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Abstract: A model for terahertz (THz) generation by optical rectification using 

tilted-pulse-fronts is developed. It simultaneously accounts for in two spatial 

dimensions (2-D) (i) the spatio-temporal variations of the optical pump pulse 

imparted by the tilted-pulse-front setup, (ii) the nonlinear coupled interaction of THz 

and optical radiation, (iii) self-phase modulation and (iv) stimulated Raman 

scattering. The model is validated by quantitative agreement with experiments and 

analytic calculations. We show that the optical pump beam is significantly 

broadened in the transverse-momentum (kx) domain as a consequence of its spectral 

broadening due to THz generation. In the presence of this large frequency and 

transverse-momentum (or angular) spread, group velocity dispersion causes a spatio-

temporal break-up of the optical pump pulse which inhibits further THz generation. 

The implications of these effects on energy scaling and optimization of optical-to-

THz conversion efficiency are discussed. This suggests the use of optical pump 

pulses with elliptical beam profiles for large optical pump energies. Furthermore, it 

is seen that optimization of the setup is highly dependent on optical pump 

conditions. Trade-offs in optimizing the optical-to-THz conversion efficiency on the 

spatial and spectral properties of THz radiation are discussed to guide the 

development of such sources.  
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1. Introduction 

Terahertz (THz) sources are characterized by wavelengths roughly hundred times larger than 

optical and ten times smaller than radio frequency sources. In particular, short pulses of THz 

light with high peak field strengths are attractive for a number of unprecedented applications. 

They are uniquely amenable to probing and controlling material properties in a variety of 

systems such as superconductors, ferro/anti-ferromagnets etc. [1-4]. In addition, they are 

attractive for compact charged particle-acceleration [5-9] and as drivers for other sources of 

radiation such as in high-harmonic generation [10-11].  

Of various high field THz generation modalities, difference frequency generation between 

spectral components of a femtosecond optical pulse in nonlinear crystals or optical 

rectification (OR) has emerged as the most efficient approach [12,13] and resulted in the 

highest THz pulse energies [13] to date. Within this category, OR using tilted-pulse-fronts in 

lithium niobate is of particular interest due to its compatibility with optical pumping by 

widely available 800 nm and 1 μm sources.  This approach was developed in [14-18] among 

other works as a means to achieve phase-matching in materials with large disparities between 

THz and optical refractive indices.  

In this approach, an optical pump pulse is angularly dispersed to produce an intensity front 

which is tilted with respect to its propagation direction. THz radiation propagating 

perpendicular to this tilted intensity front, or tilted-pulse-front (TPF), is then generated. Since 

the optical and THz radiation travel different distances in the same time, the difference 

between optical and THz refractive indices is compensated and phase-matching is achieved. 

OR using TPFs in lithium niobate has resulted in optical-to-THz conversion efficiencies 

(henceforth referred to as conversion efficiency) in excess of 1% [12,19] and  THz pulse 

energies of 0.4 mJ [20].Therefore, the approach is promising for the development of 

laboratory scale THz sources with THz pulse energies much greater than the mJ level. 

Comprehensive theoretical models to aid understanding and quantitatively predict the 

performance of such systems are therefore of interest. The requisites of a physically accurate 

model and the current state of theory are described below.   

As a consequence of the angular dispersion of the optical pump pulse in OR using 

TPF, various frequency components of the optical pump pulse spectrum are spatially 

separated. This is tantamount to having different spectral bandwidths, pulse durations and 

average frequency at each spatial location. These effects are referred to as spatio-temporal 

variations [21] and affect the properties of the generated THz radiation. Secondly, since the 

generated THz propagates perpendicular to the TPF, the optical pump and THz radiation 

propagate non-collinearly. Most importantly, as THz radiation is generated, it is accompanied 



by a dramatic cascaded frequency down-shift and spectral broadening of the optical pump 

pulse spectrum (cascading effects). On one hand, cascading is responsible for conversion 

efficiencies that exceed the Manley-Rowe limit. However, in the presence of group velocity 

dispersion due to angular dispersion (GVD-AD) and material dispersion (GVD-MD), the 

increased optical bandwidth inhibits further THz generation [22-24]. A comprehensive 

theoretical model should therefore be able to account for all of the above effects. This would 

require a simultaneous solution of optical and THz electric fields (henceforth referred to as 

field) in at least two spatial dimensions (2-D). In addition, spatio-temporal variations imparted 

by the specific TPF setup would also have to be considered. 

Previously presented models are broadly comprised of (i) 1-D and 2-D spatial models 

without the inclusion of cascading effects (i.e., nonlinear coupling between THz and optical 

radiation is not considered) [25-29] and (ii) 1-D spatial models which account for cascading 

effects [22,30]. Models in category (i) overestimate the possible conversion efficiencies by 

not considering the spectral re-shaping of the optical pump pulse [22]. While models in 

category (ii) can phenomenologically address this shortcoming, they are still too simplistic to 

accurately describe experiments (e.g. implications of pump beam size, spatial frequency 

variations of THz radiation, THz beam propagation properties cannot be accounted for).  

In this paper, we present the formulation of a 2-D model which simultaneously 

considers the spatio-temporal variations of the optical pump pulse, cascading effects, SPM 

and stimulated Raman scattering (SRS), angular and material dispersion, THz absorption as 

well as geometry of the nonlinear crystal. It can therefore account for the effects of finite 

beam size, spatial walk-off, spatial frequency variations and beam propagation which is not 

possible with our previous 1-D formulation [22]. The model is applicable to the simulation of 

a variety of OR systems with different TPF setups, crystal geometries and optical pump pulse 

formats.  Despite its complexity, the model is formulated so that it can be solved efficiently to 

enable parametric studies. This is achieved by the use of appropriate simplifying assumptions, 

co-ordinate transformations and Fourier decomposition as outlined in Sections 2 and 4. 

In Section 2, we provide an overview of THz generation using TPF and the general 

approach of our model. In Section 3, we provide an illustrative simulation result using the 

developed model. In particular, a discussion from transverse momentum (kx) and time domain 

viewpoints is introduced for the first time. It is seen that the generation of THz results in the 

broadening of the optical pump pulse in both frequency and transverse-momentum domains. 

In the presence of this increased frequency and transverse-momentum spread, GVD-AD and 

GVD-MD cause a spatio-temporal break-up of the optical pump pulse which inhibits further 

THz generation. These descriptions serve to motivate the theoretical formulation of the 

complete TPF THz generation system, which is presented in Section 4. In Section 5, we 

validate the model by comparisons to experiments and analytic calculations. The impact of 

imaging errors on conversion efficiency is shown quantitatively. It is seen that small 

perturbations to the optimal imaging configuration can result in sizeable degradation of 

conversion efficiency. Insights into broadening of the optical spectrum are provided. In 

Section 6, we discuss the meaning of effective propagation length in 2-D. This is then used to 

discuss scaling to large optical pump energies and optimization of conversion efficiency. It is 

seen that the optimization of conversion-efficiency is highly dependent on the optical pump 

parameters. Finally, we highlight the trade-offs incurred while optimizing the conversion 

efficiency on spatial and spectral properties of THz radiation.  We conclude in Section 7. This 



paper thus provides a basis for constructing sources customized optimally for various 

applications. 

2. THz generation using tilted-pulse-fronts: overview of physics and modelling approach 

  

Fig. 1: Schematic of a tilted-pulse-front configuration for THz generation (a) An optical pump pulse with electric 

field 
0 0( , , )in

opE x z is incident on a setup to generate a tilted-pulse-front. The model accounts for the angular 

dispersion of various spectral components that can generate THz radiation inside the nonlinear crystal by satisfying 

the appropriate phase-matching condition for optical rectification. From a time-domain viewpoint, the angularly 

dispersed pulse forms a tilted-pulse-front shown by the red ellipse. THz radiation is generated perpendicular to this 

tilted-pulse-front. (b) corresponding 2-D computational space for solving coupled nonlinear wave equations for 

optical rectification. Nonlinear crystal geometry is accounted for by delineating an appropriate distribution of 

χeff
(2)(x,z). Edges of the distribution along z0=0 are smoothed out to avoid discontinuities. The refractive index is 

homogeneously distributed throughout the computational space. The optical beam is centered at a distance h from the 

apex of the crystal which sets the limits to the computational region. The THz field profile can be calculated at a 

distance zd from the crystal after Fresnel reflection is taken into account. 

The overall schematic of our approach is depicted in Fig. 1. An optical pump pulse with the 

input electric field described by the complex variable 0 0( , , )in
opE x z at angular frequency ω, 

propagating in the z0 direction is incident on a TPF setup.  In Fig. 1(a), a commonly employed 
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setup incorporating a diffraction grating and single lens is depicted. However, the model is 

applicable to a variety of TPF setups (e.g. employing telescope and diffraction grating, 

contact grating etc.). In Fig. 1(a), electric fields at two angular frequencies ω and ω+Ω are 

depicted for convenience although there are many more frequency components.   

An optical pulse with a TPF is typically angularly dispersed [21]. Therefore, various 

frequency components of the emergent optical field described by 0 0( , , )out
opE x z  propagate at 

different angles. This is depicted in Fig. 1(a) as spectral components at ω and ω+Ω emerge 

with wave vectors (henceforth referred to as momentum) ( )k  and ( )k   respectively 

inside the nonlinear crystal which is in the shape of a right-angled prism.  In the time domain, 

such an angularly dispersed pulse has an intensity profile tilted with respect to its propagation 

direction as displayed by the red ellipses in Fig. 1(a). This gives rise to the terminology of 

‘tilted-pulse-front ’. These red ellipses make an angle π/2-γ with respect to the propagation 

direction of the optical pulse, where γ is termed the pulse-front-tilt angle.   Since OR is intra-

pulse difference frequency generation (DFG), in the phase-matched condition, the momentum 

of the generated THz (at angular frequency Ω) is given by  ( ) ( ) ( )k k k      as 

depicted by the red arrow in Fig. 1(a). The generated THz then emerges at an angle γ with 

respect to the direction of propagation of the optical pump pulse and exits approximately 

normal to the output facet of the nonlinear crystal that is specifically cut to enable this. Since 

the various frequency components are angularly separated, there is a spatial variation in the 

average frequency (spatial-chirp) as well as amplitude across the beam profile. As a 

consequence, the pulse durations and bandwidths at various points in space are different, 

which affects the spatial and spectral properties of the generated THz pulse.  In our model, we 

consider these effects by applying an analytic formulation of dispersive ray pulse matrices 

from [31] in Section 4.1. By invoking this analytic approach, large propagation distances of 

arbitrary TPF setups are accounted for by straightforward matrix multiplications which 

efficiently models the various spatio-temporal variations associated with the optical pulse. It 

then supplies the optical pump field 0 0( , , 0)out
opE x z  at the input face of the nonlinear 

crystal as shown in Fig. 1(b). By appropriately merging this analytic description of the TPF 

setup with the numerical solution of the coupled nonlinear wave equations, the model directly 

maps experimental conditions to the properties of the generated THz radiation. For example, 

in Section 5 we are able to quantitatively predict the trade-off in efficiency when the system is 

not at the optimal imaging condition. 

The incident optical field excites a polarization in the nonlinear material to drive the 

generation of THz radiation. The generated THz in turn influences the propagation of the 

optical field and vice versa. Thus, the evolution of the optical and THz fields is described by a 

solution of a system of 2-D coupled nonlinear wave equations in the (z-x) co-ordinate system 

depicted in Fig. 1(b). We effectively reduce this system of 2-D wave equations to 1-D by 

employing Fourier decomposition. This enables a massive parallelization of the solution and 

improves the efficiency of the solution. In our approach, the (z-x) co-ordinate system is 

rotated with respect to (z0-x0) by an angle α, which is the apex angle of the nonlinear crystal. 

The angle α is approximately equal to the pulse-front-tilt angle γ. The rotated co-ordinate 

system then has two key advantages. Firstly, in this set of axes, the THz radiation has small 

transverse-momentum components, i.e. kx~0, which relaxes the constraints on spatial 



resolution Δx and consequently alleviates computational cost.  This is particularly useful 

because the dimensions of the nonlinear crystals are on the order of ~cm, which results in 

large computational domains. Secondly, it makes it convenient to include the transmission of 

THz radiation at the crystal boundary. 

In Fig. 1(b), we delineate how we consider the geometry of the crystal. An extended 

Cartesian space in the (z-x) co-ordinate system, uniformly filled with material of refractive 

index ( )n  is considered. This is an auxiliary configuration for the numerical computation 

which mimics the situation in the actual experiment where the nonlinear material is 

surrounded by air. Only regions of the computational space physically occupied by the crystal 

would have a non-zero value of second order susceptibility (2)
( , )eff x z  as shown in Fig. 1(b). If 

the length of the input crystal face is L and the optical field is incident at a distance h from the 

apex, the computational region extends from  ( )sin , ( )cosL h L h     to

 sin , cosh h   as shown in Fig. 1(b).  The initial optical field profile along the line

( )sinz L h    can be calculated analytically by back-propagating the optical field 

calculated at the input crystal face at z0=0. In this model, we assume that the THz field is zero 

at the beginning of the computational space and consider only a single passage of the optical 

and THz beams through the crystal. In the limit of relatively thick crystals where the reflected 

THz energy is absorbed (absorption length at 300K is~ 2 mm) or with the use of THz anti-

reflection coatings, this approximation is well justified.  

 

3. Spatio-temporal break-up of the optical pump pulse due to THz generation 

In order to illustrate the essential physics governing THz generation via OR using TPF, we 

first provide as an example, a solution of our model using the following parameters. A 

transform limited optical pump pulse, centred at a wavelength 0 =1030 nm with pulsewidth 

of 0.5 ps full width at half maximum, peak intensity of 40 GW/cm
2
 and e

-2
 beam radius inw

=2.5 mm is incident at h =1.5 mm from the apex of the nonlinear crystal with crystal 

temperature T = 300 K. Figure 2(a), depicts the normalized optical fluence 
2

0

( , , )opE x z d 


  

(where ( , , )opE x z is the optical field at angular frequency ω) and THz fluence 

2

0

( , , )THzE x z d



   (where ( , , )THzE x z is the THz field at angular frequency Ω).  The 

crystal orientation and geometric parameters are as defined in the z-x co-ordinate system 

described in Fig. 1(b). The cross sectional area of the various beams are defined by the two 

transverse directions x and y (out of the plane of the paper). In our model, we solve for the 

frequency-domain optical field ( , , )opE x z and THz field ( , , )THzE x z . Fluences which are 

the aggregate of the magnitude squared of these fields over all frequencies are readily related 

to conversion efficiency and are hence depicted in Fig.2(a).  In Fig. 2(a), the region within the 

heavy green lines has non-zero (2)
( , )eff x z and represents regions of the nonlinear crystal. The 

optical pump pulse propagates with momentum opk (with an angular spread due to angular 



dispersion) as indicated by the black arrow in Fig. 2(a).The corresponding optical fluence is 

indicated by the cyan/light-blue colormap in Fig. 2(a). In lithium niobate, the group refractive 

index at a wavelength of ~1μm is ~2.25 and the THz refractive index is ~5. To achieve phase-

matching, this would then require the optical and THz beams to propagate at an angle of 

1cos (2.25 / 5)
= 63° to each other.  The generated THz pulse in the simulation then 

propagates in the z direction at an angle γ~63° to the optical pump pulse and emerges 

perpendicular to the output face. The momentum of the THz radiation, THzk is delineated by 

the red arrow in Fig. 2(a). The corresponding THz fluence is represented by the red colormap. 

      

Fig. 2(a). Spatial distribution of the optical and THz fluences in lithium niobate plotted in the (z-x) co-ordinate 

system (Fig.1(b)): 
0 =1030 nm , transform limited pulsewidth =0.5ps, peak intensity = 40GW/cm2 , inw =2.5 mm, h 

=1.5 mm, T = 300 K. The THz field propagates with momentum kTHz in the z direction as indicated by the red arrow. 

The optical field propagates at an angle γ = 63° with respect to the THz with momentum kop as indicated by the black 

arrow. THz is only generated over a small portion of the optical field due to broadening of the optical spectrum which 

results in disruption of phase-matching due to enhancement of group velocity dispersion (due to angular and material 

dispersion) for subsequent portions of the beam. (b) Optical spectrum is broadened and red-shifted between locations 

(i)-(iii) due to cascading effects caused by optical rectification. Sum frequency generation between optical and THz 

radiation causes a blue-shift and is less pronounced. (c) THz spectra at locations (i)-(iii) show significant spatial 

variations due to variations in the optical electric field in (c). (d) Since each frequency component has a certain value 

of transverse-momentum in an angularly dispersed beam, spectral broadening also necessarily results in broadening 
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in transverse-momentum kx. As the optical spectrum broadens, there is a broadening in transverse-momentum 

between z = -0.3 mm and 1.4 mm. 

As the optical pump pulse propagates, it generates THz photons at  and simultaneously 

suffers a frequency downshift by the same amount due to the intra-pulse DFG process. With 

successive generation of THz photons it repeatedly experiences a ‘cascaded’ frequency down-

shift which leads to large spectral broadening of the optical pump pulse spectrum as seen in 

Fig. 2(b). Some upshifting of the optical frequencies is observed, but the THz waves that are 

generated by DFG are phased relative to the generating optical waves so as to produce further 

THz generation and optical downshifting. Thus downshifting of the optical spectrum is 

favored over upshifting. Even if the total depletion of the optical pump energy is only 1%, the 

drastic spectral reshaping renders undepleted pump approximations inaccurate.  

As the optical pump pulse spectrum 
2

( , , )opE x z  is modified between locations (i)-(iii), 

the subsequent THz spectrum 
2

( , , )THzE x z  is also modified as shown in Fig. 2(c) and vice-

versa. As a result, there is significant spatial variation in both optical and THz spectra. The 

generated THz spectra are broadband, extending from 0 to 1 THz, consistent with earlier 

experiments and theory.  

For an angularly dispersed pulse, each spectral component of the optical pulse at ω has a 

well-defined transverse-momentum kx (smaller ω’s have a more negative kx value as shown in 

Fig. 1(a)). Therefore, spectral broadening of the optical pulse also directly leads to re-

distribution of optical pulse energy among various transverse momentum values kx as seen in 

the plot of the quantity 
2

0
( , , )op xE k z d 



   in Fig. 2(d). This quantity represents the total 

energy in a small transverse-momentum interval Δkx or energy density in momentum space. 

The spread in transverse momentum in Fig. 2(d) is on the order of 10
4
m

-1
, which is still much 

smaller than the optical wave number (~10
6
m

-1
) which means the beam is still relatively 

paraxial. 

In the presence of this large spectral broadening one would expect a temporal break-up of 

the pulse due to group velocity dispersion.  In addition, due to broadening in transverse 

momentum, there is also a spatial break-up of pulses. In combination, a rapid spatio-temporal 

break-up of the optical pulse occurs. Figure 3 shows snapshots of the electric field intensity of 

the optical pulse
2

( , , )opE t x z at three different time instants t in the z-x spatial co-ordinate 

system. Thus an initially clean TPF in Fig.3(a) suffers a spatio-temporal break-up upon 

propagation in Fig. 3(c) as it propagates over very short distances on the order of ~ 2 mm. 

Due to this spatio-temporal break-up, different parts of the optical pulse arrive at different 

times and the generated THz no longer builds up coherently. Neglecting the spectral re-

shaping of the optical pump spectrum would result in significantly longer interaction lengths 

as in [28,29], leading to much larger conversion efficiencies than experimentally achieved 

[22]. Therefore, exclusion of these cascading effects would not result in the drastic pulse 

break-up observed here. Furthermore, the spatio-temporal break-up of the optical pump pulse 

has implications on the optimization of conversion efficiency as well as spatial and spectral 

properties of the THz radiation which are discussed in Section 6. 



 

Fig. 3: Spatio-temporal break-up of the optical pulses due to simultaneous broadening in frequency and transverse 

momentum kx. (a) The tilted pulse-front is parallel to the output facet of the crystal which is oriented in the (z-x) co-

ordinate system defined in Fig.1 (b). (b) Due to group-velocity dispersion effects (dominated by GVD-AD which is 

~15 times larger than GVD-MD), the pulse is broadened in time and space. (c) A spatio-temporal break-up of the 

pulse occurs and different parts of the optical pump arrive at different times, preventing further coherent build-up of 

THz radiation.  

4.  Theoretical formulation for complete THz generation system 

4.1 Analytic description of optical pump field propagation through tilted-pulse-front setup 

      As described in Section 2 and depicted in Fig. 1, a TPF setup imparts a number of spatio-

temporal variations to the optical pump pulse which influences the properties of the generated 

THz radiation.  

In this section, we show how to account for these effects for an arbitrary TPF setup by 

employing dispersive ray pulse matrices [31]. Although developed for passive optical 

elements, our application of this approach to OR using TPF results in a powerful model, 

closely connected to experiments. An explicit expression for the electric field of the optical 

pump pulse at the entrance facet of the crystal is obtained which allows the calculation to be 

performed rapidly. Note that alternate ray-pulse matrix approaches such as [32] are also 

applicable. Since the beam size of the optical pump used in OR is much larger than the optical 

wavelength, paraxial approximations of ray-pulse matrix schemes are valid for the optical 

pump. Each spectral component ( , , )in
op o oE x z  of the optical pump pulse at angular 

frequency ω, with input beam centred at a transverse position ( )inx  and propagation 

direction 
' ( )inx   emerges with transverse position ( )outx   and propagation direction

' ( )outx   

from the optical setup, just before entering the nonlinear crystal.  

The dependence of the position and propagation direction on frequency accounts for 

spatial-chirp and angular dispersion. The propagation direction here is not the physical 

direction but one normalized by the refractive index of the medium [31] which makes it 

convenient to apply to systems with interfaces of mismatched refractive index. The 
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m

m
)

(a) (b) (c)

Optical Fluence 
(Normalized)



relationship between ( )inx  , 
' ( )inx   and ( )outx  ,

' ( )outx    is given by Eq. (1).  Here, ( )M   

is the overall ray pulse matrix obtained by the product of ray pulse matrices of individual 

optical components ( )iM   in reverse order of incidence. The beam positions and 

propagation directions after the i
th

 optical element are ( )
ioutx   and  ' ( )

ioutx   and are 

connected to the input parameters as follows.   

0

' '

( ) ( , z 0)

( ) ( ) ( )

1 1

in out

in out

x x

M x x

 

  

   
   

   
   
      

                                          (1) 

The ray pulse matrix of the i
th

 optical component ( )iM  is described by a 3x3 matrix for a 

single transverse spatial dimension given by  
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              (2)                                                        

Equation (2) shows that the upper 2x2 matrix is the standard ABCD matrix for Gaussian 

beams. However, in order to account for dispersion, there are two additional terms Ei and Fi 

which correspond to the terms 0( )out i
x       and 0' ( )out i

x      . These terms 

refer to the shift in output beam position and output beam propagation direction in response to 

a shift in frequency. Here, we calculate Fi upto the fourth order in frequency and accounts for 

GVD-AD and higher order terms.  Note that the last row of ( )iM  is [0 0 1] as the source 

frequency does not change. The matrices for common optical elements are presented in table 

1. 

 

 

 

 

 

 

 

 

 

 

Table 1: ABCDEF ray pulse matrices for various optical components are presented. The diffraction grating has terms 

with upto 4th order dependence on frequency which accounts for group velocity dispersion due to angular dispersion 

and higher order dispersive terms. 



Optical Element ABCDEF Matrix 
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Propagation in a medium 
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Lens 1, 0, 1/ , 1A B C f D      

With the knowledge of the input and output beam positions and propagation directions, a 

Huygen’s integral can be used [31] to calculate the electric field of the emergent optical pump 

pulse at the crystal entrance facet after it has passed through the TPF setup as shown below.  

2
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In Eq. 3(a), 0( ), ( , )in outw w z   are the e
-2

 beam radii of the spectral component at ω at 

the input and output of the TPF setup respectively. The pre-factor 0( ) ( , )in outw w z  in Eq. 

3(a) represents the change in the optical field intensity due to change in beam size. 0 ( )E 

represents the initial spectral amplitude of the electric field at angular frequency ω and may 

include phase terms describing chirp. The first exponential term in Eq. 3 (a), represents the 

transverse variation of the beam along x0, where qout is the usual q parameter associated with 

Gaussian beams. Notice that each spectral component is centered at a different beam position

0( , )outx z , which accounts for spatial-chirp. The second exponential term 0( ) zjk
e

 is the 

phase associated with the roughly z0 propagating paraxial field. The wave number 

( ) ( ) /k n c   includes the material dispersion of the medium at optical frequencies.  The 

third exponential term
'

0( ) ( )outjk x x
e

 
 represents angular dispersion which directly influences 

phase matching. Since the optical pump beam is treated paraxially, 
' ( ) 1outx  . Since, the 

value of 
' ( )outx   is mapped to the configuration of the TPF setup (grating angle, imaging 

distances etc.), Eq. 3(a) can quantify the impact of imaging errors on the properties of THz 



radiation (spectrum, spatial profile, conversion efficiency).  The various phase terms in Eq. 

3(a), 1 2 3( ) ( ) ( ) ( )           are given by Eqs. 3(b)-3(d). The 1( )  term represents 

the phase correction due to a Gaussian beam. The remaining terms 2 ( )  and 3( )  account 

for additional phases introduced by the TPF setup. Thus using these dispersive ray pulse 

matrices, one obtains an explicit expression for the electric 0 0( , , )out
opE x z  field for every 

spectral component of the optical pump pulse spectrum. This calculated 0 0( , , )out
opE x z  value 

is used as an initial condition to solve the nonlinear coupled system of wave equations. This 

expression accounts for spatial variations, material dispersion, angular dispersion including 

GVD-AD, spatial frequency-variations and spatial variations in pulsewidth. It allows for 

analysing the properties of the produced THz radiation as a function of characteristic 

parameters of the TPF setup. 

 

4.2 Nonlinear polarization due to optical rectification 

 

In Section 4.1, we obtained the electric field of the optical pump pulse inside the crystal in 

the co-ordinate system (z0-x0) as shown in Fig.1. In this section, we calculate the nonlinear 

polarization terms which drive the optical and THz fields. The nonlinear polarization will be 

calculated in the (z-x) co-ordinate system introduced in Fig.1(b). The transformation between 

(z0-x0) and (z-x) co-ordinate systems is easily obtained via Eq. (4). 

0 cos sinx x z   , 0 sin cosz x z                                      (4)                                                                                                                            

We use Eq. (4) in Eq. (3), to obtain the electric field of the optical pump pulse in the 

transformed co-ordinates i.e. ( , , )out
opE x z . The value of ( , , )out

opE x z  at ( )sinz L h     

serves as the initial condition for the evolution of wave equations described in Section 4.3.  

Equation (5) describes the nonlinear polarization term ( , , )THzP x z due to OR which 

drives the THz electric field ( , , )THzE x z at the angular frequency Ω. 

(2)

0

0

( , , ) ( , ). ( , , ) *( , , )THz eff op opP x z x z E x z E x z d    


                    (5) 

In Eq. (5), ( , , )opE x z   corresponds to the electric field of the spectral component of 

the optical pump pulse spectrum at angular frequency ω and spatial location (z,x). The 

nonlinear polarization term at each spatial location (z,x) in Eq. (5) can be seen to be an 

aggregate of all possible DFG processes between the spectral component ( , , )opE x z  and

( , , )opE x z . In Eq. (5), (2)
( , )

eff
x z  is the effective second order nonlinear susceptibility for 

OR at each spatial location and 0  is the free space permittivity. The spatial dependence of the 

effective non-linear susceptibility is used to account for the geometry of the nonlinear crystal 

as was shown in Fig. 1(b).  

  If one substitutes the expression for the electric field from Eq. 3(a) in Eq. (5), various 

factors which affect phase-matching effects become evident. For instance, because of the 

angular dispersion term in Eq. 3(a), a term proportional to 

 ' '
0exp ( ) ( ) ( ) ( )out outj k x k x x       

 
  appears in Eq. (5) which enables us to quantify 



the effect of phase-mismatch due to imaging errors. This term also accounts for the effects of 

GVD-AD. Similarly, a term proportional to  
   

2 2
0 0( ) ( )

exp
2 ( ) 2 ( )

out out

out out

x x x x
j

c q c q

  

 

   
  

 
 

  
 
  

 

describes a spatial variation in the magnitude of ( , , )THzP x z leading to spatial variation of 

the generated THz frequency.  This term also describes the effects of the finite radius of 

curvature of the optical pump pulse wavefront which affects phase-matching. In addition, 

there is a term of the form   exp ( ) ( )j       which introduces phase mismatch due 

to various phase accumulations through the optical setup.  

Similarly, each spectral component ( , , )opE x z  of the optical pump pulse spectrum is driven 

by a nonlinear polarization term ( , , )opP x z described in Eq. (6). 
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(6) 

The first term in Eq. (6) is the analogue term on the right hand side of Eq. (5). It signifies 

that an optical photon at angular frequency ω is created by an aggregate of DFG processes 

between optical photons at angular frequency ω+Ω and THz photons at angular frequency Ω. 

It represents the red-shift of the optical spectrum depicted in Fig. 2(b). The second term 

corresponds to an aggregate of sum frequency generation (SFG) processes between optical 

photons at angular frequency ω-Ω and THz photons at angular frequency Ω. This term 

partially contributes to the blue-shift of the optical spectrum that was seen in Fig. 2(b).  The 

third term in Eq. (6) represents the SPM term. Here, ( , , )opE t x z is the time-domain electric 

field of the optical pump pulse and Ft represents the Fourier transform between time and 

frequency domains. The intensity dependent refractive index coefficient is given by 2 ( , )n x z . 

Since the SPM term in Eq. (6) contains details of the spatial distribution of the optical field, it 

also accounts for self-focusing effects which are not accounted for in the 1-D case [22]. The 

final term models Stimulated Raman Scattering. This term is related to the SPM term but 

includes the effects of a Raman gain lineshape given by ( ')Rh  . 

 

4.3 Solving the 2-D coupled non-linear wave equations using Fourier decomposition 

In this section, we present our approach for solving the coupled system of nonlinear wave 

equations. The nonlinear polarization terms defined in Eqs. (5) and (6) will drive the 

corresponding THz and optical fields.  The nonlinear scalar wave equation for the evolution 

of the THz field ( , , )THzE x z  is presented in Eq. (7). A single scalar wave equation, treating 

one vector component of the THz beam would suffice for lithium niobate since the d33 



element of the second order nonlinear tensor is much larger than other dij and THz generation 

scales as
2

ijd . 

2
2 2

2
0

( , , ) ( ) ( , , ) ( , , )THz THz THzE x z k E x z P x z
c


                              (7) 

In Eq. (7), ( ) ( ) /k n c   is the wave number at the THz angular frequency Ω and n(Ω) 

is the corresponding refractive index.  Similar to Eq. (7), one can also write the corresponding 

wave equation for the optical fields at various angular frequencies ω in Eq. 8(a). 

  
2

2 2

2
0

( , , ) ( ) ( , , ) ( , , )op op opE x z k E x z P x z
c


   




                              8(a) 

In the (z-x) co-ordinate system, the optical radiation is propagating at a large angle of ~ 

63° relative to the THz radiation. Furthermore, the optical wave number is a hundred times 

larger than the THz wave number.  Therefore, the spread in transverse momentum required to 

account for the oblique propagation of the optical field would be very large.  Direct solutions 

of Eqs. (7) and 8(a) will therefore be cumbersome because of the fine spatial resolution that 

will be required to account for this large spread in transverse momentum. Also, solving Eqs. 

(7) and 8(a) would require knowledge of the initial value of the first derivative of the electric 

fields in addition to the initial electric field values. In order to provide an efficient solution to 

the problem, we define a solution of the form 0 0( ). ( ).
( , , ) ( , , ) x zjk x jk z

op opE x z A x z e e
   

 . 

Here, 0 ( )xk  and 0 ( )zk   are the momentum components in the x and z directions and are 

functions of ω due to angular dispersion. This expression signifies that the optical beam has a 

narrow spread in transverse-momentum in comparison to 0 ( )xk  . Equation 8 (a) then reduces 

to Eq. 8(b) for the evolution of the optical field. It only requires the initial value of the electric 

field and not the initial value of the first derivative of the electric field. The second derivative 

in z is dropped since '

0 ( , ) "( , )z op opk A z A z  . The second derivative in x is retained to 

account for the radius of curvature of the Gaussian beam wavefront.  

0 0
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               8(b) 

Eq. (7) drives the THz field which in turn affects the optical field via the nonlinear 

polarization term ( , , )opP x z defined in Eq. (6). However, the optical field directly 

influences the THz field via the nonlinear polarization term ( , , )THzP x z  defined in Eq. (5). 

Thus, Eqs. (7) and 8(a) form a coupled system of wave equations for THz and optical fields. 

An elegant solution to this system can be obtained via spatial Fourier decomposition. This 

effectively breaks up Eqs. (7) and 8(b) into a system of coupled 1-D first order differential 

equations which can be solved highly efficiently as will be shown below.  



Applying Fourier transforms to both the left and right hand sides of Eq. (7), we obtain 

Eq. 9(a), which is a 1-D differential equation in z for ( , , )THz xE k z . The evolution of 

( , , )THz xE k z  at each Ω and kx can be updated in parallel.  

 
2 2

2 2

2 2
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             9(a) 

Equation 9(a) can be further simplified to Eq. 9(b) by assuming a solution of the form

( , )
( , , ) ( , , ) z xjk k z

x xE k z A k z e
 

    which is a slowly varying envelope approximation, 

where 2 2( , ) ( )z x xk k k k    . This is not to be confused with a paraxial approximation for 

the THz field since each component has a different ( , )z xk k , which allows for deviations of 

/ 2  from the z direction. However, back-propagating THz components are ignored as they 

would not be well phase matched.   The THz absorption coefficient at angular frequency Ω is 

given by α(Ω). 

2
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   9(b) 

Similar to Eq. 9(b), the corresponding 1-D differential equation in z for the optical 

field in is  

0

2
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2
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            (10) 

In Eq. (10), the first term on the right hand side represents the oblique propagation of 

the optical field. The second term corresponds to the quadratic phase associated with a 

Gaussian beam and the final term is the spatial Fourier transform of the nonlinear polarization 

in Eq. (6). Equations 9(b) and (10) form a system of coupled 1-D differential equations for 

each value of kx.  Equations (5), (6) and 9(b) and (10) are thus solved progressively up to

sinz h  . 

 

4.4 Transmission and propagation of THz radiation through exit facet of crystal 

To calculate the transmitted THz field, we use standard Fresnel reflection coefficients as a 

function of the transverse-momentum kx. For THz field polarization perpendicular to the plane 

of Fig. 1, the Fresnel reflection coefficients are presented in Eq. (11). 
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2 2 2 2 2

2 2 2

2 2 2
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( ) 2x x x x

n n
T k k k k

c c c


 

         
 
 

                    (11) 

 In [33], a specific formula for the case when the group velocities of the optical and THz 

radiation are disparate was provided. However, close to phase-matching this is less important. 



The THz field at a distance zd away from the exit surface is calculated without paraxial 

approximations:        

 
1/2

2 2
0 ( )

( , , sin ) ( , , sin ) ( )
x dj k k z

d x x xE x h z A k h T k e 
   

    
 
 

-1
F              (12) 

Thus using Eqs. (1)-(12), we can model an arbitrary TPF setup for THz generation by OR. 

Equations 9 and 10 are effectively a 1-D system of coupled equations and can be solved in 

parallel for various kx and ω and Ω. Numerical integration was performed using a 4
th

 order 

Runge-Kutta method.  The evaluation of Fourier transforms was accelerated by GPU 

parallelization.   

 5. Validation of the model: comparison to experiments and analytic calculations 

In this section, the developed model is validated against analytic theory and experiments [12]. 

Simulations assume the setup shown in Fig. 1(a). The ABCDEF matrices for the various 

optical components are presented in Table.1. The F term for the diffraction grating contains 

dispersive terms up to the 4
th

 order in frequency and accounts for GVD-AD and higher order 

dispersion terms.  The full-width at half maximum (FWHM) pulse duration was assumed to 

be 0.5 ps with a fluence of 20 mJ/cm
2
 and a peak intensity of 40 GW/cm

2
. The central 

wavelength of the pulse is 1030 nm. This closely resembles the output of the commercial 

diode-pumped Yb:KYW chirped pulse amplification system (s-Pulse, Amplitude Systemès) 

used in [12] with pulse energies upto  2 mJ at 1 kHz repetition rate and 2.6 nm spectral 

bandwidth.   The nonlinear material is assumed to be congruent lithium niobate doped with 

5% magnesium oxide. The effective second order susceptibility was assumed to be 
(2) ( , )eff x z

= 360 pm/V [34] and the intensity dependent refractive index coefficient is n2=10
-15

 cm
2
/W 

[35]. The crystal temperature was T = 300 K. The optical beam with input e
-2

 radius of 

2.5inw  mm is incident at h = 2.2 mm from the apex of the crystal. The apex angle of the 

prism is assumed to be α=58°.  The focal length of the lens was 23 cm. The refractive indices 

and Raman gain lineshape for congruent lithium niobate are taken from [36] and [37] 

respectively. We calculate the conversion efficiency as a function of the grating incidence 

angle (θi) and the grating to lens (s1) and lens to crystal (s2) distances. The values of θi, s1 and 

s2 obtained for maximum conversion efficiency are compared to analytic calculations [25]. 



 

Fig.4 (a): Simulation of conversion efficiency as a function of imaging conditions. 
(2)

eff = 360 pm/V, n2=10-15 

cm2/W, transform-limited pulsewidth = 0.5ps, Fluence = 20 mJ/cm2, peak intensity = 40 GW/cm2, win = 2.5 mm, h = 

2.2 mm, apex angle α=58°, T=300 K. The surface plot shows the conversion efficiency versus displacements from 

optimal imaging distances Δs1 and Δs2 . s1, s2 are the lens-to-grating and lens-to-crystal distances respectively. The 

inset shows conversion efficiency versus incidence angle to diffraction grating. As s1,s2 are varied, there is variation 

of the pulse-front-tilt angle which leads to a change in conversion efficiency. Careful optimization of the 

experimental setup is required to identify the optimal conversion efficiency point.(b) Theoretical calculations of 

optimal imaging conditions for various pulse-front-tilt angles based on analytic theory from [25]. For a pulse-front-

tilt angle of 63°, the imaging conditions are in close agreement with the simulation results, validating the accuracy of 

the presented model. (c) Experimental scans of conversion efficiency vs displacements Δs1 and Δs2 agree well with 

the simulations in Fig. 4(a).  

 

The simulation results are plotted in Fig. 4(a). A maximum conversion efficiency of 

0.8% is obtained at s1 = 60.89 cm, s2 =36.84 cm and θi=46.5°.  It can be seen that these values 

of s1, s2 satisfy the imaging condition for the setup, i.e. 1 1 1

1 2s s f    . The optimal imaging 

condition is determined by the magnification required to produce the optimal pulse-front-tilt 

angle inside the crystal.  Analytic calculations were developed in [25] to supply optimal 

imaging conditions and are presented in Fig. 4(b). The blue and red curves in Fig. 4(b) 
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correspond to the values of s1 and s2 for various pulse-front-tilt angle values γ and are plotted 

along y-axis on the left. The grating incidence angle θi as a function of γ is given by the black 

curve plotted along the y-axis on the right. We know that for pumping at 1030 nm, the 

optimum pulse-front-tilt angle 
1 1

0cos ( ( ) ( ) )gn n    ~63°. For this value of γ, it is seen 

that the corresponding imaging conditions closely match the simulation results, i.e.  s1=60.06 

cm, s2=37.1 cm and θi=46°. Since the simulation is ab-initio, i.e it does not make any prior 

assumptions about the optimal imaging conditions, this agreement is a strong validation of the 

developed model.  As s1 or s2 are varied, the direction 
' ( )outx   at which each optical 

component at ω emerges from the setup changes which affects phase-matching via Eq. (5). 

Thus, the presented formalism can map the performance of the system directly to 

experimental conditions.  

 In Fig. 4(a), we see how small deviations in imaging conditions can lead to sizeable 

degradation of conversion efficiency. For example, Δs2~1 mm, leads to drop in conversion 

efficiency by about 40%. In Fig. 4(c), we show experimental scans of conversion efficiency 

for similar parameters. The white spaces in the figure indicate regions where data was not 

collected. For similar displacements Δs1 and Δs2 from the optimum values, the conversion 

efficiency reduction agrees well with the calculations in Fig. 4(a). The slight difference in the 

tilt of the ellipse in Fig. 4(c) can be attributed to a different grating incidence angle from that 

presented in Fig. 4(a). 

Further verification of the model is provided by comparisons to experiments [12]. For 

the optical pump conditions described for Fig. 4(a), a conversion efficiency of 0.8% (win= 3.5 

mm h =2.2 mm) which is in reasonable agreement with the experimentally reported value of 

1.15%. The larger number may be partially owed to uncertainties in THz absorption 

coefficients below 0.9 THz [36]. When the conversion efficiency is 0.8%, the absorption 

coefficient below 0.9 THz was ~ 10 cm
-1

. When this was adjusted to 5 cm
-1 

, the resulting 

conversion efficiency was 0.9%, which is closer to the experimental result.   

 
 Fig. 5.Parameters are the same as Fig.4. (a) The experimental and theoretically calculated THz spectra are presented. 

The theoretical calculation 2 2| ( ) | | ( , ) |THz THzE E x dx




    is spatially averaged over x and is centered at 0.45 THz, in 

close agreement with experiments [12] (b) The experimental output optical spectrum (red) is presented along with 

calculations. The theoretical calculation averaged over a single transverse spatial dimension x (black,dotted) are 

broadened significantly more than the experiments. However, if spatial averaging is performed over both transverse 

spatial dimensions x and y by simulating numerous 2-D slices, the output spectrum matches experiments more 

closely. The disparity may also be partially explained by the possibility of incomplete collection of extreme optical 

frequency components with large divergence. 
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In Fig. 5(a), the experimentally obtained THz spectrum is compared to theoretical 

calculations. The calculation presented is the spatially averaged spectrum 
2

( )THzE 

2
( , , sin )THzE x h dx





   at the output facet of the crystal. The theoretical and experimental 

spectra are in agreement and peak at ~0.45 THz, in line with expectations from prior models 

[22], [25].   In Fig. 5(b), the experimentally reported optical spectrum is compared to 

theoretical calculations. The black dotted line represents spatial averaging of the optical 

spectrum over a single transverse dimension, i.e the 2-D average

2 2

2

( ) ( , , sin )op op
D

E E x h dx  


 

  .  The theoretically obtained optical spectrum shows 

significant broadening and red-shift similar to the experiments. Some blue-shift is also 

observed due to the much less dominant SFG process between the optical pump and THz 

radiation.  The theoretically obtained spectrum is larger in extent in relation to the above 

estimate as well as the experimental spectrum. We simulated several 2-D slices, each with 

different optical pump intensity, to mimic a 3-D simulation. Based on this quasi 3-D 

simulation, the optical spectrum was averaged over both transverse spatial dimensions (x and 

y) to yield the 3-D average 
2 2

3

( ) ( , , , sin )op op
D

E E x y h dxdy  
 

  

   .  This is shown in 

the solid black curve and is in better agreement with experiments compared to 
2

2

( )op
D

E 


 

. The reason for this is that for lower optical intensities, the extent of spectral broadening will 

be less as the nonlinear polarization term in Eqs.(5)-(6) would be smaller and therefore the 

spatial average shows less red-shift and spectral broadening.  Another reason for the disparity 

between experiments and theory could be attributed to uncertainties in the measurement of the 

optical spectrum. Extremities of the frequency spectrum may not have been collected due to 

their larger divergence. The internal conversion efficiency
1 1

int ~ (1 ) [ (1 ) ]THzL
THz extR L e

     , where R is the power reflection and the 

1(1 )THzL
THz L e

    factor accounts for THz absorption. For L =2mm, αTHz=5-10cm
-1, 

R~0.5, 

this amounts to about 4-5%. The red-shift in wavelength 0 int     is therefore ~ 40-50 nm, 

which translates to a wavelength spread upto 1070-1080 nm, which is in reasonable 

agreement with the simulated values. 

 

6.  Optimizing conversion efficiency 

6.1 Discussion of effective length in two dimensions 

It is useful to understand what the effective propagation length Leff  in a 2-D geometry is. In 

general, absorption and dispersion determine the optimal value of Leff. A longer Leff leads to 

more absorption and dispersion. A shorter effective length would mean less of both but would 

also translate to lesser THz generation. Therefore, there must exist an optimum value where 

the amount of THz generation is sufficiently large but absorption and dispersion are small.  



In a 2-D non-collinear geometry, two parameters influence the extent of absorption 

and dispersion. These include the beam radius 
inw (or

outw ) and   beam position h of the 

optical pump beam (with respect to the apex of the crystal, see Fig. 1 (b) for definitions). 

Therefore, the effective length parameter maps to both h and
inw , i.e. ( , )effL g h w where g is 

some function. Since THz is generated only in the region where there is optical fluence, (i) a 

larger value of h would mean that the THz would propagate over a longer absorptive region 

(i.e. regions where there is no optical fluence, e.g. see Figs. 6(a) vs. 6(b)).  Mathematically, 

the regions without optical fluence correspond to regions where the nonlinear polarization 

term ( , , ) 0THz xP k z   in Eq. 9(b). (ii) For larger h, the optical beam would propagate longer 

distances which would mean it would suffer greater spectral broadening due to cascading 

effects and SPM. This would in turn make dispersive effects more acute.  Thus a larger h 

increases both dispersion and absorption. At the same time, a small h also leads to lesser 

amount of THz being generated.   (iii) A smaller value of beam radius 
inw  would lead to a 

larger region without optical fluence and consequently a larger amount of absorption.  (iv) A 

larger value of 
inw  would mean that parts of the optical pump beam propagate a longer 

distance (since different sections of the beam propagate different distances), which would lead 

to a greater amount of cascading and dispersive effects. Therefore, it is reasonable to expect 

an optimal value of 
inw  and h for a given set of optical pump conditions. Increasing the 

intensity or initial bandwidth of the optical pulse will lead to more rapid spectral broadening 

(w.r.t length), which would require a readjustment of h and
inw . 

 

6.2 Implications on energy scaling 

These effects are illustrated in Figs. 6(a)-(c). The fluence, bandwidth, pulsewidth, material 

parameters, setup conditions, crystal geometry and temperature are the same as those used in 

Fig. (4). The optical fluence ( 2

0

| ( , , ) |opE x z d 


 ) and THz fluence ( 2

0

| ( , , ) |THzE x z d



  ) in Fig.6 

are plotted in the z-x co-ordinate system defined in Fig.1 (b). In Fig. 6(a), a beam with 
inw = 

2.5 mm, is incident at h = 1.5 mm from the crystal apex. Fig. 6(a) uses the same parameters as 

that used in Fig.2 (a) but is normalized to a different scale so that it can be appropriately 

compared to Figs. 6(b), 6(c). It can be seen how the THz and optical beams have good overlap 

which reduces absorptive effects and results in a relatively high conversion efficiency of 

0.7%. In Fig. 6(b), the same beam is displaced further down the crystal.  One sees that 

increased THz absorption, as delineated in Fig. 6(b), causes the conversion efficiency to drop 

to 0.3%. In Fig. 6 (c), a larger beam size with inw = 10 mm is used at h =5 mm. We see that 

only a small portion of the optical pump beam cross-section produces THz radiation, resulting 

in a conversion efficiency of 0.5%. This is because, after initial THz generation, subsequent 

parts of the beam are spectrally broadened due to cascading effects to an extent that prevents 

further THz generation in the presence of GVD-AD and GVD-MD. This has an important 

implication for the scaling of these systems to large pump energies. In Fig. 6(d), we plot the 

maximum conversion efficiencies for various values of inw while keeping the peak optical 

pump intensity constant. The top x-axis depicts the corresponding optimal values of beam 



position h. Note that the size of the beam at the input crystal face is ~ 0.6out inw w . In Fig. 6(d), 

for
inw > 3.5 mm, there is a drastic drop in the maximum achievable conversion efficiency. If 

cascading effects were not considered, this drop in conversion efficiency would not be 

observed. For instance, in the undepleted model of [29], saturation rather than a drop in 

conversion efficiency for large beam sizes is predicted. There is an initial increase in the 

maximum achievable conversion efficiency for 
inw < 3.5mm, because of reduced absorption 

due to the increase in beam size (See section 6.1 for explanation). In Fig. 6(d), it is seen that 

optimal values of h increase with larger 
inw  and that they are present relatively close to the 

apex of the crystal. The degradation of conversion efficiency can be circumvented by using an 

elliptical pump beam with its major axis perpendicular to the plane of tilting (i.e out of the 

plane of the paper).  

               
Fig. 6(a). Effective length in 2-D: Optical and THz fluences are plotted in the (z-x) co-ordinate system defined in Fig. 

1(b).  
(2)

eff = 360 pm/V, n2=10-15 cm2/W, transform-limited pulsewidth = 0.5ps, Fluence = 20 mJ/cm2, peak intensity 

= 40 GW/cm2 , apex angle α=58°, T = 300 K for all plots. The beam position h and beam radius win are varied .h and 

win affect the amount of absorption and dispersion. Absorption is proportional to h since there would be a greater 

region of space without optical fluence for larger h, whereas win is proportional to the area containing optical fluence 

and is therefore inversely proportional to the amount of absorption. An increase in h or win increases the effective 

propagation distance of the optical beam and therefore dispersive effects due to spectral broadening caused by 

cascading effects. Simultaneously, a very small h or win results in lesser THz generation. Therefore, there is an 

optimal h and win for each optical pump condition. (a) For h=1.5 mm and win=2.5 mm there is minimal absorption 

and conversion efficiency is 0.7% (b) for h=4.5 mm absorption increases and conversion efficiency drops to 0.3 % 

(c) for large win=10 mm, only small portions of the beam are involved in THz generation due to disruption of phase-

matching by enhanced dispersive effects in the presence of cascading effects, leading to an overall drop in conversion 

efficiency to 0.4 %. This has important implications for the scaling of THz energies by merely scaling beam size. (d) 

For win < 3.5 mm, absorptive effects dominate and conversion efficiency increases with beam size.   The maximum 

achievable conversion efficiency drops beyond win=3.5 mm, due to enhanced dispersive effects caused by cascading 

effects. An elliptically shaped beam is thus preferred for very large pulse energies.  
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6.3 Effects of pump intensity 

In Fig. 7(a), we present experimental results for the conversion efficiency as a function of 

fluence for two different cases. In each case, the fluence was varied by attenuating the pulse 

energy of the pump source.  In the first case, shown by the red curve in Fig.7(a), the fluence 

was first reduced to a minimum. The conversion efficiency was then locally optimized at this 

lowest fluence by only adjusting the beam position h. Subsequently, the fluence was 

progressively increased by reducing the attenuation and the corresponding conversion 

efficiency was recorded. In the second case, shown by the black curve in Fig.7(a), the fluence 

was first maximized. Conversion efficiency was optimized at this maximum fluence by re-

adjusting the beam position h. Subsequently, the fluence was progressively decreased and the 

corresponding conversion efficiency was recorded. In each case, an imperfectly compressed 

pulse with duration of 1.39 ps and transform-limited pulsewidth of 0.5ps was used. The 

central wavelength of the pulse was 1030 nm. The material parameters and crystal geometry 

were the same as that described in Fig.4 and the crystal temperature was 300K. The input 

beam radius 2.5inw mm .   The curves show differing saturation behaviour or hysteresis with 

a cross-over at a fluence of  22 mJ/cm
2
. In Fig. 7(b), we simulate these experiments using the 

developed model. The simulated results show qualitative and quantitative agreement with the 

experiments. For lower fluences, a larger value of h is required to optimize the conversion 

efficiency. This is because, the smaller peak intensity in this case leads to a slower rate of 

spectral broadening of the optical pump, thereby causing  dispersive effects to be ‘delayed’ 

with respect to length in their appearance. This leads to a longer effective length or larger h 

for optimum efficiency. Note that the optimal values of h are larger compared to those 

depicted in Fig. 6(d) in Section 6.2 because of the smaller peak intensity of the stretched 

pulse. Thus we see that the conditions for the optimal conversion efficiency are highly 

sensitive to optical pump conditions.  This could be one reason why, various experiments 

report very different saturation curves. 

 

Fig. 7. 
(2)

eff = 360 pm/V, n2=10-15 cm2/W, transform-limited pulsewidth = 0.5ps, pulse duration = 1.39 ps, T = 300 K, 

win = 2.5 mm, apex angle α=58°. (a) Experimentally obtained conversion efficiency saturation curves optimized for 

different pump fluences.  The black curve is optimized by only varying beam position h for the maximum fluence 

while the red curve is optimized for the smallest fluence. The optimal experimental conditions are different for 

different fluences as seen in the hysteresis of the curve (b) Theoretical calculations of conversion efficiency 

saturation curves for experimental parameters in (a). Good quantitative agreement between experiments and theory is 

seen. When the fluence is lower, the optimal efficiency occurs at a larger value of h. This is because cascading effects 
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occur at a slower rate and enable a longer effective interaction length. The optimal values of h are larger than that in 

Fig. 6(d) due to the use of a stretched pulse in the experiments. 

 

6.4 Trade-offs of optimizing conversion efficiency  

 

 

Fig. 8. 
(2)

eff = 360 pm/V, n2=10-15 cm2/W, transform-limited pulsewidth = 0.5ps, win = 2.5 mm, h=1.5 mm, apex angle 

α=58°, T = 300 K,.  (a) When the fluence is 10 mJ/cm2, the conversion efficiency is 0.5%. The THz spectrum as a 

function of transverse coordinate x, is relatively uniform with all points having a broadband THz spectrum centred at 

~0.45 THz. (b) As the fluence is increased to 35 mJ/cm2, the conversion efficiency increases to 0.9% but the THz 

beam now contains a large spatial chirp and has an effectively reduced spot size. As the optical beam propagates to 

more negative values of x, it has been significantly broadened spectrally. Along with dispersive effects, this inhibits 

further coherent growth of THz radiation. Absorptive effects then dominate, leaving only the lower frequency THz 

components with smaller absorption intact. 

 

Finally, we highlight some trade-offs of optimizing only conversion efficiency in Figs. 8(a) 

and 8(b). The material parameters, TPF setup conditions and crystal temperature are the same 

as in Fig.4. Here, the THz spectrum as a function of transverse spatial coordinate (x) are 

shown for two different fluences. In Fig. 8(a), the optical fluence is 10 mJ/cm
2
 which results 

in a conversion efficiency of 0.5%. The THz spectrum is virtually identical across the beam 

cross-section (x co-ordinate) as seen in Fig. 8(a). In Fig. 8(b), a conversion efficiency of 0.9% 

is achieved with a fluence of 35 mJ/cm
2
. However, the THz spectrum is spatially chirped 

across the beam-cross section and has an effectively smaller spot-size. As the optical pump 

beam generates THz, it suffers spectral broadening due to cascading effects. Phase mismatch 

is accentuated in the presence of this larger spectral bandwidth by GVD-AD and GVD-MD, 

which causes the coherent growth of THz to cease at the more negative values of x (See 

Fig. 2(a): optical beam propagates towards negative x values). In the absence of coherent 

growth, THz absorption dominates and the THz spectrum red-shifts (since absorption is less 

for lower THz frequencies). Thus, while conversion efficiency is increased, a spatial chirp is 

introduced in the THz beam profile along with a reduction in the THz beam spot-size which 

may not be suitable for certain applications.  

7.  Conclusion and outlook 

In conclusion, a new approach to modelling THz generation via optical rectification (OR) 

using tilted-pulse-fronts (TPF’s) was presented and discussed. The approach was formulated 
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to consider (i) spatio-temporal variations of the optical pump pulse, (ii) coupled non-linear 

interaction of the THz and optical fields in 2-D as well as (iii) self-phase-modulation and (iv) 

stimulated Raman scattering. The formulation was done in a way to circumvent challenging 

numerical issues. It was validated by comparisons to experiments and analytic calculations, 

with good quantitative agreement in both cases. We described the physics of OR using TPF’s. 

In particular, we discussed the problem from transverse-momentum and time domains. It was 

seen that the large spectral broadening which accompanies THz generation also leads to 

broadening in transverse-momentum since each frequency component in an angularly 

dispersed beam has a well-defined transverse-momentum value. Thus, the optical pump has 

an increased frequency and transverse-momentum spread. Group velocity dispersion due to 

angular and material dispersion then causes a spatio-temporal break-up of the optical pump 

pulse which inhibits further coherent build-up of THz radiation. It is seen that THz conversion 

efficiency reduces for very large beam sizes. This suggests the use of optical pump beams that 

are elliptically shaped for high energy pumping.  Guidelines to optimize the setup are 

provided. Imaging errors were shown to be critical and careful alignment is required to 

optimize efficiency. It is seen that optimal setup conditions are different for different pump 

conditions. Finally, we show how optimizing the conversion efficiency could lead to other 

trade-offs such as a deterioration of the spatial THz beam profile.  This work lays the 

foundation for optimizing such sources for various applications. 
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