Measurements of particle production, Bose-Einstein correlations and Underlying Event properties with the ATLAS detector

Thorsten Kuhl

On behalf of the ATLAS collaboration
Introduction

- Tracking system ideal for the measurement of track based particles properties

- Multi purpose detector:
 - Can measure events with different detector technologies
 - Possibility to measure soft-QCD with complementary methods
 - First comparisons with 13 TeV data will be shown in the talk
Publications

New 7 TeV results for Bose Einstein Correlations and Lamda polarisation:

- Two-particle Bose-Einstein correlations in pp collisions at $\sqrt{s}= 0.9$ and 7 TeV measured with the ATLAS detector (arXiv:1502.07947, submitted to EPJC)
- Measurement of the transverse polarization of Λ and anti-Λ hyperons produced in proton-proton collisions at $\sqrt{s}=7$ TeV using the ATLAS detector (arXiv:1412.1692; submitted to PRD)

7 TeV underlying event results:

- Underlying event characteristics and their dependence on jet size of charged-particle jet events in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector (Phys. Rev. D 86 (2012) 072004)

Brand new: 13 TeV comparisons for underlying-event using charged particles

- Detector Level plots for UE with leading track: PUB-STDM-2015-03
Bose Einstein Correlations (BEC)

- **BEC**: higher emission probability of two mesons with very similar momentum

- **Two particle correlation** C_2 of same sign particles:

 \[C_2(Q^2) = \rho(++)/\rho(+-) \] with \(Q^2 = - (P_1 - P_2)^2 \)

- \(R_2(Q^2) = C_2(Q^2)_{\text{data}} / C_2(Q^2)_{\text{MC}} \)

- **MC := MC without BEC**

- **Fit to extract BEC**, two possible parametrisations:
 - $\lambda \cdot \exp(-R^2 Q^2)$, gauss
 - $\lambda \cdot \exp(-R Q)$, exponential
 - λ := strength of BEC
 - R: effective radius

![Graph showing data and fits for BEC](image)
Bose Einstein Correlations

- **λ:** strength
 - $0 \rightarrow$ fully correlated, $1 \rightarrow$ chaotic
 - Depends on centre of mass energy and charged multiplicity n_{ch}

- **R:** effective radius of the BEC
 - Saturation at $n_{ch} \sim 70$
 - Proton overlap, expect for a decreases at very high n_{ch}
Lambda Polarisation in the transverse plane

- Huge Λ sample allows to measure Λ polarisation P by measuring the decay angle $\cos \theta^*$ between the decay proton and Λ flight directions
 - $P(\Lambda) = (1 + \alpha P \cos \theta^*)$; Decay asymmetry: $\alpha = 0.642 \pm 0.013$

Results:
- $P(\Lambda) = -0.010 \pm 0.005\text{(stat)} \pm 0.004\text{(syst)}$
- $P(\bar{\Lambda}) = 0.002 \pm 0.006 \text{(stat)} \pm 0.004\text{(syst)}$

- Consistent to previous measurement which expect a degradation of the Λ polarisation at high energy
Underlying event

- Looking for activity in an event in addition of the hard interaction:
 - Initial/final state radiation
 - Multi parton interactions

- These soft interaction cannot be calculated:
 - Free parameters to be tuned using data

- Usual approach, split event in three regions:
 - Towards region: close to leading object
 - Transverse region: sensitive to UE and MPI
 - Away region: recoil of the leading object

- Leading object can be defined variously:
 - Leading jet
 - $Z - p_T$
 - Leading track in Minimum Bias like events
Underlying events with jets / Z: Σp_T

> Sum p_T for UE vs leading jet and $p_T(Z)$:

- Agreement is in the 10% level but different for both analyses
- LO vs NLO Matrix element: Powheg+Pythia looks different than Pythia
Compatibility of the different analyses

Track density for different leading objects:

- Data are compatible between the different definitions
- Transition between leading track and jet
- Z and jet agree well at high p_T (selection bias in the Z at low p_T)
Underlying events comparisons at 13 TeV

- Underlying events with leading track with $p_T > 1$ GeV
- Spin off of Minimum Bias analyses
 (15:30, Anthony Morley):
 - Minimum Bias scintillator trigger
 - Pile up veto
 - Track $p_T > 500$ MeV and $|\eta| < 2.5$
 - Event selection is ~99.5% efficient for at least 2 selected tracks

- Uncorrected performance plots:
 - Systematic shown is for tracking efficiency using Monte Carlo

- Comparisons to:
 - Pythia8 Monash (Author tune)
 - Pythia8 A2 (Atlas MinBias tune)
 - Pythia8 A14 (Atlas UE tune)
 - Herwig++ UEEE5 (Author tune)
 - EPOS (Astrop. physics model)
MinBias Tune (A2) agrees well at p_T-lead > 1 GeV

Underlying event Tunes (Herwig++, Monash, A14) better at p_T-lead > 5 GeV
From 10 GeV decent description for the UE Tunes
A2 describes only toward region well
EPOS 15% off in the plateau
A2 (MinBias Tune) agrees well at p_T-lead > 1 GeV

Underlying event Tunes better at p_T-lead > 5 GeV

Epos off in the Plateau
Summary

- Atlas is a good place to study soft-QCD

- Particle production studies:
 - Bose Einstein-Correlations correlation of same sign particles
 - saturation effect in the effective radius observed for large n_{ch}
 - Lambda polarisation:
 - no polarisation for Λ and $\bar{\Lambda}$ at high energies

- Underlying event analysis:
 - Needed for tuning of the soft part of Monte Carlo simulation
 - Diverse studies done at 7 TeV: leading track, leading jet and Z

- New comparisons for Underlying Event with 13 TeV data are shown:
 - Reasonable agreement of tunes used in Atlas Monte Carlo with new data
 → looking forward to future unfolded results