Jets at HERA

Daniel Britzger
for the H1 and ZEUS Collaborations

50th Rencontres de Moriond 2015
26 March 2015
HERA with the H1 and ZEUS Detectors

HERA $e^\pm p$ collider
- $\sqrt{s} = 319$ GeV
- $E_e = 27.6$ GeV
- $E_p = 920$ GeV
- Operational until 2007

Two multi-purpose experiments: H1 and ZEUS
- Luminosity: \sim0.5 fb$^{-1}$ per experiment
- Excellent control over experimental uncertainties
 - Overconstrained system in DIS
 - Electron measurement: 0.5 – 1% scale uncertainty
 - Jet energy scale: 1%
 - Trigger and normalisation uncertainties: 1-2 %
 - Luminosity: 1.8 – 2.5%
Inclusive deep-inelastic ep scattering (DIS)

ep scattering: \(e^\pm p = e^\pm + X \)

- Centre-of-mass energy
 \[\sqrt{s} = \frac{p}{(k' + p)^2} \]

- Virtuality of exchanged boson
 \[Q^2 = -q^2 = -(k \cdot k')^2 \]

- Bjorken scaling variable
 \[x_{Bj} = \frac{Q^2}{2p \cdot q} \]

- Inelasticity
 \[y = \frac{p \cdot q}{p \cdot k} \]

Cross section calculation
- Collinear factorisation
- Hard scattering calculable in pQCD
- PDFs have to be determined from experiment
Multijet at high Q^2 – Inclusive Jet, Dijet, Trijet (H1)

DIS jet production in Breit frame

QCD Compton

Boson – gluon fusion

Simultaneous Measurement of

- inclusive jet, dijet and trijet cross sections
- normalised inclusive jet, dijet and trijet CS
 - Normalisation w.r.t. inclusive NC DIS

Multidimensional Unfolding using TUnfold

- The 4 double-differential measurements are unfolded simultaneously

Neutral current phase space

150 < Q^2 < 15000 GeV2
0.2 < y < 0.7

Jet acceptance

-1.0 < η_{lab} < 2.5

Inclusive Jet

7 < p_T^{jet} < 50 GeV

Dijet and Trijet

5 < p_T^{jet} < 50 GeV

M_{12} > 16 GeV

7 < $<p_T>$ < 50 GeV

Migration Matrix

\[
\begin{array}{c|c|c}
\text{Detector level} & \text{Reconstructed Trijet events which are not generated as Trijet event} & \text{Trijet } Q^2, \phi, y, \text{ Trijet-cuts} \\
\hline
\text{Dijet } Q^2, \phi, y, \text{ Dijet-cuts} \\
\hline
\text{Incl. Jet } p_T, Q^2, y, \eta \\
\hline
\text{NC DIS } Q^2, y \\
\text{ Hadron level } \\
\end{array}
\]
Multijet at high Q^2 – Inclusive Jet, Dijet, Trijet (H1)

Ratio to NLO calculations from nlojet++ and QCDNUM

Normalised Multijets
• Cancellation of experimental uncertainties
• Normalisation uncertainties cancel
• Other exp. uncertainties cancel partially

Experimental precision higher than theory uncertainty from scale variations

Overall good description of data by theory in NLO
Extraction of strong coupling constant α_s

Simultaneous χ^2-fit to normalised inclusive jet, dijet and trijet cross section

Determination of $\alpha_s(M_Z)$ at various scales
- H1 Multijet cross sections with superior experimental precision
- Consistency with other jet data
- Confirmation of prediction by SU(3) over more than two orders of magnitude

Extraction from all measurements
- Experimental uncertainty significantly smaller than theoretical one
- Value consistent with other extractions

Most precise value of $\alpha_s(M_Z)$ from jet cross sections

$$\alpha_s(M_Z)|_{k_T} = 0.1165 \ (8)_{\exp} \ (5)_{\PDF} \ (7)_{\PDFset} \ (3)_{\PDF(\alpha_s)} \ (8)_{\had} \ (36)_{\mu_r} \ (5)_{\mu_f}$$

$$= 0.1165 \ (8)_{\exp} \ (38)_{\PDF,\theo}$$
Trijet measurement in DIS (ZEUS)

Trijet production in neutral current DIS
• Photon virtuality $125 < Q^2 < 20000$ GeV2
• Inelasticity: $0.2 < y < 0.6$
• Jet transverse momentum $E_{T,B}^{jet} > 8$ GeV

Statistics
• $L = 295$pb$^{-1}$

Major source of systematic uncertainties:
• Jet energy scale ~1% (3%), for jets with $E_{T,L}^{jet} > 10$GeV (<10GeV)

NLO Calculation
• NLOJet++ corrected for hadronisation effects using HERAPDF1.5
D* production in DIS (H1+ZEUS)

D*± production in DIS

\[\gamma + p \rightarrow \bar{c} + c \]

\[D^{*+} \rightarrow D^{0}\pi^{+}_{s} \rightarrow (K\cdot\pi^{+})\pi^{+}_{s} \]

Clean D*+ signal in M(K\cdot\pi^{+}\pi^{+}_{s}) - M(K\cdot\pi^{+})

D*+ differential cross sections in

- differential in \(Q^2 \), \(y \), \(p_{T}(D^*) \), \(\eta(D^*) \), \(z(D^*) \)
- Kinematic region
 - \(5 < Q^2 < 1000 \text{ GeV}^2 \)
 - \(1.5 < p_{T}(D^*) < 20 \text{ GeV} \)
 - \(|\eta(D^*)| < 1.5 \)
 - \(0.02 < y < 0.7 \)

Combination of precise H1 and ZEUS data

- Full HERA-II data sets (354 pb⁻¹)

Data of H1 and ZEUS consistent

Great benefit from combination
D* production in DIS (H1+ZEUS)

Double-differential data combination extends to HERA-I data
 • Increased range to lower values of Q^2

Negligible swimming corrections
 • Data free from swimming corrections

Double-differential cross sections
 • Further increase in precision

Compared to NLO calculations
 • HVQDIS with 3-flavor FFNS PDF

NLO theory describes data well
Data yields much higher precision than theory
Exclusive dijets in diffractive DIS (ZEUS)

Exclusive dijets sensitive to the nature of exchanged object:
- Single or double gluon exchange?

Dijet events identified using 'large rapidity gap'
Exclusive Durham jet algorithm in phase space

\[
Q^2 > 25 \text{GeV}^2 \\
90 < W < 250 \text{GeV} \\
x_{IP} < 0.01 \\
M_X > 5 \text{GeV} \\
p_T^{\text{jet}} > 2 \text{GeV}
\]

Compare different models
- Two-gluon exchange model
- Resolved Pomeron model
Exclusive dijets in diffractive DIS (ZEUS)

Normalised single differential cross sections in ϕ

- Angle between two planes

Fit function

$$\frac{1}{\sigma} \frac{d\sigma}{d\phi} \propto 1 + A \cos 2\phi$$

Parameter A distinguishes between the two models

- Positive A for single gluon
- Negative A for two gluon

Fit with stat. uncertainties to yields

$A = -0.18 \pm 0.06^{+0.08}_{-0.11}$

Compares to:

- Two-gluon exchange model: $A = -0.2$
- Resolved pomeron model: $A = +0.34$

Fit prefers two-gluon exchange model
Dijets in diffractive DIS (LRG) (H1)

(Inclusive) Dijet production in diffractive DIS

Diffractive events identified by 'large rapidity gap' (LRG)
Jets identified using k_T jet algorithm

Data well described by NLO predictions

- nlojet++ (adapted to diff. DIS)
- H1PDF2006 FitB

Large PDF and theory uncertainties
Dijets in diffractive DIS (LRG) (H1)

Double differential measurement \((p_{T1}^*, Q^2)\) employed for extraction of strong coupling constant \(\alpha_s(M_Z)\)

\[
\alpha_s(M_Z) = 0.119 \pm 0.004 \text{ (exp)} \pm 0.002 \text{ (had)} \pm 0.005 \text{ (DPDF)} \pm 0.010 \mu_r \pm 0.004 \mu_f \\
\quad = 0.119 \pm 0.004 \text{ (exp)} \pm 0.012 \text{ (DPDF, theo)}
\]

- Fit yields good \(\chi^2/\text{ndf} = 16.7/14\)
- Fit limited by theoretical precision
- Experimenal precision limited by normalisation uncertainty (including LRG selection)
- Result supports concept of perturbative QCD calculations for diffractive dijets.

Although uncertainty is not competitive with other determinations, the extraction supports the concept of dijet calculations in pQCD
Diffractive Dijets in Photoproduction and DIS (VFPS) (H1)

History
- 'Suppression' w.r.t. to NLO observed by H1
- No indication observed by ZEUS

Simultaneous measurement of dijets
- in DIS
- in Photoproduction (yp): \(Q^2 \rightarrow 0 \text{ GeV}^2 \)
Data corrected to hadron level using TUnfold

Table: Common Cuts

<table>
<thead>
<tr>
<th>PHP</th>
<th>DIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q^2 < 2 \text{ GeV}^2)</td>
<td>(4 \text{ GeV}^2 < Q^2 < 80 \text{ GeV}^2)</td>
</tr>
</tbody>
</table>

- 0.2 < \(y \) < 0.7
- \(E_T^{\text{jet} 1} > 5.5 \text{ GeV} \)
- \(-1 < \eta^{\text{jet} 1} < 2.5 \)
- \(E_T^{\text{jet} 2} > 4.0 \text{ GeV} \)
- \(-1 < \eta^{\text{jet} 2} < 2.5 \)
- \(|t| < 0.6 \text{ GeV}^2 \)
- \(0.010 < x_{IP} < 0.024 \)
- \(z_{IP} < 0.8 \)

Measure scattered proton in VFPS (Very Forward Spectrometer)
- VFPS is 220m from interaction point
- Complementary method to LRG method
Diffractive Dijets in Photoproduction and DIS (VFPS) (H1)

Dijets in **DIS**
- Single diff. cross sections
- NLO by nlojet++
- H12006 Fit-B

Dijets in **\(\gamma p \)**
- Single diff. cross sections
- NLO by FKS (Frixione et al.)
- H12006 Fit-B
- GRV and AFG \(\gamma \)-PDF

Shape and normalisation well described by NLO

Shape well described by NLO, but normalisation is overestimated.
Diffractive Dijets in Photoproduction and DIS (VFPS) (H1)

Direct comparison of DIS and yp data with NLO and RAPGAP

Double-ratio yp/DIS of single-differential cross sections

New analysis confirms previous results from H1 with complementary experimental method

No hint for 'suppression' as function of x_γ or $E_{T^{jet1}}$
Summary

New QCD results from HERA experiments with final data precision

Combined D* cross sections: Data precision surpasses NLO precision

Trijet cross sections in DIS: Cross sections well described in NLO

Multijet cross sections in DIS: Inclusive jets, dijets and trijets simultaneously.
Highest precision on α_s from jet measurements

Exclusive dijets in diffractive DIS: Data prefers two-gluon exchange model

Inclusive dijets in diffractive DIS: Data well described in NLO
α_s extraction feasible ($\Delta_{\text{theo}} > \Delta_{\text{data}}$)

Inclusive dijets in yp (and DIS): Complementary measurements using VFPS
NLO overshoots yp cross sections

Outlook: H1 and ZEUS are still active
More measurements to come
HERAPDF2.0 together with final inclusive cross sections very soon
Double differential trijet cross sections

Good agreement between data and NLO calculations
Multijet at high Q^2 – Inclusive Jet, Dijet, Trijet

NLO Calculations

- NLOJet++ corrected for hadronisation effects
- Scale Choice:
 - $\mu_r^2 = Q^2$
 - $\mu_f^2 = (Q^2 + P_T^2)/2$
- Theory uncertainty
 - Vary scales by factor 2

NLO QCD with MSTW2008 describes well inclusive jet, dijet and trijet differential cross sections
Correlation matrix of all data points

Covariance matrix
Obtained through linear error propagation of statistical uncertainties

Correlations
- Resulting from unfolding
- Physical correlations
 - Between measurements
 - Within inclusive jet

Useful for
- Cross section ratios
- Combined fits
- Normalised cross sections

Correlation matrix is employed for correct error propagation for norm. cross sections