Measurement of double differential tr production cross sections with the CMS detector

DPG-Frühjahrstagung, Wuppertal 2015

<u>I. Korol^{1,2}</u>, O.Behnke¹

1 DESY 2 Universität Hamburg

Event Selection and Reconstruction

Full reconstruction of t and \overline{t} kinematics using 6 kinematic constraints

Event Selection

 e⁺⁻μ⁻⁺ selection with p_t(leptons) > 20 GeV |η(leptons)| < 2.4

Jets

 at least 2
 p_t(jets) > 30 GeV
 |η(jets)| < 2.4
 At least 1 b tagged jet (loose working point)

Event Selection and Reconstruction

Kinematic Reconstruction

- Measured input
 2 jets, e⁺⁻µ⁻⁺, MET
- Unknowns $\overline{p}_{v}, \overline{p}_{\overline{v}} \rightarrow 6$
- Constraints $m_t, m_{\overline{t}} \rightarrow 2$ $m_{W^-}, m_{W^+} \rightarrow 2$

$$(\overline{p}_{v} + \overline{p}_{\overline{v}})_{T} = MET \rightarrow 2$$

- Reconstruct each event 100 times smearing inputs by their resolutions
- Take weighted average of solutions

Data and Simulation

- Data (Full 2012 data set)
 L = 19.7fb⁻¹
- tī signal MC MadGraph + Pythia
- Main backgrounds: tt(other), single top

Normalized 2d Cross Sections

i,j : bins of kinematic variables in which the cross section is calculated $N^{\,ij}_{\,\,BG}$: estimate from background MCs

For each
$$\Delta Y^{j}$$
: $\left(\frac{1}{\sigma}\frac{d\sigma}{dX}\right)^{ij} = \frac{1}{\sigma}\frac{\cdot N_{evts}^{ij}}{L\cdot\Delta X^{i}}$

σ: inclusive tt cross-section in full phase space $\sigma = 245.10$ pb (*private work*)

 $\Delta X^{i} (\Delta Y^{j})$: bin width of the variable under test

 $p_t(t\bar{t}) vs y(t\bar{t})$

p,(tt) in bins of y(tt), Cross Sections

Generally MC describes data reasonably

p_t(t) vs y(t)

p₍(t) in bins of y(t), Cross Sections

Prediction overestimates signal for high p,(t) at central y(t)

10

Prediction underestimates signal for small $p_{t}(t)$ over all y(t) range

y(t) in bins of p_t(t), Cross Sections

t - tt correlation

M(tt) vs y(t)

Proton momentum fraction by incoming parton

$$x_{1,2} = \frac{(E(t) \pm P_Z(t)) + (E(\overline{t}) \pm P_Z(\overline{t}))}{2 \cdot E(proton)}$$

highly sensitive to PDFs

x1 vs M(tt), Cross Sections

Summary:

First look at 2d cross sections with 2D unfolding using TUnfold

MC more central in rapidity for high $M(t\bar{t})$

Outlook

- Determine final results with full systematics
- Comparison to the theory predictions

THANK YOU FOR YOUR ATTENTION

Double differential cross sections

Normalized 2d Cross Sections

Bin-by-Bin unfolding:

For each
$$\Delta Y^{j}$$
: $\left(\frac{1}{\sigma}\frac{d\sigma}{dX}\right)^{ij} = \frac{1}{\sigma}\frac{\cdot N_{evts}^{ij}}{L \cdot \Delta X^{i}}$

σ: inclusive tt cross-section in full phase space ΔXⁱ (ΔY^j) : bin width of the variable under test²⁰

Probability matrix

A - probability matrix

 $\chi^{2} = (Y - AX)^{T} V_{YY}^{-1} (Y - AX) + Reg. term$

- *Y* vector of number events in fine bins (reconstructed)
- *X* unfolded number events in coarse bins ("true")
- A the elements Aij of A describe for each row j of X the probabilities to migrate to bin i of Y (migration matrix obtained from signal MC)

Correlation matrix

 $\chi^2 = (Y - AX)^T V_{YY}^{-1} (Y - AX) + Reg. term$

- *Y* vector of number events in fine bins (reconstructed)
- *X* unfolded number events in coarse bins ("true")
- A the elements Aij of A describe for each row *j* of X the probabilities to migrate to bin *i* of Y (migration matrix obtained from signal MC)

$$ho_{ij} = rac{V_{X_{ij}}}{\sqrt{V_{X_{ii}}V_{X_{jj}}}}$$

Correlations is up to $|\rho_{ij}|=0.6$

Closure test: pt(t) reweighting

W

1

0

100

w(pt) = (-0.2/100)*pt + 1.2

pt, GeV

y(t) bins: [-2.5, -1.6, -1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6, 2.5]

y(t) bins: [-2.5, -1.6, -1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6, 2.5]

Bias at smallest and largest pT small compared to stat. uncertainty

Some biases visible at the outer y regions, but small compared to statistical uncertainty

2d unfolding with TUnfold

- the mathematics and the basic ideas are explained here:
 - http://arxiv.org/abs/1205.6201
- a brief user manual:
 - http://www.desy.de/~sschmitt/TUnfold/tunfold_manual_v 17.3.pdf

Unfolding by χ^2 - minimization

 $\chi^{2} = (Y - AX)^{T} V_{YY}^{-1} (Y - AX) + \tau^{2} (X - f_{b} X_{0})^{T} (L^{T} L) (X - f_{b} X_{0})$

- Y vector of number events in fine bins (reconstructed)
- X unfolded number events in coarse bins ("true")
- A the elements A_{ij} of A describe for each row *j* of X the probabilities to migrate to bin *i* of Y (migration matrix obtained from signal MC)
- $\tau^2\,$ gives the strength of the regularization (defined from L-curve scan)
- L rows of L where three elements are non-zero, corresponding to a regularization of the second derivative (curvature) of X
- f_b normalization factor (= 1 by default)
- X_0 taken from MC

Control plots and Cross sections

2d cross sections pt(t) vs y(t)