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Abstract

Present-day measurements of the signal strength of the Higgs-boson production mode

vector boson fusion tend to suffer from large theoretical uncertainties on the gluon fusion

contamination in the vector boson fusion selection. The measurements are still limited by the

statistical uncertainties, but as more data will be recorded, the statistical uncertainties will be

reduced. Therefore it is of importance to think of alternative vector boson fusion selections

with a better control over the theoretical uncertainty. Vector boson fusion selections use a

central jet veto. Such a veto can be implemented via the inclusive event shape 2-jettiness as

an alternative to the presently used central-jet veto.

In this thesis, the properties of this event shape in H→ γγ events and its use in a vector

boson fusion selection are examined. The theoretical uncertainties accompanying this

event-shape based selection are studied. Finally, the vector boson fusion signal strength is

determined using 8 TeV ATLAS data with a vector boson fusion selection which relies on

cuts on the 2-jettiness.

Zusammenfassung

Aktuelle Messungen der Signalstärke des Higgsboson-Produktionskanals Vektorbosonfu-

sion leiden an großen theoretischen Unsicherheiten hinsichtlich der Anzahl an Gluonfusion-

Ereignissen in der Vektorbosonfusion-Selektion. Derzeit sind die Unsicherheiten der Mes-

sungen vor allem durch die statistischen Unsicherheiten dominiert, doch diese statistischen

Unsicherheiten werden durch das weitere Sammeln von Daten reduziert werden. Daher

ist es geboten, alternative Vektorbosonfusion-Selektionen zu erwägen, die eine bessere

Kontrolle über die theoretischen Unsicherheiten bieten. Vektorbosonfusion-Selektionen

nutzen ein Veto gegen zusätzliche zentrale Jets. Ein solches Veto kann alternativ zu der

derzeitig verwendeten Veto-Technik mittels der inklusiven Event Shape-Observablen mit

dem Namen 2-Jettiness implementiert werden.

Die Eigenschaften jener Event Shape in H → γγ - Ereignissen und seine Anwend-

barkeitkeit in einer Vektorbosonfusion-Selektion werden in dieser Arbeit untersucht. Die mit

der Verwendung dieser Observablen einhergehenden theoretischen Unsicherheiten werden

bestimmt. Anhand von 8 TeV-ATLAS-Daten wird unter Verwendung einer auf der 2-

Jettiness basierenden Vektorbosonfusion-Selektion die Signalstärke des Vektorbosonfusion-

Higgsboson-Produktionskanals gemessen.
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In the year 2012 a new particle has been found [1], and its properties are in the focus of

research. At the present time, the measured properties are in agreement with the hypothesis that

the discovered particle is a Higgs boson [2][3]. One of its properties which is investigated is the

coupling to the Standard Model particles. The various coupling strengths can be determined

via the measurement of branching ratio as well as via the measurement of production cross

sections for different Higgs-boson production modes. Five such Higgs boson production channels

are currently being studied; gluon fusion (ggF) and vector boson fusion (VBF) are predicted

to be the modes with the highest production cross sections, i.e. σggF = 19.2pb and σVBF =

1.6pb at
√

s = 8TeV collisions at the LHC for a Standard-Model Higgs boson with a mass

of mH = 125.4GeV [4]. Higgs events involving the fusion of two massive vector bosons, i.e.

VBF events, are more likely to contain two well-separated jets than gluon fusion events and

non-Higgs events. Hence, VBF-enriched selections commonly select events with at least two

jets. The highest significance in a VBF-enriched selection with respect to ggF background can

be achieved when one imposes a veto on additional central jets, since, due to the color structure

of VBF events, radiation between the two outgoing partons is suppressed. The same does not

hold for ggF events, a fact that can be used in order to discriminate against ggF events in a

VBF selection. The vector boson fusion selection that is used in the latest ATLAS paper [2]

analyzing the compatibility of measured Higgs boson production cross sections with Standard

Model predictions employs a multivariate analysis that involves variables which are sensitive

to additional hadronic radiation. With this selection, a high VBF signal fraction is achieved at

the price of a sizable theoretical uncertainty. Furthermore, the use of multivariate techniques

makes the estimation of the theoretical uncertainty more complicated. Because of even larger

statistical uncertainties, the sizable theoretical uncertainty is not important at the present amount

of integrated luminosity. But since the dataset will quickly grow and the statistical uncertainty

will decrease in the next years of LHC operation, the investigation of alternative VBF selections

with better control over the theoretical uncertainties is recommended.

The event shape 2-jettiness is an inclusive measure of how much radiation in addition to two

given jets is present in a given event [5]. Thus, it can be used as a veto on additional radiation

and is therefore possibly valuable for VBF selections. Because it is inclusive, the use of this

event shape would enable better control over theoretical uncertainties and may possibly lead to

smaller theoretical uncertainties.
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The purpose of this thesis is to analyze the properties of this event shape and its use in a

simple cut-based analysis aiming at the measurement of the ratio of the VBF signal production

cross section and the corresponding predicted value, i.e. the VBF signal strength. This includes

also the computation of the theoretical uncertainty accompanying such a selection. While the

described approach can be applied to all Higgs decay modes, this work is an analysis in the

H→ γγ decay channel.

The outline of the thesis is:

• In the next part, the theoretical foundations will be introduced. Beside the Standard Model

of particle physics also the estimation of theoretical uncertainties for the ggF contamination

in a VBF selection will be explained.

• Subsequently, the ATLAS experiment will be described. This description includes the

basics of the ATLAS detector as well as the analysis objects such as photons, tracks and

jets.

• Following these theoretical and experimental fundamentals, the strategy and results of

the analysis will be presented. These include the investigation of the properties of the

2-jettiness in interplay with the ATLAS detector and the event shape’s utility in the creation

of a VBF-enriched selection. The theoretical uncertainties, which depend on the selection,

will be estimated. In the end, a computation of the VBF signal strength using a VBF

selection based on the 2-jettiness is performed using 8 TeV ATLAS data.
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1 Theoretical foundations

1.1 The Standard Model of Particle Physics

1.1.1 Preface

The Standard Model is the underlying theory of particle physics and is a quantum field theory.

Gravitation is the only known force which is not part of the Standard Model: The Standard

Model describes the electromagnetic, the weak and the strong force. These three forces are

described by a gauge theory [6]. In the Standard Model, forces correspond to the exchange of

vector bosons, while matter consists of fermionic particles. In addition to fermions and vector

bosons, a scalar field exists, which is called Higgs field and is the source of mass of elementary

particles.

The particles of the Standard Model can be divided into fermions and bosons. Fermions

are particles with half-integer spin, while bosons are particles with integer spin. Not counting

the antiparticles, 12 different elementary fermions are known to exist. These 12 fermions

include six quarks and six leptons. Quarks are subject to the strong force, to the weak force

and to the electromagnetic force. Leptons on the other hand interact only via the electroweak

interaction. The group of leptons can be subdivided into two types: One lepton type is called

neutrino and carries only weak charge. The other type of leptons carries weak charge and is in

addition electrically charged with an electrical charge whose magnitude is equal to the charge

of the electron. Of both types there are each three different kinds of leptons with differing

masses. The same subdivision applies also to quarks. Up-type quarks are charged with +2/3e,

while down-type quarks carry charge −1/3e. Thus, both leptons and quarks fermions can be

grouped into three generations, each generation comprising two quarks and two leptons, see

table 11. The neutrinos, denoted by ν , are very light particles with masses less than 2 eV [6].

The corresponding charged leptonic partner of each neutrino is heavier. Among quarks there is

the most massive known elementary particle, i.e. the top quark [7]. The fermion masses range

over 11 orders of magnitude. The electromagnetic force is a long-range force, whereas the weak

1In this thesis, natural units are used, i.e. the speed of light and the reduced Planck constant are set to unity, c = 1
and h̄ = 1.
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Generation I II III

Leptons νe |0<2eV νµ |0<2eV ντ |0<2eV

e |−1
0.5MeV µ |−1

0.1GeV τ |−1
1.8GeV

Quarks u |+1/3
2MeV c |+1/3

1.3GeV t |+1/3
173GeV

d |−2/3
5MeV s |−2/3

95MeV b |−2/3
4.2GeV

TABLE 1: Fermionic particle content of the Standard Model. The superscript numbers give the
electric charge in units of the elementary charge while the subscripts give the particle mass [7].

force is very limited in its range of action2. This difference in range is due to differing masses of

the force carriers, the gauge bosons. The gauge boson of electromagnetism is called photon and

denoted by γ , those of the weak force are denoted with W± and Z0 and the exchange particles of

the strong force are called gluons. The strong force is a short-range force as well, but for another

reason than for the weak force: The force carriers of the strong force, the gluons, are massless

just like photons. Due to the self-interaction of gluons, which produces a phenomenon called

confinement, gluons cannot penetrate the space as photons do [8]. Gauge bosons are vector

bosons, meaning that they carry unit spin. Scalar particles, which carry zero spin, are another

kind of bosons, of which so far only one instance is known: the Higgs boson. The Higgs boson

is a particle which is a consequence of the Higgs mechanism, which is an essential part of the

Standard Model. Without the Higgs boson, masses of elementary particles would be forbidden

by gauge invariance, which will be discussed in the following.

1.1.2 Interactions in the Standard Model

Interactions in the Standard Model are mathematically described and interpreted by means of

particular symmetry groups [8]. These symmetry groups are groups of transformations which

can be parametrized by one or more continuous real-valued variable(s)3 [9]. The interactions are

a result of the requirement that certain local symmetries with respect to transformations of fields

2Two weakly charged particles ought to be in a distance of about 10−18 m in order to have an interaction strength
comparable to the electromagnetic force.

3Therefore they are called continuous. Discrete symmetry transformations can be defined as well, but they are not
sources of forces. An example for a continuous group is the group of rotations in 3-dimensional space. These
transformations are specified by three numbers. For further reading, see Lie groups [9].
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ψ hold: Certain independent, continuous transformations at each point in spacetime are required

to leave the Lagrangian of the system invariant. Local symmetries have to be distinguished from

global symmetries; the transformations related to the latter are the same for all spacetime points,

while in the former case at each spacetime point an independent choice of the transformation’s

parameter is allowed. Local symmetries are a centerpiece of gauge theory. The symmetries of

the Standard Model are of the type SU(N) – this means that they can be represented by unitary

n×n matrices with determinant 1. A generic element of such a symmetry group acting on a field

with n components ψ(x) = (ψ1(x),ψ2(x), ...,ψn(x)) can be written as

ψ(x)→ exp(igα
iT i)ψ(x) . (1)

Here, α i are the components of a n-dimensional vector containing real numbers and the T i are the

generators of the symmetry group4. When n > 1, the order in which multiple transformations are

applied, does generally matter. In this case, the symmetry group is called non-Abelian, opposed

to the notion of Abelian groups, whose elements may be exchanged in a series of transformations

without affecting the series’ result.

The symmetry group which constitutes the Standard Model is [10]

SU(3)C×SU(2)L×U(1)Y . (2)

This symmetry group consists of one Abelian (U(1)Y) and two non-Abelian gauge groups

SU(3)C and SU(2)L. The number of gauge bosons connected to a given symmetry SU(N) is

given by N2−1. Hence, the existence of a SU(2)L×U(1)Y symmetry leads to four ((22−1)+

1 = 4) corresponding gauge bosons5 (W µ

i , i = 1,2,3 and Bµ ) whereas the gauge group SU(3)C

results in 8 different gauge bosons called gluons. The way how the leptons and quarks have

been arranged in doublets in each generation in table 1, reflects the fact that interactions with a

charged weak gauge boson transforms a particle into the other particle of the doublet: an electron

turns into a neutrino or vice versa and an up-type quark into a down-type quark or vice versa6.

If no additional mechanism like the Higgs mechanism would be assumed, the gauge bosons

4The generators of a given group are a subset of the group with the property that every element of the group can be
accessed by a linear combination of the subset’s elements and their inverses.

5For the sake of readability, the dependence on the spacetime is mostly not explicitly written in the following.
6The mass eigenstates are not the interaction eigenstates. This means that, to a small degree, there are transitions
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have to be massless for reasons of gauge symmetry. The reason for this is that not only fermion

fields undergo local gauge transformations but also gauge fields. In the presence of explicit

gauge-boson mass terms in the Lagrangian, the transformation of the gauge fields would not

leave the Lagrangian unchanged. Therefore the symmetry, for which the gauge field has been

introduced in the first place, would be explicitly broken. Hence, massive gauge bosons cannot

comply with the gauge principle if the model which so far contains only fermions and gauge

bosons would not be extended. However, there are gauge bosons which are massive. Fermions

are massive as well, and this as well would be forbidden in a model which does not include any

mechanism that can give fermions a mass without explicitly breaking the gauge symmetry, as

will be detailed in section 1.1.3.

A Lagrangian which is locally invariant under a given symmetry transformation must be

globally invariant under the same symmetry transformation. Resulting from this global symmetry,

a conserved quantity exists7. For the U(1)Y symmetry, the conserved quantity is called weak

hypercharge and is denoted by Y; the conserved quantity of SU(2)L is one component of the weak

isospin, commonly chosen as the z-component. In strong interactions (SU(3)C), the conserved

charge is called color [8].

In order to obtain an interacting theory, one takes the non-interacting and globally invariant

Lagrangian as a starting point and replaces the partial derivatives ∂µ with covariant derivatives

Dµ , which depend on the considered symmetry group. In addition, one has to add kinetic terms

for the gauge fields in order to take all the energetic content of the theory into account. The

resulting Lagrangian includes interactions between fermionic fields and gauge fields, and in case

of non-Abelian symmetry groups also interactions between the gauge fields themselves.

1.1.3 Theory of Electroweak Interactions and the Higgs Mechanism

In this section, only the SU(2)L×U(1)Y part of the Standard Model group (2) is considered, since

the SU(3)C symmetry has no direct connection with the mechanism of electroweak symmetry

breaking. The electromagnetic and the weak force can be unified to the electroweak force. This

unification is manifest in the mixing of SU(2)L and U(1)Y gauge fields. By these symmetries,

between different generations, i.e. some weak interactions can transform a fermion mass-eigenstate of a given
generation into a fermion mass-eigenstate of another generation.

7See Noether’s theorem, e.g. [8].
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four gauge fields are introduced: W i
µ , i = 1, 2, 3 and Bµ . These result in four mass eigenstates

which are combinations of the original gauge fields: W+
µ , W−µ , Z0

µ and γµ . The conserved charges

of SU(2)L and U(1)Y are one component of the weak isospin Tz and the weak hypercharge Y ,

respectively. The subscript L in SU(2)L indicates that only the left-handed fermion doublets

are subject to the interaction corresponding to the SU(2)L gauge group, i.e. the weak force.

The right-handed component of a fermion field transforms as a singlet, which means that they

are not participating in the interaction [8]. The gauge field quantum γ is the massless photon,

which carries no kind of charge. The two W± bosons carry electric charge, while the Z0 boson is

electrically neutral. The two charged gauge bosons W± carry in addition non-vanishing weak

isospin: TzW+
µ = +1W+

µ and TzW−µ = −1W−µ . All left-handed fermions are weakly charged;

the upper (neutrinos or up-type quarks) and lower component (charged leptons or down-type

quarks) of a doublet has z-component of weak isospin of +1/2 and −1/2, respectively. An

interaction of a fermion with a charged weak gauge boson is accompanied with a change of the

fermion’s third component of the weak isospin. This corresponds for example to the conversion

of an electron to a neutrino or vice versa. The electric charge is related to the z-component of

the weak isospin and the weak hypercharge via the equation eQ = e(Tz +Y ) [8]. The covariant

derivative of the symmetry group SU(2)L×U(1)Y is

Dµ = ∂µ + i
g
2

σ
iW i

µ + ig′
Y
2

B̂µ

= ∂µ +
i
2

 gW 3
µ +g′Bµ g(W 1

µ − iW 2
µ )

g(W 1
µ + iW 2

µ ) −gW 3
µ +g′Bµ

 , (3)

where the σi denote the three Pauli matrices. The coupling constants for the SU(2)L and U(1)Y

gauge interactions are denoted by g and g′, respectively. Thus, the matrix elements which act

on the fermionic fields are linear combinations of the basic fields W i
µ and Bµ . Therefore, it is

7



convenient and useful to define physical fields according to the following definitions:

W±µ =
1√
2
(W 1

µ ∓W 2
µ )

Z0
µ =

1√
g2 +g′2

(gW 3
µ −g′Bµ)

Aµ =
1√

g2 +g′2
(gW 3

µ +g′Bµ) . (4)

So far, all involved particles, fermions as well as bosons, have to be considered as massless,

since otherwise gauge invariance would be lost. Because massive elementary particles are known

to exist, a remedy is needed – which can be obtained by the assumption of a Higgs field. The

resulting dynamical creation of particle masses is called Higgs mechanism. It bases on the

assumption that a weak isospin doublet of a complex scalar field with non-vanishing vacuum

expectation value v of the form as shown in the following equation exists.

φ =

φ+

φ 0

=
1√
2

φ1 + iφ2

φ3 + iφ4

 . (5)

The weak hypercharge Y of the Higgs doublet is Y = +1
2 [8]. This Higgs field is described

by a Lagrangian (6) that leads to spontaneous symmetry breaking, which corresponds to the

dynamical generation of mass [8]:

L free
φ = ∂µφ

†
∂

µ
φ −V (φ)

= ∂µφ
†
∂

µ
φ +µ

2
φ

†
φ −λ (φ †

φ)2 . (6)

The parameters µ2 and λ are real parameters; both must be chosen positive if a stable vacuum

state is required. With these signs of λ and µ2, the potential of the Higgs field looks as

shown in figure 1. There is not only one ground state but a four-dimensional circle with radius
v√
2
= µ√

2λ
, containing a continuum of ground states. The Lagrangian in (6) is symmetric

under SU(2)L×U(1)Y transformations, but from the perspective of one of the ground states,

that symmetry is hidden. This situation has an analog in solid state physics: While inside a

8



|Φ |0

|Φ |
+

V(Φ)

|Φ0|
2

+|Φ+|
2
= ν

2

2

FIG. 1: The Higgs potential as a function of the field strength. For the sake of the presentation, the
Higgs potential is drawn as a function of only two of the four real-valued Higgs field components.

ferromagnet the system appears to be not rotationally invariant8, this does not mean that the

general physical laws ruling the world have to favor one special direction. If one would increase

the ferromagnet’s temperature above the Curie temperature9, the rotational symmetry would be

manifest in the ferromagnet, too.

In order to make meaningful statements about the particle spectrum in a world being in the

ground state, one has to assume the ground state in calculations as well. The Lagrangian of the

Higgs fields φ is invariant under SU(2)L×U(1)Y transformations, but the ground state is not.

Assuming the ground state corresponds here to the reduction of the SU(2)L×U(1)Y symmetry

to a U(1)EM symmetry, which is the symmetry group of the electromagnetic force. The Higgs

field doublet can be gauged in a way which leads to only one real-valued and non-vanishing

8In a ferromagnetic material atomic spins are aligned in a way that a particular direction is special; thus the
rotational symmetry is broken.

9The Curie temperature denotes the temperature above which a ferromagnetic material has lost its ferromagnetic
properties.
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component, see equation (7). This particular gauge is called unitary [8].

φ = exp
(

i
θa

2
σa + i

β

2

)φ1 + iφ2

φ3 + iφ4

=

 0

φ3

 . (7)

In the ground state, this becomes

φ =

 0
1√
2
(v+H(x))

 . (8)

The vacuum expectation value of the Higgs field is denoted by v, and the dynamic variable is

now denoted by H(x). Quantized excitations of this scalar field H(x) are called Higgs bosons.

If one compares this expression with equation (5), one can see that the chosen ground state is

electrically neutral, which means that photons are not interacting directly with the Higgs field

and therefore are not acquiring mass via the Higgs mechanism.

In order to make the free Lagrangian of the Higgs field invariant under SU(2)L×U(1)Y

transformations, one replaces the ordinary derivative ∂µ with the covariant derivative Dµ , defined

in equation (3):

LHiggs = (Dµφ)†(Dµ
φ)+µ

2
φ

†
φ −λ (φ †

φ)2

= (∂µφ)†(∂ µ
φ)+µ

2
φ

†
φ −λ (φ †

φ)2

+
1
4

φ
†(gW a

µ σ
a +g′Bµ)(gW b

µ σ
b +g′Bµ)φ . (9)

If now the Pauli matrices σa are evaluated and one assumes the ground state as defined in

equation (8), equation (9) becomes

L vac
Higgs =

1
2
(∂µH)†(∂ µH)−µ

2H2−λvH3− 1
4

λH4

+
1
8
(v+H)2

(
g2 ((W 1

µ )
2 +(W 2

µ )
2)+(−gW 3

µ +g′B)2
)

. (10)
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Exchanging the basic fields W i
µ and Bµ with the mass eigenstates defined in equations (4) leads

to the following gauge boson masses:

mW± =
vg
2

mZ0 =
v
√

g2 +g′2

2

mγ = 0 (11)

As a consequence, one can compute the vacuum expectation value of the Higgs field if the mass

of the W± boson is known via v = 2mW±/g = 246GeV [7]. This scale is called the electroweak

scale. There is a close relationship between the W± and the Z0 mass:

mW±

mZ0
=

g2√
g2 +g′2

. (12)

If one counts the degrees of freedom before the spontaneous symmetry breaking and after, one

obtains the following result: Before spontaneous symmetry breaking, one has four massless

gauge fields, which relates to eight degrees of freedom10 and in addition, the complex Higgs

doublet gives four degrees of freedom. Thus, there are in total twelve degrees of freedom. After

symmetry breaking, one has three massive gauge bosons and one massless gauge boson, which

leads to 3 ·3+2 = 11 degrees of freedom in that part, while the Higgs field’s strength can be

expressed by one single number H. Thus, one has again twelve degrees of freedom. Three of the

four degrees of freedom of the Higgs field φ have been converted into third degrees of freedom

of the originally massless W± and Z0 bosons, corresponding to them having become massive.

In addition to those gauge boson mass terms, the Lagrangian (10) includes interactions between

the Higgs field and the gauge fields:

Lint. =
g2

4
H2 (W±µ )2 +

g2

2
H (W±µ )2 +

g2 +g′2

8
H2 (Z0

µ)
2 +

g2 +g′2

4
H (Z0

µ)
2 (13)

10Massless particles with spin 1 only have two possible polarizations, while massive particles have three.
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The remaining part of the Lagrangian (10) describes the Higgs field kinematics and the Higgs

field’s self-interactions:

LH =
1
2
(∂µH)†(∂ µH)− 1

2
m2

HH2− λ

2
mHH3− 1

4
λH4 (14)

The mass of the Higgs field is mH =
√

2 µ . Since µ is not known, the theory does not predict the

mass of the Higgs boson. The terms proportional to H3 and H4 correspond to self-interactions

of the Higgs field.

A convenient way to allow for fermion masses is to assume a Yukawa coupling11 between the

Higgs field and fermion fields. An explicit fermion mass-term of the form

mψ̄ψ = m(ψ†
LψR +ψ

†
RψL) (15)

in the Lagrangian of fermions would violate gauge invariance [8]. This is because left- and

right-handed components transform differently under gauge transformations. A Yukawa coupling

of the Higgs field to fermions, however, leads to fermion mass generation preserving gauge

invariance. For example, an electron mass term can be generated by introducing a Lagrangian

term [8]

L e
Yukawa = -λe (ĒL φ eR + ēR φ

† EL) . (16)

In this equation the left-handed SU(2) doublet which contains the electron and electron-neutrino

is denoted by

EL =

νe

e−


L

. (17)

The right-handed electron singlet in SU(2)L is denoted by eR. The coupling strength between

fermions and the Higgs field is given by λ f , in this case λe. The Lagrangian (16) is a gauge-

invariant expression. Assuming the vacuum state as chosen in equation (8), it becomes

L e
Yuk = -λe

v√
2
(ēL eR + ēR eL) . (18)

This expression is a proper mass term for a fermion, in this case an electron. Neutrinos have no

11A Yukawa coupling is a coupling of a scalar field to two fermions.
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right-handed component in the Standard Model, hence a Dirac mass term (18) is zero. This means

that neutrino masses are forbidden in the Standard Model. However, neutrinos are measured

to be massive to a small extent. This problem is not yet resolved. A possible remedy for this

situation could be to assume a completely non-interacting right-handed neutrino [7]. The same

procedure as described above for the electron can be worked out for the other fermions. The

mass for a fermion is in general given by

m f =
λ f v√

2
. (19)

The coupling parameter λ f are free parameters of the theory which means that no prediction of

the fermion masses can be made. The coupling of the Higgs field to the fermionic fields increases

with the mass of the fermion.

1.1.4 The Higgs Boson

The existence of a Higgs boson has been experimentally verified in July 2012 [1]. Since then,

there have been efforts to measure its properties. The mass of the Higgs boson is measured by

the ATLAS collaboration to be mH = 125.36 ± 0.37(stat.) ± 0.18(syst.) GeV [11]. Since the

decay into two gauge bosons has been observed, the Higgs particle itself must be a boson. Based

on the fact that the decay into two photons has been observed, one can discard the hypothesis

of a spin-1 particle12. The measurements so far indicate a spin of 0, which is also the predicted

value [12]. Given the Higgs mass and the masses of the other particles, all couplings strengths to

other Standard Model particles are predicted by theory. These coupling strengths between the

Higgs boson and the other particles can be extracted from measurements of the Higgs boson’s

decay and production modes. Once a Higgs boson is produced, it is predicted to decay very

quickly into subsequent particles. Decays into a pair of fermions, into a pair of gauge bosons

as well as into pairs or triplets13 of Higgs bosons are allowed. How quickly the Higgs boson

decays, depends on the mass of the Higgs boson. The more decay modes are permitted by means

of energy conservation, i.e. the heavier the Higgs boson is, the more quickly the Higgs boson

12It is impossible to construct a spin state with two photons with spin 1 originating from a particle with half-integer
spin due to conservation of angular momentum.

13At the present integrated luminosity, the decay into pairs or even triplets of Higgs bosons is not a significant
decay channel.
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will decay. The relevant number here is the total decay width Γ = ∑Γi, where Γi denotes the

partial decay width for the decay mode i. The total decay width is inversely proportional to the

mean lifetime τH of the Higgs boson: ΓH = 1/τH . The expected decay width of the Higgs boson

at the measured Higgs boson mass of 125.4 GeV is (4.12±0.16)MeV [4]. Therefore, one can

predict the Higgs boson’s lifetime to be τH = 1.60 ·10−24 s. The branching ratios of the Higgs

decay channels are defined as [6]

Bi =
Γi

Γ
. (20)

Figure 2 shows the branching ratios of the Higgs decay as a function of the Higgs mass. The

branching ratios to the individual decay modes depend on the Higgs mass, as well as on the

masses of the decay products. The Higgs tends to decay into the pair of particles which have

the largest mass allowed by energy conservation at a given Higgs mass. But as one can see in

figure 2, this energy conservation criterion does not hold exactly, which is due to the uncertainty

principle ∆ t ·∆E ≥ 2π h̄. It means that the energy of a particle can vary to some extent for a

certain time. In effect, the Higgs boson can decay via a certain channel even if the Higgs mass

is smaller than the mass of the real decay products. If such a decay occurs, some degree of

virtuality of the resulting decay products must be present. Virtuality means that a given particle

does not fulfill the energy-momentum relation E2 = ~p2 +m2. A virtual particle can only exist

for a short period of time, after which it must have undergone some interaction or decay. The

more virtual an intermediate state is, the more the energy-momentum relation is violated and the

more suppressed the process is. This is why the branching fraction of a certain decay channel

decreases quickly when one goes to lower Higgs masses than the invariant mass of the decay

products. At the measured Higgs mass of 125.36 GeV, the decay into a pair of b and b̄ quarks is

most likely, since b quarks are the heaviest particles with a mass smaller than half of the Higgs

mass. This is a somewhat unlucky situation for the experimenter, due to the large backgrounds

of the H→ bb̄ signature. The decays into massive and non-massive gauge bosons on the other

side are the most important decay channels for the verification of the Higgs boson and in case of

the decay into γγ or ZZ also for the mass measurement:

14



[GeV]HM
80 100 120 140 160 180 200

H
ig

g
s
 B

R
 +

 T
o
ta

l 
U

n
c
e
rt

-410

-3
10

-210

-110

1

L
H

C
 H

IG
G

S
 X

S
 W

G
 2

0
1
3

bb

ττ

µµ

cc

gg

γγ γZ

WW

ZZ

FIG. 2: The branching ratios of the Higgs boson as a function of the Higgs mass [4].

• H→ γγ: This decay is predicted to have a small branching ratio of (2.28±0.11) ·10−3

at mH = 125.4GeV [4]. Still, it is a mode with high significance and the Higgs boson

mass can be measured with high accuracy. Since photons do not carry mass, this decay

must involve a loop of heavy charged particles between Higgs boson and the two outgoing

photons, see figure 3. Since this is the decay mode most important for this thesis, it is

worthwhile to give a few details about its experimental backgrounds: The fraction of Higgs

events among all events which contain two photons is small. In most of these events,

the two photons are produced in non-Higgs events such as quark-antiquark annihilations,

which is an irreducible background. There are also contributions from hadrons or jets

which have been misidentified as photons; those contributions are called reducible because,

with increasing experimental abilities, these contributions can be more efficiently rejected.

• H → Z0 Z0→ 4 l: This decay mode constitutes a so-called golden channel. It provides

high sensitivity and good energy resolution. The branching ratio at mH = 125.4GeV is

predicted to be (2.74±0.11) ·10−2 [4].

• H →W+W− → l+ν ł−ν̄: The branching ratio of (2.21±0.09) ·10−1 [4] of this decay

channel is relatively high. Due to the decay of W± boson into a pair of quarks – a signature
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which has a huge non-Higgs background – or into a leptonic final state containing a

neutrino, the mass of the Higgs boson can not be measured directly in this channel.

Decays into fermions with low masses, i.e. those stemming from the first two generations, are

very suppressed so that these decay channels are not significantly substantiated by the analysis

which can be done with run 1 data.Nevertheless, it is important to measure the coupling of the

Higgs boson also to those lighter fermions, since these measurements allow tests of the Standard

Model predictions regarding the Higgs couplings.

H

γ

γ

t

t

t̄

FIG. 3: Feynman diagram for the decay of a Higgs boson through a top quark loop into two
photons. The particle in the loop can be any massive charged particle such as W bosons.

In figure 4, the five different production modes which are important at a hadron collider like the

LHC are presented in form of Feynman diagrams.

• Gluon fusion (ggF): Two incoming gluons fuse into a loop of heavy quarks, which can

produce an outgoing Higgs boson. Since the parton content of protons at high energies

is made to a high degree of gluons, this mode is the dominant production mode, having

at 8 TeV LHC operation a cross section of 19.2 pb at a Higgs mass of 125.4 GeV and at

8 TeV LHC operation. At leading order nothing but a Higgs boson is produced in this

interaction. Through higher order corrections, additional jets can emerge. The properties

of the gluon fusion process are controlled by Quantum Chromodynamics14 (QCD) and

therefore inherit the complications of QCD, see section 1.1.5.

• Vector boson fusion (VBF): Here, a heavy gauge boson is emitted by each of two incoming

quarks. Those heavy bosons can fuse into a Higgs boson. The magnitude of the VBF cross

section is an important measure for the coupling strength of electroweak gauge bosons to

the Higgs boson. As experimental signature, one expects the Higgs boson accompanied

14This topic is treated in section 1.1.5
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by two jets in the forward region, which originate from the scattered quarks. Between

these jets, little additional radiation is expected. Vector boson fusion is predicted to be a

subdominant production mode, having a production cross section at 8 TeV of 1.65 pb.

• Associated vector-boson production (WH and ZH): A W± or Z0 boson emits a Higgs

boson. The production cross sections for these modes are 0.70 pb and 0.41 pb, respectively.

• ttH: Here, two incoming gluons split up into each a pair of top quarks15. Two oppositely-

charged top quarks can couple to a Higgs boson. Thus, in the final state a Higgs boson as

well as two top quarks of opposite charge can be measured. The production cross section

for this process is 0.13 pb.

g
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tW,Z

W,Z

q

q

g

g

q

q

q

q
(a) (b)

(c) (d)

H

HH

H

FIG. 4: The leading Feynman diagrams for the five leading Higgs production modes. a) Gluon
fusion, b) Vector boson fusion, c) Associated vector-boson production, d) Higgs boson production
in association with tt̄ pairs [7].

1.1.5 Quantum Chromodynamics

Quantum Chromodynamics is the theory of strong interactions and is based on the SU(3)C gauge

group [8]. A quark is a fermion which interacts via the strong force. A quark can have three

different SU(3)C charges. These charges are called red, green and blue – the C in SU(3)C stands

for color. Corresponding to the fact that this gauge group is non-Abelian, the gluon, which is

the transmitter of the strong force, carries color charge itself and therefore interacts with other

gluons. There are eight types of gluons, carrying different combinations of colors and anti-colors.

Therefore, quarks can change their color by interacting with gluons.

15Of course, also bb̄H or cc̄H may occur, but such modes are expected to be considerably less significant, because
of the large backgrounds of the corresponding event signatures.
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At different distance scales, or equivalently at different momentum-transfer scales, the coupling

parameter of an interaction has different magnitudes. This property is called running. The

coupling parameter αEM of electromagnetism is decreasing at increasing distances. The opposite

holds for the strong interaction, which leads to very different phenomena as observed in electro-

magnetism; the strong interactions comprises effects such as confinement or asymptotic freedom,

which will be described below. In the following equation, the running of the QCD coupling

strength is given in lowest order of perturbation theory:

αs ≈
2π

(11− 2
3N f ) ln

(
Q
Λ

) . (21)

Here, N f is the number of quark flavors, which is 6, and Λ is the scale at which the strong

coupling constant becomes large when the momentum transfer Q is lowered. The scale Λ is of

order Λ≈ 0.1 GeV to 0.5 GeV [10]. Light hadrons are roughly of the size 1/Λ≈ 10−14 m. At

the same time, the lightest mesons, i.e. pions, have a mass in the same range as Λ. Perturbation

theory can only be applied if Q is larger than about 1 GeV, which corresponds to αs being smaller

than approximately 0.4, since the convergence of the series is not given otherwise.

No colored objects such as single quarks or gluons can be measured in a detector: If one

tries to separate a colored object from a hadron, the force between the colored particle and the

remaining rest of the hadron will increase with increasing separation16 – the result of this is

that the colored particle which was meant to be isolated is not a colored object anymore but has

been joined together with other colored particles from the vacuum into a new, color-neutral state.

An illustration of this process called hadronization can be the following: The increasing force

between the two colored objects in the process of separation leads to such a high energy density

that new quarks come into existence between them. These make new bonds with the original

colored particles, and hence all particles are color-neutral again in the final state. Due to the large

distance scales involved in hadronization, this process is not computable by perturbative QCD

calculations. Processes which are happening at small distances or high energies, for example a

collision of two partons with sufficiently high momentum transfer at the LHC can be computed

16Note that in Quantum Electrodynamics, the theory of electromagnetism, the opposite holds: The more one
separates two electrically charged objects, the weaker the force between them will be.
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without problems in perturbation theory, because the coupling strength of QCD is in that case

small enough to let the perturbation series converge.

To compare theory predictions and experimental results involving QCD physics, one has to

measure quantities which are infrared-safe. This means that the quantity must not depend on

low-energy or large-distance processes (e.g. an emission of a soft gluon from a hadronizing

gluon or quark) but only on short-distance processes. If that is the case, such a quantity can

be computed in perturbative QCD. There are of course processes which depend on soft QCD

physics. Factorization is a technique which makes it possible to compute such processes as well:

A quantity which depends on a hard process as well as on a soft process can be computed by

separating the two energy scales. Perturbative QCD is used to compute the hard process. By

using factorization, a scale called factorization scale is introduced. Physics below this scale is

treated as part of the internal interactions within the proton, which are described by the parton

density functions, while a process with an energy above this scale enters the scattering cross

section as hard interaction.

1.2 Theoretical Uncertainty on the Gluon Fusion Cross Section in

Vector Boson Fusion Selections

1.2.1 Preface

A goal of this thesis is to compare the number of measured VBF events with the predicted

number of VBF events in order to test of the Standard Model prediction. A simple way17 to do

this measurement is via the equation

NVBF = Nsel.−Nfit
bkg−NSM

H,non−VBF , (22)

where Nsel. is the number of selected events, Nfit
bkg is the number of non-Higgs background events

which is obtained on basis of data, and NSM
H,non−VBF is the number of non-VBF Higgs events

which is predicted by the Standard Model. Because of the relatively large cross section of gluon

17In the official H→ γγ couplings analysis [2], a more sophisticated method is used to extract the signal strengths.
It is outlined in subsection 3.5.2
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fusion, which is about one order of magnitude larger than the cross section of vector boson fusion

[4], the number of gluon fusion events in the selection must be considered with great care.

For this measurement of the number of VBF events, it is advantageous to use a selection which

mostly contains VBF events. As described in section 1.1.4, VBF events have two forward jets

and only little additional hadronic radiation. For a VBF selection it would be therefore useful to

require two jets with little additional central radiation in between. However, also gluon fusion

events can be accompanied by two jets through initial-state gluon radiation, corresponding to

higher-order corrections in the perturbation expansion. Since gluon fusion is predicted to have a

relatively large cross section, it is important to know how large the gluon fusion contribution to

the VBF-enriched selection is and with which precision this contribution can be predicted. The

uncertainty on this prediction, i.e. the theoretical uncertainty on the gluon-fusion contribution to

VBF selections, is the topic of this section.

The two main types of theoretical uncertainties are perturbative uncertainties and parametric

uncertainties; examples for the latter are uncertainties on the parton distribution function [13]

or on the magnitude of αs. In this treatment of theoretical uncertainties, only the perturbative

uncertainty is addressed. In contrast to parametric uncertainties, they depend on the phase space

restrictions imposed by the event selection. Perturbative uncertainties are resulting from usage

of incomplete perturbation expansions in cross section calculations. A typical inclusive cross

section of a process involving the strong interaction has the form

σ = σB

∞

∑
i=0

ci(µ,Q)α
i
s(µ,Q) , (23)

where σB denotes the Born-level cross section18 of the process in question, µ is an scale called the

renormalization scale, which would not have any effect on the result if all orders of perturbation

theory would be considered, and Q is the energy scale of the interaction. In practice, and in

particular in case of QCD calculations, only a finite and often not particularly large number of

terms can be taken into account, because only some of the factors ci could be computed so far.

The influence of unknown higher order terms in the perturbative expansion in the calculation

of a given cross section must be estimated in some way, and the magnitude of this influence is

taken as an estimate of the perturbative uncertainty. The impact of these missing terms is usually

18Born level cross sections are cross sections computed at lowest possible order in perturbation theory.
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estimated using variations19 of certain energy scales around a central value [13]: the factorization

scale µF and the renormalization scale µR. The strong coupling constant αs is scale-dependent,

as mentioned in subsection 1.1.5. The calculation of the coupling strength at a given scale Q can

so far only be done to finite order in perturbation theory, which entails that αs depends on the

scales µF and µR. The central value is commonly chosen to be the scale of the hard interaction;

in case of Higgs production it would be the mass of the Higgs boson.

1.2.2 Definition of an Exclusive 2-Jet Cross Section

The splitting of the cross section into parts with restrictions on the number if jets, i.e. the

creation of jet bins, can be useful to concentrate the analysis on phase space regions in which

the signal (VBF, in this case) sensitivity is especially high, that is, in which is comparatively

little background compared to the number of signal events. With a jet reconstruction algorithm

one can define the inclusive 2-jet cross section σ≥2, which contains all events with at least two

reconstructed jets. It is useful for a VBF selection to select only events whose configuration is

close to the VBF Born-level diagram, i.e. events which contain not more than two outgoing jets

and the Higgs boson’s decay products. Thus, it is useful to further constrain the cross section, i.e.

to define an exclusive 2-jet cross section, using the relation:

σ≥2 = σ2 +σ≥3 (24)

Here, one divides the inclusive 2-jet cross section into an exclusive 2-jet cross section and an

inclusive 3-jet cross section. One has to define the exact definition of exclusive in terms of an

appropriate observable k which should measure the radiation which occurs in addition to the two

signal jets and the Higgs decay products. Then, the exclusive 2-jet cross section can be defined

as follows:

σ2(k < kcut) = σ≥2−σ≥3(k > kcut) . (25)

19The reliability of this approach is not guaranteed, but in many cases it leads to sensible results: Given an estimate
of the influence of higher-order corrections at a given order in αs, e.g. at leading order, one can check at the
transition to the next order in αs (in this example: next-to-leading-order (NLO)) whether the NLO prediction
is contained within the uncertainty band estimation based on the leading-order (LO) calculation. Such a case
speaks in favor of this procedure.
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This can be expressed in terms of integrals over a differential cross section in the variable k:

σ≥2 =
∫ kcut

0
dk

dσ≥2

dk
+
∫ ∞

kcut

dk
dσ≥2

dk
(26)

Entailed by the splitting of the inclusive 2-jet inclusive into an exclusive 2-jet cross section and an

inclusive 3-jet cross section, a large perturbative uncertainty of the exclusive 2-jet cross section

and the inclusive 3-jet cross section of ggF can appear, depending on how restrictive the selection

is. The tighter20 the restriction on the additional radiation, the larger those uncertainties become.

To be more specific: By cutting off infrared divergences in real-emission diagrams, Sudakov

double-logarithms are introduced in each order of the perturbation series. These logarithms have

the form

L(kcut =)αn
s lnm

(
kcut

Q

)
, with m≤ 2n . (27)

The hard scale Q is given by the Higgs mass mH . The exclusive 2-jet cross section and inclusive

2-jet and 3-jet cross sections schematically look like [14]

σ≥2 ≈ σB [c1 + c2 αs + c3 α
2
s + · · · ] ,

σ≥3 ≈ σB [c′2 αs (d1 L2 +d2 L+d3)+ c′3α
2
s (d4 L4 +d5 L3 +d6 L2 +d7 L+d8)+ · · · ] ,

σ2 = σ≥2−σ≥3 = σB {c1 +αs [c2− c′2(d1 L2 +d2 L+d3)]

+α
2
s [c3− c′3 (d4 L4 +d5 L3 + d6 L2 +d7 L+d8)]+O(α3

s )} . (28)

The effect of the logarithms in this equation on the selected gluon fusion cross section can be

seen in figure 5. The cross section is shown as function of cuts on π −∆φH− j j for different

choices of the factorization- and renormalization scale, which, for simplicity, have been chosen

to be µR = µF = µ . The variable ∆φH− j j is a measure for additional radiation in events with at

least two jets21 and defined as [14]

(~pT, j1 +~pT, j2) ·~pT,H

|~pT, j1 +~pT, j2| · |~pT,H |
, (29)

20In this case, tight means that only events close to the VBF Born configuration are selected, i.e. a restrictive veto
on additional jets in the central region is applied.

21Additional radiation means in this context radiation that is not contained in the two jets with the highest transverse
momentum.
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where ~pT,H is the transverse momentum of the Higgs boson. The transverse momentum of the

jet with the largest and second-largest transverse momentum is denoted with ~pT, j1 and ~pT, j2,

respectively. Due to the conservation of transverse momentum, ∆φH− j j would be equal to π if

the Higgs boson and the two jets are the only final-state objects of the interaction22. If, however,

there would be a third jet, it would make itself noticeable by decreasing the value of ∆φH− j j.

By cutting on this variable, one divides the cross section into an effective exclusive 2-jet cross

section σ2, containing the events close to the VBF-Born configuration, and an effective inclusive

3-jet cross section σ≥3 which contains the events with a π−∆φH− j j larger than a given value.

The tighter the cut, i.e. the closer ∆φH− j j is to π , the smaller the selected number of gluon

fusion events is. At some point, the calculated cross section is becoming negative, which is

evidence for perturbation theory breaking down: If also very small emissions are vetoed, soft

QCD gets important. But as already mentioned in subsection 1.1.5, that regime of QCD is not

described by perturbation theory.
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FIG. 5: Predicted selected ggF cross sections for different scales, with µ = µR = µF. [14].

1.2.3 The Stewart-Tackmann Method

After splitting the inclusive 2-jet cross section into the 2-jet-exclusive and the 3-jet-inclusive

part, one is interested in the covariance matrix of the new system of variables σ2, σ≥3. This

22The Higgs boson and the dijet system would be scattered of back-to-back, corresponding to an angle of π between
them.

23



covariance matrix is a 2×2 matrix and can be parametrized as follows [14][15]:

C =

 (∆y
2)

2 ∆y
2∆y
≥3

∆y
2∆y
≥3 (∆y

≥2)
2

+

 (∆cut)2 −(∆cut)2

−(∆cut)2 (∆cut)2

 (30)

The first matrix describes the uncertainty on the yield; it is 100 % correlated between the two jet

bins. The sum of the yield uncertainties on the exclusive and inclusive cross section gives the

uncertainty on the inclusive 2-jet cross section:

∆≥2 = ∆y
≥2 = ∆y

2 +∆y
≥3 . (31)

The second matrix parametrizes the uncertainty on the migration between the two bins. This

uncertainty is 100 % anti-correlated between the two inclusive and exclusive cross section; thus

the migration uncertainty disappears when the two bins are added, i.e. when the inclusive 2-jet

cross section is considered. It follows from equation (30) that

∆2
2 = (∆y

2)
2 +(∆cut)2

∆2
≥3 = (∆y

≥3)
2 +(∆cut)2 . (32)

The migration uncertainty is directly related to the presence of Sudakov logarithms, which are

introduced by the separation into an inclusive and exclusive part of the cross section. Those

logarithms are large at tight selections, so that the αs suppression of higher orders in αs may be

overpowered. Thus, large Sudakov logarithms would have impact on the unknown higher-order

contributions, leading to enhanced uncertainties. The difference between the two dotted lines

in figure 28 is corresponding to the uncertainty obtained from plain scale variations, not taking

into account the effect of the logarithms. At intermediate cut values, this uncertainty vanishes

completely, which is unsatisfactory, but expected if one looks at equation (5): It is conceivable

that at some value of L(kcut) the factors which accompany powers of αs vanish. Thus, the

vanishing uncertainty from scale-variations is due to the compensation of logarithmic terms with

non-logarithmic terms. But if such coefficient is zero, variations in αs cannot have any effect on

the computed cross sections. This leads to the conclusion that one may not neglect the influence

of logarithmic contributions to the exclusive 2-jet cross section when the cuts are not loose.
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If the cut on the additional radiation is loose the migration uncertainty is small. In that case, a

fixed-order calculation can be applied without having to worry about the impact of the logarithms

on the perturbative uncertainty. If the cut values are very tight, i.e. small, then a resummation to

all orders in αs would be necessary [16][17]. In an experiment, one would choose the cut value

at intermediate values, so that the migration uncertainty entailed by the logarithms cannot be

considered small in general but resummation to all orders is not necessary. If one attempts to

estimate the uncertainty on the exclusive cross section σ2 by simply varying the scales like in

the inclusive case, one might underestimate the uncertainty due to coincidental cancellations

between the logarithms and other terms as explained above. A way to estimate the influence of

the applied cut on the additional radiation is the Steward-Tackmann (ST) method [15]. Using this

method, one can avoid the influence of accidental cancellations on the computation of theoretical

uncertainties.

Still, one has to know what to plug in for the uncertainties ∆y
2, ∆cut and ∆y

≥3 in equation (32).

As described above, perturbative uncertainties are commonly estimated via scale variations of the

factorization scale µF and the renormalization scale µR. The uncertainties from these variations

will be denoted in the following with a superscript µ . These are the only values for uncertainties

available, so the final expression for the exclusive 2-jet cross section has to be given in terms of

these.

The first assumption at this point is that these scale variation uncertainties are trustworthy for

inclusive cross sections, i.e. ∆≥2 = ∆µ

≥2 and ∆≥3 = ∆µ

≥3. After plugging this into the equations

(31) and (32), one obtains

(∆µ

≥3)
2 = (∆y

≥3)
2 +(∆cut)2

∆µ

≥2 = ∆y
2 +∆y

≥3 .

Assuming that the cuts are not very loose, one may not use just simple scale variations for all

the terms involved and may not just set ∆cut zero. Instead, one can argue that in a intermediate

region of cutting the logarithmic contribution to σ≥3,see equation (28), is dominating the series

because the logarithms are in that case of order O(1). Thus, the variation of the scales in σ≥3

mainly gives information about the magnitude of the logarithms, which are directly connected to
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the migration uncertainty. The result of this reasoning is that one can take

∆cut = ∆µ

≥3 . (33)

Finally one obtains the following covariance matrix:

CST =

(∆µ

≥2)
2 +(∆µ

≥3)
2 −(∆µ

≥3)
2

−(∆µ

≥3)
2 (∆µ

≥3)
2

 . (34)

Thus, the exclusive 2-jet cross section is given by

σ
2
2 = (∆µ

≥2)
2 +(∆µ

≥3)
2 . (35)

This method of evaluating cross section uncertainties for selections with non-negligible migration

uncertainties will be hereafter referred to as the ST method.
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FIG. 6: Theoretical uncertainty on the ggF contamination in a VBF-enriched selection divided
by the expected vector boson fusion cross section in selection [14].

In figure 6, the ST-uncertainty on the gluon fusion contribution in a loose VBF selection, divided

by the expected selected VBF contribution, is shown. This is a interesting quantity, since it is a

part of the relative uncertainty on the VBF cross section. The relative parametric uncertainty of

20 % on the ggF contribution quickly loses its impact on the total relative uncertainty because

of the decrease of the selected number of ggF events. However, the perturbative uncertainty
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overpowers the decrease in the number of selected ggF events, leading to a strong increase in

∆σ
ggF
2 /σVBF

2

The ST method can be propagated into a technique to compute uncertainties for more than

two bins; this is necessary when the phase space restrictions are not as simple as a single cut on

k. As will be described in section 3.5.2, the VBF selection which is used in the official analysis

of the Higgs couplings [2] is using rather complicated phase space restrictions, for which such

an extension of the ST method is necessary in order to compute the perturbative uncertainty on

the number of selected ggF events. The inclusive 2-jet cross section can then be defined in a

similar way as in (26) [4]:

σ≥2 =
∫ kcut,1

0
dk

dσ≥2

dk
+
∫ kcut,2

kcut,1

dk
dσ≥2

dk
+ · · ·+

∫ kcut,n

kcut,n−1

dk
dσ≥2

dk
. (36)

The creation of n bins in the variable k which is used as measure for the additional radiation

requires the creation of a n× n covariance matrix. In order to construct this matrix, one can

take advantage of the fact that uncertainties of two narrow bins which are next to each other are

more correlated than those of bins which are much separated from each other. A simple linear

correlation model has been used to arrive at a correlation matrix:

κi j = 1− (1−κ)
|kcut,i− kcut,j|
kcut,n− kcut,1

. (37)

Since the exact value of κ is not known, several values have been tested. Fortunately, the outcome

for the theoretical uncertainty resulting from the correlation matrix depends very little on κ [4].

In addition to perturbative uncertainties on the gluon fusion cross section, one may also

be interested in the corresponding uncertainties for vector boson fusion. The VBF process is

controlled by electroweak physics, and therefore the calculations are much more precise, leading

to comparatively small uncertainties [13].
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2 The ATLAS Experiment

2.1 The Large Hadron Collider

The ATLAS experiment is based at the Large Hadron Collider (LHC), which is the world’s

largest proton-proton collider, located in Geneva (Switzerland), and is part of CERN. The LHC

has a circumference of 26.7 km [18]. Around the ring, four interaction points are installed. In

these interaction points, two counter-rotating proton beams with each half of the center-of-mass

energy
√

s are brought to collision. A proton bunch is a set of protons captured within one bucket

of the high-frequency electromagnetic field which accelerates the protons in radio-frequency

cavities. A proton bunch contains about 10 ·1011 protons. Since there are many protons in

one bunch and the beams are very focused at the interaction points, there are typically many

proton-proton interactions happening in the ATLAS detector during one bunch crossing, see

table 2. In this table, the LHC design parameters as well as the corresponding parameters which

describe the LHC operation in 2011 and 2012 are listed.

Nominal design 2011 2012
√

s 14 TeV 7 TeV 8 TeV

µ 19 9 21

∆ t 25 ns 50 ns 50 ns

Nb 2808 1380 1374

TABLE 2: Performance parameters of the LHC runs in 2011 and 2012 as well as the design
parameters. The center-of-mass energy is denoted by

√
s, the average number of proton-proton

interactions per bunch crossing by µ , the time interval between two bunch crossings by ∆t,
and the number of bunches lined up along the total LHC circumference is denoted by Nb
[2][18][19][20].

2.2 The ATLAS Detector: Introduction

The ATLAS detector is a multi-purpose detector at one of the four interaction regions of the

LHC. An overview of it is shown in figure 7. As a multi-purpose detector, the ATLAS detector

is designed to detect a wide range of different event topologies, among those the decays of

Higgs bosons, as well as processes of physics beyond the Standard Model. This demands
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greatest possible coverage of the detector. Ideally, no particle should leave the detector without

being detected. But the detector cannot cover all directions since one can not place detectors

arbitrarily close to the beamline. Moreover, neutrinos are very unlikely to leave a signal in the

detector. Nevertheless, they can be detected indirectly by means of the conservation of transverse

momentum.

The ATLAS detector consists of three subdetectors with different purposes:

• The Inner Detector detects charged particles and measures their momentum by measuring

the particles’ track curvature in a magnetic field.

• The calorimeter surrounds the Inner Detector and measures the energy of charged and

uncharged particles.

• The muon detector surrounds the calorimeter system and measures the momentum of

muons23.

FIG. 7: An overview over the ATLAS detector [21].

23To be more precise: It measures the momentum of charged particles which have such large penetration power
to traverse the calorimeters without being stopped. The majority of charged particles reaching the muon
spectrometer are muons.
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In order to minimize the number of undetected particles, end-cap detectors have been installed

in addition to barrel detectors, which are placed in the central region of the detector. The

subdetectors of ATLAS which are relevant for this thesis are described in more detail in sections

2.5 and 2.6.

2.3 Pile-Up

As mentioned in section 2.1, a bunch crossing typically leads to many pp-collisions, in which

many particles are produced. The term pile-up refers to the presence and influence of additional,

low-energetic proton-proton collisions in the measurement of properties of a given event. Those

additional collisions result in additional particles with mostly low transverse momenta. Two

categories of pile-up can be defined:

• In-time pile-up

• Out-of-time pile-up

Given that one has identified a proton-proton collision of interest, i.e. the hard interaction,

the term in-time pile-up refers to the presence of additional proton-proton interactions in the

same bunch crossing. This should not be confused with the term underlying event, which

describes additional interactions between partons belonging to the same proton-proton pair as

the hard-interacting pair of partons does. The term out-of-time pile-up denotes the influence of

preceding bunch crossings on the present bunch crossing.

In general, it is important to reduce the impact of pile-up on experimental results and thus on

the reconstructed events. Since proton-proton collisions predominantly produce hadrons, which

are detected in form of tracks and jets, see sections 2.7.1 and 2.7.3, tracks and jets are objects of

interest when one would like to reduce the influence of pile-up. Pile-up also gives a contribution

to the noise level of the detectors, and, connected with these statistical fluctuation of the activity

in the detector, has influence on e.g. shower shapes of signals in the calorimeters. Hence, one

has to carefully study the effect of pile-up and techniques to mitigate its effects.
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2.4 Geometry and Coordinate System

The ATLAS detector has a cylindrical shape and is forward-backward symmetrical. A three-

dimensional coordinate system is spanned as follows [22]: The x-direction is pointing towards

the center of the collider ring, the y-axis is pointing upwards, and the z-axis is parallel to the

beam line. Often it is useful to use cylindrical coordinates R, φ and z to describe the detector

geometry.

The azimuthal angle is defined by tan(φ) = ∆y/∆x. In addition to the azimuthal angle, a polar

angle needs to be defined: tan(θ) =
√

(∆x)2 +(∆y)2/∆z. From the detector response one can

reconstruct the trajectory of particles. In the actual analysis, it is common to speak of particle

momenta. Especially the transverse momentum, defined by

pT =
√

p2
x + p2

y , (38)

is of importance. Large transverse momenta indicate interactions in which a hard scattering

has taken place, i.e. an interaction with large momentum transfer. These interactions are most

interesting when physics processes at high energy scales, e.g. Higgs physics, are analyzed.

Closely connected to the polar angle is the rapidity y, which is given by y = 1
2 ln(E+pL

E−PL
), where

pL denotes the longitudinal momentum component of a particle. The rapidity is especially well

suited for the description of event properties since differences in this variable are invariant under

Lorentz boosts along the z-axis24. In the high-energy approximation, i.e. m� E, the rapidity y

is equal to the pseudorapidity η , which is defined as

η =− ln
[

tan
(

θ

2

)]
. (39)

In contrast to y, one only needs the polar angle for the computation of η , while for y the particle’s

energy and momentum must be measured. The pseudorapidity as a function of the polar angle is

shown in figure 8.

It is useful to define a angular distance measure based on the pseudorapidity and the azimuthal

24The proton is not an elementary particle but consists of gluons and quarks. Because the fraction of the proton
momentum those particles carry is not known for a given interaction, the center-of-mass reference frame is
generally not known. Therefore it is a very useful that differences in the rapidity do not depend on the actual
longitudinal velocity component of the rest frame of the colliding particles.
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angle:

∆R =
√

(∆η)2 +(∆φ)2 . (40)

This quantity must be distinguished from the radius R which is commonly used to quantify radial

positions of detector elements.
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FIG. 8: Pseudorapidity η as function of the polar angle θ

2.5 The Inner Detector

The main purpose of the Inner Detector is to determine the momentum of charged particles and

the position at which these particles emerge. For this, the trajectory of particles needs to be

reconstructed. During the measurement of the corresponding particle hit positions, the trajectory

of the particles should be changed as little as possible. Therefore one uses thin low-density

materials. Silicon semiconductor detectors and gas detectors meet these conditions. In general,

the detector components of the Inner Detector must be very radiation-hard.

Charged particles coming directly from proton-proton collisions as well as charged particles

created in secondary interactions can be reconstructed. The latter also means that photons which

are converted into an electron-positron pair inside the Inner Detector can be reconstructed as

converted photons with high efficiency up to a radius of about 80 cm [23]. A superconducting

solenoid magnet surrounds the Inner Detector. Because charged particles are deflected by a

magnetic field, their momentum can be obtained by measuring the curvature of their trajectory:

Rcurv =
pT

qB
. (41)
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The sign of a particle’s charge is obtained by the measurement of the curvature as well.

The magnetic field strength B is 2 T [22]. The solenoid magnetic field points to a good

approximation in the z-direction. This holds quite exactly in the central region of the barrel, but

at the ends of the solenoid, the radial component of the magnetic field strength reaches a value

which is about one order of magnitude lower than the z-component, depending on the radial

position. Only the z-component of the magnetic field should enter equation (41), since it is the

transverse momentum which is to be measured.

The Inner Detector has a cylindrical shape with a radius of 1.08 m and a length of 7 m. It covers

the range of |η |< 2.5. The momentum resolution which is achieved by the Inner Detector for

high-pT particles is about σp/p = 5 ·10−4 GeV−1 × pT [24]. Illustrations of the Inner Detector

can be found in figures 9 and 10.

The Inner Detector consists of three subsystems:

• Pixel detector

• SemiConductor Tracker (SCT)

• Transition Radiation Tracker (TRT)

The pixel detector and the SCT are using doped silicon sensors connected to high voltage. If

an energetic charged particle traverses such semiconductor detectors, electron-hole25 pairs are

created. Thus, a traversing charged particle can be detected by measuring the current which is

powered by the high voltage and enabled by the particle-induced free charge carriers.

The TRT is the outermost part of the Inner Detector and employs a gas mixture whose

molecules and atoms are ionized by energetic charged particles travelling through it; an applied

voltage then leads to a detectable electrical current.

2.5.1 The Pixel Detector

The pixel detector is the innermost layer of the tracking system of ATLAS and therefore closest

to the interaction point. The radial position of the pixel barrel layers ranges from 50.5 mm

to 150 mm. As the name implies, pixels are used as detectors; thus, and a very good spatial

25A hole is an electron state which is not occupied. Such a hole can be described effectively as positively charged
particle with an effective mass; a hole is capable of moving and can therefore be part of an electric current.
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FIG. 9: Representative segment of the Inner Detector barrel with a particle leaving the interaction
point at R = 0mm and traversing the Inner Detector [25].

resolution of particle hits can be obtained in this subdetector. The pixel detector consists of three

concentric cylinders around the beam axis in the barrel part26 and of three discs on each side

in the end-caps. In total there are 80 ·106 readout channels. The size in Rφ × z (for the barrel

region) of most pixels (90 %) is 50µm×400µm, the rest of them has the size 50µm×600µm.

Due to the small pixel size and the short distance between pixel layers and the interaction region,

the pixel layer gives an important contribution to the accuracy of the position measurement

of primary vertices, see section2.7.1. For the barrel part, the intrinsic spatial resolution is

10 µm in Rφ -direction and the intrinsic resolution in z-direction is 115 µm. In the end-caps, the

same resolution in Rφ is provided as in the barrel part. Because the end-cap discs are placed

perpendicular to the beamline, the z-position is fixed and instead the radial position is measured

with an intrinsic accuracy of 115 µm.

26The number of pixel layers in the barrel has been recently incremented to four layers. For the analysis which is
performed in this thesis, the data being used in this thesis was taken with the 3-layer pixel barrel.
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FIG. 10: A more complete view of the Inner Detector [25].

2.5.2 The Semiconductor Tracker

The SCT surrounds the pixel detector; it consists of 16 ·103 silicon microstrip detector sensors

with each 768 active silicon strip sensors with a pitch of 80 µm [22]. These sensors are distributed

over four radial layers in the barrel and over nine discs in each of the end-caps, containing each

two microstrip sublayers, see figure 10. Because the silicon strips alone only allow for a one-

dimensional measurement of a particle hit position, the microstrip sensors in the sublayers are

placed on top of each other with a small stereo angle of 40 mrad, see figure 11. This angle

allows to measure a second particle hit coordinate, i.e. the z-component in the barrel part and the

radial component in the end-caps. A charged particle ideally leaves 8 hits on its way through the

barrel SCT. In each end-cap, 9 double-layer discs employing the same stereo-angle technique are

installed.

The SCT system provides an intrinsic spatial resolution in Rφ -direction of 17 µm. In the barrel,

the z-position can be measured with an intrinsic resolution of 580 µm, and the same holds for the

radial position in the end-caps.
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FIG. 11: Photograph of a barrel SCT module. Note the stereo angle between the two layers [22].

2.5.3 The Transition Radiation Tracker

The TRT is the outermost part of the Inner Detector and covers an η range of |η | < 2.0. It

does not only give another contribution to the measurement of particle trajectories, but also

induces and detects transition radiation, i.e. radiation produced by relativistic charged particles

when they enter a medium with a different dielectric constant. The more relativistic a particle

is, i.e. the higher its Lorentz factor γ , the higher is the intensity of transition radiation. Thus,

the measurement of the transition radiation intensity gives information about the Lorentz factor.

If, in addition, the particle’s momentum is known, one can to some degree distinguish between

light charged particles (i.e. electrons) and heavier charged particles like hadrons. The TRT

consists of straw-tubes. These straw-tubes have a a diameter of 4 mm. The inner surface of

these tubes is coated with aluminium, connected to high voltage. In each straw-tube is a 30 µm

thick wire. The tubes are filled with a gas mixture which consists of 70 % Xe, 27 % CO2 and

3 % O2 [22]. When energetic charged particles traverse a tube, they ionize the gas, creating free

charge carriers, which in turn lead to an electrical signal due to the applied voltage between

the aluminium-coated inner surface and the wire in the tubes. The straw-tubes are interleaved

with polypropylene-polyethylene. The straw tubes themselves can measure the particles position.

The use of interleaving layers and fibres of polypropylene-polyethylene on the other hand leads

to enhanced emission of transition radiation. In the barrel region, 73 layers of straw tubes are

installed, in the end-caps this number amounts to 160. A charged particle produces on average
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36 TRT hits [22]. Due to the arrangement of the straw tubes, the TRT provides only information

about the (Rφ) coordinate in the barrel region.

2.6 The Calorimeter

A calorimeter is a device to measure the energy. In order to do so, the energy of a particle has

to be transformed into measurable signals in the calorimeter. To measure the whole energy of

a particle, the calorimeter must be designed thick enough in order to stop and absorb incident

particles completely. This closure is advantageous in three aspects:

• It is unlikely to miss a significant part of the particles energy in the energy measurement.

• Given this first advantage, the missing transverse momentum per event can be computed

with good reliability.

• The operation of the calorimeter-surrounding Muon System is based on the assumption

that only muons can reach it. This entails that all other particles which could be measured

in the Muon System should be stopped beforehand, i.e. inside the calorimeter.

The measurement of the particle or jet energies cannot be done by simply stopping them in

dense absorbers, called passive material. For the task of measuring the energy of a particle,

active material is needed. Like passive material, whose purpose is to most effectively absorb

and distribute particle energy by creating a shower, active material must absorb energy in order

to serve its purpose, i.e. the measurement of particle energy. But unlike in passive material,

the absorbed energy is not transformed only into heat and secondary particles but also into an

electrical or optical signal, which can be read out and interpreted as a measure of the deposited

energy.

One distinguishes between homogeneous and sampling calorimeters [6]. In the former

calorimeter type, active and passive material is identical. The latter is made of layers of alternately

passive and active material. In figure 12, an electromagnetic shower, see section 2.6.1 for further

explanations, in such a calorimeter is depicted. Both have advantages and disadvantages: A

particle which creates a shower in a sampling calorimeter deposits energy also in passive parts of

the detector; therefore one has to extrapolate from the energy measured in the active material

up to the energy which is expected to be deposited in the active and the passive material. This
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results in a limit on the energy resolution. An advantage is the longitudinal segmentation, which

allows for more detailed information about the longitudinal shape of showers in the calorimeter.

2.6.1 Electromagnetic Showers

The calorimeter stops incoming particles by enforcing the production of a particle shower, which

is driven by the energy of the original particle. Such a shower develops from the successive

production of secondary particles, which in turn produce secondary particles themselves. In

purely electromagnetic showers, the production of secondary particles can occur via electron-

positron pair production in case of incoming photons (γ → e+e−), and via bremsstrahlung in

case of incoming charged particles like electrons (e±→ e±+ γ). By a multitude of these two

processes, the energy of the original particle is distributed to many secondary particles. When

the energy of the incoming particle has been distributed to so many secondary particles such

that those secondaries’ energies do not allow for the production of further secondary particles,

the shower stops to grow and the remaining kinetic energy gets absorbed in processes such as

Compton scattering or ionization.

A way to define and measure the absorption power of a given material for charged particles is

the radiation length X0. It denotes the thickness of the material that decreases the mean energy

of a charged particle by a factor of 1/e when that particle travels through the given material. The

radiation length for lead is X0 = 5.6mm [6]. This is a relatively small value, which corresponds

to a relatively large stopping power. In general, the radiation length is smaller the larger the

charge of the material’s nuclei is. A quantity which is closely related to X0 is the mean free path

λ of an energetic photon before undergoing a pair production process; this length is connected to

the radiation length X0 introduced above via λ = 9X0/7.

FIG. 12: Schematic sketch of an electromagnetic shower traversing a sampling calorimeter.
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2.6.2 Hadronic Showers

For hadronic incident particles, the shower development is more complicated than for electro-

magnetic showers. Compared to electrons, even the lightest hadrons are very heavy and emit

therefore much less electromagnetic bremsstrahlung. Beside that, not all hadrons are electrically

charged. Hadrons interact via the strong force with the nuclei in the detector material. Through

the interaction of hadrons with the atomic nuclei, the nuclei can be excited, with the result that

a part of the shower energy is stored in a way that can not be detected. Because pions are the

lightest hadrons, many of them are produced in the development of a hadronic shower. On

average, one third of pions are neutral pions, which decay very quickly into two photons and

result in an electromagnetic shower. The individual electromagnetic fraction of the deposited

energy varies from shower to shower. To summarize, the energy which is deposited in the

calorimeter by a generic jet with an energy of 100 GeV consists on average of roughly [26]

• 50 % electromagnetic components (neutral pions decaying into a pair of photons, electrons,

photons),

• 25 % visible strongly interacting components (protons, neutrons, charged pions, etc.) and

• 25 % invisible energy of nuclear excitations or spallation, muons or neutrinos.

These fractions depend on the type and energy of the incident particle. As a result, it is

comparatively difficult to reconstruct the energy of the actual incident hadron, which entails that

the resolution of hadron energy measurements is worse than the energy resolution of electrons or

photons. Hadronic showers tend to be larger than electromagnetic showers, which is a fact that is

also used to distinguish them from electromagnetic showers.

2.6.3 The Electromagnetic Calorimeter

The ATLAS calorimeter consists of two subdetectors: An electromagnetic calorimeter and

a hadronic calorimeter. The former surrounds the solenoid system and is enclosed by the

hadronic calorimeter, which will be described in section 2.6.4. Both calorimeters are sampling

calorimeters. An overview of the calorimetric system is shown in figure 13.

The ATLAS electromagnetic calorimeter is a sampling calorimeter with an accordion geometry,

to be seen in figure 14. This geometry has the advantage of a good homogeneous response in the
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FIG. 13: Overview over the ATLAS calorimetric systems [22].

whole azimuthal range and avoids azimuthal cracks. The electromagnetic calorimeter is divided

into a barrel part two end-caps.

In the barrel part, lead plates are used a passive material. Between those plates is liquid argon,

in which copper anodes are submerged. This is used as active element of the electromagnetic

calorimeter. By the interaction with traversing high-energetic particles, argon atoms are ionized,

i.e. free charge carriers are created. By a strong electric field, a measurable current pulse

is generated in the event of energy depositions of energetic particles. The electromagnetic

FIG. 14: Schematic detail of the sampling structure of the electromagnetic calorimeter [27].

calorimeter has a lateral and longitudinal substructure; for a schematic illustration and details on
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the cell sizes see figure 15. In the η region of |η |< 2.5 there are three longitudinal segments,

whereas in the region of 2.5 < |η | < 3.2, only two longitudinal segments exist. Each of the

longitudinal segments has a different granularity in η and φ .

• The first longitudinal segment, closest to the beam pipe, is also called strip layer, due

to its fine segmentation in the η direction. Thanks to its fine granularity, single photons

or electrons can be effectively distinguished from neutral hadrons like neutral pions,

which decay very quickly into a collimated27 pair of photons, such that it is reconstructed

as a single calorimeter cluster. The fine segmentation of the strip layer can resolve

a substructure in the shower shape, which is very helpful to veto such fake photons.

However, this fine segmentation exists only in the pseudorapidity range of |η |< 2.5.

• The second layer has a coarser structure than the first layer, as can be seen in figure 15. It

is the thickest segment and absorbs most of the energy of electromagnetic showers.

• A third longitudinal layer is installed in the η region of |η |< 2.5 to measure the longitudi-

nal tail of high-energy showers.

In order to correct for energy losses in the upstream material, i.e. material from cryogenic

systems and supporting structures, in the range of |η |< 1.8 a presampler is installed between

the electromagnetic calorimeter and the tracker. The overall thickness of the electromagnetic

calorimeter in terms of radiation lengths is always larger than 22 X0 in the barrel part and is

always larger than 24 X0 in the end-caps [22].

27At least at photon candidate energies which are interesting in the present analysis.
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FIG. 15: Segmentation of the individual layers of the electromagnetic calorimeter [22].

2.6.4 The Hadronic Calorimeter

The hadronic calorimeter is of importance when one wants to measure the energy of jets. It uses

three different combinations of active and passive material [22]:

• In the range of |η |< 1.7 a tile calorimeter with steel tiles as passive material and plastic

scintillators as active material is used. The tile calorimeter consists of a barrel part and

two extended-barrel parts. It ranges from a radius of 2.28 m to 4.25 m. This means that

it is much thicker than the electromagnetic calorimeter, a fact that is necessitated by the

larger size of hadronic showers. The light produced by particles interacting with the

the scintillators is read out28 by photomultipliers, which generate an electrical signal.

The tile calorimeter is longitudinally segmented into three parts, of which the first two

have a granularity of ∆η×∆φ = 0.1×0.1, while the outermost layer is segmented into

∆η×∆φ = 0.2×0.1.

• In the end-cap region of 1.5 < |η |< 3.2 a liquid argon hadronic calorimeter is used for

hadronic calorimetry. Liquid argon as active material is more radiation-hard than plastic

scintillators. Because of this property, it is used in the end-cap region, which is subject to

28To be more precise, ultraviolet radiation is produced in the scintillators and is subsequently shifted in its
wavelength in order to be detectable by the photomultipliers.
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higher doses of radiation than the barrel region. Copper is used as passive material. The

end-cap hadronic calorimeter is composed of two wheel-shaped subdetectors, which have

a flat-plate sampling geometry.

• In the forward-region of 3.1 < |η |< 4.9, the Forward Calorimeter is placed, which also

uses the radiation-hard Liquid-Argon technology. The Forward Calorimeter consists of

three 45 cm deep wheels. Although the first of the three is employed for electromagnetic

calorimetry, all three of them will be described here for the sake of simplicity. Copper

serves as passive material for the first wheel. The passive material of the outer two wheels

is chosen to be tungsten because of its large stopping power. The forward calorimeter is

essentially a block of metal, in which many thin tunnels are incorporated. These tunnels

contain electrodes which are immersed in liquid argon [22].

2.7 Definition of Physical Objects

In the following, the basic analysis objects relevant for this thesis will be discussed, i.e. especially

photons and hadronic particles which result in tracks and jets.

2.7.1 Tracks and Vertices

Tracks are signatures of charged particles travelling through the Inner Detector. Due to the

limited range of the Inner Detector, charged particles can only be reconstructed as tracks if they

have a pseudorapidity of |η |< 2.5. A typical track in the barrel region consists of 3 hits in the

pixel system, 8 hits in the SCT and 36 hits in the TRT [28].

One distinguishes between the back-tracking method and the inside-out algorithm for track

reconstruction [29]. The latter is seeded by hits in the silicon layers of the Inner Detector, the

former by hits in the TRT. Using the spacepoints of a seed, one can determine a seed direction.

In the next step, hits which are close to the extrapolated line, are associated with the seed. Based

on these track candidates, further actions with aim to resolve ambiguities between the track

candidates and to remove fake tracks are performed. While in the inside-out algorithm the

seed is extrapolated to larger radii, the back-tracking algorithm extends the TRT-based seed

in direction of the silicon detectors, i.e. to lower radii. In back-tracking, one distinguishes

between tracks which only contain information from the TRT and tracks that also contain hits in

43



FIG. 16: Reconstructed tracks in the Inner Detector. The grey blobs represent energy deposits in
the tracking devices [30].

the silicon detectors. Back-tracking is useful to reconstruct converted photons or tracks which

have been shadowed by other track candidates in the inward-track-reconstruction. Tracks which

are reconstructed by the inside-out algorithm must have a pT larger than 0.4 GeV. Tracks are

required to have 7 hits in the silicon detectors. The amount of pile-up has influence on the

reconstruction of tracks in the Inner Detector. In general, the reconstruction becomes more

and more complicated when pile-up increases. A result of increased pile-up is a degraded

resolution of track parameters, a smaller fraction of reconstructed tracks and more fake tracks

from random combination of hits in the Inner Detector. On basis of tracks, primary vertices

are reconstructed. Primary vertices are points of interactions between two colliding protons.

In the LHC environment, there are on average multiple primary vertices per bunch crossing,

see table 2 on page 28. The first step in the vertex reconstruction is to create the distribution

of the z-coordinate of reconstructed tracks at the point of closest approach to the center of the

beamspot. The global maximum of this distribution is taken as seed for a primary vertex [31].

This seed and nearby tracks enter an iterative vertex finding algorithm [28]. In this algorithm,

a χ2 fit is performed. Based on the outcome of this fit, each track receives a weight which

quantifies the track’s compatibility with the vertex. If the distance between a track’s position

and the fitted vertex position is larger than approximately 7σ , where σ is the uncertainty on

the z-position estimated in the fit, it is treated as seed for a new vertex. Again a fit will be
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performed, using tracks in the vicinity, and so on, until no further vertex can be found. This

vertex finding algorithm is an iterative process and it includes that a track is tried to fit in different

vertices; in the end, however, a given track can only be influential on the position of one single

vertex and can only be associated with at most one vertex. A vertex is required to have at least

two tracks assigned to it. The reconstruction of vertices is necessary for the identification of

particles coming from the hard interaction and also to measure the amount of pile-up on an

event-by-event basis. The more proton-proton collisions occur during a bunch crossing, the

smaller the fraction of reconstructed proton-proton interactions. This is due to shadowing, which

denotes the hindrance of reconstruction of vertices caused by nearby proton-proton collisions.

The mean number of tracks forming one vertex is about 20 tracks [28].

In a Higgs analysis, one of the possibly many reconstructed vertices will be identified as

the Higgs vertex – the vertex which is taken to correspond to the interaction that includes the

production of a Higgs boson. It is important to do so, since not only the decay products of the

Higgs boson, e.g. two photons, are interesting, but also the additional emissions originating in

the vertex in which the Higgs boson has been produced. These emissions, of which electrically

charged ones can be reconstructed as tracks in the Inner Detector and assigned to vertices,

constitute the basis for the computation of the event shape observable τ2. Thus, it is important

to correctly identify the Higgs production vertex among all reconstructed vertices. In most

analyses, a vertex is selected as hard-interaction vertex when the summed squared transverse

momentum of the tracks that are associated with it is maximal. In the H→ γγ analysis however,

this method often does not identify the hard-interaction vertex since the photons will often carry

away significant amounts of transverse momentum which is not considered in the computation of

the summed squared transverse momentum. Tracks of converted photons are in most cases not

used in this computation, due to their rather high impact parameter and subsequent inaccurate

assignment to particular vertices. Instead, a neural network, which uses more information than

the summed track transverse momentum [2], is utilized. The networks input variables are:

• A vertex position obtained by photon pointing. Enabled by the longitudinal calorimeter

segmentation, the two photon signals in the calorimeter are used to extrapolate the photon

signal in the calorimeter to the beamline. In case of converted photon, also the conversion
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vertex is used in the extrapolation of the photon trajectory. The resulting common diphoton

vertex position enters the neural network.

• The summed squared and scalar transverse momenta of tracks associated with the vertex,

∑ p2
T and ∑ pT.

• The difference in azimuthal angle between the diphoton system and the vector sum of the

momenta of tracks which are associated with the primary vertex. Due to conservation of

momentum, this is observable is vanishing for the true H→ γγ vertex (in case of perfect

particle reconstruction and measurement).

With reconstructed tracks and vertices at hand, one can impose further constraints on tracks

associated with the hard-interaction vertex in order to remove tracks originating in pile-up

vertices from the Higgs vertex. In this analysis only tracks which fulfill one of the two following

conditions are considered:

• The track is used in the Higgs vertex fitting procedure for the identified Higgs vertex and

its fitting weight, which is a measure of its compatibility with a given primary vertex, is

larger than 0.1.

• The track is not part of any vertex fit but it is closer to the fitted Higgs vertex position than

to any other vertex.

Only tracks above with a transverse momentum of 0.5 GeV will be considered in this thesis.

2.7.2 Photons

Photons are an important analysis object in Higgs physics. When a high-energetic photon

is produced in a pp-collision and enters the calorimeter, it may have been undergone a pair-

production process in the Inner-Detector material, resulting in an electron-positron pair. The

probability for a photon to be converted in the Inner-Detector material is about 50 % if it is

not emitted at very small rapidities; in that case, the probability for conversion is about 25 %.

[29]. In the process of photon reconstruction, one distinguishes between converted photons and

unconverted photons.
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Photon candidates (as well as electron candidates) are seeded by energy deposits (clusters) in

the electromagnetic calorimeter with a transverse energy larger than 2.5 GeV, using a sliding-

window algorithm [32] with a window size of ∆η ×∆φ = 0.075× 0.125 for the finding of

clusters. If a track is matched to the cluster found by the sliding-window algorithm and if a

photon-conversion vertex for the matched track has been found, the cluster is considered a

converted-photon candidate. A track is matched to an electromagnetic cluster if the extrapolated

track position in the calorimeter is closer than 0.05 in η-direction and closer than 0.1 in φ -

direction to the center of the cluster [33]. If a cluster is found to be unmatched by a track,

it is a unconverted-photon candidate. After the categorization in converted and unconverted

photons, the cluster is rebuilt with a customized29 area in η- and φ -direction: In the barrel part

of the calorimeter, an area of ∆η×∆φ = 0.075×0.175 and ∆η×∆φ = 0.075×0.125 is used

for converted-photon and unconverted-photon candidates, respectively. In the end-caps, a cluster

size of ∆η×∆φ = 0.0125×0.125 is used for both. The cluster energies are then corrected for

losses due to upstream material and for lateral and longitudinal leakage losses.

After this cluster building and classification, a photon identification algorithm is used in

order to reject fake photons. Fake photons are signals created by hadronic particles, especially

neutral pions, which decay very quickly into a collimated pair of photons. Based on the shower

shape in the calorimeter, many of these fake photons can be rejected, strongly based on the fine

segmentation of the first longitudinal layer of the electromagnetic calorimeter. Only photon

candidates that pass the tight photon identification criteria will be considered as identified

photons; these enter the analysis. These tight criteria are different for converted and unconverted

photon candidates [34].

In order to suppress the jet contamination of the photon sample as effective as possible,

additionally two isolation observables are used:

• Calorimeter-based isolation: This quantity corresponds to the sum of transverse energy

deposited within a radius R =
√
(∆η)2 +(∆φ)2 < 0.4, where the energy belonging to

the reconstructed photon candidate is excluded. This excluded energy is the energy that

is contained within an area of ∆η × ∆φ = 0.125× 0.175 centered around the cluster

barycenter. Because there is some leakage of the photon energy outside this window of

29Converted photons tend to have larger cluster sizes in φ -direction, due to radiation processes which are induced
by the deflection in the magnetic field.
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∆η×∆φ = 0.125×0.175, one applies a leakage correction which is determined by the

cluster’s transverse energy [35]. Moreover, a subtraction of the median energy density

stemming from the underlying event is performed on an event-per-event basis.

• Track-based isolation: This is the scalar sum of track transverse momentum pT within

∆R < 0.2 around the photon, excluding conversion tracks as well as those tracks which are

not produced in the hard-interaction vertex [23].

If a photon candidate has a calorimeter-based isolation smaller than 6 GeV and a track-based

isolation smaller than 2.6 GeV [2], it is considered isolated.

An accurate measurement of the photon energy is important for many purposes, for example

for the measurement of the Higgs-boson mass in the diphoton decay channel. The cluster energy

is corrected for losses in the upstream material and for lateral and longitudinal leakage losses.

Moreover, the cluster energy calibration is performed using simulations of the detector geometry.

For the calibration of the electromagnetic energy scale, Z→ ee events have been used [23]. The

uncertainty on the energy measurement of converted and unconverted photons is about 0.2 %

to 0.3 % in the barrel region of |η |< 1.37 and in the region 1.82 < |η |. In the pseudorapidity

region of 1.52 < |η |< 1.82, this uncertainty is 0.9 % and 0.4 % for unconverted and converted

photons, respectively. In the transverse energy range of 30GeV < ET < 100GeV, unconverted

photons and converted photons are identified with an efficiency of about 83 % to 95 % and 87 %

to 99 %, respectively [2].

2.7.3 Jets

Jets originate from high-energetic quarks and gluons with relatively high pT, which in the course

of their showering and subsequent hadronization processes generate a evolve into spray of

hadrons. In the ATLAS detector, they appear as a cluster of energy deposits in the calorimeter

which can have corresponding tracks in the Inner Detector if the jet is in the acceptance of the

Inner Detector. Several algorithms to build jets from detector signals are available; the most

commonly used one is the anti-kT algorithm [36], which is also in used in this thesis. The

distance parameter, which controls the lateral size of reconstructed jets, is chosen to be R = 0.4.

Topological calorimeter clusters are the seed for the jet-finding algorithm. These clusters in turn
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are seeded from calorimeter cells with signal-to-noise30 ratio S/N > 4. If a neighbor cell has

a signal-to-noise ratio of larger than 2, it will be added to the cluster. If a neighbor cell has a

signal-to-noise ratio of larger than 4, it will be made a seed cell itself. By repeating this procedure

until no neighboring cells with S/N > 2 are found, the cluster grows. When the growth process

has come to an end, all cells which are a neighbor of one of the outer cluster cells are added to

the cluster. The result is a topological calorimeter cluster [37]. On the basis of these topological

clusters, or, more specifically, their massless 4-momenta, jets are clustered using the anti-kT

algorithm.

Due to pile-up, there are in general more jets in the detector than belonging to the hard-

interaction vertex. These pile-up can be falsely attributed to the hard-interaction. Also single

tracks from pile-up interactions can be assigned with the hard-interaction vertex, which also

should be avoided as well. Moreover, jets and diffuse radiation from pile-up give a contribution

to the noise level in the calorimeters, which also enters the energy measurement of photons,

other jets, etc. The latter effect of pile-up jets can be mitigated by a a subtraction of the median

energy area-density of the total event scaled with the transverse area of the jet belonging to

the hard-interaction [2]. The former, i.e. the incorrect assignment of pile-up jets with the

hard-interaction can be attenuated by means of a track-based variable called jet-vertex-fraction

(JVF) is introduced. Given that a vertex is chosen to be the hard-interaction vertex, denoted with

PV0, the jet-vertex-fraction is defined with respect to it and for each jet Ji as [38]

JV F(Ji) =
∑k∈Ji pk

T(PV0)

∑l∈Ji pl
T(PV0)+∑n ∑l∈Ji pl

T(PVn)
, (42)

where k and l refer to all tracks matched to jet Ji
31. In the sum over n it is implied that all primary

vertices which are not identical with the hard-interaction vertex PV0 are taken into account. In

general, the vertex identifier PVa given in parenthesis denotes the vertex to which the track has

been assigned by the vertex reconstruction algorithm. The jet-vertex-fraction is thus defined as

the fraction of transverse momentum of a jet which is associated with the hard-interaction vertex.

If this variable is of size unity, all tracks of the jet in question are reconstructed to originate in

30The noise consists of electronic noise as well of incident particles from other proton-proton interactions; see
subsection 2.3.

31This matching is done by a method called ghost association: The transverse momentum of all tracks associated to
a primary vertex is scaled down by a very small number. Then, these tracks are added to the jet reconstruction
algorithm, which is then run again. If a ghost track is assigned to the jet, the track and the jet are matched.
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the hard-interaction vertex. Such a jet is quite likely to have originated from the hard interaction.

A jet whose jet-vertex-fraction is close to zero is a jet that mostly contains tracks produced in

pile-up reactions and will be accordingly rejected. If no track is assigned to a given jet, the jet

has per definition a jet-vertex-fraction of -1. Since this form of pile-up rejection is inherently

relying on tracks and their attribution to primary vertices, this mapping has to be done with great

care. Moreover it is to be noted that the jet-vertex-fraction itself is pile-up-dependent, as can be

seen in equation (42). The more pile-up, the more vertices and contribution from these additional

vertices to the assessed jet enter the calculation; therefore the jet-vertex-fraction of signal jets

decreases with increasing pile-up. As a result, the signal jet efficiency is a function of the number

of vertices. At 8 TeV and within the range |η |< 2.4 (compare with the Inner Detector range)

only jets with a jet-vertex-fraction of above 0.25 are taken into further consideration [2]. Outside

of the tracking region, no such constraint is imposed.

It is also useful to define at truth level, that is, directly using stable final-state particles from

Monte-Carlo simulations (see section 3.2) as input for the jet building algorithm. A stable

particle is defined as a particle with an expected lifetime such that cτ > 10mm. All charged and

neutral particles excluding muons and neutrinos are taken into account.

The jets, both at reconstruction and at truth level, are required to be within an η range of

|η |< 4.4 and to have a transverse momentum larger than 30 GeV. Because each photon is also

reconstructed as a jet and should not be double-counted as jet, a jet will be rejected if the angular

distance of a jet to an isolated photon is smaller than ∆R < 0.4.

2.8 The Trigger

Most collisions in the ATLAS detector only involve low-energy QCD interactions, which are not

of primary interest in the ATLAS physics program. Instead, one would rather focus on more

rare processes. The trigger of the ATLAS experiment actuates the recording of an event if the

event’s features suggest that the event may be containing one of the rare processes one is looking

for. Since the fraction of rare events among all available events is tiny, the criteria for an event

to be stored have to be chosen with care. At design luminosity, bunch crossings occur at a rate

of 40 MHz, while in run 1 the rate has been 20 MHz32. At the same time, the number of events

32But due to multiple proton-proton interactions during one bunch crossing, the total proton-proton interaction rate
is about 1 ·109 per second.
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which can be stored per second amounts only to approximately 200 [22]. The size of a stored

event is of order 1 MB.

The ATLAS trigger is constructed as a three-level system: The first part of the trigger is called

level 1 trigger (L1) and reduces the initial rate of 40 MHz (20 MHz) to 0.1 MHz. When this is

done, the second trigger level L2 reduces the rate to about 1 kHz; the third step is done by the

so-called Event Filter (EF), which filters the remaining 103 events per second such that about

200 events per second are selected for permanent storage [22].

The complexity of the respective filter algorithms must be relatively low in case of L1, while L2

and the EF can run more complex algorithms. The Event Filter has the most time to decide upon

a given event, so that in the Event Filter algorithms can be similar to the offline filter-algorithms.

In the following, the three trigger components will be briefly described.

• L1: The L1 trigger analyzes the transverse energy of electromagnetic clusters, muons and

jets. Moreover, it is computing the missing ET and the summed transverse energy ∑ET.

Only calorimeter and muon system information is used at this stage of event selection.

Because of the complexity of the reconstruction of tracks, track information is not used at

L1. The L1 trigger uses rather low detector granularity; see figure 15 on page 42 for an

illustration of the size of the trigger towers, the basic units of granularity in L1. During

the L1 decision time, all data coming from the detector must be kept in a pipeline-like

memory. Among other things33, the L1 trigger passes the coordinates of so called Regions

of Interest (RoI) to the L2 and EF triggers.

• L2: The L2 trigger is seeded with the Regions of Interest defined in L1 and analyzes

them with higher granularity and accuracy. Moreover, it uses information from the Inner

Detector. If also L2 confirms that the event is looking interesting, the event builder is

instructed to reconstruct the whole event. In the course of the reconstruction, all available

detector information is collected and formatted. This built event is then passed on to the

Event Filter.

• The Event Filter uses offline-like software to analyze the event. If an event also passes this

filter, it is written to storage to be part of physics analyses.

33This includes the pT threshold range, the missing-ET vector, the total scalar sum of transverse energy as well as
the criteria which has lead to the L1-triggering of the event.
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3 Selection of Vector Boson Fusion Events Using an

Inclusive Event Shape

3.1 Preface

In this chapter, the analysis and its results will be presented. The analysis goal is to examine the

experimental properties of the event shape τ2 as well as to propose a VBF-enriched selection

based on this observable, especially in order to estimate the contribution of the perturbative

uncertainty on the ggF contamination in a τ2-based VBF selection to the total uncertainty on the

VBF signal strength. The VBF signal strength is defined as

µVBF =
Nmeas.

VBF

NSM
VBF

=
σmeas.

VBF ·BSM
H→γγ

σSM
VBF ·BSM

H→γγ

. (43)

Here, Nmeas.
VBF gives the measured number of VBF events, assuming the correctness of the Standard-

Model prediction for a certain branching ratio, in this case the branching ratio BH→γγ for the

decay mode H→ γγ . The predicted number of VBF events is given by NSM
VBF. In addition to the

uncertainties, also a result for the VBF signal strength itself, computed using simple cuts on τ2,

will be presented. For the purpose of comparison, the recent H→ γγ coupling analysis paper

will be outlined, with focus on its method for the determination of the VBF signal strength. The

determination of the VBF signal strength as performed in this thesis will be described in the

same section.

Before these topics can be addressed, the Higgs vertex selection and the basic properties of the

event shape will be analyzed. The event shape τ2 will be introduced and defined. Its spectrum

will be shown for both simulated vector boson fusion and gluon fusion event samples. Based

on these spectra, the characteristics of possible τ2-based selections will be discussed. The τ2

resolution and its contributions will be determined. After that, the measurement of VBF signal

strength using 8 TeV and some of the contributions to its uncertainty will be discussed.
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3.2 Dataset and Monte-Carlo Simulations

3.2.1 Dataset

The dataset used for this analysis contains events of pp collisions at 8 TeV, which have been

triggered by the diphoton trigger. The trigger threshold on the transverse energy ET is 35 GeV

and 25 GeV for the leading34 and sub-leading photon, respectively. Additionally, these two

photons need to fulfill loose criteria in the high level trigger, i.e. L2 and Event Filter, which

ensure that the photon candidate’s shower shape in the calorimeter is similar to the expected

shower shape of a photon. Finally, data quality requirements are applied to ensure that all

subdetectors were fully operational. The resulting integrated luminosity is equal to 20.3 fb−1.

However, due to technical issues35, the data analyzed in this thesis does only contain 75.7 % of

the total integrated luminosity, corresponding to 15.4 fb−1.

3.2.2 Monte-Carlo Simulations

In addition to data events, Monte-Carlo simulations are used to better understand and interpret the

results obtained from data. Monte-Carlo simulations allow for the prediction of cross sections,

detector response studies and simulation of signal and background processes. Theoretical

calculations as well as physical models are implemented in the simulation algorithms. One can

divide the production of Monte-Carlo simulations into three parts:

• Event generation, which consists of translating matrix element from Feynman diagrams at

a given order in perturbation theory into parton-level events. These parton-level particles

then undergo parton showering and hadronization.

• Simulation of interactions of the particles produced in the event generation detector with

the detector.

• Digitization of simulated energy depositions in the detector components, leading to quanti-

ties that can be reconstructed like data.

34The leading photon (or jet) is defined as the photon (or jet) with the highest transverse momentum. Accordingly
the sub-leading photon (or jet) is defined as the photon (or jet) with the second-highest transverse momentum.

35The simulation files had to be reproduced to include the track information, which is needed for the study of τ2.
Unfortunately, this production suffered from technical problems with the ATLAS production system.
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The Monte-Carlo simulations which are used in this analysis contain events in which a Higgs

boson with a mass of 125 GeV are produced and subsequently decays to two photons. These

H → γγ simulations are available for all five Higgs production modes. Minimum-bias events

and the underlying event are simulated using PYTHIA8 [42]. Gluon fusion events are produced

by using POWHEG-BOX [43]–[48] interfaced with PYTHIA8. The former produces parton-level

events at NLO, while the latter simulates the showering of the partons, the hadronization and

the underlying event. VBF events are also produced using POWHEG-BOX [46] interfaced with

PYTHIA8. Events in which the Higgs boson is produced in association with a W or Z boson

are generated by PYTHIA8. Events of the production mode tt̄H are produced by a combination

of the POWHEL and HELAC-NLO [49] generators which is interfaced with PYTHIA8. The

parton distribution function set is CT10 [50] for the events generated with POWHEG-BOX and

CTEQ6L1 [51] for events generated with PYTHIA8. The events of the Monte-Carlo sample are

weighted such that the the Monte-Carlo simulation corresponds to what is expected for data.

The primary-vertex positions are weighted such that the distribution of primary vertices matches

the measured distribution which has a RMS length of 4.8 cm [2]. Weights are also applied in

order to reproduce the distribution of the average number of pp-collisions per bunch crossing

in data. Only stable particles with a lifetime longer than 10 ps enter the detector simulation,

which is performed by GEANT4 [52]. The detector signals are then treated by the same object

reconstruction algorithms as used for data events.

When results from Monte-Carlo samples are combined with data, the number of events in

Monte-Carlo samples will be scaled down to the available 75.7 % of total integrated luminosity

in data. Background shapes of invariant diphoton mass spectra are estimated directly from data.

3.3 Preselection of Events

The following requirements are imposed both at reconstruction and at truth level. Only events

with at least two reconstructed and identified photons are taken into account. Photons from the η

region of 1.37 < |η |< 1.56 are not considered; the pseudorapidity region of 1.37 < |η |< 1.56 is

excluded because it corresponds to the transition region between barrel and end-cap calorimeter,

in which much upstream material is located in front of the calorimeter, which in turn interferes

with a precise measurement of photon candidates’ properties. Moreover, the region of |η |> 2.37
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is excluded because of the relatively coarse η-granularity in that detector region, which does not

allow for an efficient rejection of fake photons.

The two photons with highest transverse momentum are considered to be the candidates which

constitute the Higgs decay products. These photons need to pass tight identification cuts on the

shower shape and to fulfill isolation criteria, see section 2.7.2. The invariant mass of the diphoton

system is given by

mγγ =
√

2E1 E2 (1− cos(α)) =
√

2ET,1 ET,2 (cosh(η1−η2)− cos(φ1−φ2)) . (44)

Here, Ei denotes the energy of the two leading photons and α is the angle between these two

photons. This angle can be expressed in terms of the difference in pseudorapidity ηi and in

azimuthal angle φi, where i = 1 for the leading and i = 2 for the sub-leading photon. The leading

and sub-leading photon are required to have a transverse energy of larger than 0.35mγγ and

0.25mγγ , respectively, and the invariant mass of the diphoton system must be in the range of

105 GeV to 160 GeV.

3.4 Vertex Selection

As mentioned in section 2.7.1, one of the reconstructed primary vertices will be identified as the

Higgs vertex. The selection of the correct interaction vertex is crucial if one wants to assign the

correct tracks and jets to the Higgs event. The figure of merit is the vertex selection efficiency; it

can be studied using Monte-Carlo simulations, and is here defined as

εvx =
#events in which |ztruth

Hvtx− zreco.
Hvtx|< ∆z

#events
. (45)

Here, the true z-position of the Higgs vertex is denoted by ztruth
Hvtx and the position of the vertex

which is selected to be the Higgs vertex by the Higgs-vertex selection method is denoted by

zreco.
Hvtx. For the purpose of checking whether a reconstructed vertex which has been selected to

be the Higgs vertex is correctly chosen, a ∆z of 0.3 mm is used, as it is done in the standard

couplings analysis [2]. It is necessary to know whether the resolution of the measurement of

the Higgs vertex’ z-position is small enough so as to not influence this estimate of the vertex

selection efficiency. The resolution depends on the number and the sum of the squared transverse
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momenta of tracks associated with the Higgs vertex, see figure 17. The distribution of the
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FIG. 17: Vertex z-position resolution as function of summed track squared transverse momenta
∑ p2

T (a), and as function of track multiplicity per vertex (b) [39]. Note that the track selection on
which these results are based is not the same as in the vertex reconstruction of the events used in
this analysis; a lower pT threshold of 0.4 GeV has been used for these plots.

number of tracks which are associated with the Higgs vertex and of their corresponding ∑ p2
T

is shown in figure 18 and 19 for an inclusive 0-jet selection and for an inclusive 2-jet selection,

respectively. Since in the later analysis of the event shape τ2 only events with at least two jets

will be considered, see section 3.5.1, the 2-jet-inclusive case is more relevant in this analysis. In

combination with the resolution plots in figure 17, one can draw the conclusion that the resolution

on the z-position of the Higgs vertex is about 0.04 mm and thus considerably smaller than the

window size ∆z = 0.3mm in the vertex selection efficiency. This means that the resolution has

practically no influence on the efficiency determination.
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FIG. 18: Normalized distribution of the number of reconstructed tracks per Higgs vertex (a) and
normalized distribution of the sum of squared transverse momenta of tracks associated with the
Higgs vertex at reconstruction level (b). Only vertices with |ztruth

Hvtx− zreco.
Hvtx|< 0.3mm have been

selected. No restriction on the number of jets is applied.
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FIG. 19: Normalized distribution of the number of reconstructed tracks per Higgs vertex (a) and
normalized distribution of the sum of squared transverse momenta of tracks associated with the
Higgs vertex at reconstruction level (b). Only vertices with |ztruth

Hvtx.− zreco.
Hvtx.|< 0.3mm have been

selected. At least two jets are required at reconstruction level.

The vertex selection efficiency is expected to depend on the number of pile-up vertices. The

number of reconstructed vertices NPV is highly correlated with the expected number of pp

interactions per bunch crossing, µ ; however, NPV tends to be smaller than µ , especially in events

with much pile-up. The number of reconstructed primary vertices is a measure of the amount

of pile-up in the event, whereas µ is a measure for the average amount of pile-up. One can

see the distribution of µ for the 2012- (and 2011) dataset in figure 20, while in figure 21 the

distribution of the number of reconstructed primary vertices is displayed. When there is much
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pile-up in the event, i.e. many additional soft pp interactions, the mean distance between the

interaction vertices is smaller, leading to enhanced confusion about which track originated from

which vertex and to a higher probability of vertices being merged in the process of reconstruction.

Therefore, the vertex selection efficiency will be studied in the following as a function of the

number of reconstructed vertices.
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In figure 22a, the vertex selection efficiency for Higgs events is shown as a function of the

number of reconstructed primary vertices NPV, including all five Higgs production modes and for

different methods of Higgs vertex selection. The method which employs a neural network (in the

legend denoted as N.N.) leads to the highest vertex selection efficiencies. This method is used as

the standard vertex selection method in the H→ γγ analysis; for a description see section 2.7.1.

In other analyses it is common to select the vertex with the maximal summed squared transverse

momentum of associated tracks, in the following denoted by the term ∑ p2
T-method. This method

is commonly used to determine the hard-interaction vertex; in the H → γγ analysis, however,

this method is not optimal as explained in section 2.7.1. A third possibility of vertex position

determination is to use photon pointing. This method uses the segmentation of the calorimeter

and, if available, the photon conversion vertex of converted photons for an extrapolation of the

photon trajectories in order to estimate the position of the position of the vertex from which the

photons originate. For the purpose of selecting the correct hard-interaction vertex, it is not an

adequate method, as one can see. It is a general tendency of the vertex selection efficiency to

decrease with increasing number of reconstructed events, NPV, with the exception of photon

pointing, which is very robust against the influence of pile-up.
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The same types of efficiencies are shown in figure 22b for events with at least two jets. In this

case, the ∑ p2
T-method leads to vertex selection efficiencies which are nearly as high as for the

neural network. Except for the pointing method, the efficiencies are increased compared to the

case of the inclusive 0-jet selection. One can conclude from this figure that the vertex selection

efficiency of the selected events in this analysis is 93.5 % at the most probable value of NPV,

which is 13, and is only weakly depending on the amount of pile-up.
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Higgs production modes, gluon fusion and vector
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FIG. 22: Vertex selection efficiency using different vertex reconstruction methods. Final denotes
the outcome of the neural network (see section 2.7.1), which is used for the determination of the
Higgs vertex in the H→ γγ analysis. The case in which the vertex with the maximal summed
squared transverse momenta of tracks associated with the vertex is chosen as Higgs vertex is
denoted by sum pT. This is the standard method of selecting the hard-interaction vertex in the
ATLAS experiment. The values titled with Pointing rely only on photon information from the
calorimeter and, in case of converted photons, the Inner Detector.
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In figure 22c and 22d the same types of efficiencies are shown, but for ggF and VBF events

separately. Using an inclusive 0-jet selection, the efficiency is significantly higher for VBF if

one uses the neural network or the ∑ p2
T-method. This can be explained with the higher ∑ p2

T of

VBF events, see figure 18b. If at least two jets are required, see figure 22d, the vertex selection

efficiency is increased for the neural-network- and the ∑ p2
T-method, as is expected from the fact

that Higgs events with more jets also tend to have more tracks and hence a larger ∑ p2
T; and,

contrary to the 0-jet inclusive case, in this case the vertex selection efficiency tends to be a bit

higher for ggF events. This can be understood by considering the fact that most VBF events

contain at least two jets, and therefore the inclusive 2-jet selection does not enhance the fraction

of events with at least two jets as much as it does for ggF event samples.

3.5 Selection of Vector Boson Fusion Events and Signal Strength

Measurement

In the following, the kinematic properties of gluon fusion and vector boson fusion events will

be discussed. The comparison of these properties for ggF and VBF events will result in an

additional preselection cut which enriches the selected event sample with VBF events. After that,

the analysis which has been done in the standard coupling paper [2] will be outlined, including

the corresponding method of determining the VBF signal strength.

3.5.1 Kinematics of Gluon Fusion and Vector Boson Fusion

In this subsection, the transverse momentum distribution and pseudorapidity distributions of jets

and charged particles coming from the Higgs vertex at truth level36 will be shown for gluon fusion

and vector boson fusion events. The pT spectrum of charged particles at all pseudorapidities a

truth level can be seen in figure 23a. These histograms are scaled by the inverse of the event

numbers for gluon fusion and vector boson fusion, respectively. The total area enclosed by the

histogram contours therefore corresponds to the mean number of particles coming from a Higgs

vertex. At the same time, the bin contents correspond to the mean number of particles per event

36When quantities at truth level are considered, only events which fulfill the requirements on the two photons, see
section 3.3, are considered.
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in that particular bin. The fraction of particles with a high pT is larger for VBF than for ggF

events.

Figure 23b shows the η distribution of particles. The η spectrum for VBF events has a special

shape, which reflects the fact that tracks and jets emerging from VBF events are emitted at rather

high pseudorapidities and there is little hadronic activity in between. Since the Inner Detector

acceptance in η is only −2.5 < η < 2.5, a relatively large fraction of particles is undetected

by the Inner Detector: 50.1 % of particles in gluon fusion events and 52.9 % of the particles in

vector boson fusion events are not within the Inner Detector acceptance.
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FIG. 23: Particle kinematics at truth level. The distributions are scaled by the inverse number of
ggF and VBF events, respectively. No restrictions on the pT or on η are applied; only charged
particles are considered.
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FIG. 24: Jet kinematics at truth level. Only the leading and sub-leading jets are considered. The
distributions are normalized to 1.
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The kinematic distributions of jets are shown in figure 24. The transverse momentum of VBF

jets tends to be larger than that of ggF jets, which can be seen in figure 24a. A similar shape as in

the distribution of the particles’ pseudorapidity is also present in the corresponding distribution

of the jets’ pseudorapidities, see figure 24b. As can be expected from this distribution, the

difference in pseudorapidity for the two leading jets tends to be larger for VBF events, which

can be explicitly seen in figure 25. A fraction of 20 % of ggF jets is not within the Inner Detector

acceptance, while this fraction is 36 % for VBF jets.
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FIG. 25: Normalized distribution of the absolute difference in η between the two leading jets at
truth level.

As described in section 3.3, so far only diphoton requirements have been imposed in the event

selection. But since in this analysis an attempt is made to create an alternative VBF-enriched

selection, it is useful to set constraints on jet-related properties of the event. In order to quantify

the characteristics of a VBF-enriched selection, the efficiency and the purity are used.

• VBF-Efficiency εVBF: The efficiency is defined as the fraction of all VBF events which

are selected by a selection.

εVBF =
Nsel.

VBF
NVBF

. (46)

In a VBF-enriched selection it is useful to aim at a high VBF efficiency.

• VBF-Purity PVBF: The purity quantifies how many of the selected events are signal events,

in this case, VBF events. In this analysis, the gluon fusion background in a VBF-enriched

selection is of special interest because of the high production cross section for gluon fusion
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and the possibly large perturbative uncertainty on it. Therefore only the gluon fusion

and not the other non-VBF Higgs production modes enter the following definition of the

VBF-purity.

PVBF =
Nsel.

VBF

Nsel.
VBF +Nsel.

ggF
. (47)

In addition to a high VBF-efficiency, a high VBF-purity is desirable in a VBF-enriched selection.

In reality, however, there will be a trade-off between the efficiency and the purity: The VBF-purity

can be enhanced by applying tighter cuts on the event sample, but this would not only remove

non-VBF events from the selection but also some VBF events, decreasing the VBF-efficiency.

Imposing lower bounds on the number of jets and on the separation in pseudorapidity between

the two leading jets is an effective way to decrease the amount of gluon fusion and non-Higgs

background events in the selection while preserving many of the VBF events. Only 10.8 % of

reconstructed gluon fusion events and 11.2 % of data events, which consist mostly of non-Higgs

events, contain more than one jet, whereas this fraction is 55.4 % for VBF events. This results in

a VBF-purity of PVBF = 30.1%. Also, the computation of the 2-jettiness as it is implemented

in this thesis requires at least two reconstructed jets. By imposing in addition the requirement

|∆η j j|> 2.0, only 4.6 % of ggF events, 3.6 % of data events, but 46.9 % of VBF events remain

unrejected, which results in a purity in VBF of PVBF = 46.1%. If none of these jet cuts are

applied, the purity in VBF as defined in equation 47 is expected to be merely PVBF = 7.71%. It

is therefore an effective VBF-pre-enrichment to consider only events which meet the following

criteria in the VBF selection:

• At least two reconstructed jets.

• A minimal separation in pseudorapidity between the leading and sub-leading jet of 2.0.

3.5.2 Vector Boson Fusion Selection and Signal Strength Measurement in the

Standard H→ γγ Analysis

A part of this analysis is the construction and evaluation of an alternative VBF selection. In order

to compare the alternative selection with an already existing selection, the VBF-categories used

in the official H→ γγ couplings analysis [2] will be be reviewed. Moreover, the procedure to

obtain signal strengths for individual Higgs production modes is summarized. The latest paper
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treating the measurement of signal strengths in the ATLAS H → γγ analysis is based on the

7 TeV and 8 TeV dataset. As is detailed in the cited paper, twelve exclusive event categories37

are defined. These categories are designed such that each of them is enriched in a certain Higgs

production mode. Each event passing the photon preselection will be associated with exactly

one of these. Based on Monte-Carlo simulations one can determine how many events of each

production mode are expected in each of the twelve categories. For each of the twelve categories

a likelihood function Lc is defined. By maximizing the product of all these twelve likelihood

functions Lc, one can estimate the signal strengths of the different production modes. Each of

the twelve likelihood functions has the form

Lc = Pois(nc|Nc(~θ)) ·
nc

∏
i=1

fc(mi
γγ ,~θ) ·G(~θ) . (48)

The subscript c denotes the category. Examples of a category are the categories enriched in VBF

events, i.e. VBF tight and VBF loose. These two categories are detailed below. The measured

number of events in category c is labelled by nc. The expected number of events in category c is

denoted by Nc; it comprises the expected number of signal events from all the production modes,

the number of background events38 as well as the number of spurious signal events39:

Nc = ∑
p

µp Np,c +Nbkg,c +Nspur.,c ·θspur.,c . (49)

The variable µp denotes the signal strength for the Higgs production mode labelled with p. If

µp = 1, the number of measured events for production mode p is equal to the number of events

predicted by the Standard Model. The value of the probability density function for each diphoton

event, labelled with i, with invariant diphoton mass mγγ is denoted by fc(mγγ). The variable θ

represents nuisance parameters. These are parameters of the model that are known only with

limited accuracy. This uncertainty is incorporated by including probability density functions

G(θ), which means that these already measured nuisance parameters themselves can vary to

37Comparable to the term selection. The term category will only be used in the description of the official analysis.
38The expected number of background events is based on a parametrization of the background in each category.
39Spurious signal events quantify the systematic uncertainty on the chosen background parametrization. If, for

example, the background model leads to the assumption of fewer background events in the signal region than
actually true, this difference between expected and true background events will be interpreted as signal events,
causing an overestimation of the number of signal events.
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some extent in the process of the likelihood maximization. The normalized invariant diphoton

mass distribution for a category c can be written as

fc(mi
γγ) =

(∑p µp Np,c +Nspur.,c ·θspur.,c) fS,c +Nbkg,c · fbkg,c

Nc
. (50)

The functions fS,c and fbkg,c are normalized distribution functions for the Higgs signal and the

background, respectively. For obtaining the individual signal strengths µp, one maximizes the

product of the likelihood functions (48) for the different categories c.

Each diphoton event is distributed to exactly one of the twelve categories. In this process, it is

first tested whether an event is passing the criteria for the categories with the smallest expected

signal yield (tt̄H, ZH and then WH). If an event fails to meet the corresponding conditions, it

will be tested whether it matches the criteria for the VBF tight category. If this fails, the event is

passed on to the VBF loose category. If the event does not fulfill either of the requirements of

the two VBF categories, it is distributed to one of the untagged categories, which are expected to

contain mostly gluon fusion events. The four untagged categories are based on the component of

the diphoton momentum orthogonal to the diphoton thrust axis in the transverse plane40 pTt and

the pseudorapidity of the photons. Both VBF categories require

• at least two jets,

• a difference of the pseudorapidities of the two leading jets |∆η j j|> 2.0,

• and η∗ = ηγγ −
η j1+η j2

2 < 5.0.

If the event passes these criteria, a Boosted Decision Tree (BDT) [53] is applied to obtain

a number OBDT which summarizes the probability that a given event is a VBF event. This

multivariate analysis is based on

• the invariant dijet mass of the two leading jets, m j j,

• |∆η j j|,

• η∗,

• the azimuthal angle between the dijet and the diphoton system ∆φγγ− j j,

40It is defined as pTt = |(~pγ 1
T +~pγ 2

T )×~t| with the thrust axis in the transverse plane~t = (~pγ 1
T −~pγ 2

T )/|~pγ 1
T −~pγ 2

T |.
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• the minimal angle between each of the leading photons and each of the two leading jets

∆Rmin
γ, j and

• pTt.

A given event will be part of the VBF tight category, if the BDT output OBDT is higher than 0.83,

while a value of 0.3 < OBDT < 0.83 leads to a VBF loose categorization. These two definitions

of VBF categories have the following VBF-efficiencies εVBF and VBF-purities PVBF:

• VBF tight: εVBF = 6.4%, PVBF = 80.5%

• VBF loose: εVBF = 7.2%, PVBF = 56.5%

3.5.3 A Simple Cut-Based Approach

In this analysis, a less sophisticated method than described in the preceding part will be used.

No maximum-likelihood method will be used and only one category instead of twelve categories

will be considered. A simple cut-based selection will be used to study the use of the 2-jettiness

τ2, defined in section 3.6 for the definition of a category enriched in VBF events. The VBF signal

strength and its corresponding uncertainty is computed as follows in this analysis:

µVBF =
Ndata

H −NMC
ggF −NMC

WH−NMC
ZH −NMC

NMC
VBF

. (51)

(∆µVBF)
2 =

1
(NMC

VBF)
2

[
(∆Ndata

H )2 +(∆NMC
ggF )

2 +(∆NMC
WH)

2 +(∆NMC
ZH )2 +(∆NMC)2

]
+

(
∆NMC

VBF

(NMC
VBF)

2

)2 (
Ndata−NMC

ggF −NMC
WH−NMC

ZH −NMC
)2

. (52)

There are more uncertainties to be studied than those appearing this equation, but this is not

within the scope of this thesis. The uncertainties included here are the ones that are most

dependent on the specifics of the VBF selection. The background will parametrized by an analytic

function. The shape of the Higgs peak will be determined using Monte-Carlo simulations. Using

these parametrizations, the invariant diphoton mass spectrum will be fitted with a sum of the

background- and Higgs-signal parametrization. From this fit, the number of Higgs events, Ndata
H ,
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can be taken. In order to compute the number of VBF events in the selection, the expected

number of non-VBF Higgs events will be subtracted from the number of Higgs events, assuming

the Standard Model predictions for production cross sections to be correct.

In order to compute the uncertainty in equation (52), it is necessary to know ∆Ndata
H and

∆NMC
i , where i stands for the Higgs production modes. The latter uncertainties ∆NMC

i contain a

statistical and a theoretical uncertainty and are computed as follows:

∆NMC
i =

√
(∆NMC

i |stat.)2 +(∆NMC
i |theo.)2 . (53)

The theoretical uncertainty in turn is composed of a perturbative uncertainty, which is obtained

by variations of unphysical scales as described in section 1, and of a parametric uncertainty,

consisting of uncertainties on the parton distribution functions and the strong coupling constant

αs. In case of the gluon fusion contribution to the VBF selection, the application of the ST

procedure as described in section 1.2 is necessary. The determination of this uncertainty is

presented in section 3.10. All other theoretical uncertainties are taken from [4], as done in [2].

The uncertainty on the Higgs signal yield, ∆Ndata
H , depends on the invariant mass spectrum in

data and will be determined in section 3.11.2. All of these uncertainties are added in quadrature,

similar to what is done in the coupling analysis described in section 3.5.2.

Thus, several quantities have influence on the uncertainty ∆µVBF. Especially the perturbative

uncertainty on the gluon fusion contamination and the statistical uncertainty on the fitted number

of Higgs events are of importance for the creation of a VBF selection. The statistical uncertainty

is connected with the fraction of Higgs events in the signal region of the invariant diphoton

mass spectrum, while the former is connected with the purity in VBF and with the phase-space

restrictions of the VBF selection.

The outcome of this estimation of µVBF relies on the correctness of the assumption that the

signal strengths of non-VBF Higgs production modes are as expected in the Standard Model.

This is a disadvantage, because especially the gluon-fusion production mode is vulnerable to

influences of new physics as it contains a loop. In general, the above mentioned analysis [2] has

a more performant approach on the measurement. However, a full categorized analysis along the

lines of [2] is beyond the scope of this thesis. Nevertheless, the use of the 2-jettiness for a VBF

selection can be studied also with this simple method.
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3.6 The N-Jettiness: τN

3.6.1 Introduction

The observable N-jettiness, denoted by τN , is an inclusive event shape and introduced in [5]. The

N-jettiness quantifies how much a given event looks like an event with exactly N very narrow

jets. This information is encoded in terms of a real number. The N-jettiness vanishes if there

are exactly N narrow jets in the event, whereas large values indicate considerable amounts of

additional radiation. The additional radiation may be or may be not reconstructed as additional

jets, it enters the calculation of τN either way.

Being inclusive, all tracks coming from the Higgs vertex are considered in the computation

of τN . Ideally, not only charged particles, which lead to tracks, but also neutral particles from

the hard-interaction vertex would enter this event shape. But charged particles are the only sort

of particles that can be assigned to an individual vertex with high reliability. Hence, the use of

neutral particles would make the computation sensitive to pile-up. At truth-level, however, neutral

particles can be considered as well. The two Higgs candidate photons are always disregarded for

the computation of τN since they are not part of the hadronic activity. If not otherwise stated,

only charged particles or tracks which fulfill the following requirements are used for the coming

studies.

• Transverse momentum: pT > 0.5GeV

• Pseudorapidity: |η |< 2.5

In figure 26, a generic dijet-event is sketched. One way to characterize this event is to count the

number of reconstructed jets. Another way would be to use the N-jettiness as a measure of the

jet activity and of additional hadronic radiation.

The number of jets identified in an event depends on the specifics of the jet reconstruction.

Roughly speaking, a spray of hadrons will be reconstructed as jet if it has a transverse momentum

larger than a certain value within a cone of a certain size. These values contain no absolute

meaning. They might be 5 % smaller or bigger and the number of jets would change accord-

ingly41. The mere number of jets is therefore a complicated measure. The N-jettiness gives more

41Still, these values are not arbitrarily chosen, but the result of theoretical considerations and are based on
reconstruction and calibration performance.
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inclusive information about hadronic radiation because it does not rely on the details of the jet

reconstruction and in principle takes into account all detected particles. Still, the axis resulting

from the jet reconstruction algorithm are useful for the computation of the N-jettiness, which

requires N jet axes42.

beam a beam b

jet 1

jet 2

FIG. 26: Display of a generic event in which one or more jets could be defined.

The minimization of the N-jettiness of a given event corresponds to dividing the full solid angle

of 4π into N +2 regions, i.e. N jet regions and two beam regions. Each track assigned to the

hard-interaction vertex is thus assigned to one of the N jets or to one of the two beam regions.

The result of this is that each of the N +2 jet- and beam directions is the seed of a cluster of

tracks which are closest to the respective jet or beam. The distance measure is given by the

four-product between two Lorentz vectors. This assignment is performed for each individual

track by determining the minimal four-product between the track and all N +2 jet- and beam

directions. The jet or beam with which the minimal four-product is performed, will be the

region to which the track is assigned. To understand why the minimization process leads to the

association of tracks to nearby jets or beams, figure 27 and equation (54) may be helpful. The

smaller the angle between the jet axis and the jet constituents and/or the softer the jet constituents

are, the smaller the corresponding Lorentz product between the jet axis and the jet constituents

will be, leading to a smaller τN .

42These axes can also be obtained by a minimization of τN , but this method has not been implemented in this
analysis.
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jet axis

track

primary vertex

FIG. 27: A small jet and its constituents.

The four-product of a track and a normalized jet direction is given by following equation:

nµ

j · pµ = Ek (1− cos(θ)) . (54)

In this equation, the jet- or beam axis is given by the normalized Lorentz vector nµ

j , the Lorentz

vector and energy of the track is denoted by pµ and Ek, respectively, and the angle between jet

axis and track is given by θ . When this product is small there are three possible reasons for that:

• The angle between track and jet or beam is small.

• The track is soft.

• The track is soft and the angle between the track and jet or beam is small.

VBF events tend to look like two quite narrow jets more than most other events, including gluon

fusion events, therefore an exclusive 2-jet cut is useful to enrich a sample in VBF events. This

cut can be implemented using the 2-jettiness.

3.6.2 Definition

There is more than one way to define the N-jettiness. These ways are differing in the normaliza-

tion of the jet Lorentz vectors. Different normalizations lead to different shapes of the jet areas.

Equation (55) used in this thesis leads to roughly circular areas which are of comparable size in

different regions of pseudorapidity. This version of normalization is called geometric measure.
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The 2-jettiness is computed as follows [54]:

τ2 =
Ntrk

∑
k

min

{
na,µ · pµ

k , nb,µ · pµ

k ,
n1,µ · pµ

k
ρ

,
n2,µ · pµ

k
ρ

}

=
Ntrk

∑
k∈ jets

min{· · ·}+
Ntrk

∑
k∈beams

min{· · ·}

= τ
jets
2 + τ

beams
2 . (55)

The nµ denote the normalized Lorentz vectors of the beam- and jet directions. They are

normalized such that nµ = (1,~n). The subscripts a and b label the two beam directions: na,µ =

(1,0,0,1) and nb,µ = (1,0,0,−1). The vector of the leading and sub-leading jet is denoted by

n1,µ and n2,µ , respectively. The track Lorentz vectors are denoted by pµ

k .

The angular size of the jet regions is controlled by the factor of 1
ρ

. The larger ρ , the smaller the

products of tracks with jets are, therefore they are more likely to be the minimal product, which

in turn leads to the tendency of more tracks being associated with one of the two jet directions.

Thus, jet regions are getting larger when ρ is increasing. In figure 28 the influence of ρ on the

outcome of the track association is shown: Two maps in η and in φ can be seen, in which all

reconstructed tracks are indicated. The tracks assigned to one of the two jet directions are colored

green and blue and are represented by triangular markers, while the tracks which are assigned to

the two beam directions are colored black and red, respectively, and are represented by circular

markers. The left plot shows the map for ρ = 0.5, the right one for ρ = 1.0. In the following,

the value for the jet size parameter is chosen to be ρ = 0.5 if not otherwise stated. This value is

close to the distance parameter R = 0.4 in the anti-kT jet finding algorithm, therefore it is a good

starting point.

In the second and third line of equation (55), a division of the total 2-jettiness into a beam

and a jet part of τ2 is performed. Doing so, one can draw additional information about the event

kinematics from τ2: The 2-jettiness can be big because the beam part is big, because the jet part

is big or because both are big. But the beam part is typically much larger than the jet part, and

so the information about the jet part is shadowed by the size of the beam part if τ2 in total is

considered. By considering each part of τ2 individually, this can be avoided. Widely-spread jets

result in large values of τ
jets
2 , while a large amount of hadronic initial state radiation, which is
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unlikely to be concentrated in the jet direction, or the presence of additional jets leads to large

values of τbeams
2 .

If not otherwise stated, only tracks and particles which fulfill the following requirements are

considered for the following studies.

• Transverse momentum: pT > 0.5GeV

• Pseudorapidity: |η |< 2.5

• Charge: Only charged particles
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FIG. 28: Maps in η and φ showing the positions of all reconstructed tracks in an event with
two reconstructed jets. The colors and shapes indicate the assignment in the course of the τ2
algorithm: Green (upward triangle) and blue (downward triangle) tracks are assigned to one of
the two leading jets, while red and black circles correspond to tracks which have been assigned
to one of the two beam jets. The darker markers within the jet areas indicate the direction of the
reconstructed leading jets.

The determination of the jet directions by minimizing τ2 would eliminate the dependence on

the jet reconstruction algorithm. The implementation of a 2-jettiness minimization was not in

the scope of this thesis, therefore the reconstructed jet directions have been used. These jet

directions are taken as the starting points of an iteration which aims at getting closer to the jet

directions that would result from a stand-alone minimization of the 2-jettiness. First the tracks

are assigned to either one of the two beam regions or to one of the two jet regions on basis of the

reconstructed jet direction. After that, the jet direction is recomputed by the following equation:

~njet =
∑trk∈jet~ptrk

|∑trk∈jet~ptrk|
, (56)
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where i runs over all tracks assigned to the given jet. The disadvantage of this recomputation of

the jet direction is that the neutral particles are not contributing to the iteration process.

3.7 The Spectrum of the 2-Jettiness

3.7.1 Spectrum of the 2-Jettiness for Gluon Fusion and Vector Boson Fusion

Events

The amount of additional gluon radiation is expected to be larger for gluon fusion events than for

vector boson fusion events. This is a consequence of the differing color factors of the incoming

particles. As could be seen in section 1, gluons are the initial-state particles of gluon fusion,

whereas quarks are the initial-state particles for vector boson fusion. The color factor for the

3-gluon vertex is 9
4 times larger than for the corresponding vertex of a quark emitting a gluon.

Therefore the initial-state radiation is weaker for VBF than for ggF. While gluon fusion is a

process involving the strong force at leading order, vector boson fusion is to first approximation

an electroweak process.

The spectrum of the 2-jettiness, i.e. the sum of the beam and jet part of the 2-jettiness, is shown

in figure 29. It is useful to discuss its components τbeams
2 and τ

jets
2 individually. Initial-state

radiation will mainly contribute to τbeams
2 , since there is no reason to believe that initial-state

radiation will be predominantly emitted in the direction of the hard jets. The other type of

additional gluon radiation is final-state radiation: In VBF events, the outgoing quarks again

are modest emitters of additional gluons. Thus, VBF jets are expected to be rather narrow,

corresponding to a relatively small τ
jets
2 . In gluon-fusion events, only gluon jets are possible,

such that the jets in gluon-fusion events will be less collimated due to the large gluon color factor.

So one can summarize: The beam part as well as the jet part of the 2-jettiness are expected

to be larger for ggF events than for VBF events. This can be seen in the spectra of τbeams
2 and

τ
jets
2 in figure 30. In general the events contributing to these spectra were generated to include

multi-parton interactions, if not otherwise stated. The definition of these interactions and their

influence on the τ2 spectrum will be detailed later in section 3.7.5.
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FIG. 29: Spectrum of the 2-jettiness τ2 for ggF and VBF events at truth level, normalized to
the integrated luminosity. Only charged particles within the Inner Detector acceptance with
pT > 0.5GeV are considered.

The spectrum which is shown in figure 30b features a irregularity in the first bin of the

spectrum. The jet part of τ2 is zero, if less than two particles are assigned to the jet directions.

This happens quite often, as one can see in figure 30b, especially for vector boson fusion, whose

jets are likely to be in the forward direction, i.e. not in the tracking region.
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FIG. 30: Spectrum of the constituents of τ2, i.e. τbeams
2 in (a) and τ

jets
2 in (b), for gluon fusion

and vector boson fusion at truth level, normalized to the integrated luminosity. Only charged
particles within the Inner Detector acceptance with pT > 0.5GeV are considered.
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3.7.2 Influence of the Jet Size Parameter ρ on the 2-Jettiness

The jet-size-controlling parameter ρ is chosen to be ρ = 0.5 for this analysis. However, it is

interesting to see how variations of this parameter affect the τ2 spectrum.
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FIG. 31: Truth-level spectrum of (a) τbeams
2 and (b) τ

jets
2 for ggF and for different values of jet

area size ρ , normalized to the integrated luminosity. Only charged particles within the Inner
Detector acceptance with pT > 0.5GeV are considered.
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FIG. 32: Truth-level spectrum of (a) τbeams
2 and (b) τ

jets
2 for VBF and for different values of jet

area size ρ , normalized to the integrated luminosity. Only charged particles within the Inner
Detector acceptance with pT > 0.5GeV are considered.

One expects that with increasing ρ the beam part of τ2 will be decreased as the jet part will

increase. In fact, this can be seen in figures 31 and 32. The spectrum is not very sensitive to

small variations around small values for ρ , however, the effect for ggF events is quite noticeable.

This might be due to the enhances amount of diffuse radiation in ggF events or to the larger width
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of gluon jets. Since the parameter ρ corresponds to a size measure of the jet area, comparable to

a simple radius, one can expect that the area of the jets will be roughly proportional to ρ2. From

this it can be inferred that the increase in τ
jets
2 will be stronger when choosing values for ρ which

are of order 1 or larger.

3.7.3 Influence of the Particle Mass on the 2-Jettiness

As the Inner Detector measures the particle’s 3-momentum but gives in general no information

about the particle type, it is not immediately clear which particle mass should enter the four-

product between track and jet vectors in equation (55). For this reason, a compilation of the

τ2 spectrum for different track masses at truth level is shown in figures 33 and 34. As can be

seen from these figures, there is barely any difference between the case of zero mass and the

pion mass mπ = 139.57MeV [7]. The charged pion is the lightest and most abundant hadronic

particle to be measured in the Inner Detector and is used as default mass value of the computation

of τ2 at reconstruction level. At truth level the masses of the individual particles are available

and are therefore used in the calculation of the four-products. The use of the pion mass as default

mass hypothesis for particle masses leads to a small bias in τ2. Since the pion is the lightest

charged hadron it is not surprising that τ2 is shifted to higher values when one uses the real

particle masses for the computation.
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FIG. 33: Spectrum of (a) τbeams
2 and (b) τ

jets
2 at truth level for ggF and for different particle mass

values, normalized to integrated luminosity. Only charged particles within the Inner Detector
acceptance and with pT > 0.5GeV are considered.
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FIG. 34: Spectrum of (a) τbeams
2 and (b) τ

jets
2 at truth level for VBF and for different particle mass

values, normalized to integrated luminosity. Only charged particles within the Inner Detector
acceptance and with pT > 0.5GeV are considered.

3.7.4 Impact of the Jet Axis Recomputation on the 2-Jettiness

The value of τ2 depends on the chosen jet axis. As is explained in section 3.6.2, the original

jet direction is used to assign all tracks from the Higgs vertex to one of the four jet- and beam

regions. The jets’ Lorentz vectors are taken from the jet reconstruction algorithm. After the

process of assigning the tracks, new jet directions are computed on the basis of the momenta of

the tracks which have been assigned to the jets. The difference in τ2 which is induced by this

iteration is shown in figure 35. The difference is small. Since the iteration of the jet axes is not

changing the beam part of τ2, only the spectrum of the jet part is shown. The spike in the first

bin is less distinct when the jet axis is not recomputed, which is understandable: When the axis

is not recomputed, the jet part of τ2 is zero only if not a single particle is assigned to the jets.

If, however, the jet direction is iterated, the jet part of τ2 is zero if for both jets less than two

particles are assigned to the jets.
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FIG. 35: The jet part of τ2 at truth level for ggF and VBF events, using the original jet axis as
well as using the iterated jet axis. Only charged particles within the Inner Detector acceptance
and with pT > 0.5GeV are considered.

3.7.5 Influence of Multi-Parton Interactions on the 2-Jettiness

In pp collisions at the LHC, there are additional interactions between partons of the same proton

pair in which the hard-interaction occurs. These additional interactions give rise to what is called

the underlying event. The underlying event, which comprises all interactions of the proton pair

except the hard-interaction must be modelled. Multi-parton interactions (MPI) are entering

the Monte-Carlo simulations as a model for the underlying event. This introduces a model

dependence; and since modelling is accompanied by a systematic uncertainty, the influence

of the modelling of multi-parton interactions on the analysis result should be kept as small as

possible.

In figure 36a, one can compare the normalized pT spectrum of truth charged particles with

and without MPI turned on in the Monte-Carlo simulation. The influence of MPI leads to an

enhanced contribution of low-pT particles. The pT distribution is shown which is scaled by the

inverse number of ggF and VBF events, respectively, so that the y-axis gives the mean number of

particles per bin and event. The η spectrum, to be seen in figure 36b, essentially gets flattened

out to some degree by the influence of MPI, which shows that the distribution in η of particles

coming from MPI is rather flat. The influence on the τ2 spectrum is shown in figures 37a and 37b.

One can see that the difference between the spectra including and not including multi-parton

interactions is considerable, especially in τbeams
2 . If not otherwise stated, the results shown in
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this thesis always include multi-parton interactions. Therefore the results of this analysis will

have uncertainties from the modelling of multi-parton interactions.
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FIG. 36: Distribution of (a) particle transverse momentum and (b) track pseudorapidity at truth
level for events including MPI and events not including MPI. The distribution is scaled by the
inverse number of events in ggF and VBF, respectively. Only charged particles are considered.
In (a), only particles within the Inner Detector acceptance are considered; in (b), only particles
with a pT > 0.5GeV are considered.
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FIG. 37: Spectrum of (a) τbeams
2 and (b) τ

jets
2 at truth level for events including MPI and events

not including MPI, normalized to the integrated luminosity. A lower pT cut of 0.5 GeV has been
applied and only charged particles in the acceptance of the Inner Detector are considered.

It is desirable to keep the corrections between the spectra from perturbative calculations and

the measured spectra as small as possible. Since multi-parton interactions are not part of the

perturbative calculations, their effect on the spectrum and therefore on analysis results is sought

to be minimized. Because the underlying event consists mainly of soft interactions, a reasonable
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attempt to minimize the impact of MPI is to impose lower bounds on the pT, such that soft

particles are not considered in the computation of τ2. The result of this can be seen in figures 38

and 39.
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FIG. 38: The τbeams
2 spectra at truth level for (a) ggF and (b) VBF events imposing different lower

cuts on the track transverse momentum. Only charged particles in the Inner-Detector acceptance
are considered.
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FIG. 39: The τ
jets
2 spectra at truth level for (a) ggF and(b) VBF events imposing different lower

cuts on the track transverse momentum. Only charged particles in the Inner-Detector acceptance
are considered.

It can be concluded from these figures that it is possible to render the MPI and no-MPI spectra

more similar, but especially for the beam part of VBF events no moderate cut on the particle

transverse momentum can annihilate the MPI influence to a high degree. Moreover, higher cuts

on the particle pT have negative effects on the VBF purity, as is shown in section 3.9.1. The

uncertainties which result from MPI would need to be estimated in order to make a statement
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whether a higher pT cut than 0.5 GeV should be applied, given that the purity decreases and

accordingly the theoretical uncertainty on the gluon fusion contribution would be enhanced when

higher pT cut is applied. The treatment of the uncertainties resulting from the modelling of MPI

could not be done in the scope of this thesis; therefore the initial cut on pT of 0.5 GeV is not

changed to larger values.

3.8 Resolution of the 2-Jettiness Measurement

In this section, the steps from the true τ2 of an event to a definition that can be used for data are

investigated. These steps are, starting with a fully inclusive truth definition, in which all particles

are used, the following:

• All η → |η |< 2.5 (due to limited Inner Detector acceptance)

• All pT→ pT > 0.5GeV (lower limit on transverse momentum of tracks in this analysis)

• Neutral and charged particles→ Only charged particles (only charged particles can be

reliably assigned to their vertices; the inclusion of neutral particles would therefore lead to

vulnerability to pile-up effects)

• Truth level→ Reconstruction level (The event needs to be reconstructed; in general, there

are differences between the true and reconstructed values of observables)

The effect which each of these steps has on the τ2 spectrum will be shown both qualitatively in

form of the τ2 spectra and quantitatively in form of distributions of the form ∆(lvl1− lvl2) =

τ lvl1
2 −τ lvl2

2 , where lvl1 always corresponds to the less inclusive level. From these distributions ∆

the contribution to the total resolution of each step will be measured. The resolution is measured

by means of the standard deviation

σ =

√
1
N ∑(∆i− ∆̄)2 , (57)

of the distribution of ∆. In the truth-level spectra of τ2, the events need to fulfill the photon

requirements detailed in section 3.3 in order to contribute. Not all of those events are also

fulfilling the imposed restrictions at reconstruction level; these events are disregarded for the

computation of the resolution distributions, so for this only a subset of the events used for the
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spectra at truth level has been used. In order to compute the resolution distribution, only events

with at least two jets at both truth- and reconstruction level are used. In data, one will also have a

contribution of events which have at least two jets at reconstruction level, but less than two jets

at truth level. The fraction of events in which this is the case is 0.32 %.

Starting from the fully inclusive truth spectrum of all particles without cut on the particle

pT and without cut on η , the smallest step towards reconstruction level is to apply the same

η cut as at reconstruction level, i.e. |η | < 2.5. The comparison between these two levels is

shown in figure 40. The corresponding distribution of the difference ∆ is shown in figure 41. The

distribution 41b features a very distinct peak at zero. This shows that the cut on η removes in

most cases no particles assigned to the jet regions, especially for ggF events, where the jets tend

to be central.
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FIG. 40: Spectra of (a) τbeams
2 and (b) τ

jets
2 for ggF and VBF events at different truth levels. In

one case, all particles, in the other case only particles inside the Inner-Detector acceptance of
|η | < 2.5 are considered: (truth, charged and neutrals, all pT, all η) vs. (truth, charged and
neutrals, all pT, |η |< 2.5).
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FIG. 41: Resolution contribution in (a) τbeams
2 and (b) τ

jets
2 of the limited acceptance of the Inner

Detector: (truth, charged and neutrals, all pT, all η) vs. (truth, charged and neutrals, all pT,
|η |< 2.5).

Another contribution to the total difference between the inclusive truth spectrum and the

reconstruction-level spectrum is the omission of low-pT particles. The default value for this cut

on the transverse momentum is 0.5 GeV in this analysis. The corresponding comparison of the

τ2 spectra is shown in figure 42 and the corresponding distribution of ∆ is shown in figure 43.
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FIG. 42: Spectra of (a) τbeams
2 and (b) τ

jets
2 for ggF and VBF events at different truth levels,

considering only particles in the Inner-Detector acceptance. In one case, no restriction on the
particle pT is imposed, in the other case, a lower bound on the particle pT of 0.5 GeV is imposed:
(truth, charged and neutrals, |η |< 2.5, pT > 0.5GeV) vs. (truth, charged and neutrals, |η |< 2.5,
no pT cut).

83



[GeV]b∆

35− 30− 25− 20− 15− 10− 5− 0

e
v
t

N

0

0.1

0.2

0.3

0.4

0.5 =4.3 GeVσggF, 

=3.9 GeVσVBF, 

(a)

[GeV]j∆

4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5− 0 0.5 1

e
v
t

N

0

0.2

0.4

0.6

0.8

1

1.2
=0.58 GeVσggF, 

=0.41 GeVσVBF, 

(b)

FIG. 43: Resolution contribution in (a) τbeams
2 and (b) τ

jets
2 of the lower bound on the particle

pT of 0.5 GeV: (truth, charged and neutrals, |η |< 2.5, pT > 0.5GeV) vs. (truth, charged and
neutrals, |η |< 2.5, no pT cut).

The next step is to measure how the exclusion of neutral particles from the measurement of τ2

affects the distribution of τ2. The results of this and the corresponding distribution of ∆ can be

seen in figures 44 and 45.
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FIG. 44: Spectra of (a) τbeams
2 and (b) τ

jets
2 for ggF and VBF events at different truth levels,

considering only particles with pT > 0.5GeV within the Inner Detector acceptance. In one case,
neutral and charged particles are considered, in the other case, only charged particles: (truth,
charged, |η |< 2.5, pT > 0.5GeV) vs. (truth, charged and neutrals, |η |< 2.5, pT > 0.5GeV).
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FIG. 45: Resolution contribution in (a) τbeams
2 and (b) τ

jets
2 of the omission of neutral particles

in τbeams
2 : (truth, charged, |η |< 2.5, pT > 0.5GeV) vs. (truth, charged and neutrals, |η |< 2.5,

pT > 0.5GeV).

The next and last step is to measure the influence of the detector and reconstruction effects on

τ2. For a comparison of the corresponding spectra, see figure 46 and for the distribution of the

corresponding ∆, see figure 47. The information from this distribution can be used to constrain

the range of possible cut values for τbeams
2 and τ

jets
2 . The cut values should not be smaller than

the experimental resolutions, because this would lead to many misclassifications with respect to

the question whether a given event has a τ2 smaller or larger than the cut value.
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FIG. 46: Spectra of (a) τbeams
2 and (b) τ

jets
2 for ggF and VBF events at reconstruction and

truth level, considering only charged particles within the Inner Detector acceptance and with
pT > 0.5GeV.
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FIG. 47: Resolution contribution in (a) τbeams
2 and (b) τ

jets
2 of detector- and reconstruction effects:

(reconstructed, charged, |η |< 2.5, pT > 0.5GeV) vs. (truth, charged, |η |< 2.5, pT > 0.5GeV).

The exclusion of neutral particles and the difference between true and reconstructed quantities

lead to the largest resolution contributions. The next-largest contribution results from the

exclusion of low-pT particles. The cut on the pseudorapidity gives the smallest contributions

to the resolution. In figure 48, the τ2 spectrum at reconstruction level and at the fully inclusive

truth level is shown. The corresponding distribution of the event-by-event difference ∆ can

be seen in figure 49. The standard deviations of these resolution distributions are of order

15 GeV and 2 GeV for the beam part and jet part of τ2, respectively. If one relates this number

to typical numbers for τbeams
2 and τ

jets
2 , it seems fortunate that one does not have to unfold

these effects for the results of this analysis: The computation of the perturbative uncertainty,

see section 3.10, is done using selections which are based on reconstruction-level information.

Also, the measurement of the VBF signal strength uses simulation-based quantities which are at

reconstruction level, so that unfolding is also not necessary in this case.
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FIG. 48: Spectra of (a) τbeams
2 and (b) τ

jets
2 for ggF and VBF events at reconstruction and

truth level. At truth level, all particles are considered. At reconstruction level, tracks with
pT > 0.5GeV with |η < 2.5| are considered. The spectrum at reconstruction level is normalized
to the integrated luminosity and the spectrum at truth level is in turn normalized to the number of
reconstructed events.
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FIG. 49: Total resolution in (a) τbeams
2 and (b) τ

jets
2 between fully inclusive truth level and

reconstruction level: (reconstructed, charged, pT > 0.5GeV), |η |< 2.5) vs. (truth, charged and
neutral, no pT cut, all η).
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FIG. 50: Resolution contribution from reconstruction and detector effects for different ranges of
reconstructed τbeams

2 . Only charged particles with pT > 0.5GeV in the acceptance of the Inner
Detector are considered.
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jets
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FIG. 51: Resolution contribution from reconstruction and detector effects for different ranges
of reconstructed τ

jets
2 . Only charged particles with pT > 0.5GeV in the acceptance of the Inner

Detector are considered.

In the following, the resolution contribution from the event reconstruction will be further

studied. The resolution of the τbeams
2 - and τ

jets
2 measurement depends on the magnitude of the

measured τbeams
2 and τ

jets
2 , respectively. This is shown in detail in figures 50 and 51 for τbeams

2

and τ
jets
2 , respectively. The resolution is smaller for events with smaller value of τ2 (evaluated at

reconstruction level).

As can be seen in figure 50, there is a considerably large extension of the distribution on

the right side when considering large reconstruction-level values of τbeams
2 , which means that

relatively many events in that range of τbeams
2 have a higher τbeams

2 than the event has on truth

level. Especially for VBF events this feature is quite significant. From figure 52 one can conclude

that this is an effect from the reconstruction of events: the reconstruction-level spectrum of

τbeams
2 of the event sample with ∆ > 5GeV is significantly shifted to larger values, while the
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truth-level spectrum of that event sample is rather similar to the control sample with ∆ < 5GeV.

It may be suspected that pile-up is at least a contributor to this feature of the ∆ distribution at

large values of τbeams
2 . In order to test this hypothesis, the distribution in figure 50d, has been

reproduced using four different event samples:

• Low pile-up & correct primary-vertex choice

• Low pile-up & incorrect primary-vertex choice

• High pile-up & correct primary-vertex choice

• High pile-up & incorrect primary vertex choice

Whether a primary vertex is here classified to be correctly selected, is determined by the condition

that the reconstructed position of the primary vertex must be less than 0.3 mm away from the true

position. An event is assigned to the low pile-up sample, if the number of reconstructed primary

vertices exceeds 16; events with less than 10 reconstructed primary vertices are assigned to the

low-pile-up samples.The result is shown in figure 53. The incorrect selection of vertices gives

a contribution to the second peak on the right side; however, it can not account for the whole

extent of the second peak. There is no distinct difference in the distributions of the low-pile-up

event samples and the high-pile-up event samples, which does not support the hypothesis that

the unexpected large extension on the right side of the distribution is due to pile-up. It is possible

that the large values of τbeams
2 |reco. are due to the merging of pile-up vertices with the Higgs

vertex. However, this hypothesis remains to be tested.
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FIG. 52: Comparison of the τbeams
2 at recon-

struction and truth level for VBF events.
The spectra denoted with ∆ > 5 are are
based on events from the region correspond-
ing to the distribution’s extension on the
right side in50.
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FIG. 53: Resolution distributions ∆ for VBF
events for reconstruction- and truth level at
which only charged particles within the In-
ner Detector acceptance with pT > 0.5GeV
are considered. Only events with 30GeV <
τbeams

2 |reco. < 40GeV are considered.

3.9 Efficiency and Purity of the Vector Boson Fusion Selection

The VBF-efficiency εVBF and VBF-purity PVBF of the signal selection, defined in section 3.5.2,

are an important input for the decision on the cut menu. The efficiency and purity are calculated

using Monte-Carlo simulations as given in equations (46) and (47). The efficiency is computed

with respect to all simulated VBF events. As can be seen in the τ2 spectrum in figure 54, one

can enrich a selected sample with VBF events by excluding events with a τ2, τbeams
2 and/or τ

jets
2

value above some threshold. Both beam part and jet part of τ2 tend to be smaller for VBF events

than for gluon fusion events. Thus, by cutting at low values of τ2 one can achieve a relatively

high purity, since more gluon fusion events than vector boson fusion events will be removed by

this cut. Of course some VBF efficiency will be lost, too. The efficiency and purity as a function

of the cut value on τ2 can be seen in figure 55. At large cut values the efficiency converges to the

fraction of VBF events passing the photon cuts, see section 3.2, and jet requirements as described

in section 3.3, while the purity converges to the purity resulting from these photon and jet cuts.
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FIG. 54: Spectrum of τ2 at reconstruction
level.
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FIG. 55: VBF efficiency and purity as a
function of the cut value on τ2.

It is advantageous to not simply cut on the total 2-jettiness. This becomes clear when one

looks at the two-dimensional distributions of the jet- and beam part of τ2 in figure 56a and 56b.

A plain cut on τ2 = τbeams
2 + τ

jets
2 would mean to select events below a straight line which is

defined by τbeams
2 + τ

jets
2 = τ2|cut. But looking at the shape of the VBF distribution, it appears

more efficient to employ a rectangular cut, which corresponds to separate cuts on τbeams
2 and

τ
jets
2 . The efficiency and purity which result from this rectangular cuts, is shown in figures 57a

and 57b, respectively.
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FIG. 56: Two-dimensional distribution of the beam- and the jet part of τ2 for (a) gluon fusion
and (b) vector boson fusion events at reconstruction level.

Using cuts on τbeams
2 and τbeams

2 to achieve a high purity of 80.5 %, as achieved in the VBF

tight category of the official analysis, see section 3.5.2, would lead to very small efficiencies

of about 3 %. Therefore, a selection using τ2 in the simple way as it is done in this analysis
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would rather result in a lower purity of 70 % at the same efficiency as for the VBF tight category

(6.4 %).
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FIG. 57: VBF-efficiency (a) and VBF-purity (b) as function of cut values on τbeams
2 and τ

jets
2 .

3.9.1 Impact of Cuts on the Track Transverse Momentum on the Efficiency and

Purity

When considering the use of pT cuts in rejecting particles coming from MPI, as it has been done

in section 3.7.5, one should also consider the influence of these cuts on the efficiency and purity.

This influence can be seen in figures 58 and 59.
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FIG. 58: VBF efficiencies and purities for different lower cuts on the track transverse momentum
as function of τbeams

2 . No cut on τ
jets
2 is applied.
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FIG. 59: VBF efficiencies and purities for different lower cuts on the track transverse momentum
as function of τ

jets
2 . No cut on τbeams

2 is applied.

A higher cut on the track pT decreases the purity. By increasing the pT cut in a moderate range,

as has been done here, mainly tracks in gluon fusion events are removed from the calculation

of τ2. This can be seen in figure 60, which gives the fraction of tracks with a pT larger than the

lower bound pcut
T . From the observation that the number of ggF tracks decreases with a higher

rate at increasing cut values one can draw the conclusion that also the 2-jettiness will decrease at

higher rate for ggF events than for VBF events. But since gluon fusion events tend to be larger in

terms of τ2, gluon fusion and vector boson fusion events will look more similar in terms of τ2

after a higher track pT cut, which in turn leads to a decreased VBF purity.
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FIG. 60: Fraction of tracks with a pT larger than than pT|cut at reconstruction level.
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3.10 Perturbative Uncertainty on the Gluon Fusion Contribution to

Vector Boson Fusion Selections

The perturbative uncertainty on the predicted number of gluon fusion events contaminating the

VBF-enriched event sample can be computed using a method which has already been used in

the standard coupling analysis [2]. As mentioned in section 3.5, the standard analysis employs

a Boosted Decision Tree to define its VBF-enriched categories. Due to the use of such a

multivariate analysis, the selected phase space is quite complicated, such that an application of

an extended version of the ST method as described in section 1 is necessary [4]. This extension

consists in the definition of the ST procedure with more than two bins of a variable that quantifies

the amount of additional radiation. Such a multi-bin-extension of the ST method is also used

here; it is based on the variable ∆φH− j j and uses 17 bins [55]. A corresponding correlation

matrix has been created as outlined in section 1 [4].

The uncertainty is computed on the basis of the ∆φH− j j spectrum (at truth level) after applying

the selection cuts, using gluon-fusion Monte-Carlo simulations. In figure 5 on page 23 the

gluon-fusion cross section and its ST uncertainty as a function of cuts on this variable was shown.

Basically, the cuts in the chosen variable, e.g. the 2-jettiness, are matched to cuts on ∆φH− j j and

then the uncertainties which are computed for ∆φH− j j are used to estimate the uncertainty of the

chosen selection in the 2-jettiness. The selection can be applied using variables at reconstruction

level. For each of the 17 bins of this spectrum, the perturbative uncertainty on the gluon-fusion

cross section has been computed beforehand. The gluon-fusion cross section uncertainties in

the ∆φH− j j bins close to π are relatively large because a tight cut on additional radiation, as is

applied when only selecting events with ∆φH− j j close to π , introduces large Sudakov double

logarithms. In the limit of a very tight selection, any additional emission with arbitrarily small

pT would be vetoed; approximating this limit, fixed-order perturbation theory becomes more and

more unreliable and a logarithmic resummation is necessary [14].A basic idea of the method is:

If the spectrum of ∆φH− j j after applying the multivariate analysis or simple cuts on some event

shape is strongly concentrated at values close to π , the perturbative uncertainty on the number of

gluon fusion events that is selected by this selection will be large. The ∆φH− j j spectrum after the

application of a given selection, however complicated, can be used to evaluate the perturbative
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cross section uncertainties via the following equation:

∆σ sel.
ggF

σ sel.
ggF

=

√
n

∑
i, j

Cov[i][ j]
σ [i]σ [ j]

· h[i]
N
· h[ j]

N
. (58)

Here, the number n denotes the number of bins in ∆φH− j j, Cov[i][ j] is the i j-component of the

covariance matrix and σ [i] denotes the calculated differential cross section in bin i; h[i] is the

number of gluon-fusion events having a ∆φH− j j value (computed at truth level) which falls into

bin i after the application of the selection. The total number of events which are selected is

denoted with N.

The relative uncertainty for the 2-jet-inclusive selection, i.e. requiring at least two jets43 at

both reconstruction and truth level is computed to be 21.3 %. The corresponding distribution in

π−∆φH− j j is shown in figure 61, together with π−∆φH− j j distribution for several selections

based on cuts on τ2, whose corresponding uncertainties can be obtained from tables 3, 4, or

alternatively from figure 62. Among the shown distributions, the distribution which belongs to

the tightest cut on the beam part of τ2 has the highest fraction of events in the bin of ∆φH− j j

associated with the highest perturbative uncertainty, i.e. the bin of the distribution of π − ∆φH− j j

closest to zero.
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FIG. 61: The normalized π −∆φH− j j distributions for different cuts on (a) τbeams
2 and on (b)

τ
jets
2 . The selection denoted with no cut requires two jets at reconstruction and at truth level and

imposes no restriction on ∆η j j.

The dependence of the perturbative uncertainty on the cut on τbeams
2 and on τ

jets
2 can be seen

43This means also that no cut on ∆η j j is applied.
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τbeams
2 |cut [GeV] no cut 40 30 20 10 5

∆σ2/σ2 [%] 21.4 20.8 21.1 22.5 26.4 33.9

TABLE 3: Perturbative uncertainties on the gluon fusion contribution to a VBF-enriched selection
for different cuts on τbeams

2 .

τ
jets
2 |cut [GeV] no cut 6 4 2 1 0.5

∆σ2/σ2 [%] 21.4 20.6 20.7 20.6 20.5 20.4

TABLE 4: Perturbative uncertainties on the gluon fusion contribution to a VBF-enriched selection
for different cuts on τ

jets
2 .

in figures 62a and 62b, respectively. Cuts on the beam part of the 2-jettiness impose a veto

on additional central jets and radiation. This veto results in enhanced selection of events with

∆φH− j j close to π , which in turn leads to larger perturbative uncertainties. The value of the jet

part of the 2-jettiness, on the other hand, is basically a measure for the jet size, not a sensible

measure of additional central jet activity and therefore it is not surprising that the uncertainty

does not depend significantly on this cut. However, one has to take into account that there may

be other theoretical uncertainties arising from cuts on the jet part of the 2-jettiness that are not

uncertainties resulting from central jet vetos. The study of these uncertainties was beyond the

scope of this thesis44. In general, the values of the uncertainty for very tight cuts on the beam- or

jet part of τ2 are expected to be not entirely trustworthy, since there is some averaging due to the

binning in ∆φH− j j, which may lead to an underestimation of the uncertainty for very tight cut

values. In figure 63, the relative perturbative uncertainty on the gluon fusion contribution to the

VBF-enriched sample is shown as a function of cuts on τ2. The uncertainties range from 21 %

to 40 %. In figure 64 the relative uncertainty with respect to the expected number of selected

VBF events can be seen; this quantity is an important measure of the effect of the perturbative

uncertainty on gluon-fusion cross section on the VBF signal strength uncertainty, see equation

52. At tightening cut values, the influence of the uncertainty on the gluon fusion contamination

is decreasing. The relative uncertainty on the gluon fusion cross section in the VBF-enriched

selection is increasing, but the higher purity in VBF at tight cut values overcompensates this

44Such a study could be performed by comparing samples that have been produced using different jet shower
models, e.g. that of PYTHIA and that of HERWIG [56].
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increase. Therefore the contribution of the theoretical uncertainty on the total uncertainty on

the VBF signal strength can be minimized by cutting tightly. In general, one would also like

to compute the theoretical uncertainty as a function of τ2 cuts directly, i.e. to not only use an

indirect method as it is presented here. However, this is difficult, especially because only tracks

(and not the inclusive set of all produced particles) are used in the computation at reconstruction

level.
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FIG. 62: Relative perturbative uncertainty on the gluon fusion contribution to the VBF selection
as a function of cuts on τbeams

2 (no cut on τ
jets
2 ) (a) and as of cuts on τ

jets
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3.11 Vector Boson Fusion Signal Strength and Final Selection

In this section, the vector boson fusion signal strength and its uncertainty will be computed as

outlined in subsection 3.5, using a τ2-based VBF-enriched selection. For this procedure, data
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events will be used which have been selected as described in sections 3.2.1 and 3.3. In order to

compute the VBF signal strength and its uncertainty, the background shape and expected signal

shape need to be parametrized. Using this parametrizations, the expected uncertainty on the

VBF signal strength will be determined as a function of cuts on τ2. Based on this uncertainty

distribution, suitable cut combinations with minimal uncertainty on µVBF can be chosen. For

these cut combinations, the VBF signal strength will be computed. This computation is done in

three steps: The invariant diphoton mass spectrum of data events is fitted, and from this one can

obtain the fitted number of Higgs events. Subsequently, the expected number of non-VBF Higgs

events from the fitted number of Higgs events is subtracted. By comparing the resulting number

with the expected number of VBF events, determined by Monte-Carlo simulation, one obtains

the VBF signal strength.

3.11.1 The Shape of the Higgs Peak

Before the invariant diphoton mass spectrum is fitted, see figure 65 for an example, the shape of

the signal as well as the shape of the background distribution must be determined. In this section,

the determination of the former will be presented.

The Higgs peak in the invariant diphoton mass spectrum is in ATLAS analyses commonly

described by the sum of a Crystal-Ball function and a Gaussian function. For an example of

the mass spectrum of simulated H→ γγ events and the corresponding fit of the Higgs peak, see

figure 66. The Crystal-Ball function covers most of the events in the central peak, while the

relatively wide Gaussian collects the outliers. The Crystal-Ball function is defined as [57]

yCB(x) = NS · fCB ·A ·

 exp(− (x−x̄)2

2σ2 ) if x−x̄
σ
≥−α(

n
|α|

)n
exp(− |α

2|
2 ) · ( n

|α| −|α|−
x−x̄
σ
)−n if x−x̄

σ
≥−α

 , (59)

where x is the variable of the spectrum, in this case mγγ ; the number of signal events, in this

case Higgs events, is denoted by NS. The fraction of signal events contained in the Crystal-Ball

function is denoted with fCB, and A is a normalization factor given by

A−1 = σ ·
(

n
|α|
· 1

n−1
· exp(−−|α|

2

2
+

√
π

2
· (1+ erf(

|α|
2
)))

)
. (60)
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The Gaussian function is defined as

yG = (1− fCB) ·NS ·
1

σG
√

2π
exp(−(x− x̄G)

2

2σ2
G

) . (61)

Here, x̄G denotes the mean value of the Gaussian distribution and σ2
G its width. The mean value

of the Crystal-Ball function x̄ and the mean value of the Gaussian x̄G are not required to be

identical. The parameters of the Crystal-Ball function and the Gaussian have been taken from fits

to mγγ spectra from Monte-Carlo simulations, using events from all five Higgs production modes.

Each mode enters the spectrum with a relative weight corresponding to the expected number of

selected events from each production mode. The mass of the Higgs boson in the simulation is

taken to be 125.0 GeV. Since the Higgs mass is measured to be 0.36 GeV larger than that [11],

x̄ and x̄G are shifted accordingly. The signal shape has been determined as a function of cuts

on τbeams
2 and τ

jets
2 . In spite of efforts to achieve parametrizations that fit the spectra perfectly,

the fits of the most mass spectra underestimate the peak to a small degree, see figure 66 for an

example.
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FIG. 65: Fitted invariant diphoton mass
spectra and fits for data events with
|∆η j j|> 2.0.
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FIG. 66: Fitted invariant diphoton mass
spectrum of Higgs events from Monte-
Carlo simulations, using events with
|∆η j j|> 2.0.

3.11.2 The Purity in Higgs and the Expected Statistical Uncertainty on the

Higgs Event Yield

Most events from the data event sample are non-Higgs events. These constitute the background

of the Higgs signal. In the following, it will be discussed to what degree the VBF-enriched

selection based on τ2 is able to reject this background. This can be measured in terms of the
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purity in Higgs. The amount of background in the Higgs signal region is an important input

for the uncertainty on the VBF signal strength: the more background events are in the signal

region, the larger the statistical uncertainty on the fitted number of Higgs events at a given value

of signal events. The expected purity in Higgs, here denoted by P90, will be determined as a

function of cuts on τ2 and is is defined as

P90 =
NMC

H,90

NMC
H,90 +B90

, (62)

where the expected number of background events in the smallest mass region which contains

90 % of the expected signal events is denoted by B90; correspondingly SMC
90 denotes 90 % of the

expected Higgs event yield. In order to determine the expected purity in Higgs, one first needs a

parametrization of the invariant diphoton mass spectrum, which contains both background events

and signal events. The shape is chosen to be a sum of the signal shape which has been determined

in section 3.11.1 and an exponential function of a second-order polynomial. Both are common

choices for signal and background, respectively, in H→ γγ analyses [2]. The background is thus

parametrized as:

ybkg(mγγ) = Nbkg ·B · eamγγ+bm2
γγ , (63)

where Nbkg is a normalization factor, a and b are free parameters of the background model, and

B is a normalization constant which can be computed as follows:

B−1 =− 1
2
√

b
·

[
√

π · exp(− a2

4b
) ·

(
erfi
(

2bmmax
γγ +a

2
√

b

)
− erfi

(
2bmmin

γγ +a

2
√

b

))]
. (64)

Here, mmin
γγ and mmax

γγ specify the bounds of integration45. The lower limit is chosen to be

105 GeV, while the upper integration limit is 160 GeV. The function denoted with erfi(x) is the

imaginary error function.

The free parameters, which are obtained by fitting the invariant diphoton mass spectrum

with the sum of signal and background distribution function, are the number of Higgs events,

the number of background events and the two parameters describing the distribution function

45Other than the integral of the Crystal-Ball or Gaussian function, the integral of these background parametrization
would not be converging if the integration range would not be fixed to a finite range. Correspondingly, the
number of background events Nbkg is the number of background events inside of the specified range.
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of the background. Four mass spectra based on different τ2-based VBF selections and the

corresponding fits are shown in figure 67.
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FIG. 67: Invariant diphoton mass spectra and fits for different cuts on τ2.

From these fits, the background shape is determined as a function of cuts on τ2. For several

VBF-enriched categories, the corresponding values of the number of background events in the

signal region and the expected number of signal events are listed in table 5. The expected purity

is shown in figure 68 as a function of the cuts on τbeams
2 and τ

jets
2 . The dependence on the cut

values is small. Very tight cut values lead to very limited statistics such that the results in those

bins suffer from large statistical uncertainties. The small dependence of the purity in Higgs on

the cut values implies that the cuts on τ2 remove Higgs events and background events at a similar

rate. This is also expected from the spectrum of τ2 of these data events, which is shown in figure

69 and is quite similar to the spectrum of Higgs events. In figure 70 one can explicitly see that
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FIG. 68: Expected purity in Higgs as a function of cut values on τbeams
2 and τ

jets
2 .

Selection B90 NMC
H,,90 P90[%] σ90 [GeV]

no cut on τ2 274±6 20.98±0.07 7.0±1.1 2.78

τbeams
2 < 40GeV, τ

jets
2 < 6.4GeV 244±5 18.77±0.06 7.1±1.3 2.78

τbeams
2 < 25GeV, τ

jets
2 < 6.4GeV 205±5 16.30±0.06 7.4±1.3 2.78

τbeams
2 < 40GeV, τ

jets
2 < 3.2GeV 208±5 16.25±0.06 7.2±1.4 2.78

τbeams
2 |< 25GeV, τ

jets
2 < 3.2GeV 181±5 14.36±0.05 7.3±1.4 2.78

VBF loose 44 8.38 16 2.78

VBF tight 6.7 5.26 44 2.61

TABLE 5: Higgs-purity-related quantities in different VBF-enriched categories. The
selections VBF tight and VBF loose have been defined in section 3.5.2.

the ratio of the expected number of Higgs events and the number of background events in the

close vicinity of the Higgs signal region is not significantly depending on the τ2 bin.
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FIG. 69: The τbeams
2 spectrum (a) and the τ

jets
2 spectrum (b) both data and Higgs events from

Monte-Carlo simulations. Only data events with a invariant diphoton mass mγγ in the range of
[120 GeV; 123 GeV] and [127 GeV; 130 GeV] are considered.
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FIG. 70: The ratio of expected Higgs events and background events in the mγγ range of [120 GeV;
123 GeV] and [127 GeV; 130 GeV] in τbeams

2 bins (a) and τbeams
2 bins (b).

In order to understand why the purity in Higgs is comparatively small in the τ2-based VBF

selection, the background processes and the Higgs signal processes will be discussed. The

number of gluon fusion and of vector boson fusion events are similar, see table 6, if the cut

values on τ2 are not very tight. Two Feynman diagrams for corresponding Higgs events with

dijet signature are shown in figure 71, while in figure 72, three Feynman diagrams of non-Higgs

processes with two photons and two partons in the final state are shown. corresponding invariant

diphoton mass spectra and fits are shown in figure 65 and 67. The cut values on τ2 have been

chosen such that the uncertainty on µVBF is expected to be minimal, see figure 74.
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Selection NMC
H NMC

ggF NMC
VBF NMC

WH NMC
ZH NMC

ttH

no cut on τ2 23.31+2.76
−2.74 12.14+2.74

−2.72 10.38+0.27
−0.29 0.408+0.011

−0.011 0.250+0.010
−0.010 0.138−0.017

+0.012

τbeams
2 < 40GeV, τ

jets
2 < 6.4GeV 20.9+2.3

−2.3 10.5+2.3
−2.3 9.79+0.26

−0.28 0.328+0.009
−0.009 0.204+0.009

−0.009 0.028+0.003
−0.004

τbeams
2 < 25GeV, τ

jets
2 < 6.4GeV 18.1+2.0

−2.0 8.6+2.0
−2.0 9.09+0.24

−0.26 0.256+0.007
−0.007 0.158+0.007

−0.007 0.011+0.001
−0.001

τbeams
2 < 40GeV, τ

jets
2 < 3.2GeV 18.1+1.9

−1.9 8.4+1.9
−1.8 9.19+0.24

−0.26 0.266+0.008
−0.008 0.168+0.007

−0.007 (0.019+0.002
−0.002

τbeams
2 |< 25GeV, τ

jets
2 < 3.2GeV 16.0+1.6

−1.6 7.0+1.6
−1.6 8.58+0.23

−0.24 0.213+0.006
−0.006 0.133+0.006

−0.006 (0.008+0.001
−0.001

VBF loose 8.89 3.54 5.23 0.06 0.04 0.01

VBF tight 5.59 0.89 4.65 <0.03 <0.02 <0.011

TABLE 6: Expected number of Higgs events in different Higgs production modes. VBF
tight and VBF loose are defined in section 3.5.2.

FIG. 71: Feynman diagram for a H → γγ gluon-fusion process with two jets in the final state
(left) and for a H→ γγ vector boson fusion process (right).

FIG. 72: Feynman diagrams for prompt diphoton background with two jets.

At first appearance, the Higgs processes can not be expected to look much differently than

the background processes. As in gluon fusion events, there can be gluon-induced jets from non-

Higgs processes with a diphoton in the final state. At the same time, non-Higgs diphoton-dijet

processes with quark-induced jets as they can be found in VBF events are possible. Therefore it

can not be expected that one can effectively distinguish between Higgs- and non-Higgs events by

means of the jet part of τ2, which measures the width of the jets. Initial-state radiation from the
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incoming gluons in non-Higgs background will contribute to the beam part, as it does in ggF

events. All together, it is not incomprehensible that the purity in Higgs is relatively low when

using a solely-τ2-based selection and a cut on ∆η j j. Of course, one would need more detailed

information about the background processes and their kinematics and individual prevalence in

order to understand better why the background rejection of a τ2-based VBF selection is rather

ineffective.

The expected uncertainty ∆µVBF is computed using equation (52) as a function of cuts on the

beam- and jet part of τ2. For this, it is useful to compute the expected statistical uncertainty on

the fitted number of Higgs events:

Connected to the purity in Higgs is the statistical uncertainty on the fitted number of Higgs

events, which will enter the uncertainty on the VBF signal strength and is expected to be sizable.

Therefore it is useful to compute the expected statistical uncertainty as a function of the cut

values one τ2 in order to select a VBF selection with smallest possible uncertainty. The statistical

uncertainty on the fitted number of events itself is subject to statistical fluctuations. The expected

statistical uncertainty is evaluated in the following, using a method called Asimov dataset [58].

In order to use this method, one needs a parametrization of the expected mγγ spectrum, i.e.

the parametrization of the background and of the Higgs signal. The shape of the Higgs peak,

as determined in the previous section 3.11.1, is added to the background shape, scaled with

the expected number of Higgs events in a given VBF-enriched selection. The result of this is

presented in the form of a relative uncertainty on the number of Higgs events in figure 73 as a

function of τ2 cut values. Loose cut values lead to the lowest expected relative uncertainties,

which are nevertheless quite sizable.

3.11.3 The Vector Boson Fusion Signal Strength

In the following, the VBF signal strength and its uncertainty will be computed, using equations

(51) and (52) from section 3.5.2, respectively. The statistical uncertainties on the expected

number of Higgs events from different production modes are taken from Monte-Carlo samples.

Except for the perturbative uncertainty on the gluon fusion contamination, the theoretical

uncertainties on these numbers are taken from [4]. The perturbative uncertainty on the gluon

fusion contamination has been computed in section 3.10. The previous section 3.11.2 yielded the

expected statistical uncertainty on the measured number of Higgs events. With all contributions
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FIG. 73: Ratio of expected number of selected Higgs events to expected statistical uncertainty on
the fitted number of Higgs events Nexp.

∆Nexp.
H

as a function of cuts on τ2.

of the uncertainty on µVBF in hand, the expected uncertainty as a function of cuts on τ2 will be

determined. Using this result, a set of cut values is chosen for which the VBF signal strength and

its actual uncertainty will be computed.

To measure the VBF signal strength, one needs to measure the number of Higgs events in a

given selection. The type of parametrization which is used in the fit of the invariant diphoton

mass spectrum is described in the previous section 3.11.2. From the fitted number of Higgs

events the predicted number of non-VBF Higgs events is subtracted, which introduces both

additional statistical46 as well as theoretical uncertainties. The perturbative uncertainty on the

gluon-fusion contamination, which is subtracted from the fitted Higgs event yield, is the largest

among the theoretical uncertainties. The expected contributions from the five considered Higgs

production modes in five VBF-enriched selections and the corresponding uncertainties are listed

in table 6.

The resulting total uncertainty – using on the expected statistical uncertainty on the Higgs

signal yield, not the fit uncertainty obtained in the final fitting of the data spectrum – on µVBF is

presented as a function of cuts on τbeams
2 and τ

jets
2 in figure 74. A minimal uncertainty of about

2.0 is expected at loose cut values. The expected uncertainty is completely dominated by the

statistical uncertainty on the fitted number of Higgs events. The second-largest contribution

comes from the theoretical uncertainty on the gluon fusion cross section passing the selection

46These statistical uncertainties on the contributions from the different Higgs production modes are small, due to
the use of Monte-Carlo simulations with a large number of simulated events.
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FIG. 74: Uncertainty on the VBF signal strength as function of cut values of τbeams
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2 ,

according to equation (51). Because asymmetrical uncertainties can not be displayed in this
format, the larger of the two uncertainties has been chosen.

Selection Nfit
H NMC

H ∆µ
ggFtheo.
VBF µVBF

no cut on τ2 22.9±20.0 23.31+2.76
−2.74

+0.26
−0.26 0.95+2.0

−2.0

τbeams
2 < 40GeV, τ

jets
2 < 6.4GeV 16.8±18.9 20.9+2.3

−2.3
+0.24
−0.24 0.6+1.9

−1.9

τbeams
2 < 25GeV, τ

jets
2 < 6.4GeV 9.4±17.2 18.1+2.0

−2.0
+0.22
−0.22 0.0+1.9

−1.9

τbeams
2 < 40GeV, τ

jets
2 < 3.2GeV 14.2±17.5 18.1+1.9

−1.9
+0.20
−0.20 0.6+1.9

−1.9

τbeams
2 |< 25GeV, τ

jets
2 < 3.2GeV 2.8±22.5 16.0+1.6

−1.6
+0.19
−0.19 −0.5+2.6

−2.6

TABLE 7: Measured number of Higgs events, expected number of Higgs events, VBF
signal strength and contribution of the theoretical uncertainty on the gluon fusion
contamination to the total uncertainty on µVBF (see also figure 64 in section 3.10) for
different VBF-enriched categories.

cuts and is about one order of magnitude smaller than the leading contribution. Again one order

of magnitude lower is the contribution from the uncertainty on the expected number of VBF

events. The uncertainties resulting from the WH, ZH and tt̄H contributions are in turn more

than one order of magnitude smaller than the uncertainty on the selected number of VBF events.

In table 7, four τ2-based categories, two selections from [2] which are not based on τ2 and the

preselection (N j ≥ 2, |∆η j j|> 2.0) are listed together with the information necessary to compute

the VBF signal strength, according to equation (51), as well as the VBF signal strength itself.

The
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3.11.4 Final selection

Considering the expected total uncertainty on the VBF signal strength, see figure 74, tight cuts

are disfavored due to large statistical uncertainties. Only cut values on τbeams
2 above roughly

15 GeV and cut values on τ
jets
2 above roughly 1 GeV are considered as candidates for a final

selection in order to give a result of the VBF signal strength measurement. This constraint agrees

with the demand of not cutting tighter than the resolution of the τ2 measurement, see subsection

3.8.

Based on these two constraints, from the listed selections in table 7 a cut menu is chosen to

be τbeams
2 |cut = 40GeV, τ

jets
2 |cut = 6.4GeV, because this selection results in the smallest relative

uncertainty on the fitted number of Higgs events among the four example selections. The result

for the signal strength is accordingly

µVBF = 0.6+1.9
−1.9 = 0.6±1.9 (stat.) +0.2

−0.2 (theory) .

The corresponding spectrum is shown in figure 67a. The uncertainty is composed of the following

contributions, which, added in quadrature, result in values for the only very slightly asymmetrical

uncertainties of +1.91420 and -1.91418, rounded to 1.9:

• ∆µ
NH
VBF =±1.9

• ∆µ
NggF
VBF =±0.2

• ∆µ
NVBF
VBF =±0.03

• ∆µ
NWH,ZH, ttH
VBF =±0.001

Because of the large uncertainty, the estimated value of µVBF = 0.6 is well compatible with

the assumption that the Standard Model is valid. A comparison with the result for µVBF from the

standard analysis [2], i.e. µVBF = 0.8±0.7 = 0.8±0.7(stat.) +0.2
−0.1 (syst.) +0.2

−0.3 (theory), shows

that the uncertainty resulting from this simple analysis is considerably larger than the uncertainty

obtained in the more sophisticated standard analysis, which can be also attributed to the relatively

low purity in Higgs which can be achieved by cuts on τ2, see figure 68 and 70. The multivariate

analysis which has been used in the official analysis is employing several variables which can

be used to discriminate both against non-Higgs background and ggF events. It must be also
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noted that this result of the standard analysis is taking into account the entire 2012 and 2011

data set, whereas in this analysis 75.7 % of the 2012 dataset could be used. Hence, the statistical

uncertainty on this measurement could be reduced by a modest degree by taking more data into

account, when available. The treatment of the systematic uncertainties was not in the scope of

this thesis; more studies would be necessary to evaluate these. In general, they are expected to

be of similar size as in [2].

A result of this study is that the statistical uncertainty is, at least in this simple method

of computing µVBF, too high as that one could draw benefits from the lower impact of the

perturbative uncertainty on the gluon-fusion cross section. With higher statistics, it would be

advantageous to cut tighter than it has been done in this final selection.
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4 Conclusion

The signal strength of the vector boson fusion Higgs production mode is an important input for

the measurement of the Higgs boson’s coupling to the weak gauge bosons. In this thesis, the

inclusive event shape observable τ2 has been investigated with the aim to create a vector boson

fusion selection based on this variable.

The gluon fusion process is expected to have a cross section about one order of magnitude

larger than the vector boson fusion cross section. Therefore the amount of the gluon fusion

contamination in a VBF-enriched sample and its uncertainty are of primary interest.

The variable τ2 has been defined and its spectra have been studied for simulated gluon-fusion-

and for vector boson fusion event samples. It proved useful to divide the 2-jettiness into a beam

part and a jet part, τ2 = τ
jets
2 +τbeams

2 . The beam part, τbeams
2 , is a measure of additional radiation,

especially in the central region, while the jet part, τ
jets
2 , is a measure of the width of the two

leading jets. Both the jet and the beam part of τ2 tend to be larger for gluon fusion events,

allowing for an effective selection of vector boson fusion events by imposing upper limits on τ2

or its components τbeams
2 and τ

jets
2 . The expected selection efficiencies and purities have been

calculated as a function of the cuts on τbeams
2 and τ

jets
2 using Monte-Carlo simulations.

In order to select the cut menu such that resolution effects are of minor impact, the resolu-

tion with respect to detector- and reconstruction effects has been determined. The remaining

contributions to the total resolution between the value of τ2 at the inclusive truth level and at

reconstruction level, have been studied; these contributions result from the limited acceptance in

pseudorapidity, from the lower threshold on the particle pT of 0.5 GeV and from the exclusion

of neutral particles. The resolution contributions from the event reconstruction and from the

exclusion of neutral particles are the largest contributions to the resolution, followed by the

contribution of the lower cut on the particles’ transverse momentum. The acceptance cut in

η gives the smallest contribution. Because the resolution effects are considerable large, it is

advantageous that for the results of this study, such as the computation of the perturbative

uncertainty or the determination of the VBF signal strength, no unfolding had to be performed.

Common to many VBF selections is that a veto against additional radiation in the central

region is imposed; this is also the case for the VBF selection based on τ2. The perturbative

uncertainty on the number of gluon-fusion events selected by the VBF selection is depending
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on the phase space restrictions which the VBF selection imposes. Using the Stewart-Tackmann

method, the uncertainty resulting from a central jet veto has been estimated as a function of the

cuts on τbeams
2 and τ

jets
2 . This uncertainty is effectively independent on on the cut on the jet part of

τ2. Tighter cuts on the beam part, however, increase the theoretical uncertainty. The VBF signal

strength has been computed using 8 TeV data47. In order to compute the VBF signal strength, the

number of Higgs events in the data sample using different τ2-based categories has been measured.

For this, the background shape has been parametrized, based on the data. Cuts on τ2 are not

effective in rejecting non-Higgs background; hence, the expected purity in Higgs is rather low.

The VBF signal strength and its uncertainty have been computed based on the assumption that

the non-VBF Higgs production mode cross sections are as predicted in the Standard Model. The

uncertainty on the VBF signal strength depends the statistical and theoretical uncertainties on

the contributions of the various Higgs production modes as well as on the statistical uncertainty

of the fitted number of Higgs events. The latter is completely dominating the total uncertainty

on the measured VBF signal strength. The uncertainty on the measurement of the VBF signal

strength µVBF is smallest for loose selections at the presently available integrated luminosity.

Not all uncertainties could be considered in the scope of this thesis; for example, there will be

uncertainties on the 2-jettiness which are related to tracking, the selection of the hard-interaction

vertex, and uncertainties due to the modelling of multi-parton interactions.

The result for the VF signal strength is

µVBF = 0.6±1.9 = 0.6±1.9(stat.) ±0.2(theory) .

Due to the large uncertainty, the value of 0.6 for the VBF signal strength measurement is

compatible with the Standard Model. Since the statistical uncertainty is by far the leading

contribution to the uncertainty on the VBF signal strength, it would be useful to reconsider the

cut menu when the statistical uncertainty is no longer dominant, since the contribution of the

theoretical uncertainty can be minimized by cutting tight on τ2. Moreover, the 2-jettiness could

be used in a more sophisticated analysis like [2] as an input variable for a Boosted Decision

Tree, for example as a replacement of ∆φH− j j. To some extent, quark- and gluon jets can be

47Due to technical reasons, not the total amount of integrated luminosity could be used but only 75.7 % of it.
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distinguished by the 2-jettiness, which would be a useful extension of the present standard

analysis.

The LHC environment after the restart of the collider in this year will be different than

considered in this analysis. There will be more pile-up, which complicates the selection of the

correct vertex. A high Higgs vertex selection efficiency is very important for the use of τ2, and

therefore the usability of the 2-jettiness, or in general, N-jettiness in the new LHC environment

needs to be examined if this observable is intended to be used for studies using data from the

next LHC run.
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