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The presented Monte Carlo model simulates excitation of the
electron subsystem of semiconductors by a penetrating swift
heavy ion (SHI). The cross sections of interaction of an ion with
the electron subsystem of a target are calculated via the complex
dielectric function formalism, which accounts for all the
collective modes of the electron ensemble of the target. The

predicted electron inelastic mean free paths are in a very good
agreement with those from the NIST database. The calculated
SHI energy losses coincide well with SRIM and CasP codes.
The model is used to calculate the spectra of electrons emitted
from germanium and silicon targets during SHI irradiation.
These spectra agree well with the experimental data.
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1 Introduction A swift heavy ion (SHI, Е> 1MeV/
nucl) losses the largest part of its energy (>95%, up to
40 keV/nm) for excitation of the electron subsystem of a
solid target [1–3]. Fast relaxation of the excess energy of
electrons can induce strong material excitation in the
nanometric vicinity of the ion trajectory (SHI track) on the
femto- to pico-second timescale and can stimulate unusual
structure and phase transformations. Such structure modifica-
tions of a solid manifest themselves as a latent track in a bulk
along the SHI trajectory, and as a surface damage in a shape
of craters [4] and/or hillocks [1, 5, 6]. These effects can
considerably change target properties, making SHI irradiation
a powerful tool for material modifications on the micro- to
nano-metric level. Extreme conditions result in unusual kinetic
pathways of material excitation and relaxation during SHI
irradiations stimulating fundamental interest to this problem.

All the processes in the nanometric vicinity of the SHI
trajectory start from excitation of the electron subsystem of a
target. Excited electrons spread from the projectile trajectory
bringing out the deposited energy. The kinetics of further
energy transformations and excitation of the target depend
on evolution of the spectra of excited electrons.

Some fraction of fast electrons can be emitted from the
sample surface. Detailed information about these electrons

gives abilities to verify models developed for description
of excitation of the electron ensemble of a target in the
nanometric proximity of the SHI trajectory. This information
can also be used for elementary analysis of a solid or for
design of new types of ion detectors [7].

In this paper, we apply the complex dielectric function
(CDF) formalism [8–10] to obtain the cross sections of
interaction of a charged particle with matter. The CDF
formalism takes automatically into account effects of
collective response of the electronic and ionic subsystems
of a target to excitations caused by a penetrating particle.
The calculated cross sections of SHI and electrons
scatterings are then incorporated into the Monte Carlo
model to simulate ionization of a target by an incident
ion as well as secondary electron cascades produced by
fast electrons and Auger decays of holes in deep atomic
shells.

The initial version of this MC model has already been
successfully applied to quantitative description of the
electron kinetics in SHI tracks in some insulators [11–15].
In this work, we extend this model to semiconductors (Si and
Ge). Comparison of the obtained spectra of emitted electrons
with the results of experiments investigating secondary
electron emission during irradiation of these materials
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confirms applicability of the developed model to description
of the transient electron kinetics in SHI tracks.

2 Monte Carlo model The presented MC model is
based on the asymptotic trajectory method of event-by-event
simulations of propagation of individual particles [16–20].
The CDF formalism [9] is used to determine the cross
sections of an ion and an electron scattering on a target.

In the first Born approximation, the cross-section of
interaction of a charged projectile with a spatially and
dynamically correlated scattering centers can be represented
as a product of the cross section of scattering on an individual
scattering center and the “charge-charge” dynamic structure
factor [8] of the system of scattering centers. According to
the fluctuation–dissipation theorem, this dynamic structure
factor of a solid can be expressed in terms of the inverse
imaginary part of CDF e(v, q) [9, 10, 20] resulting in
the following form of the double differential cross section
over the transferred energy �hv and momentum �hq:

d2s
dð�hvÞ dq ¼ 2 Zeeð Þ2

p�h2v2n

1
q
Im

�1
eðv; qÞ
� �

: ð1Þ

Here, Ze is the effective charge of the projectile
penetrating through the scattering system (for an incident
electron Ze¼ 1, for a heavy ion we apply the Barkas
formula [21] to determine Ze); for inelastic scattering n¼ ne,
the density of electrons, or n¼ na, the density of atoms for
elastic scattering; v is the velocity of the incident particle; e
is the electron charge; �h is the Planck constant. Assuming
uniform and homogeneous distribution of scattering centers,
the mean free path of a projectile is determined as l¼ (ns)�1,
individually for elastic and inelastic scattering cross sections.

The first moment of the cross section (or of the mean free
path) gives the energy loss of a projectile:

� dE
dx

¼
ZEmax

Emin

dl�1

dð�hvÞ �hv � dð�hvÞ: ð2Þ

Here Emin¼Eg [10, 22], where Eg is the band gap.
Eg¼ 1.12 eV for Si [23] and Eg¼ 0.805 eV for Ge [23]. The
upper limit for an ion is Emax¼ �hvmax¼ 4EinmeMin/(Minþ
me)

2, where Ein is the energy and Min is the mass of an SHI,
me is the free electron mass. For the case of incident electron,
Emax¼Ein/2 taking into account the identity of electrons.

The integration limits of the double differential inverse
mean free path are as follows [10]:

dl�1

dð�hvÞ ¼
Zqþ
q�

d2l�1

dð�hvÞ dð�hqÞ dð�hqÞ;

q� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2me=�h

2
q ffiffiffiffiffiffi

Ein
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ein � �hv
p� �

; for electrons;

q� ¼ v=v; qþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meEmax

p
=�h; for ions:

ð3Þ

The inverse imaginary part of CDF is reconstructed from
the experimentally measured optical coefficients in the form
of a set of artificial oscillators [9]:

Im
�1

eðv; qÞ
� �

¼
Xnos
i¼1

Aig i�hv

½�h2v2�ðE0i þ �h2q2=ð2meÞÞ2�2þðg i�hvÞ2
;

ð4Þ

where the summation is running through all the oscillators
nos; coefficients E0i, Ai, and gi for Si and Ge are shown in
Tables 1 and 2. These coefficients are carefully chosen to
reproduce the low energy (<50 eV) optical constants for
most commonmaterials available from Ref. [24] and the data
for higher photon energies found in [25]. The algorithm of
finding of these coefficients is thoroughly described in
Refs. [9, 10, 22].

Tables 1 and 2 also contain the results of the fulfillment
of the sum-rules:

Zeff ¼ 2= pV2
p

	 
 Zvmax

0

Im eðv; q ¼ 0Þ�1
h i

v dv;

Table 1 The coefficients of the complex dielectric function of
silicon in the form of oscillator functions, Eq. (4). The total ps-sum
gives 0.9897 (1% deviation from 1).

name E0i Ai gi f-sum (Ne)

valence band 16.8 278 4.1 4.1475 (4)
L-shell 100 685 145 8.0054 (8)
K-shell 1980 168 1350 1.908 (2)
phonon peak 0.005 1.2� 10�9 0.005 –

0.02 1.5� 10�8 0.1
0.076 2� 10�8 0.005
0.1 5.7� 10�8 0.05

total 14.061 (14)

Table 2 The coefficients of the complex dielectric function of
germanium in the form of oscillator functions, Eq. (4). The total
ps-sum gives 0.89 (11% deviation from 1).

name E0i Ai gi f-sum (Ne)

valence band 17 245 15 4.02 (4)
M-shell Ge 33 1 5 18.66 (18)

75 280 80
130 110 80
190 750 190

L-shell Ge 1240 675 950 7.95 (8)
K-shell Ge 11,210 170 5500 1.86 (2)
phonon peak 0.012 4� 10�9 0.005 –

0.05 1� 10�7 0.08
total 32.5 (32)
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which must be equal to the total number of electrons
per molecule of a target, Ne, when �hvmax!1.
V2

p ¼ 4pnme2=me, nm is the density of molecules of a solid
under consideration (so-called f-sum rule, or oscillator
strength). Another sum-rule, the ps-sum rule or a limiting
form of the Kramers–Kronig integral, says that the value

Peff ¼ 2=p
Z�hvmax

0

Im eðv; q ¼ 0Þ�1
h i

dð�hvÞ=�hv

must tend to unity when �hvmax!1.
The described above CDF formalism gives an ability to

calculate the partial cross sections of an electron scattering
on the electronic and the atomic subsystems of a solid. It
automatically takes into account all collective effects of
target electrons, e.g., plasmons, and optical part of lattice
collective modes for electron scattering. However, CDF
method cannot describe elastic interactions of an SHI due to
inapplicability of the first Born approximation to ion–ion
collisions.

2.1 SHI passage The MC code simulates penetration
of an SHI which incidents perpendicularly to the surface of
a layer of �200 nm thickness. An ion performs initial
ionization of a target creating the first generation of free
electrons. Due to heavy mass of a projectile (Mion�me) and
its negligible elastic scattering on target atoms for energies
considered here, the SHI trajectory is assumed to be a
straight line.

During penetration of an SHI within a solid, the target
electrons are considered as uniformly distributed particles
occupying either the atomic energy levels [26] or the states in
the valence band according to the density of states (DOS) of
the materials (Si [27], Ge [28]). Taking into account large
velocities of projectiles, we assume these electrons as point-
like particles at fixed positions during their energy and
momentum exchange with an SHI.

Spatial propagation of an SHI and its interactions with
the electron subsystem of a target are simulated using the
Poisson distribution for the free-flight distance [17, 18] with
the mean free path of a projectile scattering on a target
electrons calculated from the CDF-based cross sections as
explained above. Interaction of a projectile with the valence
band leads to excitation of plasmons with characteristic
energies around of 15–30 eV. It is assumed that such
plasmon decays instantly into an electron–hole pair [10, 18,
29].

Thus, the transferred energyDEe (and the corresponding
zenith scattering angle u) of an ionized electron is calculated
from the differential cross section, Eqs. (1)–(4), in
accordance with the energy and momentum conservations.
The azimuth angle of scattering w is chosen randomly
between 0 and 2p.

The new electron produced in an ionization event by an
SHI receives the kinetic energy equal to the difference
between DEe and the energy level from which this electron is

being ionized. The atomic energy levels are taken from
Ref. [30]. A particular energy state in case of a valence band
ionization is chosen randomly in accordance with the DOS
of the target material.

2.2 Kinetics of electrons Propagation and scatter-
ings of fast electrons are simulated in the same manner as for
a swift heavy ion. The kinetic energy of the main part of
electrons is significantly larger than the potential energies of
their interaction, except for the fraction of the very-low-
energy electrons, which cannot perform new ionizations
of atomic shells. Therefore, we can apply the first Born
approximation for description of electrons which are able to
produce ionization of a target that is in agreement with the
CDF formalism describing scattering of such electrons (see
above).

We assume that a scattering event of an incident electron
on target electrons can result in appearance of only one
new electron because multiple electron excitation by a single
impact is much less probable [31]. The energy transferred
in the collision is determined from the differential cross
sections given by Eq. (1).

Because of the limited energies, neither ions nor the
produced electrons manifest relativistic effects, Cherenkov,
or Bremsstrahlung emissions. All the secondary electrons
appearing in cascades are modelled in the same scheme as
the primary electrons.

2.3 Auger-decays of deep holes Fast ions as well
as high-energy electrons can ionize deep atomic shells. In
such collisions, a hole in deep atomic shell is left behind.
These holes can relax fast via Auger decays characterized by
times typically on femtosecond timescales. For Si, K-shell
holes with the ionization potential of Ip(K,Si)¼ 1860 eV
have a characteristic Auger-decay of 1.66 fs; L-shell with
Ip(L,Si)¼ 102 eV has the Auger-decay time of 13.3 fs [32].
For Ge, K-shell (Ip(K,Ge)¼ 11,210 eV) decays with the
characteristic time of 0.74 fs; L-shell (Ip(L,Ge)¼ 1240 eV)
has the Auger-decay time of 0.91 fs; and M-shell with the
ionization potential of Ip(M,Ge)¼ 33 eV decays with the
time constant of 19.6 fs [32].

Auger cascades result eventually in popping up of deep-
shell holes into the valence band. No radiative decays of
deep holes are incorporated into the model owing to
domination of Auger processes for light elements [32].
The realized Auger-decay times of holes are determined by
the Poisson distribution [11]. The shells, participating in the
Auger decay, are chosen randomly. Emission of the Auger
electron is assumed uniformly into the solid angle. Emitted
electron posses an energy equal to the difference between its
own ionization potential and the energy released by a hole
jumping up between the energy levels.

2.4 Emission of electrons Emission of an electron
from the surface is modelled using potential surface barrier
of the Eckart-type [33]. The barrier form depends on three
parameters: the material work function A, the length L and
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the height W1 of the barrier:

VðzÞ ¼ � Aj

1� j
� Bj

ð1� jÞ2 ;

j ¼ �exp
2pz
L

� �
;

B ¼ 2W1 � Aþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

1 �W1A
q

:

ð5Þ

Here, z is the distance from the solid-vacuum interface in
the direction perpendicular to the surface.

Work function for Ge is 4.76 eV, and 4.6 eV for Si. The
parameters L and W1 for Ge are taken from [33], and
are assumed to be the same for Si. Ref. [33] proposes the
following approximation of the transmission coefficient:

T ¼ 1
1þ expðgðE1 � EÞÞ ; ð6Þ

where E1 corresponds to the barrier heightW1. The value of g
relates to the characteristic length of the barrier L:

E1 ¼ W1 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W1ðW1 � AÞp � cosh�1b

d
ffiffiffiffiffiffiffi
W1

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W1 � A

p� �� 1

 !
;

g ¼ g1sinhðg1Þ þ 2g2sinhðg2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 E1 � Að Þ � bþ coshðg1Þð Þp ;

ð7Þ
where

g1 ¼ d
ffiffiffiffiffi
E1

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 � A

p� �
; g2 ¼ d

ffiffiffiffiffi
E1

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 � A

p� �
;

d ¼ 2pL
h

ffiffiffiffiffiffiffiffi
2me

p
; b ¼ cosh p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8meL2B

h2
� 1

s0
@

1
A:

Figure 1 illustrates the dependence of the potential
barrier on the distance from the crystal surface for
germanium, as well as the dependence of the transmission
coefficient on the electron energy obtained from Eqs. (5)–(7).

This method of calculation of the electron transmission
coefficient is incorporated into the Monte Carlo code, taking
into account the possibilities of reflection and tunneling at
the surface potential barrier: when an electron reaches the
near-surface region, the corresponding transmission co-
efficient is calculated using Eq. (6). The energy of the
transmitted electron is counted out from the vacuum energy
level (the electron kinetic energy minus the work function).
Emitted electrons are excluded from further simulation.
Non-emitted electrons are reflected from the barrier with the
reflection angle equal to the incident angle.

3 Results and discussion Figures Figs. 2 and 3
presents the calculated ion energy losses and the mean free
path of electrons in Ge and Si, using the fitted coefficients of
the CDF (Tables 1 and 2) for the numerical integration of

Figure 1 A potential barrier of the Eckart type (a) and the
corresponding transmission coefficient (b).

Figure 2 The calculated energy losses of Au ion in Si (a) and in Ge
(b) vs. ion energy.
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Eqs. (1)–(4). The results of the calculations with the widely
used codes SRIM [34] and CasP [35] for ions, as well as the
data from the NIST database for electrons [36] are presented
in these figures for comparison. A very good agreement
between the presented data is demonstrated with only little
deviations due to peculiarities of the compared models.
This confirms validity of the calculated cross sections to
description of SHI impact and the subsequent kinetics of the
electron subsystem of solid Si and Ge.

The shape of the energy distribution of electrons emitted
during 100 fs after passage of Ti 555MeV (dE/dx¼ 500 eV/A)
and Au 2187MeV (dE/dx¼ 3200 eV/A) ions in Ge are
compared in Fig. 4 with the experimental data of secondary
electron emission stimulated by electron bombardment [37].
The curves are normalized to the integrated value.

It should be noted that such a comparison is possible
because the emission spectrum consists mainly of secondary
electrons produced by fast primary d-electrons in ionization
cascades. The majority of primary d-electrons is moving in
the parallel direction to the solid surface (perpendicular to
the SHI trajectory). Therefore, the starting time of electron
emission is related to the time of randomization of the
ionized electrons directions (a few tens of fs). One can see
from Fig. 4 that the low energy part of primary spectrum is
similar for SHIs of different masses and energies (the Ti and
Au ions induced emission spectra).

Figure 4a demonstrates good coincidence with experi-
mental data for Ge. The left, increasing part of the spectrum
depends considerably on the surface barrier form, while the
cross sections of interaction of an electron with a solid are
responsible for the slope of the decreasing right part. In

Fig. 4b this typical shape of the emitted electrons spectra
appears also for the case of Si coinciding reasonably well
with other Monte Carlo simulations from Ref. [20].

The spectrum of the emitted electrons from Si irradiated
with Ti-ion (555MeV) is shown in Fig. 5 for the energy
range up to 10 keV. It is seen that there are a few
characteristic features of the spectrum: decays of plasmons
create a slight “shoulder” at the energies of �15 eV. A peak
formed by Auger-electrons emitted after L-shell hole decay
appears at the energies of 70–80 eV. K-shell Auger decays
produce an additional minor peak at the energies of 1.6–
1.7 keV. These features of the emitted electron spectra could

Figure 3 The calculated electron inelastic mean free paths in solid
(a) Si and (b) Ge targets.

Figure 4 Energy distributions of the secondary emitted electrons
in (a) Ge compared with experimental data [37], (b) Si compared
with MC calculations from [20].

Figure 5 The spectrum of the emitted electrons in Si after Ti ion
impact (555MeV energy).
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be used for testing of different models and against
experimental data.

4 Conclusions The presented Monte Carlo (MC)
model is based on the CDF formalism taking into account
collective response of a target to excitations induced by a
penetrating charged particle. This allows determining with
high accuracy the cross sections of an ion and an electron
inelastic scattering in a solid Si and Ge. The presented
parameterized CDF coefficients provide very good agree-
ment of the ion energy losses with SRIM [34] and CasP [35]
codes as well as the calculated electron mean free paths with
those from the NIST database [36].

The reliability of the obtained cross section is also
confirmed by a good coincidence of the Monte Carlo
modelled spectra of emitted electrons with those observed
in experiments. This verifies good applicability of the
developed model for calculations of the transient electron
kinetics in SHI tracks.
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