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1 Introduction

Non-linear sigma-models (NLSM) play an important role in physics and mathematics.

When placed on a 2-dimensional world-sheet, they give rise to renormalizable quantum

field theories [1–3]. Initially, 2d NLSMs were mostly studied as toy models of 4d gauge

theories, for example in order to learn about non-perturbative features and the effect of

θ-terms etc., see e.g. [4]. But over the last decades, numerous direct applications were

discovered. In string theory, for example, sigma-models on a 2d world-sheet are the central

ingredient of the perturbative definition.

The properties of sigma models depend on the choice of the target space M and hence

on the particular problem that is addressed. Homogeneous target spaces are particularly
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relevant. In these cases, the target (super)manifold M admits the transitive action of a

continuous Lie (super)group G. Consequently, M can be represented as the coset space

M = G/H where H is the stabilizing (super)subgroup H ⊂ G of a point on M. Homoge-

neous (super)spaces G/H for which one can find an automorphism γ : G→ G of order two

that leaves all elements in H ⊂ G fixed are referred to as symmetric. Supercosets G/H in

which the subgroup H is fixed by an automorphism of order four play an important role in

the AdS/CFT correspondence, see [5] and references therein. While we believe that most

of the ideas we are going to develop below apply to a wide class of sigma models on such

generalized symmetric superspaces, our presentation and analysis will focus on the coset

superspace OSP(4|2)/OSP(3|2) for which the analysis can be made very explicit.

Understanding sigma models at strong coupling, or equivalently for strongly curved

target spaces, is of central importance. In the context of the AdS/CFT correspondence,

for example, the strongly curved regime of the string theory is where the dual gauge the-

ory becomes weakly coupled. So, if we had direct control over properties of sigma models

on AdSd+1 targets at strong coupling, it would be possible to compare with perturbative

gauge theory. Such a comparison could provide deep new insights into the very working

of gauge/string dualities, even without the support from supersymmetry and/or integra-

bility. On the other hand, while we proceed to smaller values of the radius R, the original

background geometry dissolves and we enter a regime that is difficult to analyse.

Nevertheless, there are a few cases in which we indeed understand sigma models for

small values of the radius. The first one that comes to mind is the free boson compactified

to a circle of radius R which possesses a description involving free fermions when R = 1.

This can be understood through bosonization and is known as Coleman-Mandelstam dual-

ity [6, 7]. Sigma models on complete intersection Calabi-Yau target spaces provide a more

intricate family of examples. For many of these models one can find so-called Gepner points,

i.e. values of the sigma model coupling at which the theory possesses an exactly solvable

description through certain Wess-Zumino-Novikov-Witten (WZNW) models. This duality

has been understood most systematically through the use of linear sigma models, see [8].

In this work we present a case study for the sigma model on the supersphere S3|2.

With this choice of the target supermanifold, the sigma model coupling turns out to pos-

sess vanishing β function so that we obtain a continuous family of 2-dimensional conformal

field theories with Virasoro central charge c = 1. We parametrize the coupling through the

radius R of the bosonic base S3. We shall discuss the construction of vertex operators and

the computation of anomalous dimensions to leading order in 1/R in great detail below,

thereby exemplifying constructions and results from [9]. A dual description of this super-

sphere sigma model has been proposed a few years ago by Candu and Saleur [10, 11]. It

involves a Gross-Neveu-like deformation of a free field theory whose fundamental field multi-

plet transforms in the fundamental representation of OSP(4|2), with four components being

fermionic and two bosonic. The free field theory corresponds to the value R = 1 of the ra-

dius in the supersphere sigma model. Extensive tests, mostly based on numerical studies of

a lattice discretization, have been performed to support this proposal [10, 11], see also [12].

The OSP(4|2) Gross-Neveu model admits an interpretation as a current-current de-

formation of an OSP(4|2) Wess-Zumino-Novikov-Witten (WZNW) model at level k = 1.
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Hence, we can exploit all-loop results from [13] on anomalous dimensions of a certain subset

of fields in special truly marginal perturbations of WZNW models. The fields in question

are 1
2BPS with respect to the target space symmetry, or, in more mathematical terms, they

transform in maximally atypical representations. We can apply these results to 1
2BPS fields

in the OSP(4|2) Gross-Neveu model. For some special value of the deformation parameter,

we are able to identify the low lying spectrum of the supersphere sigma model. The iden-

tification includes the one-loop corrections to the conformal dimensions of the supersphere

sigma model. For sigma model fields with more than two derivatives the match between the

two models is not as convincing and we will uncover a few discrepancies. These would have

the potential to disprove the duality conjecture of Candu and Saleur if it were not for some

features of the perturbative results on anomalous dimensions that seem to restrict their

applicability. The issue will not be settled in this work and merits a deeper investigation.

The relation between a WZNW model at small level and a superspace sigma model we

are about to describe illustrates several features that were anticipated by Polyakov in [14].

In particular, we shall see how singular vectors of the WZNW model are related to the

sigma model constraint and equation of motion etc. The idea to use precision data on

deformed WZNW models in order to test non-perturbative dualities has been put forward

previously, mostly in the context of boundary spectra, see [12, 15, 16]. Our work is the first

one in which it is applied to bulk spectra. This is made possible mostly by the technical

advances in [9, 13]. Let us also point out that conformal sigma models are not that rare

when the target space is a supermanifold, see e.g. [17–22] and references therein. In this

sense, the ideas we put forward below should apply to a much wider class of examples.

The plan of the paper is as follows. In the next section we shall review the results of [9]

on the construction of vertex operators and their one-loop anomalous dimensions in coset

space sigma models. These are then worked out explicitly for the supersphere model with

target space S3|2. For vertex operators involving a small number of derivatives we compare

our general prescriptions with more conventional constructions of vertex operators in terms

of the fundamental field multiplet. The comparison illustrates how advantageous the new

approach is in enumerating physical fields, though once the dust settles both approaches

certainly give the same results. In section 4 we then turn to the proposed dual Gross-Neveu

model, describe its field content and the deformation away from the free field theory. After

a brief review of results from [13] we analyse the low lying 1
2BPS spectrum for the value of

the Gross-Neveu coupling that is conjectured to correspond to the weakly coupled sigma

model. We shall find intriguing agreements, but also some discrepancies. These are briefly

discussed in the concluding section along with a number of interesting open problems.

2 The spectrum of coset sigma models

The aim of this section is to review some results from [9] concerning the spectrum of sigma

models on symmetric superspaces. After a bit of introduction we shall build a basis of

fields in sigma models on coset (super-)spaces G/H. At least when G/H is symmetric our

basis diagonalizes the one-loop dilation operator and we can give a very simple formula

for the spectrum of one-loop anomalous dimensions. The material of this section has been
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split into three different subsections of decreasing generality. While the construction of

field operators in the first subsection holds for all coset models G/H, our discussion of

the zero modes is limited to compact G. Results on the one-loop spectrum have only

been obtained for symmetric (super-)spaces, though an extension to generalized symmetric

spaces is under investigation.

2.1 Prologue: vertex operators for flat targets

Before we can review what is known about the spectrum of weights we need to recall the

construction of vertex operators from [9]. Let us motivate the prescription given there with

a few comments on the usual vertex operators of a free boson, i.e. a sigma model on the

coset space S1 = SO(2)/SO(1) with trivial denominator group H = SO(1) = {e}. As is

well known, the space of such operators is spanned by

Φk;p,p(z, z̄) = eikθ(z,z̄)pm(j, ∂j, . . . )pm

(

, ∂̄, . . .
)

. (2.1)

Here, j = j(z) is the current j = i∂θ and  is of the same form but with a derivative ∂̄

instead of ∂, i.e.  = i∂̄θ. The object pm denotes the monomial

pm(j, ∂j, . . . ) = jm1(∂j)m2 · · ·

in j and its derivatives. The powersmi are components of the multi-indexm=(m1,m2, . . . )

we have placed on p. Of course, the definition of p is similar, but with derivatives ∂̄ instead

of ∂. Note that the multi-index m is independent of m.

The operators exp(ikθ) are associated to the zero modes of the free boson, i.e. there

is one such operator for each function on the target space. For m = 0 = m we obtain

the usual tachyon vertex operators. The choice m = (1, 0, 0, . . . ) = m corresponds to the

vertex operators for massless states etc.

2.2 Vertex operators for G/H

In generalizing this discussion to non-trivial coset models G/H we must address how to

replace the currents j and , the tail monomials p and p and the zero mode contributions

exp(ikX).

Let us begin with the fields j and . One could imagine to simply take derivatives of

coordinate fields θJ that are associated with some choice of coordinates on G/H. While this

works just fine for a flat target space, it is not the smartest choice for curved backgrounds.

Instead, we shall adopt the definition

jα := EJ
α(θ)∂θJ , α := EJ

α(θ)∂̄θJ (2.2)

where EJ
α is the vielbein for our coset space. Equivalently, if we think of the points on

G/H as being parametrized by orbits of group elements g ∈ G under the right action of

H, we can also construct j and  as

jα =
(

g−1∂g, tα
)

, α =
(

g−1∂̄g, tα
)

. (2.3)
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Here, tα runs through a basis in the quotient space m = g/h. The space m carries an action

of the denominator Lie (super-)algebra h. Its dimension coincides with the dimension of

G/H. Note that there is one crucial difference with respect to the flat target S1, namely

our fields j and  transform non-trivially under the action of the denominator algebra. Of

course, physical fields of the coset model must be invariant. Hence, it will be important to

keep track of how the composite fields we are about to construct transform under h.

A field can contain arbitrary products of jα and α and their derivatives, just as for

flat targets. Since the multiplets (jα) and (α) transform in the representation m of h, we

can build tails in any subrepresentation [µ] that appears in some tensor power of m. More

precisely, we can pick two multi-indices m and m as in our discussion of the compactified

free boson and then choose two intertwiners

Pµ,m :
⊗

i

m⊙mi → [µ] , Pµ,m :
⊗

i

m⊙m̄i → [µ] . (2.4)

Here, we used m⊙m to denote the m-fold (graded) symmetric tensor power of m. Given

any such intertwiner, we construct the tail factor

Pµ,m(j, ∂j, . . . ) = Pµ,m

[

j⊗
m1

⊗ (∂j)⊗
m2

⊗ · · ·
]

(2.5)

and similarly for the second contribution that involves  and its derivatives with respect

to ∂̄. We have used tensor products and powers instead of ordinary ones to remind us that

j is a multi-component object. Note that there is a finite number of intertwiners Pµ,m

and Pµ,m for any given choice of m and m. This finite choice has no analogue in a flat

background.

Having discussed the tail of our vertex operators, we also need to address the zero

mode factors. In the compactified free boson the zero mode contribution was a function

on the target space. Functions on the coset space G/H can be thought of as H-invariant

functions on the group G. But since our tail factors transform non-trivially under H, it

seems natural to admit zero mode contributions whose transformation behavior under the

right action of H on G is non-trivial as well. More precisely, for any given representation Sλ
of H on the carrier space Sλ let us consider the following space of Sλ-valued functions on G,

Γλ = Γλ(G/H) =
{

F ∈ L2(G)⊗ Sλ : F (gh) = Sλ
(

h−1
)

F (g) ∀h ∈ H
}

. (2.6)

Elements of the linear space Γλ may be considered as sections in a homogeneous vector bun-

dle onG/H [23]. We will analyse the structure of these vector bundles in the next subsection.

At this point we have discussed three ingredients of our vertex operators, namely the

tail factors Pµ,m and Pµ,m along with the zero mode contribution V ∈ Γλ. These transform

in the representations µ, µ and λ of the denominator algebra h. Obviously, a physical field

in the coset model must be h invariant. Hence, we must glue our three ingredients with an

intertwiner

Cλµµ : [λ]⊗ [µ]⊗ [µ] → C (2.7)

from the triple tensor product between the representations [λ], [µ] and [µ] of the denomi-

nator algebra h to the complex numbers. Fields of the coset model now take the form

ΦΛ,λ,µ,µ(z, z̄) = VΛλ(z, z̄)Pµ;m(j, ∂j, . . . )Pµ;m

(

, ∂̄, . . .
)

Cλµµ , (2.8)
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where VΛλ ∈ Γλ is a section that transforms in the representation Λ of the numerator

algebra g. By construction, these fields are invariant under the action of the denominator

group H. On the other hand, the action of the numerator group G is non-trivial. It

is determined by the way the section VΛλ transforms. The label Λ is the curved space

analogue of the linear momentum k in a circular target S1.

The labels (Λ, λ, µ, µ) we have placed on the symbol Φ do not keep track of all the

freedom we have in the construction of vertex operators. In order to count all possible

fields of the coset model one needs to count the intertwiners P,P and C that were in-

troduced in eqs. (2.4) and (2.7), respectively. In addition, there is often some freedom in

the choice of the section VΛλ ∈ Γλ. While the number of intertwiners may be determined

straightforwardly from the fusion rules of the Lie (super-)algebra h, the space of sections

in homogeneous vector bundles requires input from harmonic analysis. We will analyse the

space Γλ in the next subsection. For O(N) vector models, i.e. the coset sigma models with

target space O(N)/O(N −1), the space of fields has been counted in [9] and the result was

shown to agree with other descriptions of the field space for these models.

2.3 Homogeneous vector bundles on G/H

As we explained in the previous subsection, a good control over vertex operators of coset

models requires some knowledge about sections in homogeneous vector bundles over G/H

and their transformation behavior under the (left) action of G. Our main goal in this

subsection is to explain the decomposition

Γλ
∼=
∑

Λ

nΛλ [Λ] . (2.9)

Here, the linear space Γλ is considered as a representation of the numerator Lie

(super-)algebra g. The summation on the right hand side runs over irreducible repre-

sentations [Λ] of this algebra. Let us stress that for Lie superalgebras, the sum is not

direct, at least not in general. We will return to this issue below.

In the expansion (2.9), each summand [Λ] appears with some multiplicity nΛλ.

Following standard mathematical notation, we shall also write

nΛλ = [Γλ : SΛ] (2.10)

for the number of times a given irreducible representation SΛ of g appears in (the decom-

position series of) the space Γλ of sections. It is a central result from harmonic analysis of

compact supergroups that

[Γλ : SΛ] = [PΛ|h : Pλ] . (2.11)

The objects PΛ and Pλ denote representations of the Lie superalgebras g and h, respectively.

These particular representations are called projective covers, see e.g. [24, 25] for a precise

definition and more background. They coincide with the irreducible representations SΛ and

Sλ when no shorting conditions are satisfied, i.e. when both Λ and λ are non-BPS. The case

of BPS (or atypical) multiplets will be discussed in more detail below. After restriction

to h ⊂ g, the representation PΛ gives rise to a representation PΛ|h of h. The number on
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the right hand side of equation (2.11) denotes the number of times the representation Pλ

appears in the representation PΛ|h.

All this might seem a bit abstract at first. So, let us briefly illustrate the content

of eq. (2.11) for the coset space S2 = SU(2)/U(1). In this case, there exists an infinite

set of complex line bundles which are parametrized by the monopole number k ∈ Z. This

number and hence the associated bundles are in one-to-one correspondence with irreducible

representations Sk of the denominator group H = U(1). For monopole number k = 0 we

are dealing with the trivial line bundle, i.e. with functions on S2. Of course we know

very well how the space of functions decomposes under the action of su(2): each integer

spin representation appears with multiplicity one. We may recover this fact from our

formula (2.11) as follows. The space of functions on S2 is associated to the label λ = 0.

We want to know how many times an irreducible representation SΛ = Sj of su(2) appears

in the decomposition of Γ0. According to eq. (2.11), this number is given by

[Γ0 : Sj ] = [Sj |U(1) : S0] =

{

1 for j ∈ N

0 for j ∈ N+ 1
2 .

(2.12)

Here S0 denotes the trivial representation of h. For bosonic Lie groups, we do not have

to distinguish between projective covers Pj and irreducibles, i.e. Sj = Pj . The second

equality follows from the fact that the spin j representation Sj contains exactly one state

on which the generator J3 of the u(1) ⊂ su(2) has zero eigenvalue if and only if j is integer.

For non-trivial monopole line bundles, the evaluation proceeds along the same lines. In

this case the space Γk of sections contains each integer spin representation Sj satisfying

j ≥ k with multiplicity one.

The only additional complication we have to deal with in applying eq. (2.11) to super-

spaces comes from the distinction between irreducibles and projective covers. For typical

(long) multiplets SΛ of a Lie superalgebra g, the projective cover PΛ agrees with SΛ = PΛ.

But if SΛ is an atypical (short) multiplet then PΛ 6= SΛ is an indecomposable represen-

tation. It should be considered as a very specific ‘composite’ representation that is built

from several short multiplets. For the Lie superalgebra g = osp(4|2) the projective covers

are discussed explicitly in appendix A. Of course, short representations of the denominator

algebra h can also be combined into projective covers, see appendix B where the projective

covers for osp(3|2) are discussed. Let us finally mention that upon restriction from g to

the subalgebra h ⊂ g, a projective cover PΛ decomposes into a direct sum of projective

covers Pλ. Hence, the numbers on the right hand side of eq. (2.11) are well defined. We

shall compute them for homogeneous vector bundles on the supersphere S3|2 later on.

Let us briefly mention one simple example that can be used to illustrate how important

the distinction between irreducibles and projective covers is. To this end we consider

the homogeneous vector bundle Γad on the supersphere S3|2 that is associated with the

adjoint representation of the denominator algebra osp(3|2). It turns out that this bundle

contains two multiplets of sections which transform in the adjoint representation SAd of

the numerator algebra osp(4|2), i.e. [Γad : SAd] = 2. On the other hand, the adjoint

representation of osp(4|2) is 17-dimensional and that of osp(3|2) is 12-dimensional. Hence,
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for dimensional reasons, the restriction of SAd to osp(3|2) contains Sad only once,

2 = [PAd|h,Pad] 6= [SAd|h,Sad] = 1. (2.13)

This example demonstrates that harmonic analysis on superspaces requires a bit of extra

care precisely because of the existence of BPS representations.

Before we conclude this subsection let us stress once more that formula (2.11) is re-

stricted to compact (super-)algebras. This does not mean that similar control of homo-

geneous vector bundles can not be achieved when G is non-compact. As long as H is

compact, one can continue to derive results on the decomposition of homogeneous vector

bundles from the harmonic analysis of G. So, if the latter is understood, homogeneous vec-

tor bundles pose no additional problems. When H in non-compact, however, normalizable

sections of on G/H are no longer obtained from normalizable functions on G and hence

cosets with non-compact denominator require an independent analysis. Nevertheless, the

decomposition of homogeneous vector bundles is known in many concrete examples.

2.4 One-loop anomalous dimensions

While our construction of vertex operators in coset sigma models was completely general

and the property (2.11) holds for all homogeneous vector bundles on quotients G/H of

a compact Lie (super-)group G, the following results on the one-loop corrections to the

spectrum of coset models have only been derived for symmetric (super-)spaces, although

work on so-called generalized symmetric spaces, including those relevant for the AdS/CFT

correspondence, is in progress.

The computations carried out in [9] show that the one-loop anomalous dimensions

depend only on the representation labels Λ, λ, µ, µ and not on the intertwiners P,P and C

that enter the construction of fields (2.8) in the coset model. This is why we labeled our

fields Φ by a subscript that makes no reference to the precise choice of intertwiners.

At zero sigma model coupling, i.e. for R = ∞, the sigma model fields possess their

naive dimensions (h∞, h̄∞) that are given by the number of derivatives,

h∞ =
∞
∑

j=1

j mj , h̄∞ =
∞
∑

j=1

j mj , (2.14)

where only finitely many of the mj are non-zero. Once we turn on the interaction, these

scaling weights are shifted by the so called anomalous dimension δRh, i.e. at some finite

value of the coupling R the scaling weights have the form

(

h(R), h̄(R)
)

=
(

h∞ + δRh, h̄∞ + δRh
)

. (2.15)

According to [9], the leading contribution to the anomalous dimension takes the form

δ
(1)
R h =

1

2R2

(

Casg(Λ)−Cash(µ)−Cash(µ)
)

. (2.16)

In the derivation the result actually emerges as a sum of two different pieces that are

associated with the zero mode factor and the tail of the vertex operator, respectively.

– 8 –



J
H
E
P
0
3
(
2
0
1
5
)
0
1
3

Recall that the zero mode factor VΛλ is a section in a homogeneous vector bundle Γλ.

Such sections are acted upon by the Lichnerowicz Laplacian ∆L, whose eigenvalues were

expressed through the quadratic Casimir operators of g and h in [26],

∆LVΛλ(θ) =
(

Casg(Λ)−Cash(λ)
)

VΛλ(θ) . (2.17)

The contribution of the tail factors to the annomalous dimension can be written as a spin-

spin interaction between fields j and . It leads to a term of the form Cash(λ)−Cash(µ)−

Cash(µ). Note that the first term in this combination cancels the constant shift Cash(λ)

in the eigenvalues of the Lichnerowicz Laplacian so that we end up with the expression

given in eq. (2.16).

Formula (2.16) is actually very general. It holds for all sigma models on symmetric

superspaces with vanishing beta function. When properly interpreted, see [9], it can also

be used for models with world-sheet supersymmetry, such as e.g. the N = 2 worldsheet

supersymmetric sigma model on complex projective superspace CP3|4 etc. In applications

to non-conformal theories, such as e.g. the usual O(N) models, the formula for δ(1)h requires

a simple additional term,

δ
(1)
R h =

1

2R2

(

Casg(Λ)−Cash(µ)−Cash(µ) +Cash(m)
∑

i

(mi +mi)

)

. (2.18)

Since vanishing of the one-loop beta function requires that Cash(m) = 0 we recover the

formula (2.16) for conformal sigma models. Our simple formula (2.16) or rather its gen-

eralization (2.18) summarizes and extends the results of many papers in which anomalous

dimensions, mostly dealing with g-invariant fields, have been studied model by model,

see e.g. [27–33]. That all these computations may be captured by a single universal for-

mula (2.18) is quite remarkable. Of course, this success is intimately tied to the construc-

tion (2.8) of vertex operators. We now see how well this construction was adapted to the

computation of 1-loop anomalous dimensions.

Much of the previous work on anomalous dimensions of (high-)gradient operators in

sigma models was motivated by a somewhat puzzling instability that has first been observed

in O(N) vector models [27] and later understood to be a rather generic feature of sigma

model perturbation theory, see [34] and references therein. This instability arises because

of the negative sign in front of the terms Cash(µ) and Cash(µ). Naively one might think

that high gradient operators, i.e. operators (2.8) for which
∑

j j(mj +mj) = h∞ + h̄∞ is

large, are highly irrelevant. But it turns out that some of these operators acquire a very

large negative anomalous dimension. More precisely, one can show that for every choice

of the sigma model coupling R−2, no matter how small, one can find a g-invariant high

gradient operator O = Φ0,λ,µ,µ such that

h∞(O) + h̄∞(O)−
1

R2

(

Cash(µ) +Cash(µ)
)

< 2 . (2.19)

This is because Cash(µ) grows quadratically with the weights of the representation µ and

the maximal weight grows linearly with the number of currents j in the tail. On the other
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hand, the positive contribution h∞(O) only grows linearly in the number of js. The argu-

ment shows that (infinitely many) high gradient operators become relevant for arbitrarily

small sigma model coupling. One could have hoped that higher orders in perturbation

theory correct the issue, but they turn out to make things even worse [35]. We would be

ready to conclude that sigma models are inherently unstable if it were not for the many

independent studies, e.g. through lattice discretizations, that display no pathologies. As

far as we know, the problem has never been resolved but it is something to be kept in mind

as we proceed.

3 The spectrum of the supersphere S3|2

The aim of this section is twofold. Partly, we would like to illustrate the general results

we have reviewed in the previous section through the simplest nontrivial example of an

interacting conformal sigma model, namely the theory with target space S3|2. This super-

sphere can be considered as a quotient G/H of the compact supergroup G = OSP(4|2)

by the subgroup H = OSP(3|2). Since the latter is fixed by an order two automorphism

of the former, the supersphere S3|2 is a compact symmetric superspace. Hence, all the

results we outlined in the previous section apply to this case. Our task is to work them

out explicitly. This will require some input from the representation theory of osp(4|2) and

osp(3|2) which can be found in several appendices. The second purpose of this section is

to gather some data about the supersphere sigma model that we can later use to test the

conjectured duality with the OSP(4|2) Gross-Neveu model.

We will begin by describing several equivalent formulations of the supersphere sigma

model. Concrete results on low gradient operators and their anomalous dimensions are

worked out in the second subsection. In the third subsection we describe the more con-

ventional construction of (low gradient) vertex operators in terms of the fundamental field

of the non-linear sigma model. While this turns out to be significantly more cumbersome

than the approach advocated in the previous subsection, it will allow us to understand the

impact of symmetries and equations of motion.

3.1 The supersphere sigma model

The most basic description of the supersphere S3|2 is as a co-dimension one supermanifold

in the flat superspace R
4|2 defined by the equation

X ·X :=
4
∑

j=1

x2j + 2η1η2 = 1 . (3.1)

Here, xj , j = 1, . . . , 4, and η1, η2, are the bosonic and fermionic coordinates of R4|2, re-

spectively. We shall often combine these coordinates into a multiplet of supercoordinates

X = (XA) = (xj , η1, η2). For a pair X and Y in such multiplets the inner product · is

defined as

X · Y =
∑

j

xjyj + η1ξ2 − η2ξ1 . (3.2)
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Here, we have denoted the fermionic coordinates of Y by ξ1 and ξ2. We can now write the

action of the associated sigma model as

SSM[X, ρ] =
R2

2π

∫

d2z
(

∂X · ∂X − ρ(X ·X − 1)
)

. (3.3)

Here ρ is a Lagrange multiplier that implements the supersphere constraint (3.1). The

parameter R can be interpreted as the radius of the supersphere. In the regime where R

is large, the sigma model is weakly coupled and perturbation theory should give reliable

results. The equations of motion for the field multiplet X read

∂∂̄X =
(

∂X · ∂̄X
)

X . (3.4)

From our description of the supersphere through equation (3.1) it is evident that S3|2

comes equipped with an osp(4|2) action. In fact, the Lie superalgebra osp(4|2) acts on the

embedding space R
4|2 through its fundamental representation. By the very definition of

osp(4|2) this action respects the constraint (3.1). The supersphere S3|2 can be obtained

from the supergroup OSP(4|2) by taking the following quotient

S3|2 = OSP(4|2)/OSP(3|2) (3.5)

with respect to the right action of the subsupergroup OSP(3|2) ⊂ OSP(4|2). The latter

appears as the stabilizer of a point X = (XA) = (1, 0, 0, . . . ) on the supersphere. Since this

stabilizer is left invariant by the reflection of the first coordinate, the quotient (3.5) is a

symmetric superspace. In conclusion, we have shown that the sigma model (3.3) possesses

all the properties that we assumed in the previous section.

In order to get a better feeling for how non-trivial the supersphere sigma model really is,

we solve the constraint (3.1) explicitly. To this end, we parametrize S3|2 through three an-

gular coordinates ϑj and 2 fermionic variables ηb. The line element takes the following form

ds2 = 2(1− η1η2)dη1dη2 + (1− 2η1η2)dΩ3 (3.6)

where

dΩ3 = dϑ21 + cos2 ϑ1 dϑ
2
2 + sin2 ϑ1 dϑ

2
3

is the usual line element of the 3-dimensional unit sphere. In the sigma model, the coordi-

nates are promoted to fields and the action reads

SSM[ϑ, η] =
R2

2π

∫

d2z
(

2(1− η1η2)
(

∂η1∂̄η2 − ∂η2∂̄η1
)

+ (1− 2η1η2)
(

∂ϑ1∂̄ϑ1 + cos2 ϑ1 ∂ϑ2∂̄ϑ2 + sin2 ϑ1 ∂ϑ3∂̄ϑ3
)

)

.

(3.7)

For the sigma model on the purely bosonic 3-sphere the coupling R runs and in order for

the flow to end in a non-trivial fixed-point one must add a Wess-Zumino term [36]. But

the presence of the two fermionic directions changes the situation profoundly. As shown

in [19], the β-function of the sigma model on S3|2 is the same as for a bosonic sigma model

on a sphere Sd whose dimension d = 3 − 2 = 1 is given by the difference between the
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number of bosonic and fermionic coordinates. Consequently, the β-function vanishes for

the sigma model on S3|2, i.e. the model (3.7), defines a family of non-unitary interacting

conformal field theories at central charge c = 1 with continuously varying exponents.

Before we apply the results reviewed in the previous section to this model let us note

that the action (3.7) can be written very compactly if we factorize the metric with the help

of the super-Vielbeins EJ
α(ϑ, η),

gIJ(ϑ, η) := καβEI
α(ϑ, η)E

J
β (ϑ, η)(−1)|β|(|I|+|α|) (3.8)

where κ is the invariant form of osp(4|2) and the indices α, β run over directions along the

quotient m = osp(4|2)/osp(3|2). We can now combine the Vielbeins with the derivatives of

the coordinate fields (θJ) = (ϑj , ηa) as in eq. (2.2) to obtain

SSM[θ] =
R2

2π

∫

d2z gIJ(ϑ, η) ∂θI ∂̄θJ =
R2

2π

∫

d2z καβjα(z, z̄)β(z, z̄) . (3.9)

Of course, all the non-linearity of the action (3.7) is just hidden in the complicated structure

of the fields j and . Note that the latter transform in the fundamental representation of

the stabilizer subgroup OSP(3|2). In the action the corresponding index α is contracted

with the β so as to give an invariant.

Unlike the sigma model on S1 = U(1), the theory defined by the action (3.7) is not

free. For large radius R, the model is weakly coupled and its properties may by studied

perturbatively. But as we pass to a more strongly curved background, computing quantities

as a function of the radius R may seem like a very daunting task. This is even more so

because there is very little symmetry to work with. As a conformal field theory, the

sigma model on the supersphere possesses the usual chiral Virasoro symmetries. But for

a model with multiple bosonic coordinates the two sets of chiral Virasoro generators are

not sufficient to make the theory rational. Since there are no efficient tools to construct

the theory at generic values of the radius parameter R, finding a dual description whose

perturbative regime describes a strongly curved supersphere is of obvious interest.

3.2 Vertex operators and anomalous dimensions

Before we can begin constructing vertex operators for the supersphere sigma model we

need a little bit of background on representations of both osp(4|2) and osp(3|2). A much

more comprehensive discussion can be found in the appendices. It is heavily based on two

papers by van der Jeugt [37, 38].

The Lie superalgebra osp(4|2) possesses the bosonic subalgebra so(4)⊕sp(2). Since this

has rank r = 3, generic representations are labeled by triples of weights [j1, j2, j3]. Atypical

(or BPS) representations satisfy a single shortening condition. The possible conditions

are listed in eq. (A.3). With one such condition relating the three weights ji, atypical

representations Λl,k are labeled by two integers l ≥ 0 and k. The precise relation between

l, k and the weights ji are given in eqs. (A.5) and (A.6). Let us only note that the label

of the trivial representation is Λ0,0 while that of the 17-dimensional adjoint is Λ0,1. The

representations Λl,0 on the other hand are associated with (graded) symmetric traceless

tensors of osp(4|2).
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In the atypical representation Λl,k, the quadratic Casimir element Casg takes the value

Casg(Λl,k) = l2 . (3.10)

We conclude that the Casimir element Casg is insensitive to the second label k of Λl,k.

Atypical representations with the same value of the Casimir element are said to belong to

the same block. Representations from the same block may appear within larger indecom-

posables, in particular they make up the projective covers PΛl,k
. The composition series of

these indecomposables are given in eqs. (A.12)–(A.15).

Let us turn our attention to the Lie superalgebra osp(3|2). In this case, the bosonic

subalgebra so(3) ⊕ sp(2) has rank two and hence generic representations are labeled by a

pair [q, p] of weights. The atypicals λ0 and λq = [q, 2q − 1], q ≥ 1/2, form a 1-parameter

family of representations that satisfy a single shortening condition. The label λ0 is reserved

for the trivial representation, λ1/2 is the 5-dimensional fundamental. In the case of osp(3|2),

the adjoint is not atypical. Its label is λad = [1, 0].

In the representation [q, p] the quadratic Casimir element Cash of osp(3|2) takes

the values

Cash
(

[q, p]
)

= (p+ 2q)(p− 2q + 1) . (3.11)

We see that it vanishes for atypicals λq. All these atypicals belong to the unique single

block from which indecomposables can be built. Once again, the most relevant indecom-

posables are the projective covers Pλq
of atypicals. Their composition series are displayed

in eqs. (A.12)–(A.15).

With these notations set up we can begin to construct vertex operators. Our goal is to

find all vertex operators with up to two derivatives that transform in 1
2BPS representations

Λl,k of osp(4|2). Let us start with the zero modes. By definition, these fields have vanishing

scaling dimension at R = ∞ so they cannot contain any currents j or . Consequently,

the osp(3|2) representations µ, µ and λ that label our vertex operators (2.8) are all trivial.

Thus, the head must be taken from

Γ0 = Γλ0 =
∞
⊕

l=0

Λl,0 , (3.12)

where Λl,0 =
1
2 [l+1, l−1,−l−1] for l > 0 and Λ0,0 is the trivial representation. In order to

find the decomposition displayed on the right hand side, we employed the decomposition

formulas (C.1)–(C.3) along with the fundamental results (2.11). The summation is over

all those representations Λ of osp(4|2) for which the restriction of PΛ to the subalgebra

osp(3|2) contains Pλ0 . Our formulas in appendix C only list the decompositions for atypical

representations Λ = Λl,k but it is not difficult to see that typical (long) multiplets never

contain Pλ0 in their decomposition. Hence, the formula (3.12) is exact, i.e. it accounts for

all elements of Γ0 not just for those that transform in 1
2BPS representations. Of course,

the space Γ0 is nothing but the space of functions on the supersphere S3|2. Aside from

the trivial representation Λ0,0 of osp(4|2), which has vanishing Casimir, all other operators

acquire a non-zero anomalous dimension,

δ
(1)
R h

(

VΛl,0,λ0

)

=
1

2R2
Casg(Λl,0) =

l2

2R2
. (3.13)
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The next set of operators we would like to look at are the operators of weight
(

h∞, h̄∞
)

=

(1, 0). Such operators contain a current j and hence have µ = λ = λ 1
2
while µ = λ0 is

trivial. Hence, the head of the operators must be taken from sections in the bundle

Γλ 1
2

= Λ0,1 ⊕
∞
⊕

l=1

Λl,0 ⊕ typicals . (3.14)

The decomposition on the right hand side is obtained from the formulas in appendix C, just

as in the previous example. We see that one 1
2BPS section in the bundle of the fundamen-

tal representation λ 1
2
of osp(3|2) is the adjoint multiplet of osp(4|2). The corresponding

fields are the Noether currents. According to our result (2.16) their one-loop anomalous

dimension vanishes since both the Casimir of the fundamental λ 1
2
and the Casimir of the

adjoint Λ0,1 vanish. The remaining 1
2BPS fields are derivatives of the zero modes. Their

anomalous dimension is the same as for the zero modes themselves.

The 1
2BPS spectrum of operators of weight

(

h∞, h̄∞
)

= (1, 1) is a bit richer. In this

case, our operators must contain j and  so that µ = λ 1
2
= µ. In the tensor product of

the two fundamental representations µ and µ we find λ = λ0, [1, 0],
[

1
2 , 1
]

. Hence, the zero

mode contributions can come from 3 different bundles. The decomposition of the bundle

Γ0 was described in eq. (3.12) already. So it remains to describe the two bundles

Γ[1,0] = 2Λ0,1 + Λ0,2 + typicals (3.15)

and

Γ[ 12 ,1]
=

∞
∑

l=2

(2Λl,0 + Λl,1 + Λl,−1) + typicals . (3.16)

If we sum up all the contributions from the three possible bundles, we find that the spectrum

of operators of weight (h∞, h̄∞) = (1, 1) decomposes into

Γλ 1
2
⊗λ 1

2

∼= Λ0,0 + 2Λ0,1 + Λ0,2 + Λ1,0 +
∞
∑

l=2

(3Λl,0 + Λl,1 + Λl,−1) + typicals . (3.17)

The one-loop anomalous dimension of the corresponding operators is determined by the

first label of the representation,

δ
(1)
R h =

1

2R2
Casg(Λl,k) =

l2

2R2
. (3.18)

We see in particular that our sigma model contains 145 operators with vanishing one-loop

anomalous dimension. These sit in four different representations of osp(4|2). There is one

state in the trivial representation Λ0,0. This is the sigma model interaction that remains

marginal at one-loop. It actually remains marginal at all loops. In addition, there are two

adjoint multiplets Λ0,1 of dimension 17 each. The multiplicity two is actually a signature

of the distinction between projective covers and irreducibles. As we explained above,

one could have expected that the multiplicity of the adjoint osp(4|2) section in the bundle

associated to the adjoint representation [1, 0] of osp(3|2) is given by the number of times the
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12-dimensional [1, 0] appears in the decomposition of the 17-dimensional Λ0,1. Clearly, this

multiplicity is one which is not the correct answer for the number of Λ0,1 multiplets in Γ[1,0].

So indeed the example illustrates nicely how important it is to determine the multiplicity

of short operators using decompositions of projective covers rather than irreducibles.

3.3 An alternative construction of vertex operators

In order to fully appreciate the results of the previous subsection and the elegance of their

derivation, we would like to compare our findings with more conventional constructions

of vertex operators from the fundamental field multiplet X. In doing so, we will have

to struggle a little bit with the implications of the constraint (3.1) and the equations

of motion (3.4) on counting coset fields. As a reward, we will understand e.g. that the

number 145 of operators with vanishing one-loop anomalous dimension contains non-trivial

information about the dynamics of the supersphere sigma model.

In building coset fields from the fundamental field multiplet X we shall start with the

zero modes. For h∞ = h̄∞ = 0 the relevant fields contain no derivatives and they are given

by monomials Fl,0(X) of order l = 0, 1, 2, . . . in the components of X. Once we implement

the constraint X2 = 1 the components of Fl,0(X) transform in the traceless symmetric

tensor representations Λl,0. This agrees with our formula (3.12) above.

Let us now proceed to fields of weight
(

h∞, h̄∞
)

= (1, 0). These must be of the form

Fl,0(X) ∂X (3.19)

for l = 0, 1, 2, . . . . The space of such objects transforms in the tensor product Γ0 ⊗ Λ1,0

of symmetric traceless tensors with the fundamental Λ1,0. But not all these fields are

non-zero. In fact, by taking a derivative of the constraint X2 = 1 we obtain

X · ∂X = Xa∂X
a = 0 . (3.20)

Consequently any field of the form Fl,0(X)X · ∂X vanishes. Such fields transform in the

representation Γ0. If we remove them from the list (3.19) we end up with a space of fields

transforming in

Γ0 ⊗ Λ1,0 − Γ0 = Λ0,1 +
∞
∑

l=1

Λl,0 + typicals = Γλ 1
2

. (3.21)

This agrees with our result (3.14). We have already interpreted the corresponding fields as

the Noether currents and derivatives of the zero modes.

Let us now turn to the most interesting set of fields, those with weights h = 1 = h̄. In

this case, the counting will be affected by the equations of motion. The relevant fields can

all be written in either of the following forms

Fl,0(X) ∂∂̄X , Fl,0(X) ∂X∂̄X . (3.22)

Our analysis of the space of these operators will proceed in two steps. First we shall fully

implement the constraint X2 = 1 and then we consider the equations of motion. By taking

derivatives of the constraint X2 = 1 we obtain the two equations

X · ∂X = 0 = X · ∂̄X . (3.23)
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We can multiply each of these two equations with one of the previously found operators of

dimension
(

h∞, h̄∞
)

= (1, 0) or
(

h∞, h̄∞
)

= (0, 1), respectively. All such operators vanish.

As we discussed above, they transform in 2Γλ 1
2

. Additionally, we also need to remove all

operators created from the zero modes by multiplication with the operator X · ∂XX · ∂̄X.

These transform in Γ0. This is not quite the end of story. In fact, there is another family

of operators that vanishes because of the constraint X2 = 1. To see this, we differentiate

the constraint X2 = 1 by ∂∂̄ and obtain

∂X · ∂̄X = −X · ∂∂̄X . (3.24)

This constraint allows us to remove all the operators of the form Fl,0(X)∂X · ∂̄X. In other

words when considering the second family in eq. (3.22), we can restrict to those operators

for which ∂X∂̄X transforms either in the representation Λ2,0 (symmetric traceless) or in

Λ0,1 (antisymmetric). Putting all this together we find

Γ0 ⊗ Λ1,0 + Γ0 ⊗ (Λ2,0 + Λ0,1)− 2Γλ 1
2

− Γ0

= Λ0 + 3Λ0,1 + Λ0,2 + 2Λ1,0 +
∞
∑

l=2

(4Λl,0 + Λl,1 + Λl,−1) + typicals

= Γλ 1
2
⊗λ 1

2

+ Λ0,1 +
∞
∑

l=1

Λl,0 + typicals .

(3.25)

A quick glance at eq. (3.17) shows that we obtained more than we expected. The reason

is simple. While we have correctly implemented the constraint X2 = 1, operators of

weight
(

h∞, h̄∞
)

= (1, 1) are the first ones to be sensitive to the equations of motion. The

latter precisely remove the unwanted multiplets. In the block of the zero, for example, the

operators

XI∂∂̄XJ −XJ∂∂̄XI (3.26)

contribute one of the three Λ0,1 in the decomposition we have listed. Once we insert the

equations of motion, however, these operators are set to zero

XI∂∂̄XJ −XJ∂∂̄XI = ∂X · ∂̄X (XIXJ −XJXI) = 0 . (3.27)

Hence, the fact that we found 145 operators of weight
(

h∞, h̄∞
)

= (1, 1) with vanishing

one-loop anomalous dimension is sensitive to the equations of motion. Without them there

would be 17 additional such operators.

4 Duality with the osp(4|2) Gross-Neveu model

One lesson which has been learned through past studies of sigma models is that they should

not be considered as an isolated research topic. There exist other important constructions

of 2D (conformal) field theories which are intimately tied to sigma models and sometimes

can provide intriguing insights into the non-perturbative features of sigma models. We

have already alluded to the example of sigma models on Calabi-Yau spaces which pos-

sess a dual description in terms of (products of) WZNW coset models. Another, more
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elementary, example is the compactified free boson which admits a dual description in

terms of two Majorana fermions. The proposed duality between the sigma model on S3|2

and the osp(4|2) Gross-Neveu model that we described in the introduction is quite similar

to the Coleman-Mandelstam duality between bosons and fermions only that the abelian

symmetry u(1) = so(2) is replaced by the non-abelian osp(4|2).

In the first subsection we shall describe the osp(4|2) Gross-Neveu model and some of

its most basic features. Then we review a central all-loop result from [13] on the (target

space) 1
2BPS spectrum of perturbed supergroup WZNW models and explain how it applies

to the osp(4|2) Gross-Neveu model. In the third subsection we try to match the 1
2BPS

spectrum of the Gross-Neveu model for a certain value of the Gross-Neveu coupling to the

one-loop spectrum of the supersphere sigma models. We will find perfect agreement for

low lying states, but also some discrepancies that involve fields with more derivatives. The

discussion of these findings is mostly deferred to the final section.

4.1 The osp(4|2) Gross-Neveu model

The fundamental field multiplet Ψ = (ΨA) = (ψj , γa) of the osp(4|2) Gross-Neveu model

consists of four Majorana fermions ψj , j = 1, . . . , 4, and a bosonic βγ-system whose fields we

shall denote by γ1 = γ and γ2 = β. In addition, there is a second multiplet Ψ =
(

ψj , γa
)

of

opposite chirality. All these six fields in Ψ possess conformal weight h = 1/2 and transform

in the fundamental representations Λ1,0 of osp(4|2). The same applies to Ψ. In terms of

these field multiplets, the action of the Gross-Neveu model reads

SGN
[

ψ, γ, ψ, γ
]

=
1

2π

∫

d2z

[

∑

j

(

ψj ∂̄ψj + ψ̄j∂ψ̄j

)

+
(

γ2∂̄γ1 + γ̄2∂γ̄1
)

]

+
g

2π

∫

d2z

[

∑

j
ψjψ̄j + (γ1γ̄2 − γ2γ̄1)

]2

.

(4.1)

The osp(4|2) invariance of this action is manifest since all indices are contracted with the

osp(4|2) invariant metric. When written in terms of Ψ and Ψ, rather than its components,

the action takes the same form as that of the massless Thirring model with its characteristic

fourth order interaction term. When the coupling constant g is set to zero the model is free

and scale invariant. It possesses a Virasoro symmetry with central charge c = 1. The latter

receives a contribution cj = 1/2 from each of the fermions ψj and ca = −1/2 from the two

components of the βγ-system. Switching on the coupling g introduces a very non-trivial

action but it turns out to preserve conformal symmetry. In fact, the β-function for the

coupling g is proportional to the dual Coxeter number h∨ = Casg(Λ0,1) and hence vanishes

for osp(4|2). Therefore, the osp(4|2) Gross-Neveu model defines a one-parameter family of

interacting conformal field theories with central charge c = 1.

While the interaction in the osp(4|2) Gross-Neveu model preserves the Virasoro and

a global osp(4|2) symmetry, the free field theory possesses additional current algebra sym-

metries that are broken when g 6= 0. In order to describe these symmetries, we recall that

the components of the field multiplet Ψ obey the following operator product expansions

ψi(z)ψj(w) ∼
δij

z − w
+ . . . , γ2(z)γ1(w) ∼

δab
z − w

. (4.2)
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Using these operator product expansions between the fundamental constituents it is stan-

dard to show that the following quadratic combinations

JAB = ΨAΨB where (ΨA) = (ψi, γb) (4.3)

obey the algebraic relations of an osp(4|2) current algebra at level k = 1. Let us stress once

again that this current algebra symmetry is broken as soon as we switch on the coupling.

The current algebra symmetry suggests interpreting the free theory at g = 0 as a Wess-

Zumino-Novikov-Witten (WZNW) model. In addition, it is not difficult to verify that the

fourth order interaction term of the Gross-Neveu model can be expressed in terms of the

currents (4.3) as

g

2π

∫

d2z
[

∑

i
ψiψ̄i + γ1γ2 − γ2γ̄1

]2
=

g

2π

∫

d2z
∑

AB

JAB(z)J̄
AB(z̄) . (4.4)

Putting all this together we have shown that the Gross-Neveu model can be thought of as

a deformed WZNW model at level k = 1,

SGN = SWZNW
k=1 +

g

2π

∫

d2z
∑

AB

JAB(z)J̄
AB(z̄) (4.5)

with the deformation being generated by an exactly marginal current-current interaction.

This reformulation of the osp(4|2) Gross-Neveu model will become important when we

apply the powerful results of [13] to the Gross-Neveu model.

4.2 An all-loop result for deformed WZNW models

In [13], current-current deformations of supergroup WZNW models were studied. In par-

ticular it was argued that the deformation by the operator

Ω(z, z̄) = Jµ(z)J̄µ(z̄) , (4.6)

is truly marginal, provided that the Lie supergroup possesses vanishing dual Coxeter num-

ber, i.e. that G = PSL(N |N), OSP(2N + 2|2N), D(2, 1;α). In the definition of Ω the sum

runs over all directions µ in the Lie superalgebra g. The deformation breaks the affine

symmetry. Since it does not even commute with the zero modes of the chiral currents,

it also breaks the left and right g symmetries. On the other hand, the sum of left and

right zero modes does commute with the perturbing operator so that the deformed theory

preserves the diagonal g action.

Of course, under the perturbation with the operator (4.6) the conformal weight of fields

can change, i.e. fields may develop an anomalous dimension. In general, this anomalous

dimension is difficult to compute, at least beyond the leading order in perturbation theory.

Remarkably, for a special subset of fields, the authors of [13] managed to obtain an all order

expression. In physics terminology, the fields for which this was possible are those that

transform in maximally atypical, or 1
2BPS, representations of the target space symmetry g.

More precisely, the formulas of [13] hold for all indecomposable field multiplets of g which
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contain a subrepresentation of non-zero superdimension. For such fields, the anomalous

dimension reads

δ(∞)
g hBPS =

g

2(1− k2g2)

[

CasDg (ΛBPS)− (1− kg)
(

CasLg +CasRg

)]

. (4.7)

Here Cas
L/R
g refers to the value of the quadratic Casimirs on the left and right representa-

tions in the unperturbed model, respectively. The superscript D means that the Casimir

element is evaluated with respect to the diagonal action. We have placed the subscript

‘BPS’ on both sides of the equation to remind us that this formula should only be applied

to fields that transform in maximally atypical representations Λ under the diagonal action.

On the other hand, their transformation law with respect to left or right action in the

WZNW model is not constrained.

Let us now specialize this very general result to the osp(4|2) Gross-Neveu model or,

equivalently, to the current-current deformation of the osp(4|2) WZNW model at level

k = 1. In this case our formula can be applied to all fields that transform in one of the

atypical representations Λl,k or any indecomposable composites formed from these. Let us

recall that the value of the quadratic Casimir element assumes the value Casg(Λl,k) = l2

on such atypicals. Hence, our general formula (4.7) becomes

δ(∞)
g hBPS =

gl2

2 (1− g2)
−

g

2 (1 + g)

(

CasLg +CasRg
)

, (4.8)

for fields transforming in Λ = Λl,k with respect to the diagonal action of g. Note that the

function δ
(∞)
g h develops a singularity at g = −1, at least for a large number of states. This

simple observation motivates the identification of the point g = −1 with the R→ ∞ limit

of the S3|2 sigma model. In fact, in the sigma model one expects that all winding states

develop infinite energy when R → ∞. So, if we want the sigma model to be dual to the

Gross-Neveu model, we are forced to identify g = −1 with the infinite radius limit. The

precise relation between the coupling g and the radius R reads [13]1

g =
4−R2

4 +R2
. (4.9)

For a state to remain in the spectrum at the point g = −1, the anomalous dimension (4.8)

has to remain finite. This is the case if

CasLg +CasRg =
l2

2
. (4.10)

We call eq. (4.10) the no-winding condition. For states that satisfy this condition, the

anomalous dimension (4.8) simplifies to

δ(∞)
g hBPS =

1

4

gl2

1− g
= −

l2

8
+

l2

2R2
. (4.11)

1The cohomological methods developed in [39] imply that the relation is identical to the one that appears

in the duality between a compactified free boson and the massless Thirring model.
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Here we also inserted eq. (4.9) so that the anomalous dimension of the Gross-Neveu model

fields is finally written in terms of the radius parameter R of the sigma model. We have

now gathered all the ingredients we need in order to perform our first tests of the duality.

Eq. (4.10) tells us which states of the free field theory make it into the spectrum at g = −1

and eq. (4.11) allows us to compute the corresponding conformal weight. We will now start

to compare the resulting spectrum at g = −1 with the free supersphere sigma model.

In our discussion of the one-loop anomalous dimensions for coset sigma models we

briefly commented on a puzzling instability that arises from high gradient operators. The

same type of instabilities also appears in perturbed WZNW models, at least for generic

choices of the target group and the level. To leading order in perturbation theory this was

observed by Ryu et al. in [34]. With the help of formula (4.7) one may show that these

instabilities persist to any order in perturbation theory. The authors of [34] also observed

that no instabilities occur for psu(N |N) WZNW models at level k = 1. This observation,

however, does not carry over to our osp(4|2) WZNW model at level k = 1. In fact, one can

show that this theory contains instabilities arbitrarily close to the free field theory, much

as it is the case for sigma models. For now, we shall close an eye on these issues.

4.3 Checking the proposed duality

We want to apply the results on the deformation of the 1
2BPS spectrum in deformed

supergroup WZNW models in order to test the proposed duality between the osp(4|2)

Gross-Neveu model and the supersphere sigma model. In the first subsection we shall

show that the zero mode spectrum of the sigma model is recovered along with its 1-loop

deformation. This is a remarkable example of an emergent geometry. In the WZNW

model, the fields that are associated with spherical harmonics of the supersphere possess

very large scaling dimensions. These come down until they become zero modes, i.e. fields

with vanishing scaling weight, in the sigma model limit. Let us anticipate that the singular

vectors of the osp(4|2) WZNW model at level k = 1 play an important role for this

identification with the zero mode spectrum of the sigma model to work out. Then we

turn to derivative fields of the sigma model. We will argue that the agreement continues to

hold for fields of conformal weight
(

h∞, h̄∞
)

= (1, 0), (0, 1) in the sigma model. This may

not come as a big surprise. Things become more interesting for the fields with conformal

weight
(

h∞, h̄∞
)

= (1, 1) since these are sensitive to the equations of motion in the sigma

model. Recall that in the sigma model we found 145 states with vanishing 1-loop scaling

dimension. This will be exactly matched by the deformed WZNW model. In the WZNW

model, the scaling dimension of the corresponding 145 states is independent of the coupling

so that the conjectured duality makes an interesting prediction: all higher loop corrections

to the scaling weight of the 145 states are actually zero. The match between the deformed

WZNW model and the sigma model extends to many other fields with
(

h∞, h̄∞
)

= (1, 1).

On the other hand, we will also find sigma model fields that cannot be reproduced within

the deformed WZNW model.
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4.3.1 Ground state spectrum

One key piece of evidence in support of the proposed duality is the observation that we

can actually recover all the zero modes of the sigma model. Under the action of the global

osp(4|2) symmetry the space Γ0 of functions on the supersphere decomposes into a sum of

irreducible multiplets Λl,0, see eq. (3.12). Each of these multiplets appears with multiplicity

one. Other atypical representations Λl,k, k 6= 0 do not occur.

As we have explained before, the states of the Gross-Neveu model are constructed from

a chiral multiplet Ψ = ΨL that transforms in a 6-dimensional representation of osp(4|2).

The osp(4|2) representation matrices are those known from the usual fundamental repre-

sentation, but the grading rules are reversed so that the fermionic subspace is 4-dimensional

while the bosonic has dimension 2. It is a remarkable fact that the conformal dimension h

of all chiral operators OL in the undeformed case is bounded from below by

h0

(

OL
[Λ]

)

≥
1

2
CasLg (Λ) , (4.12)

for all OL that transform in the representation [Λ] with respect to the left osp(4|2) action.

Of course, the corresponding statement holds for all operators OR that are constructed

from the components of Ψ = ΨR and their derivatives. It is actually possible to establish

the stronger lower bound

h0

(

OL
[Λ]

)

≥ j1 + j2(j2 + 1) + j3(j3 + 1) + |j2 − j3| ≥
1

2
CasLg (Λ) (4.13)

which shows that the inequality (4.12) can only be saturated by very special multiplets,

when j1 = 0, 12 . It turns out that for each integer l = 0, 1, 2, . . . there is a unique field

multiplet OL
l such that

h0
(

OL
l

)

=
l2

2
. (4.14)

The multiplet OL
l is obtained as a graded symmetric component in the l-fold tensor product

of the fundamental. Since our generating field multiplet Ψ is fermionic, i.e. its grading is

reversed in comparison to the grading of the fundamental, the multiplet OL
l must contain

l(l − 1)/2 derivatives. Hence, its conformal dimension h
(

OL
l

)

= l/2 + l(l − 1)/2 = l2/2.

Let us illustrate the construction of OL
l with a few explicit examples. Of course, the

operator OL
0 is just the identity field while OL

1 is the fundamental multiplet Ψ. The next

multiplet OL
2 appears at h

(

OL
2

)

= 2,

OL
2 =

(

ψA∂ψB + (−1)|A||B|ψB∂ψA

)

. (4.15)

When we multiply the multiplet OL
l with its anti-holomorphic partner OR

l we obtain a set

of bulk fields which transform in the product Λl,0 ⊗ Λl,0. The only component that can

satisfy the no-winding condition is the one in the representation Λ2l,0. Indeed,

Casg(Λ2l,0) = 4l2 = 2
(

CasLg (Λl,0) +CasRg (Λl,0)
)

. (4.16)

Let us denote the this component of the product by V2l = V2l(z, z̄). To summarize, we

have now constructed a field multiplet V2l in the WZNW model that transforms in the
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representation Λl,0 with respect to both the left and the right action of osp(4|2) and in the

representations Λ2l,0 with respect to the diagonal action. In the WZNW model, i.e. the

free Gross-Neveu model, this field possesses weights
(

h0(V2l), h̄0(V2l)
)

=
(

l2/2, l2/2
)

.

Since the field V2l transforms on the 1
2BPS representation Λ2l,0 of osp(4|2), we can

apply the results of the previous subsection to compute its dimension for any value of the

coupling g and in particular at the point g = −1. With the help of the leading term in

eq. (4.11) we obtain

h(V2l)g=−1 = h0(V2l)−
1

8
4l2 = 0. (4.17)

Hence, we obtain precisely the spectrum provided by the spherical harmonics Λ2l,0 in the

sigma model, i.e. at least one half of the zero modes of the supersphere sigma model.2

Remarkably, this identification is also consistent with what we know about the 1-loop

anomalous dimensions in the sigma model. In fact, if we keep the next to leading term in

eq. (4.11) we find

h(V2l)g =
l2

2
+

gl2

1− g
=

2l2

R2
. (4.18)

This should be compared with the result (3.13) for the one loop anomalous dimension of the

sigma model vertex operators VΛ2l,0,λ0 . We see that also the 1-loop corrections to the scaling

law agree. In the deformed WZNW model, the formula (4.11) is actually exact, i.e. there

are no further corrections by terms involving higher powers of the sigma model coupling

1/R2. The duality therefore predicts that the anomalous dimensions of zero mode fields

in the sigma model are 1-loop exact. It should not be too difficult to check this prediction

through a direct computation along the lines of [40, 41], where anomalous dimensions of

tachyonic vertex operators in bosonic O(N) models were computed up to four loops. The

general structure of Wegner’s results suggest that higher order corrections indeed vanish

for the conformal supersphere models, but we have not yet completed an honest derivation.

Since our fields O
L/R
l are the only ones satisfying the bound (4.12) and the bulk field

V2l the only fields we could build from them that solve the no-winding condition (4.10), the

deformed WZNW model contains no further field of weight
(

h∞, h̄∞
)

= (0, 0) at g = −1.

Moreover, because of the bound (4.12), all other WZNW fields that solve the no-winding

condition end up with h∞ + h̄∞ > 0 for g = −1. In the free sigma model, the conformal

weights are determined by the number of derivatives and hence they are certainly non-

negative. So, our results are in beautiful agreement with the proposed duality.

Let stress that the match of zero modes only works for the WZNW model at k = 1,

i.e. it does make crucial use of the exact position of singular vectors. In order to illustrate

this point let us consider the space of states H
(l)
k of conformal weight h = 2 (h̄ = 0). For

an osp(4|2) WZNW model with k > 1, these transform in

H(2) ∼= Λ0,1 + Λ0,1 ⊙ Λ0,1 = Λ0,0 + Λ0,1 + Λ2,−1 + 2Λ2,0 + Λ2,1 + [2, 0, 0] . (4.19)

2One would expect to obtain the missing zero modes V2l+1 from other sectors of the Gross-Neveu model.

Without the inclusion of additional states, the Gross-Neveu model is related to an orbifold theory S3|2/Z2

rather than the supersphere sigma model.
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The term Λ0,1 originates from the action of the modes JAB
−2 while the term Λ0,1 ⊙ Λ0,1

contains the contributions of JAB
−1 J

CD
−1 |0〉. A formula for the symmetric tensor product ⊙

of the adjoint Λ0,1 can be found at the end of appendix A. Note that there appear four

different multiplets in which the Casimir element has the maximal value Casg(Λ) = 4,

namely the multiplets Λ = Λ2,k, k = 0,±1. At level k = 1, the first singular vectors appear

at h = 2 and these reduce the spectrum to

H
(2)
k=1

∼= Λ0,0 + Λ0,1 + Λ2,0 + [2, 0, 0] (4.20)

so that the representations with maximal Casimir are reduced to a single one, namely Λ2,0.

This is the unique multiplet in H
(2)
k=1 that is used to build a zero mode at g = −1. WZNW

models with level k > 1 contain many more zero modes and hence cannot be dual to the

supersphere sigma model.

4.3.2 Spectrum of gradient operators

After our success in matching the zero modes of the sigma model with fields in the deformed

WZNW theory, we want to move on to gradient fields in the sigma model. Some of them are

very easy to find. This applies in particular to the operators of weight
(

h∞, h̄∞
)

= (1, 0).

Their spectrum was described in eq. (3.14). Most of these fields emerge from the WZNW

model derivative operators ∂V2l with l = 1, 2, . . . . The fields V2l were constructed in the pre-

vious subsection. The bulk operators ∂V2l have conformal weight
(

h0, h̄0
)

=
(

l2/2 + 1, l2/2
)

and they transform in the representation Λ2l,0. By the same reasoning as above we obtain

a family of fields with weight
(

h∞, h̄∞
)

= (1, 0) at the point g = −1 which transform

in the Λ2l,0 representations of osp(4|2). Their 1-loop anomalous dimension coincides with

that of the corresponding zero modes. Of course, the match with the operators of weight
(

h∞, h̄∞
)

= (1, 0) is not surprising since they are obtained as derivatives in both the

WZNW and the sigma model description.

There is one more set of operators at
(

h∞, h̄∞
)

= (1, 0), namely the Noether currents

of the sigma model that sit in the representation Λ0,1. It is obvious that these arise from

the chiral currents JAB in the WZNW model. In fact, the currents of the WZNW model

transform in the representation ΛL = Λ0,1 and ΛR = Λ0,0 with respect to the left and

right action of osp(4|2), respectively. Under the diagonal action, the transformation law is

described by the tensor product ΛD = Λ0,1 ⊗ Λ0,0 = Λ0,1. Since all these representations

possess vanishing Casimir, the no-winding condition (4.10) is satisfied and the anomalous

contribution to the conformal weight vanishes. Hence, we can identify the deformation of

the WZNW currents with the Noether currents of the sigma model.

Let us now turn to the operators of conformal weight
(

h∞, h̄∞
)

= (1, 1) in the sigma

model. Their spectrum in the sigma model is given by eq. (3.17). Obviously, we can obtain

some of these from the operators ∂∂̄V2l, l = 1, 2, . . . in the WZNW model. But these

fields are not even close to exhausting the content of eq. (3.17). In particular, the sigma

model contains these 145 marginal fields with vanishing 1-loop anomalous dimension that

we discussed extensively in section 3 and so far we have not seen any of them.

These 145 fields belong to mutiplets Λ0,0 + 2Λ0,1 + Λ0,2, all of which have vanishing

Casimir. Hence, in the WZNW model they must appear with
(

h0, h̄0
)

= (1, 1). So, let
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us count the fields in the WZNW model that have weights
(

h0, h̄0
)

= (1, 1) and vanishing

Casimir. All of these fields must arise among JAJ̄B, i.e. sit in the tensor product of the

adjoint representation of osp(4|2) with itself. This tensor product is given by

Λ0,1 ⊗ Λ0,1
∼= Λ0,0 + 2Λ0,1 + Λ0,2 + Λ2,−1 + 2Λ2,0 + Λ2,1 + [2, 0, 0] . (4.21)

Indeed, this contains exactly 145 fields in representations from the block of the trivial

representations for which the anomalous dimension vanishes to all orders in the coupling

and hence also around g = −1, in perfect agreement with the sigma model results. Since

the space of marginal fields in the sigma model is truncated by the equations of motion,

the deformed WZNW model has the sigma model equations of motion built in!

This is a remarkable agreement. On the other hand, looking back at the sigma model

spectrum (3.17) we realize that the content of what looks like PΛ2l,0
, l = 1, 2, . . . is still

missing. Additional fields in these representations that acquire weights
(

h∞, h̄∞
)

= (1, 1)

at g = −1 do exist in the WZNW, but these turn out not to match the 1-loop data near

g = −1. This is the first discrepancy between the Gross-Neveu and the sigma model. We

shall discuss this and other discrepancies in more detail in the concluding section.

Before we do so, let us point out that, once again, the singular vectors are absolutely

crucial in order for the WZNW model to respect the sigma model equations of motion.

As an example let us look at the operators of the form ∂∂̄V4. These give rise to a single

marginal sigma model field in the representation Λ4,0. If it was not for the singular vectors

of conformal weight h = 2, the WZNW model would give many more marginal fields in the

same block. In fact, the tensor product

(2Λ2,0+Λ2,1+Λ2,−1)⊗ (2Λ2,0+Λ2,1+Λ2,−1) ∼= Λ4,−2+4Λ4,−1+6Λ4,0+4Λ4,1+Λ4,2+ . . . (4.22)

where + . . . stand for multiplets Λ with Casg(Λ) < 16, none of which satisfy the no-

winding condition. But those that do clearly outnumber the spectrum of marginal sigma

model fields.

5 Conclusions

In this work we have reviewed recent results on the spectrum of coset sigma models and

applied them to the conformal supersphere sigma model with target space S3|2. The

example shows very clearly that the construction of vertex operators designed in [9] provides

easy access to the spectrum of sigma models, at least to leading order in the sigma model

coupling. We have then used the results to test a conjectured dual description of the sigma

model on S3|2 which becomes weakly coupled deep in the strongly curved regime of the

sigma model. The dual theory may be regarded as an osp(4|2) Gross-Neveu model or,

equivalently, a deformed osp(4|2) WZNW model at level k = 1. With the help of all-loop

results from [13] we were able to recover the zero mode spectrum of the sigma model along

with a number of gradient fields. In particular, we argued that the sigma model equations

of motion are implemented in the deformed WZNW model.

There are quite a few open problems associated with both the perturbative results

we reviewed and with the duality. We have already explained the issue of perturbative
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instabilities from high gradient operators in sigma models, see the final remarks in sec-

tion 2. These remain puzzling and there is a wide range of proposals on how they could

be interpreted, including e.g. the suggestion that they might be cured by non-perturbative

effects [35], or that they indicate the existence of higher fixed points [14]. High gradient

instabilities are not limited to sigma models. In fact, they have also been observed to occur

in perturbed WZNW models [34]. The authors of that work also noticed that high gradient

instabilities are avoided for deformed psu(N |N) WZNW models at level k = 1 since in this

case singular vectors remove the unstable operators. This is not true for osp(2N + 2|2N),

however, which is plagued by high gradient instabilities, even at level k = 1. Since the

phenomenon appears to be so omnipresent, it seems mandatory to uncover its (ir)relevance.

The duality between the Gross-Neveu and the sigma model we studied in section 4

also leaves us with a number of interesting open questions. To begin with, let us observe

that for all 1
2BPS states in the sigma model that are dual to no-winding states of the

WZNW model, the 1-loop anomalous dimension must be exact, i.e. it should not receive

any higher loop corrections. We have actually stressed before that our formula (4.11) is

exact, i.e. in its derivation we did not drop any terms of higher order in 1/R2. The only R-

dependent correction term agrees exactly with the 1-loop result in eq. (2.16), assuming that

Cash(µ)+Cash(µ) = 0 and inserting Casg(Λl,k) = l2. It would be very interesting to verify

this consequence of the duality through a 2-loop computation. Some 2-loop computations

for high gradient operators in sigma models were performed previously in [35]. Of course,

designing an argument that establishes 1-loop exactness for the relevant subsector in the

sigma model would be even more remarkable.

In the last section we have also found some sigma model fields that do not seem to

possess a counterpart in the deformed WZNW model, namely a large number of fields

at weight
(

h∞, h̄∞
)

= (1, 1). These are not the only sigma model fields that cannot be

matched. In fact, the comparison of eqs. (2.16) and (4.11) shows that fields for which the

sum Cash(µ) + Cash(µ) 6= 0 cannot possess a counterpart in the Gross-Neveu model, at

least not in the sense we outlined. On the other hand, there exist intriguing further coinci-

dences between the spectra of the two theories which we were not able to incorporate into

the above analysis. In particular, the authors of [12] uncovered some miraculous character

identities that establish a correspondence between all chiral fields in the sigma model, no

matter how large h∞ or h̄∞, and fields in the deformed WZNW model. Unfortunately,

the one-loop data in the sigma model spoil this match. Of course, it is possible that these

discrepancies simply disprove the duality. On the other hand, it seems somewhat tempting

to speculate that the discrepancies might have the same origin as the high gradient insta-

bilities described above. Very much in the spirit of [34] one might hope that the duality

could even offer new insights into the instabilities, but so far we have not been able to

make this more concrete.

On a more technological level, our work demonstrates that existing results on the

spectrum of superspace sigma and WZNW models can provide very powerful tools to test

dualities and to develop an efficient description of sigma models deep in the strongly cou-

pled regime. There are many other models to which these ideas might apply. In particular,

a similar duality between conformal sigma models on complex projective superspace and
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psu(N |N) WZNW models has been proposed at various places in the literature.3 It should

also be possible to extend the perturbative computations in superspace sigma models to

those target spaces that appear in the context of the AdS/CFT correspondence. This

requires two generalizations of the present setup. Whereas the 1-loop results we have

reviewed above are restricted to symmetric spaces G/H in which H ⊂ G is fixed by an au-

tomorphism of order two, the description of strings in AdS backgrounds involves subgroups

H ⊂ G which are held fixed by an automorphism of order four. The extension to such

generalized symmetric spaces is a bit cumbersome but should not meet any fundamental

difficulty. Another fundamental aspect of AdS backgrounds is that they are non-compact.

This has implications on the way we construct normalizable sections, at least when the

denominator group H is non-compact as well. For AdS2 backgrounds, on the other hand,

the construction of vertex operators reviewed above remains unaltered. We will address

such compactifications in future research.
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A Representation theory of osp(4|2)

In the following we give a very basic introduction to the Lie superalgebra osp(4|2) and

(some of) its finite dimensional representations. The complex superalgebra g := osp(4|2)

may be realized as the set of supermatrices,

osp(4|2) =

{(

A B

J2B
t D

)

: At = −A and DtJ2 = −J2D

}

. (A.1)

Here A is a 4×4 matrix, D is a 2×2 matrix and B is rectangular of size 4×2. In addition,

we introduced the 2× 2 matrix J2 =
(

0 −1
1 0

)

. As usual, the Lie superalgebra g decomposes

into an even, or bosonic, subalgebra g0̄ = so(4)⊕ sp(2) ∼= sl(2)⊕ sl(2)⊕ sl(2) and an odd,

or fermionic, subspace g1̄.

Our review of representations focuses on finite dimensional representations. As usual

for superalgebras, irreducible representations fall into two different categories. On the one

hand, there are the generic long multiplets. These are also known as typical representations

in the more mathematical literature. On the other hand, a superalgebra also possesses

short or BPS multiplets which mathematicians refer to as atypical representations. BPS

multiplets can be put together into indecomposable representations. We will only work with

one class of such indecomposables, namely the projective covers of atypical representations.

3The statement has been communicated in the past by H. Saleur and by A. Ludwig. One argument has

been written down in [34]. A different reasoning can be found in [42]
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In order to make all this more precise, we note that an integral dominant highest

weight Λ = (j1, j2, j3) of g0̄ is also one for the full superalgebra g if it obeys the consistency

conditions

j1 = 0 ⇒ j2 = j3 = 0 , j1 =
1

2
⇒ j2 = j3 . (A.2)

The ordering of our the spins ji ∈ 1
2Z is such that the the first spin is related to the

symplectic subalgebra sp(2) while the two others are associated with the orthogonal one.

This is a bit unfortunate but agrees with conventions in earlier literature. We shall use the

label [Λ] = [j1, j2, j3] to denote finite dimensional irreducibles.

With these labels introduced we can now spell out the shortening conditions we have

mentioned above. A representation [j1, j2, j3] is atypical provided the spins satisfy any one

of the following conditions

2j1 = −j2 − j3 ,

2j1 = j2 + j3 + 2 ,

2j1 = ±(j2 − j3) + 1 .

(A.3)

Otherwise the representation [j1, j2, j3] is typical. The eigenvalue of the quadratic Casimir

element in the irreducible representation [Λ] is given by

Casg(Λ) = −4j1(j1 − 1) + 2j2(j2 + 1) + 2j3(j3 + 1) . (A.4)

If the spins satisfy one of the shortening conditions (A.3) the value of the quadratic Casimir

element is a square, i.e. Casg(Λ) = l2 with l ∈ N. The atypical weights Λ = (j1, j2, j3), i.e.

those weights that satisfy one of the shortening conditions, can be divided into blocks βl
that contain all those representations Λ ∈ βl for which Casg(Λ) = l2. The corresponding

atypical labels can be listed explicitly [24],

β0 =

{

Λ0,0 = (0, 0, 0) , Λ0,k =
1

2
(k + 1, k − 1, k − 1) , k ≥ 1

}

βl = {Λl,k , k ∈ Z}

(A.5)

where

Λl,k =



















1
2(−k + 2,−k − l,−k + l) if k ≤ −l
1
2(−k + 1, k + l − 1,−k + l − 1) if −l + 1 ≤ k ≤ 0
1
2(k + 1, k + l − 1,−k + l − 1) if 0 ≤ k ≤ l − 1
1
2(k + 2, k + l, k − l) if l ≤ k .

(A.6)

One sees easily, that the weights Λl,−k for l ≥ 1 may be obtained from Λl,k by simply

exchanging the second and the third Dynkin label. Furthermore, it is possible to distinguish

the weights Λl,k according to the atypicality condition (A.3) they obey. The only weight

to fulfill the first condition is Λ0,0. The weights belonging to the second condition are Λ0,k

for k ≥ 1 and Λl,±k for k ≥ l. Finally, those the satisfy the last atypicality relation are

the Λl,±k for k < l. In any case, each of the weights fulfills at most one of the shortening
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conditions. This means that all atypical representations of osp(4|2) possess the same degree

of atypicality, i.e. they are all what mathematicians refer to as maximally atypical and

physicists call 1
2BPS.

We can decompose all irreducible representations [j1, j2, j3] in terms of irreducible

subrepresentations of the bosonic subalgebra g0̄. For typical representation one finds

[j1, j2, j3]g0̄
∼= (j1, j2, j3)

⊕

α,β=± 1
2

(

j1 −
1

2
, j2 + α, j3 + β

)

⊕

α=±1

[

(j1 − 1, j2 + α, j3)⊕ (j1 − 1, j2, j3 + α)
]

⊕ 2(j1 − 1, j2, j3)

⊕
⊕

α,β=± 1
2

(

j1 −
3

2
, j2 + α, j3 + β

)

⊕ (j1 − 2, j2, j3) .

(A.7)

There are a few special cases for which the decomposition is not generic. If j1 ≤ 2, j2 ≤ 1

or j3 ≤ 1 then the above decomposition formula must be truncated at the point where

one or more of the labels become negative. Moreover, there are two cases for which the

multiplicity of the (j1 − 1, j2, j3) submodule has to be changed. If j1 = 1, j2 > 0, j3 > 0 or

j1 > 1, j2 = 0, j3 > 0 or j1 > 1, j2 > 0, j3 = 0, then this block will appear only once and

if both j2 and j3 are null or j1 = 1 and at least one between j2 and j3 is null, then it will

not be present at all. From the decomposition into representations of the bosonic algebra

we can determine the dimension of typical representations

dim[j1, j2, j3] = 16(2j1 − 1)(2j2 + 1)(2j3 + 1) . (A.8)

The decomposition (A.7) for j1 ≥ 1, is valid for the indecomposable Kac modules that

emerge when the spins ji satisfy one of the shortening conditions (A.3). These Kac modules

are composites of irreducibles. More precisely, one finds

KΛ0,2 : [Λ0,2] −→ [Λ0,0]⊕ [Λ0,1]

KΛ0,k
: [Λ0,k] −→ [Λ0,k−1] for k ≥ 3

KΛl,k
: [Λl,k] −→ [Λl,k−1] for k ≥ 1

KΛl,k
: [Λl,k] −→ [Λl,k+1] for k ≤ −1 .

(A.9)

The arrows mean that fermionic generators can take us from the representation on the left

to the one on the right but not vice versa. Put differently, the representation on the right

hand side of the arrows is a subrepresentation of the Kac module. If we quotient the Kac

module by this subrepresentation, the corresponding factor representation is the one on

the left hand side. The representations with j1 = 1
2 are somewhat special. In fact, when

j1 =
1
2 , the Kac module is irreducible and we obtain

Λl+1,2|g0̄
=

[

1

2
,
l

2
,
l

2

]

g0̄

∼=

(

1

2
,
l

2
,
l

2

)

⊕

(

0,
l + 1

2
,
l + 1

2

)

⊕

(

0,
l − 1

2
,
l − 1

2

)

. (A.10)
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From our description of the Kac modules it is possible to determine the dimensions of

irreducible atypicals,

dim[Λ0,0] = 1 , dim[Λ0,1] = 17 , dim[Λl,0] = 4l2 + 2

dim[Λ0,k] = (2k + 1)
[

(2k + 1)2 − 3
]

for k ≥ 2

dim[Λl,k] = (2k + 1)
[

4
(

l2 − 1
)

− (2k + 1)2 + 7
]

for k ≤ l − 1

dim[Λl,k] = (2k + 3)
[

(2k + 3)2 − 4
(

l2 − 1
)

− 7
]

for k ≥ l .

(A.11)

We are finally prepared to describe the projective covers that feature so prominently in

the construction of homogeneous vector bundles. While typical irreducibles [Λ] coincide

with their projective cover PΛ = [Λ], the projective cover of an atypical representations is

an indecomposable composite of atypicals. Its precise structure can be read off from the

following diagrams

PΛ0,0 : Λ0,0 → Λ0,2 → Λ0,0 (A.12)

PΛ0,1 : Λ0,1 → Λ0,2 → Λ0,1 (A.13)

PΛ0,2 : Λ0,2 → Λ0,3 ⊕ Λ0,1 ⊕ Λ0,0 → Λ0,2 (A.14)

PΛl,k
: Λl,k → Λl,k+1 ⊕ Λl,k−1 → Λl,k otherwise . (A.15)

The meaning of the arrows was explained in our discussion of Kac modules above. Note that

all the atypicals that appear in any given projective cover belong to the same block β. It is

actually not possible to build indecomposables from representations within different blocks.

Before we conclude this brief overview over representations of the Lie superalgebra

osp(4|2) we want to spell out a few tensor product decompositions between irreducible

atypicals. These are used in our discussion of the low lying spectrum in the osp(4|2)

Gross-Neveu model.

Λ0,1 ⊗ Λ0,1 = Λ0,0 + 2Λ0,1 + Λ0,2 + Λ2,−1 + 2Λ2,0 + Λ2,1 + [2, 0, 0]

Λ0,1 ⊙ Λ0,1 = Λ0,0 + Λ2,−1 + 2Λ2,0 + Λ2,1 + [2, 0, 0]

Λ0,1 ⊗ Λ0,2 = Λ0,0 + Λ0,1 + 3Λ0,2 + Λ0,3+

+ [1, 1, 1] +

[

3

2
,
1

2
,
3

2

]

+

[

3

2
,
3

2
,
1

2

]

+ [2, 0, 1] + [2, 1, 0] +

[

5

2
,
1

2
,
1

2

]

Λ0,2 ⊗ Λ0,2 = 2Λ0,0 + 4Λ0,1 + 4Λ0,2 + 4Λ0,3 + Λ0,4+

+ Λ2,−2 + 3Λ2,−1 + 4Λ2,0 + 3Λ2,1 + Λ2,2+

+ Λ4,−1 + 2Λ4,0 + Λ4,1+

+ [1, 0, 2] + 2[1, 1, 1] + [1, 2, 0] + 2

[

3

2
,
1

2
,
3

2

]

+ 2

[

3

2
,
3

2
,
1

2

]

+ 2

[

3

2
,
3

2
,
3

2

]

+

+ 2[2, 0, 0] + 2[2, 0, 1] + 2[2, 1, 0] + [2, 1, 2] + [2, 2, 1]+

+ 2

[

5

2
,
1

2
,
1

2

]

+2

[

5

2
,
1

2
,
3

2

]

+2

[

5

2
,
3

2
,
1

2

]

+[3, 0, 0]+[3, 0, 1]+[3, 1, 0]+[3, 1, 1]

Λ1,0 ⊗ Λ1,0 = Λ0,0 + Λ0,1 + Λ2,0

Λ2,0 ⊗ Λ2,0 = Λ0,0 + Λ0,1 + Λ2,−1 + 2Λ2,0 + Λ2,1 + Λ4,0 + [1, 1, 1] . (A.16)
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The + on the right hand side requires a short comment. As we have stated above, atypical

irreducibles can be combined to form larger indecomposables. This happens for many of the

atypical representations that appear in the above tensor product decompositions. Hence,

many of the atypicals are not direct summands. This is why we did not use ⊕. On the other

hand, the sum is direct for all projective modules, i.e. for typicals and projective covers of

atypicals. The symbol ⊙ is used to denote the symmetric part of the tensor product.

B Representation theory of osp(3|2)

In this appendix we provide some background material on the Lie superalgebra osp(3|2)

and its finite dimensional representations. The basic definition of osp(3|2) resembles the

definition (A.1) we gave for osp(4|2) only that now A is a 3×3 matrix and B is rectangular

of size 3×2. In the case of h = osp(3|2), the bosonic subalgebra is h0̄ = so(3)⊕sp(2). Since

h0̄ has rank two, highest weights are labeled by two numbers λ = (q, p). In our conventions,

the so(3) spin p runs over non-negative integers while q is a non-negative half-integer. Note

that once again, the order of the two labels is a bit unfortunate. As in the case of osp(4|2),

there is an additional constraint on the weights (q, p) that must be satisfied in order for

(q, p) to label a representation of osp(3|2), namely

q = 0 ⇒ p = 0 .

Once more we shall use the bracket notation [λ] = [q, p] to denote the associated irreducible

representation of osp(3|2). The representation [q, p] is typical (long) unless the labels q, p

satisfy one of the following two shortening conditions

p+ 2q = 0 p− 2q + 1 = 0 . (B.1)

These conditions are mutually exclusive. While the first one is only satisfied for the trivial

representation q = p = 0, the latter singles out a one parameter family of (maximally)

atypical (or 1
2BPS) representations.

The eigenvalue of the quadratic Casimir element in an irreducible representation [λ] =

[q, p] is given by

Cash([q, p]) = (p+ 2q)(p− 2q + 1) . (B.2)

In particular, we conclude that the quadratic Casimir element vanishes for all atypical

representations of osp(3|2). This suggests that all atypicals belong to one and the same

block, which is indeed the case. Representations in this unique block are given by

λ0 = [0, 0] , λq = [q, 2q − 1] . (B.3)

Let us also mention in passing that the Lie superalgebra osp(3|2) possesses a fourth order

Casimir element whose eigenvalues are given by

Cas
(4)
h (λ) =

1

4
Cash(λ)[3p(3p+ 1) + 2(q + 1)(2q − 3)] . (B.4)

The fourth order Casimir element does not show up in the 1-loop anomalous dimensions

but could enter starting from 2 loops.
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As in the case of osp(4|2) it is useful to know how the irreducible representations

decompose with respect to the bosonic subalgebra. For typical representations, this de-

composition is given by

[q, p]h0̄
∼= (q, p)⊕

⊕

α=0,±1

[(

q −
1

2
, p+ α

)

⊕ (q − 1, p+ α)

]

⊕

(

q −
3

2
, p

)

. (B.5)

Truncations are present whenever one or both labels on the right hand side become negative.

When q = 1
2 or p = 0 the term (q − 1

2 , p) does not appear. For the adjoint representation

the decomposition reads

[1, 0]h0̄
∼= (1, 0)⊕

(

1

2
, 1

)

⊕ (0, 1) . (B.6)

Note that in the case of osp(3|2) the adjoint representation is typical. Atypical represen-

tations with q ≥ 1 possess the following decomposition

[λq]h0̄
∼= (q, 2q − 1)⊕

(

q −
1

2
, 2q − 1

)

⊕

(

q −
1

2
, 2q

)

⊕ (q − 1, 2q) . (B.7)

The atypical trivial representation λ0 and the fundamental λ 1
2
are special. While the

decomposition of λ0 is trivial, the fundamental representation gives

[

λ 1
2

]

h0̄

∼=

(

1

2
, 0

)

⊕ (0, 1) . (B.8)

For completeness we also state the dimension of the these representations. In the case of

typical long multiplets we have

dim
(

[q, p]
)

= 4(2p+ 1)(4p− 1) (B.9)

while the dimension of atypicals is given by

dim[λ0] = 1 dim
[

λ 1
2

]

= 5

dim[λq] = −2 + 32q2 .
(B.10)

As for any Lie superalgebra, atypical representations can be combined into larger indecom-

posables. For our analysis, the projective covers of atypicals are of particular importance.

Their structure is given by

Pλ0 : λ0 → λ1 → λ0 (B.11)

Pλ 1
2

:λ 1
2
→ λ1 → λ 1

2
(B.12)

Pλ1 : λ1 → λ 3
2
⊕ λ 1

2
⊕ λ0 → λ1 (B.13)

Pλq
: λq → λq+ 1

2
⊕ λq− 1

2
→ λq otherwise . (B.14)

The meaning of the arrows was explained in appendix A. The structure we display here is

consistent with the fact that all atypical irreducibles λq of osp(3|2) belong to the same block.
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In our construction of coset vertex operators (2.8), and in particular in the analysis

of the tail factors, we need some input about tensor products of osp(3|2) representations.

The first few powers of the fundamental representation λ 1
2
are given by

λ⊗2
1
2

= [1, 0] +

[

1

2
, 1

]

+ λ0 (B.15)

λ⊙2
1
2

=

[

1

2
, 1

]

+ λ0 (B.16)

λ⊙3
1
2

=

[

1

2
, 2

]

+ λ 1
2
. (B.17)

Here, we use the symbol ⊙ to denote the graded symmetric part of the tensor product. The

formulas we displayed are relevant e.g. for products such as j∂j, j2 and j3, respectively.

Let us also list a few additional tensor products of low dimensional representations,

[1, 0]⊗ λ 1
2
=

[

3

2
, 0

]

+ 2λ 1
2
+ λ1

[

1

2
, 1

]

⊗ λ 1
2
=

[

1

2
, 2

]

+ 2λ 1
2
+ λ1

[

1

2
, 1

]

⊗

[

1

2
, 1

]

= [1, 2] + [1, 0] +

[

1

2
, 3

]

+

[

1

2
, 1

]

+ 2λ0 + λ1
[

1

2
, 2

]

⊗ λ 1
2
= [1, 2] +

[

1

2
, 3

]

+

[

1

2
, 1

]

[

1

2
, 2

]

⊗

[

1

2
, 1

]

= [1, 3] + [1, 2] +

[

1

2
, 4

]

+

[

1

2
, 2

]

+ 2λ 1
2
+ λ1

[

1

2
, 2

]

⊗

[

1

2
, 2

]

= [1, 4] + [1, 3] + [1, 2] + [1, 0] +

[

1

2
, 5

]

+

[

1

2
, 3

]

+

[

1

2
, 2

]

+

[

1

2
, 1

]

+ 2λ0 + λ1
[

1

2
, 1

]

⊗ [1, 0] =

[

3

2
, 1

]

+ [1, 0] + [1, 2] +

[

1

2
, 1

]

[

1

2
, 2

]

⊗ [1, 0] = [1, 3] +

[

1

2
, 2

]

+ λ0 + λ 1
2
+ 2λ1 + λ 3

2

[1, 0]⊗ [1, 0] = [2, 0] +

[

3

2
, 1

]

+ [1, 0] +

[

1

2
, 1

]

+ 2λ0 + λ1 .

(B.18)

These are useful in order to carry the construction of vertex operators to higher gradient

operators. Note that while it is not relevant for our discussion, the atypical representations

in (B.18) always combine into projectives, while all other sums are direkt.

C Restriction of osp(4|2) representations to osp(3|2)

As we explained in section 2.3, a key ingredient in constructing vertex operators on coset

superspaces is the decomposition (2.9) of sections in homogeneous vector bundles into

multiplets of the symmetry. According to the central formula, the multiplicity nΛλ of a g
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multiplet Λ in a bundle Γλ is given by eqn (2.11). It implies that nΛλ can be computed

through the decomposition

PΛ|h =
⊕

λ

nΛλ Pλ =
⊕

λ

[PΛ|h : Pλ] Pλ .

Given what we know about the projective covers of both osp(4|2) and osp(3|2) it is not

too difficult to work out the multiplicities nΛλ. We only need the results for atypical labels

Λ = Λl,k. For representations Λ0,k in the block of the trivial representation one finds

PΛ0,0 |osp(3|2) = Pλ0 ⊕

[

3

2
, 0

]

⊕

[

3

2
, 1

]

PΛ0,1 |osp(3|2) = Pλ 1
2

⊕

[

3

2
, 0

]

⊕

[

3

2
, 1

]

PΛ0,k
|osp(3|2) = Pλ k

2

⊕ 2

k−1
⊕

n=0

[

k+1

2
, n

]

⊕

k
⊕

n=0

[

k+2

2
, n

]

⊕

k−2
⊕

n=0

[

k

2
, n

]

, for all k ≥ 2 .

(C.1)

Similarly one can decompose the projective covers of the symmetric traceless tensor repre-

sentations Λl,0,

PΛ1,0 |osp(3|2) = Pλ0 ⊕ Pλ 1
2

⊕ 2

[

3

2
, 1

]

PΛ2,0 |osp(3|2) = Pλ0 ⊕ Pλ 1
2

⊕ 2

[

1

2
, 1

]

PΛl,0
|osp(3|2) = Pλ0 ⊕ Pλ 1

2

⊕ 2
l−1
⊕

n=1

[

1

2
, n

]

⊕ 2
l−1
⊕

n=2

[1, n] , when l ≥ 2 .

(C.2)

Finally, generic projective covers possess the following decomposition into projectives of

osp(3|2),

PΛl,k
|osp(3|2) = Pλ |k|+1

2

⊕
l−1
⊕

n=|k|

[

|k|

2
, n

]

⊕ 2
l−1
⊕

n=|k|+1

[

|k|+ 1

2
, n

]

⊕

|k|−1
⊕

n=l

[

|k|+ 1

2
, n

]

⊕ 2

|k|
⊕

n=l

[

|k|+ 2

2
, n

]

⊕
l−1
⊕

n=|k|+2

[

|k|+ 2

2
, n

]

⊕

|k|+1
⊕

n=l

[

|k|+ 3

2
, n

]

.

(C.3)

This last formula holds whenever l ≥ 1 and |k| ≥ 1. Formulas (C.1)–(C.3) provide the

main input for the construction of vertex operators in section 3.2. Let us note that in these

formulas all sums are direct since the restriction of projective modules is a direct sum of

projectives and projectives cannot appear as pieces of larger indecomposibles.

In order to derive these decomposition formulas one starts from the following decom-

position formula for representations of the bosonic subalgebra g0̄ into representations of h0̄,

(j1, j2, j3)h0̄
∼=

j2+j3
⊕

p=|j2−j3|

(j1, p) . (C.4)
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In a second step these decomposition formulas are exploited to determine how atypical

irreducibles of osp(4|2) decompose upon restriction to osp(3|2). The results read,

Λ0,0|osp(3|2) = λ0

Λ0,k|osp(3|2) = λ l
2
⊕

k−1
⊕

n=0

[

k + 1

2
, n

]

, l > 0

Λl,0|osp(3|2) =
l−1
⊕

n=0

[

1

2
, n

]

⊕ λ0 , l > 0

Λl,k|osp(3|2) =
l−1
⊕

n=|k|

[

|k|+ 1

2
, n

]

, 0 < |k| ≤ l − 1

Λl,k|osp(3|2) =

|k|
⊕

n=l

[

|k|

2
+ 1, n

]

⊕ λ |k|+1
2

, 0 < l ≤ |k| .

(C.5)

Since we know how projective covers are built from atypicals, it is now straightforward to

verify the decomposition formulas (C.1)–(C.3).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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