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Weak vector-boson W;Z scattering at high energy probes the Higgs sector and is most sensitive to any
new physics associated with electroweak symmetry breaking. We show that in the presence of the 125 GeV
Higgs boson, a conventional effective-theory analysis fails for this class of processes. We propose to
extrapolate the effective-theory ansatz by an extension of the parameter-free K-matrix unitarization
prescription, which we denote as direct T-matrix unitarization. We generalize this prescription to arbitrary
nonperturbative models and describe the implementation as an asymptotically consistent reference model
matched to the low-energy effective theory. We present exemplary numerical results for full six-fermion
processes at the LHC.
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I. INTRODUCTION

After the discovery of a Higgs-like particle at the LHC
[1,2], and without any signal of other new particles, the
focus of collider physics is shifting toward a detailed study
of electroweak symmetry breaking (EWSB). We are
interested in the properties of the Higgs boson itself and
in its precise role in a fundamental theory [3–5]. Beyond
that, the most fundamental process of the electroweak
interactions is the scattering of the electroweak gauge
bosons [6]. It will be one of the key physics processes
at the high-luminosity LHC as well as any planned future
high-energy pp and eþe− machine.
The most striking effect of the Higgs boson is the strong

suppression of electroweak vector-boson scattering (VBS)
at high center-of-mass (c.m.) energy [7]. Without the Higgs
boson, VBS scattering amplitudes VV → VV, where V ¼
W� or Z, are dominated by scalar Goldstone-boson
scattering that relates to the scattering of longitudinally
polarized W and Z particles. Power counting predicts an
s=v2 rise of these amplitudes [v ¼ ð ffiffiffi

2
p

GFÞ−1=2 ¼
246 GeV], such that electroweak interactions should
become strong in the TeV range. However, the Standard
Model (SM) representation of the Higgs sector replaces this
by a consistently weakly interacting model. The cancella-
tion induced by Higgs exchange results in a residual
Goldstone-scattering amplitude that is asymptotically

small, at tree level proportional to m2
H=v

2 ¼ 0.25. This
can be interpreted as an effective suppression in the cross
section, which for a VV c.m. energy of

ffiffiffi
s

p ¼ 1.2 TeV
amounts to a factor of m4

H=s
2 ¼ 10−4.

At the LHC, VBS processes have become accessible to
experiment [8,9]. The accuracy and energy reach of these
measurements will improve at the upgraded LHC and at
future colliders, including the planned ILC [10]. The SM
with the observed light Higgs particle provides a very
specific prediction for all VBS processes, namely a
scattering amplitude that is dominated by the transversal
gauge-boson components of the W and Z bosons. A
significant excess in the longitudinally polarized channel
would clearly point to new interactions in the EWSB sector.
A phenomenological description of high-energy VBS

processes should smoothly interpolate between the low-
energy behavior, which is determined by the SM and
depends on a well-defined set of perturbative parameters as
corrections, and any possible high-energy asymptotics,
which should be captured by a sufficiently generic class
of models [11,12]. It is important to note that in hadron
collider observables, the separation of low- and high-
energy scattering is not straightforward. For a meaningful
comparison with data, the parameterized high-energy
behavior has to remain consistent with the universal
principles of quantum physics. Systematically comparing
model predictions with data, the results will become a
measure of confidence for the SM case, or otherwise the
numerical evaluation of any observed new-physics effects.
In this paper, we develop this program specifically for

the scenario with a light Higgs boson that is now being
confirmed by the LHC analyses. This scenario deviates

*kilian@physik.uni‑siegen.de
†sekulla@physik.uni‑siegen.de
‡ohl@physik.uni‑wuerzburg.de
§juergen.reuter@desy.de

PHYSICAL REVIEW D 91, 096007 (2015)

1550-7998=2015=91(9)=096007(23) 096007-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.096007
http://dx.doi.org/10.1103/PhysRevD.91.096007
http://dx.doi.org/10.1103/PhysRevD.91.096007
http://dx.doi.org/10.1103/PhysRevD.91.096007


significantly from the situation without light Higgs [13–18]
where there is a steady transition from low-energy weak
interactions to strong interactions at high energies. We
discuss the necessary steps that allow us to parametrize
high-energy asymptotics and the interpolation between low
and high energies, embed this in the interacting theory with
off-shell gauge bosons and fermions, and show how to
convert the algorithm into a consistent calculational method
and simulation of exclusive event samples.
The paper consists of three parts. In the first part, we

review the essentials of the effective-theory approach to
electroweak interactions and the Higgs mechanism. The
second part extends the well-known concept of K-matrix
unitarization in such a way that we can apply it to generic
(non-Hermitian) expansions and models of the complete
scattering matrix. In the third part, we show how to
implement this variant of K-matrix unitarization in actual
calculations of vector-boson scattering amplitudes beyond
the Standard Model and show exemplary numerical results
for LHC processes. In a final section, we summarize the
results and conclude.

II. EFFECTIVE THEORIES FOR
ELECTROWEAK INTERACTIONS

A. Effective theory and Higgs mechanism

Throughout this paper, we will assume that no new
weakly coupled particles, i.e., narrow resonances, appear
within the energy range that we consider for VBS. The
elementary particle spectrum is given by the SM. It has
been known for a long time that this scenario can be
addressed by an effective field theory (EFT) as a universal
phenomenological ansatz [19].
Early studies of VBS considered a nonlinear EWSB

representation, the chiral electroweakLagrangian, as anEFT
without a light Higgs boson [20–31]. This scenariowas to be
experimentally distinguished from the simplest light-Higgs
case [17,32–36]. Any Higgs-less model evolves into strong
interactions in the TeV range, while the SM remains weakly
interacting at all energies. However, after the recent discov-
ery of a light Higgs candidate [1,2], new studies should
narrow down the case toward distinguishing different
models that do include the Higgs as a particle.
A neutral scalar particle can be coupled to the nonlinear

chiral Lagrangian in a gauge-invariant way, including a
power series of higher-dimensional operators [37–41].
Alternatively, we can combine it with the Goldstone bosons
of EWSB as an electroweak doublet and base the analysis
on the SM, also augmented by a power series of higher-
dimensional operators [42–45]. Both approaches allow for
the most general set of interactions. They are related by a
simple field redefinition and thus equivalent [27,46–50].
However, truncating either power series exposes
differences in the power counting, and thus different
theoretical prejudice about the hierarchy of coefficients.

In this work, we anticipate Higgs (and W;Z) couplings
that are close to their SM values, as suggested by the
current LHC analyses [51]. In the linear representation, this
parameter point is distinguished by renormalizablity, the
absence of any higher-dimensional terms. In the nonlinear
representation this parameter point is not distinguished in
the Lagrangian, so the high-energy cancellations that the
Higgs induces at the amplitude level appear as accidental.
We therefore adopt the linear representation. Furthermore,
we implicitly assume that electroweak gauge symmetry is a
meaningful concept up to energies far beyond the TeV scale
[46,47]. We therefore include the gauge boson fieldsW1;2;3

μ

and Bμ as elementary vector fields that enter via covariant
derivatives and field strength tensors, always multiplied by
the respective gauge couplings g and g0 and thus weakly
interacting. This assumption is clearly supported by all
known electroweak precision and flavor data.
The EFT extension of the linearly parametrized SM has

been worked out up to next-to-leading order in the power
series (dimension six) [42,44,45,52] and applied to proper-
ties of the Higgs boson in various contexts [53–63].
Operator mixing at the one-loop order has been calculated
in Refs. [64–68]. Dimension-eight operators as the second
order have been studied in Refs. [69,70]. In the current
work, we do not intend to incorporate the complete
operator basis, but rather select exemplary terms that
specifically affect VBS, such that we can describe the
matching and interpolation procedure that connects low-
and high-energy amplitudes.

B. Fields and operators

The SM Higgs resides in a doublet of the SUð2ÞL gauge
symmetry. Our notation is laid out in Appendix A. We
choose to parametrize the Higgs multiplet in the form of a
2 × 2 Hermitian matrix H. In this parametrization, the
custodial-SUð2ÞC transformation properties of any operator
are manifest, and there is a simple relation to the nonlinear
Higgs EFT, namely the replacement

H →
1

2
ðvþ hÞΣ; ð1Þ

where Σ is a nonlinear Goldstone-boson representation.
Since we focus exclusively on the Higgs and electroweak

gauge sectors, we do not write light fermions explicitly, but
treat them as external probes for the interactions that we are
interested in. In accordance with the hypothesis of minimal
flavor violation, we ignore the possibility of anomalous
effects due to higher-dimensional operators that involve
light flavors. Heavy flavors and gluons do not play a role
for the signal processes that we consider. If we do not look
at observables with explicit heavy flavors, the fermion
sector emerges as perturbative. Extending this result to the
full EFT, we arrive at a model that decomposes, at high
energy E ≫ v, into left- and right-handed fermion, gauge
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boson, and scalar (EWSB) sectors, almost mutually
decoupled due to the smallness of the EWSB order
parameter v. This decomposition is stable against radiative
corrections, since operator mixing in the EFT is governed
exclusively by weak couplings with loop factors. It should
be noted that it is also stable with respect to applying
equations of motion to the operator basis, as long as we
impose the gauge and minimal flavor violation principles
that identify weak coupling parts.
The processes of interest at a hadron collider, namely

pp → 2jþ ðVV → 4fÞ; ð2Þ

embed the actual quasielastic VBS processes, VV → VV,
together with an irreducible non-VBS background. The
vector-boson interactions are affected by all bosonic
dimension-six and dimension-eight operators that the
EFT provides. We should weigh their impact in view of
the experimental possibilities. Current and future analyses
will rather precisely determine the coefficients of pure-
gauge operators that affect vector-boson pair production
and related processes. Fixing a suitable operator basis, we
may take these coefficients as given [71,72]. On the other
hand, we can safely ignore terms that exclusively provide
couplings to Higgs pairs, since such couplings do not enter
VBS processes at tree level. In a simplified first approach to
the problem, we may thus exclude most dimension-six
operators from an analysis that focuses on VBS. Instead,
we incorporate operators that supply genuine quartic gauge
couplings in the longitudinal mode. Such operators do not
affect simpler processes; they occur first at dimension eight
in the operator basis.
For the purpose of studying VBS processes, we therefore

concentrate on the subset

LHD ¼ FHDtr

�
H†H −

v2

4

�
· tr½ðDμHÞ†ðDμHÞ�; ð3Þ

LS;0 ¼ FS;0tr½ðDμHÞ†DνH� · tr½ðDμHÞ†DνH�; ð4Þ

LS;1 ¼ FS;1tr½ðDμHÞ†DμH� · tr½ðDνHÞ†DνH�: ð5Þ

The corresponding Feynman rules modify the VBS ampli-
tude expressions, predominantly in the longitudinally
polarized channel.
The dimension-six operator LHD modifies the HWW

and HZZ couplings and thus controls the Higgs exchange
diagrams in VBS. We take this particular term as a
representative of the possible effects that dimension-six
operators can contribute to VBS processes. We have written
the operator in a subtracted form, such that it respects
on-shell renormalization conditions as discussed in
Appendix A.
The included terms manifestly respect custodial sym-

metry, SUð2ÞC [73]. There are both dimension-six and

dimension-eight operators that violate SUð2ÞC, but they
provide bilinear and trilinear gauge couplings and thus
should be considered as input to a VBS analysis. SUð2ÞC-
violating operators that only affect quartic couplings occur
first at dimension 10. This is a consequence of the linear
doublet Higgs representation. We therefore assume global
SUð2ÞC invariance for the current paper, which should hold
at least at the threshold where new effects start to become
relevant.

C. Breakdown of the EFT

The pure-SM cross section for VBS, (2), is dominated by
transversally polarized gauge bosons, which in the high-
energy limit decouple from the Higgs sector. Apart from the
Higgs suppression, this is a consequence of the vector-
boson production mechanism, namely radiation from
massless fermions that couple to longitudinal vector bosons
only via helicity mixing [74,75]. The transversal polariza-
tion directions are further enhanced by their higher
multiplicity.
Adding in the operators (3)–(5), the picture changes. In

Fig. 1, we illustrate this for the particular process of same-
sign W production at a LHC energy of 14 TeV. We have
applied standard cuts [8] on the forward jets and the VV
system, adapted to the simplified picture of on-shell vector
bosons in the final state.
For this figure, we have computed the complete process

pp → WþWþjj at leading order. We used the Monte Carlo
integrator and event generator WHIZARD [76–78] with the
CTEQ6L PDF set. The SM curve is compared to three curves
for models that contain a single nonzero coefficient for the

FIG. 1 (color online). pp → WþWþjj, naive EFT results that
violate unitarity, QCD contributions neglected. The band de-
scribes maximal allowed values, due to unitarity constraints, for
the differential cross section. The lower bound describes the
saturation of A20, and the upper bound describes the simulta-
neous saturation ofA20 andA22; cf. (47). Cuts:Mjj > 500 GeV;

Δηjj > 2.4; pj
T > 20 GeV; jηjj > 4.5.
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effective higher-dimensional operators [Eqs. (3), (4), (5)],
respectively, without any unitarization correction. For an
indication of the unitarity limits, we have included a quartic
Goldstone interaction amplitude with a constant coefficient
aIJ ¼ i in the I ¼ 2 and J ¼ 0; 2 channels and recomputed
the process with this modification. The variation in the
unitarity bound corresponds to the choice of saturating only
one or both of these contributions. This amplitude has been
extended to physical vector bosons at finite energy and
evaluated for off-shell initial-state vector bosons, according
to the prescription that we describe below in Sec. IV C.
Because of the inherent ambiguities in such a prescription
for finite energy, it is not possible to precisely state the
unitarity limits for a physical cross section. Nevertheless,
we should constrain the validity region of the effective
theory, given the chosen parameter values, to the energy
range where the unitarity band is not yet touched by the
corresponding curve.
The cross section with a dimension-six correction

included, asymptotically falls off with a slower rate than
the SM reference curve. There is a range of coefficient
values for which the EFT remains valid, until it eventually
crosses the unitarity bound. Looking at Fig. 1, we observe
that for the chosen coefficient value, unitarity can be
regarded as (marginally) satisfied, if we account for the
limited event count in an actual analysis that makes the
lower part of the diagram inaccessible. For larger coef-
ficient values, we would leave the applicability range of the
EFT. This result is typical for the effect of dimension-six
operators in energy-dependent observables [63,79].
By contrast, the dimension-eight operators have a

dramatic impact on the VV pair invariant-mass distribution.
The differential cross section leaves the SM value at a
certain threshold energy and then increases up to a broad
maximum at multi-TeV invariant mass. This behavior is
easily explained by the high mass dimension of the
included operators. Their contributions are enhanced by
M8

WW=m
8
H relative to the SM prediction. The high power of

MWW overcomes the energy-dependent suppression caused
by the parton distributions. Taken at face value, this would
become a powerful handle on the coefficients FS;0 and FS;1,
even for a rather low collider luminosity.
Unfortunately, this result is entirely unphysical. No high-

energy completion of the SM that is consistent with the
basic assumptions of the EFT approach is capable of
producing such a distribution [7]. In the dimension-eight
case, the calculated curves cross this unitarity limit
immediately within the experimentally accessible region,
for any coefficient value that could possibly be accessible.
Furthermore, except for the rare final state ZZ → 4l,
observables at a hadron collider mix different MWW ranges
and thus disallow a strict exclusion of the unphysical region
in an analysis.
Obviously, we are using the EFT far beyond its region of

validity. The important result is that for the dimension-eight

operators, which are the most interesting terms in this
context, there is actually no coefficient value for which the
EFT yields a useful prediction. This is in contrast to an
analysis of dimension-six operators, which are mostly
accessible via production and decay processes with well-
defined or limited energy range. In other words, if a
deviation from the SM in VBS can be detected at all, it
either contains new particles that invalidate the SM-based
EFT or it contains strong interactions. In either case, the
pure EFT is insufficient.

III. UNITARIZATION PRESCRIPTIONS

A. K-matrix ansatz, Cayley transform and
stereographic projection

To address the invalid high-energy asymptotics of an
EFT in a universal way, we start with the K-matrix ansatz.
The formalism applies to the complete S matrix, so it is
independent of any particular model or approximation, and
it does not rely on a perturbative expansion. It is therefore a
suitable ansatz for the present problem where we have no
clue about the fundamental theory that describes electro-
weak interactions, unless it is just the Standard Model or a
simple weakly interacting extension.
Heitler [80] and Schwinger [81] introduced the K

operator as the Cayley transform of the complete unitary
scattering operator S, namely

S ¼ 1þ iK=2
1 − iK=2

; ð6aÞ

where we include a factor of 1=2 for later convenience.
K is self-adjoint by definition, and as such more closely
related to the interaction Hamiltonian than the S matrix.
The corresponding transition operator T, as defined by
S ¼ 1þ iT, is then

T ¼ K
1 − iK=2

: ð6bÞ

This T satisfies the optical theorem iT†T ¼ T − T† since S
is unitary, SS† ¼ S†S ¼ 1.
These relations can be inverted

K ¼ 2i
1 − S
1þ S

¼ T
1þ iT=2

: ð7Þ

If the theory admits a perturbative expansion, the latter
formula allows us to compute the K-matrix perturbatively
from the expansion of T, as long as T − 2i is nonsingular.
Obviously, K ¼ T in lowest order.
If we are able to find a basis that diagonalizes the

scattering operator S, and thus T and K, the Cayley
transform has a simple geometric interpretation for the
eigenvalues. Given a complex eigenvalue t ¼ 2a of the true
transition operator T, the optical theorem implies
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ja − i=2j ¼ 1=2; ð8Þ

i.e., the eigenamplitude a is located on the Argand circle
with radius 1=2 and center i=2 [82]. The corresponding real
K-matrix eigenvalue k ¼ 2aK is then given by

aK ¼ a
1þ ia

: ð9Þ

This is the inverse of the stereographic projection from the
real axis onto the Argand circle; cf. Fig. 2. The Cayley
transform, or K matrix, can thus be understood as the
inverse stereographic projection of the transition matrix T
onto the space of Hermitian matrices.
The scattering amplitude of charged particles will con-

tain a Coulomb singularity. This singularity is physical and
must not be handled by an ad hoc unitarization prescrip-
tion, but by a proper definition of the asymptotic states of
charged particles [83–86] instead. Thus one should subtract
the Coulomb singularity from the amplitude, apply the
chosen unitarization prescription to the remainder, and
subsequently add the Coulomb singularity together with
appropriate corrections for the asymptotic states.
In the following, we will use the terms scattering

operators and scattering matrices interchangeably. We
stress that we are always dealing with the full 2 → n-
particle scattering operators. Nevertheless, we may assume
that we work in the finite dimensional subspaces corre-
sponding to a fixed overall angular momentum in the partial
wave decomposition.

B. Standard K-matrix unitarization

Following Gupta and collaborators, and subsequent
studies [32,87–90], we may reverse the logic behind the
definition of the K matrix. We interpret the Hermitian K
matrix as an incompletely calculated approximation to the
true amplitude and look for the unitary S or T matrix as a
nonperturbative completion of this approximation.
Let us first assume that the scattering matrix is available

in diagonal form. Given a real eigenamplitude aK (9) of the
K matrix, the corresponding unitarized amplitude a that
enters the T matrix is obtained by inverting (9),

a ¼ aK
1 − iaK

: ð10Þ

If the approximation to the scattering matrix K is Hermitian
but not available in diagonal form, we can similarly define
the unitarized transition matrix T as the stereographic
projection, by the formula (6b).
The standard K-matrix unitarization formalism works on

a perturbative series of the T matrix. Given an nth order

approximation TðnÞ
0 to the T matrix, represented by an

eigenamplitude aðnÞ0 , we first have to construct the corre-

sponding real K-matrix amplitude aðnÞK via (9),

aðnÞK ¼ aðnÞ0

1þ iaðnÞ0

¼ að1Þ0 þ Reað2Þ0 þ iðImað2Þ0 − ðað1Þ0 Þ2Þ þ � � �
¼ að1Þ0 þ Reað2Þ0 þ � � � ; ð11Þ

where we assume that að1Þ0 is real and use the lowest order

of the optical theorem Imað2Þ0 ¼ ðað1Þ0 Þ2. At each order, the
imaginary parts cancel if the original perturbation series
was correct. In a second step, we then insert the truncated

perturbation series for aðnÞK into (10), this time without
truncating,

aðnÞ ¼ að1Þ0 þ Reað2Þ0 þ � � �
1 − iðað1Þ0 þ Reað2Þ0 þ � � �Þ

: ð12Þ

If the exact scattering matrix does admit a perturbative
expansion, this prescription amounts to a partial resumma-
tion of the perturbation series. In its general form, the
construction guarantees that (i) the computed S matrix is
unitary, and (ii) perturbation theory is reproduced order
by order.
For a concrete example, a 2 → 2 scattering process of

scalar particles with a scalar s-channel pole is represented
by a J ¼ 0 partial-wave eigenamplitude

að0ÞK ðsÞ ¼ λ

s −m2
; ð13Þ

and the unitarized version reads

að0ÞðsÞ ¼ λ

s −m2 − iλ
; ð14Þ

the Breit-Wigner form of a scalar resonance. K-matrix
unitarization, in this case, therefore implements the Dyson
resummation of the resonant propagator.
Beyond leading order, given the (nonunitary) perturba-

tive approximation to the transition matrix T, we should
reconstruct the corresponding truncated perturbative

FIG. 2 (color online). Stereographic projection of a real
scattering amplitude (K-matrix eigenvalue) onto the Argand
circle.
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expansion of the Hermitian K matrix via (7) and insert this
back into the unitarization formula (6b), to obtain the
corresponding unitarized T matrix. Thus inserting an nth
order approximation of (7) into (6) will result in a unitary S
matrix to all orders. Conversely, the nth order expansion of
this S matrix will reproduce the original nth order expres-
sion, which is unitary only up to terms of order nþ 1.

C. Direct T-matrix unitarization I: Linear projection

While the reconstruction of the unitary S (or T) matrix
according to this algorithm is exact within the framework of
perturbation theory, it suffers from the drawback that we
have to reconstruct the self-adjoint K matrix as an inter-
mediate step. This is not just unnecessary, but it may
become a significant complication if the scattering matrix
is not available in diagonal form, or if nonperturbative
effects need to be considered. For practical purposes, we
are rather interested in a means to unitarize an arbitrary
model of the scattering matrix, which may or may not admit
a perturbative expansion.
In the following, we therefore present a generalization of

the K-matrix prescription that operates on the T matrix
directly. Given a0 as a complex approximation to an
eigenvalue of the true T matrix, we first define the
unitarized version a by the same geometric construction
as before, i.e., connecting the point a0 with the point i by a
straight line and determining the intersection with the
Argand circle. However, we do not attempt to construct
the real amplitude aK. This results in

a ¼ Rea0
1 − ia�0

: ð15Þ

This formula has the properties that (i) a lies on the Argand
circle, (ii) if a0 is real, it reproduces (10), and (iii) if a0 is
already on the Argand circle, it is left invariant, a ¼ a0.
This guarantees the invariance of the correct perturbative
series, up to the resummation of higher orders.
Nevertheless, the actual expression for (15), evaluated in
perturbation theory, differs from the standard K-matrix
formula (12). We obtain

aðnÞ ¼ að1Þ0 þ Reað2Þ0 þ � � �
1 − iðað1Þ0 þ Reað2Þ0 − iImað2Þ0 þ � � �Þ

: ð16Þ

Because of the truncation of the perturbation series at
different stages of the calculation, higher orders enter in a
different way. We also note that the standard K-matrix
formalism, and thus formula (16), requires the existence of
a perturbative series. By contrast, the direct unitarization
formula (15) does not rely on a perturbative expansion. The
latter construction is thus applicable to a larger set of
models. In particular, in the case of vector-boson scattering
with a light Higgs that we consider in this paper, the leading

term að1Þ0 is suppressed, and thus the original K-matrix
construction is ill behaved. The modified version (15) does
not suffer from this problem.
Still, the formula (15) is not quite satisfactory: if the

imaginary part of a0 becomes larger than i, the selected
intersection point a appears beyond the fixed point a ¼ i,
on the complex half-plane opposite to the location of a0. A
consequence would be that a model amplitude of the form

a0ðsÞ ¼
λ0

s −m2 − iλ
; ð17Þ

where λ0 > λ, would be transformed into a unitarized
version that revolves twice around the Argand circle,
splitting the resonance at m2 into two separate peaks.
Although the original model is a rather pathological ansatz
for a resonance, such a behavior is clearly undesirable. To
avoid this problem, we may require that (iv) if Ima0 ≥ 1,
the unitarized amplitude a is tied to the fixed point, i.e., we
finally define

a ¼
� Rea0

1−ia�
0

if Ima0 < i;
i otherwise:

ð18Þ

We now generalize this prescription to the scattering
matrix T, starting from a model approximation T0 that is
not necessarily unitary. We may first restrict ourselves to
matrices that are normal (i.e., T†

0T0 ¼ T0T
†
0) and do not

have eigenvalues with an imaginary part larger than i. The
unitarized transition matrix then is given by

T ¼ ReT0

1 − i
2
T†
0

: ð19Þ

For non-normal matrices, the operator ordering in the
fraction must be defined. We obtain two equivalent
expressions

T ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

2
ImT0

q ReT0

1

1 − i
2
T†
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

2
ImT0

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

2
ImT0

r
1

1 − i
2
T†
0

ReT0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

2
ImT0

q : ð20Þ

For any matrix T0, the matrix T from (20) respects the
optical theorem. If T0 already respects the optical theorem,
we get T ¼ T0. If T0 represents the correct perturbative
expansion of T, truncated at a given order and retaining
non-Hermitian parts, the reconstructed matrix T reproduces
this perturbative expansion.
Beyond perturbation theory, in order to extract eigen-

values with imaginary parts greater than i, either we may
diagonalize the matrix and use (18) or we can use
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projections to make (20) well defined. For this purpose,
recall that functions of matrices can be defined by their
power series expansion, as long as the radius of conver-
gence exceeds the norm of the matrix. More generally, one
can use a functional calculus to associate with a function
f∶D ⊆ C → C a function f̂ mapping matrices to matrices,
such that

dαf þ βg ¼ αf̂ þ βĝ; ð21aÞ

cfg ¼ f̂ ĝ; ð21bÞ

df ∘ g ¼ f̂ ∘ ĝ: ð21cÞ

The Riesz-Dunford functional calculus [91–93] defines
f̂ðAÞ by a contour integral encircling the spectrum σðAÞ

f̂ðAÞ ¼
Z
∂Σ∶σðAÞ⊆Σ

dz
2πi

fðzÞ
z1 − A

ð22Þ

using the fact that the resolvent matrix 1=ðz1 − AÞ is well
defined whenever z ∉ σðAÞ. Note that this functional
calculus can be used unchanged for all bounded operators
on a Hilbert space. It can even be extended to certain
classes of unbounded operators, but the details are not
important in the present work, because we deal with finite
dimensional matrices corresponding to scattering ampli-
tudes with definite angular momentum. Closely related to
this functional calculus (22) are the projections on the
invariant subspace of A corresponding to a part Σ ⊆ σðAÞ
of the spectrum [91–93]

PA;Σ ¼
Z
∂Σ

dz
2πi

1

z1 − A
: ð23Þ

In particular, we can define projections PImT0=2;Σ� with

1 ¼ PImT0=2;Σþ þ PImT0=2;Σ−
ð24Þ

using the contours Σ� in Fig. 3 to generalize the prescrip-
tion (18) for ImT > 2.

D. Direct T-matrix unitarization II: Thales projection

Elementary geometry (Thales’ theorem) suggests an
alternative construction of the stereographic projection
from the real axis to the unitarity circle, which results in
a different extension to general complex scattering ampli-
tudes. Figure 4 shows that the K matrix amplitude a0
coincides with the end point of a half-circle that connects
the lower fixed point 0 with the unitary amplitude a.
Consequently, given an arbitrary complex amplitude a, we
define the Thales projection a as the intersection point of
the half-circle that connects 0 and a0, with the Argand

circle. The Thales circle is characterized by its intersection
aK with the real axis, given by����a −

aK
2

���� ¼ aK
2
: ð25Þ

Therefore every real amplitude aK would be projected on
the unitary circle

a ¼ aK
1 − iaK

: ð26Þ

In case we start with a complex amplitude a0, we can derive
the transformation to real aK from the condition that a0 has
to be on the Thales circle, (25), see Fig. 5,

1

aK
¼ Reða0Þ

ja0j2
¼ Re

�
1

a0

�
: ð27Þ

We then calculate the transformation for general
amplitudes,

a ¼ 1

Reð 1a0Þ − i
: ð28Þ

The corresponding operator equation is

TðT0Þ ¼
1

Reð 1
T0
Þ − i

2
1
: ð29Þ

In Appendix B we show that this indeed leads to a unitary S
operator, and that the T operation on a T0 operator is
idempotent.
This construction avoids the undesirable behavior for a

model amplitude above the Argand circle; the unitarized
version of a single resonance is again a single resonance.
However, it suffers itself from another undesirable feature:

FIG. 3. Integration contours used for projecting on the sub-
spaces corresponding to ImT0=2 < 1 and ImT0=2 > 1 for a
bounded operator ImT0=2 in (20).
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it is not analytic in the vicinity of a0 ¼ 0. Fortunately, this
drawback is of little practical importance, because we are
mostly interested in the case where a0 ≠ 0.

E. Alternative unitarization prescriptions

The direct T-matrix projection, as described above,
allows us to unitarize any model of the scattering matrix
without relying on perturbation theory or any other details
of the processes under consideration. It leaves invariant the
scattering matrix, if it is already unitary. Nevertheless, it is
clearly not unique. Since the model that we start from does
not carry the complete information about its UV comple-
tion, we cannot expect the correct completion to appear in
the unitarized version either.
For an instructive example, consider another parameter-

less prescription,

S ¼ eiL; ð30aÞ

T ¼ 2eiL=2 sin
L
2
; ð30bÞ

which leads to

L ¼ −i ln S ¼ −i lnð1þ iTÞ: ð31Þ

In a perturbative expansion1 away from the cut starting at
T ¼ −i1, the logarithm will be replaced by a polynomial
and L will grow like a power, as the coupling and energy
increase. In this case, unlike (6), the S matrix will “wrap
around” faster and faster, corresponding to a series of
resonances with decreasing distance.
We do not expect a unitarization prescription to produce

additional structure that is not already present in the
original model. However, the tower of resonances that
appear in (30) clearly is an artifact of the prescription. From
this perspective, the prescription (6), which for a uniformly
growing amplitude just implies asymptotic saturation and

FIG. 4 (color online). Geometrical representation of Thales projection.

FIG. 5 (color online). Geometrical representation: stereographic projection vs Thales projection.

1Incidentally, the expansions of L and K agree in first and
second orders:

K ¼ T −
i
2
T2 −

1

4
T3 þ � � � ; ð32aÞ

L ¼ T −
i
2
T2 −

1

3
T3 þ � � � : ð32bÞ
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no extra features, appears to be closer to a minimal and thus
natural amendment of the perturbative prediction.
There are also unitarization prescriptions that rely on

reordering a perturbation series, such as Padé unitarization
[94–96], which has frequently been applied to vector-boson
scattering physics in the Higgs-less or heavy-Higgs limit
[32,97–100]. This method reproduces certain exactly solv-
able models [101]. Unitarization prescriptions of this kind
tend to generate resonances (poles) at higher energy that are
not present in the original EFT. Similar effects are observed
when applying the inverse-amplitude [102–106] or N/D
unitarization prescriptions [103,107]. This may be useful if
the amplitude in the correct UV completion actually
contains those resonances (as in pion-pion scattering).
Other approaches explicitly apply a form-factor suppres-

sion to amplitudes that nominally violate unitarity con-
straints [108–111]. Such a suppression indicates new
physics, e.g., mixing with nearby resonances or additional
open channels that dissipate the scattering into multiparticle
final states. This is a possible scenario for high-energy
electroweak interactions, but it is not a prediction of
unitarity [79]. The form factors depend on additional
parameters. To implement such a behavior, one would
describe the new physics explicitly.

F. Unitarization as a framework

In the example computations below, we explicitly apply
direct T-matrix projection to quasielastic scattering in the
Goldstone limit, at tree level, and extend the results to full
scattering amplitudes and cross sections. At this level, it
coincides with the K-matrix prescription for elastic scatter-
ing, analogously extended. However, we emphasize that the
direct T-matrix method is of a generic nature, since it
allows us to unitarize any model for any class of processes,
limited just by calculability of the actual expressions.
In particular, we may consider loop-corrected EFT

amplitudes as the starting point for unitarization. These
amplitudes provide an imaginary part, which is correctly
treated by the prescription and accounted for in the
resummation. The resummation corrects the perturbative
amplitude by terms that are formally of higher order, but
become relevant and restore unitarity once the growing
amplitude enters the strongly interacting regime. Likewise,
we may choose to insert an amplitude that has already been
unitarized by any of the above mentioned unitarization
prescriptions. In that case, the T-matrix prescription will
leave the amplitude unchanged. Furthermore, it is possible
to apply the method to all polarization components of
vector bosons, without recourse to the Goldstone limit, and
to properly incorporate 2 → n processes.
In short, the prescription that we propose serves as a

framework that we can implement not just for the extrapo-
lation of the tree-level EFT result (see below) but to any
more sophisticated description of VBS or electroweak
processes in general.

In the following section, we evaluate the direct T-matrix
projection for the minimal EFTwith anomalous couplings,
as a simple application. We do not expect a UV complete
model to emerge. The implemented asymptotics is mini-
mal, interpolating the low-energy EFT with high-energy
unitarity saturation for any parameter set different from the
SM. We propose to take this as a class of reference models.
As soon as experiment will allow us to inspect the high-
energy behavior in more detail, we should introduce
specific extensions, such as new resonances or other kinds
of new physics, similarly applying T-matrix projection
where necessary. Such refined models, which could be the
result of one of the more predictive schemes as discussed
above, can then be compared to the reference model in the
analysis of actual data.

IV. UNITARY DESCRIPTION OF
ELECTROWEAK INTERACTIONS

A. Unitarity for electroweak scattering amplitudes

In the current paper, we are interested in a model-
independent bottom-up approach to VBS processes. The
Higgs-induced cross-section suppression makes VBS a
prime candidate for looking at anomalous effects.
Furthermore, there are possible extensions of the SM that
provide large (tree-level) contributions exclusively to the
quartic couplings, via resonance exchange in s and t
channels, but only minor contributions to dimension-six
operators in the EFT [112].
Results from analyzing VBS data should be combined

with all kinds of different measurements, many of which
remain well defined in the EFT. However, the EFT break-
down within the accessible region inevitably introduces a
model dependence. We should set up the phenomenologi-
cal description in such a way that this model dependence is
kept under control.
The fundamental process in question is a quasielastic

2 → 2 scattering process of Goldstone bosons. The uni-
tarity requirement takes a particularly simple form, since
we can employ angular-momentum and isospin symmetry
to completely diagonalize the scattering process. The
eigenamplitudes are just scalar functions of s that must
satisfy the Argand-circle condition (8) as long as no
inelastic channels appear.
In reality, we should face one of the following situations:
(1) The amplitude stays in the perturbative regime, close

to zero, and the imaginary part is small compared to
the real part. This is the SM case.

(2) The amplitude rises beyond this level. Then, it
will develop an imaginary part, and we are in a
strongly interacting regime. This happens if there is
any dimension-eight operator with a noticeable
coefficient.

(3) The amplitude approaches the maximum absolute
value, asymptotically (Fig. 6, left).
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(4) The amplitude turns over. This is a resonance (Fig. 6,
center).

(5) New inelastic channels open and absorb part of the
total cross section (Fig. 6, right). This amounts to an
increase in the amplitude that is halted by an
effective form-factor suppression. The extra chan-
nels, typically resulting in multiple vector boson
production, should then be observable [13,113].

For a prediction, we have to make a choice among these
possibilities. There is no case where the amplitude (in the
ideal case of pure Goldstone scattering) leaves the Argand
circle, so the naive EFT result is no option.
In general, apart from the exact SM case we are

necessarily in a nonperturbative regime. In line with the
discussion in the preceding section, we propose to take case
3 as a reference model for the high-energy behavior,
correctly matched to the low-energy EFT. This idea is
realized by the parameter-free direct T-matrix unitarization
prescription, as an extension of the K-matrix unitarization
formalism as described in the preceding section. In the
high-energy range, the results saturate the unitarity bound.
We thus obtain an approximate upper bound for the set of
possible amplitudes that match a given EFT.
We recall that the T-matrix prescription is not a viable

UV completion of the EFT but should be understood as a
safeguard against computing unphysical contributions
beyond the unitarity limit. In the case at hand, the
unitarization changes the interpretation of EFT operator
coefficients. While they formally remain the parameters of
a low-energy Taylor expansion of the cross section, they
effectively take the role of threshold parameters that
indicate the point of energy where the differential cross
section deviates from the SM prediction and enters a
strongly interacting regime. This threshold region is the
energy range to which the experimental analysis will be
most sensitive. In a context where the EFT applies, they
keep their relation to the full set of operator coefficients that
may be determined by a global fit to experimental results.
The high-energy range where actual model dependence
becomes important is asymptotically suppressed in the
same way as the SM prediction and has a minor impact on
observed experimental data, as one would expect.
A complete description of the processes in question

should aim at a more detailed understanding. Such a

refinement typically relies on more specific assumptions
or introduces new parameters. However, the first measure-
ments of VBS will not be very sensitive to details beyond
threshold, so simulations based on a simple unitarization
prescription in the EFT context will at least allow us to
quantify the level of agreement (or disagreement) of data
with the SM.

B. Model and calculation: Amplitudes

There are various refinements that we must apply to the
idealized model of the preceding section. (i) We have to
translate Goldstone-boson interactions to interactions of
vector bosons. This introduces the explicit SUð2ÞC break-
ing associated with hypercharge. (ii) Further low-energy
corrections are caused by the mixing of transversal and
longitudinal (effectively scalar) polarization components.
This mixes spin and orbital angular momentum and spoils
the simplicity of the partial-wave expansion. (iii) The
vector bosons are off shell, in particular in the initial state.
(iv) In the forward scattering direction, massless photon
exchange becomes relevant, cut off only by the off-shell-
ness of the vector bosons in the initial state, and thus a
significant correction.
We approach this situation by the following algorithm.

First, we analytically unitarize the scattering amplitudes
in the high-energy limit where the symmetries are exact,
and the unitarity-violating terms occur exclusively in
Goldstone-boson scattering. In particular, we can make
use of custodial, i.e., weak isospin symmetry and thereby
reduce the number of independent amplitudes.
In contrast to the no-Higgs case that has been discussed

extensively in the literature, in the presence of a light Higgs
boson, the SM contribution to Goldstone scattering is
asymptotically suppressed proportional to m2

H=ð4πvÞ2,
compared to a value that would saturate the unitarity
bounds. In practice (cf. Fig. 1), the suppression in the
differential cross section is an order of magnitude, and the
formally subleading transversal degrees of freedom domi-
nate the observable cross section. Thus, we take the SM
contribution to the Goldstone-scattering amplitudes as zero.
Nonzero contributions are induced by the anomalous
operators, which thus become leading. (The spin eigenam-
plitudes A have to be normalized by a0 ¼ A

32π .)

FIG. 6 (color online). The Argand-circle condition for a scattering amplitude.
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Aðwþwþ → wþwþÞ

¼ 1

4
FS;0ð2s2 þ t2 þ u2Þ þ 1

2
FS;1ðt2 þ u2Þ

−
�
F2
HD

v2

4
þ FHD

��
t2

t −m2
H
þ u2

u −m2
H

�
; ð33Þ

Aðwþz → wþzÞ

¼ 1

4
FS;0ðs2 þ u2Þ þ 1

2
FS;1t2

−
�
F2
HD

v2

4
þ FHD

�
t2

t −m2
H
; ð34Þ

Aðwþw− → wþw−Þ

¼ 1

4
FS;0ðs2 þ t2 þ 2u2Þ þ 1

2
FS;1ðs2 þ t2Þ

−
�
F2
HD

v2

4
þ FHD

��
s2

s −m2
H
þ t2

t −m2
H

�
; ð35Þ

Aðwþw− → zzÞ

¼ 1

4
FS;0ðt2 þ u2Þ þ 1

2
FS;1s2

−
�
F2
HD

v2

4
þ FHD

�
s2

s −m2
H
; ð36Þ

Aðzz → zzÞ

¼ 1

2
ðFS;0 þ FS;1Þðs2 þ t2 þ u2Þ

−
�
F2
HD

v2

4
þ FHD

��
s2

s −m2
H
þ t2

t −m2
H
þ u2

u −m2
H

�
:

ð37Þ

Note that s > m2
H for the observed Higgs boson, so there

are actually no poles in the physical region.
In the presence of the Higgs boson, there are also

amplitudes that involve external Higgs bosons. In terms
of custodial SUð2Þ, the Higgs is a singlet, and there are
additional independent amplitudes that involve either two
or four Higgs bosons. Realistically, the only experimentally
accessible channels are wþw− → hh and zz → hh. These
channels provide an independent set of observables, and
they should be studied in the context of a larger set of
operators. This is beyond the scope of the present paper.
Higgs-pair channels also contribute implicitly to the

unitarization condition via backscattering into Goldstones,
and thus physical vector bosons. Among the set of
operators that we consider in the above example, only
the dimension-six term LHD provides a Higgs-pair con-
tribution. The Standard Model contribution, given the
approximations, is equivalent to zero. In the following,
we neglect this extra contribution for simplicity. Adding it,
we would have to apply a further diagonalization of

eigenamplitudes in the isospin-zero channel and unitarize
the resulting independent eigenamplitudes. Transforming
back to the physical basis, the effective FHD term is slightly
more suppressed. However, as we will see in the final plots,
the LHD term is of minor importance anyway. For the
purposes of the example, we therefore keep the formulas
simple and omit this contribution. In a more complete
treatment that applies the unitarization framework to the
full set of operators and also unitarizes transversal con-
tributions from these sources, it can be properly
incorporated.
Since all operators are SUð2ÞC symmetric, we can apply

isospin symmetry and crossing symmetry and express
all amplitudes in terms of a single master amplitude
Aðs; t; uÞ [7],

Aðwþw− → zzÞ ¼ Aðs; t; uÞ; ð38Þ

Aðzz → zzÞ ¼ Aðs; t; uÞ þ Aðt; s; uÞ þ Aðu; s; tÞ; ð39Þ

Aðwþw− → wþw−Þ ¼ Aðs; t; uÞ þ Aðt; s; uÞ; ð40Þ

Aðwþz → wþzÞ ¼ Aðt; s; uÞ; ð41Þ

Aðwþwþ → wþwþÞ ¼ Aðt; s; uÞ þ Aðu; s; tÞ; ð42Þ

and construct the isospin eigenamplitudes AI ,

A2 ¼ Aðt; s; uÞ þ Aðu; s; tÞ; ð43Þ

A1 ¼ Aðt; s; uÞ − Aðu; s; tÞ; ð44Þ

A0 ¼ 3Aðs; t; uÞ þ Aðt; s; uÞ þ Aðu; s; tÞ: ð45Þ

After partial wave decomposition [t ¼ −s=2ð1 − cosΘÞ]

AIlðsÞ ¼
Z

0

−s

dt
s
AIðs; t; uÞPlðcosΘÞ; ð46Þ

we obtain the isospin-spin eigenamplitudes,

A00 ¼
1

6
ð7FS;0 þ 11FS;1Þs2

−
�
F2
HD

v2

4
þ FHD

��
3s2

s −m2
H
þ 2S0ðsÞ

�
; ð47aÞ

A02 ¼
1

30
ð2FS;0 þ FS;1Þs2 −

�
F2
HD

v2

4
þ FHD

�
2S2ðsÞ;

ð47bÞ

A11 ¼
1

12
ðFS;0 − 2FS;1Þs2 −

�
F2
HD

v2

4
þ FHD

�
2S1ðsÞ;

ð47cÞ
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A13 ¼ −
�
F2
HD

v2

4
þ FHD

�
2S3ðsÞ; ð47dÞ

A20 ¼
1

3
ð2FS;0 þ FS;1Þs2 −

�
F2
HD

v2

4
þ FHD

�
2S0ðsÞ;

ð47eÞ

A22 ¼
1

60
ðFS;0 þ 2FS;1Þs2 −

�
F2
HD

v2

4
þ FHD

�
2S2ðsÞ;

ð47fÞ

using the following abbreviations from [18]:

S0 ¼ m2
H þm4

H

s
log

�
m2

H

sþm2
H

�
−
s
2
; ð48aÞ

S1 ¼ 2
m2

H

s
þm4

H

s2
ð2m2

H þ sÞ log
�

m2
H

sþm2
H

�
þ s
6
; ð48bÞ

S2 ¼
m4

H

s2
ð6m2

H þ 3sÞ

þm4
H

s3
ð6m4

H þ 6m2
Hsþ s2Þ log

�
m2

H

sþm2
H

�
: ð48cÞ

Expressed in terms of the isospin-spin eigenstates, the
Goldstone scattering matrix becomes diagonal. It is now
straightforward to apply the T-matrix unitarization scheme
(equivalent to the K-matrix scheme at this order) to the
diagonal isospin-spin eigenamplitudes. For each Il com-
bination, the T-matrix unitarized amplitude is given by
[cf. (28)]

ÂIlðsÞ ¼
1

Reð 1
AIlðsÞÞ − i

32π

: ð49Þ

We split off the original amplitude AIl that corresponds to
the naive EFT and obtain the unitarization correction as

ΔAIl ¼ ÂIl −AIl: ð50Þ

Given this set of corrections, we dress the eigenamplitude
corrections by the appropriate Legendre polynomials and
revert the basis from isospin eigenstates to wþ; z; w−, so we
arrive at counterterms for the individual Goldstone scatter-
ing channels,

ΔAðwþwþ → wþwþÞ

¼ ΔA20ðsÞ − 10ΔA22ðsÞ þ 15ΔA22ðsÞ
t2 þ u2

s2
; ð51Þ

ΔAðwþw− → zzÞ

¼ 1

3
ðΔA00ðsÞ − ΔA20ðsÞÞ −

10

3
ðΔA02ðsÞ − ΔA22ðsÞÞ

þ 5ðΔA02ðsÞ − ΔA22ðsÞÞ
t2 þ u2

s2
; ð52Þ

ΔAðwþz → wþzÞ

¼ 1

2
ΔA20ðsÞ − 5ΔA22ðsÞ

þ
�
−
3

2
ΔA11ðsÞ þ

15

2
ΔA22ðsÞ

�
t2

s2

þ
�
3

2
ΔA11ðsÞ þ

15

2
ΔA22ðsÞ

�
u2

s2
; ð53Þ

ΔAðwþw− → wþw−Þ

¼ 1

6
ð2ΔA00ðsÞ þΔA20ðsÞÞ−

5

3
ð2ΔA02ðsÞ þΔA22ðsÞÞ

þ
�
5ΔA02ðsÞ−

3

2
ΔA11ðsÞ þ

5

2
ΔA22ðsÞ

�
t2

s2

þ
�
5ΔA02ðsÞ þ

3

2
ΔA11ðsÞ þ

5

2
ΔA22ðsÞ

�
u2

s2
; ð54Þ

ΔAðzz→ zzÞ

¼ 1

3
ðΔA00ðsÞ þ 2ΔA20ðsÞÞ−

10

3
ðΔA02ðsÞ þ 2ΔA22ðsÞÞ

þ 5ðΔA02ðsÞ þ 2ΔA22ðsÞÞ
t2 þ u2

s2
: ð55Þ

Since there are no branch cuts in lowest order, crossing
symmetry implies that the amplitude Aðwþz → wþzÞ in
(41) can be obtained from Aðwþw− → zzÞ in (38) by an
exchange of s with t and Aðwþwþ → wþwþÞ in (42) from
Aðwþw− → wþw−Þ in (40) by an exchange of s with u
[using Aðs; t; uÞ ¼ Aðs; u; tÞ]. In the presence of branch
cuts, however, there are contributions like resonance poles
on the unphysical Riemann sheet that must be nonzero only
if the Mandelstam variable is above the threshold M2

thr
of the corresponding branch cut. The resulting factors
Θðs −M2

thrÞ and additional terms proportional to Θðt −
M2

thrÞ and Θðu −M2
thrÞ have been suppressed in (51)–(55),

with the understanding that these formulas will be used
only in the case s > 0 ∧ t < 0 ∧ u < 0.
As a toy example for this phenomenon, consider a

unitarity-violating amplitude

AðsÞ ¼ α
s
v2

ð56Þ

resulting from a local dimension-six operator that can be
unitarized by replacing the local operator by a resonance
exchange
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ARðsÞ ¼ −
s

s −M2 þ iΓMΘðs −M2
thrÞ

ð57Þ

with M2 ¼ v2=α, so that AðsÞ and ARðsÞ agree in the
region s ≪ M2. Since the amplitude must not have a pole
with a nonvanishing imaginary part on the physical
Riemann sheet, any such pole is located on the second
sheet, which can be reached via a branch cut corresponding
to an open decay channel of the resonance [114]. Therefore
the pole of the crossed amplitude in the t channel

ĀRðtÞ ¼ −
t

t −M2 þ iΓMΘðt −M2
thrÞ

ð58Þ

must not have the imaginary part, because there is no
branch cut for t < 0 providing access to the second sheet.
In (57) and (58), this is expressed by the Θ distributions
multiplying the widths.
The analogous analytical structure is found by rewriting

the K-matrix unitarized amplitude

AKðsÞ ¼
αs=v2

1 − iαs=v2
ð59Þ

as

AKðsÞ ¼
is

sþ iM2
ð60Þ

to make the existence of a similar pole off the real axis
explicit. Again, such a pole must not be located on the
physical Riemann sheet, and we may replace AðsÞ by
AKðsÞ only for s > 0, where a nearby branch cut can act as
a portal to the second sheet, as shown in Fig. 7. Note that
this prescription manifestly unitarizes all partial wave
amplitudes for s → ∞, even though the amplitude as a
function of s and t appears to rise for t → −s for each fixed
s. The consistency of the analytical structure illustrated in
Fig. 7 can also be seen in a perturbative example: in [101] it
has been shown explicitly for the example of the Oð2NÞ
model with large N that the K-matrix prescription (60)
reproduces the exact amplitude when resummed to all
orders.

C. Complete electroweak processes

So far, we have only considered Goldstone-scattering
amplitudes, which represent longitudinal vector bosons at
asymptotically high energy. The result of the unitarization
procedure is a set of correction terms that depend on s; t; u.
We would like to use the expressions in a calculation of
vector-boson scattering amplitudes at finite energy. To
achieve this, we note that by construction, the counterterms
have a t and u dependence that is equivalent to the
anomalous quartic terms that we started with. We can
therefore unambiguously distribute the new contributions

among the two different gauge-invariant interaction oper-
ators (counterterms) LS;0 and LS;1 that are already present.
The algorithm follows precisely the derivation in [18].
In the result, all three parameters FHD; FS;0; FS;1 enter

both of the counterterm prefactors, respectively. The
unitarization procedure effectively modifies and mixes
the EFT operator coefficients in a nonlinear way.
We finally switch back from covariant gauge to unitarity

gauge and obtain Feynman rules for physical vector
bosons. Inserting external momenta and polarization vec-
tors (or fermionic currents), the asymptotic amplitude
expressions receive finite low-energy corrections that are
related to the W and Z masses, some of them breaking the
custodial symmetry.
In the context of complete scattering amplitudes, the new

Feynman rules for quartic gauge-boson couplings are
evaluated off-shell. We have to define a prescription that
determines the energy value in the operator coefficient.
Relying on the assumption that the effective vertices are
evaluated for an approximately on-shell 2 → 2 scattering
kinematics, we define the energy value as the square root of
the initial- or final-state invariant mass, i.e., the

ffiffiffî
s

p
value

for the VV system, represented by their decay products.
This completes the algorithm.
Before we turn to concrete results, we should review the

assumptions and approximations on which the algorithm is
based. First of all, we started from the linear Higgs EFT as
the low-energy approximation and assume the absence of
new states (resonances) within the accessible energy range.

FIG. 7. The analytic structure of resummed scattering ampli-
tudes. As illustrated by the Feynman diagrams, the left-handed
(i.e., t > 0 or s < 0) cut will in general belong to a different
channel (i.e., combination of quantum numbers) than the right-
handed cut. The diagrams also illustrate that the left-handed cut
can appear in a different order of the perturbative expansion than
the right-handed cut. Following [101], we also compare the
location of the pole in the K-matrix scattering amplitude (60) to
the perturbative result. Note that the passage through the region
with Ims > 0 has been exaggerated for illustrative purposes
(cf. [114]). In reality, the pole immediately crosses over to the
second sheet.
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We have to accept the fact that the model enters a strongly
interacting regime, so beyond the threshold where the
corrections start to play a role, the prediction becomes a
rather uncertain estimate, controlled just by the unitarity
requirement. However, the unitarized cross section asymp-
totically falls off, so the energy range beyond this threshold
is again suppressed in the event sample. Finally, the
unitarization corrections are strictly valid only in the
high-energy limit and for on-shell longitudinal vector
bosons in the kinematical configuration of quasielastic
scattering. We thus have to require that these conditions are
approximately met, typically by imposing vector boson
fusion (VBF) cuts in the analysis.
Anomalous interactions of transversal vector bosons

would also require unitarization. They can be incorporated,
analyzing them in the high-energy limit where they are
decoupled from Goldstone bosons and then applying the
same scheme to the corrected amplitudes. However, we do
not attempt this explicitly in the present paper.
These constraints imply, in particular, that the results

cannot be applied to the analogous process of triple
vector boson production. The SM and any underlying
UV completion would allow us to determine the correct
analytic structure and relations between processes that are
related by crossing external particles between the incoming
and outgoing states. However, the unitarization corrections
in the present model apply only to s-channel kinematics in
2 → 2 scattering and must not be used for the kinematical
configuration of triple-boson production where the initial
vector boson is far off shell. We may compare this situation
to the resummation of the propagator of an unstable particle
that may also occur in the t channel. In the context of SM
gauge invariance, it is necessary to include extra diagrams
in the unitarized result [115]. In the present case where the
complete theory is not even known, the corresponding
ambiguity is an indication of the unavoidable model
dependence of the unitarization procedure.

D. Numerical results: On shell

We have implemented the Feynman rules that corre-
spond to the energy-dependent counterterm operators, as
described in the preceding section, in the Monte Carlo
event generator WHIZARD [76–78].2 This allows us to
numerically compute unitarized cross sections and generate
corresponding event samples at colliders.
We note that up to the perturbative order that we are

calculating, there is no difference between the T-matrix and
K-matrix unitarization prescriptions. A difference would
show up for higher-order or model-specific amplitudes that
initially contain an imaginary part.

The results in Figs. 8,9,10, and 11 are complementary to
Fig. 1. They display the unitarized distribution of the VV
invariant mass for the same selected values of the param-
eters FHD; FS;0; FS;1, again calculated for the LHC con-
figuration with

ffiffiffi
s

p ¼ 14 TeV and standard cuts, dijet
invariant mass Mjj > 500 GeV, jet rapidity distance
Δηjj > 2.4, a minimal jet transverse momentum of
pT > 20 GeV, and a minimal (and opposite) jet rapidity
of jηjj < 4.5. We show the distinct final states WþWþ,
WþW−, WþZ, and ZZ with the final-state vector bosons
taken on shell.
The plots clearly indicate that the naively calculated

numbers with anomalous couplings and no unitarization
grossly overshoot the more realistic T-matrix results. For

FIG. 8 (color online). pp → WþWþjj, unitarized (QCD con-
tributions neglected). Cuts: Mjj > 500 GeV; Δηjj > 2.4;

pj
T > 20 GeV; jηjj < 4.5.

FIG. 9 (color online). pp → WþW−jj, unitarized (QCD con-
tributions neglected). Cuts: Mjj > 500 GeV; Δηjj > 2.4;

pj
T > 20 GeV; jηjj < 4.5.

2Note that it is not possible to use an automated tool for
Feynman rules to include these rules (as, e.g., via [116]) as one
also needs a prescription to single out s channels.
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the chosen parameters, the effect of the dimension-eight
operators is more pronounced than the effect of the
anomalous Higgs coupling, a dimension-six operator. In
all channels, the unitarized curves fall down with energy
with the same rate as the SM curves, but enhanced by about
one order of magnitude. There is a distinct threshold region
where the cross section interpolates between the SM curve
and the saturated limit. Only within this small window
could a pure EFT description be meaningful.

E. Numerical results: Full processes

At the LHC, the actual final state consists of six
fermions, namely two forward jets and the decay products

of the vector bosons. We present results for the process with
same-sign charged leptons,

pp → eþμþνeνμjj; ð61Þ

including the complete irreducible background. The events
have been generated on the basis of the complete tree-level
amplitude that connects the initial and final states. The plots
show an unweighted partonic event sample that corre-
sponds to 1 ab−1 at the nominal LHC energy of 14 TeV. We
have applied standard VBF cuts, as listed in the figure
captions.
In Fig. 12, we show the scalar sum of transverse

momentum and the azimuthal distance of the charged
lepton pair, respectively. Both observables are sensitive
to the chosen values of the anomalous couplings. There is a
significant difference between the SM prediction (blue/dark
regions) and the prediction with nonzero operator coef-
ficient and unitarization (red/medium regions). For refer-
ence, we also display the unphysical results that we would
generate without unitarization (yellow/light regions).
All numbers have been calculated with the WHIZARD

event generator [76] in version 2.2, which implements the
T-matrix unitarized model with dimension-six and dimen-
sion-eight operators, as explained above.

V. SUMMARY AND CONCLUSION

We have developed a method to model the high-energy
behavior of quasielastic vector-boson scattering processes
in a way that it can be applied to collider analyses, covering
in particular hadron colliders where observables cannot
always be limited to a narrow energy range. The method
interpolates between the SMwith a light Higgs boson as the
low-energy limit, its effective-theory extension, and a high-
energy behavior that remains consistent with unitarity
constraints.
It turns out that the only experimentally distinguishable

possibilities for vector-boson scattering processes are (i) the
pure SM, (ii) new particles, as, e.g., in a two-Higgs doublet
model, and (iii) a deviation that smoothly increases with
energy and indicates a strongly interacting Higgs sector. We
study the latter possibility. Small deviations that stay within
the weakly interacting regime are mostly indistinguishable
from the SM, at least in vector boson scattering.
In this work we do not propose any concrete model

beyond the SM. However, for quantitatively establishing
the validity of the SM, or for qualifying the significance of
any possible experimental discrepancy, we need an EFT
approach that provides parametrizations for deviations in
all possible directions in model space. For being phenom-
enologically useful, such alternative parametrizations must
be consistent with unitarity as a limitation to the number of
events that can reasonably contribute to a particular
observable.

FIG. 10 (color online). pp → WþZjj, unitarized (QCD con-
tributions neglected). Cuts: Mjj > 500 GeV; Δηjj > 2.4;

pj
T > 20 GeV; jηjj < 4.5.

FIG. 11 (color online). pp → ZZjj, unitarized (QCD contri-
butions neglected). Cuts: Mjj > 500 GeV; Δηjj > 2.4;

pj
T > 20 GeV; jηjj < 4.5.
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The problem of modeling high-energy electroweak
interactions has already been discussed three decades
ago when multi-TeV colliders were planned for the first
time. However, the present context is somewhat different: a
reasonable model must smoothly interpolate high-energy

strong interactions with the now-established light-Higgs
scenario. Adapting methods originally developed for the
Higgs-less case, we propose to unitarize the EFT ampli-
tudes by extending the parameter-free K-matrix formalism.
We reformulate this method as a direct T-matrix scheme,

FIG. 12 (color online). pp → eþμþνeνμjj;
ffiffiffi
s

p ¼ 14 TeV;L ¼ 1000 fb−1. Cuts: Mjj > 500 GeV; Δηjj > 2.4; pj
T > 20 GeV;

jηjj < 4.5; pl
T > 20 GeV.

KILIAN et al. PHYSICAL REVIEW D 91, 096007 (2015)

096007-16



such that it unitarizes any given model without requiring a
perturbative expansion or introducing additional structure
in the result. We have described this approach in detail,
including the systematic embedding of the new effects in
the machinery of Monte Carlo simulation for the full
multifermion processes.
The underlying T-matrix prescription ensures that any

computed results do not overshoot the physical limit, but it
does not have any further physical interpretation. Given
sufficient experimental precision, we should get a handle
on the behavior of the invariant-mass distribution beyond
the maximum that is related to the strong-interaction
threshold. Possibilities for modeling VBS beyond this
threshold have been sketched in [11,12] and will be
developed in more detail in a separate paper [117].
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APPENDIX A: NOTATIONAL CONVENTIONS

The field content of the EFT is given by fermions,
gluons, electroweak vector bosons, and the Higgs doublet,
which in a linear gauge consists of the physical Higgs
boson and three Goldstone bosons wþ; w−; w3. We do not
write fermions or gluons explicitly. For electroweak gauge
bosons, we define

DμH ¼ ∂μH − igWμH − ig0HBμ; ðA1Þ

Wμν ¼ ∂μWν − ∂νWμ − ig½Wμ;Wν�; ðA2Þ

Bμν ¼ ∂μBν − ∂νBμ; ðA3Þ

with

Wμ ¼ Wa
μ
τa

2
; Bμ ¼ −

τ3

2
Bμ: ðA4Þ

In the linear representation, the SM Higgs field combines
with the Goldstone bosons as an electroweak doublet. The
Higgs sector has an additional global SUð2ÞC (custodial)
symmetry [73]. To make the SUð2ÞC transformation
properties explicit, we parametrize the Higgs field as the
Hermitian matrix

H ¼ 1

2

�
vþ h − iw3 −i

ffiffiffi
2

p
wþ

−i
ffiffiffi
2

p
w− vþ hþ iw3

�
: ðA5Þ

The physical Higgs field multiplies the unit matrix, while
the Goldstone bosons wþ; w3; w− are the components
proportional to the Pauli matrices τþ; τ3; τ−. SUð2ÞL trans-
formations UL, SUð2ÞR transformations UR, and custodial
SUð2ÞC transformations UC act as

H → ULH; H → HU†
R; H → UCHU†

C; ðA6Þ

respectively. The τ3 part of SUð2ÞR coincides with hyper-
charge Uð1ÞY transformations, while τ1;2-associated trans-
formations are not realized as local gauge symmetries.
Under custodial trunsformations, the Higgs field decom-
poses into singlet (the physical Higgs) and triplet
(Goldstones). Conversely, under SUð2ÞL gauge transfor-
mations, the two columns of the Higgs matrix transform
independently as the conventional complex doublet Φ and
its charge conjugate. In unitarity gauge, the Goldstone
bosons disappear, and the matrix reduces to the vþ h term.
The bosonic part of the lowest order EFT, i.e., the plain

SM Lagrangian, reads

Lmin ¼ −
1

2
tr½WμνWμν� − 1

2
tr½BμνBμν� ðA7Þ

þ tr½ðDμHÞ†DμH� þ μ2tr½H†H� − λ

2
ðtr½H†H�Þ2: ðA8Þ

For a precise definition of higher-dimensional operators,
we have to express the free parameters of the EFT, order by
order in the operator dimension, in terms of observable
quantities. A possible choice for such a renormalization
scheme, applicable to the operator expansion at tree level
and beyond, is

g ¼ 2
mW

v
; g0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Z −m2
W

p
v

;

μ2 ¼ 1

2
m2

H; λ ¼ m2
H

v2
; ðA9Þ

for the parameters in the SM Lagrangian, (A7), with
particle masses and the Higgs vacuum expectation value
v as fixed input. In particular, the definition of g and g0
unambiguously determines the covariant field strength and
the covariant derivative that we use for constructing higher-
dimensional operators. Furthermore, we may fix the
kinetic-energy normalization to their conventional SM
values.
We have deliberately excluded fermions here. Light

fermions are coupled by gauge bosons. For our purposes,
they act like external currents and are properly taken into
account when the unitarized amplitudes are embedded into
the full process. Heavy fermions are important in the
context of Higgs physics, but absent from the initial state.
In the final state, they are identifiable. Here, we just
consider processes that ultimately involve light fermions.
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In passing, we note that genuine anomalous interactions of
light fermions are experimentally accessible in processes
such as lepton and jet pair production.

APPENDIX B: UNITARIZATION, K MATRIX,
AND ALL THAT: PROOFS

1. Non-Hermitian K matrix

If the K matrix is not Hermitian, we need to find a
generalization of (6), i.e.,

T ¼ K0

1 − iK0=2
; ðB1Þ

with a suitable K0. The most straightforward approach
is to just throw away the imaginary parts K0 ¼
ReK ¼ ðK þ K†Þ=2. The interpretation of the Cayley
transform as an inverse stereographic projection suggests
a less drastic approach that retains the imaginary part.
Consider the family fKκg of K matrices that have the same
projection with center i1,

Kκ

2
− i1 ¼ κ

�
K
2
− i1

�
κ; ðB2aÞ

κ† ¼ κ > 0; ðB2bÞ

and choose the unique self-adjoint member K0 ∈ fKκg of
this family

K0 ¼ ðK0Þ†: ðB2cÞ

As long3 as ImK=2 < 1, there is a unique solution with a
converging power series expansion

κ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ImK=2

p ; ðB4aÞ

K0 ¼ κðReKÞκ; ðB4bÞ

resulting in

T ¼ κðReKÞ 1

1 − iK†=2
κ−1 ¼ κ−1

1

1 − iK†=2
ðReKÞκ:

ðB5Þ

For normalK, i.e.,KK† ¼ K†K, everything commutes, and
we may write

T ¼ ReK
1 − iK†=2

¼ ReK
1 − iReK=2 − ImK=2

instead, highlighting the contribution of ImK ¼
ðK − K†Þ=2i.

2. Properties of T-matrix unitarized
(linear projection) operators

The unitarity of the S matrix, SS† ¼ S†S ¼ 1, implies
that each interaction matrix, S ¼ 1þ iT, has to satisfy

T†T ¼ −iðT − T†Þ: ðB6Þ

For T-matrix unitarized operators (19) via linear pro-
jection, we use

TðT0Þ ¼
ReT0

1 − i
2
T†
0

¼ ReT0

1þ 1
4
T0T

†
0

�
1þ i

2
T0

�
ðB7Þ

to show the unitarity of the corresponding S operator,

SS† ¼ 1 − 2ImðTÞ þ TT†

¼ 1 −
ðReT0Þ2
1þ 1

4
T0T

†
0

þ ðReT0Þ2
1þ 1

4
T0T

†
0

¼ 1: ðB8Þ

In the same way, we can show the idempotency of the T
operation,

TðTðT0ÞÞ ¼
ReTðT0Þ

1 − i
2
TðT0Þ†

¼
ReT0

1þ1
4
T0T

†
0

ð1 − 1
2
ImT0Þ

1 − i
2

ReT0ð1− i
2
T†
0
Þ

ð1− i
2
T†
0
Þð1þ i

2
T0Þ

¼ ReT0

1þ 1
4
T0T

†
0

�
1þ i

2
T0

�
¼ TðT0Þ: ðB9Þ

3. Properties of T-matrix unitarized
(Thales projection) operators

In this section we take the definition of the T-matrix
unitarized operator from (29) and show, using

TðT0Þ ¼
1

Reð 1
T0
Þ − i

2
1
¼ 1

Reð 1
T0
Þ2 þ 1

4
1

�
Re

�
1

T0

�
þ i
2
1

�
;

ðB10Þ

the unitarity of the corresponding S operator,

3We can use the Riesz-Dunford functional calculus [91–93] to
construct projectors on subspaces corresponding to parts of the
spectrum of ImK=2

PΣ ¼
Z
∂Σ

dz
2πi

1

z1 − ImK=2
; ðB3Þ

where Σ contains the desired part of the spectrum of ImK=2.
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SS† ¼ 1 − 2ImðTÞ þ TT†

¼ 1 −
1

Reð 1
T0
Þ2 þ 1

4
1
þ 1

Reð 1
T0
Þ2 þ 1

4
1
¼ 1: ðB11Þ

Also, it is easy to see that this operation is idempotent,

TðTðT0ÞÞ ¼
1

Reð 1
TðT0ÞÞ − i

2
1
¼ 1

ReðReð 1
T0
Þ − i

2
1Þ − i

2
1

¼ 1

Reð 1
T0
Þ − i

2
1
¼ TðT0Þ: ðB12Þ

APPENDIX C: OPERATOR BASES AND THEIR
TRANSLATION

1. Introduction to different sets of operator bases

It has become customary to write the EFT operator basis
in a form that is algebraically simple, so each basic operator
is a single monomial of the fields with a single coefficient.
For the renormalizable part of the theory, this is justified by
the usual renormalization procedure where all terms are
renormalized multiplicatively.
There is vast literature on choices of operator bases for

dimension-six and dimension-eight operators in the electro-
weak sector; we only need a sample operator here to
demonstrate our point about the unitarization procedure, so
we only briefly mention the translation between the non-
linear and linear matrix representations of these operators.
An extensive discussion of the operator bases is a different
topic and discussed in a follow-up paper [117].

2. Translation between nonlinear and linear
matrix representation

We can compare the effective Lagrangians in
Appelquist-Alboteanu parametrization

L4 ¼ α4Tr½VμVν�Tr½VμVν�;
L5 ¼ α5Tr½VμVμ�Tr½VνVν�

from [18,20] in unitarity gauge

Vμ ¼̂ − igWa
μ
τa

2
þ ig0Bμ

τ3

2

to LS;0 and LS;1. Because we are only interested in the VBS
part of these two Lagrangians, simplifying the covariant
derivative from LS;0 and LS;1 as

DμH ¼ v
2
ð−igWμ − ig0BμÞ ¼

v
2

�
−igWa

μ
τa

2
þ ig0Bμ

τ3

2

�

¼ v
2
Vμ; ðC1Þ

ðDμHÞ† ¼ −
v
2
Vμ; ðC2Þ

leads to

LS;0 ¼ FS;0
v4

16
Tr½VμVν�Tr½VμVν�; ðC3Þ

LS;1 ¼ FS;1
v4

16
Tr½VμVμ�Tr½VνVν�: ðC4Þ

Therefore we can relate the coefficients of these different
notations,

α4 ¼ FS;0
v4

16
; ðC5Þ

α5 ¼ FS;1
v4

16
: ðC6Þ

So the coefficients for the operators LS;0 and LS;1 are
equivalent to values of α4 and α5 of ∼0.11, which are within
the limits from the latest ATLAS analysis [8]
(−0.14 < α4 < 0.16 and −0.23 < α5 < 0.24).

APPENDIX D: FEYNMAN RULES

1. Feynman rules from new physics operators

a. LS

The Lagrangian

LS;0 ¼ FS;0tr½ðDμHÞ†DνH� · tr½ðDμHÞ†DνH�; ðD1Þ

LS;1 ¼ FS;1tr½ðDμHÞ†DμH� · tr½ðDνHÞ†DνH�; ðD2Þ

leads to the following Feynman rules in the unitarity gauge
(neglecting all vertices including a Higgs boson and five
or more external fields):

Wþ
μ1W

þ
μ2W

−
μ3W

−
μ4

∶
ig4v4

16
½ðFS;0 þ 2FS;1Þðgμ1μ3gμ2μ4 þ gμ1μ4gμ2μ3Þ

þ 2FS;0gμ1μ2gμ3μ4 �; ðD3Þ

Zμ1Zμ2W
þ
μ3W

−
μ4

∶
ig4v4

16c2w
½FS;0ðgμ1μ3gμ2μ4 þ gμ1μ4gμ2μ3Þ þ 2FS;1gμ1μ2gμ3μ4 �;

ðD4Þ
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Zμ1Zμ2Zμ3Zμ4

∶
ig4v4

8c4w
ðFS;0 þFS;1Þðgμ1μ2gμ3μ4 þ gμ1μ3gμ2μ4 þ gμ1μ4gμ2μ3Þ:

ðD5Þ

b. LHD

The Lagrangian

LHD ¼ FHDtr

�
H†H −

v2

4

�
· tr½ðDμHÞ†DμH� ðD6Þ

leads to the following Feynman rules in unitarity gauge
(neglecting all vertices with more than one Higgs):

hWþ
μ W−

ν ∶
ig2v3

4
FHDgμν; ðD7Þ

hZμZν∶
ig2v3

4s2w
FHDgμν; ðD8Þ

2. Feynman rules: Unitarization corrections

These “Feynman rules” are only used for s-channel
scattering of VV → VV with the center-of-mass energy
s ¼ ðp1 þ p2Þ2 and counterterms Aij (50),

W�
μ1W

�
μ2 → W�

μ3W
�
μ4∶

g4v4

4

�
ðΔA02ðsÞ − 10ΔA22ðsÞÞ

gμ1μ2gμ3μ4
s2

þ 15ΔA22ðsÞ
gμ1μ3gμ2μ4 þ gμ1μ4gμ2μ3

s2

�
; ðD9Þ

W�
μ1W

∓
μ2 → Zμ3Zμ4∶

g4v4

4c2w

��
1

3
ðΔA00ðsÞ − ΔA20ðsÞÞ−

10

3
ðΔA02ðsÞ − ΔA22ðsÞÞ

�
gμ1μ2gμ3μ4

s2

þ5ðΔA02ðsÞ − ΔA22ðsÞÞ
gμ1μ3gμ2μ4 þ gμ1μ4gμ2μ3

s2

�
; ðD10Þ

W�
μ1Zμ2 → W�

μ3Zμ4

∶
g4v4

4c2w

��
1

2
ΔA20ðsÞ − 5ΔA22ðsÞ

�
gμ1μ2gμ3μ4

s2
þ
�
−
3

2
ΔA11ðsÞ þ

15

2
ΔA22ðsÞ

�
gμ1μ3gμ2μ4

s2

þ
�
3

2
ΔA11ðsÞ þ

15

2
ΔA22ðsÞ

�
gμ1μ4gμ2μ3

s2

�
; ðD11Þ

W�
μ1W

∓
μ2 → W�

μ3W
∓
μ4

∶
g4v4

4

��
1

6
ð2ΔA00ðsÞ þ ΔA20ðsÞÞ−

5

3
ð2ΔA02ðsÞ þ ΔA22ðsÞÞ

�
gμ1μ2gμ3μ4

s2

þ
�
5ΔA02ðsÞ −

3

2
ΔA11ðsÞ þ

5

2
ΔA22ðsÞ

�
gμ1μ3gμ2μ4

s2
þ
�
5ΔA02ðsÞ þ

3

2
ΔA11ðsÞ þ

5

2
ΔA22ðsÞ

�
gμ1μ4gμ2μ3

s2

�
; ðD12Þ

Zμ1Zμ2 → Zμ3Zμ4∶
g4v4

4c4w

��
1

3
ðΔA00ðsÞ þ 2ΔA20ðsÞÞ−

10

3
ðΔA02ðsÞ þ 2ΔA22ðsÞÞ

�
gμ1μ2gμ3μ4

s2

þ5ðΔA02ðsÞ þ 2ΔA22ðsÞÞ
gμ1μ3gμ2μ4 þ gμ1μ4gμ2μ3

s2

�
: ðD13Þ
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