k2 ∼ −Oð1Þ, gs ≪ 1, and τ ∼Oð10Þ,5 one tends
to find ~f1;2 ≲Oð0.1Þ. Furthermore noting that since the G
moduli potential generated by gaugino condensation on
D5-branes implies q1 ¼ 2π

N , one sees that for feff ≳ 5MP

one must have the misalignment parameter tuned at the
level of

δ≲O
�

N
300

�
: ð4:23Þ

There are several possible avenues to arrange for tuning
the alignment parameter into a range of δ ¼ 0.01…0.1.
One possibility is to employ CY manifolds which contain
nontrivial linear combinations of the symplectic-basis
2-cycles (Poincaré dual to so-called “partially ample” 4-
cycle divisors). The gauge kinetic function of the 5-
branes wrapping these linear-combination 2-cycles then
depends on a linear combination k1G1 þ k2G2 with k1; k2
numbers which are related to the intersection numbers
determining the nontrivial linear-combination 2-cycle. By
sampling over such 2-cycles and CYs containing these
types of linear-combination 2-cycles, we should be able to
find examples where k2 ¼ k1ð1þOðδÞÞ, providing the
necessary level of alignment.
Alternatively, we may use D7-brane gaugino conden-

sates (or ED3-ED1 instantons) instead of D5-branes, and
then turn magnetic F2 flux on them [34]. The D7-gauge
kinetic function will then be fa;D7 ¼ Ta þ fiGi þ � � �
with fi being the quanta of F2-flux possible on the 4-
cycle of the D7 stack wraps, and Gi those G-axion fields
which appear in the D7-Chern-Simons action once the fi

are turned on. In this case, tuning the magnetic flux
quanta may allow for reaching the necessary alignment
f2 ¼ f1ð1þOðδÞÞ. We note further that the expð−aTÞ
prefactors present in the nonperturbative terms from the
D7-brane stacks or ED3-ED1s contribute part of the
tuning of the effective instanton prefactors P;Q similar
to what we find in Sec. IV C for LVS. In that case
we expect values of the residual effective P;Q∼
Oð0.01 � � � 0.1Þ.
Finally, in Tables I and II we present two numerical

examples of the model described above.

5As is often the case in models of string inflation, the
compactification volume is closely tied with the scale of inflation,
which is in turn subject to observational bounds on the amplitude
of the curvature perturbations. We therefore expect models with
significantly larger τ to be at least extremely contrived, if not
inconsistent with observations.
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b.Hierarchical axions mechanism.—The analysis of the inflationary potential of Eq. (4.40) proceeds in a similar manner to
the closely related KNP mechanism. By making the discrete choice p2 ¼ 0 and working in the limit q1 ≫ p1; q2, we find

V1 þ V2 ¼ −PW0

3gs − 2b1p1

8τ3
e
b1p1
gs cos ½c1p1� −QW0

3gs − 2ðb1q1 þ b2q2Þ
8τ3

e
b1q1þb2q2

gs cos ½c1q1 þ c2q2�

− PQ
p1q1
6τ2k1

e
b1p1
gs

þb1q1
gs

þb2q2
gs cos ½c1p1 − c1q1 − c2q2� − P2

p2
1

12τ2k1
e
2b1p1
gs −Q2

k2q21 þ k1q22
12τ2k1k2

e
2b1q1
gs

þ2b2q2
gs : ð4:24Þ

As before, V1 þ V2 is simultaneously responsible for the stabilization of the linear combination6 b1p1 þ b2p2 and for the
inflationary dynamics. After integrating out the b fields and uplifting it reduces to

V inf ¼ Λ4
1ð1 − cos½p1c1�Þ þ Λ4

2ð1 − cos½q1c1 þ q2c2�Þ þ Λ4
3ð1 − cos½ðp1 − q1Þc1 þ q2c2�Þ; ð4:25Þ

where the leading scaling of the amplitudes is given by

Λ4
1 ∼O

�
PW0

τ3

�
; Λ4

2 ∼O
�
QW0

τ3

�
; Λ4

3 ∼O
�
PQ
τ2

�
: ð4:26Þ

Noting that to leading order p1 − q1 ∼ −q1 the potential can be reduced to the simple form of (2.1) where the amplitude
of the mixed cosine is now Λ4

2 þ Λ4
3. Writing the potential in terms of the canonically normalized fields, defined by

Eq. (4.18), one finds

V inf ≈ Λ4
1

�
1 − cos

�
p1

~f1
ϕ1

��
þ ðΛ4

2 þ Λ4
3Þ
�
1 − cos

�
q1
~f1
ϕ1 þ

q2
~f2
ϕ2

��
; ð4:27Þ

implying that the large effective decay constant is

feff ¼ ~f2
q1

p1q2
: ð4:28Þ

In Tables III and IV we present a couple of numerical examples.

TABLE I. Input parameters for the string embedding of the KNP mechanism.

W0 A a P Q p1 q1 r δ k1 k2 gs

KNP1 0.11 5 0.1 10−4 10−4 π=2 π=2 1 0.02 −3 −3 0.5
KNP2 0.099 1 0.1 10−4 10−3 π=5 π=5 1.5 0.1 −7 −7 0.3

TABLE II. Compactification features and inflationary parameters. All dimensionful quantities expressed in Planckian units. We note
that while we are presenting here only one minimum for ðb1; b2Þ, there are in general two degenerate minima.

τ b1 b2 Λ4
1 × 1012 Λ4

2 × 1012 Λ4
3 × 1012 feff

KNP1 51 0.59 −0.59 11 11 0.98 9.4
KNP2 34 0.29 −0.18 18 180 2.8 5.8

TABLE III. Input parameters for the string embedding of the hierarchical axions’ mechanism.

W0 A a X1 X2 p1 q1 q2 k1 k2 gs

HA1 0.022 1 0.1 0.0001 0.0001 π=10 π π=10 −7 −7 0.4
HA2 0.0099 1 0.2 0.0001 0.0001 π=7 2π π=7 −2 −2 0.4

6We do not present an explicit analytic formula for the location of this minimum as it involves solving a nonalgebraic equation.
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C. Inflating in LVS

Having shown that effective trans-Planckian decay
constants can coexist with stabilized moduli in the context
of a single modulus KKLT compactification we now set

out to do the same within the LVS of type IIB flux
compactifications.
Our starting point is a compactification which beyond

the two orientifold odd G-fields giving rise to inflation
also includes a pair of orientifold even T moduli, whose
triple intersection numbers lead to a Swiss-cheese
geometry. This setup implies the following Kähler
potential:

K ¼ −2 log ½Σ3=2
1 − Σ3=2

2 þ ξðSþ S̄Þ3=2� − log ½Sþ S̄�;
ð4:29Þ

where

Σ1 ≡ T1 þ T̄1 þ
k11

2ðSþ S̄Þ ðG1 þ Ḡ1Þ2 þ
k12

2ðSþ S̄Þ ðG2 þ Ḡ2Þ2;

Σ2 ≡ T2 þ T̄2 þ
k21

2ðSþ S̄Þ ðG1 þ Ḡ1Þ2 þ
k22

2ðSþ S̄Þ ðG2 þ Ḡ2Þ2: ð4:30Þ

Given that we want to stabilize the moduli à la LVS we have also included in K the Oðα03Þ correction originating from the
fourth order curvature correction to the ten-dimensional action.
Before we analyze the F-term potential that follows from Eqs. (4.7) and (4.29), we compute the kinetic matrix for the real

degrees of freedom ψ ¼ fτ1; ρ1; τ2; ρ2; b1; b2; c1; c2g, finding

κij ¼

0
BBBBBBBBBBBBBBB@

3
4τ2

1

0 0 0 0 0 0 0

0 3
4τ2

1

0 0 − 3c1k11
2τ2

1

− 3c2k12
2τ2

1

0 0

0 0 3

8τ3=2
1

ffiffiffi
τ2

p 0 0 0 0 0

0 0 0 3

8τ3=2
1

ffiffiffi
τ2

p − 3c1k21
4τ3=2

1

ffiffiffi
τ2

p − 3c2k22
4τ3=2

1

ffiffiffi
τ2

p 0 0

0 − 3c1k11
2τ2

1

0 − 3c1k21
4τ3=2

1

ffiffiffi
τ2

p

0 − 3c2k12
2τ2

1

0 − 3c2k22
4τ3=2

1

ffiffiffi
τ2

p ~κmn

0 0 0 0

0 0 0 0

1
CCCCCCCCCCCCCCCA

ð4:31Þ

with

~κmn ¼

0
BBBBBBBB@

− 3k11
4gsτ1

þ 3c2
1
k2
21

8τ3=2
1

ffiffiffi
τ2

p þ 3k21
ffiffiffi
τ2

p
4gsτ

3=2
1

3c1c2k21k22
4τ3=2

1

ffiffiffi
τ2

p 0 0

3c1c2k21k22
4τ3=2

1

ffiffiffi
τ2

p − 3k12
4gsτ1

þ 3c2
2
k2
22

8τ3=2
1

ffiffiffi
τ2

p þ 3k22
ffiffiffi
τ2

p
4gsτ

3=2
1

0 0

0 0 − 3gsk11
4τ1

þ 3gsk21
ffiffiffi
τ2

p
4τ3=2

1

0

0 0 0 − 3gsk12
4τ1

þ 3gsk22
ffiffiffi
τ2

p
4τ3=2

1

1
CCCCCCCCA
; ð4:32Þ

where we have set, in anticipation of what is to come, b1 ¼ b2 ¼ 0. Noting that the eigenvalues of κij are mostly determined
by the diagonal entries, we see from Eq. (4.32) that for the orientifold odd moduli to have positive kinetic terms one must
arrange

k11
ffiffiffiffi
τ1

p
− k21

ffiffiffiffi
τ2

p
< 0 and k12

ffiffiffiffi
τ1

p
− k22

ffiffiffiffi
τ2

p
< 0: ð4:33Þ

The scalar potential that generalizes LVS for kþ−− ≠ 0 takes the form

TABLE IV. Compactification features and inflationary param-
eters. All dimensionful quantities expressed in Planckian units.
We note that while we are presenting here only one minimum for
ðb1; b2Þ, in general there are two degenerate minima.

τ b1 b2 Λ4
1 × 1012 Λ4

2 × 1012 Λ4
3 × 1012 feff

HA1 50 0.01 −0.49 1.7 1.6 0.06 9.1
HA2 30 −0.013 −0.71 4 2.7 0.9 6.2
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VLVS ¼
9ðb21k11 þ b22k12Þ2W2

0

64gsτ51
þ 3ξW2

0

32
ffiffiffiffi
gs

p
τ9=21

−
a2A2ðb21k12k221 þ b22k11k

2
22Þ

12k11k12τ21
eað

b2
1
k21þb2

2
k22

gs
−2τ2Þ

þ a2A2gs
ffiffiffiffi
τ2

p

6τ3=21

eað
b2
1
k21þb2

2
k22

gs
−2τ2Þ −

gsaAW0τ2
4τ31

eað
b2
1
k21þb2

2
k22

2gs
−τ2Þ: ð4:34Þ

Solving ∂VLVS=∂b1 ¼ 0, ∂VLVS=∂b2 ¼ 0 one finds that
the origin of the b plane ðb1; b2Þ ¼ ð0; 0Þ is an extremum of
VLVS. At this point in moduli space, the even moduli
vacuum is determined in the usual way to lie at

τ3=21 ¼ 3W0
ffiffiffiffi
τ2

p ð−1þ aτ2Þ
aAð−1þ 4aτ2Þ

eaτ2 ∼
3W0

ffiffiffiffi
τ2

p
4aA

eaτ2
�
1−

3

4aτ2

�
;

ð4:35Þ

τ3=22 ¼ ξð−1þ 4aτ2Þ2
16g3=2s aτ2ð−1þ aτ2Þ

∼
ξ

g3=2s

�
1þ 1

2aτ2

�
: ð4:36Þ

This allows us to show the second derivatives of VLVS at the
origin of the b plane are given by

∂2VLVS

∂b21 ¼ −
9ξ1=3k21W2

0

64
ffiffiffiffi
gs

p
τ9=21

−
3ξ2=3k221W

2
0

32gsk11τ51
;

∂2VLVS

∂b1∂b2 ¼ 0;

∂2VLVS

∂b22 ¼ −
9ξ1=3k22W2

0

64
ffiffiffiffi
gs

p
τ9=21

−
3ξ2=3k222W

2
0

32gsk12τ51
: ð4:37Þ

We can see that the more natural scenario involves

having all k < 0, such that ∂
2VLVS∂bi∂bj ≥ 0. In such a case, ghosts

are avoided if the magnitudes of the intersection numbers
obey

jk11j > jk21j
ffiffiffiffiffiffiffiffiffiffiffi
τ2=τ1

p
; jk12j > jk22j

ffiffiffiffiffiffiffiffiffiffiffi
τ2=τ1

p
; ð4:38Þ

as follows from Eq. (4.33). If these conditions are met, the b
moduli are consistently stabilized by a quadratic potential
at the origin, considerably simplifying the analysis of the
inflationary potential.

D. D5 generated potential

The full scalar potential following from Eqs. (4.7) and
(4.29) has the following structure:

V ¼ VLVS þ V1 þ V2; ð4:39Þ

where the D5 generated contributions take the form

V1 ¼
3PW0ξ

64a
ffiffiffiffi
gs

p
τ9=21 τ2

cos ½c1p1 þ c2p2�

þ 3QW0ξ

64a
ffiffiffiffi
gs

p
τ9=21 τ2

cos ½c1q1 þ c2q2� ð4:40Þ

and

V2 ¼ −
PQ
τ21

ðk12p1q1 þ k11p2q2Þ
6k11k12

× cos ½c1p1 þ c2p2 − c1q1 − c2q2�

−
P2

τ21

ðk12p2
1 þ k11p2

2Þ
12k11k12

−
Q2

τ21

ðk12q21 þ k11q22Þ
12k11k12

:

ð4:41Þ

From Eqs. (4.34), (4.40), and (4.41) one can read off the
volume scaling of each component of V close to the LVS
minimum,

VLVS ∼O
�
−

W2
0

V3 logV

�
; V1 ∼O

�
QW0 þ PW0

V3 logV

�
;

V2 ∼O
�
PQþ P2 þQ2

V4=3

�
: ð4:42Þ

A feature of LVS moduli stabilization is that the resulting
minimum is nonsupersymmetric and AdS. Upon uplifting,
the barrier separating the LVS vacuum from decompacti-
fication has a height roughly equal to the depth of the

original AdS minimum: Vbarrier ∼Oð− W2
0

V3 logVÞ. Since any

sort of inflationary energy density will contribute to the F-
term potential as an additional uplift term (see [51] for a
discussion), classical stability of the LVS vacuum requires

Vbarrier ∼ −VLVS ≫ V inf ¼ V1 þ V2: ð4:43Þ

This can be seen as a constraint on the magnitude of the D5
brane generated P and Q parameters,

P;Q ≪
W0

V5=6 ffiffiffiffiffiffiffiffiffiffiffi
logV

p : ð4:44Þ

With this hierarchy not only do we ensure the classical
stability of the vacuum but we also make it possible to
decouple the light c axions from their heavier b partners
and from the orientifold even moduli.
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The inflationary part of the potential, V inf ¼ V1 þ V2,
can be written in the form of Eq. (3.10) with the identi-
fications

Λ4
1 ≡ 3PW0ξ

64a
ffiffiffiffi
gs

p
τ9=21 τ2

; Λ4
2 ≡ 3QW0ξ

64a
ffiffiffiffi
gs

p
τ9=21 τ2

;

Λ4
3 ≡ −

PQ
τ21

ðk12p1q1 þ k11p2q2Þ
6k11k12

ð4:45Þ

and

~f1 ≡
�
−
3gsk11
2τ1

þ 3gsk21
ffiffiffiffi
τ2

p

2τ3=21

�
1=2

;

~f2 ≡
�
−
3gsk12
2τ1

þ 3gsk22
ffiffiffiffi
τ2

p

2τ3=21

�
1=2

: ð4:46Þ

Because of the fact that the b moduli are stabilized at the
origin by VLVS, which is independent of whether we want
to inflate via the KNP or the HA mechanisms, the above
analysis applies to both cases.
In Tables V and VI we present the input parameters for

the KNP and HA numerical examples, whose compactifi-
cation and inflationary parameters are displayed in
Table VII. Semirealistic models require two distinct tun-
ings, as mentioned above. One starts by choosing the
superpotential exponents and the intersection numbers such
that the largest effective decay constant is≥ 5MP. Then one
chooses the stabilized volume and the P and Q parameters
to set the scales in the inflationary potential. While doing

this one must ensure stability of the LVS vacuum, which
requires tuning P and Q small as in Eq. (4.44). In these
models tuning the gauge groups ranks large and P and Q
small seems unavoidable.

E. ED3/ED1 generated potential

An interesting modification to the scenario analyzed
above is to consider that the inflationary potential is
generated by ED3/ED1 terms in the superpotential rather
than by gaugino condensation on D5 branes. In this case the
superpotential is

W ¼ W0 þ Ae−aT2ð1þ Pe−p1G1−p2G2 þQe−q1G1−q2G2Þ:
ð4:47Þ

The benefit of this setup is that the less volume suppressed
part of the inflationary potential is now down by an extra
power of the compactification volume, which alleviates the
tuning in the P and Q coefficients. This can be seen by
comparing Eqs. (4.7) and (4.47), noting that the odd axion
part of W receives an extra e−aT2 ∼ 1

V suppression.
In the limit in which one can decouple the c axions from

the remaining heavy fields, the minimization of the
orientifold even and b moduli carries over from the
previous section, with the vacuum defined by b1 ¼ b2 ¼
0 and by Eqs. (4.35) and (4.36). The dominant contribu-
tions to the c axion potential now originate from terms of
the form ð∂W∂T2

Þ2 þW0
∂W
∂T2

, whereas in the D5 case they came

from ð∂W∂Gi
Þ2 þW0

∂W
∂Gi

. This is the reason why taking
Eq. (4.47) instead of (4.7) does not simply imply an extra
overall 1=V suppression. Explicit computation of the
potential yields V ¼ VLVS þ V1 þ V2 with

V1 ¼ −
9PξW2

0

64a
ffiffiffiffi
gs

p
τ9=21 τ2

cos ½c1p1 þ c2p2�

−
9QξW2

0

64a
ffiffiffiffi
gs

p
τ9=21 τ2

cos ½c1q1 þ c2q2� ð4:48Þ

TABLE VI. Input parameters for the LVS string embedding.

W0 A a P Q p1 p2 q1 q2 k11 k12 k21 k22 gs ξ

HA1 1 1 2π
5

10−3 10−3 0 π
11

π
11

π −1 −1 −1 −1 0.4 1.5
HA2 10 2 π 5 × 10−3 5 × 10−3 0 2π

15
2π
25

π −10 −10 −1 −1 0.5 0.7

TABLE VII. Compactification features and inflationary param-
eters. Dimensionful quantities in units of MP.

τ1 τ2 Λ4
1 × 1012 Λ4

2 × 1012 Λ4
3 × 1012 feff

KNP1 48.2 2.22 0.016 0.16 11.8 13.4
KNP2 51.3 3.64 30 30 709 5.0
HA1 19.3 3.59 41 41 443 5.1
HA2 42.3 1.70 21 21 306 11.23

TABLE V. Input parameters for the LVS string embedding.

W0 A a P Q p1 q1 r δ k11 k12 k21 k22 gs ξ

KNP1 1 1 π 10−4 10−3 π
2

π
2

1 0.01 −3 −3 −3 −3 0.3 0.5
KNP2 8 2 2π

5
0.01 0.01 π

5
π
5

0.8 0.1 −6 −6 −6 −6 0.3 1

BEN-DAYAN, PEDRO, AND WESTPHAL PHYSICAL REVIEW D 92, 023515 (2015)

023515-14



and

V2 ¼
3ðP2 þQ2ÞξW2

0

32
ffiffiffiffi
gs

p
τ9=21

þ 3PQξW2
0

16
ffiffiffiffi
gs

p
τ9=21

cos ½c1p1 þ c2p2 − c1q1 − c2q2�;

ð4:49Þ

from which we can read the leading volume scaling

VLVS ∼O
�
−

W2
0

V3 logV

�
; V1 ∼O

�
QW2

0 þ PW2
0

V3 logV

�
;

V2 ∼O
�
W2

0ðPQþ P2 þQ2Þ
V3

�
: ð4:50Þ

As in the D5 case, vacuum stability requires V1; V2 ≪
VLVS, which now implies

P;Q ≪
1ffiffiffiffiffiffiffiffiffiffiffi
logV

p ; ð4:51Þ

constituting a less severe bound than that of Eq. (4.44).
The tuning required to obtain trans-Planckian decay

constants is exactly as before; apart from the different
volume scaling, Eqs. (4.48) and (4.49) are identical to
(4.40) and (4.41), respectively.
To illustrate the advantages of this setup consider the

first numerical example of the KNP mechanism presented
in the previous section: KNP1 in Table V. To ensure vacuum
stability we have required that jVLVSj ≥ 10jV1 þ V2j,
and this in turn required ðP;QÞ ¼ ð10−4; 10−3Þ. Taking
the same criterion for vacuum stability, with the
ED3/ED1 generated potential one gets instead ðP;QÞ ¼
ð10−2; 3 × 10−2Þ, a considerable decrease in the level of
fine-tuning in the model. A similar exercise reveals that one
gains a factor ofOð10–100Þ in the tuning of P andQ in the
remaining examples of Sec. IV D.7

V. DISCUSSION

Reliable string theoretic large field models of inflation
have been sought for a long time, especially if the BICEP2
result holds. Natural inflation is an elegant model of
inflation due to the shift symmetry which protects its
potential from dangerous corrections. It also exhibits an

interesting range of predictions for the spectral index ns
and the tensor-to-scalar ratio r which fits current data.
The main challenge of the model is therefore a plausible
embedding in a fundamental theory which will explain
the decay constant f ≥ 5Mp, necessary to match obser-
vations. In string theory one expects many axions,
making natural inflation seemingly natural.
Nevertheless, there are two notable obstacles. First, as
we explained in the Introduction, in string theory the
decay constants tend to be parametrically smaller than
Mp. Second, these axions are intricately coupled to
moduli fields. Hence, as we explained, one must stabilize
all moduli and make sure that they do not spoil slow-roll
inflation, and that inflation does not destabilize them.
Previous works [27,32,33] demonstrated that two funda-
mental axions produce such an effective decay constant
on the field theory level, clearing the first obstacle. This
work passes the second hurdle.
We gave a full account on how to embed the KNP

and HA suggestions in a string theory derived setting
that takes into account moduli stabilization. We have
used the C2 axions as our would-be inflatons. The
inflationary observables follow the pattern of the origi-
nal natural inflation model. We have demonstrated that
the hierarchy needed for moduli stabilization is the same
hierarchy needed for the hierarchical axions scenario.
Therefore, the KNP and HA scenarios are readily
combined with moduli stabilization in a rather economi-
cal way.
Let us reiterate the main advantages of the models: First,

inflation is generated only by nonperturbative effects,
protecting it from perturbative corrections. Second, it
requires the smallest number of axions. Third, there is
no manifest tuning of the input parameters, since only
simple hierarchies are necessary. Fourth, the inflationary
trajectory is contained in a very small domain≪ Mp, again
protecting it from dangerous corrections. This sheds light
on the large field vs small field discussion, since it shows
that the concern for large corrections due to large field
excursions is important only if we consider the inflaton as a
fundamental field, while for low energy effective fields,
large field excursions are trivial and can be embedded in the
constrained string theory setting. Last, it seems that the
mathematical structure of the KNP/HA models has a
broader context, and it will be interesting to investigate
this structure thoroughly.
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7Here we are comparing different realizations of inflation at
constant volume. By keeping V constant and changing P and Q
we are increasing the scales of V1 and V2. Realistically these
scales are to be set by the normalization of curvature perturba-
tions once we fix the large effective decay constant. We therefore
expect that everything else being equal, by taking ED3/ED1 one
can get inflation at the right scale for compactifications with
larger P and Q as well as larger V.
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