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XFEL

Joint work with Deutsches Elektronen Synchrotron (DESY)

European X-Ray free-electron laser XFEL

Facts XFEL

Costs: 1.15 billion Euro

Length: 3.4 km

101 superconducting

acceleration modules

Femtosecond (∼ 10−15 s)
laser pulses

Wavelength down to 0.05 nm

Under construction

[Source: DESY]
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Motivation

Temperature stability of the gun is the limiting factor of

the overall performance of XFEL

Simulation methods allow to develop model-based

feedback schemes even before XFEL is under operation

Test controller design in simulation

Smaller free-electron laser FLASH with comparable

structure

Approaches tested with data from FLASH
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RF GUN

Free electron laser: Acceleration

of electrons to generate the beam

RF GUN: Electron source

Resonance frequency of 1.3 GHz

Very important: Frequency

stability for efficient acceleration

of electrons

Temperature variations lead to

detuning

Dissipated RF power heats up

the gun

→ Cooling is necessary
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RF GUN (FLASH)

[Stephan, 2015]

9 / 32



Introduction Plant Modeling Controller Design Conclusion

RF GUN (FLASH)

[Stephan, 2015]

9 / 32



Introduction Plant Modeling Controller Design Conclusion

RF GUN (FLASH)

Tg

[Stephan, 2015]
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Modeling Principles

Grey-box model

Suitable for controller design

Heat

Q = cρV T

Heat flow balance

Stored power = Sum of supplied (+) and discharged (-) power

Q̇stored =
∑

i

Q̇in,i −
∑

j

Q̇out,j
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Modeling Idea

Component-wise modeling
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Cooling pipes

Tg

T4, V̇g T1, V̇g

Heat flow caused by volume flow

cwρwVcṪ1 =cwρwV̇g(T4 − T1)− kce(T1 − Tenv)− kcg(T1 − Tg)
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Gun body

Assumption: One-zone model of interior

Tg

T4, V̇g T1, V̇g

Dissipated power Pdiss by LLRF

ccρcVgṪg =kcg(T1 − Tg)− kge(Tg − Tenv) + Pdiss
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Dissipated power

Electric field inside the cavity accelerates electrons

Induces surface current

Pdiss =
|Vcav|

2

Rsh

RF behavior of gun modeled by LCR resonator circuit

L C R Zext

I

Vcav = V̂cav sin(ωt+ ψ),

[Schilcher, 1998]
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Dissipated power

Vcav ∼

√

Pfor

1 + α2 (Tg − Tg,SP )
2 → Pdiss =

|Vcav|
2
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Validation: Gun body
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Overall model
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Overall model

Nonlinear multiple input multiple output (MIMO) model

State space representation

ẋ = f(x,u),

y = g(x,u)

5 states x =
[

Tg T1 Tx T3 α̃v

]T

6 inputs u =
[

Tg,SP Pfor αh αv Tcw αp

]T

20 parameters

→ Implemented in MATLAB/Simulink
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Overall model
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Predictive Control Theory
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Predictive Control Theory
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Linear approximation

Use of linear model inside the controller

Linearization around operating point (x, u)

Linear SISO model with u = αv and y = Tg

x = Ax+Bu,

y = Cx+Du
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Cost function

Cost function

J(k) =

Hp
∑

i=1

‖Tg(k + i)− Tg,SP (k + i)‖2Q(i)

+

Hu
∑

i=1

‖∆αv(k + i)‖2R(i)

Minimization in every time instant

min
αv(k+i), i=1,...,Hu

J(k)

subject to 0 ≤ αv(k + i) ≤ 1

Very efficient computation by standard QP solvers

Moving horizon: First element of input sequence is used as

input to the plant
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MATLAB/Simulink Implementation
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Closed Loop Simulation
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Still improvements with same model achievable
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Conclusion

MIMO model of thermal behavior of RF GUN

Considering cooling circuit and LLRF influence

Adjustable to European XFEL

Only few measurement information

Promising results with model predictive controller design

Testable at FLASH

→ Improve stability of RF GUN
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Thank you for your attention!

Je vous remercie de votre attention!

Vielen Dank für Ihre Aufmerksamkeit!

Muchas gracias por su atención!

Grazie per avermi ascoltato.

Muito obrigado pela vossa atenção.
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Beam Line

[Source: DESY]
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Dissipated power

Temperature dependent cavity voltage

Vcav = V̂cav sin(ωt+ ψ),

Detuning angle ψ influences amplitude

V̂cav ≈

√

RLPfor
√

1 + tan(ψ)2

Detuning caused by gun temperature deviations

tan(ψ) = α∆Tg = α(Tg − Tg,SP )
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Parameter Estimation
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Estimation: Gun body
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Cooling circuit
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Cooling Circuit

T

T2
T

T1

V̇k V̇g

V̇cw

Water outlet from gun with flow V̇g and temperature T1

Flow V̇cw back to cold water reservoir

V̇k = V̇g − V̇cw

No temperature loss

T2(t) = T1(t− Td,12)
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Cooling circuit

α
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V̇k

Pump sets up flow V̇k controlled by αp ∈ [0, 1]

V̇k = αpV̇k,max

No flow measurements available

Heater with maximal power Q̇h,max and input αv ∈ [0, 1]

cwρwVhṪ3(t) = cwρwV̇k ((T3(t)− T2(t−Td,32)) + αhQ̇h,max (t)
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Cooling Circuit

Tank to damp temperature

fluctuations

Output temperature Tx unknown

cwρwVtṪx = cwρwV̇kT3 − cwρwV̇kTx

⇔ Ṫx =
V̇k

Vt
(T3 − Tx)

Tank

T

T3

Tx

V̇k
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Cooling Circuit

Estimation of V̇cw by valve position

V̇cw = α̃vV̇cw,max

Valve dynamics

α̃v(s) =
1

Tvs+ 1
αv(s).

Gun supplied by mixed flow

V̇g = V̇k + V̇cw,

T4 =
V̇kTx + V̇cwTcw

V̇k + V̇cw

T

T4

P p2

α αv

T Tcw

Tx, V̇k

V̇cw

V̇g
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Validation: Cooling Circuit
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Overall model
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Estimation: Overall model
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Estimation: Overall model
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Linear approximation
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