HiPACE
Development of a quasi-static Particle-In-Cell code

T. Mehrling, C. Benedetti, J. Grebenyuk, A. Martinez della Ossa, B. Foster, C. B. Schroeder, B. Schmidt, J. Osterhoff

Physics in Intense Fields, DESY, July 2013
HiPACE
Development of a quasi-static Particle-In-Cell code

Physics in Intense Fields, Hamburg 2013

Outline

- Introduction and Motivation
- Particle-In-Cell (PIC) Simulations
 - Short introduction and overview over the Particle-In-Cell technique
- The quasi-static PIC code HiPACE
 - Physical basis
 - Numerical implementation
 - Parallelization
 - Benchmark
- Summary and Outlook
Introduction and Motivation

Potential of beam-driven plasma acceleration

40 GeV in one meter

- Long beam at SLAC injected into plasma target
- Tail of beam is energy-doubled

Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator

Introduction and Motivation

Potential of beam-driven plasma acceleration

40 GeV in one meter

- Long beam at SLAC injected into plasma target
- Tail of beam is energy-doubled

What’s the lesson?

- Plasma acceleration allows for tens of GeV gradients
- Driver needs to be short compared to plasma wavelength and ...
- ... high degree of control over injection of witness beam needed to produce high-quality beams

Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator
Introduction and Motivation

FLASHForward

Future-oriented wakefield-accelerator research and development at FLASH

Driver-beam parameters
- FEL quality, ≤ 1.6 GeV, 0.1% energy spread, 1 µm transverse emittance
- variable longitudinal beam shape (triangular, Gaussian), 20 to 500 fs long, ~20 pC to 500 pC
- 10 Hz repetition rate with up to three bunches each shot

FF aims at advancing beam-driven novel-accelerator science by exploring
- external injection and in-plasma beam-generation and acceleration techniques to provide high-energy (1.5 to 4+ GeV), low transverse emittance (~100 nm), ultrashort (~ fs), and high current (> 1 kA) electron bunches
- transformer ratios beyond 2
- the application of such beams to assess their potential for free-electron laser gain at photon energies inside and beyond the water window

Beam-line layout

FLASH 1
- Extraction
- Driver dump
- Differential pumping
- Plasma cell
- Laser/plasma photon diagnostics
- Witness dump
- Undulator
- X-ray diagnostics

FLASH 2
- Beam matching and focusing section
- Beam diagnostics section

Driver-beam parameters

FLASHForward - technical design, beam properties and goals

FF aims at advancing beam-driven novel-accelerator science by exploring
- external injection and in-plasma beam-generation and acceleration techniques to provide high-energy (1.5 to 4+ GeV), low transverse emittance (~100 nm), ultrashort (~ fs), and high current (> 1 kA) electron bunches
- transformer ratios beyond 2
- the application of such beams to assess their potential for free-electron laser gain at photon energies inside and beyond the water window
FlashForward
Future-oriented wakefield-accelerator research and development at Flash

Driver-beam parameters
- FEL quality, \(\leq 1.6 \text{ GeV}, 0.1\% \text{ energy spread}, 1 \mu \text{m transverse emittance} \)
- variable longitudinal beam shape (triangular, Gaussian), 20 to 500 fs long, \(-20 \text{ pC to 500 pC}\)
- 10 Hz repetition rate with up to three bunches each shot

FlashForward aims at advancing beam-driven novel-accelerator science by exploring:

- external injection and in-plasma generation and acceleration techniques to provide high-energy (1.5 to 4+ GeV), low transverse emittance (~100 nm), ultrashort (~fs), and high current (>1 kA) electron bunches
- transformer ratios beyond 2
- the application of such beams to assess their potential for free-electron laser gain at photon energies inside and beyond the water window

See talk tomorrow by Julia Grebenyuk
Particle-In-Cell Simulations

The Particle-In-Cell method

- Typical tool to study highly intense laser or particle beam plasma interactions
 - Successfully used to study a wide range of plasma and gas phenomena
 - Capable of rendering kinetic plasma nature
- Fields defined on a mesh
- Particles with continuous positions and momenta
- Step size given by stability condition for numerical PDE-solvers (CFL-condition)
- Full 3D PIC simulations are computationally expensive
A Highly efficient Plasma Accelerator Emulation

HiPACE

- Quasi-static Particle-In-Cell (PIC) code
- 3D parallelized
- Dynamic time-step adjustment
- Allows for order-of-magnitude speedup for FLASHForward-type simulations
Characteristic time for beam evolution $\sim 1/\omega_\beta$

Characteristic time for plasma particle evolution $\sim 1/\omega_p$

\[1/\omega_\beta \simeq \sqrt{2\gamma}/\omega_p \]
Beam is frozen while plasma is evolved over the beam and fields are being solved.

Fields are frozen while the beam is advanced.
HiPACE

Physical basis

Transformation to co-moving frame

\[\xi = z - ct \]
\[\tau = t \]
\[\frac{\partial}{\partial t} = \left(\frac{\partial}{\partial \tau} - c \frac{\partial}{\partial \xi} \right) \cdot \frac{\partial}{\partial z} = \frac{\partial}{\partial \xi} . \]

Quasi-Static Approximation (QSA) for properties of plasma particles and field configuration

\[\frac{\partial}{\partial \tau} \ll c \frac{\partial}{\partial \xi} . \]
HiPACE

Physical basis

Hamiltonian of a relativistic charged particle
\[
\mathcal{H} = \gamma mc^2 + q\phi
\]

Application of the QSA to the Hamiltonian

\[
\frac{d\mathcal{H}}{dt} = \frac{\partial \mathcal{H}}{\partial t} - c \frac{\partial \mathcal{H}}{\partial \xi} = -c \frac{\partial \mathcal{H}}{\partial z} = c \frac{dP_z}{dt}
\]

Yields an invariant of motion

\[
\frac{d}{dt} (\mathcal{H} - cP_z) = \frac{d}{dt} (\gamma mc^2 + q\Psi - cp_z) = 0
\]

Where the wake-potential is introduced

\[
\psi = \frac{e\Psi}{mc^2} = \frac{e}{mc^2} (\Phi - A_z)
\]

For particle which was at rest and no field initially

\[
\gamma - \psi - u_z = 1
\]

\[
\gamma = \frac{1 + u_{\perp}^2 + |\hat{a}_f|/2 + (1 + \psi)^2}{2(1 + \psi)}
\]

Mora and Antonsen, Phys. Plas. 4, 217 (1997)

Esarey et al., Phys. Fluids B 5 (7), July 1993
Transformation to co-moving frame

$$\xi = z - ct \quad \frac{\partial}{\partial t} \cdot = \left(\frac{\partial}{\partial \tau} - c \frac{\partial}{\partial \xi} \right) \cdot \quad \frac{\partial}{\partial z} \cdot = \frac{\partial}{\partial \xi} \cdot$$

Quasi-Static Approximation (QSA) for properties of plasma particles and field configuration

"Ingredients" for plasma particle advance

$$\partial_\xi \mathbf{u}_\perp = \frac{\gamma}{1 + \psi} \left(\frac{E_x - B_y}{E_y + B_x} \right) + \left(\frac{B_y}{-B_x} \right)$$

$$\partial_\xi \psi = \frac{\mathbf{u}_\perp}{1 + \psi} \left(\frac{E_x - B_y}{E_y + B_x} \right) - E_z$$

Adams-Bashforth backward integrator used
Field equations from Maxwell equations and QSA

\[\partial_\xi \left(\frac{E_x - B_y}{E_y + B_x} \right) = J_\perp \]

\[\nabla_\perp^2 E_z = \nabla_\perp J_\perp \]

\[\nabla_\perp^2 B_x = - \partial_y \left(J_z - \partial_\xi E_z \right) \]

\[\nabla_\perp^2 B_y = \partial_x \left(J_z - \partial_\xi E_z \right) \]

Solving Poisson-eqns with a fast Poisson solver using FFTW3

\[\frac{d^2 U}{dx^2} = F(x), \quad a \leq x \leq b \]

\[\frac{u_{k-1} - 2u_k + u_{k+1}}{\Delta x^2} = f_k \equiv F(x_k), \quad k = 1:n-1. \]

\[\begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} f_1 - \alpha/h^2 \\ f_2 \\ f_3 \\ f_4 - \beta/h^2 \end{pmatrix} \]

\[\lambda_j = -4\sin^2 \left(\frac{j \pi}{2n} \right) \]

for \(j = 1:n-1 \), then

\[V^{-1} \Sigma_{n-1} V = \text{diag}(\lambda_1, \ldots, \lambda_{n-1}) \]

Computational Frameworks for the Fast Fourier Transform, Charles Van Loan

Field equations from Maxwell equations and QSA

\[\partial_\xi \left(\frac{E_x - B_y}{E_y + B_x} \right) = J_\perp \]

\[\nabla_\perp^2 E_z = \nabla_\perp J_z \]

\[\nabla_\perp^2 B_x = -\partial_y (J_z - \partial_\xi E_z) \]

\[\nabla_\perp^2 B_y = \partial_x (J_z - \partial_\xi E_z) \]

Solving Poisson-eqns with a fast Poisson solver using FFTW3

\[\frac{d^2 U}{dx^2} = F(x), \quad a \leq x \leq b \]

\[(u_{k-1} - 2u_k + u_{k+1})/h^2 = f_k = F(x_k), \quad k = 1:n - 1. \]

\[\frac{1}{h^2} \begin{bmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} f_1 - \alpha/h^2 \\ f_2 \\ f_3 \\ f_4 - \beta/h^2 \end{bmatrix} \]

\[\lambda_j = -4 \sin^2 \left(\frac{j\pi}{2n} \right) \]

\[\text{for } j = 1:n - 1, \quad V^{-1} \Sigma_{n-1} V = \text{diag}(\lambda_1, \ldots, \lambda_{n-1}) \]

Computational Frameworks for the Fast Fourier Transform, Charles Van Loan

HiPACE

Numerical implementation

main loop
- beam density deposition
- plasma routine
- beam pusher

plasma routine
- advance plasma particles
- deposit plasma charge & currents
- compute E_z
- compute B_x and B_y

compute B_x and B_y
- advance plasma particles $(n-1)$
- deposit plasma currents $(n-1)$
- compute E_z $(n-1)$
- update B_x and B_y (n)
- check convergence
Numerical implementation

PLASMA ROUTINE
Plasma particle subroutine

Pushing particles → Computing fields

Current deposition

HiPACE
PLASMA ROUTINE

Plasma particle subroutine

Advancing plasma particles in $-\xi$ direction and solving Poisson equations in next slab.
HiPACE

- **Numerical implementation**

main loop

- $t + \Delta t$

plasma routine

- $\xi - \Delta \xi$

 - advance plasma particles
 - deposit plasma charge & currents
 - compute E_z, $Ex-By$ and $Ey+Bx$
 - compute B_x and B_y

compute B_x and B_y

- advance plasma particles ($n-1$)
- deposit plasma currents ($n-1$)
- compute E_z ($n-1$)
- update B_x and B_y (n)
- check convergence
HiPACE

Parallelization

schematic parallel main loop flow

beam current depos.

plasma routine and field solver

beam pusher

e.g. exchanging current values at borders

proc-slab i

idle

proc-slab i+1

e.g. exchanging current values at borders

passing plasma information etc.

time

...
Parallelization

Showcase domain decomposition:
Four processes in propagation-direction

collective, global communication

proc-slab0 proc-slab1 proc-slab2 proc-slab3

idle idle

node 1 node 2 node 1 node 2

slabs 0 1 2 3
Parallelization

Point-to-point-communication only

Showcase domain decomposition:
Four processes in propagation-direction

Slabs 0 1 2 3
Parallelization

“backward” directed communication only

Showcase domain decomposition:
Four processes in propagation-direction

slabs 0 1 2 3
Comparison between the full PIC code OSIRIS and HiPACE:
1 GeV gaussian electron beam, nb/n0 = 2.0
Comparison between the full PIC code OSIRIS and HiPACE: 1 GeV gaussian electron beam, nb/n0 = 2.0
Comparison of long. field: HiPACE and OSIRIS

nb/n0 = 0.1

nb/n0 = 1.0

nb/n0 = 2.0
FACET at SLAC
20 kA, 23 GeV

HiPACE simulation with dynamical time-step adjustment

Propagating the beam over a 15cm long gas cell

OSIRIS: 1.25e5 core hrs
HiPACE: 7.2e3 core hrs
Summary and Outlook

» Quasi-static PIC codes are an appropriate tool to study relativistic beam-plasma interactions

 Studies with FLASHForward and FACET beams ongoing

» Fully 3D electrodynamic quasi-static PIC code HiPACE functional

» First benchmarks show order-of magnitude speedup compared to full PIC codes

» Beams can be initialized from tracking codes or full PIC codes

» Code is currently improved in speed, functionality and stability

 Implementation of plasma fluid routine
Summary and Outlook

Thanks for listening!