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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit den Spektren von konformen
Sigma Modellen, die auf (verallgemeinerten) symmetrischen Räumen defi-
niert sind. Die Räume, auf denen Sigma Modelle ohne Wess-Zumino-Term
konform sind, sind Supermannigfaltigkeiten, also Mannigfaltigkeiten, die
fermionische Richtungen aufweisen. Wir stellen die Konstruktion von Ver-
tex Operatoren vor, gefolgt von der Hintergrundfeld-Entwicklung. Für semi-
symmetrische Räume berechnen wir anschließend die diagonalen Terme der
anomalen Dimensionen dieser Operatoren in führender Ordnung. Das Resul-
tat stimmt mit dem für symmetrische Räume überein, jedoch treten nicht-
diagonale Terme auf, die hier nicht weiter betrachtet werden.

Anschließend präsentieren wir eine detaillierte Analyse des Spectrums
des Supersphären S3|2 Sigma Modells. Dies ist eins der einfachsten Beispie-
le für konforme Sigma Modelle auf symmetrischen Räumen und dient als
Illustration für die Mächtigkeit der vorgestellten Methoden. Wir verwenden
die erhaltenen Daten, um eine Dualität mit dem OSP(4|2) Gross-Neveu
Modell zu untersuchen, die von Candu und Saleur vorgeschlagen wurde.
Wir verwenden dazu ein Resultat, welches die anomalen Dimensionen von
1
2
BPS Operatoren zu allen Ordnungen berechnet. Wir finden das gesamte

Grundzustandsspektrum des Sigma Modells. Darüber hinaus legen wir dar,
dass sowohl die Zwangsbedingungen als auch die Bewegungsgleichungen des
Sigma Modells korrekt vom Gross-Neveu Modell implementiert werden. Die
Dualität wird weiterhin durch ein neues exaktes Resultat für die anomalen
Dimensionen der Grundzustände unterstützt. Andererseits beobachten wir
für Operatoren mit mehreren Ableitungen Diskrepanzen. Es ist möglich,
dass diese Diskrepanzen im Zusammenang mit einer bekannten Instabilität
von Sigma Modellen stehen.

Die Instabilität von Sigma Modellen wird von Operatoren mit vielen
Ableitungen verursacht, die bei beliebig kleiner Kopplung relevant werden.
Diese Eigenschaft wurde bereits vor langer Zeit, zuerst im O(N)-Vektor-
Modell, beobachtet. Gross-Neveu Modelle besitzen generisch eine ähnli-
che Instabilität. Ryu et al. haben beobachtet, dass solche Operatoren in
psl(N |N) Gross-Neveu Modellen möglicherweise nicht vorhanden sind. Die
Beobachtung wurde für eine bestimmte Klasse von Operatoren in führen-
der Ordnung bestätigt. Wir zeigen analytisch, dass im psl(2|2) Modell in
der Tat alle invarianten Operatoren irrelevant bleiben. Darüber hinaus be-
stimmen wir das Spektrum des BPS-Sektors für unendliche Kopplung. Wir
finden keinen Hinweis auf einen Dualität mit dem CP1|2 Sigma Modell. Wir
schließen mit einer Diskussion von marginalen Deformation von Kazama-
Suzuki-Modellen.



Abstract

In this thesis the spectra of conformal sigma models defined on (general-
ized) symmetric spaces are analysed. The spaces where sigma models are
conformal without the addition of a Wess-Zumino term are supermanifolds,
in other words spaces that include fermionic directions. After a brief re-
view of the general construction of vertex operators and the background
field expansion, we compute the diagonal terms of the one-loop anomalous
dimensions of sigma models on semi-symmetric spaces. We find that the
results are formally identical to the symmetric case. However, unlike for
sigma models on symmetric spaces, off diagonal terms that lead to operator
mixing are also present. These are not computed here.

We then present a detailed analysis of the one-loop spectrum of the
supersphere S3|2 sigma model as one of the simplest examples. The analysis
illustrates the power and simplicity of the construction. We use this data to
revisit a duality with the OSP(4|2) Gross-Neveu model that was proposed
by Candu and Saleur. With the help of a recent all-loop result for the
anomalous dimension of 1

2
BPS operators of Gross-Neveu models, we are

able to recover the entire zero-mode spectrum of the supersphere model.
We also argue that the sigma model constraints and its equations of motion
are implemented correctly in the Gross-Neveu model, including the one-
loop data. The duality is further supported by a new all-loop result for the
anomalous dimension of the ground states of the sigma model. However,
higher-gradient operators cannot be completely recovered. It is possible
that this discrepancy is related to a known instability of the sigma model.

The instability of sigma models is due to symmetry preserving high-
gradient operators that become relevant at arbitrarily small values of the
coupling. This feature has been observed long ago in one-loop calculations
of the O(N)-vector model and soon been realized to be a generic property
of sigma models that persists to higher loop orders. A similar instability
has been observed for Gross-Neveu models which can be seen as a certain
deformation of WZNW models at level k = 1. Recently, Ryu et al. sug-
gested that the psl(N |N) Gross-Neveu models might be free of relevant
high-gradient operators. They tested this proposal at one-loop level for a
certain class of invariant operators. We extend the result to all invariant
operators and all loops for the psl(2|2) Gross-Neveu model. Additionally,
we determine the spectrum of the BPS sector at infinite coupling and ob-
serve that all scaling weights become half-integer. Evidence for a proposed
duality with the CP1|2 sigma model is not found. We conclude with a brief
discussion of marginal deformations of Kazama-Suzuki models.
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Chapter 1

Introduction

Non-linear sigma models (NLSM) play an important role in physics and
mathematics. While in d > 2 dimensions they fail to be renormalisable,
they are nevertheless still used as effective field theories and toy models to
study phenomena such as chiral symmetry breaking in high-energy physics
or the low energy behaviour of condensed matter models. When placed
on a d = 2 dimensional world sheet, NLSM become renormalisable [1–3].
In string theory, 2d NLSM are the central ingredient in the perturbative
expansion, see for example [4] for a review. Applications to condensed
matter physics include the low energy effective description of spin chains
and disordered fermions [5, 6].

A non-linear sigma model is a d-dimensional quantum field theory whose
fields are interpreted as parametrizing a (pseudo) Riemannian (super)man-
ifold M, which is known as the target space. The properties of the NLSM
depend on the target space. The presence of continuous symmetries sim-
plifies the study of the theory. As such, homogeneous target spaces are
particularly relevant. Homogeneous spaces can be represented as cosets of
Lie (super)groups M ≃ G/H. A symmetry is then given by left multiplic-
ation with elements of G and the subgroup H ⊂ G is the stabilizer of a
point on M.

Homogeneous spaces where the subgroup H is left invariant by an auto-
morphism ΘM : G → G of finite order M are known as (generalized)
symmetric spaces or ZM coset spaces. The case M = 2 corresponds to con-
ventional symmetric spaces. It is commonly believed that NLSM on sym-
metric (super)spaces are quantum integrable, at least for certain choices of
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1. Introduction

H, see for example [7, 8] and references therein. Classical integrability can
be established with much weaker assumptions on the denominator subgroup
H and also for general M [9, 10]. Non-linear sigma models on symmetric
spaces are of particular interest in the study of condensed matter systems.
Supercosets defined by an automorphism of order four play an important
role in the AdS/CFT correspondence since the motion of the superstring
in the most prominent examples can be described as an NLSM on such
cosets. Before introducing the questions addressed in the main body of this
thesis, we describe in more detail the role of non-linear sigma models with
supersymmetric target spaces in string theory. After that, we give a brief
illustration of the appearance of supersymmetric models in the context of
condensed matter systems.

String theory

In the perturbative definition of string theory two dimensional sigma mod-
els play a central role. The worldsheet theory is the non-linear sigma model
given by the embedding of the worldsheet into the space in which the string
propagates. The different choices of Riemannian surface as worldsheet then
define the perturbative expansion. The standard Neveu-Schwarz-Ramond
(NSR) approach to superstring theory is then to supersymmetrise the world-
sheet theory by introducing fermionic fields that are spinors on the world-
sheet manifold. This approach, while widely successful, does have its limit-
ations. Target space supersymmetry is not manifest and has to be enforced
through the GSO projection, which is also needed to remove the tachyon
from the spectrum. On higher genus Riemann surfaces the spin structure
is not unique and one has to sum over all possible choices in order to define
a consistent perturbation theory. It is also not known how to consistently
treat backgrounds with non-trivial Ramond-Ramond fluxes, which are rep-
resented by spin fields on the worldsheet, in the NSR description.

In order to circumvent these problems the alternative Green-Schwarz
approach can be used. Here, worldsheet supersymmetry is traded for mani-
fest supersymmetry of the target-space. The (pseudo) Riemannian man-
ifold of the target-space is replaced by a supermanifold, meaning a space
that includes fermionic directions. On the worldsheet, these fermions are
scalar fields. This approach has the advantage that summation over spin
structures is no longer required, and it allows the inclusion of non-trivial
Ramond-Ramond fluxes. On the other hand, the Green-Schwarz action
has a local fermionic symmetry, known as κ-symmetry, which needs to be
gauge-fixed before quantization. This gauge-fixing breaks target-space co-
variance which in turn complicates calculations of, for example, scattering

2



amplitudes.
The Green-Schwarz action has some unusual features. Even in flat space

it is not free before light-cone gauge is fixed and it does not include a kinetic
term for the fermions θA,

SGS =
1

2πℓ2S

∫

Σ

d2z

(
∂xµ −

i

2
θAγµ∂θA

)(
∂̄xµ −

i

2
θAγµ∂̄θA

)
+ S2 , (1.1)

where the coordinates of the bosonic base of the target space are denoted
by xµ, γµ are the Dirac matrices, and ℓS is the string length. Additional
terms that make the action κ-symmetric are included in S2. This form of
the action corresponds to the choice of a degenerate metric in the fermionic
directions. It is evident from the action (1.1) that both fermionic and
bosonic fields have dimension zero. This essential for making target-space
supersymmetry manifest.

A central motivation for considering the Green-Schwarz formalism is the
AdS/CFT correspondence [11]. Conformal field theories are conjectured to
be dual to strings moving in AdS backgrounds supported by non-trivial
Ramond-Ramond fluxes. Many of these backgrounds, and in particular the
most prominent ones, have the structure of a homogeneous space with a
symmetric space as bosonic base. The Green-Schwarz string moving on
these backgrounds can be described as an appropriate sigma model on a Z4

coset space [12–15], for example

AdS5 × S5 ≃

(
PSU(2, 2|4)

SO(4, 1)× SO(5)

)

0̄

,

AdS4 × CP3 ≃

(
OSP(6|4)

SO(3, 1)× U(3)

)

0̄

.

(1.2)

It is desirable to retain as much of the symmetry of the model as possible
in a manifest manner in order to simplify calculations. Since κ-gauge-fixing
breaks part of the symmetry, alternative approaches, specialized to the cases
at hand, have been developed. The hybrid [16–18] and pure spinor [19, 20]
formulations treat the fermionic coordinates on an equal footing with the
bosonic ones by choosing a non-degenerate metric and thereby including
a kinetic term for the fermions. To achieve a consistent formulation of
string theory on these target spaces, the pure spinor and hybrid formalisms
supplement the sigma model by pure spinor ghosts or additional matter
sectors.

As we have seen, sigma models with geometric fermions appear natur-
ally in approaches to string theory that deviate from the NSR description.
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1. Introduction

Among those, some of the most prominent ones are defined on Z4 cosets.
Further applications include Witten’s proposal of the CP3|4 B model as a
description of perturbative N = 4 super Yang-Mills theory [21], and their
role as mirror duals of rigid Calabi-Yau manifolds [22–24].

Disordered fermions

In statistical models with disorder it is necessary to average Green’s func-
tions and their products with respect to a random potential which represents
the disorder. One method of doing so uses the integral representation of
the Green’s functions, see [25]. Assume that for fixed disorder the model is
gaussian, that is at most quadratic in the fields. The random Hamiltonian
H can be split into two parts,

H = H0 + V, (1.3)

where H0 is a fixed Hamiltonian and V is a random potential describing
the disorder. Assume further that the potential is normally distributed so
that its probability density function P [V ] is given by

P [V ] = exp

(
−

1

2σ
tr
(
V 2
))

. (1.4)

The trace is taken over any internal degrees of freedom and the parameter
σ characterizes the strength of the disorder interaction. Observables of
interest, such as longitudinal or transversal conductivities, can be expressed
in terms of products of advanced and retarded Green’s functions averaged
over the disorder,

(
1

H − E − iε

)(
1

H − E ′ + iε

)
· · · . (1.5)

What makes computations difficult is the fact that the average is taken
after finding the Green’s functions. In order to do the averaging first, the
Green’s functions can be represented as gaussian integrals

1

H − E − iε
=

1

det[H − E − iε]

∫
Dψ ψψ∗ exp

(
±iψ∗ (H − E − iε)ψ

)
,

(1.6)
where ψ is a complex Grassmann field. The determinant prefactor can
equally be rewritten as a gaussian integral over bosonic fields,

1

det[H − E − iε]
=

∫
Dϕ exp

(
−iϕ∗(H − E − iε)ϕ

)
. (1.7)
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The interaction term can be integrated out because it is quadratic. After
integrating over V , the averaged Green’s function is given by the expression

(
1

H − E − iε

)
=

∫
DVDψDϕψψ∗ exp(Seff) , (1.8)

with the effective action

Seff = iψ∗(H0 − E − iε)ψ + iϕ∗(H0 − E − iε)ϕ−
σ

2
tr(ϕ∗ϕ+ ψ∗ψ)2 . (1.9)

The effective action (1.8) has a U(1|1) symmetry. Generalizing to higher
products of Green’s functions presents no difficulty as the random potential
can always be integrated out first. TheseN -fold products are then described
by analogous actions with U(N |N) symmetry. Using real fermions and
bosons instead would have resulted in an OSP(2|2) symmetric action.

The preceding discussion motivates the appearance of supersymmetric
theories and in particular those where the fermions have the same dimension
as the bosons in the study of condensed matter systems. For more detailed
expositions see for example [26, 25].

Dualities

In every application of non-linear sigma models, a complete understanding
of the theory is essential. Sigma models are interacting field theories and
as such are only well understood in the small-coupling limit. From the
point of view of string theory this corresponds to the point-particle limit,
where the length of the string is small compared to the size of the target-
space. Understanding sigma models when the string becomes large or,
equivalently, for strongly curved backgrounds is of central importance. In
the AdS/CFT correspondence, for example, the strong coupling limit of the
string theory corresponds to the weak coupling regime of the dual gauge
theory [11]. Thus, with good control over sigma models on AdS spaces at
strong coupling we could gain new insights into the gauge/string duality,
even without the help of integrability. At the same time, as we proceed to
smaller radius R stringy effects start to dominate and the original geometric
picture dissolves.

The sigma models discussed in this thesis are conformal for any value
of the coupling but they fall outside the standard classification of rational
CFTs. Instead, these theories are in general logarithmic and non-unitary.
Therefore, many standard tools and results derived for rational, unitary
CFTs naturally do not apply. The two properties – lack of unitarity and
the presence of logarithmic singularities in correlation functions – are closely

5



1. Introduction

related. Lack of unitarity can be most easily seen by observing that the the-
ories contain fermionic fields of dimension zero. These contribute with a
negative sign to the central charge c of the theory. Then, c is no longer a
good measure of the number of degrees of freedom and may even become
negative. For example, the sigma model on PSL(N |N) has central charge
c = −2 for all N . The presence of logarithmic singularities can be explained
using representation theory of supergroups. Unlike in the purely bosonic
case, finite dimensional representations of Lie supergroups are not always
completely reducible but may form complicated indecomposable structures.
Casimir operators can in general not be diagonalized on such indecompos-
able modules. The off-diagonal part then leads to logarithmic divergences
in correlation functions. For a recent review of conformal sigma models
and Wess-Zumino-Novikov-Witten (WZNW) models on coset superspaces
see [27]. A comprehensive overview of the properties of the underlying Lie
superalgebras can be found in [28].

For bosonic target spaces there are a few cases in which sigma models at
small radius are well understood through a dual description. The simplest
one is the free boson compactified on a circle of radius R. At R = 1
this theory possesses a description in terms of free fermions which can be
understood through bosonization and is known as Coleman-Mandelstam
duality [29, 30]. For interacting sigma models dualities are known as well.
Sigma models on complete intersection Calabi-Yau spaces can often be de-
scribed in terms of certain WZNW models when their couplings take special
values which are known as Gepner points. These provide an exactly solv-
able description and are best understood through the use of linear sigma
models [31].

Several dual descriptions of non-linear sigma models on supermanifolds
in terms of deformed WZNW models on supergroups have been proposed
[32–37]. Polyakov suggests a general pattern of dualities [32]. Candu and
Saleur have suggested a duality between the odd-dimensional superspheres
S2S+1|2S and the deformed WZNW model on OSP(2S + 2|2S), which is
supported by data from lattice simulations [33, 34] and analysis of the
boundary spectra [35]. It has also been argued that the NLSM on CP1|2

should be dual to the deformed psl(2|2) WZNW model [36, 37]. In this
thesis, we use recent results on the bulk spectra of sigma [38] and WZNW
[39] models to revisit these proposals.

Instability

Besides the strong-coupling description other fundamental questions about
sigma models remain unanswered. It was observed in [40] that high-gradient

6



operators become strongly relevant at arbitrarily small coupling. At infinite
radius, or zero coupling, the scaling dimension of an operator is given by the
number of derivatives. High-gradient operators, meaning operators with
a large number of derivatives, are thus highly RG-irrelevant in the free
theory. The usual assumption in perturbation theory is that corrections to
the weight, the anomalous dimensions, are small as long as the coupling is
small. However, it was shown in [40] that this assumption fails to hold for
the O(N)-vector model at one-loop. High-gradient operators can in fact
become relevant even at infinitesimal values of the coupling, which implies
that there is an infinite number of additional couplings in the theory. Similar
results have been found to hold for non-linear sigma models defined on a
wide variety of compact and non-compact target (super)spaces, see [41] and
references therein.

The generation of an infinite number of relevant operators presents a
problem. One might hope that higher orders in perturbation theory cure
this issue but it has actually been shown to become worse at two-loop order
[42]. It is still unknown how to interpret the presence of these relevant
operators. One possibility is to consider them to be signals of an instability
of the UV fixed point or the presence of a new higher fixed point. On the
other hand, lattice simulations have not shown signs of instabilities thus
far. Some authors have related the relevance of the high-gradient operators
to statistical fluctuations of the conductance of disordered metals at finite
size [43–46], although the validity of those conclusions remains unclear [41].
Note that Polyakov has argued [32] that this problem may be a desirable
feature which allows for a general pattern of dualities between non-linear
sigma models and WZNW models.

Furthermore, it has also been observed that WZNW models, when per-
turbed by a current-current Gross-Neveu-like deformation, suffer from a
similar issue [41]. This is true even if the perturbation preserves conformal
symmetry as it does for a number of target supergroups. It was noted in [41]
that the psl(N |N) WZNW model at level k = 1 could be free of relevant
high-gradient operators, at least to first order in perturbation theory. The
idea was tested and confirmed for a certain class of invariant operators. For
psl(2|2) we extend these results to all orders and all invariant operators.

7



1. Introduction

Organization of this thesis

• In Chapter 2 we provide a brief introduction to sigma models with a
particular focus on homogeneous target spaces defined by an automorph-
ism of finite order. Moreover, we discuss the related WZNW models and
present a previously obtained all-order result for a particular deformation
which is important in subsequent chapters.

• Chapter 3 then presents the method used to construct the spectra of
coset sigma models. The general formula for the one-loop anomalous di-
mension of sigma models on symmetric cosets is presented and discussed.
This review was previously published as part of [47]. We the begin to
extend the formula for the anomalous dimension to the case of Z4 cosets,
focussing on the conformal case. We compute the diagonal terms of the
one-loop dilatation operator which turn out to be formally identical to
the symmetric case. However, additional off-diagonal terms are present
which are not yet under good control.

• In Chapter 4 we combine the results and methods presented in the previ-
ous chapters to study the spectrum of the supersphere S3|2 sigma model
and investigate a proposed duality with the osp(4|2) Gross-Neveu model.
We find some intriguing agreement but also some tension with the duality.
These results were first published in [47]. Finally, we extend the com-
putation of the anomalous dimension for the ground states of the sigma
model to higher orders. We show that it vanishes at two- and three-loop
order in the conformal case and argue that for the supersphere S3|2 all
higher order corrections vanish as well. These last results have not been
previously published.

• In Chapter 5 we revisit a question about the stability of sigma models
and related theories. The all-order result for deformed WZNW models
reviewed in Chapter 2 is used to establish the absence of relevant high-
gradient operators in the psl(2|2) Gross-Neveu model. Furthermore, we
obtain the first few levels of the spectrum at infinite coupling, which turns
out to be half-integer valued. These results were first presented in [48].

• In Chapter 6 we comment on the existence of families of superspace
Kazama-Suzuki models that possess at least one marginal deformation.
These can be viewed as a generalization of the deformed WZNW models
that we previously discussed.

• We conclude with Chapter 7 and highlight opportunities for future re-
search directions. Technical details are collected in several appendices.
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Chapter 2

Sigma Models with Target-Space

Supersymmetry

In this chapter we introduce the main objects of study of this thesis, non-
linear sigma models on (super)coset spaces. Since the theory of these spaces
is based on the concept of a Lie superalgebra, we briefly introduce the most
important notions from the theory of these algebras. We do however, as-
sume a certain familiarity with the topic. For a comprehensive introduction,
we refer to the literature. We then discuss non-linear sigma models in some
generality before turning to the spaces on which we want to study them.

The related Wess-Zumino-Novikov-Witten models are introduced in Sec-
tion 2.4. In Section 2.5 we briefly review an all-loop result from [39]. In
the final section of this chapter we return to the representation theory of
Lie superalgebras. We illustrate concepts mentioned in the first section by
using representations of u(1|1) as an example.

2.1 Lie Superalgebras

Lie superalgebras are a generalization of Lie algebras that includes a Z2-
grading. While most concepts and constructions used in the theory of Lie
algebras carry over to the superalgebra case, many important theorems fail
to hold, or hold only in a limited sense. For example, simple Lie super-
algebras can be classified using (generalized) Dynkin diagrams, most have
a non-trivial Killing form, and non-trivial Casimir operators exist as well.
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2. Sigma Models with Target-Space Supersymmetry

Instead of giving a complete introduction to the theory of Lie superalgeb-
ras and their representations, we will only introduce essential notation. We
will illustrate an important point where the finite dimensional represent-
ation theory differs from that of conventional Lie algebras using a simple
example. For a more self-contained introduction to the theory of Lie su-
peralgebras see for example [49, 50]. A comprehensive collection of the
properties of simple Lie superalgebras can be found in [28].

A Lie superalgebra g is a direct sum of two vector spaces g0̄⊕ g1̄, where
g0̄ is a semi-simple Lie algebra which acts on g1̄. This decomposition defines
a grading function | · | as

|t| =

{
0 if t ∈ g0̄

1 if t ∈ g1̄.
(2.1)

In order to generalize from Lie algebras to Lie superalgebras, one then
replaces every property by its graded analogue. For example, the Lie bracket
[·, ·] becomes graded anti-symmetric

[t, s] = (−1)|t||s|[s, t] ∀s, t ∈ g. (2.2)

Later, we will work with fields on supergroups where the generators of the
Lie superalgebra are combined with Grassmann-valued fields such that the
combinations behave as if they were elements of a regular Lie algebra.

While in concrete calculations one often does not need to consider the
grading of the algebra, it has important consequences for the representation
theory. Most importantly, it is no longer true that every finite dimensional
representation is semi-simple, i.e. that it is the direct sum of irreducible
representations. Instead, reducible but indecomposable representations can
appear. One important property to keep in mind is that Casimir operators,
while they still exist, cannot be diagonalized in an indecomposable repres-
entation. It is also no longer true that the tensor product of two irreducible
(i.e. simple), finite dimensional representations is the direct sum of irredu-
cible representations. For our purposes the most relevant indecomposable
representations, or modules, are called projective. Projective modules P
have the important property that they cannot appear as a submodule of
a larger indecomposable. That means that, wherever they appear, they
constitute direct summands.

The notion of a projective module generalizes that of a semi-simple
module in the sense that the property of being projective is preserved un-
der most operations, in particular under tensor products and restriction to
subalgebras. Note that projective modules in this context are not related to

10



2.2. General sigma models

representations where the commutation relations are satisfied only up to a
phase, which are also known as projective representations. Projective mod-
ules play a central role in the harmonic analysis on supergroups. We will
discuss this in more detail in chapter 3. Let us introduce some final pieces
of terminology which we will be using throughout the text. A module that
is both semi-simple and projective is called typical, while all other modules
are known as atypical. In the physics literature these are also known as long
and short multiplets, respectively, and atypical modules are further known
as BPS representations.

2.2 General sigma models

A non-linear sigma model is a quantum field theory which is defined on a
d-dimensional worldsheet Σ, where the fields take values in a Riemannian
(super)manifold (M, g) and g is a Riemannian metric on the manifold M.
Note that the standard definition of a sigma model on a Riemannian man-
ifold can be generalized without problem to include supermanifolds. The
fields φ can be viewed as a map

φ : Σ → M (2.3)

that gives an embedding of the worldsheet into the target manifold. If the
metric on the worldsheet is denoted ηµν then the sigma model is defined by
the action

SSM [φ(σ)] =
1

2

∫

Σ

ddσ ηµνgab(φ)∂µφ
a∂νφ

b, (2.4)

where σ denotes the coordinates on the worldsheet. In d > 2 dimensions the
action (2.4) is not renormalizable. It is, however, still used as an effective
field theory to study, for example, chiral symmetry breaking.

In d = 2 dimensions the sigma model is renormalizable. The action
(2.4) is not the most general one, as topological terms and a B-field can be
added. Their existence and precise form depends on the target manifold in
question. To first order in perturbation theory, the β-function of the sigma
model (2.4) is proportional to the Ricci tensor of the target space [3],

βab =
1

2π
Rab . (2.5)

In this thesis we will consider the case where the target manifold is a
(right) coset of Lie (super)groups. That is, M ≃ G/H, with G a Lie (su-
per)group and H ⊂ G a sub(super)group. The quotient is defined through
the identification

g ∼ gh ∀h ∈ H ⊂ G (2.6)
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2. Sigma Models with Target-Space Supersymmetry

of elements g ∈ G. We assume further that the Lie (super)algebra g of G
is equipped with an invariant, non-degenerate bilinear form (·, ·) and that
its restriction to the algebra h of H is also non-degenerate. It follows that
h has an orthogonal complement m in g, i.e. g = h ⊕⊥ m, and that h acts
on m

[h,m] ⊆ m. (2.7)

In particular, the orthogonal projectors P ′ onto h and P = 1 − P ′ onto m

commute with the action of h.
Given the above assumptions, the coset G/H can be equipped with a G

left-invariant and H right-invariant metric which is induced by the invariant
bilinear form. In order to make the coset nature of sigma models manifest,
we formulate them in terms of the Maurer-Cartan form J on G which is left-
invariant under the global G-action. Its pullback to the worldsheet under
the embedding map g : Σ → G is

J(σ) = g(σ)−1dg(σ) =: Jµdσ
µ. (2.8)

Using these currents one can define the action

S =
1

2

∫

Σ

d2σ
(
ηµν
(
P (Jµ), P (Jν)

)
+ ǫµνB

(
P (Jµ), P (Jν)

))
(2.9)

where we have now also included the B-field, which is anti-symmetric in
its arguments, and ǫµν , the two-dimensional Levi-Civita tensor. The action
(2.9) is still not the most general one. It is possible to deform the metric
whenever m is not irreducible as an h representation. In that case, the
metric can be scaled independently for each subrepresentation. The metric
chosen in the action (2.9) is, however, the most symmetric one and will be
the one we consider.

To see that the action (2.9) is well defined on the space G/H, consider
the action of a local H right-transformation h : Σ → H on the Maurer-
Cartan form J ,

g(σ) 7→ g(σ)h(σ) ⇒ J(σ) 7→ h(σ)−1J(σ)h(σ) + h(σ)−1dh(σ) , (2.10)

so that the projected currents transform by conjugation with h(σ). Since
the bilinear form is h invariant, the action is independent of the choice of
coset representative.

2.3 Generalized symmetric coset spaces

After describing the sigma model for general coset spaces, we now specialize
to the case where the denominator group H is given as the invariant locus
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2.3. Generalized symmetric coset spaces

of an order 2N automorphism Θ of the numerator. Such spaces include
symmetric spaces, corresponding toN = 1, as well as generalizations thereof
which occur in the context of AdS compactifications. An automorphism of
order 2N defines a direct sum decomposition of the algebra

g =
2N−1⊕

A=0

mA, with m0 = h (2.11)

into the eigenspaces mA of Θ. The automorphism acts on these eigenspaces
by

and Θ(mA) = e
2πiA
2N mA . (2.12)

Since Θ is an automorphism of g one also has

[mA,mB] ⊂ mA+Bmod 2N and

(mA,mB) = 0 if A+B 6= 0 mod 2N .
(2.13)

In particular, h = m0 acts on the eigenspaces of the decomposition. Note
that again the spaces mA need not be indecomposable under the action of h.
In that case, the decomposition into h-modules is finer than the one given
by the automorphism (2.11), but this will depend on the individual case.

2.3.1 Symmetric coset spaces

The case N = 1 corresponds to symmetric target spaces and has been
extensively considered in the literature, see for example [51–54, 41, 37]. In
this thesis we will be particularly interested in the case where the sigma
model is conformal, in other words its β-function identically vanishes for all
values of the coupling. The requirement that the β-function of the sigma
model vanishes at one-loop level implies that the numerator group must
have vanishing dual Coxeter number. This condition excludes the classical
Lie groups and leads us to consider Lie supergroups. Among the basic
simple supergroups only

OSP(2P + 2|2P ), PSL(P |P ), D(2, 1;α) (2.14)

fulfill this requirement. Not all their symmetric cosets lead to conformal
field theories beyond one-loop. In the absence of worldsheet supersymmetry,
it was found in [50] that higher-loop contributions vanish if and only if

Casg(g) = 0

Cashi(m) = 0,
(2.15)
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2. Sigma Models with Target-Space Supersymmetry

where Casg(R) denotes the value of the quadratic Casimir operator of g on
the representation R. Here we have also split the algebra of the denominator
group into its simple summands h =

⊕
i hi. The first condition is again the

statement that the dual Coxeter number g∨ = Casg(g)/2 of the numerator
group has to vanish. The second requirement restricts the possible choices
of symmetric quotients to [50, 55, 8]

OSP(2P + 2Q+ 2|2P + 2Q)

OSP(2P + 1|2P )× OSP(2Q+ 1|2Q)

PSL(P +Q|P +Q)

SL(P + 1|P )× SL(Q− 1|Q)
(2.16)

PSL(2P |2P )

OSP(2P |2P )
.

Additionally, the principal chiral model, which is a non-linear sigma model
with a group manifold as target space, on the supergroups (2.14) can be
included in this list by observing that

G ≃
G×G

G
, (2.17)

where the quotient is taken with respect to the diagonal right action. While
equation (2.17) may seem trivial, it shows that every group can be thought
of as a symmetric space. In this sense, the supergroups (2.14) satisfy the
conditions (2.15) and the principal chiral model on these groups is con-
formal [8, 56, 18].

The first and second of the families (2.16) are real and complex super-
Grassmannians. They include the odd dimensional superspheres S2n+1|2n

and complex projective superspaces CPn−1|n. These are the only spaces in
the lists (2.14) and (2.16) that are simultaneously compact and Riemann.

2.3.2 Semi-symmetric cosets

The case N = 2 has received some attention as it includes AdS backgrounds
that are of interest in the context of the AdS/CFT correspondence. Coset
spaces defined by a Z4-automorphism are also referred to as semi-symmetric
spaces. Conditions for the vanishing of the β-function at one-loop level
were found in [18] and generalized to arbitrary N in [57]. For N > 1 we will
assume that the Z2N grading induced by Θ is consistent with the Z2 grading
of the superalgebra, i.e. that m2A ⊂ g0̄ and m2A+1 ⊂ g1̄. This condition is
not necessary, and would indeed be too restrictive, for the symmetric case
N = 1. For N = 2 it ensures that the bosonic base of the supermanifold is
a symmetric space.
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2.4. WZNW models

To exhibit the form of the action considered in [57], we generalize the
notation for the projectors onto the eigenspaces of Θ, PA : g → mA. The
sigma model action is then given by

SG/H =
R2

2π

∫

Σ

d2z

2N−1∑

A=1

(pA + iqA)
(
PA(J), P2N−A(J̄)

)
, (2.18)

where we have introduced complex coordinates on the Euclidean worldsheet
and scaled out an overall normalization. The overall coefficient R is the
radius of the target space and plays the role of the inverse coupling. The
coefficients pA and qA are required to obey the consistency conditions

pA = p2N−A and qA = −q2N−A. (2.19)

The symmetric part corresponds to the metric, while the antisymmetric
part corresponds to the B-field. In [57] it was found that the sigma model
defined by the action (2.18) is conformal at one-loop level if

pA = 1 ∀A and qA = 1−
A

N
(2.20)

and the dual Coxeter number of the numerator G vanishes. Note that
the condition for one-loop conformal invariance of the sigma model (2.18)
coincides with the condition for its classical integrability [10].

The action (2.18) with coefficients (2.20) is somewhat unusual as the
kinetic terms for the fermions are of second order in the derivatives, as
opposed to the more common first order. It is also not the action which is
used in the Green-Schwarz formulation of string theory that we discussed in
the introduction. The Green-Schwarz action (1.1) for Z4 cosets is obtained
by setting N = 2 and p1 = 0 which leaves no kinetic term for the fermions.
The latter case corresponds to a degenerate metric on the supermanifold
G/H and quantization requires gauge fixing of the resulting κ-symmetry.

2.4 WZNW models

Sigma models should not be discussed in isolation. Topological terms that
respect the symmetry can be added to the action. The most well known
case yields the Wess-Zumino-Novikov-Witten model on a (super)group by
adding a Wess-Zumino (WZ) term to the action of the principal chiral
model. If the structure constants of the (super)group G are fabc, the Wess-
Zumino term is

SWZ =

∫

B

d3σ ǫµνρf
abcJµa J

ν
b J

ρ
c , (2.21)
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2. Sigma Models with Target-Space Supersymmetry

where ǫµνρ is the three-dimensional Levi-Civita symbol normalized as ǫ123 =
1. The integration proceeds over an auxiliary three-dimensional manifold
B such that ∂B = Σ. The extension of the fields to B may introduce an
ambiguity into the definition of the action (2.21). In this case a quantization
condition is imposed on the coupling constant in order to render the path
integral well defined.

By construction, the principal chiral model and the Wess-Zumino term
have a global G×G symmetry given by left and right multiplication. If the
coupling constants of the principal chiral model and the Wess-Zumino term
are fine-tuned, the symmetry of the model is enhanced to an affine ĝ ⊕ ĝ

symmetry. In terms of the currents the affine ĝ-algebra is given as

Ja(z)Jb(w) =
k(Ja, Jb)

(z − w)2
+
f c
ab Jc(w)

z − w
+ non-sing. (2.22)

and the second copy is given in terms of the anti-holomorphic currents.
The coefficient k is the level of the algebra. Note that in the case of the
supergroups (2.14) the exact definition of the level in terms of the coup-
ling constant in the action is somewhat subtle. Normally, the Killing form
provides a canonical normalization of the metric. For the supergroups (2.14)
the Killing form vanishes so that there is no canonical normalization. Since
these subtleties are not relevant to our discussion, we suppress the coupling
constant.

Apart from the aforementioned subtlety, WZNW models on supergroups
can be treated in much the same way as on bosonic groups. In particular,
the affine symmetry (2.22) implies a Virasoro symmetry given by the usual
Sugawara construction. If g is simple, the associated central charge c is

c =
k sdim(g)

k + g∨
, (2.23)

where sdim(g) = dim(g0̄) − dim(g1̄) is the superdimension of g and g∨ is
its dual Coxeter number. Observe that whenever g∨ = 0 the central charge
does not depend on the value of the level. This does not mean, however,
that the field content of the theory is also independent of the level. Both the
singular vectors of a representation as well as which representations occur in
the first place do depend on the value of k, much as they do in the bosonic
case. This can be easily seen by observing that the affine extension ĝ0̄ of the
bosonic subalgebra of g is contained in ĝ. Here an additional peculiarity of
supergroup WZNW models can be observed. Due to the indefinite signature
of the metric, one part of ĝ0̄ will generically have negative level. An affine
algebra with negative level can be interpreted as arising from a WZNW
model with non-compact target space.

16



2.5. An all-loop result for deformed WZNW models

Finally, principal chiral models on non-abelian bosonic groups are not
conformal by themselves and need to be supplemented by the addition of
the WZ term with an appropriately fine-tuned coefficient in order to cancel
the anomaly. This is no longer true in the case of the groups (2.14).

2.5 An all-loop result for deformed WZNW

models

In [39] current-current deformations of supergroup WZNW models were
studied. In particular it was argued that the deformation by the operator

ω(z, z̄) = Ja(z)J̄a(z̄) (2.24)

is truly marginal, provided that the Lie supergroup has vanishing dual
Coxeter number, i.e. that G is from the list (2.14). In the definition of ω the
sum runs over all directions a in the Lie superalgebra g. The deformation
breaks the affine symmetry. Since it does not even commute with the zero
modes of the chiral currents, it also breaks the left and right g symmetries.
On the other hand, the sum of left and right zero modes does commute with
the perturbing operator so that the deformed theory preserves the diagonal
g action.

Of course, under the perturbation with the operator (2.24) the conformal
weight of fields can change, i.e. fields may develop an anomalous dimension
which depends on the coupling g. In general, this anomalous dimension
is difficult to compute, at least beyond the leading order in perturbation
theory. Remarkably, for a special subset of fields, the authors of [39] man-
aged to obtain an all order expression. In physics terminology, the fields
for which this was possible are those that transform in maximally atypical,
or 1

2
BPS, representations of the target space symmetry g. More precisely,

the formulas of [39] hold for all indecomposable field multiplets of g which
contain a subrepresentation of non-zero superdimension. For such fields,
the anomalous dimension reads

δ(∞)
g hBPS =

g

2(1− k2g2)

[
CasDg (ΛBPS)− (1− kg)

(
CasLg +CasRg

)]
.

(2.25)
Here CasL/Rg refers to the value of the quadratic Casimirs on the left and
right representations in the unperturbed model, respectively. The super-
script D means that the Casimir element is evaluated with respect to the
diagonal action. We have placed the subscript ’BPS’ on both sides of the
equation to remind us that this formula should only be applied to fields
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2. Sigma Models with Target-Space Supersymmetry

that transform in maximally atypical representations Λ under the diagonal
action. On the other hand, their transformation law with respect to the
left- or right-action in the WZNW model is not constrained.

2.6 Intermezzo: Representations of u(1|1)

Before we proceed, we want to illustrate features that representations of Lie
superalgebras exhibit. The reader who is familiar with the representation
theory of Lie superalgebras may safely skip this section. It is intended to
serve as a pedagogical example. As we mentioned in section 2.1, irreducible
representations of Lie superalgebras may form indecomposables. To show
that one cannot exclude these types of representations we work out an
explicit example for the algebra u(1|1).

The algebra u(1|1) is generated by the even elements E and N and the
odd elements ψ±. The only non-trivial commutation relations are

[N,ψ±] = ±ψ±, [ψ+, ψ−] = E. (2.26)

Recall that the bracket [·, ·] is graded anti-symmetric and we do not use
different notation for the bracket when acting on even or odd generators.

Irreducible representations are labeled by the eigenvalues e and n of the
bosonic generators on a lowest weight vector. For e 6= 0, we denote the
irreducible representation 〈e, n〉. It is two-dimensional and spanned by the
vectors |0〉 and |1〉 which are even and odd, respectively. The action of the
generators is now defined as

ψ−|0〉 = 0, ψ+|0〉 = |1〉 and ψ−|1〉 = [ψ−, ψ+]|0〉 = e|0〉. (2.27)

Evidently, ψ± raise and lower the eigenvalue of N by 1. These representa-
tions are typical.

We now see why we excluded e = 0. If we set e = 0 in the definition
(2.27) the representation becomes reducible, but indecomposable. The irre-
ducible one dimensional subrepresentations are labeled by the eigenvalue of
N and denoted 〈n〉. These are the irreducible atypical representations. To
show that one cannot exclude indecomposalbe representations when dealing
with Lie superalgebras, we take the tensor product of the two typical repres-
entations 〈e, n〉 and 〈e′, n′〉 = 〈−e, n′〉. Let us also introduce the shorthand
|a, b〉 := |a〉 ⊗ |b〉 with a, b = 0, 1. It is clear that E|a, b〉 = 0. The action of
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2.6. Intermezzo: Representations of u(1|1)

the fermionic generators is given in the following diagram:

|0, 1〉+ |1, 0〉

|0, 0〉

ψ+ 55

|1, 1〉

ψ−ii

|0, 1〉 − |1, 0〉
ψ+

55

ψ−

ii

(2.28)

In following the action of the generators one needs to keep the grading of
the states in mind. Since E|a, b〉 = 0, one can only move along the arrows
and not against them. Thus, the representation (2.28) is reducible but in-
decomposable. It has to be a projective representation since it was obtained
from the tensor product of a typical representation, which is also projective.
In this case, it is also obvious that the representation (2.28) cannot occur as
a subrepresentation of a larger module since the odd generators square to
zero. It is labeled P〈n+n′+1〉. The projective representations P〈n〉 are called
projective covers. They are the smallest projective representations that
contain the representation 〈n〉 as a subrepresentation. It is these projective
covers that play a central role in the harmonic analysis on supergroups.

19





Chapter 3

The Spectrum of Coset Sigma

Models

This chapter consists of three parts. In Section 3.1, we review the con-
struction of vertex operators in sigma models on coset (super)spaces G/H
that was presented in [38]. We will be making the same assumptions on
the groups G and H as in Section 2.2. As was shown in [38], when the
target-space is symmetric this choice of vertex operators diagonalizes the
one-loop dilatation operator. The rest of this chapter will be devoted to
the computation of the one-loop anomalous dimensions of vertex operators
for Z4-coset spaces. Section 3.2 sets up the calculation by presenting the
background field expansion. In Section 3.3 we then present the calculation
of the diagonal terms of the one-loop dilatation operator. These turn out
to be formally identical to the symmetric case. However, off-diagonal terms
are also present. These are not computed here.

3.1 Construction of vertex operators

In this section we present the construction of vertex operators on homogen-
eous (super)spaces. We begin with a simple example in order to motivate
the setup. While the construction of field operators reviewed in Subsection
3.1.2 holds for all coset models G/H, our discussion of the zero modes is
limited to compact G.
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3. The Spectrum of Coset Sigma Models

3.1.1 Prologue: Vertex operators for flat targets

Let us motivate the prescription given [38] with a few comments on the
usual vertex operators of a free boson, i.e. a sigma model on the coset space
S1 = SO(2)/SO(1) with trivial denominator group H = SO(1) = {e}. As
is well known, the space of such operators is spanned by

Φk;p,p(z, z̄) = eikθ(z,z̄)pm(j, ∂j, . . . )pm(, ∂̄, . . . ) . (3.1)

Here, j = j(z) is the current j = i∂θ and  is of the same form but with a
derivative ∂̄ instead of ∂, i.e.  = i∂̄θ. The object pm denotes the monomial

pm(j, ∂j, . . . ) = jm1(∂j)m2 · · ·

in j and its derivatives. The powers mi are components of the multi-index
m = (m1,m2, . . . ) we have placed on p. Of course, the definition of p is
similar, but with derivatives ∂̄ instead of ∂. Note that the multi-index m

is independent of m.
The operators exp(ikθ) are associated to the zero modes of the free

boson, i.e. there is one such operator for each function on the target space.
For m = 0 = m we obtain the usual tachyon vertex operators. The choice
m = (1, 0, 0, . . . ) = m corresponds to the vertex operators for massless
states etc.

3.1.2 Vertex operators for G/H

In generalizing this discussion to non-trivial coset models G/H we must
address how to replace the currents j and , the tail monomials p and p

and the zero mode contributions exp(ikX).
Let us begin with the fields j and . One could imagine to simply take

derivatives of coordinate fields θJ that are associated with some choice of
coordinates on G/H. While this works just fine for a flat target space, it
is not the smartest choice for curved backgrounds. Instead, we shall adopt
the definition

jα := EJ
α(θ)∂θJ , α := EJ

α(θ)∂̄θJ (3.2)

where EJ
α is the Vielbein of the coset space. Equivalently, if we think of the

points on G/H as being parametrized by orbits of group elements g ∈ G
under the right action of H, we can also construct j and  as

jα =
(
g−1∂g, tα

)
, α =

(
g−1∂̄g, tα

)
. (3.3)

Here, tα runs through a basis in the quotient space m = g/h. Here we have
made contact with the formulation presented in Chapter 2 and we have

j = jαt
α = P (J). (3.4)
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As discussed in section 2.2, the space m carries an action of the denominator
Lie (super)algebra h. Its dimension coincides with the dimension of G/H.
Note that there is one crucial difference with respect to the flat target S1,
namely our fields j and  transform non-trivially under the action of the
denominator algebra. Of course, physical fields of the coset model must be
invariant. Hence, it will be important to keep track of how the composite
fields we are about to construct transform under h.

A field can contain arbitrary products of jα and α and their derivatives,
just as for flat targets. Since the multiplets (jα) and (α) transform in the
representation m of h, we can build tails in any subrepresentation [µ] that
appears in some tensor power of m. More precisely, we can pick two multi-
indices m and m as in our discussion of the compactified free boson and
then choose two intertwiners

Pµ,m :
⊗

i

m⊙mi → [µ] , Pµ,m :
⊗

i

m⊙m̄i → [µ]. (3.5)

Here, we used m⊙m to denote the m-fold (graded) symmetric tensor power
of m. Given any such intertwiner, we construct the tail factor

pµ,m(j, ∂j, . . . ) = Pµ,m

[
j⊙

m1 ⊗ (∂j)⊙
m2 ⊗ · · ·

]
= Pµ,mjm (3.6)

and similarly for the second contribution that involves  and its derivatives
with respect to ∂̄. We have used tensor products and powers instead of
ordinary ones to remind us that j is a multi-component object. Note that
there is a finite number of intertwiners Pµ,m and Pµ,m for any given choice
of m and m. This finite choice has no analogue in a flat background.

Having discussed the tail of our vertex operators, we also need to ad-
dress the zero mode factors. In the compactified free boson the zero mode
contribution was a function on the target space. Functions on the coset
space G/H can be thought of as H-invariant functions on the group G.
But since our tail factors transform non-trivially under H, it seems natural
to admit zero mode contributions whose transformation behavior under the
right action of H on G is non-trivial as well. More precisely, for any given
representation Sλ of H on the carrier space Sλ let us consider the following
space of Sλ-valued functions on G,

Γλ = Γλ(G/H) = {F ∈ L2(G)⊗ Sλ : F (gh) = Sλ(h
−1)F (g) ∀h ∈ H} .

(3.7)
Elements of the linear space Γλ may be considered as sections DΛλ in a
homogeneous vector bundle on G/H [58]. The sections then transform in
a representation Λ of G. We will analyse the structure of these vector
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3. The Spectrum of Coset Sigma Models

bundles in the next subsection. We will denote the vertex operators that
are associated to the sections

VΛλ(z, z̄) := V [DΛλ](z, z̄). (3.8)

At this point we have discussed three ingredients of our vertex operators,
namely the tail factors pµ,m and pµ,m along with the zero mode contribution
DΛλ ∈ Γλ. These transform in the representations µ, µ and λ of the denom-
inator algebra h. Obviously, a physical field in the coset model must be h

invariant. Hence, we must glue our three ingredients with an intertwiner

Cλµµ : [λ]⊗ [µ]⊗ [µ] → C (3.9)

from the triple tensor product between the representations [λ], [µ] and [µ]
of the denominator algebra h to the complex numbers. Fields of the coset
model now take the form

ΦΛ(z, z̄) = dλµµ
(
VΛλ ⊗ jm ⊗ 

m

)
(z, z̄), Λ := (Λ, λ, µ, µ) (3.10)

where we also defined dλµµ := Cλµµ
(
idλ ⊗Pµ,m ⊗Pµ,m

)
. By construction,

these fields are invariant under the action of the denominator group H.
On the other hand, the action of the numerator group G is non-trivial. It
is determined by the way the section VΛλ transforms. The label Λ is the
curved space analogue of the linear momentum k in a circular target S1.

The labels (Λ, λ, µ, µ) we have placed on the symbol Φ do not keep
track of all the freedom we have in the construction of vertex operators.
In order to count all possible fields of the coset model one needs to count
the intertwiners P,P and C that were introduced in eqs. (3.5) and (3.9),
respectively. In addition, there is often some freedom in the choice of the
section VΛλ ∈ Γλ. While the number of intertwiners may be determined
straightforwardly from the fusion rules of the Lie (super)algebra h, the space
of sections in homogeneous vector bundles requires input from harmonic
analysis. We will analyse the space Γλ in the next subsection. For O(N)
vector models, i.e. the coset sigma models with target space O(N)/O(N−1),
the space of fields has been counted in [38] and the result was shown to agree
with other descriptions of the field space for these models.

3.1.3 Homogeneous vector bundles on G/H

As we explained in the previous subsection, a good control over vertex
operators of coset models requires some knowledge about sections in homo-
geneous vector bundles over G/H and their transformation behavior under
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3.1. Construction of vertex operators

the (left) action of G. Our main goal in this subsection is to explain the
decomposition

Γλ ∼=
∑

Λ

nΛλ [Λ] . (3.11)

Here, the linear space Γλ is considered as a representation of the numerator
Lie (super)algebra g. The summation on the right hand side runs over
irreducible representations [Λ] of this algebra. Let us stress that for Lie
superalgebras, the sum is not direct, at least not in general. We will return
to this issue below.

In the expansion (3.11), each summand [Λ] appears with some multi-
plicity nΛλ. Following standard mathematical notation, we shall also write

nΛλ = [Γλ : SΛ] (3.12)

for the number of times a given irreducible representation SΛ of g appears
in (the decomposition series of) the space Γλ of sections. It is a central
result from harmonic analysis of compact supergroups that

[ Γλ : SΛ ] = [PΛ|h : Pλ ] . (3.13)

The objects PΛ and Pλ denote representations of the Lie superalgebras g

and h, respectively. These particular representations are called projective
covers, see e.g. [59, 27] for a precise definition and more background. They
coincide with the irreducible representations SΛ and Sλ when no shorting
conditions are satisfied, i.e. when both Λ and λ are non-BPS. The case of
BPS (or atypical) multiplets will be discussed in more detail below. After
restriction to h ⊂ g, the representation PΛ gives rise to a representation
PΛ|h of h. The number on the right hand side of equation (3.13) denotes
the number of times the representation Pλ appears in the representation
PΛ|h.

All this might seem a bit abstract at first. So, let us briefly illustrate
the content of eq. (3.13) for the coset space S2 = SU(2)/U(1). In this case,
there exists an infinite set of complex line bundles which are parametrized
by the monopole number k ∈ Z. This number and hence the associated
bundles are in one-to-one correspondence with irreducible representations
Sk of the denominator group H = U(1). For monopole number k = 0 we
are dealing with the trivial line bundle, i.e. with functions on S2. Of course
we know very well how the space of functions decomposes under the action
of su(2): Each integer spin representation appears with multiplicity one.
We may recover this fact from our formula (3.13) as follows. The space of
functions on S2 is associated to the label λ = 0. We want to know how
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3. The Spectrum of Coset Sigma Models

many times an irreducible representation SΛ = Sj of su(2) appears in the
decomposition of Γ0. According to eq. (3.13), this number is given by

[Γ0 : Sj] = [Sj|U(1) : S0] =

{
1 for j ∈ N

0 for j ∈ N+ 1
2

. (3.14)

Here S0 denotes the trivial representation of h. For bosonic Lie groups, we
do not have to distinguish between projective covers Pj and irreducibles,
i.e. Sj = Pj. The second equality follows from the fact that the spin j
representation Sj contains exactly one state on which the generator J3 of
the u(1) ⊂ su(2) has zero eigenvalue if and only if j is integer. For non-
trivial monopole line bundles, the evaluation proceeds along the same lines.
In this case the space Γk of sections contains each integer spin representation
Sj satisfying j ≥ k with multiplicity one.

The only additional complication we have to deal with in applying eq.
(3.13) to superspaces comes from the distinction between irreducibles and
projective covers. For typical (long) multiplets SΛ of a Lie superalgebra
g, the projective cover PΛ agrees with SΛ = PΛ. But if SΛ is an atypical
(short) multiplet then PΛ 6= SΛ is an indecomposable representation. It
should be considered as a very specific ‘composite’ representation that is
built from several short multiplets. For the Lie superalgebra g = osp(4|2)
the projective covers are discussed explicitly in appendix B. Of course, short
representations of the denominator algebra h can also be combined into
projective covers, see appendix C where the projective covers for osp(3|2)
are discussed. Let us finally mention that upon restriction from g to the
subalgebra h ⊂ g, a projective cover PΛ decomposes into a direct sum of
projective covers Pλ. Hence, the numbers on the right hand side of eq.
(3.13) are well defined. We shall compute them for homogeneous vector
bundles on the supersphere S3|2 later on.

Let us briefly mention one simple example that can be used to illustrate
how important the distinction between irreducibles and projective covers
is. To this end we consider the homogeneous vector bundle Γad on the
supersphere S3|2 that is associated with the adjoint representation of the
denominator algebra osp(3|2). It turns out that this bundle contains two
multiplets of sections which transform in the adjoint representation SAd of
the numerator algebra osp(4|2), i.e. [Γad : SAd] = 2. On the other hand, the
adjoint representation of osp(4|2) is 17-dimensional and that of osp(3|2) is
12-dimensional. Hence, for dimensional reasons, the restriction of SAd to
osp(3|2) contains Sad only once,

2 = [PAd|h,Pad] 6= [SAd|h,Sad] = 1. (3.15)
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3.2. Background field expansion

This example demonstrates that harmonic analysis on superspaces requires
a bit of extra care precisely because of the existence of BPS representations.

Before we conclude this subsection let us stress once more that formula
(3.13) is restricted to compact (super)algebras. This does not mean that
similar control of homogeneous vector bundles can not be achieved when
G is non-compact. As long as H is compact, one can continue to derive
results on the decomposition of homogeneous vector bundles from the har-
monic analysis of G. So, if the latter is understood, homogeneous vector
bundles pose no additional problems. When H in non-compact, however,
normalizable sections of on G/H are no longer obtained from normalizable
functions on G and hence cosets with non-compact denominator require
an independent analysis. Nevertheless, the decomposition of homogeneous
vector bundles is known in many concrete examples.

3.2 Background field expansion

In this section we define the background field expansion that is used in the
calculations. We begin with the expansion of the action to first order before
we present the expansion of the vertex operators.

3.2.1 One-loop action

For the one-loop computation of anomalous dimensions we need to expand
the action to leading order in the background field expansion. In order to
do so, we introduce the coordinates

ı : G/H → G , g0e
φH 7→ g0e

φ , (3.16)

where φ ∈ m. The expansion of the currents j in these coordinates is

j = Pe−φ∂eφ = P

[
∂φ−

1

2
[φ , ∂φ] +

1

6
[φ , [φ , ∂φ]]

]
+ · · · (3.17)

and similarly for . Let us introduce the notation φA := PAφ = tAi φ
i
A, where

tAi with i = 1, . . . , dim gA denotes a basis of gA. Note that the objects φA
are Grassmann even by construction. Hence, in working with φA we do not
have to worry about the grading.

The projected currents PAj that appear in the action can now be re-
written as

PAj = ∂φA −
1

2

∑

B+C≡A

B,C 6=0

[φB , ∂φC ] +
1

6

∑

B+C+D≡A

B,C,D 6=0

[φB , [φC , ∂φD]] + · · · (3.18)
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3. The Spectrum of Coset Sigma Models

Inserting this expression into the action (2.18) and expanding S ∼ S0 + S1

up to the leading non-trivial order in the coupling we obtain

S0 =
R2

2

∫

Σ

d2z

π

3∑

A=1

pA
(
∂φA, ∂̄φA′

)
(3.19)

for the tree-level (free) action and S1 = Ss1 + Sa1 where the symmetric part
of the one-loop interaction is given by

Ss1 =
R2

2

∫

Σ

d2z

π

[ ∑

A+B+C≡0

pA
2

{
−
(
∂φA,

[
φB , ∂̄φC

])
−
(
[φB , ∂φC ] , ∂̄φA

) }

+
∑

A+B+C+D≡0

pA
6

{ (
∂φA,

[
φB ,

[
φC , ∂̄φD

]])
+
(
[φB , [φC , ∂φD]] , ∂̄φA

) }

+
∑

A

∑

B+C≡A

D+E≡A′

pA
4

(
[φB , ∂φC ] ,

[
φD , ∂̄φE

]) ]
, (3.20)

while the antisymmetric part takes the form

Sa1 =
R2

2

∫

Σ

d2z

π

[ ∑

A+B+C≡0

i
qA
2

{
−
(
∂φA,

[
φB , ∂̄φC

])
+
(
[φB , ∂φC ] , ∂̄φA

) }

+
∑

A+B+C+D≡0

iqA
6

{ (
∂φA,

[
φB ,

[
φC , ∂̄φD

]])
−
(
[φB , [φC , ∂φD]] , ∂̄φA

) }

−
∑

A

∑

B+C≡A
D+E≡A′

iqA
4

(
[φB , ∂φC ] ,

[
φD , ∂̄φE

]) ]
. (3.21)

From the tree-level action S0 we read off that the free 2-point correlation
function is given by

〈φA(z, z̄)⊗ φA′(w, w̄) 〉0 = −
1

R2pA
ln

∣∣∣∣
z − w

ǫ

∣∣∣∣
2 dim gA∑

i=1

tAi ⊗ tA
′,i . (3.22)

In our analysis below we shall split the one-loop terms of the interaction
into three vertices and four vertices,

S1 =

∫
d2z

π
(Ω3(z, z̄) + Ω4(z, z̄)) . (3.23)
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3.2. Background field expansion

Once again, we can then split these vertices into a symmetric and an anti-
symmetric part, i.e. Ωp = Ωs

p + Ωa
p. If we consider the one-loop conformal

case (2.20), the previous expressions simplify drastically. In particular the
first row of (3.20) cancels so that

Ωs
3(z, z̄) = 0 (3.24)

and the first row of (3.21) takes the form

Ωa
3(z, z̄) = R2 i

2

{
−

1

2
(∂φ1, [φ2, ∂̄φ1]) +

1

2
(∂φ3, [φ2, ∂̄φ3])

−
1

4
(∂φ2, [φ1, ∂̄φ1]) +

1

4
(∂φ2, [φ3, ∂̄φ3])

−
1

4
(∂φ1, [φ1, ∂̄φ2]) +

1

4
(∂φ3, [φ3, ∂̄φ2])

}
.

(3.25)

For later convenience is important to notice that we can simplify the ex-
pression for the three vertex Ω3 by adding total derivatives. One possibility
is

Ω
a,(1)
3 = Ω3(z, z̄)

a +R2 i

8
∂
(
(φ2, [φ1, ∂̄φ1])− (φ2, [φ3, ∂̄φ3])

)

+R2 i

8
∂̄
(
(∂φ1, [φ1, φ2])− (∂φ3, [φ3, φ2])

)

= −R2 i

2
(∂φ1, [φ2, ∂̄φ1]) +R2 i

2
(∂φ3, [φ2, ∂̄φ3]) .

(3.26)

Let us also briefly discuss the four vertex Ω4, and in particular its
symmetric part. It is convenient to further divide Ωs

4 into two parts,
Ω4 = Ωs1

4 +Ωs2
4 . The first one contains the terms that appear in the second

line of eq. (3.20) while in the second one we collect the terms from the third
row. Considering that

(∂φA, [φB, [φC , ∂̄φD]]) = −([φB, ∂φA], [φC , ∂̄φD])

= +([φC [φB, ∂φA]], ∂̄φD)
(3.27)

and taking into account eq. (2.20), we can write Ωs1
4 as

Ωs1
4 = −

R2

6

∑

A+B+C+D≡0

([φB, ∂φA], [φC , ∂̄φD]) . (3.28)

After some partial integration it takes the form

Ωs1
4 = −

R2

6

[ (
[φ2 , ∂φ2] ,

[
φ2 , ∂̄φ2

])
+ 3

(
[φ1 , ∂φ3] ,

[
φ3 , ∂̄φ1

])

+3
(
[φ3 , ∂φ1] ,

[
φ1 , ∂̄φ3

])
+ 3

(
[φ1 , ∂φ3] ,

[
φ2 , ∂̄φ2

])
(3.29)

+3
(
[φ3 , ∂φ1] ,

[
φ2 , ∂̄φ2

])
+ Ω̃s1

4

]
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3. The Spectrum of Coset Sigma Models

where Ω̃s1
4 contains additional terms that do contribute to the diagonal

part of the one-loop dilatation operator. In the conformal case, the second
contribution Ωs2

4 to the symmetric part of the four vertex becomes

Ωs2
4 =

R2

8

∑

A 6=0

∑

B+C≡A
D+E≡A′

([φB, ∂φC ], [φD, ∂̄φE]) . (3.30)

This concludes our discussion of the sigma model action and its background
field expansion. We still need to take a look at the fields before we can
compute the anomalous dimensions.

3.2.2 Expansion of vertex operators

The one-loop expansion of a general coset field around an arbitrary point
g0H may be written schematically as

ΦΛ(z, z̄ | g0) = d ◦
(
V (0)+V (1) . . .

)
⊗
(
j(0)
m

+j(1)
m
. . .
)
⊗
(

(0)
m
+

(1)
m

· · ·
)
, (3.31)

Let us spell out concrete expressions for the various terms in the expan-
sion. For the zero mode contribution VΛλ = V the leading terms in the
background field expansion read

V = DΛλ(g0e
tφ(z,z̄))

∣∣
t=1

=
∞∑

n=0

1

n!
LnΛ
(
Adg0φ(z, z̄)

)
DΛλ(g0)

= DΛλ(g0) + LΛ

(
Adg0φ(z, z̄)

)
DΛλ(g0) + · · ·

= V (0) + V (1) + · · · .

(3.32)

Here, LΛ(X) denotes the denotes the left-action of an element X ∈ g on
the section, which transforms in the representation Λ, and Ad is the adjoint
action of the Lie (super)group on its algebra, see [38] for more details. By
definition, V (0) is the constant term in the expansion around g0. For later
use note also that the left-action of an element Y ∈ h ⊂ g is related to its
right-action Rλ(Y ) by

LΛ(Adg0Y )DΛλ(g0) = −Rλ(Adg0Y )DΛλ(g0) . (3.33)

Similarly, we can also expand the tail factor. For the current j one finds
that

j = ∂φ−
1

2

∑

B+C 6=0

B,C 6=0

[φB , ∂φC ] + . . . . (3.34)
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3.3. One-loop anomalous dimensions

Note that in the case of symmetric spaces, i.e. when the index A runs over
A = 0, 1 only, the leading non-trivial term vanishes because the sum of
B = 1 and C = 1 is B + C = 0 mod 2. Hence, while this term did not
appear in [38], we need to consider it in dealing with semi-symmetric spaces.
When the expansion of the current is inserted into expression (3.6) it gives

jm := j(0)
m

+ j(1)
m

+ · · · =
r⊗

ρ=1

∂mρφ+

−
r∑

k=1

k−1⊗

ρ=1

∂mρφ⊗ ∂mk−1



1

2

∑

B+C 6=0

B,C 6=0

[φB , ∂φC ]


⊗

r⊗

ρ=k+1

∂mρφ · · ·

(3.35)

and similarly for the tail factors 
m

in which all the unbarred labels m are
replaced by barred ones and anti-holomorphic derivatives ∂̄ appear instead
of the holomorphic ones.

3.3 One-loop anomalous dimensions

While our construction of vertex operators in coset sigma models was com-
pletely general and the property (3.13) holds for all homogeneous vector
bundles on quotients G/H of a compact Lie (super)group G, the following
results on the one-loop corrections to the spectrum of coset models had only
been derived for symmetric (super)spaces. After reviewing these results we
will begin with their extension to generalized symmetric spaces, including
those relevant for the AdS/CFT correspondence.

3.3.1 The symmetric case

The computations carried out in [38] show that the one-loop anomalous
dimensions depend only on the representation labels Λ, λ, µ, µ and not on
the intertwiners P,P and C that enter the construction of fields (3.10) in
the coset model. This is why we labeled our fields Φ by a subscript that
makes no reference to the precise choice of intertwiners.

At zero sigma model coupling, i.e. for R = ∞, the sigma model fields
possess their naive dimensions (h∞, h̄∞) that are given by the number of
derivatives,

h∞ =
∞∑

j=1

j mj , h̄∞ =
∞∑

j=1

j mj , (3.36)
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3. The Spectrum of Coset Sigma Models

where only finitely many of the mj are non-zero. Once we turn on the
interaction, these scaling weights are shifted by the so called anomalous
dimension δRh, i.e. at some finite value of the coupling R the scaling weights
have the form

(
h(R), h̄(R)

)
= (h∞ + δRh, h̄∞ + δRh) . (3.37)

According to [38], the leading contribution to the anomalous dimension
takes the form

δ
(1)
R h =

1

2R2

(
Casg(Λ)−Cash(µ)−Cash(µ)

)
. (3.38)

In the derivation the result actually emerges as a sum of two different pieces
that are associated with the zero mode factor and the tail of the vertex op-
erator, respectively. Recall that the zero mode factor VΛλ is a section in a
homogeneous vector bundle Γλ. Such sections are acted upon by the Boch-
ner Laplacian ∆B, whose eigenvalues were expressed through the quadratic
Casimir operators of g and h in [60],

∆BVΛλ(θ) =
(
Casg(Λ)−Cash(λ)

)
VΛλ(θ) . (3.39)

The contribution of the tail factors to the anomalous dimension can be
written as a spin-spin interaction between fields j and . It leads to a term
of the form Cash(λ) − Cash(µ) − Cash(µ). Note that the first term in
this combination cancels the constant shift Cash(λ) in the eigenvalues of
the Bochner Laplacian so that we end up with the expression given in eq.
(3.38).

Formula (3.38) is actually very general. It holds for all sigma models
on symmetric superspaces with vanishing beta function. When properly
interpreted, see [38], it can also be used for models with world-sheet su-
persymmetry, such as e.g. the N = 2 worldsheet supersymmetric sigma
model on complex projective superspace CP3|4 etc. In applications to non-
conformal theories, such as e.g. the usual O(N) models, the formula for
δ(1)h requires a simple additional term,

δ
(1)
R h =

1

2R2

(
Casg(Λ)−Cash(µ)−Cash(µ) +Cash(m)

∑

i

(mi +mi)
)
.

(3.40)
Since vanishing of the one-loop beta function requires that Cash(m) = 0 we
recover the formula (3.38) for conformal sigma models. Our simple formula
(3.38) or rather its generalization (3.40) summarizes and extends the results
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3.3. One-loop anomalous dimensions

of many papers in which anomalous dimensions, mostly dealing with g-
invariant fields, have been studied model by model, see e.g. [40, 53, 54, 61–
64]. That all these computations may be captured by a single universal
formula (3.40) is quite remarkable. Of course, this success is intimately
tied to the construction (3.10) of vertex operators. We now see how well
this construction was adapted to the computation of one-loop anomalous
dimensions.

Much of the previous work on anomalous dimensions of (high-)gradient
operators in sigma models was motivated by a somewhat puzzling instabil-
ity that has first been observed in O(N)-vector models [40] and later un-
derstood to be a rather generic feature of sigma model perturbation the-
ory, see [41] and references therein. This instability arises because of the
negative sign in front of the terms Cash(µ) and Cash(µ). Naively one
might think that high gradient operators, i.e. operators (3.10) for which∑

j j(mj + mj) = h∞ + h̄∞ is large, are highly irrelevant. But it turns
out that some of these operators acquire a very large negative anomalous
dimension. More precisely, one can show that for every choice of the sigma
model coupling R−2, no matter how small, one can find a g-invariant high
gradient operator O = Φ0,λ,µ,µ such that

h∞(O) + h̄∞(O)−
1

R2

(
Cash(µ) +Cash(µ)

)
< 2 . (3.41)

This is because Cash(µ) grows quadratically with the weights of the rep-
resentation µ and the maximal weight grows linearly with the number of
currents j in the tail. On the other hand, the positive contribution h∞(O)
only grows linearly in the number of js. The argument shows that (infinitely
many) high gradient operators become relevant for arbitrarily small sigma
model coupling. One could have hoped that higher orders in perturbation
theory correct the issue, but they turn out to make things even worse [42].
We would be ready to conclude that sigma models are inherently unstable
if it were not for the many independent studies, e.g. through lattice discret-
isations, that display no pathologies. As far as we know, the problem has
never been resolved but it is something to be kept in mind as we proceed.

3.3.2 Calculation for semi-symmetric spaces

Using the setup we presented in the previous sections, we can now begin the
calculation of anomalous dimensions for sigma models on semi-symmetric
spaces. In the computation we present below, we will restrict our attention
to the diagonal terms of the one-loop dilatation operator with respect to
the basis we defined above. Unlike in the symmetric case, the basis we have
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3. The Spectrum of Coset Sigma Models

defined does not seem to diagonalise the one-loop dilatation operator. At
this point, we do not have the off-diagonal terms under good control.

Outline of the computation

The one-loop anomalous dimension δh = δhΦ of a field Φ appears in the
coefficient of the logarithmic singularity of the two point function at one-
loop, see e.g. [38] for a detailed discussion,

〈ΦΛ(u, ū)⊗ ΦΞ(v, v̄) 〉1 =

= 〈 2δh · ΦΛ(u, ū)⊗ ΦΞ(v, v̄) 〉0 ln

∣∣∣∣
ǫ

u− v

∣∣∣∣
2

+ · · · .
(3.42)

The correlation function on the right hand side is evaluated in the free
theory, i.e. by performing Wick contractions with the propagator (3.22).
By definition, the one-loop correlation function on the left hand side is
obtained as the leading non-trivial term in

〈ΦΛ(u, ū)⊗ ΦΞ(v, v̄) 〉 =

=

∫

G/H

dµ(g0H)
〈
ΦΛ(u, ū | g0)⊗ ΦΞ(v, v̄ | g0)e

−Sint

〉
0,c
,

(3.43)

where the subscript c stands for ‘connected’. When counting loops, recall
that each propagator carries a factor 1/R2 and each insertion of the inter-
action produces a factor R2. The one-loop contribution contains all terms
that are suppressed by a factor 1/R2 relative to the tree-level.

Expanding the two point correlation function (3.43) to one-loop we have

〈ΦΛ(u, ū)⊗ ΦΞ(v, v̄) 〉 =

∫

G/H

dµ(g0H) d⊗ d
(
I0 + I1 + . . .

)
, (3.44)

where

I0 =
〈
V (0) ⊗ j(0)

m
(u)⊗ 

(0)
m
(ū)⊗ V (0) ⊗ j(0)

m
(v)⊗ 

(0)
m
(v̄)
〉
0
. (3.45)

Here we used the schematic representation (3.31) and the fact that deriv-
atives of the fundamental field are (anti)holomorphic in the free theory.
Before we describe the quantity I1 it is useful to make a few comments on
the tree-level contribution, as we restrict to those terms that are already
non-vanishing at tree-level. This requires that the total Z4 grading of all
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3.3. One-loop anomalous dimensions

currents j and their derivatives vanishes. The same condition must be sat-
isfied for  and all their derivatives. As mentioned above, off-diagonal terms
also appear, but are not considered for now.

Let us now turn to I1. As we noted above, the R−2 corrections to
the correlation functions are collected in I1. There are a variety of different
terms. To begin with, there are three different terms in which no interaction
term appears. In order to produce the desired factor 1/R2, these must
involve one additional Wick contraction compared to the tree-level term.
This contraction can either involve the two zero mode factors (case A), or
two fields from the tails (case C) or one field from the head and one from the
tail (case G). Next, there exist several terms that involve one interaction
term. If the latter is given by the three vertex Ω3, then we must expand
either a zero mode factor V (case F) or a tail j (case D) to the leading
non-trivial order. Terms involving a single interaction term Ω4 contain two
additional Wick contractions compared to the tree-level computation and
hence also contain one factor 1/R2 (case B). Finally, we also have to consider
one type of contributions with two interaction three-vertices Ω3 since these
contain three additional Wick contractions compared to tree-level (case E).

The quantity I1 is obtained by summing all these different contributions,
i.e. I1 =

∑
IνK where

IA =
〈
V (1)
u ⊗ j(0)

m,u ⊗ 
(0)
m,u ⊗ V (1)

v ⊗ j(0)
m,v ⊗ 

(0)
m,v

〉
(3.46)

IB =
〈
V (0)
u ⊗ j(0)

m,u ⊗ 
(0)
m,u ⊗ V (0)

v ⊗ j(0)
m,v ⊗ 

(0)
m,v O4

〉
(3.47)

I1C =
〈
V (0)
u ⊗ j(1)

m,u ⊗ 
(0)
m,u ⊗ V (0)

v ⊗ j(1)
m,v ⊗ 

(0)
m,v

〉
(3.48)

I1D =
〈
V (0)
u ⊗ j(1)

m,u ⊗ 
(0)
m,u ⊗ V (0)

v ⊗ j(0)
m,v ⊗ 

(0)
m,v O3

〉
(3.49)

IE =

〈
V (0)
u ⊗ j(0)

m,u ⊗ 
(0)
m,u ⊗ V (0)

v ⊗ j(0)
m,v ⊗ 

(0)
m,v

1

2
O2

3

〉
(3.50)

I1F =
〈
V (1)
u ⊗ j(0)

m,u ⊗ 
(0)
m,u ⊗ V (0)

v ⊗ j(0)
m,v ⊗ 

(0)
m,v O3

〉
(3.51)

I1G =
〈
V (1)
u ⊗ j(0)

m,u ⊗ 
(0)
m,u ⊗ V (0)

v ⊗ j(1)
m,v ⊗ 

(0)
m,v

〉
(3.52)

Here, the subscripts u and v label fields that are inserted at (u, ū) and
(v, v̄), respectively. We have introduced the following shorthand notation
for integrated interaction vertices

O3 = −

∫

C

d2z

π
Ω3(z, z̄) , O4 = −

∫

C

d2z

π
Ω4(z, z̄) . (3.53)
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3. The Spectrum of Coset Sigma Models

Note that we included the minus sign from the exp(−S) into our definition
of O3,4. Similarly, we also put a factor 1/2 into our definition of IE because
this term arises from the second order term in the expansion of exp(−S).
There is another term I2C that resembles I1C only that the tail factors  are
expanded to the next to leading order instead of j. Similarly, we also need
to consider IνD and IνG with ν = 1, 2, 3, 4 that are obtained by expanding
any of the four tail factors j1, j2 or 1, 2 beyond the leading order.

The first two cases (Case A,B) listed above also appear for symmetric
spaces. In fact, these neither involve next to leading order tail factors nor
an interaction three vertex Ω3. Hence, the computation of case A,B is
analogous to what was done in [38]. All other cases are new. Let us also
note that the last two cases contribute off-diagonal terms. This is because
V (1) contains a factor φA of grading A 6= 0. Hence, the other fields in the
correlator must have total Z4 grading A′ = 1− A 6= 0. In the cases F and
G this grading is carried by the tail of currents since Ω3 is an element of
grade B = 0. On the other hand, correlators in which all currents possess
a total grading A′ 6= 0 vanish at tree-level.

Calculating the various pieces

We now turn to the calculation of the one-loop corrections (3.46)–(3.52) that
contribute diagonal terms to the dilatation operator. We will go through
the list in order and point out parallels with the symmetric case.

Contributions from case A In this case the result is the same as for
symmetric spaces. It is determined by the logarithmic contribution from
IA. Since the only logarithmic term arises from a contraction of the two
dimension zero fields φ, without any derivative, the only expression that
needs to be evaluated is

∫

G/H

dµ(g0H)
〈
V (1)(u, ū)⊗ V (1)(v, v̄)

〉
=

= R−2 ln

∣∣∣∣
u− v

ǫ

∣∣∣∣
2 ∫

G/H

dµ(g0H)
[
CasΛg −Casλh

]
V (0) ⊗ V (0) .

(3.54)

The details of the calculations can be found in subsection 3.2.1 of [38]. Note
that it is important here that we chose the parameters pA = 1. Beyond this
conformal case, the results takes a more complicated form which cannot
be written in terms of CasΛg −Casλh . Hence, while it was very easy to
compute the corrections to the scaling behavior in symmetric spaces beyond
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3.3. One-loop anomalous dimensions

the conformal case, see [38], a simple extension to non-conformal semi-
symmetric spaces does not exist.

Contributions from case B Let us now turn to the more interesting
case B and analyse the following integral that is contained in it

ĨB = −

∫

Cǫ

d2z
〈
j(0)
m

(u)⊗ 
(0)
m
(ū)⊗ j(0)

n
(v)⊗ 

(0)
n
(v̄) Ω4(z, z̄)

〉
0
. (3.55)

Compared to the original IB we just dropped the group theoretic factor
that is associated with the zero modes. It will later be reinstalled when we
state the final answer.

While an integral similar to ĨB also appears for symmetric spaces and
was computed for these in [38], we now have to pay attention to the grad-
ing and the coefficients, in particular the non-trivial qA, in the action. As a
result, while a subset of terms turns out to reproduce those found for sym-
metric spaces, we shall also find new contributions that have no counterpart
in the previous computation. To begin with, we can rewrite the quantity
(3.55) in the form,

ĨB = −Π ·

[
r∑

ρ,σ=1

r̄∑

ρ̄,σ̄=1

〈
j(0)
mρ

(u)⊗ 
(0)
mρ̄

(ū) ⊗ j(0)
nσ

(v)⊗ 
(0)
nσ̄
(v̄)
〉
0
⊗

⊗

∫

Cǫ

d2z

π

〈
∂mρφ(u)⊗ ∂̄m̄ρ̄φ(ū)⊗ ∂nσφ(v)⊗ ∂̄n̄σ̄φ(v̄) Ω4(z, z̄)

〉
0

]
.

(3.56)

Here, j
(0)
mρ denotes the tensor product (3.35) of currents with the ρ-th factor

removed and we introduced a permutation Π that acts on a tensor power
of m, see [38] for details.

Let us begin with a general statement and consider the integrand of eq.
(3.56) with some definite choice of Z4 grading for the currents,

〈
∂mφE(u)⊗∂̄

m̄φF (ū)⊗∂
nφG(v)⊗∂̄

n̄φH(v̄)
(
[φB, ∂φA], [φC , ∂̄φD]

)
(z, z̄)

〉
0
.

For the corresponding tree-level correlator to be non-zero, we must have
E = G′ and F = H ′. Carrying this a bit further, we conclude that a
diagonal contribution to the anomalous dimension can only occur if either
A = B′ and C = D′ or A = D′ and C = B′. This criterion excludes many
terms from Ωs

4. All relevant terms from Ωs1
4 have been listed in eq. (3.29).

The first one we would like to consider in more detail is the one in which
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3. The Spectrum of Coset Sigma Models

A = B = C = D = 2. For the evaluation we make use of the following
integral formula that we derive in Appendix A

∫

Cǫ

d2z

π

a! b! c! d!

(z − u)a+1(z − v)b+1(z̄ − ū)c+1(z̄ − v̄)d+1
=

= 2 ln

∣∣∣∣
u− v

ǫ

∣∣∣∣
2

×
(−1)a+c(a+ b)!(c+ d)!

(u− v)a+b+1(ū− v̄)c+d+1
+ non-log.

(3.57)

As a simple consequence we find that

1

6

∫

Cǫ

d2z

π
〈∂mφ2(u)⊗∂̄

m̄φ2(ū)⊗ ∂nφ2(v)⊗ ∂̄n̄φ2(v̄)×

×
(
[φ2 , ∂φ2] ,

[
φ2 , ∂̄φ2

])
(z, z̄)〉0 =

= 2 ln

∣∣∣∣
u− v

ǫ

∣∣∣∣
2

[t0α, t2i]⊗[tα0 , t2j]⊗ ti2 ⊗ tj2×

×
(−1)n+m(m+ n− 1)!(m̄+ n̄− 1)!

R6(u− v)m+n(ū− v̄)m̄+n̄
+ non-log.

(3.58)

For a more detailed derivation we refer the reader to [38]. Note that in
writing our result here we have made use of the fact that the indices i, j
run only over a basis in g2 while the index α runs over a basis in g0 = h.
Since we assumed that all elements of gA, A = 0, 2, are bosonic, we conclude
that |i| = |j| = |α| = 0. This observation is crucial in comparing our result
with the corresponding formula in the case of symmetric spaces.

The other terms in Ωs1
4 give similar contributions, but one has to be

careful with the grading signs. Let us just state one more example

1

6

∫

Cǫ

d2z

π
〈∂mφ1(u)⊗ ∂̄m̄φ1(ū)⊗ ∂nφ3(v)⊗ ∂̄n̄φ3(v̄)×

×
[
3
(
[φ3 , ∂φ1] ,

[
φ1 , ∂̄φ3

])
+ 3

(
[φ1 , ∂φ3] ,

[
φ3 , ∂̄φ1

]) ]
(z, z̄)〉0 =

= −2 ln

∣∣∣∣
u− v

ǫ

∣∣∣∣
2

[t0α, t1i]⊗ [tα0 , t1j]⊗ ti3 ⊗ tj3×

×
(−1)n+m(m+ n− 1)!(m̄+ n̄− 1)!

R6(u− v)m+n(ū− v̄)m̄+n̄
+ non-log.

(3.59)

After computing all the logarithmic contributions from Ωs1
4 we need to sum

them up and write them in terms of the tree-level correlation so that we can
read off the anomalous dimension. Let us note that the relevant tree-level
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3.3. One-loop anomalous dimensions

correlation function is given by

〈
∂mφa(u)⊗ ∂̄m̄φb(ū)⊗ ∂nφc(v)⊗ ∂̄n̄φd(v̄)

〉
0
=

= (−1)m+m̄+|b||c|(m+ n− 1)! (m̄+ n̄− 1)!
δc,a′δd,b′

papb

ta ⊗ tb ⊗ ta
′
⊗ tb

′

(u− v)m+n(ū− v̄)m̄+n̄
.

(3.60)

With the help of this formula we arrive at

−

∫

Cǫ

d2z

π

〈
j(0)
m

(u)⊗ 
(0)
m
(ū)⊗ j(0)

n
(v)⊗ 

(0)
n
(v̄) Ωs1

4 (z, z̄)
〉
0
=

= R−2 ln

∣∣∣∣
u− v

ǫ

∣∣∣∣
2

×
〈
j(0)
m

(u)⊗ 
(0)
m
(ū)⊗

⊗
[(
CasDh −CasLh ⊗1R − 1L ⊗CasRh

)
j(0)
n

(v)⊗ 
(0)
n
(v̄)
]〉

0
.

(3.61)

Now we have to insert the result back into the full IB, i.e. we have put
the zero mode contributions back in and then act with the intertwining
operator d⊗ d. In evaluating the latter, we make use of the fact that

dλµµ̄

(
1λ ⊗CasDh −1λ ⊗CasLh ⊗1R − 1λ ⊗ 1L ⊗CasRh

)
=

=
(
Casλh ⊗1µ ⊗ 1µ̄ − 1λ ⊗Cas

µ
h ⊗1µ̄ − 1λ ⊗ 1µ ⊗Cas

µ̄
h

)
dλµµ̄ .

(3.62)

We obtain

∫

G/H

dµ(g0H) d⊗ d Is1B =

=
1

R2

(
Casλh −Cas

µ
h −Cas

µ
h

) ∫

G/H

dµ(g0H) d⊗ d I0 .

(3.63)

Here, the symbol Is1B denotes the contribution to IB that comes with the
insertion of Ωs1

4 . We still need to discuss Ωs2
4 and Ωa

4.

So, let us consider Ωs2
4 next. The relevant correlator in this case is given
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by

−
1

8

∑

B+C≡A
D+E≡A′

∫

Cǫ

d2z

π

〈
∂mφF (u)⊗ ∂̄m̄φG(ū)⊗ ∂nφF ′(v)⊗ ∂̄n̄φG′(v̄)×

×
(
[φB , ∂φC ] ,

[
φD , ∂̄φE

])
(z, z̄)

〉
0
=

= −
1

4
ln

∣∣∣∣
u− v

ǫ

∣∣∣∣
2
(−1)n+m(m+ n− 1)!(m̄+ n̄− 1)!

R6(u− v)m+n(ū− v̄)m̄+n̄
×

×
∑

B+C≡A

(−1)FGtFi⊗tGj⊗tF ′k⊗tG′l

[
δF,CδG,B

([
tlG , t

k
F

]
,
[
tiF ′ , t

j
G′

])

−(−)FGδF,CδG,B′

([
tjG , t

k
F

]
,
[
tiF ′ , tlG′

])

−(−)FGδF,C′δG,B
([
tlG , t

k
F

]
,
[
tiF ′ , t

j
G′

])

+δF,C′δG,B′

([
tlG , t

k
F

]
,
[
tiF ′ , t

j
G′

]) ]
+ non log.

(3.64)

For later convenience let us spell out explicitly some of the terms that
appear on the right hand side of eq. (3.64). For example, there appears a
unique term that is multiplied by t1i ⊗ t1j ⊗ t3k ⊗ t3l,

1

2

(−1)n+m ln
∣∣u−v

ε

∣∣2 (m+ n− 1)!(m̄+ n̄− 1)!

R6(u− v)m+n(ū− v̄)m̄+n̄
×

t1i ⊗ t1j ⊗ t3k ⊗ t3l
([
tl1 , t

k
1

]
,
[
ti3 , t

j
3

])
(3.65)

while there are two terms that contain the factor t1i⊗ t2j⊗ t3k⊗ t2l, namely

−
1

2

(−1)n+m ln
∣∣u−v

ε

∣∣2 (m+ n− 1)!(m̄+ n̄− 1)!

R6(u− v)m+n(ū− v̄)m̄+n̄
×

t1i ⊗ t2j ⊗ t3k ⊗ t2l
[ ([

tl2 , t
k
1

]
,
[
ti3 , t

j
2

])
−
([
tj2 , t

k
1

]
,
[
ti3 , t

l
2

]) ]
.

(3.66)

We will not describe how to insert this result into IB since the entire con-
tribution turns out to cancel against an identical term from case E, see
below.

Let us finally discuss the anti-symmetric part Ωa
4. It is actually not

difficult to see that its contributions to the anomalous dimension vanishes.
Part of these cancellations can easily be read off from the result (3.59).
A closer look reveals that the two terms in the second line give identical
contributions and consequently the factor 2 in the final result. In Ωa, the
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3.3. One-loop anomalous dimensions

same terms appear but instead of being summed, they are subtracted so
that the final result vanishes. The same is true for other contributions
from Ωa

4. In conclusion, we have shown that case B contains two non-
vanishing contributions to the anomalous dimensions, namely those in eqs.
(3.63) and (3.64). While the former is identical to the corresponding term
for symmetric spaces, the latter will be shown to cancel contributions from
case E.

Contributions from case C Next we need to compute the part of the
one-loop correction that arises from the expansion of the currents. In our
discussion we shall work with the component fields φi := (φ, ti). When writ-
ten in terms of these component fields, the subleading part of the current
becomes

j(1) =
1

2
f ijaφi∂φjt

a . (3.67)

Here i, j and a run over a basis of the quotient space m = g/h. The two-
point function is then

〈∂mj(1)(u)⊗ ∂nj(1)(v)〉 =

=
(−1)m+|a|

4R4
ln

∣∣∣∣
u− v

ε

∣∣∣∣
2
(m+ n+ 1)!

(u− v)m+n+2
f ijaf

kl
bηikηjlt

a ⊗ tb +O(ε).
(3.68)

If we take into account that the Killing form of G vanishes by assumption
and then compare with eq. (5.8) in [65] we can identify the combination
of the structure constants that appears in the previous expression with the
Ricci tensor of the coset space, i.e.

f ijaf
kl
bηikηjl = 4Rab(G/H) . (3.69)

Below we shall see that a similar term involving the Ricci tensor also arises
from case E. The latter actually cancels the contributions from case C. This
is not an accident. The cancellation we see here in the computation of the
anomalous dimension is really the same cancellation that is responsible for
the vanishing of the one-loop beta-function.

Contributions from case D Our basic claim is that case D does not
contribute to the anomalous dimension. While a similar statement for the
cases F and G was very easy to prove, it requires more effort for case D. In
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the calculation we shall make use of the following integral formula
∫

Cε

d2z

π

1

(z − x)a+1(z̄ − x̄)b+1(z̄ − ȳ)c+1
=

= δa,0
(−1)b+1

a!

(
b+ c

c

)
ln
∣∣x−y

ε

∣∣2

(x̄− ȳ)b+c+1
+O(ε)

(3.70)

This formula is derived in Appendix A. Let us point out that logarithmic
singularities only exist when a = 0. This implies most terms that appear
in the evaluation of case D do not contain any logarithmic divergences.

After having made these observations, let us discuss the contributions
from ID. Recall that Ω3 = Ωa

3 and that we can add a total derivative in
order to bring Ωa

3 into the simple form Ωa,1
3 . This is the form we shall

use. We address the two terms of Ωa,1
3 separately. Given our introductory

comments, the first term can only contribute through the following integral

∫

Cε

d2z

π
〈
[
φ3 , ∂

m+1φ2

]
(u, ū)⊗ ∂n+1φ3(v)(∂φ1, [φ2, ∂̄φ1])(z, z̄)〉 =

−
(−1)m+1

R4
ln
∣∣∣u− v

ε

∣∣∣
2 (m+ n+ 1)!

(u− v)m+n+2
[t2i , t3j]⊗

[
ti2 , t

j
1

]
+ non-log. .

(3.71)

The second term in Ωa,1
3 , on the other hand, contributes to the logarithmic

singularity through
∫

Cε

d2z

π
〈∂n+1φ1(u, ū)⊗

[
φ1 , ∂

m+1φ2

]
(v)(∂φ3, [φ2, ∂̄φ3])(z, z̄)〉

−
(−1)m+1

R4
ln
∣∣∣u− v

ε

∣∣∣
2 (m+ n+ 1)!

(u− v)m+n+2
[t2i , t3j]⊗

[
ti2 , t

j
1

]
+ non-log. ,

(3.72)

i.e. it is the same as the previous one. Since the two terms in Ωa,1
3 appear

with opposite signs, we conclude that there are no contributions from case
D to the anomalous dimension.

Contributions from case E Let us now address the final case with two
insertions of the vertex Ω3. Recall that in a theory with vanishing one-loop
beta-function, the three vertex is purely antisymmetric, i.e. Ω3 = Ωa

3. To
ease the calculation we added a total derivative. Of course, we have to do
this consistently. This means that we have to add the total derivative to the
action and it has to be the same at all orders in the expansion of exp(−S).
In particular we have to pay attention to use the same interaction as in case
D, where we already made a particular choice, namely Ωa,1

3 .
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3.3. One-loop anomalous dimensions

In the calculation we have two types of terms. The first type consists
of contributions which involve two contractions between the two Ω3 and
two more contractions between the vertices and two currents. On the other
hand, we can also have terms in which there is a single contraction between
the two vertices and four contractions with the tails of currents. We shall
argue that the first type cancels the contributions from case C while the
second type chancels the contributions in eq. (3.64) of case B. The integral
is evaluated to

1

8

∫

Cε

d2z

π

∫

Cε

d2w

π

〈
∂m+1φ2(u, ū)⊗ ∂n+1φ2(v)(∂φ1, [φ2, ∂̄φ1])(z, z̄)×

×(∂φ3, [φ2, ∂̄φ3])(w, w̄)
〉
0
= (3.73)

= −
(−1)m

8R4
ln

∣∣∣∣
u− v

ε

∣∣∣∣
2
(m+ n+ 1)!

(u− v)m+n+2
f ijaf

kl
bηikηjlt

a
2 ⊗ tb2 + non-log.

Here we have inserted the first term of Ωa,1
3 at (z, z̄) and the second term

at (w, w̄). The opposite choice turns out to give exactly the same result so
that we get a numerical prefactor -1/4 in place of -1/8 after summing both
contributions. We see that the result cancels against the contribution from
case C for a and b labeling basis elements of g2, i.e. when |a| = |b| = 0. In
evaluating the relevant integrals, we have used the formula

∫

Cε

d2z

π

∫

Cε

d2z

π

1

(z − x)(w − y)(z − w)2(z̄ − w̄)2
=

= −

∫

Cε

d2z

π

1

(z − x)

1

(z − y)2
1

(z̄ − ȳ)
=

ln
∣∣u−v

ε

∣∣2

(x− y)2(x̄− ȳ)2

(3.74)

and derivatives thereof. This can be derived using formulas in Appendix
A. We can perform a similar analysis in case the currents from the tails
possess odd grade rather than even. The result is

1

8

∫

Cε

d2z

π

∫

Cε

d2z

π

〈
∂m+1φ1(u, ū)⊗ ∂n+1φ3(v)(∂φ1, [φ2, ∂̄φ1])(z, z̄)×

×(∂φ3, [φ2, ∂̄φ3])(w, w̄)
〉
0
=

=
(−1)m

8R4
ln

∣∣∣∣
u− v

ε

∣∣∣∣
2
(m+ n+ 1)!

(u− v)m+n+2
f ijaf

kl
bηikηjlt

a
1 ⊗ tb3 + non-log.

(3.75)

In the process we have used the integral formula (A.11) from Appendix A.
Once again, the result cancels the contribution from case C.
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3. The Spectrum of Coset Sigma Models

Let us then turn to the second type of terms in which we have four
contractions between the vertices and the tail factor. As above, we illustrate
the computations with a concrete example,

1

8

∫

Cǫ

d2z

π

∫

Cε

d2z

π
〈∂mφ1(u)⊗ ∂̄m̄φ2(ū)⊗ ∂nφ3(v)⊗ ∂̄n̄φ2(v̄) ×

(
∂φ1,

[
φ2 , ∂̄φ1

])
(z, z̄)

(
∂φ3,

[
φ2 , ∂̄φ3

])
(w, w̄)〉0 = (3.76)

=
1

4
ln

∣∣∣∣
u− v

ε

∣∣∣∣
2
(−1)n+m(m+ n− 1)! (m̄+ n̄− 1)!

R6(u− v)m+n(ū− v̄)m̄+n̄
×

t1i ⊗ t2j ⊗ t3k ⊗ t2l
[ ([

tl2 , t
k
1

]
,
[
ti3 , t

j
2

])
−
([
tj2 , t

k
1

]
,
[
ti3 , t

l
2

]) ]
+ non-log.

If we insert the second non-trivial term in Ωa,1
3 we obtain an identical contri-

bution so that we just have to multiply the right hand side of the previous
formula by a factor of two. We see that the new contributions cancel the
term (3.66) from the right hand side of eq. (3.64).

Finally, there is another qualitatively somewhat different example we
want to consider in which the only contraction between the two vertices is
a contraction between non-derivative fields. This happens e.g. in

1

8

∫

Cǫ

d2z

π

∫

Cε

d2z

π
〈∂mφ1(u)⊗ ∂̄m̄φ1(ū)⊗ ∂nφ3(v)⊗ ∂̄n̄φ3(v̄)×

(
∂φ1,

[
φ2 , ∂̄φ1

])
(z, z̄)

(
∂φ3,

[
φ2 , ∂̄φ3

])
(w, w̄)〉0 =

= −
1

4
ln

∣∣∣∣
u− v

ε

∣∣∣∣
2
(−1)n+m(m+ n− 1)! (m̄+ n̄− 1)!

R6(u− v)m+n(ū− v̄)m̄+n̄
×

t1i ⊗ t1j ⊗ t3k ⊗ t3l
([
tl1 , t

k
1

]
,
[
ti3 , t

j
3

])
+ non-log.

(3.77)

This and similar terms can be evaluated using the integral formula (A.10).
Once we collect all such terms we see that these exactly cancel the terms
contained in eq. (3.64).

Summing all the contributions

We have seen that most of the contributions on the diagonal that are new
compared to the symmetric case cancel out. In the final result only con-
tributions from case A, see eq. (3.54), and the piece (3.61) containing Ωs1

4

from case B are not canceled by other terms. These two contributions are
identical to those that were found in the analysis of sigma models on sym-
metric spaces. Hence, in the basis that we have chosen, the diagonal part of
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3.3. One-loop anomalous dimensions

the anomalous dimensions for semi-symmetric spaces agrees with that for
symmetric spaces, i.e.

δ
(1,diag)
R h =

1

2R2

(
CasΛg −Casλh +Casλh −Cas

µ
h −Cas

µ
h

)
=

=
1

2R2

(
CasΛg −Cas

µ
h −Cas

µ
h

)
.

It should be stressed once again that our analysis of semi-symmetric spaces
does not include off-diagonal terms. Additionally, our computations relied
on the choice (2.20) for the various coupling constants. The latter was
motivated by the requirement that the one-loop beta-function vanishes.
While the restriction to models with vanishing beta-function was easy to lift
for symmetric spaces, see [38], our results for semi-symmetric spaces possess
no simple generalization to models that do not satisfy the conditions (2.20).
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Chapter 4

The Spectrum of Superspheres

In this chapter we apply the results and constructions reviewed in chapter 3
to the sigma model on the supersphere S3|2. The supersphere is a symmetric
space, S3|2 ≃ OSP(4|2)/OSP(3|2), and one of the simplest examples from
the list (2.16). Therefore, the sigma model on S3|2 is conformal for all values
of the radius R and the constructions and results outlined in the previous
chapters apply. In the first section, we will discuss the construction of
vertex operators and the computation of anomalous dimensions in great
detail, thereby illustrating the power of the constructions of [38] that we
reviewed in Chapter 3.

In the second section we will revisit a proposed dual description of the
sigma model [33, 34]. It involves a current-current deformation of the
WZNW model on OSP(4|2) at level k = 1 by the operator 2.24. Thus,
we can exploit the all-loop result (2.25) for the anomalous dimensions of
1
2
BPS fields. For some special value of the deformation parameter, we are

able to identify the low lying spectrum of the supersphere model. The iden-
tification includes the one-loop anomalous dimensions of the sigma model.
For fields with two or more derivatives we find a few discrepancies. While
these discrepancies have the potential to disprove the duality, there are
some features of the perturbative results that seem to limit their applicab-
ility. We comment on these issues but will not settle them. On the other
hand, our results exhibit several features that were anticipated by Polyakov
[32]. In particular, we will show how the singular vectors of the WZNW
model are related to the sigma model constraints and equations of motion.
We conclude the chapter with a calculation of the anomalous dimensions
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4. The Spectrum of Superspheres

of the ground states of conformal sigma models on symmetric spaces to
higher orders. We find that the corrections vanish identically at two- and
three-loop order and argue that for 1

2
BPS states all higher corrections must

vanish as well. This last result further supports the proposed duality of the
S3|2 sigma model with the deformed OSP(4|2) WZNW model.

4.1 The spectrum of the supersphere S3|2

The aim of this section is twofold. Partly, we would like to illustrate the gen-
eral results we have reviewed in the previous chapter through the simplest
non-trivial example of an interacting conformal sigma model, namely the
theory with target space S3|2. This supersphere can be considered as a
quotient G/H of the compact supergroup G = OSP(4|2) by the subgroup
H = OSP(3|2). Since the latter is fixed by an order two automorphism of
the former, the supersphere S3|2 is a compact symmetric superspace. Hence,
all the results we outlined in Sections 3.1 and 3.3.1 of the previous chapter
apply to this case. Our task is to work them out explicitly. This will require
some input from the representation theory of osp(4|2) and osp(3|2) which
can be found in Appendices B–D. The second purpose of this section is to
gather some data about the supersphere sigma model that we can later use
to test the conjectured duality with the OSP(4|2) Gross-Neveu model.

We will begin by describing several equivalent formulations of the super-
sphere sigma model. Concrete results on low-gradient operators and their
anomalous dimensions are worked out in the second subsection. In the third
subsection we describe the more conventional construction of (low-gradient)
vertex operators in terms of the fundamental field of the non-linear sigma
model. While this turns out to be significantly more cumbersome than the
approach advocated in the previous subsection, it will allow us to under-
stand the impact of symmetries and equations of motion.

4.1.1 The supersphere sigma model

The most basic description of the supersphere S3|2 is as a co-dimension one
supermanifold in the flat superspace R

4|2 defined by the equation

X ·X :=
4∑

j=1

x2j + 2η1η2 = 1 . (4.1)

Here, xj, j = 1, . . . , 4, and η1, η2, are the bosonic and fermionic coordinates
of R4|2, respectively. We shall often combine these coordinates into a mul-
tiplet of supercoordinates X = (XA) = (xj, η1, η2). For a pair X and Y in
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4.1. The spectrum of the supersphere S3|2

such multiplets the inner product · is defined as

X · Y =
∑

j

xjyj + η1ξ2 − η2ξ1 . (4.2)

Here, we have denoted the fermionic coordinates of Y by ξ1 and ξ2. We can
now write the action of the associated sigma model as

SSM[X, ρ] =
R2

2π

∫
d2z
(
∂X · ∂X − ρ(X ·X − 1)

)
. (4.3)

Here ρ is a Lagrange multiplier that implements the supersphere constraint
(4.1). The parameter R can be interpreted as the radius of the supersphere.
In the regime where R is large, the sigma model is weakly coupled and
perturbation theory should give reliable results. The equations of motion
for the field multiplet X read

∂∂̄X = (∂X · ∂̄X)X . (4.4)

From our description of the supersphere through equation (4.1) it is evident
that S3|2 comes equipped with an osp(4|2) action. In fact, the Lie superal-
gebra osp(4|2) acts on the embedding space R

4|2 through its fundamental
representation. By the very definition of osp(4|2) this action respects the
constraint (4.1). The supersphere S3|2 can be obtained from the supergroup
OSP(4|2) by taking the following quotient

S3|2 = OSP(4|2)/OSP(3|2) (4.5)

with respect to the right action of the subsupergroup OSP(3|2) ⊂ OSP(4|2).
The latter appears as the stabilizer of a point X = (XA) = (1, 0, 0, . . . ) on
the supersphere. Since this stabilizer is left invariant by the reflection of the
first coordinate, the quotient (4.5) is a symmetric superspace. In conclusion,
we have shown that the sigma model (4.3) possesses all the properties that
we assumed in the previous chapter.

In order to get a better feeling for how non-trivial the supersphere sigma
model really is, we solve the constraint (4.1) explicitly. To this end, we para-
metrize S3|2 through three angular coordinates ϑj and 2 fermionic variables
ηb. The line element takes the following form

ds2 = 2(1− η1η2)dη1dη2 + (1− 2η1η2)dΩ3 (4.6)

where
dΩ3 = dϑ2

1 + cos2 ϑ1 dϑ
2
2 + sin2 ϑ1 dϑ

2
3
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4. The Spectrum of Superspheres

is the usual line element of the 3-dimensional unit sphere. In the sigma
model, the coordinates are promoted to fields and the action reads

SSM[ϑ, η] =
R2

2π

∫
d2z
(
2(1− η1η2)(∂η1∂̄η2 − ∂η2∂̄η1)

+(1− 2η1η2)(∂ϑ1∂̄ϑ1 + cos2 ϑ1 ∂ϑ2∂̄ϑ2 + sin2 ϑ1 ∂ϑ3∂̄ϑ3)
)
.

(4.7)

For the sigma model on the purely bosonic 3-sphere the coupling R runs
and in order for the flow to end in a non-trivial fixed-point one must add
a Wess-Zumino term [66]. But the presence of the two fermionic directions
changes the situation profoundly. As shown in [67], the β-function of the
sigma model on S3|2 is the same as for a bosonic sigma model on a sphere
Sd whose dimension d = 3 − 2 = 1 is given by the difference between the
number of bosonic and fermionic coordinates. Consequently, the β-function
vanishes for the sigma model on S3|2, i.e. the model (4.7), defines a family
of non-unitary interacting conformal field theories at central charge c = 1
with continuously varying exponents.

Before we apply the results reviewed in Chapter 3 to this model, let us
note that the action (4.7) can be written very compactly if we factorize the
metric with the help of the super-Vielbeins EJ

α(ϑ, η),

gIJ(ϑ, η) := καβEI
α(ϑ, η)E

J
β (ϑ, η)(−1)|β|(|I|+|α|) (4.8)

where κ is the invariant form of osp(4|2) and the indices α, β run over
directions along the quotient m = osp(4|2)/osp(3|2). We can now combine
the Vielbeins with the derivatives of the coordinate fields (θJ) = (ϑj, ηa) as
in eq. (3.2) to obtain

SSM[θ] =
R2

2π

∫
d2z gIJ(ϑ, η) ∂θI ∂̄θJ =

R2

2π

∫
d2z καβjα(z, z̄)β(z, z̄) . (4.9)

Of course, all the non-linearity of the action (4.7) is just hidden in the
complicated structure of the fields j and . Note that the latter transform
in the fundamental representation of the stabilizer subgroup OSP(3|2). In
the action the corresponding index α is contracted with the β so as to give
an invariant.

Unlike the sigma model on S1 = U(1), the theory defined by the action
(4.7) is not free. For large radius R, the model is weakly coupled and its
properties may by studied perturbatively. But as we pass to a more strongly
curved background, computing quantities as a function of the radius R
may seem like a very daunting task. This is even more so because there is
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4.1. The spectrum of the supersphere S3|2

very little symmetry to work with. As a conformal field theory, the sigma
model on the supersphere possesses the usual chiral Virasoro symmetries.
But for a model with multiple bosonic coordinates the two sets of chiral
Virasoro generators are not sufficient to make the theory rational. Since
there are no efficient tools to construct the theory at generic values of the
radius parameter R, finding a dual description whose perturbative regime
describes a strongly curved supersphere is of obvious interest.

4.1.2 Vertex operators and anomalous dimensions

Before we can begin constructing vertex operators for the supersphere sigma
model we need a little bit of background on representations of both osp(4|2)
and osp(3|2). A much more comprehensive discussion can be found in the
appendices. It is heavily based on two papers by van der Jeugt [68, 69].

The bosonic subalgebra of the Lie superalgebra osp(4|2) is so(4)⊕sp(2).
Since this has rank r = 3, generic representations are labeled by triples
of weights [j1, j2, j3]. Atypical (or BPS) representations satisfy a single
shortening condition. The possible conditions are listed in eq. (B.3). With
one such condition relating the three weights ji, atypical representations Λl,k
are labeled by two integers l ≥ 0 and k. The precise relation between l, k
and the weights ji are given in eqs. (B.5) and (B.6). Let us only note that
the label of the trivial representation is Λ0,0 while that of the 17-dimensional
adjoint is Λ0,1. The representations Λl,0 on the other hand are associated
with (graded) symmetric traceless tensors of osp(4|2).

In the atypical representation Λl,k, the quadratic Casimir element Casg
takes the value

Casg(Λl,k) = l2 . (4.10)

We conclude that the Casimir element Casg is insensitive to the second
label k of Λl,k. Atypical representations with the same value of the Casimir
element are said to belong to the same block. Representations from the same
block may appear within larger indecomposables, in particular they make up
the projective covers PΛl,k

. The composition series of these indecomposables
are given in eqs. (B.12)–(B.15).

Let us turn our attention to the Lie superalgebra osp(3|2). In this
case, the bosonic subalgebra so(3)⊕ sp(2) has rank two and hence generic
representations are labeled by a pair [q, p] of weights. The atypicals λ0 and
λq = [q, 2q − 1], q ≥ 1/2, form a 1-parameter family of representations
that satisfy a single shortening condition. The label λ0 is reserved for the
trivial representation, λ1/2 is the 5-dimensional fundamental. In the case of
osp(3|2), the adjoint is not atypical. Its label is λad = [1, 0].
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4. The Spectrum of Superspheres

In the representation [q, p] the quadratic Casimir element Cash of the
algebra osp(3|2) takes the values

Cash
(
[q, p]

)
= (p+ 2q)(p− 2q + 1) . (4.11)

We see that it vanishes for atypical representations λq. All these atypical
representations belong to the unique single block from which indecompos-
able modules can be built. Once again, the most relevant indecomposables
are the projective covers Pλq of atypicals. Their composition series are
displayed in eqs. (B.12)–(B.15).

Before we proceed, let us remark that we are not interested in the in-
decomposable structure of the spectra. We are, effectively, computing the
partition functions which are traces. Since traces are blind to the indecom-
posable structure we are only interested in the irreducible constituents.
Therefore, we will often write + instead of ⊕, unless it is immediately ob-
vious that a sum is indeed direct.

With these notations set up, we can begin to construct vertex operators.
Our goal is to find all vertex operators with up to two derivatives that
transform in 1

2
BPS representations Λl,k of osp(4|2). Let us start with the

zero modes. By definition, these fields have vanishing scaling dimension
at R = ∞ so they cannot contain any currents j or . Consequently, the
osp(3|2) representations µ, µ and λ that label our vertex operators (3.10)
are all trivial. Thus, the head must be taken from

Γ0 = Γλ0 =
∞⊕

l=0

Λl,0 , (4.12)

where Λl,0 =
1
2
[l+1, l− 1,−l− 1] for l > 0 and Λ0,0 is the trivial represent-

ation. In order to find the decomposition displayed on the right hand side,
we employed the decomposition formulas (D.1)–(D.3) along with the funda-
mental results (3.13). The summation is over all those representations Λ of
osp(4|2) for which the restriction of PΛ to the subalgebra osp(3|2) contains
Pλ0 . Our formulas in appendix D only list the decompositions for atypical
representations Λ = Λl,k but it is not difficult to see that typical (long)
multiplets never contain Pλ0 in their decomposition. Hence, the formula
(4.12) is exact, i.e. it accounts for all elements of Γ0 not just for those that
transform in 1

2
BPS representations. Of course, the space Γ0 is nothing but

the space of functions on the supersphere S3|2. Aside from the trivial repres-
entation Λ0,0 of osp(4|2), which has vanishing Casimir, all other operators
acquire a non-zero anomalous dimension,

δ
(1)
R h(VΛl,0,λ0) =

1

2R2
Casg(Λl,0) =

l2

2R2
. (4.13)
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4.1. The spectrum of the supersphere S3|2

The next set of operators we would like to look at are the operators of
weight (h∞, h̄∞) = (1, 0). Such operators contain a current j and hence
have µ = λ = λ 1

2
while µ = λ0 is trivial. Hence, the head of the operators

must be taken from sections in the bundle

Γλ 1
2

= Λ0,1 ⊕
∞⊕

l=1

Λl,0 ⊕ typicals . (4.14)

The decomposition on the right hand side is obtained from the formulas in
appendix D, just as in the previous example. We see that one 1

2
BPS section

in the bundle of the fundamental representation λ 1
2

of osp(3|2) is the adjoint

multiplet of osp(4|2). The corresponding fields are the Noether currents.
According to our result (3.38) their one-loop anomalous dimension vanishes
since both the Casimir of the fundamental λ 1

2
and the Casimir of the adjoint

Λ0,1 vanish. The remaining 1
2
BPS fields are derivatives of the zero modes.

Their anomalous dimension is the same as for the zero modes themselves.
The 1

2
BPS spectrum of operators of weight (h∞, h̄∞) = (1, 1) is a bit

richer. In this case, our operators must contain j and  so that µ = λ 1
2
= µ.

In the tensor product of the two fundamental representations µ and µ we
find λ = λ0, [1, 0], [

1
2
, 1]. Hence, the zero mode contributions can come from

3 different bundles. The decomposition of the bundle Γ0 was described in
eq. (4.12) already. So it remains to describe the two bundles

Γ[1,0] = 2Λ0,1 + Λ0,2 + typicals (4.15)

and

Γ[ 1
2
,1] =

∞∑

l=2

(2Λl,0 + Λl,1 + Λl,−1) + typicals . (4.16)

If we sum up all the contributions from the three possible bundles, we find
that the spectrum of operators of weight (h∞, h̄∞) = (1, 1) decomposes into

Γλ 1
2
⊗λ 1

2

∼= Λ0,0+2Λ0,1+Λ0,2+Λ1,0+
∞∑

l=2

(3Λl,0+Λl,1+Λl,−1)+typicals (4.17)

The one-loop anomalous dimension of the corresponding operators is de-
termined by the first label of the representation,

δ
(1)
R h =

1

2R2
Casg(Λl,k) =

l2

2R2
. (4.18)

We see in particular that our sigma model contains 145 operators with
vanishing one-loop anomalous dimension. These sit in four different repres-
entations of osp(4|2). There is one state in the trivial representation Λ0,0.
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4. The Spectrum of Superspheres

This is the sigma model interaction that remains marginal at one-loop. It
actually remains marginal at all-loops. In addition, there are two adjoint
multiplets Λ0,1 of dimension 17 each. The multiplicity two is actually a
signature of the distinction between projective covers and irreducibles. As
we explained above, one could have expected that the multiplicity of the
adjoint osp(4|2) section in the bundle associated to the adjoint represent-
ation [1, 0] of osp(3|2) is given by the number of times the 12-dimensional
[1, 0] appears in the decomposition of the 17-dimensional Λ0,1. Clearly, this
multiplicity is one which is not the correct answer for the number of Λ0,1

multiplets in Γ[1,0]. So indeed the example illustrates nicely how important
it is to determine the multiplicity of short operators using decompositions
of projective covers rather than irreducibles.

4.1.3 An alternative construction of vertex operators

In order to fully appreciate the results of the previous subsection and the
elegance of their derivation, we would like to compare our findings with
more conventional constructions of vertex operators from the fundamental
field multiplet X. In doing so, we will have to struggle a little bit with the
implications of the constraint (4.1) and the equations of motion (4.4) on
counting coset fields. As a reward, we will understand e.g. that the number
145 of operators with vanishing one-loop anomalous dimension contains
non-trivial information about the dynamics of the supersphere sigma model.

In building coset fields from the fundamental field multiplet X we shall
start with the zero modes. For h∞ = h̄∞ = 0 the relevant fields contain no
derivatives and they are given by monomials Fl,0(X) of order l = 0, 1, 2, . . .
in the components of X. Once we implement the constraint X2 = 1 the
components of Fl,0(X) transform in the traceless symmetric tensor repres-
entations Λl,0. This agrees with our formula (4.12) above.

Let us now proceed to fields of weight (h∞, h̄∞) = (1, 0). These must
be of the form

Fl,0(X) ∂X (4.19)

for l = 0, 1, 2, . . . . The space of such objects transforms in the tensor
product Γ0⊗Λ1,0 of symmetric traceless tensors with the fundamental Λ1,0.
But not all these fields are non-zero. In fact, by taking a derivative of the
constraint X2 = 1 we obtain

X · ∂X = Xa∂X
a = 0 (4.20)

Consequently any field of the form Fl,0(X)X · ∂X vanishes. Such fields
transform in the representation Γ0. If we remove them from the list (4.19)
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4.1. The spectrum of the supersphere S3|2

we end up with a space of fields transforming in

Γ0 ⊗ Λ1,0 − Γ0 = Λ0,1 +
∞∑

l=1

Λl,0 + typicals = Γλ 1
2

. (4.21)

This agrees with our result (4.14). We have already interpreted the corres-
ponding fields as the Noether currents and derivatives of the zero modes.

Let us now turn to the most interesting set of fields, those with weights
h = 1 = h̄. In this case, the counting will be affected by the equations
of motion. The relevant fields can all be written in either of the following
forms

Fl,0(X) ∂∂̄X , Fl,0(X) ∂X∂̄X . (4.22)

Our analysis of the space of these operators will proceed in two steps. First
we shall fully implement the constraint X2 = 1 and then we consider the
equations of motion. By taking derivatives of the constraint X2 = 1 we
obtain the two equations

X · ∂X = 0 = X · ∂̄X . (4.23)

We can multiply each of these two equations with one of the previously
found operators of dimension (h∞, h̄∞) = (1, 0) or (h∞, h̄∞) = (0, 1), re-
spectively. All such operators vanish. As we discussed above, they trans-
form in 2Γλ 1

2

. Additionally, we also need to remove all operators created

from the zero modes by multiplication with the operator X · ∂XX · ∂̄X.
These transform in Γ0. This is not quite the end of story. In fact, there is
another family of operators that vanishes because of the constraint X2 = 1.
To see this, we differentiate the constraint X2 = 1 by ∂∂̄ and obtain

∂X · ∂̄X = −X · ∂∂̄X . (4.24)

This constraint allows us to remove all the operators of the form Fl,0(X)∂X ·
∂̄X. In other words when considering the second family in eq. (4.22), we can
restrict to those operators for which ∂X∂̄X transforms either in the repres-
entation Λ2,0 (symmetric traceless) or in Λ0,1 (antisymmetric). Putting all
this together we find

Γ0 ⊗ Λ1,0 + Γ0 ⊗ (Λ2,0 + Λ0,1)− 2Γλ 1
2

− Γ0

= Λ0 + 3Λ0,1 + Λ0,2 + 2Λ1,0 +
∞∑

l=2

(4Λl,0 + Λl,1 + Λl,−1) + typicals

= Γλ 1
2
⊗λ 1

2

+ Λ0,1 +
∞∑

l=1

Λl,0 + typicals .

(4.25)
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A quick glance at eq. (4.17) shows that we obtained more than we expected.
The reason is simple. While we have correctly implemented the constraint
X2 = 1, operators of weight (h∞, h̄∞) = (1, 1) are the first ones to be sens-
itive to the equations of motion. The latter precisely remove the unwanted
multiplets. In the block of the zero, for example, the operators

XI∂∂̄XJ −XJ∂∂̄XI (4.26)

contribute one of the three Λ0,1 in the decomposition we have listed. Once
we insert the equations of motion, however, these operators are set to zero

XI∂∂̄XJ −XJ∂∂̄XI = ∂X · ∂̄X (XIXJ −XJXI) = 0 . (4.27)

Hence, the fact that we found 145 operators of weight (h∞, h̄∞) = (1, 1)
with vanishing one-loop anomalous dimension is sensitive to the equations
of motion. Without them there would be 17 additional such operators.

4.2 Duality with the osp(4|2) Gross-Neveu

model

One lesson which has been learned through past studies of sigma mod-
els is that they should not be considered as an isolated research topic.
There exist other important constructions of 2D (conformal) field theories
which are intimately tied to sigma models and sometimes can provide in-
triguing insights into the non-perturbative features of sigma models. We
have already alluded to the example of sigma models on Calabi-Yau spaces
which possess a dual description in terms of (products of) WZNW coset
models. Another, more elementary, example is the compactified free boson
which admits a dual description in terms of two Majorana fermions. The
proposed duality between the sigma model on S3|2 and the osp(4|2) Gross-
Neveu model that we described in the introduction is quite similar to the
Coleman-Mandelstam duality between bosons and fermions only that the
abelian symmetry u(1) = so(2) is replaced by the non-abelian osp(4|2).

In the first subsection we shall describe the osp(4|2) Gross-Neveu model
and some of its most basic features. Then we review a central all-loop result
from [39] on the (target space) 1

2
BPS spectrum of perturbed supergroup

WZNW models and explain how it applies to the osp(4|2) Gross-Neveu
model. In the third subsection we try to match the 1

2
BPS spectrum of the

Gross-Neveu model for a certain value of the Gross-Neveu coupling to the
one-loop spectrum of the supersphere sigma models. We will find perfect
agreement for low lying states, but also some discrepancies that involve
fields with more derivatives.
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4.2. Duality with the osp(4|2) Gross-Neveu model

4.2.1 The osp(4|2) Gross-Neveu model

The fundamental field multiplet Ψ = (ΨA) = (ψj, γa) of the osp(4|2) Gross-
Neveu model consists of four Majorana fermions ψj, j = 1, . . . , 4, and a
bosonic βγ-system whose fields we shall denote by γ1 = γ and γ2 = β. In
addition, there is a second multiplet Ψ = (ψj, γa) of opposite chirality. All
these six fields in Ψ possess conformal weight h = 1/2 and transform in the
fundamental representations Λ1,0 of osp(4|2). The same applies to Ψ. In
terms of these field multiplets, the action of the Gross-Neveu model reads

SGN[ψ, γ, ψ, γ] =
1

2π

∫
d2z

[∑
j

(
ψj ∂̄ψj + ψ̄j∂ψ̄j

)
+
(
γ2∂̄γ1 + γ̄2∂γ̄1

)]

+
g

2π

∫
d2z

[∑
j
ψjψ̄j + (γ1γ̄2 − γ2γ̄1)

]2
.

(4.28)

The osp(4|2) invariance of this action is manifest since all indices are con-
tracted with the osp(4|2) invariant metric. When written in terms of Ψ
and Ψ, rather than its components, the action takes the same form as that
of the massless Thirring model with its characteristic fourth order interac-
tion term. When the coupling constant g is set to zero the model is free
and scale invariant. It possesses a Virasoro symmetry with central charge
c = 1. The latter receives a contribution cj = 1/2 from each of the fermions
ψj and ca = −1/2 from the two components of the βγ-system. Switching
on the coupling g introduces a very non-trivial action but it turns out to
preserve conformal symmetry. In fact, the β-function for the coupling g
is proportional to the dual Coxeter number h∨ = Casg(Λ0,1) and hence
vanishes for osp(4|2). Therefore, the osp(4|2) Gross-Neveu model defines
a one-parameter family of interacting conformal field theories with central
charge c = 1.

While the interaction in the osp(4|2) Gross-Neveu model preserves the
Virasoro and a global osp(4|2) symmetry, the free field theory possesses
additional current algebra symmetries that are broken when g 6= 0. In
order to describe these symmetries, we recall that the components of the
field multiplet Ψ obey the following operator product expansions

ψi(z)ψj(w) ∼
δij

z − w
+ . . . , γ2(z)γ1(w) ∼

δab
z − w

. (4.29)

Using these operator product expansions between the fundamental con-
stituents it is standard to show that the following quadratic combinations

JAB = ΨAΨB where (ΨA) = (ψi, γb) (4.30)
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4. The Spectrum of Superspheres

obey the algebraic relations of an osp(4|2) current algebra at level k = 1.
Let us stress once again that this current algebra symmetry is broken as
soon as we switch on the coupling.

The current algebra symmetry suggests interpreting the free theory at
g = 0 as a Wess-Zumino-Novikov-Witten (WZNW) model. In addition,
it is not difficult to verify that the fourth order interaction term of the
Gross-Neveu model can be expressed in terms of the currents (4.30) as

g

2π

∫
d2z
[∑

i
ψiψ̄i + γ1γ2 − γ2γ̄1

]2
=

g

2π

∫
d2z
∑

AB

JAB(z)J̄
AB(z̄) .

(4.31)
Putting all this together we have shown that the Gross-Neveu model can
be thought of as a deformed WZNW model at level k = 1,

SGN = SWZNW
k=1 +

g

2π

∫
d2z
∑

AB

JAB(z)J̄
AB(z̄) (4.32)

where the deformation is generated by an exactly marginal current-current
interaction. This reformulation of the osp(4|2) Gross-Neveu model will
become important when we apply the powerful results of [39] to the Gross-
Neveu model.

4.2.2 The BPS spectrum

In Section 2.5 we reviewed an all-loop result for deformed WZNW models.
Let us now specialize the very general result (2.25) to the osp(4|2) Gross-
Neveu model or, equivalently, to the current-current deformation of the
osp(4|2) WZNW model at level k = 1. In this case our formula can be
applied to all fields that transform in one of the atypical representations Λl,k
or any indecomposable composites formed from these. Let us recall that the
value of the quadratic Casimir element assumes the value Casg(Λl,k) = l2

on such atypicals. Hence, our general formula (2.25) becomes

δ(∞)
g hBPS =

gl2

2 (1− g2)
−

g

2 (1 + g)

(
CasLg +CasRg

)
. (4.33)

for fields transforming in Λ = Λl,k with respect to the diagonal action of g.

Note that the function δ
(∞)
g h develops a singularity at g = −1, at least for a

large number of states. This simple observation motivates the identification
of the point g = −1 with the R → ∞ limit of the S3|2 sigma model. In
fact, in the sigma model one expects that all winding states develop infinite
energy when R → ∞. So, if we want the sigma model to be dual to the
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4.2. Duality with the osp(4|2) Gross-Neveu model

Gross-Neveu model, we are forced to identify g = −1 with the infinite radius
limit. The precise relation between the coupling g and the radius R reads
[39] 1

g =
4−R2

4 +R2
. (4.34)

For a state to remain in the spectrum at the point g = −1, the anomalous
dimension (4.33) has to remain finite. This is the case if

CasLg +CasRg =
l2

2
. (4.35)

We call eq. (4.35) the no-winding condition. For states that satisfy this
condition, the anomalous dimension (4.33) simplifies to

δ(∞)
g hBPS =

1

4

gl2

1− g
= −

l2

8
+

l2

2R2
. (4.36)

Here we also inserted eq. (4.34) so that the anomalous dimension of the
Gross-Neveu model fields is finally written in terms of the radius parameter
R of the sigma model. We have now gathered all the ingredients we need
in order to perform our first tests of the duality. Eq. (4.35) tells us which
states of the free field theory make it into the spectrum at g = −1 and
eq. (4.36) allows us to compute the corresponding conformal weight. We
will now start to compare the resulting spectrum at g = −1 with the free
supersphere sigma model.

In our discussion of the one-loop anomalous dimensions for coset sigma
models we briefly commented on a puzzling instability that arises from high
gradient operators. The same type of instabilities also appears in perturbed
WZNW models, at least for generic choices of the target group and the
level. To leading order in perturbation theory this was observed by Ryu
et al. in [41]. With the help of formula (2.25) one may show that these
instabilities persist to any order in perturbation theory. The authors of [41]
also observed that no instabilities occur for psu(N |N) WZNW models at
level k = 1. This observation, however, does not carry over to our osp(4|2)
WZNW model at level k = 1. In fact, one can show that this theory contains
instabilities arbitrarily close to the free field theory, much as it is the case
for sigma models. For now, we shall close an eye on these issues but we will
revisit them in Chapter 5.

1The cohomological methods developed in [55] imply that the relation is identical to
the one that appears in the duality between a compactified free boson and the massless
Thirring model.
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4. The Spectrum of Superspheres

4.2.3 Checking the proposed duality

We want to apply the results on the deformation of the 1
2
BPS spectrum in

deformed supergroup WZNW models in order to test the proposed duality
between the osp(4|2) Gross-Neveu model and the supersphere sigma model.
In the first subsection we shall show that the zero mode spectrum of the
sigma model is recovered along with its one-loop deformation. This is a
remarkable example of an emergent geometry. In the WZNW model, the
fields that are associated with spherical harmonics of the supersphere pos-
sess very large scaling dimensions. These come down until they become zero
modes, i.e. fields with vanishing scaling weight, in the sigma model limit.
Let us anticipate that the singular vectors of the osp(4|2) WZNW model at
level k = 1 play an important role for this identification with the zero mode
spectrum of the sigma model to work out. Then we turn to derivative fields
of the sigma model. We will argue that the agreement continues to hold
for fields of conformal weight (h∞, h̄∞) = (1, 0), (0, 1) in the sigma model.
This may not come as a big surprise. Things become more interesting for
the fields with conformal weight (h∞, h̄∞) = (1, 1) since these are sensitive
to the equations of motion in the sigma model. Recall that in the sigma
model we found 145 states with vanishing one-loop scaling dimension. This
will be exactly matched by the deformed WZNW model. In the WZNW
model, the scaling dimension of the corresponding 145 states is independent
of the coupling so that the conjectured duality makes an interesting pre-
diction: All higher-loop corrections to the scaling weight of the 145 states
are actually zero. The match between the deformed WZNW model and the
sigma model extends to many other fields with (h∞, h̄∞) = (1, 1). On the
other hand, we will also find sigma model fields that cannot be reproduced
within the deformed WZNW model.

Ground state spectrum

One key piece of evidence in support of the proposed duality is the obser-
vation that we can actually recover all the zero modes of the sigma model.
Under the action of the global osp(4|2) symmetry the space Γ0 of functions
on the supersphere decomposes into a sum of irreducible multiplets Λl,0, see
eq. (4.12). Each of these multiplets appears with multiplicity one. Other
atypical representations Λl,k, k 6= 0 do not occur.

As we have explained before, the states of the Gross-Neveu model can
be constructed from a chiral multiplet Ψ = ΨL that transforms in a 6-
dimensional representation of osp(4|2). The osp(4|2) representation matrices
are those known from the usual fundamental representation, but the grad-
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4.2. Duality with the osp(4|2) Gross-Neveu model

ing rules are reversed so that the fermionic subspace is 4-dimensional while
the bosonic has dimension 2. It is a remarkable fact that the conformal
dimension h of all chiral operators OL in the undeformed case is bounded
from below by

h0
(
OL

[Λ]

)
≥

1

2
CasLg (Λ) . (4.37)

for all OL that transform in the representation [Λ] with respect to the
left osp(4|2) action. Of course, the corresponding statement holds for all
operators OR that are constructed from the components of Ψ = ΨR and
their derivatives. It is actually possible to establish the stronger lower
bound

h0
(
OL

[Λ]

)
≥ j1 + j2(j2 + 1) + j3(j3 + 1) + |j2 − j3| ≥

1

2
CasLg (Λ) (4.38)

which shows that the inequality (4.37) can only be saturated by very special
multiplets, when j1 = 0, 1

2
. It turns out that for each integer l = 0, 1, 2, . . .

there is a unique field multiplet OL
l such that

h0(O
L
l ) =

l2

2
. (4.39)

The multiplet OL
l is obtained as a graded symmetric component in the l-fold

tensor product of the fundamental. Since our generating field multiplet Ψ
is fermionic, i.e. its grading is reversed in comparison to the grading of the
fundamental, the multiplet OL

l must contain l(l − 1)/2 derivatives. Hence,
its conformal dimension h(OL

l ) = l/2 + l(l − 1)/2 = l2/2.
Let us illustrate the construction of OL

l with a few explicit examples. Of
course, the operator OL

0 is just the identity field while OL
1 is the fundamental

multiplet Ψ. The next multiplet OL
2 appears at h(OL

2 ) = 2,

OL
2 =

(
ψA∂ψB + (−1)|A||B|ψB∂ψA

)
. (4.40)

When we multiply the multiplet OL
l with its anti-holomorphic partner OR

l

we obtain a set of bulk fields which transform in the product Λl,0 ⊗ Λl,0.
The only component that can satisfy the no-winding condition is the one
in the representation Λ2l,0. Indeed,

Casg(Λ2l,0) = 4l2 = 2
(
CasLg (Λl,0) +CasRg (Λl,0)

)
. (4.41)

Let us denote the this component of the product by V2l = V2l(z, z̄). To
summarize, we have now constructed a field multiplet V2l in the WZNW
model that transforms in the representation Λl,0 with respect to both the
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4. The Spectrum of Superspheres

left and the right action of osp(4|2) and in the representations Λ2l,0 with
respect to the diagonal action. In the WZNW model, i.e. the free Gross-
Neveu model, this field possesses weights

(
h0(V2l), h̄0(V2l)

)
= (l2/2, l2/2).

Since the representation Λ2l,0 of osp(4|2) in which the field V2l transforms
is 1

2
BPS, we can apply the results of the previous subsection to compute

its dimension for any value of the coupling g and in particular at the point
g = −1. With the help of the leading term in eq. (4.36) we obtain

h(V2l)g=−1 = h0(V2l)−
1

8
4l2 = 0. (4.42)

Hence, we obtain precisely the spectrum provided by the spherical harmon-
ics Λ2l,0 in the sigma model, i.e. at least one half of the zero modes of the
supersphere sigma model. 2 Remarkably, this identification is also consist-
ent with what we know about the one-loop anomalous dimensions in the
sigma model. In fact, if we keep the next to leading term in eq. (4.36) we
find

h(V2l)g =
l2

2
+

gl2

1− g
=

2l2

R2
. (4.43)

This should be compared with the result (4.13) for the one-loop anomalous
dimension of the sigma model vertex operators VΛ2l,0,λ0 . We see that also
the one-loop corrections to the scaling law agree. In the deformed WZNW
model, the formula (4.36) is actually exact, i.e. there are no further correc-
tions by terms involving higher powers of the sigma model coupling 1/R2.
The duality therefore predicts that the anomalous dimensions of zero mode
fields in the sigma model are one-loop exact. It should not be too diffi-
cult to check this prediction through a direct computation along the lines
of [51, 52], where anomalous dimensions of tachyonic vertex operators in
bosonic O(N)-models were computed up to four-loop order. The general
structure of Wegner’s results suggest that higher order corrections indeed
vanish for the conformal supersphere models, but we have not yet completed
an honest derivation.

Since our fields OL/R
l are the only ones satisfying the bound (4.37) and

the bulk field V2l the only fields we could build from them that solve the no-
winding condition (4.35), the deformed WZNW model contains no further
field of weight (h∞, h̄∞) = (0, 0) at g = −1. Moreover, because of the bound
(4.37), all other WZNW fields that solve the no-winding condition end up
with h∞ + h̄∞ > 0 for g = −1. In the free sigma model, the conformal

2One would expect to obtain the missing zero modes V2l+1 from other sectors of the
Gross-Neveu model. Without the inclusion of additional states, the Gross-Neveu model
is related to an orbifold theory S3|2/Z2 rather than the supersphere sigma model.
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4.2. Duality with the osp(4|2) Gross-Neveu model

weights are determined by the number of derivatives and hence they are
certainly non-negative. So, our results are in beautiful agreement with the
proposed duality.

Let stress that the match of zero modes only works for the WZNW
model at k = 1, i.e. it does make crucial use of the exact position of singular
vectors. In order to illustrate this point let us consider the space of states
H(l)
k of conformal weight h = 2 (h̄ = 0). For an osp(4|2) WZNW model

with k > 1, these transform in

H(2) ∼= Λ0,1+Λ0,1⊙Λ0,1 = Λ0,0+Λ0,1+Λ2,−1+2Λ2,0+Λ2,1+[2, 0, 0] . (4.44)

The term Λ0,1 originates from the action of the modes JAB−2 while the term
Λ0,1 ⊙ Λ0,1 contains the contributions of JAB−1 J

CD
−1 |0〉. A formula for the

symmetric tensor product ⊙ of the adjoint Λ0,1 can be found at the end of
appendix B. Note that there appear four different multiplets in which the
Casimir element has the maximal value Casg(Λ) = 4, namely the multiplets
Λ = Λ2,k, k = 0,±1. At level k = 1, the first singular vectors appear at
h = 2 and these reduce the spectrum to

H(2)
k=1

∼= Λ0,0 + Λ0,1 + Λ2,0 + [2, 0, 0] (4.45)

so that the representations with maximal Casimir are reduced to a single
one, namely Λ2,0. This is the unique multiplet in H(2)

k=1 that is used to build
a zero mode at g = −1. WZNW models with level k > 1 contain many
more zero modes and hence cannot be dual to the supersphere sigma model.

Spectrum of gradient operators

After our success in matching the zero modes of the sigma model with fields
in the deformed WZNW theory, we want to move on to gradient fields in the
sigma model. Some of them are very easy to find. This applies in particular
to the operators of weight (h∞, h̄∞) = (1, 0). Their spectrum was described
in eq. (4.14). Most of these fields emerge from the WZNW model derivative
operators ∂V2l with l = 1, 2, . . . . The fields V2l were constructed above. The
bulk operators ∂V2l have conformal weight (h0, h̄0) = (l2/2 + 1, l2/2) and
they transform in the representation Λ2l,0. By the same reasoning as above
we obtain a family of fields with weight (h∞, h̄∞) = (1, 0) at the point
g = −1 which transform in the Λ2l,0 representations of osp(4|2). Their one-
loop anomalous dimension coincides with that of the corresponding zero
modes. Of course, the match with the operators of weight (h∞, h̄∞) = (1, 0)
is not surprising since they are obtained as derivatives in both the WZNW
and the sigma model description.
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There is one more set of operators at (h∞, h̄∞) = (1, 0), namely the
Noether currents of the sigma model that sit in the representation Λ0,1. It is
obvious that these arise from the chiral currents JAB in the WZNW model.
In fact, the currents of the WZNW model transform in the representation
ΛL = Λ0,1 and ΛR = Λ0,0 with respect to the left and right action of
osp(4|2), respectively. Under the diagonal action, the transformation law
is described by the tensor product ΛD = Λ0,1 ⊗ Λ0,0 = Λ0,1. Since all
these representations possess vanishing Casimir, the no-winding condition
(4.35) is satisfied and the anomalous contribution to the conformal weight
vanishes. Hence, we can identify the deformation of the WZNW currents
with the Noether currents of the sigma model.

Let us now turn to the operators of conformal weight (h∞, h̄∞) = (1, 1)
in the sigma model. Their spectrum in the sigma model is given by eq.
(4.17). Obviously, we can obtain some of these from the operators ∂∂̄V2l, l =
1, 2, . . . in the WZNW model. But these fields are not even close to exhaust-
ing the content of eq. (4.17). In particular, the sigma model contains 145
marginal fields with vanishing one-loop anomalous dimension that we dis-
cussed extensively in Section 4.1 and so far we have not seen any of them.

These 145 fields belong to mutiplets Λ0,0+2Λ0,1+Λ0,2, all of which have
vanishing Casimir. Hence, in the WZNW model they must appear with
(h0, h̄0) = (1, 1). So, let us count the fields in the WZNW model that have
weights (h0, h̄0) = (1, 1) and vanishing Casimir. All of these fields must arise
among JAJ̄B, i.e. sit in the tensor product of the adjoint representation of
osp(4|2) with itself. This tensor product is given by

Λ0,1 ⊗ Λ0,1
∼= Λ0,0 + 2Λ0,1 + Λ0,2 + Λ2,−1 + 2Λ2,0 + Λ2,1 + [2, 0, 0] . (4.46)

Indeed, this contains exactly 145 fields in representations from the block
of the trivial representations for which the anomalous dimension vanishes
to all orders in the coupling and hence also around g = −1, in perfect
agreement with the sigma model results. Since the space of marginal fields
in the sigma model is truncated by the equations of motion, the deformed
WZNW model has the sigma model equations of motion built in!

This is a remarkable agreement. On the other hand, looking back at the
sigma model spectrum (4.17) we realize that the content of what looks like
PΛ2l,0

, l = 1, 2, . . . is still missing. Additional fields in these representations
that acquire weights (h∞, h̄∞) = (1, 1) at g = −1 do exist in the WZNW,
but these turn out not to match the one-loop data near g = −1. This is
the first discrepancy between the Gross-Neveu and the sigma model.

Let us point out that, once again, the singular vectors are absolutely
crucial in order for the WZNW model to respect the sigma model equations
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of motion. As an example let us look at the operators of the form ∂∂̄V4.
These give rise to a single marginal sigma model field in the representation
Λ4,0. If it was not for the singular vectors of conformal weight h = 2, the
WZNW model would give many more marginal fields in the same block. In
fact, the tensor product

(2Λ2,0 + Λ2,1 + Λ2,−1)⊗ (2Λ2,0 + Λ2,1 + Λ2,−1) ∼=

∼= Λ4,−2 + 4Λ4,−1 + 6Λ4,0 + 4Λ4,1 + Λ4,2 + · · ·
(4.47)

where + · · · stand for multiplets Λ with Casg(Λ) < 16, none of which
satisfy the no-winding condition. But those that do clearly outnumber the
spectrum of marginal sigma model fields.

4.3 Beyond one loop

As we have stressed above, eq. (4.36) is actually exact, that is in its de-
rivation no terms of higher order in 1/R2 were dropped. Its only R-
dependent term agrees with the one-loop result in eq. (3.38), provided that
Cash(µ) + Cash(µ) = 0. This implies that, if the proposed duality is to
hold, at least for a subsector of the supersphere sigma model, the anomalous
dimensions of this subsector need to be one-loop exact. The setup described
in Chapter 3 can be used to compute the corrections to the scaling weights
also to higher orders in 1/R2. For now we will restrict to the tachyonic
vertex operators in conformal sigma models, i.e. the ground states of the
sigma model at R = ∞, and leave more general computations for future
research. The computation simplifies substantially for tachyonic vertex op-
erators since the tail contribution is trivial. The anomalous dimensions
of tachyonic vertex operators of non-linear sigma models on the bosonic
symmetric spaces have been computed to four-loop order [51, 52].

From the expansion (3.32) of vertex operators, it is clear that the anom-
alous dimension of tachyonic vertex operators vanishes at two-loop order.
The only corrections to the two-point function are of the form

〈V (2)(u, ū)⊗ V (2)(v, v̄)〉 (4.48)

which diverges like ln2(ε) while contributions to the anomalous dimension
only arise from divergences of order ln(ε). The interaction vertices Ω are
of at least quartic order for symmetric cosets and V (i) contains i copies
of the coordinate fields. Therefore, there are no further contributions at
two-loop order. This statement is consistent with known results for bosonic
symmetric cosets, where the two-loop correction vanishes as well.

65



4. The Spectrum of Superspheres

The simplicity of the tachyonic states allows us to proceed to third order.
The correction due to V (3) vanishes for the same reasons as before. Two
possible contributions remain. The integrand of the first one is

∫

G/H

dµ(g0H)〈V (1)(u, ū)⊗ V (1)(v, v̄)Ω4(z, z̄)Ω4(w, w̄)〉. (4.49)

The group structure of (4.49) contains an insertion of a rank two tensor built
from the structure constants that appear in Ω4. For symmetric spaces, the
group structure of Ω4 has a simple geometric interpretation. It is propor-
tional to the Riemann curvature tensor Rijkl = fijaf

a
kl of the coset space.

The condition on the vanishing of the β-function is that any contraction
of any number of Riemann tensors which results in a rank two tensor must
vanish. Hence, this first contribution vanishes, not only for the supersphere
but for all conformal sigma models on symmetric superspaces.

The remaining possible contribution arises from the integrand
∫

G/H

dµ(g0H)〈V (2)(u, ū)⊗ V (2)(w, w̄)Ω4(z, z̄)〉 (4.50)

as well as two further “unbalanced” contributions with V (3) ⊗ V (1) which,
however, have the same group structure. The resulting group structure is

∫

G/H

dµ(g0H)LΛ

(
Adg0(Rijklt

itjtktl + perm.)
)
DΛλ(g0)DΞξ(g0), (4.51)

where λ = ξ = 0. The order of the ti can be changed using the commutation
relations. For tachyonic vertex operators any resulting terms of ta ∈ h can
be commuted through and, due to equation (3.33), eventually dropped.
This process produces additional insertions of structure constants and it
is easy to see that they combine again to contributions proportional to
Rijkl. Therefore, this last correction can be separated into two pieces. One
is proportional to the completely symmetric part of the Riemann tensor
which vanishes. The other one is again a rank two tensor built from two
copies of the Riemann tensor and therefore also zero.

These arguments hold for any conformal sigma model defined on a sym-
metric superspace. They show that for the ground state spectrum of the
supersphere S3|2 the duality with the osp(4|2) WZNW holds to at least
three-loop order. Starting at fourth order, tensor structures begin to appear
that cannot be shown to vanish due to symmetry alone. The contribution
in question has the form
∫

G/H

dµ(g0H)LΛ

(
Adg0(fijaf

a
klf

j
mbf

bk
nt
itltmtn)

)
DΛλ(g0)DΞξ(g0) . (4.52)
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We stress that the indices i, j, . . . run over a basis of m ≃ g/h, while a and
b run over a basis of h. Due to the fact that

LΛ(Adg0 t
a)DΛλ(g0) = −Rλ(Adg0 t

a)DΛλ(g0) (4.53)

we can extend the range of the index n to run over all of g without changing
the result, as long as λ = 0. In the next step, we can also extend the range
of the indices b and k to run over all of g. The Z2-structure ensures that
the additional terms are identically zero. The result is that the term (4.52)
results in an operator which commutes with the g-action and contains a
contribution of the structure constants of g. Such operators must act trivi-
ally on g-representations which have non-zero superdimension. These are in
particular the maximally atypical representations. The same argument was
used in [39] to derive the all-loop result (2.25) for deformed WZNW models.
At higher loop-orders, more complicated structures appear. However, we
believe that the same argument can be applied.

To summarize, we have shown that the two- and three-loop contribu-
tions to the anomalous dimensions of tachyonic vertex operators in con-
formal sigma models on symmetric spaces vanish. We further argued that
all higher-order contributions vanish as well provided that the vertex op-
erator transforms in a maximally atypical representation of the numerator
group. For this argument it was critical that the target-space was symmetric
and that the vertex operators had no tail components. If we were to relax
the latter condition, interactions between the tails would contribute to the
anomalous dimensions and it is currently not clear under which conditions
those additional contributions would cancel. The result suggests that the
anomalous dimensions of all tachyonic vertex operators of the supersphere
S3|2 model is one-loop exact, as was predicted by the duality.
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Chapter 5

High-Gradient Operators in the

psl(2|2) Gross-Neveu Model

In the introduction, we mentioned the existence of an instability in non-
linear sigma models and deformed WZNW models. In chapter 3 we then
saw the origin of this instability in sigma models from the one-loop anom-
alous dimension (3.40). In this chapter we revisit the instability of WZNW
models. We exploit the result (2.25) on the perturbation theory of WZNW
models and the representation theory of psl(2|2) to prove that the deformed
psl(2|2) WZNW model at k = 1 is free of strongly RG-relevant psl(2|2)
invariant operators in any order of perturbation theory. In addition, we
evaluate the spectrum of all fields that transform in maximally atypical
(1
2
BPS) representations of the target space symmetry psl(2|2) up to scaling

weight ∆ ≤ 5. Very remarkably, the spectrum at infinite coupling turns out
to assume half-integer values only, nurturing hopes it might be described by
a dual free field theory. In fact, it has been argued that such a dual model
is provided by the CP1|2 NLSM [70]. Our results, however, do not provide
evidence for a duality with this sigma model.

The plan of this chapter is as follows. In order to apply the results
reviewed in section 2.5 to the psl(2|2) Gross-Neveu model, we need some
background from representation theory which is collected in section 5.2.
All-loop stability is established in section 5.3 before we compute the low
lying spectrum at infinite coupling in section 5.4.
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5.1 The BPS spectrum

We now specialize the general formula (2.25) for the anomalous dimension
of 1

2
BPS operators to the case g = psl(2|2). The superalgebra psl(2|2) has

only one atypicality condition and the quadratic Casimir vanishes on all
atypical representations. Thus, eq. (2.25) simplifies to

δg = −
g

2(1 + kg)

(
CasLg +CasRg

)
. (5.1)

We are particularly interested in operators that are invariant under the
diagonal action of the symmetry algebra since such operators could be used
to generate a g preserving perturbation. The assumption of g invariance
does not simplify our formula (5.1) any further but it restricts it to operators
for which the tensor product of left and right action contains the trivial
representation. The finite-dimensional representation theory of psl(2|2) has
been worked out in detail in [71]. The results imply that the only way to
obtain an invariant with ΛR = Λ is to tensor with the same representation
ΛL = Λ.

5.2 Review of psl(2|2) representation theory

In this section we give a brief review of the pertinent facts regarding the Lie
superalgebra psl(2|2) and its finite dimensional representation theory. The
algebra psl(2|2) has rank two and its even subalgebra is g0̄ ≃ sl(2)⊕ sl(2).
Consequently, all finite dimensional representations are uniquely character-
ized by a pair of sl(2) weights j, l ∈ 1

2
Z. Representations of psl(2|2) can

satisfy one shortening, or atypicality, condition which is simply given by
j = l. We will denote typical representations of psl(2|2) by [j, l] and atyp-
ical irreducibles by [j]. Irreducible representations of the even subalgebra
will be denoted by (j, l).

Upon restriction to the even subalgebra g0̄ the irreducible representa-
tions decompose as

[j]
∣∣
g0̄

≃ (j + 1
2
, j − 1

2
)⊕ 2(j, j)⊕ (j − 1

2
, j + 1

2
) (for j > 0) (5.2)

[j, l]
∣∣
g0̄

≃ (j, l)⊗
[
2(0, 0)⊕ 2(1

2
, 1
2
)⊕ (0, 1)⊕ (1, 0)

]
(5.3)

and [0] is the trivial representation. Let us also remark that [1
2
] corresponds

to the adjoint representation. Atypical irreducibles of Lie superalgebras can
form indecomposables. If one is not interested in the precise form in which
such indecomposables are built from their constituents, all tensor products
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5.3. Absence of relevant high-gradient operators

of finite dimensional g representations may be determined by restricting the
factors to the even subalgebra, tensoring the associated g0̄ representations
and combining the resulting products back into representations of g. The
first and last step require no more than our decomposition formulas (5.2)
and (5.3). The tensor products of irreducibles, including the indecompos-
able structures, have been worked out in [71].

We will also need to know the eigenvalue of the quadratic Casimir in-
variant Casg. It is given in terms of the highest weights by

Casg
(
[j, l]

)
= −j(j + 1) + l(l + 1)

Casg
(
[j]
)
= 0.

(5.4)

Note that its value in atypical representations is given by evaluating the
Casimir for typicals on weights which satisfy the shortening condition j = l.

Let us conclude with a few scattered comments on the notation we are
about to use. As we mentioned above, atypical irreducibles can combine to
form complicated indecomposables. We will not concern ourselves with this
indecomposable structure of the spectrum and simply look at the constitu-
ent irreducible representations. For this reason, we shall not use the symbol
⊕ in our formulas but simply write + instead. Many of the sums of repres-
entations we are about to see are in fact not direct. Since traces are blind
to the indecomposable structures, our formulas for representations encode
true identities among their characters χΛ in which + and tensor products
are ordinary sums and products of characters.

5.3 Absence of relevant high-gradient

operators

The spectrum of WZNW models on type I supergroups is quite well under-
stood, see [72]. Almost all of these models give rise to logarithmic conformal
field theories, see also [73, 27], and hence their Hamiltonian (generator of
dilations) is not diagonalizable. In our analysis of the spectrum we shall
only be concerned with the generalized eigenvalues of the dilation operator.
This information is encoded in the partition function of the WZNW model.
The latter decomposes into a sum of products of characters for represent-
ations of the left- and right moving chiral algebra. This does not mean
that these models experience holomorphic factorization – they do not. But
the trace we take when we compute the partition function cannot see the
intricate coupling between left and right movers.
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5. High-Gradient Operators in the psl(2|2) Gross-Neveu Model

The representations of the affine p̂sl(2|2)k algebra along with their char-
acters have been worked out for arbitrary level k in [71]. When k = 1, the
theory contains a single sector which is based on the vacuum representation
of the current algebra. Using the results of [71] one can obtain the branch-
ing functions for the decomposition of the affine modules into irreducible
representations of the zero-mode subalgebra psl(2|2). In case of the vacuum
representation of the affine psl(2|2) at level k = 1 the branching functions
into representations (j, l) of the even subalgebra g0̄ read

ψ
(0)
(j,l) =

q
1
12

φ(q)4

∑

s∈Z

∞∑

m,n=0

(−1)m+n q
m(m+1)+n(n+1)

2
+s(s+m−n)−j(m+n+1)

×
(
1− q−(m+n+1)

)(
1− q2l+1

)
ql

2

,

(5.5)

where j, l ∈ Z and with s → s + 1/2 for j, l ∈ Z + 1/2. From these
formulas one can determine the branching functions into representations of
the superalgebra g with the help of eqs. (5.2) and (5.3). For the first few
levels, the resulting decomposition of the vacuum character χ̂0 reads

χ̂0(q, x, y) = q
1
12

(
q0χ[0] + q1χ[ 1

2
] + q2(χ[1,0] + χ[ 1

2
] + χ[0])

+ q3(χ[2,0] + χ[1,0] + 2χ[1] + 3χ[ 1
2
] + 4χ[0])

+ q4(χ[3,0] + χ[2,0] + 3χ[1,0] + χ[0,1] + 2χ[ 3
2
, 1
2
]

+ 2χ[1] + 4χ[ 1
2
] + 5χ[0])

)
+O(q5) .

(5.6)

Here, we expanded the vacuum character of the affine psl(2|2) at level k =
1 into characters χΛ = χΛ(x, y) of the zero mode algebra psl(2|2). The
arguments x, y keep track of the psl(2|2) weights while q is associated with
the eigenvalues of L0, i.e. with the conformal weight h, as usual. In the
partition function, χ̂0 gets multiplied with an identical contribution from
the anti-holomorphic sector, only that we need to replace q by q̄.

From (5.5) it follows that the smallest conformal weight at which a
bosonic module (j, l) 6= (0, 0) appears is given by

hmin
g=0(j, l) =





j + l2 j, l ∈ Z

j + l2 +
1

4
j, l ∈ Z+ 1

2
.

(5.7)

In addition we note that modules with j, l ∈ Z+ 1
2

always appear with mul-
tiplicity two at their lowest weight. From the decomposition (5.3) of typical
irreducible modules we can now deduce that the minimal weight hmin

g=0([j, l])
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of a module [j, l], j 6= l, is given by the minimal weight hmin
g=0(j, l+ 1) of the

bosonic module (j, l + 1),

hmin
g=0

(
[j, l]

)
=




j + (l + 1)2 j, l ∈ Z

j + (l + 1)2 +
1

4
j, l ∈ Z+ 1

2
,

(5.8)

for typical [j, l]. With the help of the decomposition (5.2) one can find a
similar result for atypical representations,

hmin
g=0

(
[j]
)
=




j2 + 2j j ∈ Z

j2 + 2j −
1

4
j ∈ Z+ 1

2
.

(5.9)

Given the values (5.4) of the quadratic Casimir, it is clear that if we take
g ≤ 0 high-gradient operators become relevant for arbitrarily small values of
the coupling, since their engineering dimension grows linearly in j, while the
anomalous dimension grows like −j2. So this direction of the perturbation
cannot lead to a stable theory.

Let us therefore turn to the case g ≥ 0. From [71] we know that operat-
ors that are invariant under the diagonal action of psl(2|2) must transform
in the same representation ΛL = ΛR with respect to the left and right ac-
tion. Eq. (5.1) implies that the only invariant operators that become more
relevant as we increase the coupling g must sit in multiplets ΛL = [j, l] = ΛR
with l > j. Among those, the lowest lying ones at g = 0, namely those with
j = 0, are also those that receive the largest correction to their conformal
weights. From eq. (5.1), the anomalous dimension δg

(
[0, l]

)
of invariant

operators with ΛL = [0, l] = ΛR is given by

δg
(
[0, l]

)
= −

g

1 + g
l(l + 1). (5.10)

Comparing with eq. (5.8), we infer that these operators remain irrelevant
for all finite values of the coupling. In conclusion, the models with g ≥ 0
actually contain no RG-relevant invariant operators. Thereby, we have
extended the one-loop result of [41] to all loop orders and all invariant
operators.

5.4 The spectrum at infinite coupling

The limiting point g = ∞ is obviously of special interest. Let us therefore
describe its spectrum in some more detail. From the above discussion we
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5. High-Gradient Operators in the psl(2|2) Gross-Neveu Model

can conclude that there are no relevant invariant operators in the spectrum
for any positive value of the coupling. Moreover, we see that as g → ∞
the spectrum of operators in atypical (1

2
BPS) representations under the

diagonal action of psl(2|2) is half-integer valued, i.e.

hg := hg=0 + δg satisfies h∞ = lim
g→∞

hg ∈
1
2
Z . (5.11)

The multiplicities of 1
2
BPS states at any total conformal weight ∆ = h+ h̄

remain finite as the coupling g tends to infinity, as can be seen with the
help of eq. (5.8) together with eq. (5.1). For j1, j2 ∈ Z we find

∆min
∞ = hmin

∞

(
[j1, l1]

)
+ h̄min

∞

(
[j2, l2]

)
= j21 +2j1+j

2
2 +2j2+ l1+ l2+2. (5.12)

When either j1 or j2 are half-integer, 1
4

gets added to the above formula.
If they are both half-integer, we must add 1

2
. Since all the labels are non-

negative, the total energy grows strictly monotonically in them. There-
fore, multiplicities of 1

2
BPS states remain finite for any given value of ∆∞.

Moreover, ∆∞ remains non-negative and the only state that goes to ∆∞ = 0
is the ground state of the WZNW model.

We will now describe the spectrum at g = ∞ up to ∆∞ = 5. The
analysis is organized according to the right moving conformal weight h̄∞,
i.e. we shall start by listing all the 1

2
BPS states that possess h̄∞ = 0,

i.e. the chiral states of the Gross-Neveu model at strong coupling g = ∞.
Obviously, all chiral 1

2
BPS states of the WZNW model, that is those that are

built with the right moving vacuum state and hence have weights (h0, 0), do
not acquire an anomalous contribution to their conformal weights. Hence,
chiral states of the WZNW model give states with (h∞ = h0, h̄∞ = 0).
That does not mean, however, that the chiral 1

2
BPS spectrum at g = ∞

is the same as it is at g = 0. Indeed, starting from h∞ = 3 we see new
chiral states appearing. The first ones originate from an operator multiplet
at
(
h0, h̄0

)
= (4, 1) that transforms in the representation [0, 1]L ⊗ [1

2
]R in

the WZNW model. Under the diagonal action D, this product decomposes
into

[0, 1]⊗ [1
2
] = 6[0] + 6[1

2
] + 4[1] + [3

2
] + typicals. (5.13)

Hence, this multiplet of the WZNW model contributes plenty of chiral fields
at strong coupling. At h∞ = 4 we only need to account for the holomorphic
derivative of this operator. For h∞ = 5, finally, there exist three multiplets
in the representation [0, 1]L ⊗ [1

2
]R. Additionally, we obtain a contribution

from a multiplet that transforms in [0, 2]L ⊗ [0, 1]R. Its 1
2
BPS content in

the decomposition with respect to the diagonal action is the same as for
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5.4. The spectrum at infinite coupling

the previous operator. Summing everything up, the chiral spectrum to this
level is given by

h∞ = 0 [0]

h∞ = 1 [1
2
]

h∞ = 2 [0] + [1
2
]

h∞ = 3 10[0] + 9[1
2
] + 6[1] + [3

2
]

h∞ = 4 11[0] + 10[1
2
] + 6[1] + [3

2
]

h∞ = 5 38[0] + 37[1
2
] + 24[1] + 5[3

2
] .

(5.14)

The analysis for the next cases with h̄∞ > 0 proceeds along the same lines.
For h̄∞ = 1 one finds,

h∞ = 1 4[0] + 2[1
2
] + 2[1]

h∞ = 2 4[0] + 3[1
2
] + 2[1]

h∞ = 3 18[0] + 20[1
2
] + 14[1] + 5[3

2
]

h∞ = 4 22[0] + 23[1
2
] + 16[1] + 5[3

2
] .

(5.15)

Similarly, the results for h̄∞ = 2 read

h∞ = 2 19[0] + 16[1
2
] + 8[1] + [3

2
]

h∞ = 3 58[0] + 61[1
2
] + 46[1] + 17[3

2
] + 2[2].

(5.16)

For higher values of h̄∞ ≤ 5 the multiplicities of 1
2
BPS multiplicities in

the g = ∞ Gross-Neveu model can be inferred from the list we provided,
exploiting that the spectrum is certainly symmetric under the exchange of
left- and right movers.

There exist actually a few more states at ∆∞ = 5 that we have not listed
yet. In fact, ∆∞ = 5 marks the first level at which states with negative left
moving weight h∞ < 0 appear in the spectrum. At the same time, ∆∞ = 5
is also the lowest value of the scaling weight at which half-integer conformal
weights (h∞, h̄∞) are actually observed. The additional states are generated
by two WZNW operators that transform in the representation [1

2
]L⊗[1

2
, 3
2
]R.

In this case, the decomposition of the diagonal action can be worked out to
give

2[1
2
]⊗ [1

2
, 3
2
] = 4[0] + 8[1

2
] + 12[1] + 8[3

2
] + 2[2] + typicals. (5.17)

Note that we multiplied the left hand side by a factor 2 so that the left hand
side accounts for all operators that possess weights

(
h∞, h̄∞

)
=
(
−1

2
, 11

2

)
at

g = ∞. Of course, the spectrum is symmetric under the exchange of the
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5. High-Gradient Operators in the psl(2|2) Gross-Neveu Model

holomorphic and anti-holomorphic sectors so that the same content appears
with

(
h∞, h̄∞

)
=
(
11
2
,−1

2

)
.

The fact that the spectrum becomes half-integer valued at g = ∞ sug-
gests that the theory might possess a free-field description. It has been
proposed in the past that such a dual model should be given by the CP1|2

non-linear sigma model [70]. Unfortunately, the spectrum we have presen-
ted in this section bears no resemblance to that if the CP1|2 model. It
remains to be seen what a free field description of the strongly coupled
psl(2|2) Gross-Neveu model could be, if it exists.
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Chapter 6

Deformations of Kazama-Suzuki

models

When discussing WZNW models as potential duals of non-linear sigma
models it is natural to further widen the scope of the discussion and in-
clude their GKO cosets. Then one can ask whether the resulting models
have a marginal deformation analogous to the current-current deformation
of WZNW models on simple supergroups. In the absence of worldsheet
supersymmetry this turns out to be the case precisely if the coset is taken
from the list (2.16) without further restrictions on the level k [36]. Note,
however, that the setup here is quite different. In the GKO construction,
the coset is taken with respect to the adjoint action of the denominator,
while it was taken with respect to the right action in the sigma model case.
Nevertheless, the GKO cosets based on the list (2.16) are believed to ap-
proach the sigma model on the corresponding space in the limit where the
level k is taken to infinity [74, 75, 36].

Worldsheet N = 1 supersymmetric extensions of the GKO cosets (2.16)
still possess a marginal deformation, but the conditions on the denominator
subgroup should be more relaxed. In this chapter, we will focus on the case
where the supersymmetry is further enhanced to N = 2. These are models
that are associated to hermitian symmetric spaces G/H where again the
dual Coxeter number g∨ of G vanishes. As we will see, all these models have
at least one marginal chiral primary field which are known to be exactly
marginal [76].

We begin with a brief review of the Kazama-Suzuki construction [77]
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6. Deformations of Kazama-Suzuki models

which yields the N = 2 supersymmetric models Then, in section 6.2, we
construct a marginal chiral primary field that is present in all Kazama-
Suzuki models with vanishing dual Coxeter number of the numerator.

6.1 Kazama-Suzuki supercoset models

The construction of Kazama-Suzuki models begins with the numerator
group G. We denote its Lie algebra by g. For the moment we shall only
assume g to be simple. Associated with our choice of the numerator group
comes a WZNW model ĝ of level k. Through the usual affine Sugawara con-
struction we then obtain the generators of a Virasoro algebra with central
charge

cG = sdim g
k

k + g∨

with g∨ the dual Coxeter number of g.

Let us now choose some subgroup H of G with Lie algebra h. Following
Kazama and Suzuki, there are some conditions on the choice of H that we
want to impose. To begin with, we shall assume the existence of some order
two automorphism of G that leaves the subgroup H ⊂ G invariant and H
is required to have the same rank as G. Furthermore, we assume that roots
of H are also roots of G. The quotient space m = g/h is a representation
of the denominator algebra h. We require that m splits into a direct sum
of two conjugate representations. The embedding of H into G determines
the level k′G = κ(k − g∨) of the embedded h current algebra. The factor κ
is known as the embedding index for the embedding of h into g.

Once we have made our choice of h, we add a “fermionic” sector to the
numerator. The additional fields possess conformal weight h = 1/2 and
transform in the representation m of the denominator subalgebra h. From
these fields we can construct an osp(2p|2q) affine current algebra at level
k = 1, see Appendix E, which we reproduce here from [35] for convenience.
Here 2p = dimm0̄ and 2q = dimm1̄ are the dimensions of the even and odd
parts of m, respectively. Since m was assumed to split into a direct sum of
two conjugate representations, 2p and 2q are even. The Lie superalgebra
osp(2p|2q) possesses dual Coxeter number gF = 2p − 2q − 2. Therefore,
the central charge of the Virasoro algebra obtained for the level k = 1
algebra is cF = p − q. The current algebra h can be embedded into the
fermionic osp(2p|2q) we described in the previous paragraph. The index of
this embedding determines the level k′F = κg∨−h∨ of the h currents within
the osp(2p|2q) algebra.

78



6.1. Kazama-Suzuki supercoset models

In the coset model, we combine the embedding of the h currents into
the ĝ model with the one that maps into the fermionic sector. This leaves
us with an affine current algebra of level k′G + k′F = k′ − h∨ where k′ = κk.
The coset model has central charge

c = cG + p− q −
∑

ν

sdimHν(k
′
ν − h∨ν )

k′ν
.

In writing this formula we have allowed the subgroup H to consist of sev-
eral simple subgroups Hν . According to the usual results of Kazama and
Suzuki, the conditions imposed on choice of H guarantee that the Virasoro
symmetry can be extended to an N = 2 superconformal algebra, see [78]
for an extension to supercosets.

The sectors of the coset model are labeled by triples (Λ, Λ̃, λ) of indices.
Here, the first index Λ is an integral highest weight of the current algebra
g at level k− g∨, λ is an integral highest weight of the current algebra h at
level k′ − h∨ and the index Λ̃ is an integral highest weight of osp(2p|2q) at
level one. For our purposes it is simpler to use the fact that this “fermionic”
factor is constructed from free fields. Since the latter contain bosons, there
are infinitely many sectors that are related by spectral flow. The ground
state of these sectors possesses conformal weight

hS =
p− q

8
S2 .

For an even number of spectral flows, the fundamental fields of the
“fermionic” sector possess half-integer mode indices. Hence, the weight of
states in this sectors may be shifted by multiples of 1/2. When we apply
an odd number of spectral flows, on the other hand, all states have weight
hS up to an integer. From now on we shall think of Λ̃ = (S, σ) with S ∈ Z

and σ = 0, 1. We also set

h(Λ̃) = h(S, σ) =

{
hS + 1/2 for S even , σ = 1

hS else

Similarly, we want introduce a function q(Λ̃) = q(S, σ) that measures the
U(1) charge up to an integer,

q(Λ̃) = q(S, σ) =
p− q

2
S .
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Note that q(S, σ) does not depend on the choice of σ. The conformal weight
and U(1) charge of the sectors (Λ, Λ̃, λ) are given by

h =
1

k
C(2)

g (Λ) + h(S, σ)−
1

k′
C

(2)
h (λ), (6.1)

q = q(S, σ)−
1

k′
q(λ), (6.2)

with

q(λ) =
1

k′

∑

ᾱ∈∆̄+

ᾱ · λ, (6.3)

where ∆̄+ denotes the positive roots of g that are not roots of h. In partic-
ular we have q(λ = 0) = 0.

6.2 Marginal chiral primaries

We want to study a special perturbation of our Kazama-Suzuki models.
In order to describe the perturbing field, we decompose the representation
of the denominator algebra h on the Lie superalgebra g according to g =
m− ⊕ h ⊕ m+, where m± form conjugate representations of h. The spaces
m±
ā possess the dimensions

dim m±
0̄
= p , dim m±

1̄
= q.

A basis of m± is labeled by an index m± = 1, . . . , p+ q. The coset field we
are going to perturb by is obtained from the decomposition

|g〉Gm±
⊗ ψ

m±

−1/2|0〉
f
NS = |(g, v, 0)〉± ⊗ |0〉H

of the state on the left hand side. The sum over m± = 1, . . . , p + q is
performed without summing over ±. Here, |g〉Gm±

denotes ground states in

the sector of the adjoint representation of g, while |0〉fNS is the ground state
in the Neveu-Schwarz sector of the fermions. The operator ψ

m±

−1/2 is taken to

transform in the conjugate h representation. The OPE of the fields ψm±(z)
is defined as

ψm(z)ψn(w) ∼
hmn

z − w
, (6.4)

where hmn is the inverse of the metric on the adjoint of g. In particular, the
fields ψ±(z) have trivial OPE amongst themselves. It is easy to see that
the above state is primary with respect to the H currents. Since it also
transforms trivially under the zero modes of the H current algebra, it can
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6.2. Marginal chiral primaries

be written as a product of the vacuum state |0〉H of the denominator and
the ground states |(g, v, 0)〉± of the coset model. The corresponding fields
of the coset model will be denoted by χ±. The perturbation we want to
look at is generated by a descendent of the operator

O(z, z̄) = χ−(z̄)χ−(z) + χ+(z̄)χ+(z) . (6.5)

From eqs (6.1) and (6.2) together with

h(ψ
m±

−1/2) =
1

2
, q(ψ

m±

−1/2) = ±1, (6.6)

we see that the conformal weight h and charge q of the coset state are given
by

h(χ±) =
k + g∨

k
C(2)

g (g) +
1

2
, q(χ±) = ±1 . (6.7)

These equations follow from the fact that our coset fields have trivial entry
λ = 0 for the denominator algebra. We see that our perturbing fields
can be (anti-)chiral primary only if the dual Coxeter number vanishes, i.e.

g∨ = C
(2)
g (g) = 0. This is the case if G is one of the supergroups PSU(n|n),

OSP(2n + 2|2n) or D(2, 1;α). Note that the central charge cG is then
independent of the level. For G = PSU(n|n) the central charge is cG = −2
while for the other two series we have cG = 1.

Since WZNW models and, by extension, also Kazama-Suzuki models
defined on supergroups are non-unitary, the vanishing of the dual Coxeter
number is only a necessary condition for the fields χ± to be (anti-)chiral
primary. If we can show that they are primary, then vanishing of the
dual Coxeter number implies that they are chiral as well, due to the su-
perconformal algebra. A state in the Neveu-Schwarz sector is primary if
it is annihilated by all positive modes of the supersymmetry generators
G± = ψm±Jm± , where Jm± are the components of the g-currents. The only
case where we have to do a little bit of work is

G+
+ 1

2

|(g, v, 0)〉− = Jm+,0|g〉m− ⊗ ψ
m+

+ 1
2

ψ
m−

− 1
2

|0〉fNS

= hm+m−Jm+,0|g〉m− ⊗ |0〉fNS

= hm+m−f n
m+m−

|g〉n ⊗ |0〉fNS

= 0 ,

(6.8)

where f n
m+m−

are structure constants of g. The computation for the case
with + and − exchanged is analogous. We have shown that the fields χ± are
indeed (anti-)chiral primary if the dual Coxeter number of the numerator
vanishes.
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6. Deformations of Kazama-Suzuki models

For unitary theories, perturbations that are associated to (anti-)chiral
primary fields of weight h = 1/2 are known to be exactly marginal [76]. We
expect that the same is true in these non-unitary models. In other words,
Kazama-Suzuki models obtained from numerator groups G with vanishing
dual Coxeter number possess at least one exactly marginal deformation
(modulus). A closer inspection shows that there exist three families of such
models,

H = SU(p|q)× SU(n− p|n− q) ⊂ G = PSU(n|n)

H = SU(n+ 1|n) ⊂ G = OSP(2n+ 2|2n)

H = OSP(2n|2n)× SO(2) ⊂ G = OSP(2n+ 2|2n)

(6.9)

not including those that are associated with the supergroup G = D(2, 1;α).
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Chapter 7

Conclusions and Outlook

In this thesis we have reviewed and extended recent results on the spectrum
of conformal coset sigma models. We were able to extend results for the
one-loop spectrum of sigma models on symmetric spaces to those on semi-
symmetric spaces, at least in the conformal case. We were able to show
that if the sigma model on a coset space defined by a Z4-automorphism is
conformal the one-loop anomalous dimension is formally identical to that
of the symmetric case, in spite of the more complicated structure of the
action. In order for the result to be expressible in terms of simple operators
it was crucial that the coupling of the sigma model were fine tuned to ensure
vanishing of the beta-function at one-loop.

We then used the results for symmetric spaces and the general meth-
ods for the construction of vertex operators which were developed in [38]
and applied them to the supersphere sigma model with target space S3|2.
By comparing these methods with more traditional constructions, we illus-
trated the power of these methods and showed how they allow easy access
to the spectrum of sigma models, at least to leading order in the coupling.
We then used these results to test a conjectured duality of the S3|2 model
with a deformed osp(4|2) WZNW model at level k = 1 which may also be
regarded as a Gross-Neveu model. The conjecture posits that the small ra-
dius limit of the sigma model is described by the Gross-Neveu model close
to the Wess-Zumino point. Using an all-order result from [39], we showed
that the Gross-Neveu model reproduces the ground state spectrum of the
sigma model, up to a Z2 orbifold. Using the general setup of [38] we also
computed the anomalous dimension for conformal sigma models on sym-
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7. Conclusions and Outlook

metric spaces to third order in the coupling and showed that it vanishes.
We further argued for the vanishing of all higher order corrections in the
maximally atypical sector, thereby further supporting the duality with the
deformed WZNW model at the level of the ground states. We were also
able to recover a number of gradient fields and in particular argued that
the Gross-Neveu model correctly implements the constraints and equations
of motion of the sigma model.

We again used the all order result [39] on the anomalous dimensions
of deformed WZNW models to revisit a question about the stability of
sigma models and related theories. Following up on the observation made
in [41] that the psl(N |N) Gross-Neveu model might be free of relevant
high-gradient operators at level k = 1, we presented an analysis of the
spectrum for N = 2. We were able to show analytically that the psl(2|2)
Gross-Neveu model does not contain RG-relevant high-gradient operators,
thereby extending the results of [41] to all orders and all invariant operators.
This shows that the psl(N |N) WZNW models, at least in the case of N = 2,
take a special role among models with target-space supersymmetry. The
only other case where similar stability statements have been established is
the boundary osp(4|2) Gross-Neveu model [35].

We also observed that, as the coupling tends to infinity, the spectrum of
the psl(2|2) model becomes half-integer valued, albeit with some peculiar
features. This indicates that the theory could possess a free field description.
It has been argued several times before that such a dual description should
exist in the shape of the CP1|2 sigma model [36, 37]. A similar study has
been performed for the boundary osp(4|2) Gross-Neveu model in [35] where
the resulting spectrum was identified with that of the free S3|2 sigma model.
The spectrum of the CP1|2 sigma model was worked out for the boundary
case at infinite radius (zero coupling) in [79]. The analysis can be easily
extended to the bulk, but unfortunately the resulting spectrum does not
resemble the results we presented at the end of chapter 5.

In the final chapter, we investigated the existence of marginal deform-
ations in GKO cosets based on supergroups. Our results suggest that all
GKO cosets with N = 2 extended worldsheet supersymmetry possess at
least one exactly marginal deformation.

Moving forward, a number of open questions and interesting problems
remain. First of all, it would be very interesting to repeat the analysis we
presented for the supersphere S3|2 sigma model in the semi-symmetric case
and construct the vertex operators and their one-loop spectrum for an AdS
background. The main obstacle here arises from the fact that AdS spaces are
non-compact, which has implications for the construction of normalizable
sections, at least when the denominator is also non-compact. A first step
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would be to investigate AdS2, where the denominator is compact so that
the construction of vertex operators that we reviewed in chapter 3 remains
unchanged. One could then construct a string embedding using the hybrid
approach and study the construction of physical states.

The duality between the osp(4|2) Gross-Neveu model and the S3|2 sigma
model that was studied in chapter 4 also leaves us with some interest-
ing questions. While we did find some remarkable agreement between
the spectra, there were also a number of gradient operators, already at
(h∞, h̄∞) = (1, 1) that the dual WZNW model cannot account for. And
these are not the only fields that cannot be matched. In fact, only those
fields of the sigma model for which Cash(µ) + Cash(µ) = 0 can possibly
have a counterpart in the Gross-Neveu model, at least in the sense we dis-
cussed. It may be that these discrepancies simply disprove the duality. On
the other hand, the matchings we observed are already rather non-trivial.
Further support for the duality comes from an analysis of the boundary
spectra. The authors of [35] observed a surprising character identity that
completely matches the chiral states of the two theories, although the one-
loop data spoils this match. In order to better understand the duality in
the bulk, it would be very interesting to extend the higher-loop analysis we
presented for the sigma model ground states to gradient states and identify
a subsector for which the scaling weights are one-loop exact, as required
by the duality. A better understanding of the instabilities could also fur-
nish a better understanding of the observed discrepancies, which might be
influenced by the relevant operators.

While we have found no evidence to support an analogous duality between
the CP1|2 sigma model and the deformed psl(2|2) WZNW model, it would
still be very interesting to identify a free field theory that gives rise to the
spectrum we found for the psl(2|2) model at g = ∞ and possibly understand
its precise relation to the CP1|2 model.
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Appendix A

Derivation of integral formulas

First of all we recall a useful formula that was derived in [38]

∫

Cǫ

d2z

π

1

(z − x)(z − y)(z̄ − x̄)(z̄ − ȳ)
=

2 ln
∣∣x−y

ǫ

∣∣2

|x− y|2
+O(ǫ) . (A.1)

By taking now the appropriate number of derivatives in x, y, x̄ or ȳ on both
sides of the above equation, we recover eq. (3.57).

Another useful integral is

∫

Cε

d2z

π

1

(z − x)(z̄ − x̄)(z̄ − ȳ)
=

1

x̄− ȳ

∫

Cε

d2z

π
∂̄z

ln
∣∣∣ z−xz−y

∣∣∣
2

z − x

=
−1

x̄− ȳ

∮

∂Cε

dz

2πi

ln
∣∣∣ z−xz−y

∣∣∣
2

z − x
= −

ln
∣∣x−y

ε

∣∣2

(x̄− ȳ)
+O(ε)

(A.2)

Note the differences with the previous case with four factors in the denomin-
ator. In particular, only taking derivatives with respect to barred variables
retains the logarithmic factor. This explains the delta factor in the above
formula. The difference by a factor 1

2
is due to the difference in the number

of poles. Using (A.1) and (A.2) and their derivatives we can calculate a
series of double integrals:

∫

Cε

d2z

π

∫

Cε

d2w

π

1

u− z

1

v − w

1

(ū− z̄)2
1

(v̄ − w̄)2
1

(z − w)2
=

= −
2 ln|u−v

ε
|2

(u− v)2(ū− v̄)2

(A.3)
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A. Derivation of integral formulas

That can be derived by starting with the w-integral:

∫

Cε

d2w

π

1

v − w

1

(v̄ − w̄)2
1

(z − w)2
=

= −∂̄v∂z

∫

Cε

d2w

π

1

w − v

1

w̄ − v̄

1

w − z
=

= ∂̄v∂z
ln|v−z

ε
|2

v − z
+O(ε) =

1

(v − z)2
1

v̄ − z̄
+O(ε)

(A.4)

Plugging this in the double integral:

∫

Cε

d2z

π

1

u− z

1

(v − z)2
1

(ū− z̄)2
1

v̄ − z̄
=

= −
2 ln|u−v

ε
|2

(u− v)2(ū− v̄)2

(A.5)

Similarly one can calculate:

∫

Cε

d2z

π

∫

Cε

d2w

π

1

u− w

1

v − z

1

(ū− z̄)2
1

(v̄ − w̄)2
1

(z − w)2
=

= +
2 ln|u−v

ε
|2

(u− v)2(ū− v̄)2

(A.6)

∫

Cε

d2z

π

∫

Cε

d2w

π

1

(u− z)2
1

(v − w)2
1

(ū− z̄)2
1

v̄ − w̄

1

z − w
=

= −
2 ln|u−v

ε
|2

(u− v)2(ū− v̄)2

(A.7)

∫

Cε

d2z

π

∫

Cε

d2w

π

1

(v − z)2
1

(u− w)2
1

(ū− z̄)2
1

v̄ − w̄

1

z − w
=

= +
2 ln|u−v

ε
|2

(u− v)2(ū− v̄)2

(A.8)

In the main text we need also some double integrals containing logar-
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ithms. For this reason we need to calculate:
∫

Cε

d2w

π

1

(u− w)2
1

(ū− w̄)2
ln

∣∣∣∣
z − w

ε

∣∣∣∣
2

=

= ∂u∂ū

∫

Cε

d2w

π
∂w̄

(
ln
(
ū−w̄
ū−z̄

)
ln
∣∣ z−w

ε

∣∣2 + Li2
(
w̄−z̄
ū−z̄

)

w − u

)
=

= ∂u∂ū

(
π2

6
+ ln

(
ε

ū− z̄

)
ln

∣∣∣∣
u− z

ε

∣∣∣∣
2
)

=

= −
1

u− z

1

ū− z̄

(A.9)

Where we have used the fact that Li2(1) =
π2

6
. This result can be used

to calculate:
∫

Cε

d2z

π

∫

Cε

d2w

π

1

(u− w)2
1

(v − z)2
1

(ū− w̄)2
1

(v̄ − z̄)2
ln

∣∣∣∣
z − w

ε

∣∣∣∣
2

=

=
2 ln|u−v

ε
|2

(u− v)2(ū− v̄)2

(A.10)

Other useful logarithmic integrals are:
∫

Cε

d2w

π

1

(u− w)2
1

(z̄ − w̄)2
ln

∣∣∣∣
z − w

ε

∣∣∣∣
2

=

= −∂u

∫

Cε

d2w

π
∂w̄

(
1 + ln

∣∣ z−w
ε

∣∣2

(w − u)(w̄ − z̄)

)
=

= −∂u

(
1 + ln

∣∣ z−u
ε

∣∣2

(ū− z̄)

)
=

= −
1

u− z

1

ū− z̄

(A.11)

and
∫

Cε

d2w

π

1

(u− w)2
1

(v̄ − w̄)2
ln

∣∣∣∣
z − w

ε

∣∣∣∣
2

=

= ∂u∂v̄

∫

Cε

d2w

π
∂w̄

(
ln
(
v̄−w̄
v̄−z̄

)
ln
∣∣ z−w

ε

∣∣2 + Li2
(
w̄−z̄
v̄−z̄

)

w − u

)
=

= ∂u∂ū

(
Li2

(
ū− z̄

v̄ − z̄

)
+ ln

(
ε

ū− z̄

)
ln

∣∣∣∣
u− z

ε

∣∣∣∣
2
)

=

=
(z̄ − ū)

(ū− v̄)(u− z)(v̄ − z̄)

(A.12)
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Appendix B

Representation theory of osp(4|2)

In the following we give a very basic introduction to the Lie superalgebra
osp(4|2) and (some of) its finite dimensional representations. The complex
superalgebra g := osp(4|2) may be realized as the set of supermatrices,

osp(4|2) =

{(
A B

J2B
t D

)
: At = −A and DtJ2 = −J2D

}
. (B.1)

Here A is a 4× 4 matrix, D is a 2× 2 matrix and B is rectangular of size
4 × 2. In addition, we introduced the 2 × 2 matrix J2 = ( 0 −1

1 0 ). As usual,
the Lie superalgebra g decomposes into an even, or bosonic, subalgebra
g0̄ = so(4)⊕sp(2) ∼= sl(2)⊕sl(2)⊕sl(2) and an odd, or fermionic, subspace
g1̄.

Our review of representations focuses on finite dimensional representa-
tions. As usual for superalgebras, irreducible representations fall into two
different categories. On the one hand, there are the generic long multiplets.
These are also known as typical representations in the more mathematical
literature. On the other hand, a superalgebra also possesses short or BPS
multiplets which mathematicians refer to as atypical representations. BPS
multiplets can be put together into indecomposable representations. We
will only work with one class of such indecomposables, namely the project-
ive covers of atypical representations.

In order to make all this more precise, we note that an integral dominant
highest weight Λ = (j1, j2, j3) of g0̄ is also one for the full superalgebra g if
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it obeys the consistency conditions

j1 = 0 ⇒ j2 = j3 = 0 , j1 =
1

2
⇒ j2 = j3 . (B.2)

The ordering of our the spins ji ∈
1
2
Z is such that the first spin is related

to the symplectic subalgebra sp(2) while the two others are associated with
the orthogonal one. This is a bit unfortunate but agrees with conventions
in earlier literature. We shall use the label [Λ] = [j1, j2, j3] to denote finite
dimensional irreducibles.

With these labels introduced we can now spell out the shortening con-
ditions we have mentioned above. A representation [j1, j2, j3] is atypical
provided the spins satisfy any one of the following conditions

2j1 = −j2 − j3 ,

2j1 = j2 + j3 + 2 ,

2j1 = ±(j2 − j3) + 1 .

(B.3)

Otherwise the representation [j1, j2, j3] is typical. The eigenvalue of the
quadratic Casimir element in the irreducible representation [Λ] is given by

Casg(Λ) = −4j1(j1 − 1) + 2j2(j2 + 1) + 2j3(j3 + 1) . (B.4)

If the spins satisfy one of the shortening conditions (B.3) the value of the
quadratic Casimir element is a square, i.e. Casg(Λ) = l2 with l ∈ N. The
atypical weights Λ = (j1, j2, j3), i.e. those weights that satisfy one of the
shortening conditions, can be divided into blocks βl that contain all those
representations Λ ∈ βl for which Casg(Λ) = l2. The corresponding atypical
labels can be listed explicitly [59],

β0 =

{
Λ0,0 = (0, 0, 0) , Λ0,k =

1

2
(k + 1, k − 1, k − 1) , k ≥ 1

}

βl = {Λl,k , k ∈ Z}

(B.5)

where

Λl,k =





1
2
(−k + 2,−k − l,−k + l) if k ≤ −l

1
2
(−k + 1, k + l − 1,−k + l − 1) if − l + 1 ≤ k ≤ 0

1
2
(k + 1, k + l − 1,−k + l − 1) if 0 ≤ k ≤ l − 1

1
2
(k + 2, k + l, k − l) if l ≤ k

. (B.6)
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One sees easily, that the weights Λl,−k for l ≥ 1 may be obtained from Λl,k
by simply exchanging the second and the third Dynkin label. Furthermore,
it is possible to distinguish the weights Λl,k according to the atypicality
condition (B.3) they obey. The only weight to fulfill the first condition is
Λ0,0. The weights belonging to the second condition are Λ0,k for k ≥ 1 and
Λl,±k for k ≥ l. Finally, those the satisfy the last atypicality relation are
the Λl,±k for k < l. In any case, each of the weights fulfills at most one
of the shortening conditions. This means that all atypical representations
of osp(4|2) possess the same degree of atypicality, i.e. they are all what
mathematicians refer to as maximally atypical and physicists call 1

2
BPS.

We can decompose all irreducible representations [j1, j2, j3] in terms of
irreducible subrepresentations of the bosonic subalgebra g0̄. For typical
representation one finds

[j1, j2, j3]g0̄
∼= (j1, j2, j3)

⊕

α,β=± 1
2

(j1 −
1

2
, j2 + α, j3 + β)

⊕

α=±1

[
(j1 − 1, j2 + α, j3)⊕ (j1 − 1, j2, j3 + α)

]

⊕ 2(j1 − 1, j2, j3)
⊕

α,β=± 1
2

(j1 −
3

2
, j2 + α, j3 + β)

⊕ (j1 − 2, j2, j3) .

(B.7)

There are a few special cases for which the decomposition is not generic.
If j1 ≤ 2, j2 ≤ 1 or j3 ≤ 1 then the above decomposition formula must be
truncated at the point where one or more of the labels become negative.
Moreover, there are two cases for which the multiplicity of the (j1−1, j2, j3)
submodule has to be changed. If j1 = 1, j2 > 0, j3 > 0 or j1 > 1, j2 =
0, j3 > 0 or j1 > 1, j2 > 0, j3 = 0, then this block will appear only once
and if both j2 and j3 are null or j1 = 1 and at least one between j2 and
j3 is null, then it will not be present at all. From the decomposition into
representations of the bosonic algebra we can determine the dimension of
typical representations

dim[j1, j2, j3] = 16(2j1 − 1)(2j2 + 1)(2j3 + 1) . (B.8)

The decomposition (B.7) for j1 ≥ 1, is valid for the indecomposable Kac
modules that emerge when the spins ji satisfy one of the shortening con-
ditions (B.3). These Kac modules are composites of irreducibles. More
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precisely, one finds

KΛ0,2 : [Λ0,2] −→ [Λ0,0]⊕ [Λ0,1]

KΛ0,k
: [Λ0,k] −→ [Λ0,k−1] for k ≥ 3

KΛl,k
: [Λl,k] −→ [Λl,k−1] for k ≥ 1

KΛl,k
: [Λl,k] −→ [Λl,k+1] for k ≤ −1 .

(B.9)

The arrows mean that fermionic generators can take us from the representa-
tion on the left to the one on the right but not vice versa. Put differently, the
representation on the right hand side of the arrows is a subrepresentation
of the Kac module. If we quotient the Kac module by this subrepresent-
ation, the corresponding factor representation is the one on the left hand
side. The representations with j1 =

1
2

are somewhat special. In fact, when
j1 =

1
2
, the Kac module is irreducible and we obtain

Λl+1,2|g0̄
∼=

(
1

2
,
l

2
,
l

2

)
⊕

(
0,
l + 1

2
,
l + 1

2

)
⊕

(
0,
l − 1

2
,
l − 1

2

)
. (B.10)

From our description of the Kac modules it is possible to determine the
dimensions of irreducible atypicals,

dim[Λ0,0] = 1 , dim[Λ0,1] = 17 , dim[Λl,0] = 4l2 + 2

dim[Λ0,k] = (2k + 1)
[
(2k + 1)2 − 3

]
for k ≥ 2

dim[Λl,k] = (2k + 1)
[
4(l2 − 1)− (2k + 1)2 + 7

]
for k ≤ l − 1

dim[Λl,k] = (2k + 3)
[
(2k + 3)2 − 4(l2 − 1)− 7

]
for k ≥ l .

(B.11)

We are finally prepared to describe the projective covers that feature so
prominently in the construction of homogeneous vector bundles. While
typical irreducibles [Λ] coincide with their projective cover PΛ = [Λ], the
projective cover of an atypical representations is an indecomposable com-
posite of atypicals. Its precise structure can be read off from the following
diagrams

PΛ0,0 : Λ0,0 → Λ0,2 → Λ0,0 (B.12)

PΛ0,1 : Λ0,1 → Λ0,2 → Λ0,1 (B.13)

PΛ0,2 : Λ0,2 → Λ0,3 ⊕ Λ0,1 ⊕ Λ0,0 → Λ0,2 (B.14)

PΛl,k
: Λl,k → Λl,k+1 ⊕ Λl,k−1 → Λl,k otherwise (B.15)

The meaning of the arrows was explained in our discussion of Kac modules
above. Note that all the atypicals that appear in any given projective cover
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belong to the same block β. It is actually not possible to build indecom-
posables from representations within different blocks.

Before we conclude this brief overview over representations of the Lie
superalgebra osp(4|2) we want to spell out a few tensor product decompos-
itions between irreducible atypicals. These are used in our discussion of the
low lying spectrum in the osp(4|2) Gross-Neveu model.

Λ0,1 ⊗ Λ0,1 =Λ0,0 + 2Λ0,1 + Λ0,2 + Λ2,−1 + 2Λ2,0 + Λ2,1 + [2, 0, 0]

Λ0,1 ⊙ Λ0,1 =Λ0,0 + Λ2,−1 + 2Λ2,0 + Λ2,1 + [2, 0, 0]

Λ0,1 ⊗ Λ0,2 =Λ0,0 + Λ0,1 + 3Λ0,2 + Λ0,3+

+ [1, 1, 1] + [3
2
, 1
2
, 3
2
] + [3

2
, 3
2
, 1
2
]+

+ [2, 0, 1] + [2, 1, 0] + [5
2
, 1
2
, 1
2
]

Λ0,2 ⊗ Λ0,2 =2Λ0,0 + 4Λ0,1 + 4Λ0,2 + 4Λ0,3 + Λ0,4+

+ Λ2,−2 + 3Λ2,−1 + 4Λ2,0 + 3Λ2,1 + Λ2,2+

+ Λ4,−1 + 2Λ4,0 + Λ4,1+

+ [1, 0, 2] + 2[1, 1, 1] + [1, 2, 0]+

+ 2[3
2
, 1
2
, 3
2
] + 2[3

2
, 3
2
, 1
2
] + 2[3

2
, 3
2
, 3
2
]+

+ 2[2, 0, 0] + 2[2, 0, 1]+

2[2, 1, 0] + [2, 1, 2] + [2, 2, 1]+

+ 2[5
2
, 1
2
, 1
2
] + 2[5

2
, 1
2
, 3
2
] + 2[5

2
, 3
2
, 1
2
]+

+ [3, 0, 0] + [3, 0, 1] + [3, 1, 0] + [3, 1, 1]

Λ1,0 ⊗ Λ1,0 =Λ0,0 + Λ0,1 + Λ2,0

Λ2,0 ⊗ Λ2,0 =Λ0,0 + Λ0,1 + Λ2,−1 + 2Λ2,0 + Λ2,1 + Λ4,0 + [1, 1, 1]

(B.16)

The + on the right hand side requires a short comment. As we have stated
above, atypical irreducibles can be combined to form larger indecompos-
ables. This happens for many of the atypical representations that appear
in the above tensor product decompositions. Hence, many of the atypicals
are not direct summands. This is why we did not use ⊕. On the other
hand, the sum is direct for all projective modules, i.e. for typicals and pro-
jective covers of atypicals. The symbol ⊙ is used to denote the symmetric
part of the tensor product. The tensor products (B.16) were obtained by
implementing the decompositions (B.16) along with the product rules for
su(2)-representations in a Mathematica script.

97





Appendix C

Representation theory of osp(3|2)

In this appendix we provide some background material on the Lie superal-
gebra osp(3|2) and its finite dimensional representations. The basic defin-
ition of osp(3|2) resembles the definition (B.1) we gave for osp(4|2) only
that now A is a 3 × 3 matrix and B is rectangular of size 3 × 2. In the
case of h = osp(3|2), the bosonic subalgebra is h0̄ = so(3) ⊕ sp(2). Since
h0̄ has rank two, highest weights are labeled by two numbers λ = (q, p). In
our conventions, the so(3) spin p runs over non-negative integers while q
is a non-negative half-integer. Note that once again, the order of the two
labels is a bit unfortunate. As in the case of osp(4|2), there is an additional
constraint on the weights (q, p) that must be satisfied in order for (q, p) to
label a representation of osp(3|2), namely

q = 0 ⇒ p = 0 .

Once more we shall use the bracket notation [λ] = [q, p] to denote the as-
sociated irreducible representation of osp(3|2). The representation [q, p] is
typical (long) unless the labels q, p satisfy one of the following two shorten-
ing conditions

p+ 2q = 0 , p− 2q + 1 = 0 . (C.1)

These conditions are mutually exclusive. While the first one is only satis-
fied for the trivial representation q = p = 0, the latter singles out a one
parameter family of (maximally) atypical (or 1

2
BPS) representations.
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C. Representation theory of osp(3|2)

The eigenvalue of the quadratic Casimir element in an irreducible rep-
resentation [λ] = [q, p] is given by

Cash([q, p]) = (p+ 2q)(p− 2q + 1) . (C.2)

In particular, we conclude that the quadratic Casimir element vanishes
for all atypical representations of osp(3|2). This suggests that all atypicals
belong to one and the same block, which is indeed the case. Representations
in this unique block are given by

λ0 = [0, 0] , λq = [q, 2q − 1] . (C.3)

Let us also mention in passing that the Lie superalgebra osp(3|2) possesses
a fourth order Casimir element whose eigenvalues are given by

Cas
(4)
h (λ) =

1

4
Cash(λ)[3p(3p+ 1) + 2(q + 1)(2q − 3)] (C.4)

The fourth order Casimir element does not show up in the 1-loop anomalous
dimensions but could enter starting from two-loops.

As in the case of osp(4|2) it is useful to know how the irreducible rep-
resentations decompose with respect to the bosonic subalgebra. For typical
representations, this decomposition is given by

[q, p]h0̄
∼= (q, p)⊕

⊕

α=0,±1

[
(q − 1

2
, p+ α)⊕ (q − 1, p+ α)

]
⊕ (q − 3

2
, p) .(C.5)

Truncations are present whenever one or both labels on the right hand side
become negative. When q = 1

2
or p = 0 the term (q− 1

2
, p) does not appear.

For the adjoint representation the decomposition reads

[1, 0]h0̄
∼= (1, 0)⊕ (1

2
, 1)⊕ (0, 1) . (C.6)

Note that in the case of osp(3|2) the adjoint representation is typical. Atyp-
ical representations with q ≥ 1 possess the following decomposition

[λq]h0̄
∼= (q, 2q − 1)⊕ (q − 1

2
, 2q − 1)⊕ (q − 1

2
, 2q)⊕ (q − 1, 2q) . (C.7)

The atypical trivial representation λ0 and the fundamental λ 1
2

are special.
While the decomposition of λ0 is trivial, the fundamental representation
gives

[λ 1
2
]h0̄

∼= (1
2
, 0)⊕ (0, 1) . (C.8)

For completeness we also state the dimension of the these representations.
In the case of typical long multiplets we have

dim
(
[q, p]

)
= 4(2p+ 1)(4p− 1) (C.9)

100



while the dimension of atypicals is given by

dim[λ0] = 1 dim[λ 1
2
] = 5

dim[λq] = −2 + 32q2 .
(C.10)

As for any Lie superalgebra, atypical representations can be combined into
larger indecomposables. For our analysis, the projective covers of atypicals
are of particular importance. Their structure is given by

Pλ0 : λ0 → λ1 → λ0 (C.11)

Pλ 1
2

: λ 1
2
→ λ1 → λ 1

2
(C.12)

Pλ1 : λ1 → λ 3
2
⊕ λ 1

2
⊕ λ0 → λ1 (C.13)

Pλq : λq → λ
q+

1
2
⊕ λ

q−
1
2
→ λq otherwise (C.14)

The meaning of the arrows was explained in appendix B. The structure we
display here is consistent with the fact that all atypical irreducibles λq of
osp(3|2) belong to the same block.

In our construction of coset vertex operators (3.10), and in particular in
the analysis of the tail factors, we need some input about tensor products
of osp(3|2) representations. The first few powers of the fundamental rep-
resentation λ 1

2
are given by

λ⊗2
1
2

= [1, 0] + [1
2
, 1] + λ0 (C.15)

λ⊙2
1
2

= [1
2
, 1] + λ0 (C.16)

λ⊙3
1
2

= [1
2
, 2] + λ 1

2
(C.17)

Here, we use the symbol ⊙ to denote the graded symmetric part of the
tensor product. The formulas we displayed are relevant e.g. for products
such as j∂j, j2 and j3, respectively. Let us also list a few additional tensor
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C. Representation theory of osp(3|2)

products of low dimensional representations,

[1, 0]⊗ λ 1
2
= [3

2
, 0] + 2λ 1

2
+ λ1

[1
2
, 1]⊗ λ 1

2
= [1

2
, 2] + 2λ 1

2
+ λ1

[1
2
, 1]⊗ [1

2
, 1] = [1, 2] + [1, 0] + [1

2
, 3] + [1

2
, 1] + 2λ0 + λ1

[1
2
, 2]⊗ λ 1

2
= [1, 2] + [1

2
, 3] + [1

2
, 1]

[1
2
, 2]⊗ [1

2
, 1] = [1, 3] + [1, 2] + [1

2
, 4] + [1

2
, 2] + 2λ 1

2
+ λ1

[1
2
, 2]⊗ [1

2
, 2] = [1, 4] + [1, 3] + [1, 2] + [1, 0] + [1

2
, 5] + [1

2
, 3]

+ [1
2
, 2] + [1

2
, 1] + 2λ0 + λ1

[1
2
, 1]⊗ [1, 0] = [3

2
, 1] + [1, 0] + [1, 2] + [1

2
, 1]

[1
2
, 2]⊗ [1, 0] = [1, 3] + [1

2
, 2] + λ0 + λ 1

2
+ 2λ1 + λ 3

2

[1, 0]⊗ [1, 0] = [2, 0] + [3
2
, 1] + [1, 0] + [1

2
, 1] + 2λ0 + λ1

(C.18)

These are useful in order to carry the construction of vertex operators to
higher gradient operators. Note that while it is not relevant for our discus-
sion, the atypical representations in (C.18) always combine into projectives,
while all other sums are direct. These tensor products were obtained by
implementing the decompositions (C.5)–(C.8) along with the product rules
for su(2) representations in a Mathematica script.
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Appendix D

Restriction of osp(4|2)
representations to osp(3|2)

As we explained in section 3.1.3, a key ingredient in constructing vertex
operators on coset superspaces is the decomposition (3.11) of sections in
homogeneous vector bundles into multiplets of the symmetry. According
to the central formula, the multiplicity nΛλ of a g multiplet Λ in a bundle
Γλ is given by eq. (3.13). It implies that nΛλ can be computed through the
decomposition

PΛ|h =
⊕

λ

nΛλ Pλ =
⊕

λ

[PΛ|h : Pλ] Pλ .

Given what we know about the projective covers of both osp(4|2) and
osp(3|2) it is not too difficult to work out the multiplicities nΛλ. We only
need the results for atypical labels Λ = Λl,k. For representations Λ0,k in the
block of the trivial representation one finds

PΛ0,0 |osp(3|2) = Pλ0 ⊕ [3
2
, 0]⊕ [3

2
, 1]

PΛ0,1 |osp(3|2) = Pλ 1
2

⊕ [3
2
, 0]⊕ [3

2
, 1]

PΛ0,k
|osp(3|2) = Pλ k

2

⊕ 2
k−1⊕

n=0

[k+1
2
, n]⊕

k⊕

n=0

[k+2
2
, n]⊕

k−2⊕

n=0

[k
2
, n] , ∀ k ≥ 2 .

(D.1)
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D. Restriction of osp(4|2) representations to osp(3|2)

Similarly one can decompose the projective covers of the symmetric traceless
tensor representations Λl,0,

PΛ1,0 |osp(3|2) = Pλ0 ⊕ Pλ 1
2

⊕ 2[3
2
, 1]

PΛ2,0 |osp(3|2) = Pλ0 ⊕ Pλ 1
2

⊕ 2[1
2
, 1]

PΛl,0
|osp(3|2) = Pλ0 ⊕ Pλ 1

2

⊕ 2
l−1⊕

n=1

[1
2
, n]⊕ 2

l−1⊕

n=2

[1, n] , when l ≥ 2 .

(D.2)

Finally, generic projective covers possess the following decomposition into
projectives of osp(3|2),

PΛl,k
|osp(3|2) = Pλ |k|+1

2

⊕
l−1⊕

n=|k|

[ |k|
2
, n]⊕ 2

l−1⊕

n=|k|+1

[ |k|+1
2
, n]⊕

|k|−1⊕

n=l

[ |k|+1
2
, n]

⊕ 2

|k|⊕

n=l

[ |k|+2
2
, n]⊕

l−1⊕

n=|k|+2

[ |k|+2
2
, n]⊕

|k|+1⊕

n=l

[ |k|+3
2
, n] .

(D.3)

This last formula holds whenever l ≥ 1 and |k| ≥ 1. Formulas (D.1)-
(D.3) provide the main input for the construction of vertex operators in
section 4.1.2. Let us note that in these formulas all sums are direct since
the restriction of projective modules is a direct sum of projectives and
projectives cannot appear as pieces of larger indecomposables.

In order to derive these decomposition formulas one starts from the fol-
lowing decomposition formula for representations of the bosonic subalgebra
g0̄ into representations of h0̄,

(j1, j2, j3)h0̄
∼=

j2+j3⊕

p=|j2−j3|

(j1, p) (D.4)

In a second step these decomposition formulas are exploited to determine
how atypical irreducibles of osp(4|2) decompose upon restriction to osp(3|2).
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The results read,

Λ0,0|osp(3|2) = λ0

Λ0,k|osp(3|2) = λ l
2
⊕

k−1⊕

n=0

[k+1
2
, n], l > 0

Λl,0|osp(3|2) =
l−1⊕

n=0

[1
2
, n]⊕ λ0, l > 0

Λl,k|osp(3|2) =
l−1⊕

n=|k|

[ |k|+1
2
, n], 0 < |k| ≤ l − 1

Λl,k|osp(3|2) =

|k|⊕

n=l

[ |k|
2
+ 1, n]⊕ λ |k|+1

2

, 0 < l ≤ |k|

(D.5)

Since we know how projective covers are built from atypicals, it is now
straightforward to verify the decomposition formulas (D.1)-(D.3). All this
was computed using the Mathematica scripts used to compute the tensor
products of Appendices B and C.
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Appendix E

The fermionic sector

In this appendix we briefly review the construction of the affine osp(2p|2q)
algebra at level k̃ = 1 in terms of free fermions and several bosonic ghost
systems. Let us decompose all supermatrices X ∈ osp(2p|2q) into blocks
according to

X =




E T̄ T
−T t F G
T̄ t Ḡ −F t


 (E.1)

where E is antisymmetric and G, Ḡ are symmetric. A basis for the various
blocks in the supermatrix X is provided by

Eij = eij − eji 1 ≤ i < j ≤ 2p

Fab = eab 1 ≤ a , b ≤ q

Gab = Ḡab = eab + eba 1 ≤ a ≤ b ≤ q

Tia = T̄ia = eia 1 ≤ i ≤ 2p , 1 ≤ a ≤ q (E.2)

where emn are elementary matrices. The matrices we have just introduced
describe the various blocks in the supermatrix X. We agree to denote by
Eij the supermatrix of the form (E.1) where E is given by Eij and all other
blocks vanish. The basis elements Fab, Gab, Ḡab, Tia, T̄ia are defined similarly.

Now let us introduce M free fermions ψi and 2N bosons βa, γa with the
following basic operator products,

ψi(z)ψj(w) ∼
δij

z − w
, βa(z)γb(w) ∼ −γa(z)βb(w) ∼

δab
z − w

. (E.3)
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E. The fermionic sector

We can define the free field representation of the osp(M|2N) current algebra
through

Eij(z) = (ψiψj)(z) , Fab(z) = −(βaγb)(z)

Gab(z) = (βaβb)(z) , Ḡab(z) = −(γaγb)(z)

Tia(z) = i(ψiβa)(z) , T̄ia(z) = −i(ψiγa)(z) .

(E.4)

The invariant bilinear form for osp(M|2N) is (X, Y ) = 1
2
str(XY ). On the

basis elements it takes the following from

(Eij, Ekl) = −δikδjl i < j and k < l

(Fab, Fcd) = −δadδbc

(Gab, Ḡcd) = −δacδbd for a 6= b and c 6= d (Gaa, Ḡbb) = −2δab

(Tia, T̄jb) = δijδab .

(E.5)

With the help of this form and assuming that M 6= 2N+1, the holomorphic
part of the energy momentum tensor is given by the Sugawara construction

T (z) =
(JµJµ)(z)

2(k + g∨)
=

1

2(k + g∨)

[
−

M∑

i<j=1

(E2
ij)

−
N∑

a,b=1

(FabFba)−
N∑

a<b=1

( {
Gab, Ḡab

} )

−
1

2

N∑

a=1

( {
Gaa, Ḡaa

} )
−

M∑

i=1

N∑

a=1

( [
Tia, T̄ia

] )]

= −
1

2

M∑

i=1

(ψi∂ψi) +
1

2

N∑

a=1

(
(βa∂γa)− (γa∂βa)

)

(E.6)

Here, the dual Coxeter number is given by g∨ =M − 2N − 2 and the value
of the level is k = 1. The central charge of the system is easily seen to take
the value c = M

2
−N .

Consider the βγ-system. The mode expansions are [80]

β(z) =
∑

n∈Z

z−n−1−S/2βn+(1+S)/2, γ(z) =
∑

n∈Z

z−n−1+S/2γn+(1−S)/2 (E.7)
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and the associated commutators read

[βr, γs] = δr+s,0. (E.8)

Following [80] we choose the ground state such that it obeys the highest-
weight conditions

βn+(1+S)/2|ϕS〉 = γn+(1−S)/2|ϕS〉 = 0, n ≥ 0. (E.9)

The U(1)-current of system is given by

Jβγ(z) = : γβ : . (E.10)

With this we find that the U(1)-charge q of the system is given by

q(S) = −
S

2
. (E.11)

For the complex fermion system we proceed analogously. The mode
expansions are given by

ψ(z) =
∑

n∈Z

z−n−1+S/2ψn+(1−S)/2, ψ∗(z) =
∑

n∈Z

z−n−1−S/2ψ∗
n+(1+S)/2.

(E.12)

and the highest weight conditions are now

ψ∗
n+(1+S)/2|ϕS〉 = ψn+(1−S)/2|ϕS〉 = 0, n ≥ 0. (E.13)

These definitions are consistent with

hS =
S2

8
(E.14)

The U(1)-current is now
Jψ = :ψψ∗ : (E.15)

which implies that the U(1)-charge of the ground state is

q(S) = +
S

2
. (E.16)

Explicitly, for S = 2 the U(1)-charge is given by

Jψψ
∗

0 = ψ−1/2ψ
∗
1/2 (E.17)

and we find
Jψψ

∗

0 |ϕ2〉 = |ϕ2〉. (E.18)

The difference in sign compared U(1) of the bosonic system is due to the
anti-commuting nature of the fermions.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit den Spektren von konformen
Sigma Modellen, die auf (verallgemeinerten) symmetrischen Räumen defi-
niert sind. Die Räume, auf denen Sigma Modelle ohne Wess-Zumino-Term
konform sind, sind Supermannigfaltigkeiten, also Mannigfaltigkeiten, die
fermionische Richtungen aufweisen. Wir stellen die Konstruktion von Ver-
tex Operatoren vor, gefolgt von der Hintergrundfeld-Entwicklung. Für semi-
symmetrische Räume berechnen wir anschließend die diagonalen Terme der
anomalen Dimensionen dieser Operatoren in führender Ordnung. Das Resul-
tat stimmt mit dem für symmetrische Räume überein, jedoch treten nicht-
diagonale Terme auf, die hier nicht weiter betrachtet werden.

Anschließend präsentieren wir eine detaillierte Analyse des Spectrums
des Supersphären S3|2 Sigma Modells. Dies ist eins der einfachsten Beispie-
le für konforme Sigma Modelle auf symmetrischen Räumen und dient als
Illustration für die Mächtigkeit der vorgestellten Methoden. Wir verwenden
die erhaltenen Daten, um eine Dualität mit dem OSP(4|2) Gross-Neveu
Modell zu untersuchen, die von Candu und Saleur vorgeschlagen wurde.
Wir verwenden dazu ein Resultat, welches die anomalen Dimensionen von
1
2
BPS Operatoren zu allen Ordnungen berechnet. Wir finden das gesamte

Grundzustandsspektrum des Sigma Modells. Darüber hinaus legen wir dar,
dass sowohl die Zwangsbedingungen als auch die Bewegungsgleichungen des
Sigma Modells korrekt vom Gross-Neveu Modell implementiert werden. Die
Dualität wird weiterhin durch ein neues exaktes Resultat für die anomalen
Dimensionen der Grundzustände unterstützt. Andererseits beobachten wir
für Operatoren mit mehreren Ableitungen Diskrepanzen. Es ist möglich,
dass diese Diskrepanzen im Zusammenang mit einer bekannten Instabilität
von Sigma Modellen stehen.

Die Instabilität von Sigma Modellen wird von Operatoren mit vielen
Ableitungen verursacht, die bei beliebig kleiner Kopplung relevant werden.
Diese Eigenschaft wurde bereits vor langer Zeit, zuerst im O(N)-Vektor-
Modell, beobachtet. Gross-Neveu Modelle besitzen generisch eine ähnli-
che Instabilität. Ryu et al. haben beobachtet, dass solche Operatoren in
psl(N |N) Gross-Neveu Modellen möglicherweise nicht vorhanden sind. Die
Beobachtung wurde für eine bestimmte Klasse von Operatoren in führen-
der Ordnung bestätigt. Wir zeigen analytisch, dass im psl(2|2) Modell in
der Tat alle invarianten Operatoren irrelevant bleiben. Darüber hinaus be-
stimmen wir das Spektrum des BPS-Sektors für unendliche Kopplung. Wir
finden keinen Hinweis auf einen Dualität mit dem CP1|2 Sigma Modell. Wir
schließen mit einer Diskussion von marginalen Deformation von Kazama-
Suzuki-Modellen.



Abstract

In this thesis the spectra of conformal sigma models defined on (general-
ized) symmetric spaces are analysed. The spaces where sigma models are
conformal without the addition of a Wess-Zumino term are supermanifolds,
in other words spaces that include fermionic directions. After a brief re-
view of the general construction of vertex operators and the background
field expansion, we compute the diagonal terms of the one-loop anomalous
dimensions of sigma models on semi-symmetric spaces. We find that the
results are formally identical to the symmetric case. However, unlike for
sigma models on symmetric spaces, off diagonal terms that lead to operator
mixing are also present. These are not computed here.

We then present a detailed analysis of the one-loop spectrum of the
supersphere S3|2 sigma model as one of the simplest examples. The analysis
illustrates the power and simplicity of the construction. We use this data to
revisit a duality with the OSP(4|2) Gross-Neveu model that was proposed
by Candu and Saleur. With the help of a recent all-loop result for the
anomalous dimension of 1

2
BPS operators of Gross-Neveu models, we are

able to recover the entire zero-mode spectrum of the supersphere model.
We also argue that the sigma model constraints and its equations of motion
are implemented correctly in the Gross-Neveu model, including the one-
loop data. The duality is further supported by a new all-loop result for the
anomalous dimension of the ground states of the sigma model. However,
higher-gradient operators cannot be completely recovered. It is possible
that this discrepancy is related to a known instability of the sigma model.

The instability of sigma models is due to symmetry preserving high-
gradient operators that become relevant at arbitrarily small values of the
coupling. This feature has been observed long ago in one-loop calculations
of the O(N)-vector model and soon been realized to be a generic property
of sigma models that persists to higher loop orders. A similar instability
has been observed for Gross-Neveu models which can be seen as a certain
deformation of WZNW models at level k = 1. Recently, Ryu et al. sug-
gested that the psl(N |N) Gross-Neveu models might be free of relevant
high-gradient operators. They tested this proposal at one-loop level for a
certain class of invariant operators. We extend the result to all invariant
operators and all loops for the psl(2|2) Gross-Neveu model. Additionally,
we determine the spectrum of the BPS sector at infinite coupling and ob-
serve that all scaling weights become half-integer. Evidence for a proposed
duality with the CP1|2 sigma model is not found. We conclude with a brief
discussion of marginal deformations of Kazama-Suzuki models.



This thesis is based on the following publications:

• A. Cagnazzo, V. Schomerus and V. Tlapák, On the Spectrum of Super-
spheres, arXiv:1408.6838, submitted to JHEP

• A. Cagnazzo, V. Schomerus and V. Tlapák, High-Gradient Operators in
the psl(2|2) Gross-Neveu Model, arXiv:1410.4560



Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationss-
chrift selbst verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe.

Hamburg, den 09. Dezember 2014


