First studies towards top-quark pair cross section measurement in the dilepton channel at 13 TeV with the CMS detector

Mykola Savitskyi, Till Arndt, Carmen Diez Pardos, Alexander Grohsjean, Ali Harb, Johannes Hauk, Eleni Ntomari, Maria Aldaya

DESY-CMS group, Hamburg
The top quark is special

Heaviest elementary particle known to date: $m_t \approx 173$ GeV

Mass close to scale of electroweak symmetry breaking (EWSB):
$\rightarrow y_H \approx 1$: important role in EWSB?

Decays before hadronizing: $\tau \approx 5 \cdot 10^{-25} \text{s} << 1/\Lambda_{QCD}$ – unique window on “bare” quark

Sensitive to physics phenomena beyond the Standard Model (BSM):
\rightarrow new physics may preferentially couple/decay to top

Major source of background for many Higgs and BSM searches
Why measure differentially?

Precise understanding of top quark distributions is crucial:

- Precision tests of perturbative QCD for top-quark production at different phase space regions
- Tune and test theory predictions and models: potential to reduce signal modelling systematics
- Enhance sensitivity to BSM physics

LHC is a “top factory”

- Several millions of top-quark pair (tt̄) events produced already in Run-I (√s = 7, 8 TeV)
- Run-II: expect much larger data sets at √s = 13(14) TeV
 → important to measure top quark distributions with very high precision
Top Pair Production and Decay

Production cross sections:

<table>
<thead>
<tr>
<th>Energy, TeV</th>
<th>8</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{\text{incl}}^{\text{NNLO+NNLL}}(t\bar{t}), \text{pb})</td>
<td>252.89</td>
<td>831.76</td>
</tr>
</tbody>
</table>

Weak interaction: Top decay

t \rightarrow W+b \sim 100 \%

Top Pair Branching Fractions

- "alljets" 46%
- \(t+\text{jets} \) 15%
- \(\tau+\text{jets} \) 15%
- \(\mu+\text{jets} \) 15%
- e+jets 15%
- "dileptons"
- "lepton+jets"

Samples are classified according to W-decay: dilepton (\(\ell\ell \)), lepton+jets (\(\ell+\text{jets} \)), all jets

Strong interaction: Top pairs

- \(qq \) annihilation
- \(gg \) fusion

\(q \bar{q} \rightarrow t\bar{t} \)
\(g g \rightarrow t\bar{t} \)
\(\sim 82\% \) \(\sim 90\% \)
\(\sim 18\% \) \(\sim 10\% \)
Selection in Dilepton Channel

1. Trigger conditions
2. **Lepton pair** selection:
 - opposite charge
 - e and μ isolation criteria
 - $p_T > 20 \text{ GeV}, |\eta| < 2.4$
 - invariant mass: $m_{ll} > 20 \text{ GeV}$
3. Exclusion of Z-region:
 - in ee and μμ: $76 \text{ GeV} < m_{ll} < 106 \text{ GeV}$
4. Presence of **two jets** (anti-k_t R=0.4) with $p_T > 30 \text{ GeV}$ and $|\eta| < 2.4$
5. Missing $E_T > 40 \text{ GeV}$ in ee and μμ
6. At least one **b-tagged jet**
7. Meaningful solution for kinematic event reconstruction

Largest backgrounds: other $t\bar{t}$, Single top, Drell-Yan events
Kinematic Reconstruction

- Measured input: 2 jets, 2 leptons, MET

- Unknowns: $\overline{p}_\nu, \overline{p}_{\nu} \rightarrow 6$

- Constraints:
 > $m_t, m_{\tilde{t}} \rightarrow 2$
 > $m_{W^+}, m_{W^-} \rightarrow 2$
 > $(\overline{p}_\nu + \overline{p}_{\nu})_T = \text{MET} \rightarrow 2$

- Reconstructing each event 100 times and smearing inputs by their resolution:
 > top mass fixed to 172.5 GeV
 > W mass at RECO level smeared accordingly to W mass distribution
 > Jet and lepton energies are corrected for detector effects

- Consider weighted average of solutions for all smeared points:
 \[
p_{x,y,z}^{\text{top}} = \frac{1}{w} \sum_{i=0}^{100} w_i \cdot (p_{x,y,z}^{\text{top}})_i
\]
Selection in Dilepton Channel

Channel: combined (ee+eμ+μμ)
Pseudo-data: poisson-smeared sum of all signal and background simulation samples
Normalized to: \(L_{\text{int}} = 5.0 \text{ fb}^{-1} \)

Observable: Lepton \(\eta \)
Signal: MadGraph+Pythia8

Selection steps:
1. Trigger conditions
2. Lepton pair selection:
 - opposite charge
 - e and μ isolation criteria
 - \(p_T > 20 \text{ GeV}, |\eta| < 2.4 \)
 - invariant mass: \(m_{ll} > 20 \text{ GeV} \)
Selection in Dilepton Channel

Channel: combined (ee+eμ+μμ)
Pseudo-data: poisson-smeared sum of all signal and background simulation samples
Normalized to: \(L_{\text{int}} = 5.0 \text{ fb}^{-1} \)

Observable: Lepton \(\eta \)
Signal: MadGraph+Pythia8

Selection steps:
1. Trigger conditions
2. Lepton pair selection:
 - opposite charge
 - e and µ isolation criteria
 - \(p_T > 20 \text{ GeV}, |\eta| < 2.4 \)
 - invariant mass: \(m_{ll} > 20 \text{ GeV} \)
3. Exclusion of Z -region:
 - in ee and µµ: \(76 \text{ GeV} < m_{ll} < 106 \text{ GeV} \)
Selection in Dilepton Channel

Channel: combined (ee+eμ+μμ)
Pseudo-data: poisson-smeared sum of all signal and background simulation samples
Normalized to: \(L_{\text{int}} = 5.0 \text{ fb}^{-1} \)

Observable: Lepton \(\eta \)
Signal: MadGraph+Pythia8

Selection steps:
1. Trigger conditions
2. Lepton pair selection:
 - opposite charge
 - e and μ isolation criteria
 - \(p_T > 20 \text{ GeV}, |\eta| < 2.4 \)
 - invariant mass: \(m_{ll} > 20 \text{ GeV} \)
3. Exclusion of Z -region:
 - in ee and μμ: 76 GeV < \(m_{ll} < 106 \text{ GeV} \)
4. Presence of two jets:
 - with \(p_T > 30 \text{ GeV} \) and within \(|\eta| < 2.4 \)
Selection in Dilepton Channel

Channel: combined (ee+eμ+μμ)

Pseudo-data: poisson-smeared sum of all signal and background simulation samples

Normalized to: \(L_{\text{int}} = 5.0 \ \text{fb}^{-1} \)

 Observable: Lepton \(\eta \)

Signal: MadGraph+Pythia8

Selection steps:
1. Trigger conditions
2. Lepton pair selection:
 - opposite charge
 - e and \(\mu \) isolation criteria
 - \(p_T > 20 \ \text{GeV}, |\eta| < 2.4 \)
 - invariant mass: \(m_{ll} > 20 \ \text{GeV} \)
3. Exclusion of Z -region:
 - in ee and \(\mu\mu \): 76 GeV < \(m_{ll} \) < 106 GeV
4. Presence of two jets:
 - with \(p_T > 30 \ \text{GeV} \) and within \(|\eta| < 2.4 \)
5. Missing \(E_T > 40 \ \text{GeV} \) in ee and \(\mu\mu \)
Selection in Dilepton Channel

Channel: combined (ee+eμ+μμ)

Pseudo-data: poisson-smeared sum of all signal and background simulation samples

Normalized to: \(L_{\text{int}} = 5.0 \, \text{fb}^{-1} \)

Observable: Lepton \(\eta \)

Signal: MadGraph+Pythia8

Selection steps:
1. Trigger conditions
2. Lepton pair selection:
 - opposite charge
 - e and \(\mu \) isolation criteria
 - \(p_T > 20 \, \text{GeV}, |\eta| < 2.4 \)
 - invariant mass: \(m_{ll} > 20 \, \text{GeV} \)
3. Exclusion of Z -region:
 - in ee and \(\mu\mu \): \(76 \, \text{GeV} < m_{ll} < 106 \, \text{GeV} \)
4. Presence of two jets:
 - with \(p_T > 30 \, \text{GeV} \) and within \(|\eta| < 2.4 \)
5. Missing \(E_T > 40 \, \text{GeV} \) in ee and \(\mu\mu \)
6. At least one b–tagged jet
Selection in Dilepton Channel

Channel: combined (ee+eμ+μμ)

Pseudo-data: poisson-smeared sum of all signal and background simulation samples

Normalized to: \(L_{\text{int}} = 5.0 \text{ fb}^{-1} \)

Observable: Lepton \(\eta \)

Signal: MadGraph+Pythia8

Selection steps:
1. Trigger conditions
2. Lepton pair selection:
 - opposite charge
 - e and \(\mu \) isolation criteria
 - \(p_T > 20 \text{ GeV}, |\eta| < 2.4 \)
 - invariant mass: \(m_{ll} > 20 \text{ GeV} \)
3. Exclusion of Z-region:
 - in ee and \(\mu\mu \): 76 GeV < \(m_{ll} \) < 106 GeV
4. Presence of two jets:
 - with \(p_T > 30 \text{ GeV} \) and within |\(\eta \)\| < 2.4
5. Missing E\(_T\) > 40 GeV in ee and \(\mu\mu \)
6. At least one b-tagged jet
7. Meaningful solution for kinematic event reconstruction
Selection in Dilepton Channel

Channel: combined (ee+eμ+μμ)
Pseudo-data: poisson-smeared sum of all signal and background simulation samples
Normalized to: $L_{\text{int}} = 5.0 \text{ fb}^{-1}$

Observable: Lepton η
Signal: MadGraph+Pythia8

Table given after all cuts:

<table>
<thead>
<tr>
<th>Process</th>
<th>Fraction, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{t}t$ Signal</td>
<td>78.7</td>
</tr>
<tr>
<td>$\bar{t}t$ Other</td>
<td>14.1</td>
</tr>
<tr>
<td>tW</td>
<td>3.3</td>
</tr>
<tr>
<td>$W+\text{Jets}$</td>
<td>0.2</td>
</tr>
<tr>
<td>$DY \to \text{ee/}\mu\mu$</td>
<td>2.4</td>
</tr>
<tr>
<td>$DY \to \tau\tau$</td>
<td>0.6</td>
</tr>
<tr>
<td>$\bar{t}t+Z/W/\gamma$</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Private Work, 5.0 fb$^{-1}$ at $\sqrt{s} = 13$ TeV
Control Distributions

Channel: combined \((ee+e\mu+\mu\mu)\), \(L_{\text{int}} = 5.0 \text{ fb}^{-1}\)

Plots given after full selection

Pseudo-data: poisson-smeared sum of all signal and background simulation samples
Differential Cross Section

- For each observable X the **normalized differential cross section** in the i-th bin is defined as:

\[
\left(\frac{1}{\sigma} \frac{d\sigma}{dX} \right)^i = \frac{1}{\sigma} \frac{N_{\text{events}}^i}{\Delta X^i L}
\]

- N_{events}^i - number of events after background subtraction, efficiency, acceptance and bin-to-bin migration correction

- σ - total $t\bar{t}$ cross section in same phase space

- L - integrated luminosity

- ΔX^i - bin width

- **Phase space** definition:

 - **Top quarks, $t\bar{t}$ system** (obtained via kinematic reconstruction of event) – extrapolated to full phase space after corrections for detector and hadronization effects

 - **Leptons or b-jets** – measured in visible phase space (leptons: $p_T > 20$ GeV, $|\eta| < 2.4$; jets: $p_T > 30$ GeV, $|\eta| < 2.4$) after correction for detector effects

- Bin-to-bin migrations are reduced by **binning optimization** and corrected by unfolding
Binning and Migrations

- **Migration effects** studied by:

 \[p_i = \frac{N_{i\,rec\,&\,gen}}{N_{i\,rec}} \quad - \textit{purity}: \text{sensitive to migrations to } i\text{-th bin} \]

 \[s_i = \frac{N_{i\,rec\,&\,gen}}{N_{i\,gen}} \quad - \textit{stability}: \text{sensitive to migrations out of } i\text{-th bin} \]

 \[\varepsilon_i = \frac{N_{i\,rec\,&\,sel}}{N_{i\,all\,generated}} \quad - \textit{efficiency} \text{ in } i\text{-th bin} \]

- **Binning criteria**: stability or purity \(\geq ~0.5 \)

- **Response matrices** are constructed from signal MC
Normalized Cross Sections: leptons

- Normalization allows to:
 - reduce systematic uncertainties
 - perform shape comparisons of different theory models to data

- Systematic uncertainty: include JES and JER uncertainties for now
Measured Cross Sections: tops

- **Normalization allows to:**
 - reduce systematic uncertainties
 - perform shape comparisons of different theory models to data

- **Systematic uncertainty:** include JES and JER uncertainties for now
Measured Cross Sections: b-jets

- Normalization allows to:
 - reduce systematic uncertainties
 - perform shape comparisons of different theory models to data

- Systematic uncertainty: include JES and JER uncertainties for now
Conclusions & Outlook

- **Top-quark pair differential cross section measurements:**
 - Essential for constraining the SM
 - Ideal probe for looking for new physics beyond the SM

- **First studies towards measurements at 13 TeV are starting, work ongoing to:**
 - Determine trigger and lepton efficiencies
 - Optimize event selection
 - Optimize binning
 - Evaluate systematic uncertainties
 - Compare to different theory predictions
Conclusions & Outlook

• Top-quark pair differential cross section measurements:
 - Essential for constraining the SM
 - Ideal probe for looking for new physics beyond the SM

• First studies towards measurements at 13 TeV are starting, work ongoing to:
 - Determine trigger and lepton efficiencies
 - Optimize event selection
 - Optimize binning
 - Evaluate systematic uncertainties
 - Compare to different theory predictions

Eagerly waiting for 13 TeV data :-)
Thank you for your attention!
Backup
LHC Collider

Run 1: $L_{\text{int}} \approx 25 \text{ fb}^{-1}$ in 2010-2012 at 7/8 TeV

Run 2: Phase 0 in 2015-2017
- design energy: $\sqrt{s}=13 \text{ TeV} - 14 \text{ TeV}$
- nominal luminosity: $L \sim 1 \cdot 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
- bunch spacing: 25 ns
- pile up: ~ 49
- L_{int} per year $\sim 45 \text{ fb}^{-1}$

Planned to collect: $L_{\text{int}} \sim 75 - 100 \text{ fb}^{-1}$
The CMS Detector

General purpose 4π detectors:

Tracker: Detection and momentum measurement for charged particles

Calorimeter: Identification and energy measurement of jets and electrons

Muon system: Identification and momentum measurement of muons

Phase 0 (2015-2017) upgrade:

- Complete muon coverage
- Colder tracker
- Photodetectors in HCAL
- New beampipe and infrastructure updates

CMS DETECTOR

- Total weight: 14,000 tonnes
- Overall diameter: 15.0 m
- Overall length: 28.7 m

Diagram:

- **Superconducting solenoid**
- **Silicon trackers**
- **Steel return yoke**
- **Muon chambers**
- **Preshower**
- **Forward calorimeter**
- **Crystal electromagnetic calorimeter (ECAL)**
- **Hadron calorimeter (HCAL)**
Visible Phase Space Definition

- **Object definition at generator level:**
 - particles after radiation and hadronization
 - **leptons:** from W-decay
 - **jets:** anti-kT (with cone of $\Delta R=0.5$) algorithm
 - **b-jets:** identified by B-hadrons

- **Directly measured quantities:** leptons and b-jets

Visible particle LVL Phase Space

Correct for:
Detector Effects

Measure at visible Phase Space:
- **Leptons:** $p_T > 20$ GeV, $|\eta| < 2.4$
- **Jets:** $p_T > 30$ GeV, $|\eta| < 2.4$
Unfolding

- **Unfolding** techniques correct migrations between bins
- **Response matrix** \((A) \): represents bin-by-bin correlations
- Unfolding problem is transformed to \(\chi^2 \)-minimization problem:

 \[
 \chi^2 = \left(\vec{N} - A \cdot \vec{x} \right)^T C_{\vec{N}}^{-1} \left(\vec{N} - A \cdot \vec{x} \right) - \tau^2 K \left(\vec{x} \right)
 \]

- Non-physical fluctuations removed by means of the regularization:
 - \(\tau \) – continuous regularization parameter
 - selected at minimum of average global correlation

- In this measurement regularized unfolding is used