Performance of the photon reconstruction and identification in ATLAS

Phillip Hamnett
on behalf of the ATLAS collaboration

26/08/2015
Motivation

The ATLAS detector

Reconstruction of photons in ATLAS

Identification of photons in ATLAS

Strategy for Run 2

Conclusion

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Photons in ATLAS

Demanding requirements placed on γ reconstruction and identification in ATLAS

- Higgs studies (e.g. \(H \rightarrow \gamma\gamma \)).
 - High efficiency.
 - Superb background rejection.
- Standard model measurements.
- High \(E_T \) signatures for new exotic physics.

Phillip Hamnett on behalf of the ATLAS collaboration
The ATLAS detector

A general purpose detector

- Designed to make a broad range of measurements.
- To search for beyond the Standard Model physics.

- Detector consists of:
 - An inner tracker system.
 - A electromagnetic and hadronic calorimeter.
 - A muon system.
 - Magnets, for bending charged particles.

Electromagnetic calorimeter

- Sampling calorimeter (lead and liquid argon).
- Barrel and two end caps provide coverage $|\eta| < 2.47$.
- Additional ‘pre-sampler’ in region $|\eta| < 1.8$.
- Accordion geometry to ensure full ϕ coverage.
- 165×10^3 readout channels.

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Reconstruction Strategy

Cluster size in η and ϕ for different particle in Run 1.

<table>
<thead>
<tr>
<th>Particle type</th>
<th>Barrel</th>
<th>Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron</td>
<td>0.075×0.175</td>
<td>0.125×0.125</td>
</tr>
<tr>
<td>Converted photon</td>
<td>0.075×0.175</td>
<td>0.125×0.125</td>
</tr>
<tr>
<td>Unconverted photon</td>
<td>0.075×0.125</td>
<td>0.125×0.125</td>
</tr>
</tbody>
</table>

Involves several steps

1. Search for energy clusters within the second layer of the EM calorimeter.
2. Create ‘preclusters’ with $p_T > 2.5$ GeV.
3. Clusters matched to tracks.
 - Matched based on position.
 - Use track information to classify particles: electron, converted photon, or unconverted photon.
4. Rebuild clusters, where the cluster size depends on the particle type and location in the calorimeter.
Photon Conversions

Conversions and pileup

- Photons often interact with material before the calorimeter, and convert into an electron/positron pair.
- These are ‘converted’ photons. If this doesn’t happen, then they are ‘unconverted’ photons.
- Converted photons can be categorised as having one or two tracks.
- Pileup can lead to misreconstructing unconverted photons as converted photons.

This is under control:

- 3% migration of 2-track conversions to 1-track conversions.
 → 1-track conversion is when either the two tracks are highly collimated or one track is too soft to be reconstructed.
- Fraction of converted vs unconverted photon candidates is stable to 1% between extreme pileup values.

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS.
Identifying photons with ATLAS

Definitions

- Identification performed by applying cuts over discriminating variables (shower shapes) from the calorimeter layers.
- There is a ‘loose’ and ‘tight’ selection of cuts.
- Cuts are binned in η, and by converted/unconverted photons.

Measuring ID efficiency

- There are three data driven methods for measuring ID efficiency:
 1. Radiative Z decays.
 2. Electron extrapolation ($Z \to ee$).
 3. The matrix method.
- Results are for 7 TeV, but the same methods are used in 8 TeV data, which provides a larger E_T range.
- See ATLAS-CONF-2012-123 for more details.

Phillip Hamnett on behalf of the ATLAS collaboration
Isolated photons

- Computed from topological clusters with $\Delta R < 0.4$.
- Pileup and underlying event contributions are suppressed using event-by-event ambient energy density correction.
- Isolation is applied independently of the identification.
- But is used by all analyses, and the data driven identification methods.
- Varying isolation has little impact on ID efficiency.

ID efficiency as a function of transverse energy for different isolation cuts. This plot is for 7 TeV and uses all cells in the isolation cone. The more recent data driven methods use topological clusters.

Phillip Hamnett on behalf of the ATLAS collaboration
Data driven methods

Radiative Z decays - $15 < E_T < 50$ GeV

ATLAS Preliminary

- Look at $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ events with a radiated photon.
- Discriminating variables are unbiased because cuts are only kinematic.
- Method gives results in region $15 < E_T < 50$ GeV.
- Can combine the ee and $\mu\mu$ channels, as they are independent.
- Only look at events where $80 < M_{ll\gamma} < 96$ GeV to reduce $Z+\text{jet}$ backgrounds.

Uncertainties

- Very pure sample $\approx 98\%$ at high E_T!
- Suffers from low statistics (due to low cross-section) \rightarrow dominant uncertainty at $\approx 5\%$.

Phillip Hamnett on behalf of the ATLAS collaboration
Data driven methods

Electron extrapolation - $20 < E_T < 80$ GeV

Method

1. Look at discriminating variables for pure electron samples ($Z \rightarrow ee$).
2. Map them to photon discriminating variables using Smirnov transforms.

Advantages and disadvantages

- Very high statistics.
- Converted photons are very similar to electrons \rightarrow easy to transform (5% uncertainty for Smirnov transform).
- Unconverted photons are less similar and have larger uncertainties (15% uncertainty for Smirnov transform).
Data driven methods

Matrix method - $20 < E_T < 500$ GeV

Using track isolation

- An inclusive sample of photons is selected using single photon triggers with energy greater than 20 GeV.
- This method relies on knowing the track isolation efficiency, so that we can separate signal from background events.

\[\epsilon_{ID} = \frac{N_{Signal}^{\text{pass}}}{N_{\text{pass}}^{\text{Signal}}} + N_{\text{fail}}^{\text{Signal}} \]

- Where $N_{\text{Signal}}^{\text{pass}}$ is extracted by looking at track isolation.
- And efficiency of $N_{\text{Background}}^{\text{pass}}$ passing track isolation is derived in dedicated control regions.

Track isolation efficiency with 7 TeV data

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Data driven methods

Results

Methods at 7 TeV overlayed.

Independent methods

- Because the three methods are independent and the results overlap, they can be combined.
- Gives errors ranging from 1% to 10%.

7 and 8 TeV

- Methods are same between 7 and 8 TeV.
- However, 8 TeV gives wider range for E_T distribution.

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Strategy for Run 2

Pileup dependence

- Identification efficiency depends on the amount of pileup.
- Attempted to mitigate this effect by reoptimising the rectangular cuts using most recent Monte Carlo samples, which cover a wider range of pileup.
- Average pileup:
 - 7 TeV: $<\mu> = 9.1$
 - 8 TeV: $<\mu> = 20.7$
 - 13 TeV: $<\mu>$ up to 40?

Improved ID efficiency dependence on high E_T

- ID efficiency ranges from 70% to 95%.
- Especially optimised for very high E_T, improving the signal yield for exotic searches.

Phillip Hamnett on behalf of the ATLAS collaboration
Summary and outlook

Reconstruction
- Fake conversions are under control.
- Robust reconstruction with respect to higher pileup conditions.

Identification
- Data driven methods from Run 1 give concurring results, which have been combined.
- New optimisation has been performed.
- Pileup dependence still exists, but at an acceptable level.
- Efficiency at high E_T has been improved.
- We are ready for Run 2!
References

Links to external papers and images

- Complete list on eGamma public results
- Calorimeter Clustering Algorithms: Description and Performance
- Expected photon performance in the ATLAS experiment
- Efficiency of the photon identification for 2015
- Photon Shower Shapes Data/MC Comparisons from Z+\gamma events
- Event display \(\gamma / \pi^0\)
- The ATLAS Experiment at the CERN Large Hadron Collider
- ATLAS Photos
- Stability of photon conversion reconstruction with pile-up
- Photon conversion plots for Summer conferences 2011
- Photon reconstruction and performance in ATLAS and CMS
Inner detector

ATLAS inner detector

- Pixel detector has 3 silicon layers and the IBL.
- Semiconductor tracker: 4 silicon strip layers.
- Transition radiation tracker: Straw tube system.
- Altogether, provides fantastic tracking up to $|\eta| < 2.5$, as well as excellent vertex reconstruction, b-tagging, etc.

<table>
<thead>
<tr>
<th>Position</th>
<th>Resolution (µm)</th>
<th>Channels (10×10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 removable barrel layer</td>
<td>$R_\phi = 12, z = 66$</td>
<td>16</td>
</tr>
<tr>
<td>2 barrel layers</td>
<td>$R_\phi = 12, z = 66$</td>
<td>81</td>
</tr>
<tr>
<td>4 end-cap disks</td>
<td>$R_\phi = 12, z = 77$</td>
<td>43</td>
</tr>
<tr>
<td>4 barrel layers</td>
<td>$R_\phi = 16, z = 580$</td>
<td>3.2</td>
</tr>
<tr>
<td>9 end-cap wheels</td>
<td>$R_\phi = 16, z = 580$</td>
<td>3.0</td>
</tr>
<tr>
<td>Axial barrel straws</td>
<td>170 (per straw)</td>
<td>0.1</td>
</tr>
<tr>
<td>Radial end-cap straws</td>
<td>170 (per straw)</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Calorimeter

ATLAS electromagnetic calorimeter

Details

- Energy resolution: \(\frac{\sigma(E)}{E} = \frac{10\%}{\sqrt{E}} \oplus 0.7\% \).
- Angular resolution: \(\frac{50\text{mrad}}{\sqrt{E}} \).
- Hermetic in \(\phi \).

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Photon conversions

Distributions of conversion positions

Photons more likely to convert in areas with high material

- Plots show the positions of the photon conversions taken from 7 TeV data.
- Can clearly see the 3 pixel layers and first 2 strip layers of the inner tracker.
- Photons which convert after $R = 0.8$ m are not defined as converted.

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Photon conversions

Fractions of converted and unconverted photons with 2015 data

Relative fractions of photon conversions

- Distributions are relatively flat with respect to transverse energy.
- But vary with η, due to different amounts of material in different η regions.

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Pileup

Mean Number of Interactions per Crossing

Delivered Luminosity [pb⁻¹/0.5]

How pileup could contribute to fake conversion rates

- Very large difference in number of tracks when going from \(\mu = 2 \) to \(\mu = 20 \).
- Currently already averaging \(\mu = 20 \) for Run 2.
- Could increase to as much as an average of \(\mu = 40 \).
- More tracks increases the likelihood of any one track matching an unconverted or single-track converted photon.

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Variation in efficiency due to isolation

- Variations in isolation cause change in photon ID efficiency of up to $\approx 1\%$.
- Effect is the same on Monte Carlo and Data, so effectively cancels out.

Phillip Hamnett on behalf of the ATLAS collaboration
Discriminating variables for photon identification

Variables and Position

<table>
<thead>
<tr>
<th>Strips</th>
<th>2nd</th>
<th>Had.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratios</td>
<td>f_1, f_{side}</td>
<td>R_{η}^*, R_{ϕ}</td>
</tr>
<tr>
<td>Widths</td>
<td>$w_{5,3}$, $w_{5,\text{tot}}$</td>
<td>$w_{\eta,2}^*$</td>
</tr>
<tr>
<td>Shapes</td>
<td>ΔE, E_{ratio}</td>
<td>Used in PhotonLoose.</td>
</tr>
</tbody>
</table>

Energy Ratios

$$R_{\eta} = \frac{E_{S1}^{3\times7}}{E_{T}^{7\times7}} \quad R_{\phi} = \frac{E_{S2}^{3\times3}}{E_{T}^{3\times3}}$$

$$R_{\text{Had.}} = \frac{E_{T}^{\text{Had.}}}{E_{T}}$$

$$f_{\text{side}} = \frac{E_{S1}^{7\times3} - E_{S1}^{3\times3}}{E_{T}^{3\times3}}$$

Shower Shapes

$$E_{\text{ratio}} = \frac{E_{S1}^{\text{max},1} - E_{S1}^{\text{max},2}}{E_{S1}^{\text{max},1} + E_{S1}^{\text{max},2}}$$

$$\Delta E = E_{\text{max},2}^{S1} - E_{\text{min}}^{S1}$$

Widths

$$w_{\eta,2} = \sqrt{\frac{\sum E_i \eta_i^2}{\sum E_i} - \left(\frac{\sum E_i \eta_i}{\sum E_i}\right)^2}$$

Width in a 3x5 ($\Delta\eta \times \Delta\phi$) region of cells in the second layer.

$$w_s = \sqrt{\frac{\sum E_i (i - i_{\text{max}})^2}{\sum E_i}}$$

$w_{s3} = w_s$ uses 3 strips in η; $w_{s\text{tot}}$ is defined similarly, but uses 20 strips.

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Distributions

Data-MC comparison for identification discriminating variables

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Efficiency vs pileup

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Efficiency for Run 2

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Radiative Z decays

Event selection

1. Two opposite charged leptons, $p_T > 15$ GeV, $|\eta| < 2.47$.

2. For muon channel:
 - Require one hit for each muon in pixel tracker, and 6 hits in SCT.
 - Isolation: ratio of tracks with $p_T > 500$ MeV in a cone $\Delta R = 0.2$ and the muon p_T is less than 0.1.
 - $\Delta R > 0.2$ between the photon and the muons.

3. For electron channel:
 - Passes tight identification.
 - E_T based calorimeter isolation cut of 5 GeV.
 - $\Delta R > 0.4$ between the photon and the muons.

4. Three body invariant mass $80 < M_{ll\gamma} < 96$ GeV.

5. Dilepton invariant mass $40 < M_{ll} < 83$ GeV.
Electron extrapolation

Event selection

1. Two opposite charged electrons, $80 < M_{ee} < 100$ GeV.
2. Both electrons $E_T > 25$ GeV.
3. Both electrons $|\eta| < 1.37$ or $1.52 < |\eta| < 2.37$.
4. Tag electron has to pass tight identification. Probe electron has to pass the tracker part of tight identification.
5. Both electrons $E_T^{\text{iso}}(R = 0.4) < 5$ GeV.
6. No jet with $E_T > 20$ GeV must be within $\Delta R = 0.4$ of tag electron.

Uncertainties

- Main uncertainties come from:
 - Material in front of calorimeter $\rightarrow 5\%$ for converted, 15\% for unconverted.
 - Differences in η and E_T distributions (within a bin) between electrons and photons $\rightarrow < 1\%$.

Phillip Hamnett on behalf of the ATLAS collaboration
Matrix Method

Equations

\[N_{P}^{\text{Total}} = N_{P}^{S} + N_{P}^{B} \]
\[N_{F}^{\text{Total}} = N_{F}^{S} + N_{F}^{B} \]
\[N_{P}^{\text{Total, Iso}} = \epsilon_{P} N_{P}^{S} + \epsilon_{P} N_{P}^{B} \]
\[N_{F}^{\text{Total, Iso}} = \epsilon_{F} N_{F}^{S} + \epsilon_{F} N_{F}^{B} \]

Signal Purity (before) Tight Cuts = \(\frac{\epsilon_{F} - \epsilon_{F}^{B}}{\epsilon_{F} - \epsilon_{F}^{S}} \)

Signal Purity (after) Tight Cuts = \(\frac{\epsilon_{P} - \epsilon_{P}^{B}}{\epsilon_{P} - \epsilon_{P}^{S}} \)
Finding the track isolation efficiency

- A track isolated photon must have no track with more than 500 GeV within a cone of size $0.001 < \Delta R < 0.3$.
- The four efficiencies for the track isolation are made by splitting the tight requirements into four sections.

Uncertainties

- Signal leakage in background enriched samples. Conservatively estimated looking at difference between data and Monte Carlo.
 \rightarrow 20% for efficiency of background passing tight photon selections.
- Signal track isolation uncertainty, conservatively estimated by comparing data and Monte Carlo. Additional uncertainty here for differences between 1 and 2 track converted photons.
 \rightarrow 5% for converted photons failing tight, and 1% or less for other cases.
Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Results

Data driven results at 7 TeV

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Data driven results at 8 TeV

Phillip Hamnett on behalf of the ATLAS collaboration
Results

Data driven results at 8 TeV combined

Phillip Hamnett on behalf of the ATLAS collaboration

Performance of the photon reconstruction and identification in ATLAS
Impact on measurements

Case study: $H \rightarrow \gamma\gamma$

<table>
<thead>
<tr>
<th>Date</th>
<th>Uncertainty on signal yield resulting from photon ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2012</td>
<td>10.8 %</td>
</tr>
<tr>
<td>December 2012</td>
<td>5.3 %</td>
</tr>
<tr>
<td>March 2013</td>
<td>2.4 %</td>
</tr>
<tr>
<td>June 2014</td>
<td>1 %</td>
</tr>
</tbody>
</table>

Systematic uncertainties from photon ID efficiency

- Photon ID systematic has significant impact on coupling strength and fiducial cross-section measurements.
- Uncertainty has been significantly reduced!

Phillip Hamnett on behalf of the ATLAS collaboration