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Zusammenfassung

Die SU(2)⊗U(1) Symmetrie der elektroschwachen Wechselwirkung wird im Standardmodell
durch den Higgs Mechanismus spontan gebrochen. Eichbosonen und Fermionen erhalten
durch die Wechselwirkung mit dem Higgs Feld ihre Masse. Zudem wird ein neues Teilchen
vorhergesagt, das Higgs Boson, als Anregung der Higgs Feldes.

Allerdings gibt es berechtigte Zweifel am fundamentalen Charakter des Standardmodells,
Z.B. folgt aus kosmologischen Beobachtungen die Existenz dunkler Materie, die im Standard-
modell nich erklärt werden kann. Theoretiker haben daher Erweiterungen des Standardmodells
vorgeschlagen, in denen mehrere Higgs Bosonen vorhergesagt werden.

Das am CERN im Jahre 2012 entdeckte Higgs Boson kann sowohl das Higgs Boson des Stan-
dardmodells als auch eines der Higgs Bosonen der umfassenden Theorien sein. Die Entdeckung
eines weiteren Higgs Bosons wäre ein klares Signal für die Notwendigkeit einer neuen Theorie.

Diese Arbeit beschreibt die Suche nach den neutralen Higgs-Bosonen Φ=h,H und A im
Minimal Supersymmetrischen Standardmodell (MSSM). Von Interesse ist dabei der drei-b-Jet-
Endzustand, der durch die Reaktion pp → bΦ entsteht, und das Higgs-Boson am Ende in ein
Paar von b-Quarks zerfällt, Φ → bb̄. Um einen möglichst reinen Datensatz zu erhalten, ist die
Identifikation der b-Jets entscheidend.

Die Suche wird mit den Daten des CMS-Experimentes am Large Hadron Collider (LHC)
aus dem Jahr 2011 bei einer Schwerpunktsenergie von 7 TeV durchgeführt. Für die Analyse
wurden Daten verwendet, die integrierten Luminositäten der spezieller Higgs-Trigger von 2.7-4.8
fb−1 entsprechen. Im Rahmen der hier vorgestellten Analyse wurden zwei Analyseszenarien
entwickelt, um eine Suche nach Higgs-Bosonen von niedrigen und mittleren Massen, 90 GeV ≤
MΦ < 180 GeV und 180 GeV ≤ MΦ ≤ 350 GeV, durchzuführen.

Für die Suche wurden zweidimensionale Verteilungen hergenommen. Eine Variable ist die
invariante Masse der beiden führenden b-Jets. Die zweite Variable kombiniert topologische und
kinematische Eigenschafte von b-Quark-Jets. Zur Abschätzungen des Hintergrundes werden
Ereignisse mit drei Jets, von denen zwei als b-Quark-Jets erkannt wurden, verwendet. Sig-
nalereignisse werden aus Monte-Carlo-Simulationen erzeugt, im Detektor rekonstruiert und
durch den speziellen Higgs Boson Trigger selektiert.

Systematischen Effekte aus verschiedenen Quellen werden untersucht. Der Schwerpunkt
lag dabei bei der Betrachtung solcher Effekte, die zu veränderten Signal-Effizienz und Hin-
tergrundverteilungen führten. Ein χ2-Test wird verwendet, um das Signal aus den Daten zu
extrahieren.

In dieser Analyse wurden kein Signal gefunden.
Die Ergebnisse wurden für die Berechnung einer oberen Grenze für σ(pp → bb+Φ)×

BR(Φ → bb̄) in Abhängigkeit von der Masse des Higgs Bosons zwischen 90 und 350 GeV be-
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nutzt. Die verwendete Methode basiert auf einer CLS-Berechnung mittels einer Log-Likelihood-
Funktion. Innerhalb der 2σ Bereiche ist die beobachtete Grenze in gutem Einklang mit der
erwarteten Ausschlussgrenze.

Aus den Daten wurden zusätzlich eine untere Grenze auf den tanβ -Parameter des MSSM als
Funktion der Higgs Boson Masse gesetzt. Im Rahmen des mmax

h MSSM-Szenarios für eine Masse
des Higgs Bosons zwischen 90 und 350 GeV sind folgende Bereiche mit einem Vertrauensniveau
von 95% erlaubt: 27 ≤ tanβ ≤ 51 für µ =+200 GeV und 22 ≤ tanβ ≤ 37 für µ =−200 GeV,
wobei µ die Higgsino Masse ist.

Die gesetzte Grenze für tanβ ist weitaus enger als die aus früheren Messunge am CDF- und
D0-Experiment.
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Abstract

The Higgs mechanism is responsible for the spontaneous breaking of the electroweak symmetry
leading to the generation of masses of fermions and weak bosons. This thesis is devoted to
search for the neutral supersymmetric Higgs particles Φ=h,H and A decaying into b quarks
produced in association with at least one more b quark at the Large Hadron Collider. Here the
study of the final states characterized by three b-tagged jets is described in detail. The analysis
was performed using data corresponding to 2.7−4.8 fb −1 integrated luminosity of pp collisions
with a centre-of-mass energy of 7 TeV collected in 2011 with the CMS detector. Two analysis
scenarios were adopted to perform a search for neutral Higgs bosons of low and medium masses,
90 GeV ≤ MΦ < 180 GeV and 180 ≤ GeV MΦ ≤ 350 GeV, respectively.

Two-dimensional templates, built up from double-b-tagged data and based on the invariant
mass of the two leading b jets and a variable reflecting b-jet properties of three leading jets are
used to model the background. The signal is modeled by templates obtained from Monte Carlo
simulation.

Various systematic effects affecting the signal efficiency and changing shapes of the signal
and background templates were investigated.

The fitting machinery, based on a binned least-squares fit of the signal and background
templates and the systematics model dependent on the hypothesized mass of the pseudoscalar
Higgs particle A, was developed to extract the signal and background yields from the data. No
significant evidence for the production of the Higgs bosons is found.

Using the CLS method, we set cross section times branching fraction upper limits at 95%
confidence level (CL) on the production of such neutral Higgs bosons Φ in the mass range from
90 GeV to 350 GeV. The observed exclusion limits are well within the expected ±2σ band.

The benchmark scenario of the Minimal Supersymmetric Standard Model, denoted as mmax
h ,

with the two choices of the Higgsino mass parameter, µ = +200 GeV and µ = −200 GeV
is considered. The obtained 95% CL upper limits on σ(pp → bb+Φ)×BR(Φ → bb̄) are
interpreted as the upper limits on the MSSM parameter tanβ . Ranges 27 ≤ tanβ ≤ 51 and
22 ≤ tanβ ≤ 37 for the masses of the Higgs boson from 90 to 350 GeV are ruled out at
µ =+200 GeV and µ =−200 GeV, respectively.

The 95% CL limits on tanβ obtained in this channel supersede previous tanβ limits established
by CDF and D0 experiments.
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Introduction

Throughout the last century, the knowledge of the fundamental constituents of matter expe-
rienced a tremendous progress. This progress was only possible thanks to ambitious curious
scientists, whose work shed light on many of the former mysteries of nature. Their ultimate
aim was (and is) the formulation of laws that describe and predict the observed phenomena
of nature. The scientists make use of theory and experiment, where the results of either have
fruitful influence on the development of the other. The main particle physics interests is to find
the answers on two questions:

∙ What are the basic constituents of the universe?

∙ How does the basic constituents interact with each other?

Figure 0.1 shows how these questions were historically answered. The idea that matter consists
of indivisible particles, called atoms, was firstly brought up by the Greek philosopher Democritus
in the 5th century BC. Dalton in the 19th century picked up the idea of a fundamental constituent
of matter to explain chemical reactions. Modern atomic theory is, of course, a little more evolved
than Dalton’s theory but the essence of Dalton’s theory remains valid. The discovery of the
electron in 1897 by Thomson proved a substructure of the atoms. He proposed in 1904 the plum
pudding model of the atoms as a conglomerate of negatively charged electrons surrounded by a
soup of positive charge. The Thomson model was disproved in 1909 by Geiger and Marsden,
who fired alpha particles at a very thin sheet of gold foil. The first, effective description of the
atoms with small, positively charged nucleus surrounded by electrons traveling in circular orbits,
was introduced by Bohr in 1913. Using Planck’s constant, Bohr obtained an accurate formula for
the energy levels of the hydrogen atom. He postulated that the angular momentum of the electron
is quantized, i.e. it can have only discrete values. This model had several shortcomings, which
were overcome by the quantum mechanics. Later, research focused on the structure of the atomic
nucleus. The model, in which the nucleus consists of protons and neutrons, was established
after the discovery of the neutron by Chadwick in 1932. The known electromagnetic force could
not explain how particles inside the nucleus are bounded. The explanation appeared later when
the theory of an additional strong interaction between protons and neutrons was introduced.
Also in 1932 there was the first discovery of a particle that was not a constituent of atoms. The
anti-particle of the electron, predicted by Dirac in 1928, the positron, was found by Anderson.
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Figure 0.1: A historical overview of the number of fundamental constituents of matter.

In the middle of the last century, first particle accelerators allowed the discovery of many
new strongly interacting particles, called hadrons. Because there were some regularities in the
properties of these particles, it was assumed that hadrons were not fundamental but they had a
substructure. The model describing the hadron constituents, called the quark model, was verified
by deep inelastic scattering experiments in the 70s and 80s of the last century. The discovery of
the J/ψ particle in 1974 was a great success confirming the existence of the predicted charm
quark. Up to now, six different quarks were discovered. They were found to be point like and are
considered as fundamental particles. A second type of fundamental particles observed so far are
the six leptons like electron, muon, tau, and the respective neutrinos.

In 2009, the new Large Hadron Collider (LHC) became operational at the CERN laboratory,
near Geneva, Switzerland. This collider and its experiments provide the possibility to probe
nature with about one order of magnitude increase in energy (14 TeV) compared to last century
accelerators. Because of this, the LHC is able to probe an energy domain in which many
predictions from theories beyond the Standard Model may be observed. Thus the LHC will
answer many of the open questions of physics at both sub-atomic and cosmological scales.

In parallel to the discoveries of the fundamental particles, the forces that act on these particles
were an important subject of the particle physics research. Three fundamental forces are
observed. The electromagnetic force acts on charged particles. The phenomenology of this
force was described by Maxwell in 1865 in his theory of the electromagnetism. Nowadays the
electromagnetic force is postulated by laws of the quantum dynamics and Einstein’s special
relativity in the theory of Quantum Electrodynamics, first introduced by Feynman, Schwinger
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and Tomonaga. Two other fundamental forces, which were discovered, are the weak and the
strong forces. The weak force plays the prominent role in the explanation of the nuclear decays,
while the strong force is responsible for the formation of hadrons and nuclei from quarks and
gluons.

The Standard Model, SM, of elementary particles is a relativistic quantum field theory that
describes all fundamental forces observed in nature except for gravitation. The predictions of this
theory astonishingly coincide with observations in experiments, making it the most stringently
tested existing theory. Within the framework of the quantum field theories, particles interact with
each other exchanging massless gauge bosons. The discoveries of the gauge bosons of all three
interactions confirmed this theoretical picture. The bosons, which carry the electromagnetic and
the strong interaction were indeed found to be massless. In contrast, the gauge bosons of the
weak interaction, called W and Z bosons, have been observed as massive particles with masses
of about ∼ 100 times the proton mass. A theoretical mechanism was invented by Higgs, Brout
and Englert in 1964 to introduce these masses. This is the so called Higgs mechanism and it
requires the existence of a scalar particle, the Higgs boson.

Although the Standard Model is found to be self-consistent, it exhibits several shortcomings.
First, the Higgs mechanism to give masses to the particles was introduced ad-hoc. A Higgs
boson has been discovered at the LHC in 2012. So far it is not clear whether it is the SM Higgs
boson and whether it is fundamental or composite. Another problem of the SM are the neutrinos.
They are predicted to be massless left-handed Weyl fermions. However, recent observations gave
evidence that neutrinos must be massive particles. There is also no description of gravity in the
SM, leading to the belief that this model is effective up to some energy scale, Λ. At energies
higher than Λ “new” physics appears.

One of the most attractive extensions of the Standard Model, which is able to solve many of
its shortcomings, introduces a so-called supersymmetry, SUSY, that relates fermions and bosons.
The supersymmetry requires an extension of the Standard Model Higgs sector, which in its
minimal form gives rise to three neutral and two charged Higgs bosons. In this thesis, I present a
search for neutral Higgs bosons in the H → bb̄ decay channel using pp-collisions recorded with
the Compact Muon Solenoid, CMS, experiment at the LHC. For a discovery in this channel, the
identification of b-quark jets is crucial to search for a signal and suppress background.

The thesis is structured as follows. Chapter 1 introduces the theoretical framework of the
Standard Model. In Chapter 2 I will give a brief overview about the shortcommings of the SM
and the basic concept of the supersymmetry. I will describe the enlarged Higgs sector of the
SUSY in the specific example of the two-Higgs-doublet model, the Minimal Supersymmetric
Model, MSSM. Here the neutral Higgs bosons, being the main subject of this thesis, are discussed
in more details from the phenomenological and experimental point of view. In Chapter 3 the
LHC accelerator is introduced and its physics program is outlined. The CMS detector, low-level
and high-level reconstruction tools, needed to conduct the search for the neutral Higgs bosons,
are summarized in Chapter 4. It includes a description of reconstruction methods for jets which
are subjects of the analysis, software and computing environment, together with the analysis
tools and Monte-Carlo simulations. The search of neutral Higgs bosons produced in association
with b-quark(s) and decaying into b-quark pairs is explained in Chapter 5. The interpretation of

3



the results obtained is performed within the MSSM. Finally, the conclusions are discussed in
Chapter 6.
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1 The Standard Model of Elementary
Particles

The current knowledge of elementary particle physics is the result of theoretical and experimental
complementarity the last 50 years. Today, we call the theory of elementary particles the Standard
Model, SM, a field theory which combines special relativity and quantum mechanics [1, 2, 3, 4,
5, 6]. The SM considers all matter as being made up from spin-1/2 particles, called fermions.
The theory is built upon the following two ideas:

∙ non-abelian local gauge symmetry;

∙ spontaneous symmetry breaking, SSB.

The local gauge symmetry requires the Lagrangian of the Standard Model to be invariant
under local transformations generated by elements of the SU(3)⊗SU(2)⊗U(1) group [5, 6, 7].
However, the SU(2)⊗U(1) symmetry requires all particles to be massless, what contradicts the
observations. Therefore, the symmetry must be broken in order to induce masses.

The weak and electromagnetic interactions between fermions are mediated through the ex-
change of spin-1 gauge fields, called vector bosons, W i

µ , Bµ (i = 1,2,3; µ = 0,1,2,3), which
are understood to arise from invariance of the theory under the local non-abelian SU(2) and
abelian U(1) gauge symmetries, respectively [7]. The electroweak interaction, EWK, between
the matter fields characterized by their couplings to the gauge vector bosons, g and g′, which are
related to the electric charge e as

g sinθW = g′ cosθW = e, (1.1)

where θW is the electroweak mixing angle.
Electromagnetic interactions are associated to the fermion electric charges, while weak phe-

nomena are determined by the fermion flavors. The SU(2) and U(1) gauge interactions cannot
be identified directly with the weak and electromagnetic interactions. This can be understood
from the fact that the same SU(2) doublet comprises two leptons of different electric charges.
Instead, the observed weak and electromagnetic interactions are a manifestation of the combined
electroweak gauge group, SU(2)⊗U(1).

The physical gauge fields, Aµ , Zµ and W±
µ , for the massless photon and the massive vector

bosons, respectively, arise as superpositions of the U(1) and SU(2) gauge fields, Bµ and W i
µ .

Table 1.1 summarizes the properties of the gauge bosons associated with the local SU(2)⊗U(1)
invariance of the electroweak theory.
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The generators of the U(1) and SU(2) subgroups are the weak hypercharge Y and weak
isospin ~T , respectively. The weak isospin is expressed in terms of Pauli matrices ~σ ,

~T = 1/2 ·~σ . (1.2)

The weak hypercharge Y is related to 3rd component of the weak isospin T3 and to the electric
charge Q1 as

Q = T3 +Y/2. (1.3)

Because of the U(1) and SU(2) symmetries in the EWK interaction, the electric charge Q is
conserved. However, the weak isospin ~T is conserved partly: the conservation holds for T3 only.

Table 1.1: Gauge bosons of the Standard Model.
Interaction Boson Q M [GeV]
Electromagnetic Aµ 0 0
Weak W±

µ

Zµ

±1
0

80.4
91.2

The strong interaction, described by a theory called Quantum Chromodynamics, QCD, is
invariant under the SU(3) color gauge group. The interacting quarks are grouped into SU(3)
triplets2 which define the physical states of matter. Experimental observations suggest that the
quarks can not exist as free particles, since the strength of the strong interaction increases as
the energy scale of the physical process is decreased. This means that colored objects, at low
energies, are confined in colorless states, the hadrons and mesons. Due to this confinement,
direct probes of the QCD are difficult at low energies.

Eight massless spin-1 gauge bosons with zero electric charge, Ga
µ , a = [1,2, . . .8], gluons,

mediate the strong force. The gluons are associated to 8 Gell-Mann matrices [8], which define
the generators of the SU(3) group. The strong interaction is characterized by the coupling gs
introduced as a free parameter of infinitesimal SU(3) transformations.

The perturbative strong theory combined with models of hadronisation make predictions of
the QCD to be testable. For instance, the processes with jets like e+e− → 2,4 jets were used to
directly probe the gauge structure of the QCD at the LEP experiments [9]. The obtained results
are in good agreement with the QCD predictions. Table 1.2 shows main characteristics of the

1in units of positron charge, i.e. Q(e+) = 1, Q(u) = 2/3 etc
2SU(3) symmetry is associated with the color charge - the quantum number conserved in strong interactions.
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interactions discussed.

Table 1.2: Fundamental interactions relevant in the particle physics, their strengths and ranges.
Interaction Coupling constant Range, cm
Electromagnetic e2/4π ≃ 1/137 ∞

Weak g2/4π ≃ 1/30 10−16

Strong g2
s/4π ≃ 1/10 10−13

1.1 Conventions

For the thesis I have adopted the following conventions. All calculations are carried out in the
natural units such that

h̄ = c = 1, (1.4)

where h̄ is the reduced Planck constant and c is the speed of light in vacuum. In this system
length, time, energy, momentum and mass have the following units:

[length] = GeV−1,

[time] = GeV−1,

[energy] = GeV,
[momentum] = GeV,
[mass] = GeV.

(1.5)

The Minkowski space in calculations is determined by the metric tensor as

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (1.6)

Unless noted otherwise, repeated indices will imply Einstein summation. Cross sections of
processes, σ , are given in picobarn, pb

1 pb = 103 fb = 10−40 m2 = 10−36 cm2 (1.7)

In natural units (1.5), 1 pb corresponds to k ·GeV−2, where k ≃ 2.6 ·10−9.
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Given the luminosity L of an accelerator in units of cm−2s−1, the event rate, dN/dt, of a
process with a cross section σ reads

dN
dt

= L ·σ . (1.8)

1.2 Lagrangian of the electroweak theory

Particles are described by relativistic fields that allow a particle to choose between several
different paths (transitions from one state to another), each path with some probability. The
actual path along which a dynamical particle system may move from one point to another within
a specified time interval is that for which the action has a stationary value (either a minimum or
a maximum, or a saddle point) [10]. Because in a relativistic theory space and time should be on
equal footing, one writes the action as

S[φ ] =
∫ t2

t1

∫
V

L dxdt =
∫

L d4x, (1.9)

where the function L (∂µφ(x),φ(x),x) is called the Lagrangian density, often simply referred to
as the Lagrangian. The stationary principle mentioned above is expressed as the Euler-Lagrange
equations,

∂L

∂φi
−∂µ

∂L

∂ (∂µφi)
= 0. (1.10)

The motion of non-interacting spin-0, spin-1/2 and spin-1 particles are described by the
Klein-Gordon, Dirac and Proca Lagrangians, LKG, LD and LProca, respectively, as

LKG = ∂µφ(x)?∂
µ

φ(x)−m2
φ φ(x)φ(x)?,

LD = iψ(x)γµ
∂µψ(x)−mψψ(x)ψ(x),

LProca =−1
4

Fµν(x)Fµν(x)+
1
2

m2
AAµ(x)Aµ(x),where

Fµν(x) = ∂µAν(x)−∂νAµ(x).

(1.11)

Here φ(x) is a complex scalar field describing the particle with zero spin and mass mφ , ψ(x) is a
four-component spinor representing the particle with spin 1/2 and mass mψ and Aµ ≡ (A0,~A),
is a four-component vector field describing the particle with spin 1 and mass mA. Fµν(x) is the
anti-symmetric strength tensor of the vector field describing the kinetic energy. The 4×4 Dirac
matrices γµ(µ = 0,1,2,3) in the Dirac Lagrangian (1.11) determine generators of the Lorentz
group, SO(1,3), under transformations of which LD is invariant. Such matrices are expressed as
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γ
µ =

(
0 σ µ

σ
µ 0

)
, (1.12)

with
σ

µ = (Î2,σ
k), σ

µ = (Î2,−σ
k),

where Î2 is the 2×2 identity matrix, while σ k are the Pauli matrices. The Dirac spinor ψ(x) is a
composition of the left-handed and right-handed two-components spinors ψ(x)L and ψ(x)R

ψ(x) =

(
ψL(x)
ψR(x)

)
. (1.13)

The spinors ψL(x) and ψR(x) are two eigenstates of the chirality operator γ5,

γ
5 =

(
−Î2 0

0 Î2

)
,

γ
5

(
ψL

0

)
=−

(
ψL

0

)
, (1.14)

γ
5

(
0

ψR

)
=+

(
0

ψR

)
.

It so happens that only left-handed spinor fields ψL(x) interact via the weak force. This
means that the left-handed and the right-handed spinors are treated separately in the SM. The
electroweak theory suggests that the ψL(x) and ψR(x) spinors have fundamentally different
origins, mathematically saying, different irreducible representations of the SU(2) group. Due to
this reasons, the mass term mψψ(x)ψ(x), in equation (1.11) and the parity transformations, P,

P : ψL(x)↔ ψR(x), ψR(x)↔ ψR(x),

are forbidden in the SM.
The massive vector field Aµ (x) is characterized by three degrees of freedom, eµ

1,2,3,

Aµ(x) = eµ

i e−ipν xν

.

The vectors of polarization, eµ

1,2,3, are orthonormal and orthogonal to the momentum pµ of the
field Aµ ,

eµ

i · eµ, j = δi j, eµ

1,2,3 · pµ = 0.

In terms of Aµ(x), this corresponds to

∂µAµ(x) = 0. (1.15)
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1.2.1 Matter fields

In the SM the matter fields are elementary spin-1/2 fermions, ψ(x), which represent the leptons
and the quarks. These two groups of particles appear in three flavor families, that behave
identically under the EWK interaction.

No experimental evidence has been found for the existence of a fourth generation so far
[11, 12]. The known leptons are the electron e, the muon µ , the tau-lepton τ , and the three
corresponding neutrinos, νe, νµ , ντ . The six known quarks are labeled as up, u, down, d, strange,
s, charm, c, bottom or beauty, b, and top, t, quarks. The left-handed fermions, ψL(x), are grouped
as the following doublets:

L=

(
νe,L

eL

)
,

(
νµ,L

µL

)
,

(
ντ,L

τL

)
(

uL

dL

)
,

(
cL

sL

)
,

(
tL
bL

)
.

(1.16)

The fermion families are identified by columns of equation (1.16). The right-handed fermions,
ψR(x) are given by the singlets,

(
eR

)
,
(

µR

)
,
(

τR

)
,

lR =
(

uR

)
,
(

cR

)
,
(

tR
)
,(

dR

)
,
(

sR

)
,
(

bR

)
.

(1.17)

The charged leptons are described by left-handed and right-handed massive spinors, while
the neutrinos are presented by massless left-handed spinors only. The non-vanishing masses of
neutrinos can be implied by mixing in the neutrino sector, i.e. the transition from one neutrino
species to another. For every fermion an antiparticle exists with the same mass, spin, lifetime
and decay width, but with the quantum number of opposite sign. All stable matter observed in
the Universe is made from the first generation of fermions. No stable antimatter has been found
so far. Unless otherwise explicitly mentioned, throughout this thesis all statements referring to
particles are also valid for their corresponding antiparticles.

Table 1.3 shows the quantum numbers, T3, Y and Q, assigned to the matter content of the SM.
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Table 1.3: The matter content of the SM.
First family Second family Third family

Leptons

(
ν
[1/2;−1;0]
eL

e[−1/2;−1;−1]
L

)
e[0;−2;−1]

R

(
ν
[1/2;−1;0]
µL

µ
[−1/2;−1;−1]
L

)
µ
[0;−2;−1]
R

(
ν
[1/2;−1;0]
τL

τ
[−1/2;−1;−1]
L

)
τ
[0;−2;−1]
R

Quarks

(
u[1/2;1/3;2/3]

L

d[−1/2;1/3;−1/3]
L

)
u[0;4/3;2/3]

R

d[0;−2/3;−1/3]
R

(
c[1/2;1/3;2/3]

L

s[−1/2;1/3;−1/3]
L

)
c[0;4/3;2/3]

R

s[0;−2/3;−1/3]
R

(
t[1/2;1/3;2/3]
L

b[−1/2;1/3;−1/3]
L

)
t [0;4/3;2/3]
R

b[0;−2/3;−1/3]
R

In Table 1.3 the quantum numbers T 3, Y and Q are reported using the following notation:

u[1/2;1/3;2/3]
L = u[T

3;Y ;Q]
L , ⇒ T 3

uL
= 1/2;YuL = 1/3;QuL = 2/3;

u[0;4/3;2/3]
R = u[T

3;Y ;Q]
R , ⇒ T 3

uR
= 0;YuR = 4/3;QuR = 2/3;

etc.

1.2.2 Local gauge invariance

The spinor ψ(x) in equation (1.11) is not experimentally observed, but what has a physical
meaning and can be measured is ψ(x)ψ(x) = |ψ(x)|2. This leads to the fact that the fields can
be adjusted by the unitary transformation U

ψ(x)ψ(x)→ ψ(x)U†Uψ(x), ⇒U†U = Î4×4. (1.18)

The unitary transformation U might be either a phase factor eiα , called the U(1) transformation,
or any 4× 4 unitary matrix U4×4. The Dirac Lagrangian LD is invariant under the unitary
transformation

eiα :, γ
µ → γ

µ , ψ(x)→ eiα
ψ(x),

U4×4 :, γ
µ →U4×4γ

µU†
4×4, ψ(x)→U4×4ψ(x),

L ′
D = iψe−iα

γ
µ

∂µeiα
ψ = iψγ

µ
∂µψ = LD.

(1.19)

This is so called the “global gauge invariance”. The word “global” is used because the trans-
formation U is the same for all points in the Minkowski space. An interesting thing happens
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if we demand that LD is not just globally invariant, but also locally invariant to the unitary
transformations

ψ(x)→U(x)ψ(x),

ψ(x)→ ψ(x)U†(x).
(1.20)

Here a local transformation means that we do a different transformation at each point. However,
applying the local transformation to the derivatives, involved in the Dirac Lagrangian, results in
a new term which alters the formula of LD. Therefore the derivative ∂µ must be replaced by
the covariant derivative Dµ(x), which satisfies the requirement that Dµ(x)ψ(x) transforms under
U(x) like ψ(x)

ψ(x)→U(x)ψ(x),
Dµ(x)ψ(x)→U(x)Dµ(x)ψ(x), (1.21)

In general, any unitary group UN×N is reducible and decomposed into two subgroups: U(1)
and the special unitary group SU(N), i.e. U(N)≡ SU(N)⊗U(1)3.
Because the left-handed ψL(x) and right-handed ψR(x) spinors in the SM have different origins,
the transformation U(x)4×4 is decomposed into two different transformations U(x)2×2, which
independently act on ψL(x) and ψR(x):

ψ(x)′ =U(x)4×4

(
ψL(x)
ψR(x)

)
=

(
U(x)2×2,LψL(x)
U(x)2×2,RψR(x)

)
(1.22)

The chiral field ψL(x) is a doublet of the unitary group U(2)L, and transformed under U(2)L ≡
SU(2)⊗U(1), while the chiral filed ψR(x) is a singlet of U(2)R, meaning that only elements of
the subgroup U(1) are used to transform ψR(x). U(2)L and U(2)R are expressed as

UL(x) = exp(ig′
YL

2
α(x))exp(ig

T a(x)σa

2
),

UR(x) = exp(ig′
YR

2
α(x)),

(1.23)

where g and g′ are arbitrary coupling constants, YL and YR are the hypercharges for the left-handed
and right-handed fermions, T a(x) ≡ T aβ a(x), with a = 1,2,3, defines a weak isospin in the
local coordinate x of the space-time. σa are the Pauli matrices, determining the generators of
the SU(2) group. α(x) and β a(x) are arbitrary transformation functions of x. The covariant

3The notation U(N) represents the unitary UN×N matrix.
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derivative Dµ(x) is also decomposed into the left-handed and right-handed components, Dµ(x) =
Dµ,L(x)⊕Dµ,R(x), which are formulated in the following way:

Dµ,L(x) = ∂µ + ig′Bµ(x)
YL

2
+ igW a

µ (x)
σa

2
,

Dµ,R(x) = ∂µ + ig′Bµ(x)
YR

2
.

(1.24)

The fields Bµ(x) and W a
µ (x) are vector gauge bosons. These vector fields are transformed under

U(x) in a specific way to guarantee that equation (1.21) holds

W a
µ (x)→W a

µ (x)− εabcβ
b(x)W c

µ(x)−∂µβ
a(x),

Bµ(x)→ Bµ(x)−∂µα(x).
(1.25)

The gauge bosons are required to be massless, because their mass terms of the Proca Lagrangian
(1.11), 1

2m2
BBµ(x)Bµ(x) and 1

2m2
WW a

µ (x)W
a,µ(x), are not locally invariant under U(x)

W a
µ (x)W

µ,a(x)→W a
µ (x)W

µ,a(x)− (β b(x)Wµ,b(x))2 +(β (x)b)2W b
µW b,µ−

2(∂µβ
b(x))W µ

b (x)+(∂ µ
β

a(x))2,

Bµ(x)Bµ(x)→ Bµ(x)Bµ(x)−2(∂µα(x))Bµ(x)+(∂ µ
α(x))2.

(1.26)

1.2.3 Electroweak interaction

Requiring the local gauge invariance, the total electroweak Lagrangian, LEWK , of the fermions
and vector bosons is given by the sum of the Dirac Lagrangian, LD, and the Proca Lagrangians,
LB and LW , of the gauge fields Bµ and W a

µ ,

LEWK = LD +LB +LW =

Lγ
µDµ,LL+ lRγ

µDµ,RlR −
1
4

BµνBµν − 1
4

W a
µνW a,µν .

(1.27)

Here L denotes the left-handed doublets (1.16) and lR represents the right-handed singlets (1.17).
Bµν and W a

µν are the vector field strength defined as

Bµν = ∂µBν −∂νBµ ,

W a
µν = (∂µW a

ν −∂νW a
µ )−gεabcW b

µW c
ν .

(1.28)

The Lagrangian LEWK introduces the electroweak fermion-boson and boson-boson interac-
tions. Because of the non-abelian gauge structure εabc present in the field strength W a

µν (1.28),
there are trilinear (1.29) and quadratic (1.30) self-interactions of the vector field W a

µ
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LW =−1
4
(∂µW a

ν −∂νW a
µ )

2

+gεabc∂µW a
ν W b,µW c,ν (1.29)

−g2

4
(W a

µW b
ν W µ

a W ν
b −W a

µW b
ν W µ

b W ν
a ). (1.30)

The electroweak fermion-boson interactions are the result of the covariant derivatives Dµ,L and
Dµ,R present in LD

LD = iLγ
µDµ,LL+ lRγ

µDµ,RlR =

iLγ
µ(∂µ − ig′

YL

2
Bµ − ig

σa

2
W a

µ )L+ ilRγ
µ(∂µ − ig′

YR

2
Bµ)lR =

iLγ
µ

∂µL+ ilRγ
µ

∂µ lR +LintL,

Lint = g′
YL

2
Lγ

µBµL+g′
YR

2
lRγ

µBµ lR +gLγ
µ σa

2
W a

µ L.

(1.31)

Here Lint is the part of the electroweak Lagrangian describing the fermion-boson interaction.
Lint determines the electromagnetic jµ

QED and weak jµ

a,weak currents which are coupled to the
gauge bosons Bµ and W a

µ

jµ

QED = g′
YL

2
Lγ

µL+g′
YR

2
lRγ

µ lR,

jµ

a,weak = gL f γ
µ σa

2
L f ,

Lint = jµ

QEDBµ + jµ

a,weakW
a
µ . (1.32)

In components, the Lagrangian4 of the EWK interaction is written as

Lint =
1
2
(gW 3

µ +g′YLBµ)νe,Lγ
µ

νe,L +
1
2
(−gW 3

µ +g′YLBµ)eLγ
µeL + (1.33)

g√
2
(W−

µ eLγ
µ

νe,L +W+
µ νe,Lγ

µeL)+ (1.34)

1
2

g′YRBµeRγ
µeR, (1.35)

4Here we restrict ourselves to the electron flavor in the consideration of Lint .
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where W±
µ =

W 1
µ±iW 2

µ√
2

. The terms in (1.33), (1.34), (1.35) describe the left-handed component
of the neutral current, the left-handed component of the charged current and the right-handed
component of the electromagnetic current, respectively. The gauge bosons W 3

µ and Bµ are
coupled diagonally to the left-handed electron and neutrino keeping the charge of the leptons
unchanged. In the equation (1.34), the gauge eigenstates W 1

µ and W 2
µ are expressed in terms of

the mass eigenbasis, W±
µ . The W±

µ bosons change the charge of the fermions, i.e they transform
the electron into the neutrino and vise versa. Neither W 3

µ nor Bµ can be directly identified with
the photon because they couple to the neutrino which is electrically neutral. The mass eigenbasis,
(Zµ ,Aµ), is introduced by the rotation of the gauge fields W 3

µ and Bµ , to eliminate the neutrino
in the left-handed component of the neutral current (1.33).

(
W 3

µ

Bµ

)
=

(
cosθW sinθW

−sinθW cosθW

)(
Zµ

Aµ

)
. (1.36)

The weak mixing angle θW is expressed as functions of the g and g′ couplings

sinθW =
g′√

g2 +g′2
, cosθW =

g√
g2 +g′2

. (1.37)

Requiring that left-handed and right-handed electrons, eL and eR, are equally coupled to the the
photon, Aµ , with the same charge of the electron e (1.1), i.e

YL =
YR

2
,

YL =−1,
YR =−2,

e =−g′YL cosθW ≡−YR

2
cosθW , (1.38)

the left-handed component of the neutral (1.33) and the right-handed component of the elec-
tromagnetic (1.35) currents in the mass eigenbasis (1.36), are expressed by the Lagrangian
Lint;A+Z

Lint;A+Z = jµ

QEDAµ + jµ

3,weakZµ , (1.39)

jµ

QED =−e(eLγ
µeL + eRγ

µeR), (1.40)

jµ

3,weak =
e

2cosθW sinθW
νe,Lγ

µ
νe,L (1.41)

+
e

cosθW sinθW
(−1

2
+ sin2

θW )eLγ
µeL − (1.42)

− e
cosθW sinθW

sin2
θW eRγ

µeR. (1.43)
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In general, the neutral Zµ gauge boson is coupled to the neutral-weak current jµ

3,weak in the form:

Zµ jµ

3,weak ∼
e

cosθW sinθW
(T 3 −Qsin2

θW ), (1.44)

where T3 and Q are the third component of the weak isospin and electric charge of the fermions.
The same equations, (1.34), (1.40) and (1.44), are used to describe electroweak interaction

of gauge bosons, W±
µ , Aµ and Zµ , with the other fermion fields of the doublet and singlet

representations, (1.16) and (1.17), respectively.

1.3 Spontaneous symmetry breaking

The reason why all particles are massless is because the symmetry SU(2)⊗U(1) forbids the
mass terms in the Lagrangian LEWK , as we have discussed in Section 1.2. Therefore the way to
solve the problem of mass generation is to break the symmetry. But we cannot just leave out the
symmetry, because that would ruin the whole theory. We need a more subtle way of symmetry
breaking.

There are really two ways for doing this. We could argue, for instance, that the symmetry
was never truly exact but just an approximate symmetry. That means that small mass terms in
the Lagrangian are allowed that do not satisfy the symmetry. This is called explicit symmetry
breaking. The Standard Model uses a different way of the symmetry breaking. By introducing a
scalar field with a specific potential which makes it possible to induce mass terms for all gauge
bosons and fermions. However this can be done in such a way that all interactions still respect the
symmetry, although the ground state does not. This mechanism is called spontaneous symmetry
breaking, SSB.

1.3.1 The Higgs mechanism

The Higgs mechanism allows to generate mass terms for the fermions and gauge bosons in the
electroweak theory. The local gauge group SU(2)⊗U(1) of the SM is spontaneously broken.
The scalar doublet Φ(x) is introduced to make its vacuum state to be non-SU(2) invariant:

Φ(x) =

(
φ+(x)
φ 0(x)

)
=

1√
2

(
φ1(x)+ iφ2(x)
φ3(x)+ iφ4(x)

)
, (1.45)

where φ1,2,3,4(x) are real fields. The motion of these fields, hereafter denoted as Higgs fields, is
described by the local gauge invariant Lagrangian LΦ

LΦ = (Dµ,LΦ(x))†Dµ,L
Φ(x)−µ

2
Φ

†(x)Φ(x)−λ (Φ†(x)Φ(x))2 (1.46)
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where Dµ,L is the left-handed covariant derivative

Dµ,L = ∂µ + ig′
YΦ

2
Bµ + ig

σa

2
W a

µ . (1.47)

The quantity YΦ is the hypercharge of the field Φ(x) and equal to 1. Because Φ(x) is a doublet
under SU(2), its weak isospin must be |~T |= 1/2. The charge of the fields in the equation (1.45)
is determined by the Gell-Mann-Nishijima formula (1.3), such that φ 0(x) is a neutral field while
φ+(x) is positively charged.

The Higgs potential V (Φ(x)),

V (Φ(x)) = µ
2(Φ†(x)Φ(x))+λ (Φ†(x)Φ(x))2, (1.48)

is determined by the mass parameter µ2, which is either µ2 ≥ 0 or µ2 < 0, and the strength of
the scalar field self-interaction λ , which is required to be positive, λ > 0.

For µ2 ≥ 0 the potential V (Φ(x)) is a four-dimensional parabola, two projections of which
are shown in Figure 1.1, which has a global minimum5 at

< Φ(x)†
Φ(x)>= 0,

< φ1(x)>=< φ2(x)>=< φ3(x)>=< φ4(x)>= 0.
(1.49)

5We use the bra and kets to denote the vacuum state.
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Figure 1.1: The scalar field’s potential V (Φ(x)) as a function of φ3(x) and φ4(x) at φ1,2(x)≡ 0
for µ2 > 0.

The solution (1.49) is unique and SU(2) invariant

< Φ(x)†′
Φ(x)′ >= 0, where

Φ
′ =

1√
2

(
φ ′

1 + iφ ′
2

φ ′
3 + iφ ′

4

)
,(

φ ′
1,3

φ ′
2,4

)
=U ·

(
φ1,3

φ2,4

)
with U ∈ SU(2).

(1.50)

The scalar sector of the electroweak theory is an unbroken and described by four real fields with
the same masses

M2
1 = M2

2 = M2
3 = M2

4 = µ
2.

If µ2 < 0, the potential V (Φ(x)) has the shape of a Mexican hat shown in Figure 1.2. In this
case, the ground state, at which V (Φ(x)) reaches the non-zero minimum, is defined as

< Φ
†
Φ >=

1
2
(< φ

2
1 (x)>+< φ

2
2 (x)>+< φ

2
3 (x)>+< φ

2
4 (x)>) =

−µ2

2λ
≡ v2

2
. (1.51)
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Figure 1.2: The potential V (Φ(x)) as a function of φ3(x) and φ4(x) at φ1,2(x)≡ 0 for µ2 < 0.

This ground state degenerates: it is not unique and present as four-dimensional space of the
< φi(x) > functions satisfying the equation (1.51). The simplest expression for the vacuum
expectation value, VEV, < Φ(x)> is

< Φ(x)>=
1√
2

(
0
v

)
. (1.52)

Using definitions (1.45) and (1.52), the scalar doublet Φ(x) can be expressed as

Φ(x) =
1√
2

(
π1(x)+ iπ2(x)

v+H(x)+ iπ3(x)

)
, (1.53)

where the fields πi(x), with i = 1,2,3, and H(x) are vacuum excitations with zero VEV,

< π1(x)>=< π2(x)>=< π3(x)>=< H(x)>≡ 0. (1.54)
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The scalar potential V (Φ(x)), expanded at the ground state, has then the following form:

V (Φ(x)) =
µ2

2
(π1(x)2 +π2(x)2 +(v+H(x))2 +π3(x)2)+

λ

4
(π1(x)2 +π2(x)2 +(v+H(x))2 +π3(x)2)2 =

V (v)+λv2H(x)2+

µ2 +λv2

2
(π1(x)2 +π2(x)2 +π3(x)2 +H(x)2)+

λ

4
(

3

∑
i, j=1

πi(x)2
π j(x)2 +2H(x)(2v+H(x))

3

∑
i=1

πi(x)2)+

H(x)(λv3 +µ
2v).

(1.55)

Taking into account the ground state definition (1.51), the expression (1.55) is simplified to

V (Φ(x)) =V (v)+λv2H(x)2+

λ

4
(

3

∑
i, j=1

πi(x)2
π j(x)2 +2H(x)(2v+H(x))

3

∑
i=1

πi(x)2).
(1.56)

The potential (1.56) describes the three massless Goldstone bosons πi(x) and the “radial”
fluctuation H(x) with a mass MH = λv2 =−2µ2. The field H(x) is called the Higgs boson. The
Goldstone bosons πi(x) are gauged away, i.e πi(x)≡ 0, if the unitary basis is considered. The
SU(2) symmetry of the ground state (1.52) is spontaneously broken, leaving only the unbroken
U(1), under which the Higgs field H(x) remains invariant

< Φ(x)>→ eiα(x)Q < Φ(x)>= (1+ iα(x)Q+ ...)

(
0

v+H(x)

)
=

(
0

v+H(x)

)
,

Q < Φ(x)>= 0 ⇒ QH(x) = 0,

H(x)→ eiα(x)QH(x) = H(x), eiα(x)Q ∈U(1),

(1.57)

where the operator Q is related to the electric charge of the field H(x).
This spontaneous symmetry breaking for the vacuum state of the scalar doublet, < Φ(x)>, is

called the Brout-Englert-Higgs mechanism.

1.3.2 The mass eigenstates of the gauge bosons

The masses of W±
µ , Zµ and Aµ are obtained by substituting the Higgs VEV into the kinetic part

of the Lagrangian LΦ (1.46),

LkΦ = (Dµ,LΦ(x))†Dµ,L
Φ(x).
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Expanding the Pauli matrices σa, the left-handed covariant derivative Dµ,L is rewritten as

Dµ,L ≡ ∂µ +
i
2

(
g′YΦBµ +gW 3

µ g(W 1
µ − iW 2

µ )

g(W 1
µ + iW 2

µ ) g′YΦBµ −gW 3
µ

)
. (1.58)

For the vacuum state (1.52), we find that

Dµ,L < Φ >=
1√
2

Dµ.L

(
0
v

)
=

−iv
2
√

2

(
g(W 1

µ − iW 2
µ )

g′YΦBµ −gW 3
µ

)
,

(Dµ,L < Φ >)† =
1√
2
(Dµ,L)

†
(

0 v
)
=

iv
2
√

2

(
g(W 1

µ + iW 2
µ ) g′YΦBµ −gW 3

µ

)
. (1.59)

Hence, the kinetic part of the Higgs sector in the vacuum state gives

LkΦ = (Dµ,L < Φ >)†Dµ,L < Φ >=
1
2

g2v2

4
|W 1

µ − iW 2
µ |2 +

1
2

v2

4
(g′YΦBµ −gW 3

µ )
2. (1.60)

The first term in equation (1.60) is the mass term of the complex, and therefore charged, vector
fields W±

µ with masses mW = gv/2. The second term in equation (1.60) is the mass term of an
electrically neutral particle, Zµ boson

1
2

v2

4
(g′YΦBµ −gW 3

µ )
2 =

1
2

m2
Z(Zµ)

2. (1.61)

To find this mass eigenstate, one must notice that the mass term (1.61) is expressed as

1
2

v2

4
(g′YΦBµ −gW 3

µ )
2 =

1
2

v2

4
(g′2Y 2

ΦBµBµ −2gg′YΦBµW µ

3 +g2W µ

3 W3µ) =

1
2

(
Bµ W µ

3

)
M2

(
Bµ

W3µ

)
, (1.62)

with the mass matrix M2,

M2 =
v2

4

(
g′2Y 2

Φ
−gg′YΦ

−gg′YΦ g2

)
. (1.63)
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The mass eigenstates are found by diagonalizing the matrix (1.63) with the diagonal elements to
be squared masses, m2, of the neutral gauge bosons. There are two normalized eigenstates

Zµ =
g′YΦBµ −gW 3

µ√
g2 +g′2Y 2

Φ

, Aµ =
g′YΦBµ +gW 3

µ√
g2 +g′2Y 2

Φ

, (1.64)

with the masses given by

mZ =
v
2

√
g2 +g′2Y 2

Φ
, mA = 0. (1.65)

Recalling the mass eigenbasis (1.36) for the neutral gauge bosons and comparing it with
equation (1.64), one derives the following relations:

cosθW =
g√

g2 +g′2Y 2
Φ

, sinθW =
YΦg′√

g2 +g′2Y 2
Φ

. (1.66)

Equation (1.66) is consistent with the sinθW definition (1.37), if the following statement holds:

YΦ =+1.

Using the gauge bosons masses, mW and mZ , and the electroweak mixing angle θW , we formulate
the important relation

mW

mZ
=

vg

v
√

g2 +g′2
= cosθW , (1.67)

which was proven in experiments.

1.3.3 The fermion masses

The masses of fermions are generated at the vacuum state due to their interactions with the Higgs
doublet (1.45). The interactions between the Higgs field, left- and right-handed fermions are
described by the Yukawa Lagrangian, LYukawa,

LYukawa =−y f (L f ΦlR, f + lR, f Φ
†L f ), (1.68)

where the index f denotes the fermion family of the left- (1.16) and right-handed (1.17) spinors.
Such interaction flips the chiralities of the matter fields, from left-handed to right-handed
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fermions. The interaction (1.68) is invariant under the local gauge SU(2)⊗U(1) transformations,
preserving the hypercharge,

−YL +YΦ +YR =−(−1)+1−2 = 0, (1.69)

where the case of the Higgs boson H(x) with YΦ = +1, interacting with an electron e with
YL =−1, YR =−2, has been considered. The constants y f are free real parameters of the theory;
their values are not predicted by the Standard Model itself. Because we need a different constant
for each fermion in the model, we have to add nine extra free parameters (not considering the
neutrinos) to the theory. The generation of the mass is a bit different for the quarks than for the
leptons. This is because of the fact that there are no right-handed neutrinos in the model.

If we expand the Higgs doublet (1.45) at the VEV (1.52), the Yukawa Lagrangian turns into

LYukawa =− y f√
2
(
(

ν f ,L l f ,L

)( 0
v+H

)
l f ,R + l f ,R

(
0 v+H

)(
ν f ,L

l f ,L

)
) =

−y f v√
2
(l f ,Rl f ,L + l f ,Ll f ,R)−

y f H√
2
(l f ,Rl f ,L + l f ,Ll f ,R) =

−y f v√
2

l f l f −
y f H√

2
l f l f , (1.70)

where l f ,L and l f ,R represent the 2×2 left- and right-handed lepton spinors of the f th fermion
family. In the last step of equation 1.70 we have used the formula

ψψ ≡ ψRψL +ψLψR.

The mass of the lepton l f is equal to

m f =
y f v√

2
, (1.71)

while the second term in the last line of (1.70) describes an interaction between the Higgs field
H and the lepton l f
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Such the coupling to the Higgs boson is proportional to the mass of the lepton. This is true for
all matter in the Standard Model.

In a similar way, the Yukawa interaction generates masses for the quarks. However, if one
would use the same procedure as for the leptons, only the lower half of each left-handed fermion
doublet will acquire a mass. This is fine for the leptons since the neutrinos are massless. To obtain
masses for the upper halves of the left-handed quark doublets, a Higgs doublet of antiparticles,
φ 0 and φ−, must be used. The Higgs doublet of antiparticles, Φc, is written as

Φ
c = iσ2

Φ
? = i

(
0 −i
i 0

)(
φ+

φ 0

)?

=

(
φ 0

−φ−

)
. (1.72)

Remembering the properties of the Pauli matrices σa, it is easy to verify that Φc transforms just
like Φ under SU(2) transformations

Φ
c = iσ2

Φ
? → iσ2(eiσaT a/2

Φ)? = iσ2e−iσaT a/2
Φ

* = eiσaT a/2
Φ

c. (1.73)

Near the VEV the doublet Φc can be expanded as

Φ
c =

1√
2

(
v+H(x)

0

)
. (1.74)

In general, the Yukawa interactions of quarks with the Higgs doublets Φ and Φc are given by

LYukawa =−Y d
i jQiLΦd jR −Y u

i jQiLΦ
cu jR +h.c, (1.75)

where the h.c. stands for Hermitian conjugate. Y d
i j and Y u

i j are 3×3 complex matrices, mixing
the flavors of quarks; i, j are labels of the fermion families; QiL are left-handed quark doublets;
d jR and u jR are right-handed down- and up-type quark singlets, respectively. When Φ and Φc

acquire vacuum expectation values, the equation (1.75) yields mass terms for the quarks. The
physical states in the mass-eigenstate basis are obtained by diagonalizing Y u,d with four unitary
matrices V u,d

L,R as

Mu,d
f ,diag ≡ (Y u,d) f f =V u,d

f i,LY u,d
i j V u,d†

j f ,R . (1.76)

The diagonalization (1.76) means that the down-type quarks are rotated, using the matrix VCKM,
from weak-isospin (gauge) basis to the mass eigenstates

d′

s′

b′

=VCKM

d
s
b

=

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


d

s
b

 . (1.77)
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The 3×3 unitary matrix VCKM is Cabibbo-Kobayashi-Maskawa (CKM) matrix [13, 14]. It is
parametrized by three mixing angles and one CP-violating phase [14, 15]. As a result of the
rotation (1.77), the weak-charged interaction of the gauge bosons W± (1.34) with quarks takes
the form

− g√
2

W+
µ

(
uL cL tL

)
γ

µVCKM

dL

sL

bL

+h.c. (1.78)

Substitution of the expanded Φ(x) and Φc(x) at the VEV into equation (1.75), written in the
mass-eigenstate basis (1.77), leads to (taking u and d quarks from the 1st family as an example):

LYukawa =−Y d
11QuLΦd′

R −Y u
11QuLΦ

cuR +h.c.=

−Y d
11√
2
(v+H)(dL

′
d′

R +dR
′
d′

L)−
Y u

11√
2
(v+H)(uLuR +uRuL) =

−Y d
11√
2
(vd

′
d′+Hd

′
d′)− Y u

11√
2
(vuu+Huu) =

−
Y d

i j√
2

Vi j(vdid j +Hdid j)−
Y u

i j√
2
(vuu+Huu). (1.79)

The Lagrangian LYukawa (1.79) introduces the mass terms of the quarks and their interaction
with the Higgs boson.
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2 Supersymmetry

Despite of tremendous success, the Standard Model is not theoretically satisfactory, and is
regarded as a low-energy effective theory of a more fundamental theory. There are many reasons
for the conceptual incompleteness: the assignment of the quantum numbers to the fermions is
not fully clear; we do not understand why there are three apparently unrelated gauge groups and
what rules the strength of their coupling constants; there is no reason for which there are only
three generations of fermions and it is not explained why the fermion mass spectrum ranges over
five orders of magnitude. Moreover, the presence of the scalar field in the SM is completely
artificial, since it is introduced just for the purpose of breaking the electroweak symmetry. We do
not understand the flavor mixing. In the strict framework of the SM, the neutrinos are assumed
to be massless, there is experimental evidence that neutrinos must be massive particles, although
very light ones.

The Standard Model depends on nineteen parameters: the three gauge coupling constants, the
two parameters, µ2 and λ , which determine the mass and the self-coupling of the Higgs field,
the nine quark and charged lepton masses, the three angles and one phase specifying the quark
mixing matrix and the θQCD phase related to strong spontaneous CP violation [16, 17]. Moreover,
many more parameters are needed to accommodate non-accelerator observations [18, 19] of
Gravity phenomena. Although, Gravity is not united with the other interactions in the Standard
Model, it is possible that it can be explained by the classical general relativity. However, the
general relativity is not a quantum theory, and there is no obvious way to introduce quantum
Gravity within the SM context. Possible solutions include supergravity theories [20].

Another question is: can all the interactions be unified? Radiative effects make gauge
couplings dependent on the energy scale. The couplings, when defined as renormalized values
including loop corrections, require the specification of a renormalization prescription, for which
the modified minimal subtraction scheme, MS, [21, 22] is usually used. In the SM the strong
and weak couplings, associated with non-Abelian gauge groups, decrease with energy, while the
electromagnetic coupling related to an Abelian group increases. Thus, it becomes possible that
all couplings could be equal at some energy scale. According to the Grand Unification Theory,
GUT, this equality is not occasional, but it is a manifestation of a unique origin of these three
interactions. As a result of the spontaneous symmetry breaking, the unifying group is broken and
the unique interaction is splitted into three branches: strong, weak and electromagnetic. The left
plot of Figure 2.1 clearly demonstrates that the unification of the coupling constants within the
SM at a single point is impossible. The unification can only be reached, if new physics enters
between the electroweak, MEWK , and Planck scales, MPl ,

MEWK ∼ MZ ∼ 102 GeV, MPl =
√

h̄c5/GN ∼ 1019 GeV,
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where Newton’s constant GN is about of 7 ·10−39 GeV-2. It turns out that a perfect unification
can be obtained within the Supersymmetric model, SUSY, if masses of SUSY particles, MSUSY ,
are of an order of 1 TeV [23]. This is shown on the right side of Figure 2.1. From the global fit
of GUT expectations on experimental observables, one finds the SUSY and GUT scales, MSUSY
and MGUT ,

MSUSY = 103.4±0.9±0.4GeV,

MGUT = 1015.8±0.3±0.1GeV, (2.1)

at which the spontaneous symmetry breaking and the grand unification, respectively, occur in
the SUSY.

Figure 2.1: Evolution of the inverse of the three coupling constants in the Standard Model (left)
and in the supersymmetric extension of the SM (right). The SUSY particles are
assumed to contribute only above the effective SUSY scale MSUSY of about 1 TeV,
causing a change in the slopes of the couplings evolutions. The thickness of the lines
represents statistical errors on the coupling constants from the fit [23].

The discrepancy of about 12 orders of magnitude between MGUT and MSUSY scales leads to a
very serious problem, called the hierarchy problem. The scales roughly correspond to masses
of scalar fields responsible for the spontaneous GUT and SUSY symmetry breakings. To get
such small value of MSUSY/MGUT in a natural way, one needs some kind of fine tuning. Another
aspect of the hierarchy problem is the preservation of the given hierarchy. Any high-order
radiative effects in the scalar sector might destroy it. This is illustrated by the radiative correction
to the Higgs boson mass MH , described by the Feynman diagrams of Figure 2.2.
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Figure 2.2: Tadpole and self-energy Feynmann diagrams for the Higgs boson. Here V stands for
gauge bosons, ek denotes fermions.

The diagrams lead to ultra-violet quadratically divergence

δM2
H ∼ y2

k

∫ d4k
(2π)4

i
k2 −M2

H
∼ y2

kΛ
2, (2.2)

where yk is a Yukawa coupling of the Higgs field to the fermion ek, and Λ is a cut-off scale of
order of the MPl or MGUT scales. The divergence will spoil the hierarchy (2.1). The significant
reduction of the contribution from δM2

H (2.2) requires a fine tuning of the coupling constants yk.
The only known way of achieving such reduction and even cancellation is the Supersymmetry.
Moreover, in the unbroken SUSY, cancellation of δM2

H (2.2) automatically happens in all orders
of perturbation theory. The reason is the presence of superpartners for ordinary particles. The
contribution from bosonic loops cancels those arising from loops with fermions as shown in
Figure 2.3.
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Figure 2.3: Cancellation of the quadratic divergence (2.2) . The fermionic loops contribute with
an additional factor (-1) originating from Fermi statistics.

The top diagrams of Figure 2.3 are tadpole Feynman diagrams for contributions from the Higgs
boson and its superpartner in the SUSY. The bottom diagrams characterize the loop contributions
of gauge fields, gauge bosons and gauginos, to the mass of a Higgs boson. The full cancellation
takes place in the case of unbroken supersymmetry, when the sum of squared masses is the same
for bosons and fermions,

∑
bosons

m2 = ∑
f ermions

m2. (2.3)

If equation (2.3) does not hold,

∑
bosons

m2 − ∑
f ermions

m2 = M2
SUSY , (2.4)

the SUSY is not an exact symmetry, and the divergence (2.2) is reduced to the scale of about
y2

k ·M2
SUSY . The scale MSUSY should not be very large, MSUSY ≃ 1 TeV, in order to have a natural

fine tuning:

δM2
H ∼ y2

k ·M2
SUSY ∼ 10−2 ·106GeV2 ∼ 104GeV2 ∼ M2

H . (2.5)

2.1 Basics of supersymmetry

The Supersymmetry is based on the superspace, superfields and an algebra of supersymmetric
transformations, the Super-Poincare Lie Algebra, describing the relations between SUSY gen-

30



erators Qi
α and Qi

α . Here α and i are spinorial and supersymmetric indexes. To illustrate the
ideas of the Supersymmetry, a simple example having only one supersymmetric dimension i = 1
usually denoted as the SUSY with only one chiral supermultiplet, N = 1, is considered [24].

The spinorial SUSY charge Qα performs transformations of the matter fields, when super-
translation in the superspace is done. The superspace [20] differs from the ordinary Minkowski
space by adding two new coordinates, θα and θ̄α which are Grassmanian, i.e. anti-commuting,
variables,

{
θα ,θβ

}
=
{

θ̄α , θ̄β

}
= 0,{

∂

∂θα

,θβ

}
=

{
∂

∂ θ̄α

, θ̄β

}
= δαβ ,{

∂

∂θα

, θ̄β

}
=

{
∂

∂ θ̄α

,θβ

}
= 0, (2.6)

where θ̄α is obtained by conjugating θα . The Minkowski space is extended to the superspace as

{xµ}→ {xµ ,θα , θ̄α}. (2.7)

A SUSY transformation, G, is constructed on the superspace basis in the same way as an
ordinary translation in the Minkowski space

G(xµ ,θα , θ̄α) = ei·(−xµ Pµ+θα Qα+θ̄α̇ Q̄α̇ ), (2.8)

where Pµ is an operator of translation in the Minkowski space. In further discussions we skip
the spinorial index α , assuming the following notation:

θθ → ε
αβ

θαθβ , θ̄ θ̄ → ε
α̇β̇

θ̄α̇ θ̄
β̇
, θ̄σ

µ
θ → θ̄

α̇
σ

µ

α̇α
θ

α ,

to describe scalars, pseudoscalars and 4-vectors constructed on the Grassman variables. Here σ µ

are the 2×2 Pauli matrices and εαβ is the antisymmetric tensor. Any infinitesimal transformation
in the superspace, takes the form

xµ → xµ + iθσµ ε̄ + iεσµ θ̄ ,

θ → θ + ε,

θ̄ → θ̄ + ε̄, (2.9)

where ε and ε are infinitesimal translations. From equations (2.8) and (2.9), the Qα and Qα

generators are expressed in terms of the partial derivatives ∂/∂θα and ∂/∂xµ as
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Qα =
∂

∂θα

− iθ̄β σ
µ

βα

∂

∂xµ
,

Q̄α =− ∂

∂ θ̄α

+ iσ µ

αβ
θβ

∂

∂xµ
. (2.10)

Using the definitions (2.10), one can formulate the main rule of the graded (Super-Poincare) Lie
Algebra, the anti-commutator of Q and Q̄, as

{Qα , Q̄β}= 2iσ µ

αβ
Pµ . (2.11)

The presence of the translation generator Pµ in equation (2.11) means that the Supersymmetry
is a spacetime symmetry, conserving in time and space

[Qα ,Pµ ] = 0. (2.12)

Equation (2.12) is the second rule of the graded Lie Algebra. We immediately see that the rules
(2.11) and (2.12) implies a zero-energy state, the ground state. Such state appears in a degenerate
pair, where one member is a boson and the other one is a fermion

E =< 0|Pµ |0 >= 1/4Tr < 0|{Qα , Q̄α}|0 >= 1/4(|Q̄α |0 > |2 + |Qα |0 > |2) = 0, ⇒
Qα |0,λ >= |0,λ >= 0, Q̄α |0,λ >= |0,λ +1/2 >= 0.

(2.13)

Here λ is the helicity of the ground state. This degeneracy of the vacuum is destroyed, if the
invariance of the vacuum is spontaneously broken, i.e

E > 0, ⇒ Qα |0 >= |E,λ ≯= |0 >,

Q̄α |0 >= |E,λ +1/2 ≯= |0 >, Qα |0 ≯= Q̄α |0 > .
(2.14)

Therefore, the supersymmetry is spontaneously broken, i.e. the vacuum is not invariant under
G(xµ ,θα , θ̄α) transformations (2.8), if and only if the minimum of the potential, E, is positive.
The number of supersymmetries N relates to the maximal allowed spin S of particles in multiplets
as

−S+N/2 ≤ S.

The N = 1 theory contains chiral and vector superfields defined as multiplets of the scalar φ(x),
fermion ξ (x) and vector Aµ(x) fields,

Chiral multiplet: {φ(x) = |E,λ = 0 >, ξ (x) = Q̄|φ >= |E,λ = 1/2 >},
Vector multiplet: {ξ (x) = |E,λ = 1/2 >, Aµ(x) = Q̄|ξ >= |E,λ = 1 >}. (2.15)

Every particle of the supermultiplet has a partner with the same mass but with a spin differing
by 1/2, because of the spinorial SUSY generators Q̄α acting on the helicity. Since the generator
Q̄α commutes with the hypercharge Y and weak isospin ~T operators, the corresponding quantum
numbers, the electric charge and isospin are identical for a particle and its superpartner.
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2.2 Superfields

The construction of the SUSY Lagrangian requires the introduction of chiral and vector super-
fields (2.15) in the calculations. They are used to write a Lagrangian, invariant under global
SUSY and local gauge transformations.

In general, the superfield is any analytic function F (x,θ ,θ) defined in the superspace {x,θ , θ̄}.
The function contains terms proportional to Grassmanians in some power of θ and θ , up to four
at most:

1,θ , θ̄ ,θθ , θ̄ θ̄ ,θθθ̄ etc.

Since
θσ

µ
θ =−θσ

µ
θ ,

and
θσ

µν
θ = 0 = θσ

µν
θ ,

the most general expression for the superfield is

F (x, θ ,θ) = f (x)+
√

2θξ (x)+
√

2θ χ(x)+θθM(x)+θθN(x)+

θσ
µ

θAµ(x)+θθθλ (x)+θθθζ (x)+
1
2

θθθθD(x), (2.16)

where f (x), M(x), N(x) and D(x) represent scalar fields, Aµ(x) is a vector field, ξ (x), ζ (x) are
left-handed Weyl spinors and χ(x) and λ (x) are right-handed Weyl spinor fields. The Hermitian
conjugate F †(x,θ , θ̄) is considered as an independent superfield. All fields, being complex, give
sixteen real bosonic and sixteen real fermionic degrees of freedom. They correspond (though
not necessarily in a one to one way) to particles that neatly fall into complete supermultiplets
[24, 25, 26].

The superfield representation (2.16) is highly reducible, i.e. it is physically redundant. It
is possible to obtain an irreducible representation, if we introduce additional constraints on
supermultiplets. Specific types of irreducible superfields are chiral and vector superfields.

The first class of constraints, determining the chiral superfield, is obtained by application of
the chiral covariant derivatives Dα(x) and Dα(x) [24]

∂α =
∂

∂θα

, ∂ α =
∂

∂θ α

,

Dα ≡ ∂α − iσ µ

αβ
θ

β
∂µ ,

Dα ≡−∂ α + iθ β
σ

µ

αβ
∂µ . (2.17)

To define the chiral representation of F (x,θ , θ̄) (2.16), we find points yµ = xµ − iθσ µθ and
y = xµ + iθσ µθ , satisfying the criteria of the extrema in the superspace
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Dαyµ = 0, Dαyµ = 0. (2.18)

Therefore, for any analytical function Φ(y,θ) in the superspace, the following equations hold:

DαΦ(y,θ) = 0, DαΦ
†(y, θ̄) = 0. (2.19)

The function Φ(y,θ) is the irreducible representation of F (y,θ , θ̄), and called the chiral
superfield, It is expressed in terms of component fields, two scalars, φ(y) and F(y), and one
spinor, ξ (y), as

Φ(y, θ) = φ(y)+
√

2θξ (y)+θθF(y),

Φ
†(y,θ) = φ

?(y)+
√

2θξ (y)+θθF?(y). (2.20)

Products of chiral superfields, Φ1Φ2 · · ·Φl or Φ
†
1Φ

†
2 · · ·Φ†

l , are themselves chiral superfields

ΦiΦ j = φiφ j +
√

2θ(ξiφ j +φiξ j)+θθ(φiFj +φ jFi −ξiξ j),

ΦiΦ jΦk = φiφ jφk +
√

2θ(ξiφ jφk +ξ jφkφi +ξkφiφ j)

+θθ(Fiφ jφk +Fjφkφi +Fkφiφ j −ξiξ jφk −ξ jξkφi −ξkξiφ j),

D̄α [ΦiΦ j] = D̄α [ΦiΦ jΦk] = ... = 0 (2.21)

The F(y)-component of Φ(y,θ) (2.20) transforms into itself plus a spacetime derivative under
the supersymmetric variations G(yµ ,θ , θ̄) (2.8),

F(y)→ F(y)+δF(y),

δF(y) = i∂µ(
√

2ξ (y)σ µ
ε). (2.22)

The important point to note is that the F(y)-component of the products of chiral superfields,
denoted as |θθ , being a part of the SUSY Lagrangian, would yield a supersymmetric-invariant
action

S =
∫

d4yd2
θΦ1(y,θ)Φ2(y,θ) ·ΦN(y,θ)|θθ =

∫
d4yF̃(y),

δS =
∫

d4yδ F̃(y) = i
√

2
∫

d4y∂µ(ξ̃ (y)σ µ
ε) = 0.

(2.23)

Here F̃(y) and ξ̃ (y) are coefficients of θθ− and θ−terms of the product (2.21).
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The product of a chiral superfield with its Hermitian conjugate defines the vector superfield,

V (x,θ ,θ) = Φ
†(x,θ) ·Φ(x,θ),

constrained by the requirement of a reality

V (x,θ ,θ) =V †(x,θ ,θ).

In the particular choice of Wess-Zummino gauge [24, 27], the vector superfield V (x) is expressed
as

V (x,θ ,θ) = θσ
µ

θAµ(x)+θθθλ (x)+θθθλ (x)+
1
2

θθθθD(x), (2.24)

where D(x) is a scalar field, Aµ(x) is a vector field and λ (x) is a complex spinor field. D(x) is
supersymmetric-invariant as F(x). From the definition (2.24), the vector superfield satisfies the
following constraints in the Wess-Zummino gauge:

V 2(x,θ ,θ) =
1
2

θθθθAµ(x)Aµ(x),

V n(x,θ ,θ) = 0, ∀n ≥ 3. (2.25)

As we know from the consideration of the Standard Model, the vector field is introduced in
the Lagrangian using the vector field strength. To construct a SUSY invariant vector superfield
strength term, the left- and right-chiral vector-superfield strengths, Wα(x) and W α(x), are
introduced as

Wα(x,θ ,θ) =−1
4

D̄β D̄β DαV (x,θ , θ̄) =−1
4

D̄D̄DαV (x,θ ,θ),

W α(x,θ ,θ) =−1
4

DDDαV (x,θ ,θ). (2.26)

They are chiral superfields, which obey to the requirement (2.19)

DαWα(y,θ) = 0, DαW α(y,θ) = 0. (2.27)

Equation (2.27) means that the vector superfield is presented in the SUSY-invariant Lagrangian
LV , describing the dynamics of V (x,θ ,θ), only as |θθ terms of products of the vector-superfield
strengths W

α,θ ,θ , i.e.

LV =−1/4|Wα(x)W α(x)+W α(x)W
α
(x)|θθ =

1
2

D2(x)− 1
4

Fµν(x)Fµν(x)− iλ (x)σ µ
∂µλ (x).

(2.28)

Here Fµν is the vector field strength of Aµ(x) given by equation (1.28).
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2.3 R-parity of the chiral and vector superfields

The R−symmetry is a symmetry under global U(1)R transformations of the superspace which
leaves Super-Poincare Lie Algebra (2.10), (2.11) and (2.12) unchanged. The U(1)R transforma-
tion rotates phases of the SUSY operators Qα(Dα) and Qα(Dα), and the Grassmanians θα and
θ α by an angle φ

Qα → eiϕRQαe−iϕR = e−iϕQα ,

Qα → eiϕRQαe−iϕR = eiϕQα ,

θα → eiϕ
θα , θ α → e−iϕ

θ α . (2.29)

The operator R is a generator of the group U(1)R and it is related to the R-parity. Equation
(2.29) leads to the commutation rules

[Qα ,R] = Qα ,

[Qα ,R] =−Qα . (2.30)

We can assign the R-parity, RΦ, to the chiral superfield Φ(x), transforming under U(1)R as

Φ
′(x,eiϕ

θ ,e−iϕ
θ)→ eiϕRΦΦ(x,θ ,θ),

Φ
′†(x,eiϕ

θ ,e−iϕ
θ)→ e−iϕRΦΦ

†(x,θ ,θ). (2.31)

The R-parity of the vector superfield, RV , is zero because of its reality

V (x,θ ,θ) =V †(x,θ ,θ) ⇒ RV =−RV ⇒ RV = 0.

The R-parities of the components of superfields are determined as

R(φ) = RΦ,

R(ξ ) =−R(ξ ) = RΦ −1,
R(F) = RΦ −2,

R(Aµ) = 0,

R(λ ) =−R(λ ) = 1,
R(D) = 0. (2.32)

The R-parity of a state containing several particles is the product of the individual parities.
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2.4 The Minimal Supersymmetric Model

The SUSY theories must have the equal number of bosonic and fermionic degrees of freedom.
The minimal version of the SUSY generalization of the Standard Model, MSSM, doubles the
number of particles, introducing a superpartner to each particle [28, 29, 30]. If supersymmetry is
exact, superpartners of ordinary particles have the same masses and have to be observed. The
absence of them at currently available energies is explained by the fact that their masses are very
large. This means that the Supersymmetry should be broken. The MSSM introduces a hidden
sector, where the Supersymmetry is spontaneously broken via F(x)-mechanism [31]. The heavy
scalar singlet FX(x) of the hidden sector develops the non-zero VEV [32, 33],

M2
FX

∼< 0|FX(x)|0 >∼ MSUSY ×MPl ∼ 1022GeV2. (2.33)

The field FX(x), called a “messenger”, is coupled to the chiral sector of the MSSM via the
superpotential

W ′(Φ,FX) =
c

MPl
FX(x)Φ

†
i (x)Φ(x),

where the interaction coupling c is determined by the mass of the chiral superfield

c =
MΦ

MSUSY
.

The superpotential W ′(Φ,FX) mediates the SUSY breaking from the hidden sector of the MSSM
into the chiral sector. In the gravity mediation, mSUGRA [34, 35, 36], breaking scenario, the
messenger FX(x) is a spin-3/2 particle, the gravitino.

In addition to the hidden sector, the MSSM imposes several requirements on the Higgs sector:

∙ The Higgs fields, developing non-zero VEV after the electroweak SSB, can not be super-
partners of quarks and leptons. Otherwise, this would induce the spontaneous violation of
baryon and lepton numbers through Yukawa interaction.

∙ At least two chiral Higgs multiplets are needed to give masses to “up” and “down” quarks.

The last requirement is a result of the chirality of matter superfields. The Yukawa interaction
in the Standard Model is presented by two Lagrangians (see the subsection 1.3.3):

L
l f ,d

Yukawa =−y f L f ΦlR, f −Y d
i jQiLΦd jR +h.c.,

to generate masses of charged leptons and down quarks, and

L u
Yukawa =−Y u

i jQiLΦ
cu jR +h.c,

to introduce masses of up quarks. The Higgs doublet Φc is the charge conjugate, Φc = iσ2Φ?,
with YΦc =−1. However, the SUSY, built only on the left-handed chiral superfields, forbids the
right-handed Higgs doublet Φc.
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Another reason for introducing the second left-handed Higgs doublet, H2, is the cancellation
of chiral anomalies. The chiral anomalies appear if the the sum of 3rd powers of hypercharges,
Y , for chiral fields is non zero,

Tr(∑
i

Y 3
i ) ̸= 0.

The anomalies spoil the gauge invariance and, hence, the renormalizability of the theory. The
Standard Model is free of such chiral anomalies

Tr( ∑
i=eL,eR,νL,uL,etc

Y 3
i ) = 0.

In SUSY, however, the chiral Higgs multiplet contains higgsinos, which are fermions with
non-zero hypercharges, and introduce the chiral anomaly Tr ∑i(Y 3

i ) ̸= 0. To compensate the
anomaly from the hypercharges of higgsinos, one has to add a second Higgs doublet with an
opposite hypercharge.

2.5 Field Content in the MSSM

The MSSM associates the SM bosons with new fermions and the SM fermions with new bosons.
The second Higgs doublet is added to cancel the chiral anomalies and to make up quarks massive.
The particle content of the MSSM is illustrated in Table 2.1 [29, 30].

Table 2.1: Particle content of the MSSM.
Superfield Bosons (spin 0,1) Fermions (spin 1/2)
Gauge
V k weak, W k wino, W̃ k

B hypercharge, B bino, B̃
Matter
L f sleptons, ( ν̃ f ,L, l̃ f ,L ) leptons, (ν f , l f )L

EC
f l̃Cf ,R lCR

Q f squarks, (ũ f ,L, d̃ f ,L ) quarks, (u f ,d f )L

UC
f ũC

f ,R uC
R

DC
f d̃C

f ,R dC
R

Higgs
H1 Higgses, H1 higgsinos, H̃1

H2 H2 H̃2

The gauge (vector) superfields consist of the SM gauge bosons B and W k, k = 1,2,3 accompa-
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nied by their superpartners, spin-1/2 Majorana particles, called gauginos. The gauginos consist
of the bino B̃ and the winos W̃k. Hereafter, tilde denotes a superpartner of an ordinary particle,
and the superscript C indicates on the charge conjugation, ψC

L = iσ2ψ?
R, ψC

R = −iσ2ψ?
L. The

index f in Table 2.1 denotes the fermion family.
The chiral, matter, content of the MSSM is exactly the same as in the SM: three families of

the chiral quarks and leptons. Each family f has five different gauge representations, described
by the quantum numbers T 3, Y and Q in the notation of Table 1.3:

Q f = q[1/2;1/3;2/3]
f ,L , UC

f = uC[0;−4/3;−2/3]
f ,R , DC

f = dC[0;2/3;1/3]
f ,R ,

L f = l[±1/2;−1;0,−1]
f ,L , EC

f = lC[0;2;1]
f ,R .

In addition, in the MSSM, the matter families are populated by five gauge representations of
spin-0 particles, L̃ f , Q̃ f , ŨC

f , D̃C
f and Ẽ f , with the same SU(2)⊗U(1) quantum numbers as their

SM partners.
The presence of an extra Higgs doublet in the MSSM is a novel feature. The two doublets,

H1(x) and H2(x), are defined as

H1(x)=

 H0
1 (x)

H−
1 (x)

=


v1 +

S0
1(x)+iP0

1 (x)√
2

S−1 (x)+iP−
1 (x)√

2

 , H2(x)=

 H+
2 (x)

H0
2 (x)

=


S+2 (x)+iP+

2 (x)√
2

v2 +
S0

2(x)+iP0
2 (x)√

2

 ,

where the complex scalar fields S0,−
1 (x), S0,+

2 (x), P0,−
1 (x) and P0,+

2 (x) represent eight degrees of
freedom. The quantities v1 and v2 are VEV of H1(x) and H2(x), respectively. The H1(x) and
H2(x) have opposite hypercharges, YH1 = 1 and YH2 = −1. If the vacuum state is not SU(2)
invariant, the three degrees of freedom, P0

1 (x), P−
1 (x), P+

2 (x), become the Goldstone modes
[37, 38] which can be gauged away [39], using unitary gauge [40]. The remaining five degrees
of freedom result into five massive scalar states

h(x)∼ S0
1(x), H(x)∼ S0

2(x), H−(x)∼ S−1 (x), H+(x)∼ S+2 (x), A(x)∼ P0
2 (x),

where h(x) and H(x) are CP even neutral Higgs bosons, A(x) is a CP odd neutral Higgs boson
and H±(x) are two charged Higgs bosons.

2.6 Lagrangian of the MSSM

The Lagrangian of the MSSM consists of two parts. The first part is the SUSY generalization
of the Standard Model, while the second one represents the SUSY breaking mechanism. The
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expression of the MSSM Lagrangian reads

LSUSY = Lgauge +LYukawa +Lbreaking

Lgauge = ∑
k=SU(2),U(1)

1
4
(
∫

d2
θTr[W α,kW k

α ]+
∫

d2
θTr[W αW α ])+

5

∑
f=1

∏
k=SU(2),U(1)

∫
d2

θd2
θΦ

†
i egkVkΦi,

LYukawa =
∫

d2
θWR +h.c.

(2.34)

Here Wα(x) and W α(x), are left- and right-chiral vector-superfield strengths (2.26), Φi are
the matter supermultiplets determined by the index i, i =Q f , L f , E f , UC

f and DC
f . The vector

superfields Vk are used to conserve the local gauge SU(2) and U(1) invariance of the SUSY
Lagrangian, the couplings gk are assigned to the corresponding symmetries. The superpotentional
WR introduces the Yukawa interaction. The formula of WR is the following:

WR = εαβ (y
U
abQα

a UC
β

Hα
2 + yD

abQβ
a DC

b Hα
1 + yL

abLβ
a EC

b Hα
1 +µHα

1 Hβ

2 ), (2.35)

where yU,D,L
ab with a,b = 1,2,3 are 3×3 flavor-mixing matrices, α and β are spinorial indexes,

and Q f , L f , E f , UC
f and DC

f are the SM parts of the multiplets from Table 2.1. The self-interaction
between the Higgs doublets is proportional to the coupling µ .

Performing the integration over the Grassmanians in equation (2.34), the Lagrangians Lgauge
and LYukawa are evaluated in terms of the component fields as

Lgauge = ∑
a=SU(2),U(1)

(−1
4

Fa
µνFaµν − iλ a

σ
µDµλ

a
+

1
2

DaDa +Dµφ
?
i Dµ

φi+

iξ †
σ

µDµξ − i
√

2ga(φ?
i T a

φiλ
T
a ξi −ξ

†
i T a

λ
?
a φi)+Daga

φ
?
i T a

φi)+F?
i Fi, (2.36)

LYukawa =
∂WR

∂φi
Fi −

1
2

ξ
T
i

∂ 2WR

∂φi∂φ j
ξ j +h.c.

In equations (2.36) a denotes the group index, (a = 1 for U(1) and a = 1,2,3 for SU(2)), T a

are the group generators. Depending on the index i, Dµ is either the left-handed, for i =Q f , L f ,
E f , or right-handed, for i =UC

f and DC
f , covariant derivative defined in equation (1.24). The Fi(x)

and Da(x) fields are auxiliary fields. They can be expressed as functions of the scalars φi(x) and
spinors ξi(x), and excluded from further considerations, using the equations of motion

F?
i =−∂WR

∂φi
, Da =−ga

φi(T a)i jφ j. (2.37)
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The SUSY breaking mechanism via the hidden sector is incorporated into the MSSM as an
extension Lbreaking of the SUSY Lagrangian. The contribution Lbreaking describes the mass
terms of all MSSM scalars and Yukawa interaction of the SM parts of the Higgs supermultiplets,
H1 and H2, with superparticles of the matter supermultiplets, Q̃ f , ŨC

f , D̃C
f , L̃ f and ẼC

f . The
general form of Lbreaking is

Lbreaking =−∑
i

M2
i |φi|2 −∑

α

Mα λ̃
C
α λ̃α − εαβ (BµHα

1 Hβ

2 +AU
abQ̃α

a ŨC
b Hβ

2 +

AD
abQ̃α

a D̃C
b Hβ

1 +AL
abL̃α

a ẼC
b Hβ

1 +h.c.).
(2.38)

The quantities Mi and Mα correspond to the masses of spin-0 and Majorana spin-1/2 sparticles.
The bilinear and trilinear couplings B and Aab are fixed to keep the gauge and Lorentz invariance
of Lbreaking. The Lagrangian (2.38) is the only possible choice that does not destroy the
renormalizability of the supersymmetric theory [21, 30]. The superpotentional (2.35) and the
SUSY breaking Lagrangian (2.38) provide the mass splitting between particles and sparticles
living in the same supermultiplet and ensures the high masses of sparticles. The SUSY breaking
Lagrangian Lbreaking introduces 104 additional parameters which are purely phenomenological.

The kinetic term WαW α |θθ , the gauge interaction term Φ
†
i egkVkΦi|θθθθ

and the superpoten-
tional WR are R-invariant, because their R-parities are zeros. However, the SUSY breaking
Lagrangian Lbreaking (2.38) violates the R-invariance. Indeed, the gaugino mass term, Mα λ̃C

α λ̃α

happens to be R-invariant only for rotation (2.29) angles ϕ = ±π . This reduces the U(1)R-
symmetry to the discrete group Z2 defined by the two values of ϕ . The possible values of
R-parity in the case of Z2,

Z2 = eiπR, (2.39)

are either +1 or -1. In the supermultiplets fields corresponding to the Standard Model particles,
have positive R-parities, R = 1, while their superpartners have negative R-parities, R =−1. Such
requirement is ensured by the rule

R = (−1)3(B−L)+2S, (2.40)

where B and L are the baryon and lepton numbers associated with the supermultiplet, and S is
the spin of either a particle or a sparticle.

In the MSSM, where the R-parity is conserved at any interaction vertex, sparticles must be
produced in even numbers (usually a pair). There is the Lightest Supersymmetric Particle, LSP,
which is stable. Usually it is the photino γ̃ , the superpartner of a photon. Every sparticle other
than LSP will eventually decay into a SM particle plus an odd number (usually one) of the LSP.
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2.7 The Higgs sector and Electroweak Symmetry Breaking in
MSSM

The Higgs potential in the MSSM is fully determined by the superpotential WR (2.35) and the
symmetry breaking Lagrangian Lbreaking (2.38). It has the form

V (H1, H2) = m2
1|H1|2 +m2

2|H2|2 −m2
3(H1H2 +h.c.)+

g2
2 +g2

1
8

(|H1|2 −|H2|2)2 +
g2

2
2
|H†

1 H2|2, (2.41)

where m2
1,2,3 parameters are

m2
1 = M2

H1
+µ

2,

m2
2 = M2

H2
+µ

2,

m2
3 =−Bµ. (2.42)

The potential (2.41) is positive defined. Its minima are determined by the tadpole equations

1
2

∂V
∂H2

=
1
8

(
−4v1

(
B+B*

)
+
(

g2
1 +g2

2

)
v3

2 + v2

(
8m2

H2
+8|µ|2 −

(
g2

1 +g2
2

)
v2

1

))
= 0,

1
2

∂V
∂H1

=
1
8

(
−4v2

(
B+B*

)
+ v1

(
8m2

H1
+8|µ|2 −

(
g2

1 +g2
2

)(
− v2

1 + v2
2

)))
= 0.

(2.43)

Solving equations (2.43), we find the non-trivial VEV of the Higgs doublets, v1 and v2. They
are parametrized as

v1 = v · cosβ , v2 = v · sinβ .

In terms of v2 and sin2β , the solution of equation (2.43) is

v2 =
4(m2

1 −m2
2 tan2 β )

(g2
2 +g2

1)(tan2 β −1)
,

sin2β =
2m2

3

m2
1 +m2

2
. (2.44)

The non-trivial minimum of the Higgs potential exists, if the following criteria are fulfilled:

v2 > 0, |sin2β | ≤ 1. (2.45)
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These requirements are translated to the inequalities

m2
1 +m2

2 > 2m2
3,

m2
1m2

2 < m4
3. (2.46)

The relations (2.45) are not satisfied at the GUT scale when v2 becomes negative,

m2
1 = m2

2 = m2
0 +µ

2
0 , v2

0 =
−4(m2

0 +µ2
0 )

g2
2 +g2

1
< 0.

However, inequalities (2.46) can be fulfilled at the lower energy scale. This happens because
of the radiative corrections. Most of Feynman diagrams describing the radiative effects of high
orders are ultraviolet divergent. A renormalization procedure is used to eliminate all ultraviolet
divergences from the Feynman integrals. This procedure makes parameters of the SUSY
Lagrangian to be “running”, i.e dependent on the energy scale. To calculate the renormalized
parameters, the method of the renormalization group [41] is applied. The squared running
parameters m2

1 and m2
2 change their positive values to negatives at running down from the QGUT

scale, QGUT ∼ 1016 GeV, to the EWK symmetry breaking scale QEWSB, QEWSB ∼ 102 GeV.
Indeed, Figure 2.4 shows the behavior of the m2

1 and m2
2 masses predicted with the two-loop

accuracy from equations of the renormalization group [42, 43, 44, 45].

Figure 2.4: The running SUSY breaking m2
1 and m2

2 parameters in the SPS1 scenario.

The SPS1 [46, 47, 48] benchmark scenario was taken as the initial condition of the MSSM at the
GUT scale to numerically evaluate the two-loop equations of the renormalization group. The gray-
colored region in Figure 2.4 corresponds to positive values of the squared Higgs doublets VEV, v2.
Since m2

2 is logarithmically decreasing, one needs over twelve orders, QEWSB/QGUT ∼ 10−12,
to reach negative values.
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The running of the Higgs parameters provides non-trivial minima of the Higgs potential (2.41)
and leads to the radiative EWK symmetry breaking. The non-zero VEV of the Higgs doublets,
determines the physical spectrum, mass eigenstates, of the MSSM Higgs sector. The mass
eigenstates for the Higgs fields are found by diagonalization of mass matrices.

The mass matrix of CP-odd components P0
1 and P0

2 in the gauge basis is

m2
CP−odd =

∂ 2V (H1,H2)

∂P0
i ∂P0

j
=

 1
8

(
8m2

H1
+8|µ|2 +

(
g2

1 +g2
2

)(
− v2

2 + v2
1

))
ℜe
(

Bµ

)
ℜe
(

Bµ

)
m22

 ,

m22 =
1
8

(
8m2

H2
+8|µ|2 −

(
g2

1 +g2
2

)(
− v2

2 + v2
1

))
.

(2.47)

It is diagonalized by the matrix ZA,

ZAm2
CP−oddZA,† = mdiag,2

A0 ,

ZA =

(
−cosβ sinβ

sinβ cosβ

)
, (2.48)

which rotates the pseudoscalars, P0
1 and P0

2 to a Goldstone boson G0 and the massive physical
pseudoscalar A

G0 = ∑
j

ZA
j1P0

j , A = ∑
j

ZA
j2P0

j . (2.49)

The G0 boson is gauged away providing the longitudinal polarization of the massive Z boson. β

is the rotation angle. The mass and rotation matrices of the charged Higgs components, S−1 and
S+2 , have the forms

m2
charged =

∂ 2V
∂S+i ∂S−j

=

(
m11

1
4g2

2v1v2 +Bµ*
1
4g2

2v1v2 +Bµ m22

)
,

m11 =
1
8

(
8m2

H1
+8|µ|2 +g2

1

(
− v2

2 + v2
1

)
+g2

2

(
v2

1 + v2
2

))
,

m22 =
1
8

(
8m2

H2
+8|µ|2 +

(
−g2

1 +g2
2

)
v2

1 +
(

g2
1 +g2

2

)
v2

2

)
,

Z+m2
chargedZ+,† = mdiag,2

charged,

Z+ =

(
−cosβ sinβ

sinβ cosβ

)
. (2.50)
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The rotation matrix Z+, which is the same as ZA, defines the mass basis of the charged Higgs
bosons,

H+ = ∑
j

Z+
j1S+j , H− = ∑

j
Z+

j2S−j (2.51)

The mass and rotation matrices of the CP-even scalar components, S0
1 and S0

2, are given by

m2
h,H =

∂ 2V
∂S0

i ∂S0
j
=

 m11 −1
4

(
g2

1 +g2
2

)
v1v2 −ℜ

(
Bµ

)
−1

4

(
g2

1 +g2
2

)
v1v2 −ℜ

(
Bµ

)
m22

 ,

m11 =
1
8

(
8m2

H1
+8|µ|2 +

(
g2

1 +g2
2

)(
3v2

1 − v2
2

))
,

m22 =
1
8

(
8m2

H2
+8|µ|2 −

(
g2

1 +g2
2

)(
−3v2

2 + v2
1

))
,

ZHm2
h,HZH,† = mdiag,2

h,H ,

(2.52)

where the rotation matrix ZH is

ZH =

(
−cosα sinα

sinα cosα

)
. (2.53)

The rotated basis, two CP-even neutral Higgs bosons, h and H, is

h = ∑
j

ZH
j1S0

j

H = ∑
j

ZH
j2S0

j . (2.54)

The rotation angle α of the matrix (2.53) is a function of the tanβ and the m2
1,2 parameters,

tan2α =− tan2β

(
m2

A +M2
Z

m2
A −M2

Z

)
. (2.55)

Here mA is the mass of the CP-odd Higgs boson A,

m2
A = m2

1 +m2
2. (2.56)
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After the diagonalizations (2.50) and (2.52), the masses of the mH± , H and h bosons are expressed
as

m2
H± = mA +M2

W±,

m2
H,h =

1
2
(m2

A +M2
Z ±
√

(m2
A +M2

Z)
2 −4m2

AM2
Zcos22β ). (2.57)

From the definitions (2.56) and (2.57) the allowed mass ranges of the MSSM Higgs sector is
estimated as

mH± ≥ MW ,

mh ≤ mA ≤ MH ,

mh ≤ MZ|cos2β | ≤ MZ,

m2
h +m2

H = m2
A +M2

Z. (2.58)

At the tree level the mass of the light CP-even neutral Higgs boson, h, is smaller than the mass
of the Z boson. Hence, the h boson must have been observed at the LEP-2 experiments [49, 50].
But they had failed to detect the Higgs boson. However, it was realized [51, 52, 53] that radiative
corrections, in particular from top-quark and scalar stop-quark loops, could considerably increase
the mass of the light Higgs boson to values beyond the reach of LEP-2, up to about 135 GeV
[54, 55, 56].

2.8 MSSM implication of the discovered Higgs-like particle

The scalar particle with a mass of about 126 GeV has been discovered at the LHC [57, 58]. In the
MSSM, it is obvious to interpret the new state as the light CP-even Higgs boson h [55, 59, 60, 61].
Also it was pointed out in Refs. [59, 62, 63] that a much more exotic interpretation of the
discovered state could be possible in terms of the heavy CP-even Higgs boson H.

Equation (2.58) indicates that the mass of the light neutral CP-even Higgs boson must be
below MZ at the tree level [64]. The upper bound mh ≃ MZ is reached, when the mass of the
CP-odd neutral Higgs boson A, MA, is much larger than MZ , and β → π/2. This saturation of
mh is shown in Figure 2.5.
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Figure 2.5: The mass of the light CP-even neutral Higgs boson h, mh as a function of MA and
tanβ in the MSSM.

However, the radiative effects, mainly from top, stop and sbottom loops, push mh upwards
from the tree-level bound of MZ to the mass range 123 GeV ≤ mh ≤ 135 GeV in the limit of
large values of MA and tanβ . Calculations of radiative corrections are simplified, if all squarks
are assumed to have the same masses,

mt̃ = mb̃ = ml̃ = MSUSY ,

and the masses of the Higgs bosons h and H are negligible,

Mh,H ≪ MSUSY .

Using the Feynman-diagrammatic approach and on-shell renormalization, the leading one-loop
radiative correction ∆M 2 [65] to the CP-even Higgs mass matrix m2

h,H (2.52) is written as

m2
h,H +∆M 2 =

[
m2

11 +∆M 2
11 m2

12 +∆M 2
12

m2
12 +∆M 2

12 m2
22 +∆M 2

22

]
. (2.59)

The expression of ∆M 2 has the form of

∆M 2 ≡ 3m4
t

2π2v2sin2β

[
log
(

M2
SUSY

m2
t

)
+

X2
t

2M2
SUSY

(
1− X2

t

6M2
SUSY

)](
0 0
0 1

)
, (2.60)

where the mixing of the stop and sbottom particles is described by

Xt = At −µcotβ .
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The contribution (2.60) increases quartically with the top quark mass mt and logarithmically
with the stop mass mt̃ ≡ MSUSY . Because of both top and stops loops the

√
∆M 2 correction may

reach the value of about 50 GeV.
Performing diagonalization of the corrected mass matrix (2.59), we get the one-loop corrected

masses of the CP-even neutral Higgs bosons h and H [66, 53, 67, 54] as

m2
h,H =

1
2
(M2

A +M2
Z +∆M 2

22) · [1∓
√

1−4
M2

ZM2
A cos2 2β +∆M 2

22(M
2
A sin2

β +M2
Z cos2 β )

(M2
A +M2

Z +∆M 2
22)

2 ].

(2.61)

The upper bound on mh at MA ≫ MZ for a given tanβ reads

mmax
h = MZ

2 cos2 2β +∆M 2
22 sinβ +

M4
Z

M2
A

(
cos22β −1

)
+

∆M 2
22

M2
A

(
M2

Z(cosβ − cos22β + cos4β sinβ )+ sinβ (sinβ −1)∆M 2
22
)
. (2.62)

In the case of the “non-mixing” stop and sbottom particles,

Xt = 0, (2.63)

the impact of the radiative correction ∆M 2
22 on the upper bound of mh (2.62) is shown in Figure

2.6.

Figure 2.6: The tree-level (2.57) (blue) and radiatively corrected (2.61) (red) masses mh as
functions of MA at tanβ = 5, MSUSY = 1 TeV, Xt = 0 and mt = 175 GeV.

48



Even at small values of tanβ , the corrected mh (2.61) reaches values of about 130 GeV. The
effect of stop and sbottom mixing brings the corrected mmax

h to the values up-to 3-4 GeV higher.
The comparisons of upper bounds on mh in the “maximal-mixing” scenario,

Xt = At −µcotβ = 2MSUSY , (2.64)

and the “no-mixing” scenario (2.63) is illustrated in Figure 2.7.

Figure 2.7: The radiatively corrected masses mh as functions of MA for Xt = 2MSUSY (red) and
Xt = 0 (blue) at tanβ = 5, MSUSY = 1 TeV and mt = 175 GeV.

The SUSY scale MSUSY plays a crucial role, since the radiative effects are proportional to the
logarithm of MSUSY . Increasing MSUSY up to 2 TeV brings the mass mh to 135 GeV even in the
“no-mixing” scenario. Figure 2.8 shows the dependence of mh on the mixing parameter Xt for
MSUSY = 1 TeV and MSUSY = 2 TeV.
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Figure 2.8: The radiatively corrected masses mh as functions of Xt at tanβ = 5, MSUSY =1 (blue)
and 2 (red) TeV, and mt = 175 GeV.

The impact of the tanβ parameter on the mass mh in the “maximal-mixing” scenario is
depicted in Figure 2.9. The upper bound on mh of 135 GeV for the given MSUSY = 1 TeV is
reached when tanβ increases to tanβ ∼ 50.

Figure 2.9: The radiatively corrected mass mh as functions of tanβ at MSUSY = 1 TeV, mt = 175
GeV, Xt = 2MSUSY (red) and Xt = 0 (blue).

The green band in Figure 2.9 illustrates the impact on mh from the uncertainty of the top quark
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mass, mt , assumed to be ±5 GeV.
The Yukawa Lagrangian, given by superpotentional WR (2.35), can be rewritten in terms of

the component fields for the 1st quark family as

LYukawa =−λu[ūPLuH0
2 − ūPLdH+

2 ]−λd[d̄PLdH0
1 − d̄PLuH−

1 ]+h.c. (2.65)

PL is left-handed projection operator, PL = 1−γ5

2 . The 3×3 flavor mixing matrices yU,D
ab intro-

duced in equation (2.35) are assumed to be diagonal with the elements λi, where i = u,d. The
fermion masses generated by the spontaneous EWK symmetry breaking relate to the Yukawa
couplings λi as

λu =

√
2mu

v2
=

√
2mu

vsinβ
, λd =

√
2md

v1
=

√
2md

vcosβ
. (2.66)

Transforming the gauge eigenbasis, H1(x) and H2(x) to the mass eigenstates, h(x), H(x), A(x)
and H±(x), the Yukawa Lagrangian (2.65) takes the form

LYukawa =− g2mu

2MW sinβ
[ūu(H sinα +hcosα)− iūγ5uAcosβ ]

− g2md

2MW cosβ

[
d̄d(H cosα −hsinα)− id̄γ5d Asinβ

]
+

g2

2
√

2MW
Vud

{
H+ū[md(1+ γ5)+mucotβ (1− γ5)]d +h.c.

}
, (2.67)

where Vud is the element of the CKM matrix. From equation (2.67) the couplings of neutral
Higgs bosons A, H and h to fermions strongly depend on the rotation angles α and β . Table 2.2
summarizes the couplings relative to their SM predictions.

Table 2.2: Neutral Higgs bosons couplings to the u- and d-type quarks.
Higgs g(Φ, ūu) g(Φ, d̄d)
HSM 1 1
H cosα/sinβ −sinα/cosβ

h sinα/sinβ cosα/cosβ

A cotβ tanβ

Table 2.3 contains the predictions of “one-scalar-two-gauge-boson”, g(Φ,VV ), and “two-
scalars-one-gauge-boson”, g(Φ,AV ), couplings for the neutral Higgs bosons, Φ = h, H and
A.
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Table 2.3: Neutral Higgs bosons couplings to the gauge bosons.
Higgs g(Φ,ZZ),g(Φ,W+W−) g(Φ,AZ)
HSM igZMZ, igW MW 0
H igZMZcos(β −α), igW MW cos(β −α) gZcos(β −α)(pµ

2 + pµ

3 )

h igZMZsin(β −α), igW MW sin(β −α) −gZsin(β −α)(pµ

2 + pµ

3 )

A 0,0(CP-invariance forbids) 0(CP-invariance forbids)

The introduced couplings gZ and gW are related to the weak neutral and charged currents, and
defined as

gZ = g2/cosθW , gW = g2.

The pµ

2 and pµ

3 are 4-momenta of the bosons A and Z, incoming in an interaction vertex. Table
2.3 does not contain the couplings like g(Φ,γγ),g(Φ,Zγ), because it is kinematically forbidden.

The difference between angles α and β determines the strength of the Higgs interactions with
fermions and gauge bosons. The ratios cosα/sinβ and sinα/sinβ can be expressed as functions
of sin(β −α), cos(β −α) and tanβ

g(h, d̄d) =− sinα

cosβ
= sin(β −α)− tanβcos(β −α),

g(h, ūu) =
cosα

sinβ
= sin(β −α)+ cotβcos(β −α),

g(H, d̄d) =
cosα

cosβ
= cos(β −α)+ tanβ sin(β −α),

g(H, ūu) =
sinα

sinβ
= cos(β −α)− cotβ sin(β −α) (2.68)

Recalling that the rotation angle α is determined by the parameter tanβ and the masses mA, mh
and mH ,

cos2α =−cos2β
m2

A −M2
Z

m2
H −m2

h
, sin2α =−sin2β

m2
H +m2

h

m2
H −m2

h
,

(2.69)

we derive that

cos2(β −α) =
m2

h(M
2
Z −m2

h)

m2
A(m

2
H −m2

h)
. (2.70)
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At the large values of the mass of the boson A, mA ≫ MZ, the Higgs sector of MSSM turns
into the so-called “decoupling” regime in which the CP-even neutral light scalar state h has the
same couplings to fermions and gauge bosons, as the SM Higgs boson. Indeed, as it follows
from expression (2.70), the decoupling regime mA ≫ MZ corresponds to

cos(β −α)→ 0. (2.71)

From equations (2.68) and (2.71), and Table 2.3, the boson H is decoupled from the gauge
bosons, and its couplings to up and down quarks are suppressed and enhanced, respectively, by a
factor of tanβ . In this regime the couplings of the h boson to quarks and gauge bosons are the
same as in the SM:

g(h, ūu),g(h, d̄d) = g(HSM, ūu),g(HSM, d̄d),

g(h,ZZ),g(h,W+W−) = g(HSM,ZZ),g(HSM,W+W−),

g(H, ūu) =−cotβ ·g(HSM, ūu),
g(H, d̄d) = tanβ ·g(HSM, d̄d),

g(H,ZZ),g(H,W+W−) = 0.

(2.72)

The neutral CP-even H and CP-odd A Higgs bosons degenerate in mass

mA ≃ mH . (2.73)

The couplings of the A boson to down (up) quarks are (inversely) proportional to tanβ .

2.9 Predictions on the production of the neutral MSSM Higgs
Bosons at LHC

The most important production mechanisms of the MSSM neutral CP-even Higgs bosons are
those that involve gauge bosons and top quarks. In the decoupling limit (2.71) the MSSM scalar
sector is effectively reduced to the SM features. However, in the region of large tanβ , the MSSM
Higgs boson couplings to down-type fermions are strongly enhanced. Therefore the bottom
quarks play a much more important role in the MSSM than in the SM.

The main processes for the neutral Higgs boson production in the MSSM are

∙ the associated production with W/Z bosons [68, 69, 70], qq̄ →W/Z +h/H;
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q

q

Z,W

Z,W

H, h

Figure 2.10: Higgs-strahlung: associated h/H production with W/Z.

∙ vector boson fusion [71, 72, 73], qq̄ →V *V * → qq̄+h/H;

q

q

W, Z

W, Z

q

q

H, h

Figure 2.11: WW/ZZ fusion production of the bosons h/H.

∙ gluon-gluon fusion [74], gg → Φ(= h/H/A);

g

g

t/b

t/b

t/b

H, h, A

Figure 2.12: gluon-gluon fusion production of the bosons Φ = h/H/A.

∙ the associated Higgs production with heavy top or bottom quarks [75, 76, 77, 78, 79],
gg → bb+Φ(= h/H/A);
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Figure 2.13: Higgs boson radiation off top and bottom quarks.

The calculation of the MSSM Higgs cross sections and decay widths can be done in the
effective coupling approximation [80]. The approximation utilizes the corresponding SM cross
sections including high-order corrections. Rescaling the SM cross sections with the ratios of the
MSSM gMSSM

Φ,VV and gMSSM
Φ,b̄b couplings over the SM equivalents, gSM

HSM ,VV and gSM
HSM ,b̄b, is needed

[80].
The gluon-gluon fusion process is the dominant production mechanism for the SM Higgs

boson at LHC, as shown in Figure 2.14 [81, 82].

Figure 2.14: Standard Model Higgs boson production cross section at Ecm = 7 TeV including
next-to-next-to-leading order (NNLO) and next-to-leading order (NLO) effects [81].
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Also, gg → Φ(= h/H/A), dominates in the MSSM at low and moderate tanβ values. The
process in the MSSM is predominantly mediated not only by top loops as in the SM, but also
bottom and sbottom loops [83, 84]. The increasing importance of the bottom-quark loops is a
result of the tanβ enhancement for gMSSM(Φ,bb̄) and suppression of gMSSM(Φ, tt̄) couplings
(2.68) at leading order as

gMSSM(H, tt̄)
gMSSM(H,bb̄)

=− 1
tanβ

mt

mb
tanα,

gMSSM(h, tt̄)
gMSSM(h,bb̄)

=
1

tanβ

mt

mb

1
tanα

,

gMSSM(A, tt̄)
gMSSM(A,bb̄)

=
1

tanβ 2
mt

mb
. (2.74)

In the effective coupling approximation, the MSSM cross section of the process gg→Φ(h/H/A)
reads

σ(gg → h/H/A)NNLO,MSSM =

(
gMSSM(h/H/A, tt̄)

gSM(H, tt̄)

)2

σ
NNLO,SM
tt̄ (gg → H)+(

g2,MSSM(h/H/A,bb̄)
g2,SM(H,bb̄)

)2

σ
NNLO,SM
bb̄ (gg → H)+

gMSSM(h/H/A, tt̄)
gSM(h/H/A, tt̄)

gMSSM(h/H/A,bb̄)
gSM(H,bb̄)

σ
NNLO,SM
tb̄ (gg → H), (2.75)

where σ
NNLO,SM
tt̄ ,σNNLO,SM

bb̄ ,σNNLO,SM
tb̄ denote two-loops contributions from top, bottom quarks

and their interference, to the cross section of the gluon-gluon fusion in the SM. Using the heavy-
top-quark limit [85, 86, 84], the LO, NLO and NNLO cross sections, σLO,NLO,NNLO;SM(gg → H),
at
√

s = 14 TeV are calculated [87],[54] and shown as functions of the mass of the Higgs boson
in Figure 2.15 [88].

56



Figure 2.15: The cross sections for gg → H at Ecm = 14 TeV [88]. The cross sections with
contributions of NLO (green) and NNLO (red) are compared with the cross section
at the leading order for two choices of the factorization and renormalization scales:
µF = µR = 1/2MH (upper curves) and µR = µF = 2MH (lower curves). The MRST
parton distributions are used [89, 90].

The NNLO cross section σNNLO,SM(gg → H) varies between 15 pb, at MH ≃ 100 GeV, and 8
pb at MH ≃ 300 GeV. The NNLO radiative effects brings about 30% increase of the cross section
σLO,SM(gg → H).

In the MSSM the same NNLO cross section of the process is enhanced, comparing with the
SM. Taking into account the radiatively corrected Higgs boson masses (2.61) and resuming
the contributions from the SUSY-QCD radiative effects O((αs/MSUSY )

n(µ tanβ )mAn−m
b ) in the

factor ∆b [91, 92, 93, 94], the MSSM Higgs couplings gMSSM(Φ, b̄b), with Φ = h,H and A have
the form

gMSSM(h,bb̄) =−gSM(H,bb̄)
1

1+∆b

[
sinα

cosβ
−∆b

cosα

sinβ

]
,

gMSSM(H,bb̄) = gSM(H,bb̄)
1

1+∆b

[
cosα

cosβ
+∆b

sinα

sinβ

]
,

gMSSM(A,bb̄) = gSM(H,bb̄)
1

1+∆b
tanβ . (2.76)

The couplings gMSSM(Φ, t̄t) are obtained substituting the definitions (2.76) into the expressions
(2.74). Figure 2.16 illustrates the mh behavior of σNNLO,MSSM(gg → h) calculated in the mmax

h
scenario [95] at tanβ = 30.
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Figure 2.16: The total gluon-fusion cross sections of the neutral light CP-even MSSM Higgs bo-
son h within the mmax

h scenario at tanβ = 30 and
√

s= 7 TeV [92]. The MSTW2008
PDFs are used [96].

Comparing Figures 2.15 and 2.16, we see that the MSSM cross section σ(gg → h)NNLO,MSSM

for mh = 125GeV at tanβ = 30 and
√

s = 7 TeV is about one order of magnitude larger than the
SM cross section σ(gg → H)NNLO,SM at

√
s = 14 TeV.

At large values of tanβ , the Higgs boson radiation off bottom quarks, gg→ bb+Φ(= h/H/A),
becomes the dominant Higgs boson production process in the MSSM. The inclusive total cross
section of the process can be calculated using two different approaches.

In the first approach, the mass of b quark are considered to be large comparing to the QCD
scale

mb ≫ ΛQCD.

The cross section of the production of the Higgs boson associated with b quarks is calculated
order by order. The LO calculations in this scheme, called four flavor scheme, 4FS, are described
in Refs. [75, 76, 88]. In the SM the 4FS LO cross section varies strongly with the mass of the
Higgs boson MH and it is of the order of 1pb for small masses MH ∼ 100GeV, and dropping by
more than one order of magnitude when MH increases to 250 GeV. The NLO correction to the
4FS SM cross section of the process, presented in Refs. [97, 98, 88, 99], turns out to be large.
Because of the small b-quark mass, mb, the NLO correction develops large logarithms [84, 88]

lb = log(m2
b/µ

2
R),

where the renormalization factor µR is of the MH order. Every on-shell gluon, that splits into bb̄
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pair, generates one power of this logarithm. Therefore, the KNLO factor,

KNLO = σ
NLO
4FS /σ

LO
4FS,

reaches 2 at large values of MH for the cross sections estimated at
√

s = 14 TeV as seen from
Figure 2.17.

Figure 2.17: Total inclusive cross section for gg → bb̄+H at the LHC at
√

S = 14TeV as a
function of MH with the factorization and renormalization scales set to µR = µF =
1/4(MH +2mb) where CTEQ6 PDF are adopted [97].

In the second approach, called five flavor scheme, 5FS, all terms ∼ lb are summed at all orders
in the bottom parton density function [100],

b(µR,x,Q2) = (∑
n,m

(αs(µR))
n log(m2

b/µ
2
R)

n−m) ·b(x,Q2).

This is not a normal parton distribution function, which is usually determined by the fitting to the
hadronic data. b(µR,x,Q2) is generated from the parton distribution functions of light partons
using the DGLAP evolution [101]. If we could take all orders of the perturbation theory in
calculation of cross sections, the 4FS and 5FS expressions would be identical [99]. At any finite
order, the two schemes include different parts of the all-order result, and thus they do not match
exactly. The 5FS cross section has been calculated at NNLO accuracy [84, 100], while 4FS is at
NLO. As it is shown in Figure 2.18, there is a good agreement of the 5FS and 4FS results in the
SM at small Higgs boson masses, while at large Higgs boson masses the 5FS cross section is
considerably larger than the corresponding 4FS result. The difference between the 4FS and 5FS
cross sections may be up to 30%.

In Figure 2.19, the 5FS NNLO cross sections of the gluon-gluon fusion, gg → h/H/A, and
the radiation off bottom quarks, gg → bb̄+ h/H/A, are compared and shown as functions of
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the Higgs boson mass [82]. All MSSM parameters are evaluated in the mmax
h scenario [95] at

tanβ = 30 and
√

s = 7 TeV.

Figure 2.18: Total production cross sections of pp → bb̄H +X at
√

s = 7 TeV within the 5FS
and 4FS using the MSTW2008 set of parton distribution functions. The bands
exhibit the scale uncertainties in calculations [82].

Figure 2.19: The total MSSM production cross sections for gluon-gluon fusion and Higgs radia-
tion off bottom quarks calculated in the 5FS at NNLO and

√
s = 7 TeV. The mmax

h
scenario at tanβ = 30 is chosen to evaluate MSSM couplings [82].
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The Higgs-boson radiation off bottom quarks is dominant at large tanβ . The mass degeneracy
between CP-odd, A and the CP-even H Higgs boson (2.73) doubles the cross sections of both
processes.

2.10 Predictions on the decays of the neutral MSSM Higgs
bosons

The partial decay widths of Higgs boson decays are significantly affected by large radiative
effects resulted in the resummation factor ∆b (2.76). The particular interest of the neutral MSSM
Higgs boson decays is related to the region of the large values of tanβ . In this region, even at
LO, the neutral MSSM Higgs bosons decay mainly into bottom quarks and tau-leptons because
of the tanβ -enhanced couplings gMSSM(h/H/A,bb̄) [94, 102, 103, 104],

ΓLO(H/h → f f̄ ) =
GFNcMh/H

4
√

2π
(gMSSM(h/H, f f̄ ))2m2

f β
3
f ,

ΓLO(A → f f̄ ) =
GFNcMA

4
√

2π
(gMSSM(A, f f̄ ))2m2

f β f . (2.77)

Here GF is Fermi constant and β f is the velocity of the fermions in the final state

β f =
√

1−4m2
f /M2

H .

Nc = 3 (1) for quarks (leptons).
The partial decay widths, Γ(H/h/A → f f̄ ), at NNLO accuracy is cast to the form [94]

ΓNNLO(H/h/A → f f̄ ) =
GFNcMh/H/A

4
√

2π
(gMSSM(h/H/A, f f̄ ))2m̄2

f [∆
NNLO
QCD +∆

NNLO
t ],

(2.78)

where m̄ f is the running fermion mass in the MS renormalization. ∆NNLO
QCD is the two-loop

contributions from light quarks and and ∆NNLO
t is the top-quark induced correction. The couplings

gMSSM(h/H/A,bb̄) in the partial decay widths (2.78) are estimated using the approach (2.76).
The partial decay widths ΓNNLO(h → bb̄) and ΓNNLO(A → bb̄) for the “small αe f f ” MSSM

scenario [56] are shown in Figure 2.20 as functions of MA.
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Figure 2.20: Partial decay widths of the light scalar, Γ(h → bb̄), and the pseudoscalar, Γ(A → bb̄)
in the “small αe f f ” scenario [56]. The shaded bands reflects uncertainties due to
the factorization scale.

The region of MA ≃ 150 GeV corresponds to the vanishing Yukawa coupling,

gMSSM(h,bb̄) =− sinα

cosβ

1
1+∆b

(
1− ∆b

tanα tanβ

)
→ 0, tanβ tanα → ∆b,

and shown as a drop in the upper Figure. Branching ratios Γ(h/A → bb̄,ττ̄,gg, tt̄)/Γtotal for the
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scalar h and pseudoscalar A as functions of mh and mA, respectively, are illustrated in Figure
2.21.

Figure 2.21: Branching ratios of the light scalar, Br(h → bb̄) and the pseudoscalar, Br(A → bb̄)
in the “small αe f f ” scenario [56]. The shaded bands reflects uncertainties due to
the factorization scale.

The branching ratios of main decay channels, h/A → bb̄ and h/A → ττ̄ is about 98% and 1.5%
respectively. The branching ratios of the decays h/A → gg, tt̄ are about 0.5% for the Higgs boson
mass range between 50 GeV and 1 TeV.
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3 The Large Hadron Collider

The Large Hadron Collider, LHC, is a particle accelerator installed in a tunnel with a circum-
ference of 27 km, 50 to 175 meters underground, located at CERN on the border between
Switzerland and France. It is designed for proton-proton and lead-ion collisions at high energies
and luminosities. Two beams of particles are accelerated and directed by electric and magnetic
fields and brought together for head-on collisions at the interaction points surrounded by several
detectors, CMS [105], ATLAS [106], ALICE [107] and LHCb [108]. CMS and ATLAS are
multi-purpose detectors designed to reveal the physics in the Standard Model and beyond and
to search for new particles of various kinds. The other two experiments serve more specific
aims. ALICE is focused on studies of properties of the quarkgluon plasma with collisions of
heavy ions. Finally, LHCb is dedicated to measuring various aspects of the b-quark physics, e.g.
CP-violation.

The choice to build a 14 TeV centre-of-mass energy collider [109, 110] within the former LEP
tunnel sets the magnetic field requirements of 8.33 T for 1232 superconducting dipole magnets
at their nominal current 12 kA. This allows to keep the beams on an almost circular trajectory at
the nominal energy of 14 TeV.

The LHC is supplied with protons from the injector chain Linac2 - PS Booster - PS - SPS
[110, 111], which is shown in Figure 3.1. The acceleration of the beams from their injection
energy of 450 GeV up to the nominal energy of 7 TeV is performed by 8 so-called radio-
frequency cavities, boosting the beams in total by 16 MeV per turn in an electric field of 5.5
MV/m, oscillating at 400 MHz.

The beam-pipes are embedded in a common cryostat that surrounds the bipolar supercon-
ducting dipole magnets, Superfluid helium at 1.9 K is used to cool the Nb-Ti alloy coil down to
superconductive state.

The acceleration of protons in colliders is performed in bunches with a high particle density.
The interaction rate is proportional to the luminosity L of the accelerator, which is given for
head-on collisions by

L =
f n2

p

4πσxσy
, (3.1)

where f is the bunch collision frequency, np is the number of particles in the colliding bunches
and σx,y are the transverse sizes of the bunches at the interaction point.

At the interaction points of the two largest experiments, CMS and ATLAS, the bunches are
squeezed to a transverse size of a few µm, to achieve a maximal instantaneous luminosity of up
to 1034cm−2s−1, corresponding to 10 events/s for a process with cross section of 1 nb, such as
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Figure 3.1: Schematic view of the CERN accelerator complex. The four interaction regions
hosting the main LHC experiments, ALICE, ATLAS, CMS and LHCb, are also
shown.
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the production of top quarks. The design bunch collision frequency is 40 MHz implying one
bunch crossing each 25 ns. Table 3.1 shows a summary on the LHC parameters.

Table 3.1: The machine parameters relevant to the LHC for the proton- proton (pp) and heavy
ions, Pb, (HI) runs [111, 112].

Parameter pp HI metric units
Beam energy at collision E 7 2.76 TeV
Dipole field B 8.4 8.4 T
Design Luminosity L 1034 1027 cm−2s−1

Bunch spacing 25 100 ns
No. of bunches kB 2808 592
No. of particles/bunch np 1011 107

Average crossing rate f 32 0.1 MHz
Bunch radius σx = σy 16 1.5 µm
Number of inelastic events/crossing nc 19 --

During the period from 2009 until 2010, all main components of the LHC like the beam dump
and the collimation systems were tested and commissioned [113]. Starting in the middle of 2010
up to the end of 2012, the LHC operated at the 7 and 8 TeV centre-of-mass energy achieving
respectively peak luminosities of 3.3 and 7.6 ×1033cm−2s−1. The integrated luminosities,∫

year L dt, of 6 f b−1 and 23 f b−1 were recorded by the CMS experiment, in 2011 and 2012
respectively. The integrated luminosities recorded by the LHC experiments as functions of time
are shown in the Figure 3.2.
During 2010-2012, LHC performed shorter runs with heavy ions as well. In these runs

completely ionized lead nuclei Pb82+ were accelerated up to an energy of 2.76 TeV per nucleon.
Ion beams were collided with bunch spacing of 1350 ns achieving the maximal instantaneous
luminosity of 1025 cm−2s−1 what was considerably different from the nominal values shown in
Table 3.1.

The final jump to the design energy of 14 TeV should happen in 2015. The accelerator complex
and the hardware of all detectors will be upgraded through the two-years long shutdown.

3.1 Physics at the LHC

To express the probability that two particles will collide and react in a certain way, the term cross
section is used. The cross sections of interesting processes at the LHC with

√
s = 7(8) TeV are

given in Figure 3.3.
As one can see from Figure 3.3, the expected cross sections of the interesting SM processes vary
between 10 pb and 10 nb, which are ten or more orders of magnitude smaller than the total cross
section σtot in pp collisions at the LHC.
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Figure 3.2: The recorded integrated luminosity of the experiments at the LHC in 2011 and 2012
[114].

All processes in hadronic collisions, even those intrinsically of electroweak nature such as the
production of W or Z bosons or photons, are induced by the quarks and gluons contained inside
the proton. The particular classes of the hadronic scattering can be distinguished depending on
experimental signatures of either soft or hard inelastic partonic interactions.

∙ Processes induced by soft partonic interactions

The majority of pp collisions are soft, i.e. without any hard scattering of the partonic
constituents of the proton. In contrast to the higher-pT regime, in principal described by
perturbative QCD, particle production in soft collisions is modeled phenomenologically
to describe different pp scattering processes: elastic scattering, single-diffractive and
double-diffractive dissociation, and inelastic non-diffractive scattering [116]. The total
cross section of pp scattering, σtot , extrapolated from previous experiments at lower
energies, is expected to be about 110 mb, of which 30 mb is due to elastic scattering,
24 mb due to diffractive processes and 55 mb due to nondiffractive inelastic interactions
[117]. Measurements of the double-diffractive and non-diffractive inelastic collision were
performed by CMS in 2010 [118].

∙ Hard inelastic processes

The pp-collisions at large centre-of-mass energy,
√

s, lead to inelastic interaction with
large momentum transfer between partons. The result of hard interactions could be
scattering of constituents at large angles, their annihilation into new massive resonances,
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Figure 3.3: Cross sections for selected processed to be observed at the LHC. The event rate for
the luminosity L ≃ 1033cm−2s−1 is shown [115].
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or a combination of the both processes. The final state consists of a large multiplicity of
particles, associated to the evolution of the fragments from the initial hadrons, as well as
to the new states produced.

A summary on the physics program that the CMS experiment conducts at the LHC can be
found in Refs. [112, 119]. The main topics were:

– The search for the Higgs boson
For masses of the Higgs boson up to 130 GeV, the two-photon decay channel provides
an interesting signature. For this channel, the electromagnetic calorimeter of the
CMS with excellent granularity and energy resolution allows to resolve the small
and narrow Higgs-boson mass peak on the exponentially decreasing background
spectrum. If the mass of the Higgs boson is larger than twice the Z boson mass, the
Higgs boson is expected to decay to two on-shell Z bosons. The CMS has presented a
search for the Higgs boson in the H → ZZ → 2l +2 jets decay channel, where l = e
or µ [120]. The existence of a heavy Higgs boson would appear as a resonance in
the invariant mass distribution of the 2l +2 jet system.

– Exploration of the SM
Precise measurements of the W/Z gauge bosons properties, their production and
decays parameters, allow to test the SM. The measurement of the forward-backward
asymmetry, AFB, of the Drell-Yan process qq̄ → Z/γ? → l+l− was performed by
the CMS experiment [121]. The observed asymmetry AFB as a function of the di-
lepton mass was found to be consistent with the SM predictions within the estimated
uncertainties.

The mass of the top quark, mt , is an essential parameter of the SM. Its measurement
also provides an important benchmark for the performance and calibration of the
detectors at the LHC. The ATLAS and CMS experiments has recently announced a
combination of top-quark measurements [122], reporting mt = 173.3±0.23(stat.)±
0.92(syst.).

– Searches beyond the SM
The MSSM Higgs sector significantly deviates from the SM expectations. At the
large values of tanβ , the h/H/A bosons decay mainly to b-quarks. In addition, they
are often produced in the association with b-quarks. Hence, the good tracking system
is required to efficiently identify b-jets. Supersymmetric signals are also searched
for at the LHC. Considering the R−parity conserving MSSM, all SUSY decays end
at the stable LSP which gives rise to significant missing energy. Therefore, energy
resolutions of electromagnetic and hadron calorimeters play the main role for such
studies. The LHCb experiment, focused on the physics of B-mesons, has recently
put tight constraints on various extensions of the Standard Model [123].
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4 The CMS experiment

The Compact Muon Solenoid (CMS) detector is one of the two general purpose detectors that are
aimed to discover the new physics at the LHC. At the design luminosity many inelastic collisions,
called pile-up, will overlay the events of interest. To reconstruct the latter, the CMS detector
must meet severe design requirements, which are very good resolutions of charged-particle and
muon momenta, and calorimeter energies.

The large solenoid magnet, surrounding the central part of the detector, generates a magnetic
field of 4 T which is needed to measure transverse momenta pT of charged particles with high
resolution. For example, the transverse momentum a muon with pT up to 1 TeV is measured
with only 10% resolution at most. As most of the modern, large scale particle detectors, CMS
is composed of several layers of detectors starting from the innermost silicon pixel and strip
trackers, followed by the electromagnetic and the hadron calorimeters.The outermost part of the
detector is a muon system. A detailed overview of the layout of the CMS detector is shown in
the Figure 4.1.

The CMS uses a right-handed coordinate system, with the origin at the nominal interaction
point, where the x-axis pointing to the center of the LHC, the y-axis pointing vertically upward
(perpendicular to the LHC plane), and the z-axis along the anticlockwise-beam direction. The
azimuthal angle φ is measured from the x-axis in the xy plane and the radial coordinate in
this plane is denoted by R. The polar angle θ is defined from z-axis in the xz plane and the
pseudorapidity is

η =−ln[tan(θ/2)].

The CMS detector is divided into three parts: the barrel part, covering the central region of the
detector, up to |η | ∼ 1 and two endcap disks located at opposite sides of the central barrel.

4.1 The CMS tracking detectors

The tracker is designed to provide a precise and efficient measurement of trajectories of charged
particles originating from collisions as well as a precise reconstruction of vertices.

With an overall radius of 110 cm and a length of 540 cm, made of 200 m2 of silicon sensors,
the tracker provides coverage up to |η |< 2.5. Its layout is shown in Figure 4.2. The three layers
of hybrid pixel (PXL) detectors are placed close to the interaction point at radii of 4, 7, and 11
cm. In total, they contain 66 million pixels, with a size of 100 µm×150 µm, yielding a single
point resolution of 10 µm in the (R,φ) plane and 20 µm in the (R,η) plane. In each endcap there
are two pixel disks of inner radius of 6 cm and outer radius of 15 cm. The disks are located at
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Figure 4.1: The CMS detector [112]. The total weight is 14000 tonnes, the overall diameter is 15
m, and the overall length is 28.7 m. All main components, the tracker, the preshower,
the muon system, the calorimeter and the solenoid magnet are shown.
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the distance of 34.5 and 46.5 cm from the center of the detector. The large magnetic field of
4 T leads to a Lorentz angle of 320 which induces significant charge sharing between pixels.
The endcap sensors are tilted by 200 around the radial direction to compensate the resolution
degradation because of the Lorentz angle [124].

Figure 4.2: The Layout of a quarter of the CMS tracker in (R,z) view. Bold lines represent
double-sided modules [125].

The barrel part, |z|< 110 cm is composed of the Tracker Inner Barrel, TIB, with four layers
of silicon strips, and the Tracker Outer Barrel, TOB, with six layers. The TIB, is placed at 20
cm radius and covers the region up to |z|<65cm, and complemented by three Tracker Inner Disks,
TID, per side. The TOB is placed at 54 cm from the beam position. It covers the region up to
|z|< 110 cm. The forward and backward regions, 120 cm < |z|< 280 cm are covered by nine
Tracker End-Cap, TEC, disks per side.

The pitch size for the silicon-strip layers, ranging between 80 and 180 µm, is chosen such
that the larger pitch is further from the beam, where a lower detector occupancy is expected. A
few layers of double-sided modules provide a measurement in the (R,φ) plane as well as in the
(R,η) plane with resolutions in the ranges of 35÷52 µm and 230÷520 µm, respectively.

4.2 The CMS calorimeter system

The CMS is equipped with an almost hermetic calorimetry system which allows to precisely
measure the energy of particles. The electromagnetic calorimeter, ECAL, which is placed just
outside the tracker, measures the energy of electrons, positrons and photons [126] , while the

73



hadronic calorimeter, HCAL, surrounding ECAL, is designed to measure charged- and neutral-
hadron energies [127] . Both systems infer the particle’s energy from the energy contained in the
particle shower caused by the inelastic interaction of the incident particle with the calorimeter
material.

4.2.1 The CMS electromagnetic calorimeter

The ECAL is built from 64200 lead tungsten (PbWO4) crystals in the barrel, EB, and 7324
crystals in each endcap, EE, parts. Each crystal has a cross section of approximately 22×22
mm2, which corresponds to one Moliere radius and a length of 230 mm, which corresponds to
25.8 radiation lengths, X0 [128, 129]. The crystals are tilted such that they almost point towards
the interaction point. . Each crystal has a front-face cross section of ∆η ×∆φ = 0.174×0.174.
The calorimeter is compact with fine granularity, which allows to measure the shower shape of
incident particles very accurately [130, 131].

The EB covers the region up to pseudorapidity |η | = 1.5 , and the two endcaps extend the
coverage to |η |= 3.0. In the forward region, 1.7 < |η |< 2.6, a silicon/lead preshower detector
is installed. It has a much finer granularity than the ECAL with detector strips of 2 mm wide.
This allows to resolve closely-spaced lower energy photons, mimicking a high-energy photon,
from neutral pions decays. An illustration of the CMS ECAL detector is shown in Figure 4.3.

Figure 4.3: Layout of the CMS electromagnetic calorimeter. The barrel supermodules, two
endcaps and the preshower detectors are shown as well [126, 132].
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The EB is organized in 36 supermodules, each containing 1700 crystals, which are arranged
in 4 modules of 400 or 500 crystals depending on η . Four half-disk dees, forming the EE, are
composed of 3662 tapered crystals each. The crystals of the EE are grouped into 138 5× 5
crystal arrays, supercrystals, in each dee. The superclusters are arranged in a rectangular xy grid
with 18 partial supercrystals on the inner and outer circumferences.

The ECAL resolution is parametrized in terms of the stochastic (S), noise (N) and the constant
(C) contributions,

σ(E)
E

=
S√

E(GeV )
⊕ N

E(GeV )
⊕C. (4.1)

The symbol ⊕ means adding in quadrature. The contributions [126] to each term of the
parametrization (4.1) are as follows:

∙ The stochastic term is mainly given by two contributions.

Fluctuations of the number of photoelectrons released in the photodetectors give a contri-
bution of about 2.3%, and fluctuations on the lateral containment give about 1.5%.

∙ The noise term contains contributions from readout electronics and pile-up collisions.

∙ The constant term is dominated by crystal-to-crystal intercalibration errors and non-
uniformity for the longitudinal shape of the collected light.

The values of the parameters in formula (4.1) are fitted to the test beam data [133],

σ(E)
E

=
2.8%√
E(GeV )

⊕ 12%
E(GeV )

⊕0.3%, (4.2)

and shown in Figure 4.4. The energy resolution of the ECAL is better than 0.4% for electrons
with E > 100 GeV.
This measured energy resolution was obtained by reconstruction of the showers in a matrix of
3×3 crystals to ensure the containment of 94% of the electromagnetic shower.

4.2.2 The CMS hadronic calorimeter

The hadronic calorimeter, HCAL, provides measurements of the energy of strongly interacting
particles. There are several parts of HCAL:

∙ the barrel part, HB, covering the range |η |< 1.4,

∙ the endcap part, HE, installed in the range 1.4 < |η |< 3,

∙ the forward part, HF, in the region 3 < |η |< 5.
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Figure 4.4: The measured (black) and fitted (red) resolutions as functions of the electron energy
in a 3×3 array of crystals with beam incident in an area of 4×4 mm2 around the
crystal cross section center [134].

An additional scintillator layer, HO, is placed in the region |η |< 1.2 to catch the tails of showers
leaving the barrel part of HCAL. The hadron calorimeter uses brass plates as absorbers, which
are interspersed with plastic scintillator tiles playing the role of sensors. The layout of the HCAL
is depicted in Figure 4.5.

The characteristic HCAL segmentation for the barrel in the (η ,φ) plane is 0.087×0.087. In
the endcap the segmentation varies from 0.087×0.087 at the small values of η to 0.37×0.175
at the larger η . The forward hadron calorimeter has sections of 0.175×0.175 size.

The CMS HCAL system is a non-compensating calorimeter. Its response for electromagnetic
energy depositions is larger than for hadronic ones. The deposited energy in HCAL cells is
not linearly proportional to the hadron energy [135]. As a result, the ratio of contributions
from electromagnetic and hadronic interactions is energy dependent, and it is about 1.2. Figure
4.6 (a) shows the non-linear energy response of the HB calorimeter obtained from test-beam
measurements with π− beams at different energies [136].
The energy resolution σ(E)/E of the HBhas been measured using 20-300 GeV pions. σ(E)/E

as a function of the energy E is shown in Figure 4.6 (b), and approximated as

σ(E)
E

=
115%√
E(GeV )

⊕5.5%. (4.3)
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Figure 4.5: Layout of the CMS HCAL. The barrel (HB), endcap (HE), forward (HF) and “tails-
catcher” (HO) parts are shown [112].
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Figure 4.6: Energy response as a function of pion beam energy (a). Relative energy resolution
σ(E)/E versus pion beam energy (b). σ(E)/E is measured using mean and RMS of
the energy distribution as well as the mean and variance of the fitted Gaussian [136].

This is consistent with characteristics expected from the HB design. Effects from the non-linear
response of HCAL is taken into account in formula (4.3) [136].

4.3 The CMS muon spectrometer

The CMS muon system provides geometric coverage for detection of muons up to |η |= 2.4. The
detectors are embedded in the iron structure of the magnet return yoke. The muon momentum
and charge measurements exploit the strong magnetic return field. There are three types of the
gaseous detectors in the muon system:

∙ the drift tubes, DT, located in the barrel region, |η |< 1.2

∙ the cathode strip chambers, CSC, in the endcap region 1.2 < |η |< 2.4

∙ the resistive plate chambers, RPC, in the whole detector up to |η |= 2.1.

In Figure 4.7 an (R,z) view is given for a quarter of the CMS muon system.
The muon systems allow fast muon identification together with perfect spatial resolution of

muon tracks in the whole volume of the CMS detector.
The DT are long aluminum cells of a few centimeters wide, filled with a fast-drift gas,

having anode wires in the centre to collects ionization charges. The DT are arranged into three
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Figure 4.7: View of the CMS muon system [112]. The dashed lines corresponds to the given
values of η .

superlayers that are shifted by half of the width with respect to each other. Two superlayers have
anode wires parallel to the beam pipe, providing a measurement of the R and φ coordinates while
the third superlayer, which is disposed perpendicular to the others, performs η−measurements
for traversing muons.

The CSC consist of arrays of anode wires perpendicular crossed with radial cathode strips
within a gas volume. A muon traversing the CSC creates electrons and muons. The electrons
drifts to the anode, and due to the high electric field near the anode, an avalanche of electrons is
formed, leaving ions in space. The anode wire produces a fast signal, while the cathode strips
collect the image charge of ions much slower. The CSC cells, organized into six layers, measure
three muon coordinates, R, φ and η . The CSC (DT) detectors provide a track measurement with
spatial resolution of 100µm in R and 10 (1) mrad in φdirections.

The RPC system consists of double-gap bakelite chambers, where two parallel plates, being
the anode and the cathode, are separated by 2 mm distance filled with a special gas mixture.
Despite the worse spatial resolution, RPC provides a very fast response of 2 ns which is used by
a trigger, as described below.

The different muon chambers are segmented in disks, placed approximately at 4, 5, 6 and 7
meter radii in the barrel part and 7, 8.5, 9 and 10 meters in z direction for the endcap stations.

4.4 Triggering system

In 2011 and 2012 years the proton beams was composed, at most, of 1380 bunches with minimum
50 ns spacing, corresponding to the minimum bunch crossing rate of 16 MHz. The peak recorded
luminosity was 6.8 ×1033cm−2s−1. The total event rate at the σtot = 90 mb was expected to be
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about 3×108 events per second.

However, the cross sections of the most interesting physics channels are rather small. For
example, the process, in which a 125 GeV Standard Model Higgs boson decays to two photons,
has a cross section of only 3.94 pb, corresponding to an event rate of 3×10−4 Hz, which is 1012

times smaller compared to the total event rate. Assuming the event size of the order ∼ 1 MB,
the data stream produced by the CMS detector was of order of 0.3 PB/s in 2011, which is far
beyond current data storage capabilities. The storage capacity of the CMS computing system
corresponds to processing 500 events per second or 500 MB/s data rate. Therefore the primary
goal of the CMS Data Acquisition, DAQ, and Trigger systems is to reduce the total event rate
from collisions to a manageable level of a few hundred Hz while keeping the most interesting
and precious events with high efficiency.

Because of the required high event rejection power, the CMS performs an online selection in
two steps [137]. An overview of the two-level trigger system is shown in Figure 4.8.

Figure 4.8: An overview of the two-level trigger system used at the CMS. The Level-1 (Lvl-1)
selects events from the pipeline of front-end electronics. A software-implemented
High Level Trigger (HLT) filters the Level-1 output and reduces the data rate by a
factor of O(1000) [137].

The pipeline length on the front-end electronics has been designed to be 4.0 µs to store
information on 128 bunch crossing. During this period, the Level-1 trigger must have made a
decision on whether or not to pass the temporary-stored events onto the High Level Trigger.
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4.4.1 Level-1 trigger

The first step of online selection is performed by the Level-1 trigger, L1, [137] implemented on
dedicated programmable hardware.

The L1 is designed to reduce the total rate from 40 MHz to less than 100 kHz based on fast
signals from detector electronics. It uses only coarsely segmented raw data from calorimeter
and muon detectors in order to make a fast decision to keep or reject one particular event for
further processing. The L1 selects events using physics objects reconstructed from data stored in
the front-end pipeline . To make a decision, the so-called “Level-1 Accept”, L1A, the Level-1
trigger requires about 1 µs. The logical view of the L1 structure is illustrated in Figure 4.9.

Figure 4.9: An overview of the Level-1 trigger [137]. The regional triggers of the calorimeter
and the muon systems provide information to the Global Trigger.

The main module of the L1 is the Global Trigger, GT, which consumes the information from
regional calorimeter and muon triggers in order to make the L1A. The regional triggers identify
and reconstruct objects of several types, which are:

∙ isolated and non-isolated electrons

∙ photons

∙ forward and central jets

∙ τ jets

∙ muons.
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The four best candidates of each type, together with measurements of their positions, transverse
energy or momentum and a quality word, are passed to the GT. The regional calorimeter trigger
also sends the total and missing transverse energies in an event. Events with trigger objects,
passing programmable thresholds, are tested for topological conditions and correlations between
objects. A total of 128 topological conditions, called primitives, are processed in parallel.

Electron and photon candidates are treated simultaneously at the regional calorimeter trigger.
They are reconstructed from energy of one or two adjacent 3×3 arrays of ECAL and HCAL
trigger cells, as shown in Figure 4.10. The trigger cell accumulates the transverse energy of 5×5
crystal groups. Depending on the electromagnetic shower profile detected in the 5×5 group, a
quality bit of the calorimeter trigger object is set to either “isolated” or “non-isolated” [138].

Figure 4.10: The structure of the regional L1 calorimeter trigger [138]. The 3×3 trigger cells
(in blue and green) are compound of 5×5 crystal arrays (in yellow and red).

The four isolated and non-isolated candidates with the highest energies are selected and sent to
the Global Trigger.

The L1 calorimeter window, made of 12×12 trigger cells, and shown in Figure 4.11, is used
to reconstruct jets. The global calorimeter trigger slides the window by increments of four
towers both in the η and φ directions. Applying the 2×2 crystal patterns, shown on the right
side of Figure 4.11, to the energy deposits for each of nine 4× 4 groups in the window, the
global calorimeter trigger identifies jet constituents. If there are no more than two 4×4 crystal
groups, which follow either the 1×1, or 1×2, or 2×1 patterns, a jet is identified as τ jet. To
suppress reconstruction of “fake jets” due to pile-up interactions, a cut on the jet transverse
energy, ET ≥ 30 GeV, is imposed. The L1 jet reconstruction is done only for the region of
|η |< 1.95. The global calorimetric trigger sends the most energetic eight jets and four tau jets
to the GT.

Muon L1 objects are reconstructed from track segments of different muon stations. The
regional track finders build their segments in parallel. The four muons with the highest pT are
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Figure 4.11: The 12×12 window used for the L1 jet reconstruction. The trigger patterns on the
energy deposits, shown on the right side, are used to identify jet constituents [138].

sent to the GT.

4.4.2 High Level Trigger

The CMS High Level Trigger, HLT, [139] processes all events accepted by the L1 trigger. The
HLT runs dedicated software on a farm of commercial processors. There are two steps of HLT
selection: Level-2 and Level-3 triggers. The High Level Trigger reduces the rate of 100 kHz
incoming from the L1 to 500 Hz. The structure of the HLT is shown in Figure 4.12.

The HLT algorithms utilize the full information available from the CMS detector. First, the L1
objects are packed together to the 128-bit L1A. Then HLT starts the partial reconstruction of the
event: objects necessary for the trigger decision are reconstructed and selected step-by-step, the
reconstruction process immediately stops, if the object does not satisfies selection criteria, and
the event is rejected.

The Level-2 trigger reads bits (seeds) of the L1A to extract logical combinations of L1 objects.
Then algorithms, based on partial tracker information, e.g. pixel hits, perform fast reconstruction
of tracks and energies of charged candidates. Pixel hits are also used to reconstruct interaction
vertices.

At the Level-2.5 quality of objects passed the L2 selection is validated. The Level-3 trigger
chain reconstructs not only tracks and vertices, but also particles, employing information from
the pixel and silicon trackers and the calorimeter. Because of the high number of channels,
complex pattern recognition and large combinatorics and sophisticated algorithms, the Level-3
trigger demands large amounts of CPU time.

Following the structure, shown in Figure 4.12, the Level-2, Level-2.5 and Level-3 algorithms
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Figure 4.12: An overview of the HLT. The HLT reconstructs Level-2 tracks in the tracker
regions seeded by the Level-1 electrons and photons. The rejection of an event
happens, if Level-2 or Level-3 objects fail to pass selection criteria in the filtering
steps.

are arranged in several programming units, which are called the Electron, Muon and Jet triggers.

Electron Trigger

The Level-2 electron reconstruction starts from searches for calorimeter superclusters accord-
ing to L1 primitives. Next, the Level-2.5 algorithms match pixel hits to calorimeter superclusters
by extrapolating from the positions of the calorimeter supercluster through the magnetic field.
Finally, the Level-3 electron track parameters are fitted to associated hits. Electrons are filtered
according to the quality constraints, which are the χ2 value of the fit, the value of pT and the
number of the associated hits. The event is rejected at any level, if no electron candidates remain.

Muon Trigger

The muon selection proceeds in two steps. First, tracks are built at the Level-2 using available
information from all muon chambers, seeded by L1 trigger primitives. This reconstruction
refines the pT measurement already made at the Level-1. The energy of calorimeter towers
in a cone around the muon direction is summed at the Level-2.5 to assign the flag “isolated”
or “non-isolated” to the muon. Then at the Level-3, the muon trajectory, seeded by Level-2
tracks, are rebuilt using the Kalman filter [140]. This method iteratively proceeds tracker layers
including the information of the successive reconstructed hits one by one. On each layer, i.e.
with every new measurement, the track parameters are known with a better precision. The
algorithm searches for compatible hits taking into account energy loss and multiple scattering.
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The procedure is repeated until the outermost layer of the tracker is reached.

Jet Trigger

To identify and select jets, a simple and fast Anti-kT algorithm [141] is applied. It exploits all
calorimeter towers composed of ECAL and HCAL superclusters. Finally, energy of the jet is
corrected for noise in electronics and for the pile-up interactions.

Apart from electrons, muons and jets, many other physics objects, such as photons, τ jets,
missing energy and b jets, are reconstructed within the specialized programming units, the
sequences of the Level-2, Level-2.5 and Level-3 algorithms. The High Level Trigger usually
combines several reconstruction sequences and apply topological cuts on possible kinematics of
the objects in the combined sequences in order to loosen thresholds applied in the selection. The
triggering in a search for the neutral Higgs bosons in the multi b-jet final states is described later.

4.5 Event Reconstruction

The event reconstruction starts from building sub-detector specific objects: charged particles
tracks, vertices and calorimeter clusters. To perform physics studies with these building blocks,
they need to be combined into higher-level physics objects, that allow to identify final states of
interest. The reconstruction of the physics objects is a trade-off between efficiency and fake rate.
Therefore, the identification of the high-level objects often involves analysis-specific quality
requirements applied at different stages of the reconstruction. This section describes the basic
principles and reconstruction techniques which are adopted and used in the search for neutral
Higgs bosons in multi b-jet final states. Details on the reconstruction of the physical objects, like
electrons, muons, photons, τ−leptons and jets can be found in Ref. [112].

4.5.1 Track reconstruction

Track reconstruction is decomposed into hit reconstruction, seed generation, trajectory building,
ambiguity resolution and the final track fit.

∙ The hit reconstruction clusters strip and pixel signals produced by charged particles. The
positions of the hits are measured along with the corresponding uncertainties. As the
track of a charged particle in the presence of the magnetic field is described by a helix, it
requires six parameters to be fully determined: the position,~r0 and the momentum, ~p0,
vectors of the initial point. However, considering the point of the closest approach of the
track to the beam axis as the initial point of the helix, azimuthal angles of the two vectors
are related as φ~r0 = π/2+φ~p0 . Therefore, only five parameters remain to be reconstructed.

∙ A seed defines initial trajectory parameters and errors. For each hit the R and φ coordinates
are measured. Since the track is described by five parameters, at least three hits (triplets)
must be reconstructed. For fast seeding, two hits (pairs) and a constraint on the origin of
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the helix from the interaction point are used. Only information of the pixel detectors are
used at this step.

∙ The pattern recognition module performs an iterative process, which, starting from the
seed, collects all hits compatible with the track. The iterative Kalman filter [142, 143]
method is used during this step. Because trajectories are build in parallel, allowing to share
hits, the Kalman filter is also responsible for cleaning the track candidates and removing
duplicates.

∙ After cleaning tracks, the Kalman filter performs a fit, determining the final parameters of
trajectories with ultimate precision.

Simulation results of track-reconstruction efficiency, fake rate and parameter resolutions are
summarized in Ref. [112, 142]. Two definitions of efficiency are used:

∙ the algorithmic efficiency is the efficiency of reconstructing tracks with pT > 0.9 GeV and
simulated hits in at least eight layers of the tracker, of which at least two are in the pixel
detector;

∙ the global efficiency is the reconstruction efficiency for all tracks with pT > 0.9 GeV.

The track-reconstruction efficiency of single tracks has been estimated using Monte Carlo
samples of muons with transverse momenta of 1, 10 and 100 GeV, and samples enriched by b
quarks. The results are shown in Figures 4.13 (a) and 4.13 (b).

Figure 4.13: The algorithmic track-reconstruction efficiency for muons (a) with pT =1 (black),
10 (blue) and 100 GeV (red). The algorithmic (open points) and global (solid points)
efficiencies for tracks in b jets with transverse momenta, pT , between 120 and 170
GeV (b) [142].
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For isolated muons about 99% algorithmic reconstruction efficiency is obtained, except in the
regions of η ≃ 0 and η ≃ 1.3. For muon tracks in b-flavored jets with 120 GeV< pT < 170 GeV,
about 90% global tracking efficiency is obtained in the barrel, and 80% in the forward region.

The minimal pT of a track to be reconstructed in the central region is 0.7 GeV. At this pT the
track curvature radius is equal to the distance to the outermost tracker layer. The maximal pT
possible to reconstruct is determined by the tracker strip pitch. If the track bending inside the
tracker volume is less than the strip pitch, the track is reconstructed as a straight line, and pT is
undetermined. The maximum reconstructed pT in the CMS tracker is 1 TeV.

4.5.2 Vertex reconstruction

The vertex reconstruction involves two steps:

∙ the vertex finding and grouping tracks to vertex candidates;

∙ vertex fitting with determination of the vertex position.

Either pixel tracks from pixel-hit triplets or fully reconstructed tracks are used to find vertex
candidates [144]. There are two algorithms used to group tracks in vertex candidates. The
algorithm, called the Deterministic Annealing [145], DA, is applied for the reconstruction of
primary vertices, PV. The algorithm, called the Adaptive Vertex Fitter [146, 147], is utilized to
reconstruct secondary vertices, SV.

The DA algorithm assigns the ith track to the kth vertex candidate with the assignment proba-
bility pik. The distance between the track and vertex plays the role of the energy,

Eik =
(zi − zk)

2

σ2
i

, (4.4)

where zi and zk are z-coordinates of the point of the closest approach of the track i and the
position of the vertex k. The measurement uncertainty of zi is σi. The energy of the vertex
ensemble is determined as

E = ∑
ik

ρk pikEik, (4.5)

where the factor ρk describes the probability to reconstruct the vertex k. As the energy E (4.5)
is gradually decreased, while keeping the probabilities pik as highest as possible, the vertex
k becomes unstable at some crucial energy Ec [145], and splits into two new vertices with
lower crucial energies, and smaller reconstruction probabilities, ρk,1 +ρk,2 = ρk. The splitting is
continued until the minimal energy Emin [145] is reached.

The reconstructed primary vertices are required to have z-coordinates within 24 cm of the
nominal detector centre and radial positions within 2 cm from the beamspot. In each reconstructed
vertex k the number of degrees of freedom must be larger than four [145],

Ndof = 2∑
i

pik −2 > 4.
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Before DA primary vertices are stored in the vertex collection, they are sorted according to
their sum of p2

T of all tracks in the vertex. The primary vertex with the largest value of the
p2

T−sum is chosen as the one originating from a hard interaction.
To reconstruct the SV, the Adaptive Vertex Fitter starts from computing an initial (seed) vertex

as a crossing point of the tracks. This crossing point is the weighted mean of points of closest
approach of the tracks. The seed defines a geometric region constrained on η and φ . For each
track in the region the transverse impact parameter

dxy = |
√

x2
C + y2

C −R| (4.6)

and its uncertainty σdxy are determined. Here xC, yC and R, as shown in Figure 4.14, are
coordinates of the centre and radius of the unique circle that passes through three pixel hits of
the track. The longitudinal impact parameter, dz is estimated using a helix parametrization. The
pixel hits are projected on the (ξ ,z) plane where ξ is the azimuthal angle between the hit and the
point of closest approach to the beam line. The longitudinal impact parameter is defined as the
point of intercept between the line joining the first two pixel hits with the (ξ1,2,z1,2) coordinates
and the z-axis

dz = z1 −
ξ1

ξ1 −ξ2
(z1 − z2). (4.7)

The significance, SIP, of the transverse impact parameter is the ratio of the transverse impact
parameter dxy and its uncertainty σdxy

SIP =
dxy

σdxy

. (4.8)

The SV reconstruction accepts tracks with a significance SIP smaller than 3. Then tracks are
grouped with accordance to their dz. The algorithm progressively merges tracks close enough
to each other, forming vertex candidates. Several secondary vertices, which may be found, are
sorted in decreasing order of the sum of p2

T of the tracks associated.
The SV candidates must not share more than 65% of the track with the primary vertex and the

distance between SV and PV must exceed 3σ . We suppress the vertices of long-lived particles,
rejecting the SV candidates with the radial distance to the PV larger that 2.5 cm or the SV
candidates for which mass is compatible with that of the K0

S particle or greater than 6.5 GeV. The
flight direction of the SV candidate must lie within a cone ∆R < 0.5 around the jet direction.

4.5.3 The energy reconstruction and calibration in ECAL

Energy deposits in the ECAL due to electromagnetic showers are spread over several crystals.
Approximately 97% of the incident energy of a single electron or photon is contained within the
5×5 array of crystals [112] around the point of impact.
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Figure 4.14: The trajectory of a charged particle in the pixel tracker. The measurements of the
first two pixels determine the transverse and longitudinal impact parameters, dxy
and dz, respectively.
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The presence of material in front of the calorimeter can cause conversion of photons and
bremsstrahlung from electrons and positrons. Because of the strong magnetic field, the energy
flow, associated to primary electrons or converted primary photons, spreads in φ at large distances
from the interaction point. The fraction of the bremsstrahlung energy radiated by electrons before
reaching ECAL crystals was estimated in Monte Carlo studies [148] of back-to-back e+e− pairs.
Electrons radiate inside the tracker about 70% and 95% of their energy in 35% and 10% of the
cases, respectively. Bremsstrahlung photons may convert into electron-positron pairs before the
calorimeter. This leads to electromagnetic shower patterns.

The total electron (photon) energy has to be determined as the sum of energy deposits along
a φ road to collect energies from bremsstrahlung photons. Different algorithms are employed
for summing ECAL energies into superclusters [112, 149, 137]. They collect together energy
deposits in adjacent 5×5 crystal groups, forming the superclusters, SC. There are two algorithms,
called “Hybrid” and “Island”, which are used to build the SC in the ECAL barrel and endcaps,
respectively.

The “Hybrid” algorithm starts from a single crystal, called the seed crystal, which has the
maximum energy deposit in the EB, of at least 1 GeV. Subsequently, a row of 3 or 5 crystals in
the η direction is build symmetrically around the seed crystal. Additional rows of 3 or 5 crystals
are added to the SC in the φ direction. The algorithm stops if a number of added rows reaches
10 in either direction of φ , or if a valley with the energy deposit less than 100 MeV is found.

The “Island” algorithm constructs the SC by forming rows in η of EE crystals with decreasing
energies when moving away from the seed crystal. The supercluster is built by connecting with
ET -ordered “Island” rows reconstructed at adjacent positions of φ around the seed 5×5 crystal
array. The minimal threshold for the seed cluster energy, Eseed

T , is taken to be 1 GeV in order to
reconstruct SC candidates for low-pT electrons in 99% cases.

Bremsstrahlung photons can produce the secondary SC separated from the seed supercluster
by a crystal valley with total energy less than 100 MeV. If the distance between seed and
secondary superclusters is no more than 10 crystals, they are combined. The same superclustering
algorithms are used to reconstruct electrons and photons. The position of the supercluster is
obtained as an energy-weighted mean position of all crystals in the SC.

The energy in a supercluster, Ee,γ , is estimated as

Ee,γ = Fe,γ · (G ·∑
i

Si ·Ci ·Ai), (4.9)

where the sum is over all crystals i belonging to the supercluster. Ai is the pulse amplitude,
measured as the number of counts, si, of analogue-to-digital converter, ADC, multiplied by a
optimization weight wi,

Ai = wi · si.

The quantities Si [150, 151] and Ci [152] are correction terms due to radiation-induced changes
in channels responses and a relative calibration of crystals, making Ai to be equal for all channels,
respectively. The coefficients Fe,γ and G are corrections on the energy scale. The relative impacts
of the individual calibrations Si and Ci on the reconstructed energy are illustrated in Figure 4.15.
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The distributions of di-electron invariant mass from Z-boson decays, Z → e+e−, were obtained
from pp collisions data recorded in 2011 at a centre-of-mass energy

√
s = 7 TeV [134]. Various

reconstruction scenarios for supercluster energy are considered: the corrections Si and Ci are
not applied (blue), the only intercalibration factor Ci is applied (red) and both the Si and Ci
corrections are applied (black).

Figure 4.15: The distribution of di-electron invariant mass Mee reconstructed in Z → e+e− decays
in EB. The cases of no correction (blue), interchannel calibration Ci applied (red),
both interchannel Ci and radiation-induced Si corrections applied (black) are shown
[134].

4.5.4 Electron and photon identifications

Electron identification

Electrons and photons are built from the reconstructed superclusters in the ECAL barrel and
endcaps. The superclusters serve as seeds for reconstruction of tracks: supercluster are matched
to triplets of hits in the inner tracker layers in a relatively wide ∆η ×∆φ window. For electron
tracks, in order to better deal with the non-Gaussian fluctuations induced by bremsstrahlung
emission, a non-linear generalization of the Kalman filter, the Gaussian Sum Filter [153], GSF,
is applied in the track fitting instead of the standard Kalman filtering technique.

Tracks are described by a five-dimensional state vector containing the information about the
momentum, the direction and the position at some reference surface. To model Bethe-Heitler
energy loss of electrons due to the bremsstrahlung process, the GSF utilizes a weighted sum
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of Gaussians for state vectors. The track building procedure iterates over triplets of hits in
silicon layers calculating the trajectory state at each layer as the Gaussian-weighted mean of the
predicted state and of the measured hit. The track quality is defined in terms of a χ2 test. If many
hits are found on neighboring layers, many candidate trajectories are grown in parallel, keeping
the best two candidates, with the smallest χ2, in the end.

The GSF algorithm provides complementary segments of the trajectory, which allow to
measure the state vectors of the track in the innermost, (ptrack

in , η track
in ,...), and outermost, (ptrack

out ,
η track

out ,...), tracker parts. As a final step, to resolve ambiguity in tracks, the matching in η and φ

between the outermost part of the GSF track and the corresponded SC is made [148]:

∙ ∆η = |ηSC −η track
out | < 0.01, where ηSC is η of the weighed supercluster position, and

η track
out is η of the track in the outermost tracker;

∙ ∆φ = |φ SC −φ track
out |< 0.1.

To suppress fakes from jets in the electron-track reconstruction, a few requirements are
imposed in addition:

∙ the ratio H/E < 0.1, where H and E are HCAL and ECAL constituents of the energy
deposit of a supercluster;

∙ the transverse energy of the candidate, ET = E sinθ > 4 GeV, where θ is the polar angle
of the weighted position of the SC and E is the ECAL SC energy.

The procedure of matching between a supercluster and GSF track is shown in Figure 4.16 (a).
The electron track in the inner and outer parts of the tracker are depicted in Figure 4.16 (b). The
supercluster, “ElectronCluster”, with energy Ee, is matched to the track. The bremsstrahlung
photons form the secondary SC, “BremCluster”, with energy Eγ .

Photon identification

The energy-weighted mean position of the SC determines the transverse energy of a photon
candidate as

ET = E sinθ ,

where E and θ are the SC energy and a polar angle of the SC position. After reconstructing the
superclusters, photon candidates are selected from them applying the following isolation and
identification criteria [154]:

∙ There are no pixel seeds in the innermost tracker region matched to SC;

∙ ECAL isolation: the sum of ECAL ET must be ∑ET < 4.2 GeV, in an annular region
with inner radius, ∆Rin =

√
∆η2 +∆φ 2 = 0.06, and outer radius, ∆Rout = 0.4, around the

photon candidate;

∙ HCAL isolation: the sum of HCAL ET around the photon candidate in the annulus with
the inner radius of 0.15 and outer radius of 0.4 is required to be less than 2.2 GeV;
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Figure 4.16: The matching between the GSF track and the SC (a). The angular coordinates of
the SC, φSC and the outermost part of the GSF track φ track

out , are compared. The
reconstruction of an electron candidate as a combination of two-component GSF
track, with the 4-momenta pin and pout in the inner and outer parts of the tracker,
respectively (b).

∙ Tracker isolation: the scalar sum of pT for tracks consistent with the primary vertex in a
annulus around the photon candidate having the inner radius of 0.04 and outer radius of
0.4 is required to be less than 2 GeV; The cone is taken in such way that the conversion
tracks are not counted in the isolation criterion;

∙ Covηη element of the η − φ covariance matrix must be less than 0.1. This element is
calculated with logarithmic weights wi as

Cov2
ηη =

∑
5×5
i wi(ηi −ηseed)

2

∑
5×5
i wi

, wi = max(0,4.7+ ln
Ei

E5×5
),

where Ei and ηi(seed) are energy and η of the ith (seed) crystal in the SC, and E5×5 is the
total energy of the SC;

∙ The ratio of HCAL energy over ECAL energy, H/E, should not exceed 0.05.

4.5.5 Muon identification

Global Muons (GM)

The standard CMS offline muon reconstruction exploits hits, reconstructed in the muon
stations and tracker, forming global-muon tracks. The pseudo-rapidity coverage of the GM is
|η |< 2.4. At low muon pT , below 30 GeV, the GM reconstruction suffers from a high rate of
muon candidates from hadron showers, which are not fully absorbed in the calorimeters. This
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results in worse momentum resolution and low reconstruction efficiency of the global-muon
tracks. To overcome such degeneracy of muon identification, Tracker Muons, TM, consisting
only of silicon tracks with pT > 0.5 GeV, a sum of which has the momentum p > 2.5 GeV, and
matched to at least one muon segment in the DT or CSC stations, are used as muons candidates
at low values of the muon pT . For example, quarkonia and B-physics analyses in the CMS [155]
perform searches using the TM.

For the region of pT > 30 GeV, where muons from decays of W and Z bosons are dominant,
two muon identification schemes, Soft Muon and Tight Muon, are applied.

The Soft Muon is required to be a Tracker Muon, which has pulls of local x and y coordinates
for the matched muon segment in the first station and the silicon track less than 3.

Tight Muon identification is based on selection criteria aimed to improve the reconstruction
efficiency of muons from semileptonic decays of hadrons or decays of W and Z bosons. This
scheme suppress reconstruction of muons originated from parton showers. The following
conditions to select Tight Muons are used:

∙ A reconstructed muon must be identified as a GM.

∙ The number of valid tracker hits associated to the muon must exceed 10. This ensures a
good estimation of the muon transverse momentum.

∙ The χ2, normalized to the number of degrees of freedom, of the global muon fit must be
smaller than 10.

∙ The transverse impact parameter of the muon should be less than 2 mm. This is essential
to reject reconstructed cosmic muons.

∙ The number of pixel hits must be at least one, suppressing contributions from hadron
showers.

∙ In addition, the tracker track is required to be matched to muon segments in at least two
muon stations.

∙ A reconstructed muon is marked as isolated, if the isolation variable,

Iiso =
∑

tracks
i pT (i)+EECAL

T +EHCAL
T

pT (µ)
,

satisfies Iiso < 0.10. Here pT (i), EECAL
T and EHCAL

T are transverse momenta of the ith

silicon track, and total ECAL and HCAL energies of the superclusters within a cone of
∆R = 0.3 around the direction of the reconstructed muon.

4.5.6 Jet reconstruction

The analysis of the physics processes investigated in this thesis is based on identification of jets.
Jets are collimated bundles of particles, that originate from the outgoing partons (plus initial
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and final-state radiation) of the hard interaction and and from the breakup of the proton and
antiproton (beam-beam remnants). These bundles are built, using different algorithms, from
the calorimeter towers and tracks as shown in Figure 4.17 (left). Energy and direction of the
jet is determined by particles as shown in Figure 4.17 (right). Everything except outgoing hard
scattered jets is called the underlying event, and it consists of the beam-beam remnants plus
initial and final-state radiation.

The jet energy and direction are used to suggest the kinematics of the original parton. Such
association of measured energy in clusters with scattered partons is a complex problem, because
of the multitude of physics and detector effects that needed to be accounted for. These are

∙ initial and final-state radiation;

∙ interaction of beam-beam remnants, left after hard-interacting partons are knocked out of
the initial two beam hadrons;

∙ uncertainties in jet-fragmentation models;

∙ out-of-cone showering;

∙ loss of low-momentum charged particles due to the magnetic field;

∙ pile-up and noise contributions;

∙ energy loss due to cracks in the detector;

∙ interactions with tracker material;

∙ leakage in the calorimeter.

Figure 4.17: Jet reconstruction in the CMS. On the left side, tracks (black), ECAL (green) and
HCAL (blue) energy deposits are used to cluster jets. Constituents of jets like
neutral and charged hadrons, photons are shown on the right side.
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First, we will discuss the reconstruction of jets, using only energy deposits in calorimeter
towers, the so-called CaloJets. Then the reconstruction of jets based on the Particle Flow
technique, the PFJets, is introduced.

4.5.6.1 Jet clustering

There are two broad classes of jet algorithms: cone algorithms and sequential recombination
algorithms, which are described in the following:

∙ Cone algorithms collect together particles within a specific cone defined by the rapidity
and azimuth spans, (∆y,∆φ). Jets are clustered by finding directions that maximize the
amount of hadronic energy flowing through a cone of fixed radius R =

√
∆y2 +∆φ 2, drawn

around them. They are physically close to the direction and energy of the original partons.

∙ Sequential recombination (cluster-based) algorithms consider the pair of particles that
are closest in distance, combine them, and then repeat the procedure over and over again,
until some stopping criterion is reached. The various sequential recombination algorithms
differ mainly in their particular choices of distance definition and stopping criterion.

In the CMS two cone-based methods, Iterative Cone, IC, [156, 157] and the Seedless Infrared-
Safe Cone, SISCone, [158], and two cluster-based methods, Inclusive kT [141, 157] and Anti-kT
[141] algorithms, are included in the standard sequence of the jet reconstruction [159].

The IC algorithm starts by ordering the input objects according to decreasing ET . The first
object in the list is taken as a jet seed which defines an initial direction of the jet. By collecting
towers in a cone with the radius R around the jet direction, a so-called proto-jet is constructed.
The proto-jet is used as a new seed, and one iterates the procedure until the direction of the
resulting cone stabilizes. At that point the proto-jet is added to the list of jets, and its objects
are deleted from the list of input towers. The jet cone size R and the minimal threshold on the
seed’s ET are parameters of the algorithm. The IC uses the cone sizes of R = 0.5 and R = 0.7.
The ET threshold is 1 GeV. The jet transverse energy, ET , pseudo-rapidity, η , and azimuth, φ ,
are calculated from its constituents as

ET = ∑
i∈cone

ETi,

η =
1

ET
∑

i∈cone
ηiETi,

φ =
1

ET
∑

i∈cone
φiETi. (4.10)

The IC method is collinear unsafe. If the hardest particle undergoes a collinear gluon emis-
sion, jets clustered by the IC algorithm will be changed [157]. This leads to the fact that jets
reconstructed before hadronization do not correspond to jets reconstructed after hadronization
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in simulated events. To avoid problems with collinear and infra-red safety in jets, a modified
version of the IC, the SISCone algorithm, is applied [158].

The kT and Anti-kT algorithms utilize a quantity di j as measure of the distance between the
calorimeter towers i and j,

di j = min(E2p
Ti
,E2p

Tj
)
∆i j

R2 ,

diB = E2p
Ti
,

∆
2
i j = (yi − y j)

2 +(φi −φ j)
2, (4.11)

where ETi , yi, φi are, respectively, the transverse energy, rapidity and azimuth of the tower i.
Here R is a dimensionless parameter which is either 0.5 or 0.7 in the CMS reconstruction scheme.
The power p is 1 for the kT algorithm and -1 for the Anti-kT algorithm.

The algorithms form clusters by identifying the smallest measure of the distance, either di j or
diB, for the object i. If it is the di j, the two entities i and j are combined, while if it is the diB the
ith object is called a jet and removed from the list of entities. Two different options are available
in the procedure of the combining. Either four-vectors are added, which results in a massive jet,
or the ET of the constituents are summed to produce a massless jet. The first option is called “E”
scheme, another one is "ET " scheme. When no input towers are available to build jets, a new
iteration merges all jets i and j with distances ∆i j < R. The merging is repeated until ∆i j > R for
all jets left. R can be interpreted as the jet cone size.

Both algorithms are free of any infra-red and collinear issues. The Anti-kT algorithm grows
up jets outwards around hard towers resulting in geometrically circular jets.

4.5.6.2 Efficiency of CaloJet reconstruction

The high-efficient reconstruction of jets is important in the search of the neutral Higgs bosons de-
caying in b jets. There are three reasons which degrade the efficiency of CaloJet reconstruction:

∙ pile-up interactions, which contribute with sizable amounts of energy in the calorimeter
cells;

∙ electronic noise;

∙ low-pT charged particles, escaping the calorimeter due to the strong CMS magnetic field.

There is a data-driven method, introduced in Refs. [160, 161], which allows to estimate the jet
efficiency both in data and Monte Carlo events. The method is based on the reconstruction of
jets from tracks of charged particles only, TrackJets. TrackJets are used for jet counting and
estimation of jet kinematics, because the tracking momentum measurements are more accurate
than the calorimeter ones for charged hadrons up to several hundreds of GeV

First, the performance of TrackJets reconstruction has been studied in Monte Carlo simu-
lations [162]. The Anti-kT algorithm was applied to stable particles after hadronization step,
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producing GenJets. Reconstructed tracks from the simulation of the CMS detector were used to
cluster the TrackJets. Then a matching between GenJets and TrackJets was performed. The
efficiency of the matching is almost 100% for jets with pT > 15 GeV [162].

Afterwards, the CaloJet reconstruction efficiency was evaluated using the tag-and-probe
approach in the back-to-back di-jets data of 100 µb−1 luminosity selected by the CMS minimum
bias trigger at

√
s = 7 TeV in 2010. First, in each di-jet event one jet was reconstructed using only

tracks, TrackJet, and called the tag jet. The another jet was reconstructed using the calorimeter
towers and called the probe jet. The energy of the tag jet was corrected to the GenJet energy.
The jet reconstruction efficiency of CaloJets, defined as the ratio between the numbers of the
probes and tags [162], is shown in Figure 4.18 for the Anti-kT algorithm with R = 0.5.

Figure 4.18: Reconstruction efficiency of CaloJets in simulations and data as a function of the
jet pT [162].

The high pT CaloJets demonstrate reconstruction with efficiency of 100% both in Monte Carlo
simulations and data. The low reconstruction efficiency observed at low transverse momenta can
be understood as mis-measurement of the CaloJet direction since low pT charged particles are
deflected in the 4 T magnetic field and do not reach the calorimeter.

4.5.6.3 Jet energy correction

The calorimeter response to particles is not linear as a function of the energy and therefore
the energy of the reconstructed jet is not simply proportional to the energy of the parton.
Corrections to the raw jet energy measurement have to be applied. This is done by the proper
mapping of measured jet energy to the energy of either the parton or particle. However, several
effects complicate the translation of the measured jet energy, at a given jet definition, into
the corresponding parton energy. A first class of effects relates to physics of jets in hadron
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collisions. Initial and final-state radiation blurs the connection between the parton and the jet.
Hence, on average, the energy correction should compensate for the energy loss due to the
radiation. At the same time pile-up collisions give additional external energy deposits to the
jet energy measurement. A second class of effects stems from detector imperfectness. Low-
momentum charged particles are swept out of jet cones due to the magnetic field. Electronic
noise generates additional contributions to jet energy. Also the energy loss due to dead material,
cracks, interactions with material in front of the calorimeters and leakage in the calorimeters
render the correction of jet energy to be a highly non-trivial task.

The CMS jet energy correction is a factorized multi-level jet correction [163], where each
sub-correction is associated with a different class of the physics and detector effects described
above. The main three steps of correction in the CMS are depicted in Figure 4.19.

Figure 4.19: Steps of correction applied to the raw jet energy.

The correction is applied as a multiplicative factor E to each component of the raw jet four-
momentum vector praw

µ ,

pcor
µ = E praw

µ . (4.12)

The factor E is a product of three quantities, corresponding to the sub-corrections illustrated by
Figure 4.19, and it is expressed as

E =Co f f set(praw
T ) ·Crel(η) ·Cabs(p′T ), (4.13)

where the scale factor Co f f set is the correction removing extra energy due to noise and pile-up,
the correction Crel makes the jet response uniform in η and the correction Cabs provides the
linearity in pT of the calorimeter response. Here p′T is the transverse momentum of the jet after
applying the offset correction Co f f set ,

p′µ =Co f f set praw.

It is worth to mention that the steps of the correction should be applied sequentially, as shown in
Figure 4.19 and equation (4.13), where the output of each step is the input to the next.

The correction Co f f set is expected to be relatively small, i.e. on average the difference between
p′T and praw

T is smaller than 2 GeV. There are a few approaches for the treatment of this type of
the correction [163]. One of them is based on the measurement of the jet area A [164]. The jet
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area provides a measure of the surface in the (y,φ) plane over which a jet extends. The method
calculates pT -density of jets, ρ , per unit of the jet area A in an event. The pT -density ρ is defined
as the median of the distribution of pT, j/A j,

ρ = median[
pT, j

A j
],

where j runs over all jets in the event. First, the average contribution from electronic noise,
< ρnoise >, to ρ is estimated using Monte Carlo simulations with exactly one reconstructed
primary vertex. Next, based on the knowledge of the jet areas A j and ρ in the event, the correction
factor Co f f set to the jth jet is determined [163] as

Co f f set(praw
T, j ,A j,ρ) = 1− (ρ−< ρnoise >)A j

praw
T, j

. (4.14)

The quantity < ρnoise > is estimated to be 1.08 [163].
Currently several methods for corrections applied at the second and third steps are available in

the CMS. One method is based on Monte Carlo simulations, in which one traces the reconstructed
jet energy Eraw

T back to the energy, Egen
T , of the initial parton. Two other methods exploit data-

driven approaches based on the pT -balancing in events [163]. A good agreement between results
of MC and data-driven methods is observed [163].

As an example, the approach, using Monte Carlo simulations, is discussed. The method
reconstructs jets after a realistic detector simulations of QCD events. The Anti-kT algorithm
was applied to simulated stable particles after the hadronization, producing the GenJets, and
calorimeter towers, resulting in the CaloJets. The matching between CaloJets and GenJets is
done in the (η ,φ) space, requiring ∆R =

√
(∆η)2 +(∆φ)2 < 0.25. The ratio, R = praw

T /pgen
T ,

between the transverse momenta of the CaloJet, praw
T , and the GenJet, pgen

T , is calculated and
added to histograms in several bins of praw

T and η . The average effect of the relative, Crel(η), and
absolute, Cabs(p′T ) corrections in each (praw

T ,ηraw) bin is defined as the inverse of the average of
R,

Crel(η) ·Cabs(praw
T ) =CMC(η , praw

T ) =
1

< R >
. (4.15)

Figure 4.20(a) shows the jet energy correction factors CMC for the CaloJets, TrackJets and jets
reconstructed using the Particle-Flow algorithm, PFJets, as functions of η . A large correction
factor CMC for the CaloJets, as it is illustrated in Figure 4.20 (b), is due to the non-linear response
of the CMS calorimeter. The structures observed at |η | ∼ 1.3 are because of the barrel-endcap
boundary and tracker material budget, which is maximal in this region.
In the TrackJets and PFJets the charged components of the hadron showers are accurately

measured by the CMS tracker up to |η |= 2.4. This fact explains much smaller correction factor
CMC for these types of jets. The fast rise of the correction factor for the TrackJets in the region
2.0 ≤ |η | ≤ 2.5 is explained by the fact that tracks are not fully reconstructed in the tracker.
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Figure 4.20: The MC jet-energy-correction factor for CaloJets, TrackJets and PFJets of pT =
200 GeV as function of η (a). The MC jet-energy-correction factor for the different
jet types, as a function of jet pT (b) [163].

4.5.6.4 Jet energy resolution

To estimate the jet energy resolution, JER, in several bins of Egen
T and ηgen, the distribution

of the ratio Eraw
T /Egen

T between the transverse energies for the matched CaloJet and GenJet,
is obtained and fitted in each bin by a Gaussian. The matching requires between CaloJet and
GenJet the distance ∆R < 0.25. The jet transverse energy of the CaloJets, Eraw

T , are corrected
for using the factor (4.15). The widths of the Gaussians are stored in a histogram built on the
Egen

T bins. The jet energy resolution is obtained from a fit of this histogram to the functional
form [165]

σ(
Eraw

T
Egen

T
)

Eraw
T

Egen
T

=

√
N2

Egen,2
T

+S2 1
Egen

T
+C2, (4.16)

where the first term describes energy fluctuations in the jet, originating from electronic noise
and pile-up interactions, the second term corresponds to the stochastic nature of the calorimeter
measurements, and the last term is the constant term from residual non-uniformity in the detector
response.

The results of the fit, using formula (4.16), in the barrel, endcap and forward regions of the
CMS calorimeter are shown in Figure 4.21 for jets reconstructed by the IC algorithm with
R = 0.5 in QCD di-jet Monte-Carlo samples [165].
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Figure 4.21: Jet resolution functions for the iterative cone algorithm with cone size R = 0.5 in
the barrel, endcap and forward regions [165].

The obtained jet energy resolution in the barrel region reads N = 5.6 GeV, S = 1.25 GeV1/2 and
C = 0.033.

The jet energy resolution (4.16), which is derived from Monte Carlo simulations, can be used
as a benchmark only. One expect a different resolution in collision data, due to instrumental
effects which are hardly ever parametrized in Monte Carlo. The di-jet asymmetry method [166]
is used to estimate the jet energy resolution from data. This method exploits the momentum
conservation in the transverse plane of the di-jet system. Using the method both in Monte Carlo
simulation of QCD di-jet events and data of 36 pb−1 luminosity recorded by CMS at

√
s = 7

TeV in 2010, the ratio JERdata/JERMC for Anti-kT jets with R = 0.5 is measured as a function
of the jet η . Table 4.1 summarizes the results.

Table 4.1: Ratios, between the jet energy resolutions in data and simulations, measured, using
the asymmetry method [166], for different jet η ranges.

JERdata/JERMC |η | bin
1.079±0.006 0.0 - 1.1
1.054±0.013 1.1 - 1.7
1.061±0.020 1.7 - 2.3
1.174±0.027 2.3 - 5.0
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Here the error quoted is the statistical uncertainty. The close agreement between the jet energy
resolutions, measured in data and Monte Carlo simulations, is observed for all regions of the CMS
detector. The ratio JERdata/JERMC is used to correct the energy resolution of jets reconstructed
in MC simulations as discussed in subsection 5.9.1.

4.5.7 Particle Flow jets

The Particle-Flow, PF, algorithm provides an event reconstruction on the level of individually
reconstructed particles. It optimally combines the information coming from all CMS subdetectors.
The particles reconstructed by the PF algorithm are muons, electrons, photons, either unconverted
or converted, charged and neutral hadrons. The complete list of PF particles is used to cluster
jets using the jet algorithms.

The PF jet reconstruction starts with building sub-detector specific objects: calorimeter clusters
and tracks from the tracker and the muon stations. All these objects are delivered with a high
efficiency and a low fake rate. High efficiency of PF identification is provided above a few GeV
for pT of particles.

There are four main steps of the Particle Flow algorithm [167, 168]:

∙ track reconstruction;

∙ calorimeter clustering;

∙ linking tracks with calorimeter cluster;

∙ particle identification.

The momenta of charged hadrons, electrons and muons are measured in the tracker with the
precision much better than calorimeter-based measurements. The track reconstruction is the
cornerstone of the PF algorithm because about two thirds of the energy of a jet is on average
carried by charged particles. An iterative-tracking strategy described in subsection 4.5.1 allows
to reconstruct 99% of isolated tracks and up to 90% of non-isolated tracks, for instance, tracks of
charged hadrons in b jets.

An example of the track reconstruction and association with the calorimeter clusters in the
(x,y) view is shown in Figure 4.22 (a). The “Hybrid” algorithm, described in subsection 4.5.3, of
the supercluster reconstruction is adopted for the PF with the aim of a high detection efficiency
even for low-energy particles [167, 168]. The reconstructed superclusters are translated to PF
clusters with an iterative determination of the cluster energies and positions. The reconstruction
of PF superclusters in the ECAL and the HCAL is illustrated in Figures 4.22 (b) and 4.22
(c), respectively. For a given particle the PF creates several elements - a track and calorimeter
clusters. It iteratively calculates distances between two different PF elements and combines them,
if the distance is small enough. In such way, the PF algorithm links the elements, corresponding
to one particle, into one composite PF object. The example of such connection between the PF
track and supercluster is shown as a green line in Figures 4.22 (a), (b) and (c).
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To perform the track-supercluster linking, first the track is extrapolated from its last measured
hit in the tracker to the ECAL to a depth of a typical longitudinal electron shower profile. Then
the track is prolonged to the HCAL to a depth of a typical hadron shower. The track is linked to
any given cluster, if the distance, in the (η ,φ) plane, to the cluster is smaller than the cluster size.

The particle identification is finally performed on the list of linked PF composite objects. The
PF muon is obtained from the Global Muon, reconstructed as described in subsection 4.5.5,
if the GM momentum is compatible with that determined from tracker hits only within three
standard deviations. The electron reconstructed by the GSF algorithm, discussed in subsection
4.5.4, is recognized as the PF electron. The tracks and calorimeter clusters of the PF muon and
PF electron are removed from the list of the linked objects.

The remaining PF tracks linked to the ECAL and HCAL clusters must have satisfied several
quality criteria summarized in Ref [168]. An iterative reassignment [168] of PF tracks and ECAL
clusters is run to properly accumulate the energy from hadronic showers. Afterwards, remaining
linked pairs are assigned to Particle-Flow charged hadrons. The standalone ECAL and HCAL
clusters, not linked to any track, create Particle-Flow photons and neutral hadrons.

The Monte-Carlo based approach described in Ref. [168] is used to calibrate the energy, Erec,
of the PF superclusters. To estimate the resolution of Erec, the width of a Gaussian fitted to
the distribution of (Erec −Egen) in each bin of Egen is estimated. Here Egen is the energy of a
particle, which is simulated in the supercluster. Figure 4.23 demonstrates the energy resolution
of the PF supercluster as a ratio of the width over Erec.
If one compares the energy resolution of the HCAL cells with the energy resolution of the PF

clusters, shown in Figures 4.6 (b) and 4.23, respectively, one notices that the stochastic term, S√
E

,
is reduced from S = 115% to S = 104%.

The PF algorithm reconstructs jets from all PF composite objects without distinction of particle
type and without any energy threshold. To estimate the reconstruction efficiency of the PFJets,
they are matched to the GenJets in Monte Carlo simulations. The matching requires the distance
between jets in the (η ,φ ) plane to be less than 0.1. Also the CaloJets are clustered, using
calorimeter towers, and matched to the GenJets. Figure 4.24 shows the comparison of the
reconstruction efficiencies and fake rates [168] for the PFJets and CaloJets.
Jets are reconstructed in QCD-multijet events [168], using the IC algorithm with R=0.5. In the

PF approach the efficiency of the jet reconstruction is increased by 50% in comparison with the
CaloJets for jet pT < 40 GeV. From Figure 4.24 (a) the CaloJets are efficiently reconstructed
starting from pT > 80 GeV, Both the efficiency and fake rate, shown in Figures 4.24 (a) and (b),
respectively, favour the PF approach.

The commissioning of the PF jet reconstruction has been done in di-jet back-to-back events of
the data sample corresponding to an integrated luminosity of 6.2 nb−1 luminosity recorded by
the CMS detector at

√
s = 7 TeV during the first half of 2010 [169]. The Anti-kT algorithm with

R=0.5 was used to cluster PF jets with pT > 25 GeV. The distributions of PF jets kinematics,
such as the transverse momentum and the azimuth angular, obtained in data and Monte Carlo are
presented in Figure 4.25.
The results show a good agreement between data and simulation for the reconstructed PF jets.
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Figure 4.22: An event display of a simple hadronic jet containing four particles (π+,π−,π0,K0
L)

in the (x, y) view (a) and in the (η ,φ) view of the ECAL (b) and the HCAL
detectors (c). The tracks of charged pions, T1 and T2, as well as energy deposits in
the ECAL, E1 from π−, and E2,E3 from π0 → γγ , and the energy in HCAL, H1
and H2, are reconstructed by the PF algorithm. The link between the tracks and the
clusters are shown as green vertical lines obtained from the track extrapolation to
the calorimeter surface [168].
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Figure 4.23: Energy resolution σ(Erec −Egen)/Erec of a PF cluster as a function of the particle
energy Egen simulated in the Particle-Flow superclusters in the barrel ECAL [168].

Figure 4.24: Jet reconstruction efficiency (a) and mismatching jet rate (b) for PFJets (red) and
CaloJets (blue) as a function of the GenJet pT . The barrel region of the CMS is
considered [168].
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Figure 4.25: Basic PF jet properties in di-jet back-to-back events in the Monte Carlo simulations
(blue) and data (black). The distributions of the PF jet transverse momentum (a)
and azimuth (b) are depicted [169].

4.5.7.1 Jets in this analysis

The PF jets are reconstructed by means of the Anti-kT algorithm with a cone radius parameter
R = 0.5. To mitigate the effect of pile-up interactions, a track based algorithm, called “PFnoPU”
[170] from the package PF2PAT [171] is used. The algorithm removes from PF jets about 80%
of charged hadrons that do not originate from the primary vertex. For remaining 20% of pile-up
charged hadrons the correction Co f f set (4.13) rescales the energy of calorimeter deposits [163].
In addition, we apply the standard relative Crel(η) and absolute Cabs(praw

T ) corrections (4.15) to
the jet energy. Afterwards, jets are preselected by requiring |η |< 2.2 and pT ≥ 20 GeV.

4.5.8 Identification of b jets

Heavy flavor jets originates from c or b quarks. Their characteristics allow to discriminate
between these jets and jets originating from light quarks and gluons. These characteristics are:

∙ the production of heavy long-lived hadrons, e.g. B-mesons with a lifetime τ ≃ 1.5 ps
and a flight distance of cτ ≃ 450 µm. This results in displaced secondary vertices [172]
and tracks6 not compatible with the primary vertex. These tracks have sizable impact
parameters, IP, with respect to the primary vertex.

∙ About 19% of heavy-flavor jets contains a lepton from weak decays in the fragmentation.
Since the b quark is relatively massive, its decay products, including the lepton, have a
larger transverse momentum with respect to the jet axis.
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The simplest b-tagging algorithms can use just the track IP as a single observable to dis-
criminate b jets against non-b jets. More complex methods, like the Combined Secondary
Vertex, CSV, algorithm [173], combine several of the b hadron characteristics to achieve a higher
discrimination power. Each of these algorithms yields a single discriminator value for each jet.
The jets are tagged, if their discriminator values are larger then the thresholds defined as the
loose (L), medium (M) and tight (T) working points, WP. The loose, medium and tight working
points are adjusted [174] to misidentification probabilities of 10%, 1% and 0.1%, respectively,
for light-flavor jets with an average pT of about 80 GeV.

The current analysis exploits two different b-taggers:

∙ the TCHE (IP-based) algorithm, based on the track transverse and longitudinal IP, given
by equations (4.6) and (4.7), and used to perform b-jet identification at the Level-2.5 and
Level-3 of the triggers, as discussed in Section 5.2

∙ the Combined Secondary Vertex, CSV, algorithm which is used to tag jets during the
offline event reconstruction.

4.5.8.1 The IP-based algorithm

The IP-based algorithm calculates the distance between the primary interaction vertex and the
track at the point of its closest approach

d =
√

d2
xy +d2

z , (4.17)

where dxy and dz are the transverse and longitudinal impact parameters defined in formulae (4.6)
and (4.7) respectively. The d is positive (negative) if the angle between the perpendicular to the
track at the point of closest approach to the PV and the direction of the jet is less (larger) than
90o. Figure 4.26 illustrates the definition of the impact parameter d.

A jet is identified as originated from the b quark, if there are at least N tracks with a significance
of the impact parameter above a given threshold. The tracks are ordered in decreasing impact
parameter significance, d/σd , where σd is the uncertainty of the impact parameter d (4.17).
Using the significance of impact parameter of the second track as a discriminator of the algorithm,
b jets are identified at the trigger with high efficiency. To select b jets of high purity, the third
track is the better choice. Figure 4.27 shows the distribution of the impact parameter significance
for all tracks in jets selected in data and MC simulations [174].
Good agreement for distributions of the impact parameter significance in data and Monte Carlo

is observed with the exception of a small difference in the region around zero. As it is expected,
the probability to have tracks with large positive values of the impact parameter significance is
higher for b jets and lower for light-flavor jets.

6An example is the B-meson decay via a charmed hadron , Bs → D+
s l−νl → π+K+K−l−νl leading to four tracks.
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Figure 4.26: The impact parameters of tracks in jets. PV denotes the primary vertex, and SV
represents the secondary interaction vertex.

Figure 4.27: Distributions of the three-dimensional impact parameter significance of tracks,
associated with b (red), c (green), light-flavor (blue) jets and jets (cyan) originated
by b quarks from the gluon splitting, with pT > 1 GeV, at least eight hits associated
to the track and a good fit quality, χ2/ndof < 5 [174].
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4.5.8.2 The b-tagging algorithms using secondary vertices

The PF jets reconstructed in the analysis are b-tagged also using information from secondary
vertices. Due to the high resolution of the CMS tracking system, it is possible to directly
reconstruct the SV, the space point where the b hadron decays, as depicted in Figure 4.26. The
presence of a secondary decay vertex and the kinematic variables associated with it can be used
to discriminate between b and non-b jets.

The CSV method involves properties of the secondary vertices, together with track-based
lifetime information. The secondary vertices are reconstructed in an inclusive way inside the jets
using the Adaptive Vertex Fitter, AVF, as discussed in subsection 4.5.2. The secondary vertex
reconstruction in the CSV algorithm defines three categories of jets:

1) Jets, where at least one secondary vertex is reconstructed.

2) Jets, where no secondary vertex is reconstructed. The pseudo vertex is created from
tracks having the transverse impact parameter significance greater than two and not
compatible with the primary vertex.

3) Jets, where neither 1) or 2) are fulfilled.

A set of variables related to the secondary vertex as well as information from track impact
parameters are combined into a single tagging variable, the CSV discriminator, to discriminate
between b jets and non-b jets. The choice of variables entering into the combination depends on
the jet category. The average track impact parameter significance is used in all categories. The
invariant mass, multiplicity, energy and average rapidity of tracks associated to the secondary
or pseudo vertices are utilized to discriminate jets of the 1) and 2) categories. The distance
between the primary vertex and the secondary vertex in the transverse plane divided by its
error is additionally used in the category 1). Since the distributions of most of the variables
are significantly different for b, c and udsg (light-flavor) jets, these variables are combined into
three likelihood functions, respectively. Two ratios of the likelihood function for b jets over the
likelihood function for c jets and the likelihood function for b jets over the likelihood function
for light-flavor jets are used to discriminate separately b jets against c and udsg jets, respectively
[173]. The distribution of the CSV discriminator, defined as a sum of the two ratios, is presented
in Figure 4.28 for jets originating from different quark flavors. Values of the discriminator are
very close to one for b jets, while for c and light-flavor jets lower values of the CSV discriminator
are preferred.

Of all the b-tagging algorithms, the CSV algorithm has the highest b-jet tagging efficiency,
when the mistag rate from the light-flavor jets is less than 3%.

4.6 CMS analysis software and Physics simulation

A computing system [175] is needed to operate the CMS experiment, read out all subdetectors,
convert raw data in physics objects like tracks and reconstruct scattering events to study the
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Figure 4.28: The distribution of the CSV discriminator for jets of b (red), c (green), light (blue)
and b from gluon splitting (cyan) flavors [174].

underlying physics. Physics analyses require a dedicated software environment with tools to
investigate large number of events. The special framework, called CMSSW, processes recorded
data and reconstructs the physical objects on event basis. In addition, CMSSW executes Monte-
Carlo simulations performing propagation of particles through the detector and reconstruction.

A significant amount of work on the computing system, including Monte-Carlo production and
the development of CMSSW plug-in modules as analysis units, has been preceded the physics
results of this thesis.

The CMSSW framework has been designed to be modular and been made of loosely coupled
components with well-defined interfaces. Such stability of the system to process very large event
samples is ensured. The software requires a reasonably computing architecture to efficiently
reduce large-scale data and reconstruct events by means of fast-readout storage and network
elements.

An event in the CMS is a single readout of the detector electronics which have been generated
by particles. The trigger and DAQ systems select, out of the millions of events recorded in the
detector, the most interesting 500 events per second. The system stores them for further analysis
offline. CMSSW uses several event formats [176] with different levels of details and precision.
The CMS event starts with RAW information recorded from the detector, plus the trigger decision
and information on calibration of the detector. The GEN-SIM-DIGI extension of the RAW
format is used to store the output of Monte Carlo simulations. RECO objects are obtained by
applying specific detector reconstruction algorithms. They include the detector-specific filtering
and correction of digitized data, primary and secondary vertex reconstruction, tracking and
particle identification. Analysis Object Data, AOD, is a compact analysis format designed to
allow RECO objects to be stored as a sufficiently compact collection in the CMS event. In
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such way very large event samples can be processed in many centers. AOD data are usable
directly in physics analyses. Also AOD events contain additional information needed to re-run
the fitting of tracks, b-tagging or re-evaluate the energy and/or position of ECAL clusters using
analysis-specific corrections.

The production of simulated events are done by Monte Carlo generators and stored as specific
samples of events. In the search for the neutral MSSM Higgs bosons, the following Monte Carlo
samples are relevant:

∙ Higgs signal samples generated with the Pythia6 [177] program, where the Higgs boson
masses assumed to be 90, 100, 120, 130, 140, 160, 180, 200, 250, 300 and 350 GeV;

∙ tt̄ background events simulated by the MadGraph [178] program,

∙ QCD background events generated with the Pythia6 and Alpgen [179] programs,

The signal samples are generated with a fixed set of MSSM parameters. In order to make
the physics inference at any different point of the MSSM parameters, the proper cross section
normalization is applied. Pythia6 was configured such that only channels involving neutral
MSSM Higgs bosons were considered. The cross sections and the corresponding uncertainties
are provided by the LHC Higgs Cross Section Group [82, 180]. They are obtained from the
BBH@NNLO [181] program for the gb → bΦ channel. This Fortran code utilizes calculations of
the cross section made in five-flavor scheme [182, 183]. The numerical results of BBH@NNLO are
rescaled to take into account the corresponding MSSM Yukawa couplings. The FeynHiggs
[184, 185, 186] code is used to derive the rescaling factors. Such renormalization of the cross
section is reliable, since in the considered range of the MSSM parameters the Higgs boson width
remains smaller than the Higgs mass resolution. The degeneracy in mass of two neutral MSSM
Higgs bosons, A and H (h), is properly taken into account.
MadGraph and Alpgen generate the proton-proton collision only on the parton level, while

Pythia6 can perform fragmentation and hadronization. The Alpgen samples are produced re-
quiring jets with pT > 20GeV in different flavor compositions: 2C + njets, 2B + njets,
4C, 4B, 4C + 1jet, 4B + 1jet, where njets = 1,2,3 are the number of light-flavor
jets and XB, XC denote the presence at least X jets originated from b and c quarks, respectively,
in events. The parton showering and hadronization in the Alpgen events are performed by the
Pythia6 program interfaced to Alpgen. All Monte Carlo events are simulated with pile-up
interactions and the Level-1 and HLT responses.

Table 4.2 shows the list of the signal and background Monte Carlo datasets, including the
numbers of available events and cross sections. The MSSM mmax

h benchmark scenario [95] with
tanβ = 20 is used to evaluate cross sections of the Higgs boson produced in association with b
quarks.
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Table 4.2: The list of the generated events. The number of produced events and corresponding
cross sections are given.

Name Number of
events

Cross section, pb

Higgs signal, MA = 90 GeV 1.08M 316.8
Higgs signal, MA = 100 GeV 1.08M 226.4
Higgs signal, MA = 120 GeV 1.09M 118.8
Higgs signal, MA = 130 GeV 1.61M 93.4
Higgs signal, MA = 140 GeV 550K 62.9
Higgs signal, MA = 160 GeV 550K 41.6
Higgs signal, MA = 180 GeV 550K 26.7
Higgs signal, MA = 200 GeV 549K 17.5
Higgs signal, MA = 250 GeV 550K 6.71
Higgs signal, MA = 300 GeV 545K 2.74
Higgs signal, MA = 350 GeV 550K 1.12
tt̄ 3.70M 96.7
QCD p̂ ∈ [30,50] 4.02M 5.3 ·107

QCD p̂ ∈ [50,150] 2.65M 7.2 ·106

QCD p̂ ∈ [150,∞] 514K 4.8 ·105
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5 Search for a neutral Higgs boson
produced in association with b quarks

In the minimal SUSY extension of the Standard Model, introduced in Chapter 2, five physical
Higgs bosons are expected after electroweak symmetry breaking. Three of them are neutral.
Two of the neutral bosons h, H, are CP-even bosons and one boson A is CP-odd. At tree level,
only two parameters, the mass of the pseudoscalar Higgs boson MA and the ratio of the VEV of
the two Higgs doublets, tanβ = v2/v1, define the Higgs sector. For considerably large values of
tanβ , tanβ ≥ 30, the Higgs couplings to u-type quarks are suppressed relative to the SM, while
the couplings to d-type particles are enhanced as shown in equation (2.68). The predominant
decay channel of the neutral Higgs bosons at tanβ ≥ 30 [187] is into b-quarks with a branching
fraction of about 98%. In addition, the CP-odd boson A degenerates in mass with either h or H
within the experimental mass resolution. Therefore, the cross section of the neutral Higgs boson
production in association with b quarks is effectively enhanced by the factor of ∼ 2 · tan2 β .

Recent searches in the Φ → bb̄ channel have been performed by CDF [188] and D0 experi-
ments [189] at the Tevatron collider. Both experiments have reported an excess of events with
about of 2σ significance with respect to the expectations from the SM background for Higgs
boson masses in the range of 100−150 GeV.

In this Chapter I present the search for a resonance decaying into b quarks produced in
association with at least one more b quark7. The analysis is performed using data corresponding
to 2.7−4.8 fb−1 integrated luminosity of pp collisions with a centre-of-mass energy of 7 TeV
collected in 2011. The Chapter is organized as follows: Section 5.1 describes the analysis
strategy. The online selection software used to preselect events prior a kinematic selection
is discussed in Section 5.2. Sections 5.3 and 5.4 introduce the efficiency of the b-tagging
algorithms and an overall b-tagging probability for the event. The offline event selection used
in the search for the neutral MSSM Higgs bosons are described in Section 5.5. In Section 5.6 I
discuss the background modeling. The MVA-based control sample, used to validate the method
of background estimation, is explained in Section 5.7. The signal extraction and systematic
uncertainties are presented in Sections 5.8 and 5.9, respectively. Finally, the observed cross
sections and upper limits on the cross section times branching fraction are discussed in Sections
5.10, 5.11 and 5.12.

The analysis uses the relevant high-level physical objects built up during the event reconstruc-
tion, as discussed in Section 4.5. These objects are the primary and secondary vertices, the PF
jets and an overall b-tagging probability.

7I use b to denote both b and b̄ quarks.
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5.1 Analysis strategy

The signal is searched for in final states characterized purely by jets. The b jets reconstructed
from Higgs boson decay products have the largest transverse momenta, called hereafter as leading
jets, in the event. On average, the pT spectrum of the b jets originating from the resonance decay
typically has a peak at around half of the mass of the Higgs boson. This is illustrated in Figures
5.1 (a) and (b), where the transverse momentum distributions for leading and sub-leading jets
are shown in signal and background events.

CMS Private Work 2011,
√
s = 7 TeV CMS Private Work 2011,

√
s = 7 TeV

Figure 5.1: pT distributions of the leading (a) and sub-leading (b) jets in simulated events.
The blue histograms are obtained from the signal process, bb+Φ → 4b+ jets, for
MH = 120 GeV, and the red histograms are the distributions in QCD events enriched
by b quarks.

The accompanying b quarks are very soft with an average pT of about 20 GeV.
The b jets of the Higgs boson decay are mostly produced within the inner tracker acceptance

defined by the pseudorapidity range |η | ≤ 2.5, as shown in Figure 5.2.
The peaks observed at |η | ∼ 2.5 are because of the barrel-endcap boundary and material budget,

which is maximal in this region.
The analysis selects events with at least three jets within the tracker acceptance imposing

asymmetric requirements on their pT . These three jets must be identified as jets originating
from b quarks. The signal events are selected using a distribution in the two-dimensional space,
defined by the invariant mass of the two leading b jets, M12, and the variable X123, which reflects
the b-jet properties of three leading b-tagged jets in the event. A visible peak on top of the
background continuum in the M12 projection would be taken as evidence of a Higgs signal.

Background to the searched signal topology pursued in this analysis is mostly stemming
from heavy-flavor multijet QCD processes. In order to avoid the theoretical complications
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Figure 5.2: η distributions of the leading jet in the simulated events after reconstruction. The
blue histogram is obtained from the signal process, bb+Φ → 4b+ jets, for with
MH = 120 GeV, and the red histogram is the distribution in QCD events enriched by
b quarks.

and technical limitations of predicting this background with good accuracy from Monte Carlo
simulations, a method to estimate its contribution directly from data, composed of two b-tagged
and one untagged jets, is applied. This data-driven approach relies on the fact that the vast
majority of the background events in the triple b-tagged sample contain at least two real b jets.
Two-dimensional (M12,X123) templates are derived from the selected double-b-tagged data by
weighting events with b-tagging probabilities which correspond to the assumed flavors of the
untagged jet. In such way the templates properly reflect the flavor composition in the accepted
background events. Relative normalizations of the templates are estimated by fitting their linear
combination to data.

There is a small contamination, less than 2%, of the double b-tagged sample from non-b jets.
This contribution is evaluated using data and subtracted from each template.

To extract a possible Higgs signal yield, two-dimensional (2D) signal templates are derived
from Monte Carlo simulations of the MSSM Higgs production, pp → bb+h/H/A → 4b. The
data-driven background and MC signal templates are combined and fitted to data with the signal
normalization being a free parameter of the fit.

Figure 5.3 illustrates the steps of the analysis, described above.

5.2 Trigger in the analysis

The large rate of hadronic interactions at LHC is a major challenge for this search. The
background reduction of several orders of magnitude is needed with not too tight jet pT thresholds
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Figure 5.3: Sketch of all important procedures performed in the search for the neutral MSSM
Higgs bosons.

to preserve low-mass resonances from being suppressed. This is achieved by introducing the
b-jet identification in the trigger. The b-jet tagging is performed in two steps to reduce consuming
CPU resources of the farm by the trigger.

First, events are accepted at the Level-1 of the trigger, if at least two jets with energy deposits
in central towers of the electromagnetic and hadronic calorimeters are reconstructed, and their
pT values are above certain thresholds. Here these thresholds are chosen to be 36 GeV, denoted
as L1_DoubleJet36_Central. The jet η must be in the range |η |< 3. To accommodate
higher rates, when the luminosity becomes larger, the conditions have been changed. They
require either three jets with pT larger than 36 GeV for the first two leading jets and 12 GeV
for the third leading jet or two jets with pT larger than 44 GeV. In this case the Level-1 triggers
are denoted as L1_TripleJet36_36_12_Central and L1_DoubleJet44_Central.
The events accepted at the Level-1 are subject to the HLT path. The Level-1 jets seed initial
clusters in the Anti-kT algorithm with the cone radius parameter R = 0.5, to reconstruct either
two or three jets at the Level-2. The pT of these jets must be above determined thresholds
in order to probe the jet for b-jet properties. The di-jet HLT path requires at least one jet
with pT larger than 46 GeV and at least one jet with pT larger than 38 GeV. It is denoted as
HLT_CentralJet46_BTagIP3D_CentralJet38_BTagIP3D. For the triple-jet HLT
path, denoted as HLT_CentralJet46_CentralJet38_CentralJet20_DiBTagIP3D,
there is one additional requirement of at least three jets with pT larger than 20 GeV. At the larger
luminosity the pT criteria in the di-jet HLT are changed to 60 and 53 GeV for the leading and sub-
leading jets, respectively. This HLT path is denoted as HLT_CentralJet60_CentralJet53_
DiBTagIP3D. The jets, passed the pT conditions, must be reconstructed in the central region
|η |< 2.4. The jet energy corrections are applied both at the Level-1 and Level-2.

The Level-2.5 trigger invokes b-jet identification using only tracks reconstructed in the pixel
tracker. After selecting tracks, passing quality criteria, the primary vertex is built as a common
origin of the pixel tracks. If more than one primary vertex is found, mainly because of pile-up
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interactions, one vertex, with the highest p2
T−sum of the associated tracks, is taken as the primary

vertex. Up to four leading jets with pT ≥ 20 GeV are considered for b-tagging. The method of
the b-jet identification, called the track counting high efficiency, TCHE, algorithm, and discussed
in details in section 4.5.8 is applied. The tracks, assigned to each jet, are ordered in descending
significance of three-dimensional (3D) impact parameter. The jet is b-tagged if the second ranked
track in the considered list has the 3D impact parameter significance above 3 or 48. If the number
of b-tagged jets is at least two, the event is passed to the Level-3.

At the Level-3, tracks, within the selected Level-2 jets, are reconstructed using, in addition,
information from the silicon tracker. At most four leading jets with pT ≥ 20 GeV are probed for
the b-tagging. The Level-3 jet is identified as a b jet, if the 3D impact parameter significance of
its second-ranked track is larger than 6. If at least two jets are b-tagged, the event is selected for
the analysis.

The Table 5.1 summarizes the HLT paths and corresponding Level-1 seeds. In the notations
HLT_CentralJet’x1’_BTagIP3D_CentralJet’x2’_BTagIP3D and
L1_DoubleJet’x3’_Central the quantities x1, x2 and x3 are the pT thresholds of the
leading jets at the Level-2 and Level-1, respectively, and BTagIP3D denotes that at least two
jets are b-tagged.

Table 5.1: The HLT paths and the appropriate Level-1 seeds used in the analysis.
HLT path L1 seed
HLT_CentralJet46_BTagIP3D_CentralJet38_BTagIP3D L1_DoubleJet36_Central
HLT_CentralJet46_CentralJet38_DiBTagIP3D L1_DoubleJet36_Central
HLT_CentralJet46_CentralJet38_CentralJet20_DiBTag L1_TripleJet36_36_12_Central
HLT_CentralJet60_CentralJet53_DiBTagIP3D L1_DoubleJet44_Central

5.2.1 Data samples

The data are organized in samples of events triggered by the di-jet and triple-jet HLT paths. At
the high luminosities of the 2011 data-taking the output rate of the di-jet trigger with the pT
thresholds of 46 and 38 GeV for the first leading jets reaches the value of about 100 Hz. The
maximum output rate is restricted to 10 Hz. Therefore, the di-jet trigger is prescaled dynamically
by a corresponding factor, the average value of which is 1.6. The prescale factor of N means that
only one of N events is considered for processing at the HLT path. The data samples are split in
the relevant LHC run ranges in which the average prescaling is the smallest.

The triggers, having lower pT thresholds, allow to exploit relaxed jet pT requirements in the
offline analysis. This is important to search for the Higgs bosons with low masses. However,

8The minimal-allowed value of the TCHE discriminator is 4 for the run period 165970 until 168437, for the rest of
the data taking the corresponding cut is required to be 3.
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because of the prescaling imposed on such trigger, the total integrated luminosity of the triggered
data is reduced.

The triple-jet trigger and di-jet triggers with higher pT threshold do not have the prescaling.
This leads to the higher integrated luminosity. The data triggered by these HLT paths allow to
search for the Higgs boson with the medium-to-high masses

From the above reasons two analysis scenarios are defined:

∙ the low-mass scenario, where the MSSM Higgs boson, Φ with MΦ < 180 GeV is searched
for;

∙ the medium-mass scenario, with 180 GeV ≤ MΦ ≤ 350 GeV.

In the search for the Higgs bosons with MΦ < 180 GeV a set of triggers with low-pT thresholds
on jets is used, whereas a combination of low- and high-pT threshold triggers are involved to
study the hypotheses where the Higgs boson mass varies between 180 and 350 GeV.

The ranges of events selected by different triggers do not overlap in order to avoid double
event counting. The effective luminosities of the triggered data are obtained using the CMS
tool lumicalc2.py [190] and the certified JSON files9 [191, 192]. In the JSON format the
LHC run is divided into sections of constant luminosity. The JSON files contain the sections
and the corresponding integrated luminosities of the recorded data, when all sub-detectors of the
CMS were working properly. Only luminosity section specified in the JSON files are used in the
analysis.

5.2.1.1 Low-mass scenario

The low-mass scenario utilizes a data sample of a total luminosity of 2.67 fb−1. Table 5.2
summarizes the datasets and LHC runs for each trigger used.

Table 5.2: The datasets, run ranges and corresponding integrated luminosities for the low di-jet
mass triggers.

Dataset Run range Luminosity (pb−1)
HLT_CentralJet46_BTagIP3D_CentralJet38_BTagIP3D
/MultiJet/Run2011A-PromptReco-v4/AOD 165970 -

166967
524.90

HLT_CentralJet46_CentralJet38_DiBTagIP3D
/MultiJet/Run2011A-PromptReco-v4/AOD 167039 -

168437
265.75

/MultiJet/Run2011A-05Aug2011-v1/AOD 170826 -
172619

193.58

9JSON stands for Java Script Object Notation
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/MultiJet/Run2011A-PromptReco-v6/AOD 172620 -
173198

251.12

/MultiJet/Run2011B-PromptReco-v1/AOD 178420 -
180252

453.33

HLT_CentralJet46_CentralJet38_CentralJet20_DiBTagIP3D
/MultiJet/Run2011A-PromptReco-v6/AOD 173236 -

175770
246.53

/MultiJet/Run2011B-PromptReco-v1/AOD 175832 -
178380

732.73

5.2.1.2 Medium-mass scenario

The samples of the medium-mass analysis are of an integrated luminosity of 3.99 fb−1. Table
5.3 summarizes the datasets and LHC runs for each trigger used.

Table 5.3: The datasets, run ranges and corresponding integrated luminosities for the triggers in
the medium mass scenario.

Dataset Run range Luminosity (pb−1)
HLT_CentralJet60_CentralJet53_DiBTagIP3D
/MultiJet/Run2011A-05Aug2011-
v1/AOD

170826 - 172619 368.04

/MultiJet/Run2011A-PromptReco-
v6/AOD

172620 - 175770 660.36

/MultiJet/Run2011B-PromptReco-
v1/AOD

175832 - 180252 2180.78

HLT_CentralJet46_BTagIP3D_CentralJet38_BTagIP3D
/MultiJet/Run2011A-PromptReco-
v4/AOD

165970-166967 524.90

HLT_CentralJet46_CentralJet38_DiBTagIP3D
/MultiJet/Run2011A-PromptReco-
v4/AOD

167039 - 168437 265.75

5.2.2 L1/L2 efficiencies

In the Level-1 triggers and HLT paths at Level-2, which are reported in Table 5.1, the jets are
reconstructed by the jet triggers as discussed in subsection 4.4.2. In addition, the jet triggers
perform selection of jets imposing the thresholds on the jet pT . The L1/L2 efficiencies of the di-
and triple-jet triggers are determined as the multiplications of the selection efficiencies of the
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jet triggers used at the Level-1 and Level-2. The efficiencies of the five Level-2 jet selections
with the thresholds of 20, 38, 46, 53 and 60 GeV, obtained with respect to the jet pT in zero-bias
events [193], are used to factorize the efficiencies of the di- and triple-jet triggers. The zero-bias
events are triggered only by the coincidence of signals in the two BPTX (Beam Position and
Timing for LHC eXperiments) monitors [194]. The Level-2 jet triggers with the pT thresholds
of 20, 38, 46, 53 and 60 GeV are seeded by the Level-1 jet triggers with the selection cuts on the
jet pT equaled to 12, 36, 36, 44 and 44 GeV, respectively.

To estimate the efficiency for zero-bias events to pass through the Level-1 and Level-2 jet
triggers as a function of pT of the offline-reconstructed PF jet, the matching between the Level-2
and PF jets, ∆R( jetPF , jetL2) < 0.3, is demanded. In addition, the PF jet is required to have
pT > 10 GeV and to be reconstructed in the central region of the detector, |η |< 2.4. Figure 5.4
shows the efficiencies of the Level-1 and Level-2 jet triggers as functions of the jet pT .

CMS Private Work 2011,
√
s = 7 TeV

Figure 5.4: Efficiencies for the Level-2 selection with 20, 38, 46, 53 and 60 GeV thresholds on
the jet pT , seeded by the Level-1 jets selected using the cuts of 12, 36, 36,44 and 44
GeV on the jet pT .

The L1/L2 efficiency is fitted to the function

εL1/L2(pT ) =
P
2
(1+Er f (

pT − ε50

s
)), (5.1)

122



where the parameters P and s characterize the plateau and slope of the graphs at Figure 5.4. The
parameter ε50 is the value of the jet pT corresponding to the efficiency of 50%. Er f (x) is the
error function defined in Ref. [195],

Er f (x) =
2√
π

∫ x

0
e−t2

dt.

Table 5.4 summarizes the resulting parameters from the fit.

Table 5.4: Parameters of the L1/L2 efficiencies resulting from the fit.
L1/L2 trigger plateau slope ε50

HLT_Jet20 0.98150 ± 0.00096 19.58 ± 0.22 12.00 ± 0.11
HLT_Jet38 0.9844 ± 0.0020 15.16 ± 0.23 42.57 ± 0.08
HLT_Jet46 0.9871 ± 0.0019 14.91 ± 0.43 44.69 ± 0.21
HLT_Jet53 0.9831 ± 0.0028 14.75 ± 0.43 52.96 ± 0.15
HLT_Jet60 0.9852 ± 0.0032 15.75 ± 0.86 58.38 ± 0.43

The functions εL1/L2(pT ) are used to simulate the di- and triple-jet Level-1 and Level-2 triggers
in the signal Monte Carlo samples. Each signal event is weighted by the multiplicative factor

wL1/L2 =
N jets

∏
i=1

ε
i
L1/L2(pT,k). (5.2)

Here ε i
L1/L2(pk,T ) is the efficiency function, taken from Table 5.4, which corresponds to the Level-

1 and Level-2 triggering of the jet with the rank k. k is 1 for the first leading jet, 2 for the second
leading jet and 3 for the third leading jet. N jets is the number of the reconstructed jets used to trig-
ger events at the Level-1 and Level-2. For an example, to model the L1/L2 efficiency of the triple-
jet trigger HLT_CentralJet46_CentralJet38_CentralJet20_DiBTagIP3D, the
following weight is applied to signal events:

wL1/L2 = ε
HLT _46Jet
L1/L2 (pT,1) · εHLT _38Jet

L1/L2 (pT,2) · εHLT _20Jet
L1/L2 (pT,3), (5.3)

where pT,1, pT,2 and pT,3 are the values of pT for the first three leading jets, respectively.

5.3 Efficiency of b-jet identification

We use the mistag fraction and efficiency of the b-jet identification to model the background.
Both the mistag fraction and efficiency of recognizing b jets determine the performance of the

123



b-tagging algorithms. The efficiency, εb, and the mistag fraction, εb, of a b-tagging algorithm are
defined as

εb =
Naccepted

b− jets

Nb− jets
εb =

Naccepted
non−b− jets

Nnon−b− jets
, (5.4)

where Naccepted is the number of jets those values of the b-tagging discriminator exceeds the
chosen working point. To illustrate the performance of the b-tagging algorithms in terms of the
efficiency and mistag fraction multijet QCD events are generated with the Pythia6 program.
The jets are classified into b jets, c jets, and light-flavor jets. The gluon jets, which are splitted to
bb̄ and cc̄ pairs, are considered as b and c jets, respectively. Figure 5.5 shows the efficiencies of
the IP based b-tagging, TCHE, and the secondary vertex based, CSV, algorithms for non-b jets
versus b jets with pT > 30 GeV and |η |< 2.5.

Figure 5.5: Using TCHE and CSV algorithms applied to jets in simulated QCD events, the
mistag fraction of non-b jets is obtained as functions of the b-jet tagging efficiency.

At a misidentification probability for light-flavor plus c jets of 10%, a b-jet tagging efficiencies
of ∼ 80% and ∼ 85% are achieved for the TCHE and CSV algorithms, respectively. At the tight
working point with a mistag fraction of 0.1%, typical values of the b-jet tagging efficiencies for
the IP-based and CSV algorithms are about 20% and 60%, respectively. The tight working point
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of the CSV algorithm is used to tag PF jets in the search for the Higgs boson, and it is defined as

CSVT > 0.89. (5.5)

To attribute a flavor to a reconstructed jet in Monte Carlo simulations, a matching needs to
be done between the jet and the original parton, by inspecting the generated partons in a cone
around the jet direction. A reconstructed jet is associated to a generated parton from the hard
interaction or the parton shower, if the distance between them is ∆R < 0.3.

The b-tagging efficiencies as functions of the jet pT , η and flavor needed in a later stage of the
analysis are obtained using jets with pT > 20 GeV and |η |< 2.5 in the QCD samples generated
by the Pythia6 program. The tight working point (5.5) of the CSV algorithm, CSVT, is
chosen to get the parametrization of the efficiencies. Figure 5.6 shows the b-tagging efficiencies
in the two-dimension space of the jet pT and η for b, c and light-flavor jets.

CMS Private Work 2011,
√
s = 7 TeV

Figure 5.6: The offline b-tagging probabilities for b (a), c(b) and light-flavor (c) jets at the CSVT
working point.

125



The b-tagging efficiency at the CSVT working point shows an improvement with the increase of
the jet pT up to a maximum plateau of 60% at about pT = 50 GeV. This can be clearly seen in
the pT projection of the efficiency for b jets shown in Figure 5.7. The efficiency slowly decreases
from 60% to 40% for the jet pT between 150 and 300 GeV.

CMS Private Work 2011,
√
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Figure 5.7: The CSV b-tagging efficiency for b jets as a function of pT at the tight working point.

5.3.1 Relative trigger b-tagging efficiency

The relative trigger b-tagging efficiency characterizes the fraction of jets with the CVST tag,
which have also b-tagged in the HLT. The relative trigger b-tagging probability is assessed in
bins of the PF jet pT and η , and defined as

εb(trigger) =
N([btaggingTrigger]∧ [referenceTrigger]∧ [CSVT])

N([referenceTrigger]∧ [CSVT])
. (5.6)

Here the quantity N([BtaggingTrigger]∧ [referenceTrigger]∧ [CSVT]) is the number of the PF
jets in events when the triggers [btaggingTrigger] and [referenceTrigger] are fired. These jets
are b-tagged by the CSV algorithm and matched to the Level-2 jets of the trigger [baggingTrig-
ger]. The quantity N([referenceTrigger]∧ [CSVT]) denotes the number of jets b-tagged by the
CVST in events triggered by [referenceTrigger]. These quantities are evaluated in bins of the
jet pT and η .
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The trigger [btaggingTrigger] implements the Level-3 trigger, performing the IP-based b-
tagging algorithm. The trigger [referenceTrigger] reproduces the Level-1 and Level-2 kinematic
preselection of jets. As the trigger [referenceTrigger] is placed both in the numerator and
denominator of equation (5.6), effects of Level-1 and Level-2 selections are canceled out in
the estimation of the efficiency. The relative trigger efficiency (5.6) is derived using Monte
Carlo simulations of multijet QCD events enriched by b jets. The results on the relative trigger
b-tagging efficiency are shown in Figure 5.8 for different jet flavors. Because of large statistical
fluctuations in (pT ,η) bins, a bi-linear smoothing is applied. The relative trigger b-tagging
efficiencies increase with the jet pT up to a maximum plateaus of 60% at pT ≃ 100 GeV, 40% at
pT ≃ 100 GeV, and 30% at pT ≃ 150 GeV, for b, c and light-flavor jets, respectively.

CMS Private Work 2011,
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Figure 5.8: The relative trigger b-tagging efficiency for b (a), c(b) and light-flavor (c) jets at the
CSVT working point.
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5.3.2 Scale factors for the b-tagging efficiencies

For the CSV b-tagging algorithm used in the analysis, it is crucial to know the efficiency to
identify b jets in data. There are a number of techniques [174] that can be applied to measure
the efficiencies using data, and thus reduce the reliance on simulations. All the efficiency
measurements that are done with data are also replicated in simulated samples using Monte
Carlo generator information to identify jet flavors, and the scale factor,

SFb =
εdata

b

εMC
b

, (5.7)

the ratio of efficiencies measured in data and simulated samples, is calculated.
The measurement of the mistag fraction εb for light-flavor jets in data utilizes tracks with the

negative impact parameter [174]. The IP-based algorithm, called the negative tagger (nTCHE),
identifies the jet as negative-tagged, if there are at least two tracks with values of the impact
parameter significance below a certain negative threshold. The negative tagging efficiency ε−
is given by the fraction of light-flavor jets tagged by the nTCHE. The mistag fraction εb, as
estimated from Monte Carlo simulations, is found to be proportional to the negative tagging
efficiency ε−,

ε
MC
b = Rmistagε

MC
− , (5.8)

where Rmistag is the factor of proportionality. Then the mistag fraction in data is evaluated as

ε
data
b = Rmistagε

data
− . (5.9)

To correct the mistag fraction predicted by simulations to that measured in data, a scale factor

SFudsg =
ε

data
b

ε
MC
b

=
εdata
−

εMC
−

(5.10)

is introduced.
The analysis adopts the following parametrization of the scale factors SFb (5.7) and SFudsg

(5.10):

SFb(pT ) =
a · (1+b · pT )

1+ c · pT
,

SFudsg(pT ) = d +m · pT +n · p2
T + k · p3

T .

(5.11)
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where the parameters a, b, c, d, m, n and k are estimated from a fit [174]. Following the results
presented in Ref. [174] equations (5.11) are expressed as

SFb(pT ) =
0.902 · (1+0.553 · pT )

1+0.547 · pT
,

SFudsg(pT ) = 1.21+6.81×10−4 · pT −1.57×10−6 · p2
T +2.83×10−10 · p3

T .

(5.12)

Figure 5.9 illustrates the parametrization (5.12) of the scale factors.
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Figure 5.9: The scale factors SFb (a) and SFudsg (b) at the CSVT b-tagging point as functions of
the jet pT .

The ratio SFb varies very little over the whole range of the jet pT , 20 GeV < pT < 800 GeV,
and equal to about of 0.9. The SFudsg scale factor increases from 1.22 to 1.28 in the range of
20 GeV < pT < 350 GeV, and it decreases from 1.28 to 1.10 with the increase of the jet pT from
350 to 800 GeV.

The offline b-tagging efficiencies of untagged and b-tagged jets in the double-btag background
and triple-btag signal samples are multiplied by the scale factors SFb and SFudsg (5.11) to
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correct for the difference between data and Monte Carlo efficiencies. The correction factor for
background sample reads

wBkg
SF = SFi(pT,m), (5.13)

while the correction factor for the signal is determined as

wS
SF = SFj(pT,1) ·SFk(pT,2) ·SFn(pT,3). (5.14)

Here the indices i, i, k and n are are either b, c, or udsg, depending on the assumed flavor for the
untagged jet m in the background events and the flavors of first, second and third leading jets in
the case of the signal, respectively.

5.4 Event-wise b-tagging

The analysis uses the relevant high-level physical objects built up during the event reconstruction,
as discussed in Section 4.5. These objects are the primary and secondary vertices, the PF jets
and an overall b-tagging probability for the event, which is constructed on the secondary vertex
mass.

The secondary vertex mass is the invariant mass, calculated from all tracks of the SV candidate.
It provides an additional separation between b,c and udsg jets, even on top of the offline b-tagging
criteria. Figure 5.10 shows the good flavor separation of the SV mass, MSV , of b-tagged jets in a
sample of simulated tt̄ events. In the case, where no SV is reconstructed in a jet, the SV mass
takes a fixed negative value, explaining the underflow bin in Figure 5.10.

To quantify the b-jet content of events, an event-wise b-tag X123 is introduced. It is built from
masses of the SV candidates in jets. The SV mass range, shown in Figure 5.10, is divided into
three bins, B j = 0,1,2 for each jet j in the following manner:

∙ B j = 0, if MSV, j ≤ 1 GeV;

∙ B j = 1, if 1 < MSV, j ≤ 2 GeV;

∙ B j = 2, if MSV, j > 2 GeV.

For an event with three leading jets we obtain three quantities B1, B2 and B3, respectively, which
determine the variable X123 as follows:

∙ X123 = X12 +X3,

where

∙ X12 = 0, if B1 +B2 < 2;
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Figure 5.10: Normalized distribution of MSV in jets for different flavors in simulated tt̄ events.

∙ X12 = 1, if 2 ≤ B1 +B2 < 3;

∙ X12 = 2, if B1 +B2 ≥ 3.

The larger the value of X12 is, the more likely two leading jets are b jets. The component X3
depends on the third jet as

∙ X3 = 0, if B3 < 2;

∙ X3 = 3, if B3 = 2.

Again, X3 is largest if the third jet is a b jet. By construction, X123 can have six discrete values
ranging from 0 to 5. The intention of this mapping is to have each bin populated with sufficient
statistics. Events with triple-b-tagged jets result typically to X123 values of 2 and 5.

5.5 Offline event selection

Events are required to have at least three PF reconstructed jets with |η |< 2.2, passing a certain
quality requirement based on both primary vertex information and jet shape information [196].
At least one primary vertex must be reconstructed. If more than one primary vertex is found, the
one with the highest p2

T -sum of the associated tracks is considered.
For the search in the low-mass scenario the offline selection demands that the three pT -leading

jets have to pass pT cuts of
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∙ pT,1 > 46 GeV,

∙ pT,2 > 38 GeV,

∙ pT,3 > 20 GeV.

For the search in the medium-mass scenario the first three jets are required to pass the pT cuts
of

∙ pT,1 > 60 GeV,

∙ pT,2 > 53 GeV,

∙ pT,3 > 20 GeV.

To suppress the contamination from gluon splittings into bb̄ pairs, we impose the requirement
of ∆R( jet1, jet2)> 1 on the leading and sub-leading jets.

We define a “triple-b-tagged” sample, in which the signal is ultimately searched for, by
requiring all three leading jets to pass a tight CSV b-tagging selection requirement (5.5). The
total numbers of data events that pass the trigger and offline selection for the searches in the low-
and medium-mass scenarios are 106626 and 89637, respectively. The efficiency of the trigger
for signal events to pass the triple-b-tagging selection is 47-67% for a Higgs boson mass in the
range of [90, 350] GeV.

For a “double-b-tagged” sample, which is instrumental in estimating the shape of the back-
ground, only two of the three leading jets have to pass the above-mentioned b-tagging require-
ment, while the third jet remains untagged.

5.6 Background modeling

The large irreducible background to the signal topology of at least three b jets stems largely
from multijet QCD processes. The prediction of their production rates and kinematics involves
complex calculations, which included contributions of high-order processes for flavor creations,
excitations and gluon splitting. These calculations are characterized by large uncertainties.
Therefore, a method to evaluate multijet QCD background from data, similar to the procedure
employed by the CDF experiment [188], has been developed. Backgrounds from tt̄ and Z+jets
final states are estimated from Monte Carlo and found to be negligible.

This data-driven approach relies on the assumption that there are at least two real b jets in
events with three b-tagged jets. From Monte Carlo results, which are shown in Table 5.5, this
is the case in more than 98% of multijet QCD events which match the signal selection criteria.
This fact is important because it reduces the possible flavor combinations in background events.
The data-driven estimated background can be naturally subtracted from the data events selected
for the signal search. Effect of the trigger selection of jets is automatically taken into account.
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Table 5.5: Flavor content fractions of the background events, simulated by Alpgen and
Pythia6 programs, which are accepted in the signal region.

Flavor content Alpgen, [%] Pythia6, [%]
bbb 62.4 +- 0.60 72.0 +- 4.10
bbc 6.56 +- 0.08 4.40 +- 0.41
bbq 4.53 +- 0.07 3.51 +- 0.16
bcb 18.0 +- 0.07 13.3 +- 0.52
bqb 6.82 +- 0.01 4.78 +- 0.06
non-bb 1.69 +- 0.01 2.01 +- 0.06

5.6.1 Double-b-tagged sample

The sample used to model the background is built from triggered events where two jets are
b-tagged, and at least one additional jet is selected with the same offline requirements used for the
signal region. In this way the biases due to the triggers are accounted for in the double-b-tagged
region. No inference is made concerning the b-tagging of the third jet.

Events in the sample are categorized as bbX, bXb, Xbb topologies, depending on which jets
are b-tagged, here represented by the lower-case letter b, and which jet is untagged, denoted by
the upper-case letter X. The order of the jets is given with descending pT . For example, bXb
means an event where the leading and third jets are b-tagged and the sub-leading jet is untagged.

The di-jet mass M12 spectrum is used to search for the Higgs boson signal. Kinematics of
bb̄ pairs in the bbX and bXb event categories are different, resulting to different M12 shapes.
However, in events, characterized by the same kinematics, it does not matter if the flavor X is
either udsg or c. For example, the M12 spectrum would be the same in either bbq10 or bbc events.
It is worth mentioning that b-tagging is a major source of distinction between the different
event categories. For example, considering the triple-b-jet background, the M12 spectra of three
compositions, bbB, bBb and Bbb, are different due to different b-tagging probabilities for the
untagged jet B.

5.6.2 Construction of the background templates

From the three double-b-tagged categories nine background templates, bbX, bXb, Xbb, with
X=Q, C and B, are created. The capital letters represent the assumption on the flavor of the
untagged jet to be either a light, Q, a charm, C, or a bottom, B, jet. The templates are 2D spectra
(M12,X123) obtained by collecting events which are weighted by the b-tag probability for the
untagged jet. The b-tag probabilities as functions of the jet pT and η are obtained from Monte
Carlo simulations and shown in Figures 5.6 and 5.8. Data/MC correction factors (5.12) are
applied to correct b-tag efficiencies of b,c and udsg jets.

10Here and elsewhere a light (udsg) flavor is denoted as q.
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The variable X123 in the double-b-tagged sample is similarly modeled using weights. Each of
three possible values of the secondary vertex mass index, Bi

11, for the untagged jet is taken in
the construction of the templates with a weight according to the probability PBi that the untagged
jet will be assigned to the given bin Bi. These probabilities have been determined for each flavor
as functions of the jet pT and η using simulated tt̄ events. Figure 5.11 shows the probabilities
PB1 and PB3 for b,c and udsg jets as functions of their pT .
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Figure 5.11: The probabilities PB1 (a) and PB3 (b) that the b, c or udsg jets will be assigned to the
bins B1 and B3 of the SV mass distribution as a function of the jet pT .

As expected, jets assigned to the bin B1 of the SV mass distribution are more likely light-
flavor jets, while b jet has the largest probability to be found in the bin B3. The probabilities,
PBi( f lavor), of the jet of a certain flavor to be assigned to the bins Bi satisfy the condition

∑
i

PBi( f lavor)≡ 1.

Some of the nine templates are rather similar to each other in shape. Two templates are
combined, if their ratios in all bins are close to 1. Following this procedure, the templates for the
Xbb and bXb event categories, with X=Q,C,B, are merged:

∙ Bbb+bBb=(Bb)b,

∙ Cbb+bCb=(Cb)b,

∙ Qbb+bQb=(Qb)b.

Furthermore, when the third leading jet is an untagged jet of the flavors Q and C, then the bbQ
and bbC templates are combined together:

11Here i is either 1,2 or 3.
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∙ bbQ+bbC=bbX.

After merging the total number of templates is reduced to five. As an example, these five M12
and X123 projections of templates are shown in Figure 5.12 for the low-mass scenario selection
criteria.

Figure 5.12: The M12 (a) and X123 (b) projections of the five templates (Bb)b, (Cb)b, (Qb)b,
bbB, bbX for the CSVT b-tagging in the low-mass scenario.

The two-dimensional templates whose di-jet mass M12 spectra are very similar can be clearly
distinguished with a help of X123. For example, this is the case of the (Bb)b and (Cb)b
templates, or bbB and bbX templates. This means that the obtained templates have different 2D
shapes, what prevents from correlations of background fractions in the fit discussed later.

5.6.3 Trigger pattern corrections

The double-b-tagged and triple-b-tagged samples are different in the b-tag trigger patterns.
Therefore, a correction must be applied to the templates derived from the double-b-tagged
sample, if one wants to use them to describe triple-b-tagged distributions. The HLT requires that
two Level-2 jets must be tagged. This determines the following b-tag trigger patterns in events:

∙ TTx,

∙ TxT,

∙ xTT,

where the capital letter T represents the position of the b-tagged Level-3 jet. In the background
templates all three trigger patterns may contribute to a certain flavor composition. For example,
the bCb event category may include not only the pattern TxT, but also TTx and xTT. However,
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studying the correlation of the b-tag trigger pattern with offline b-tagging in the data, we have
found that in about 95% of the cases jets with trigger b-tagging are also identified offline as b jets.
Figure 5.13 illustrates the fractions of events, corresponding to different b-tag trigger patterns, in
the bbX, bXb and Xbb event categories. To construct the templates, we ignore events for which
the b-tag trigger pattern does not match to the event category. However, events with the trigger
pattern TTT are also accepted in the templates.

The background templates are then corrected for the 5% effect from this mismatch. Two
correction factors are applied to the M12 and X123 projections of the templates. The M12
distribution in the event category i is weighted by the ratio

r f lav
M12,pattern(i) = ∑

k ̸=i

εb(trigger, i) f lav

εB
b (trigger,k)

, (5.15)

where εb(trigger, i) f lav and εB
b (trigger,k) are relative trigger b-tagging efficiencies (5.6) for the

f lav and b jets in the event categories i and k, respectively. The quantity f lav is an assumed
flavor of the untagged jet in the event category i. The index k denotes the non-matched trigger
patterns, i.e k ̸= i is required. For example, to correct the template of the bXb category with
X=C, the weight rC

M12,pattern(2) is applied on event-by-event basis,

rC
M12,pattern(2) =

εC
b (trigger,2)

εB
b (trigger,1)

⊕ εC
b (trigger,2)

εB
b (trigger,3)

. (5.16)

The symbol ⊕ in equation (5.16) means that two bCb sub-templates are weighted by different
ratios of equation (5.16) and combined in the final step of the template production.

In order to factorize the effect from the non-matched b-tag trigger patterns in the X123distribution,
the MC-driven probability distribution functions P f lav,tPat

Bi
( j) are introduced. They describe the

probability of the untagged jet with the assumed flavor f lav to be assigned to the bin Bi of the
SV mass distribution in events of the category j with b-tag trigger pattern tPat. P f lav,tPat

Bi
( j)

functions are obtained from the SV mass distribution applying the relative trigger b-tagging
efficiencies and requiring the matching between the Level-2 and PF jets.

The probability distribution functions, pdf, of X123, which are discussed in subsection 5.6.2
and shown in Figure 5.11, are built without such weighting and matching. We call such a pdf
“offline”, P f lav,o f f line

Bi
( j).

The correction of the non-matched trigger patterns for the variable X123 reads

r f lav,tPat
X123,pattern(Bi, j) = P f lav,tPat≡ j

Bi
( j) ·

P f lav,o f f line
Bi

( j)

P f lav,tPat ̸= j
Bi

( j)
. (5.17)

The final X123 projection of the template is obtained by summing sub-templates, corrected by the
weights (5.17), over the three b-tag trigger patterns tPat= xTT, TxT, TTx. The overall correction
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Figure 5.13: The b-tag trigger patterns for the bbX (a), bXb (b) and Xbb templates from events
selected in the low-mass scenario.
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factor for the event category j, in each bin of the (M12,Bi) space, is

r f lav
pattern(Bi, j) = r f lav

M12,pattern( j) · ∑
tPat

r f lav,tPat
pattern (Bi, j). (5.18)

This summation in equation (5.18) allows to avoid the introduction of new background templates.
As examples, the effects of mismatched b-tag trigger patterns for the templates Xbb and bXb
are illustrated in Figure 5.14.
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Figure 5.14: The M12 projections of the templates Xbb and bXb, where X=B,C, before (black)
and after (pink) applying the trigger pattern correction (5.18).

5.6.4 Subtraction of non-bb contamination

The basic assumption, that the background in the double-b-tagged sample consists entirely of
events with at least two b jets, is only approximately correct. Some impurity of bb pairs from non-
b jets is expected, which may affect the spectrum of the templates. Although the contamination
is expected to be very small, a distortion of the background templates by non-bb events could
lead to a possible bias. This non-bb contribution is assessed from the measurement of the mistag
fraction using the nTCHE tagger [174], as discussed in subsection 5.3.2. The double-b-tagged
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event is treated as the non-bb background if at least one offline b-tagged jet is negative-tagged.
The threshold, applied for the negative tagging, is determined from simulated multijet QCD
events, requiring Rmistag = 1 in equation (5.8). It is defined as a function of the jet pT for each
event category and for each of the two b-tagged jets. We skip the negatively-tagged non-bb
events during the templates creation. In Figure 5.15 absolute values of the nTCHE thresholds as
functions of the jet pT for the Xbb and bbX categories are shown.
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Figure 5.15: The absolute values of the nTCHE thresholds applied on the first (leading) and
second (sub-leading) b-tagged jet in the Xbb and bbX samples at the CSVT working
point.

The absolute values of the nTCHE thresholds of the Xbb category are larger than the thresholds
of the bbX category almost in the whole range of pT , and the thresholds of both categories
increase with growing jet pT .

To validate the method of the non-bb subtraction, the fractions of non-bb events for each
double-b-tagged category are estimated in bins of the di-jet invariant mass M12 in data events and
Monte Carlo simulations. The fraction non-bb/bb is plotted in Figure 5.16. Monte Carlo predicts
the fraction of non-bb events to be roughly 30% lower than what is obtained from data. The
normalization of background is a free parameter in the fit of the templates to the data, therefore
absolute values of such contamination are not important in the analysis. Only the effect of the
non-bb impurity on shape of the templates is relevant. The M12 distributions with and without
considering non-bb events in the double-b-tagged sample are shown in Figure 5.17.
The solid circles represent the normalized di-jet invariant mass distributions before the correction,
the triangles indicate the estimated non-bb contribution, which amounts to ∼ 3-4%. The open
squares are obtained after subtraction of the non-bb fraction and subsequent normalization. At
most a marginal change in shape is found. Also the ratio of the corrected to the uncorrected
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Figure 5.16: Fraction of non-bb events as a function of the di-jet mass M12 in the bbX (a), bXb
(b) and Xbb (c) categories of the double-b-tagged sample, where b jets are tagged at
the CSVT working point. The solid blue and open red triangles show the fractions
of non-bb events obtained by the method of the negative faction thresholds in data
and Monte Carlo, respectively. The solid red circles represent the fractions obtained
using the information from the Monte Carlo generator.
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Figure 5.17: Normalized M12 spectra of the bbX (a), bXb (b) and Xbb (c) categories before
(circles) and after (squares) the correction, and the non-bb contribution (triangles)
using events selected in the low-mass scenario. The ratios of the corrected over
uncorrected di-jet invariant mass distributions are shown at the bottom of the plots.
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shapes is shown in Figure 5.17. For the bbX sample a small negative slope for the ratio is
observed. In other cases, the ratio is compatible with unity.

5.7 Test of background modeling in a signal-depleted data
sample

In order to avoid possible bias in the selection procedure and background modeling, a blinding
policy has been adopted. The di-jet mass distribution M12 has been never looked at in the
triple-b-tagged sample until the analysis has been fixed and approved. During developing and
commissioning the analysis, the M12 distributions has been only seen in the BDT control sample
where the signal contribution was expected to be very small.

5.7.1 The BDT method

A control sample with three b-tagged jets is selected with criteria which suppress the signal. A
Multivariate analysis (MVA) method called the gradient boosted-decision trees, BDT, is used.
With the TMVA package [197], the BDT are trained using multijet QCD events, enriched by b
quarks, for background and a mixture of signal events produced with Higgs boson masses of
MH =90, 120 and 200 GeV. The signal events are simulated assuming the same production rate
for these mass values.

The following variables are found to have discriminating power between the signal and
background:

∙ pT,3/pT,1 - the ratio of the transverse momenta of the third and the leading jets;

∙ pT,3/pT,2 - the ratio of the transverse momenta of the third and the sub-leading jets;

∙ |ηi| - the pseudorapidity of the three leading jets, i = 1,2,3;

∙ the event shape variables [198]:

– aplanarity;

– isotropy;

– sphericity;

– D;

∙ ∆η13 = η1 −η3 - the difference of the pseudorapidities of the leading and third jets;

∙ ∆η23 = η2 −η3 - the difference of the pseudorapidities of the sub-leading and third jets;

∙ ∆pT,13 = pT,1 − pT,3 - the difference of the transverse momenta of the leading and third
jets;
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∙ ∆φi3 = φi −φ3, where i = 1,2 - the difference of the azimuthal angles of the first and the
third, and the second and third leading jets;

∙ ∆φ
boost12
23 = φ

boost12
2 −φ

boost12
3 - the difference of the azimuthal angles of the second and

third leading jets in the reference frame of the first two leading jets;

∙ θ
boost12
i , where i = 1,3 - the polar angle of the first and third leading jets in the reference

frame of the first two leading jets;

∙ Mmax
i j = max(Mi j)/∑k pT,k, where i, j = 1...n, i ̸= j - the ratio of the maximum value of

the di-jet mass of all combinations of the n jets with pT > 5 GeV and |η |< 2.2 to the sum
of pT of n jets in events passing the event selection, as discussed in the subsection 5.5;

∙ Mmin
i j = min(Mi j)/∑k pT,k, where i, j = 1...n, i ̸= j - the ratio of the minimum value of the

di-jet mass of all combinations of the n jets with pT > 5 GeV and |η |< 2.2 to the sum of
pT of n jets in events passing the event selection, as discussed in the subsection 5.5;

As examples, Figure 5.18 shows distributions of pT,3/pT,1, η1, sphericity and ∆φ23. From
Figure 5.18 one may conclude that these distributions are different in the background and signal
events. Similar differences in shapes are found for the other quantities used in training the BDT.

CMS Private Work 2011,
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Figure 5.18: Normalized distributions of the input variables used in the MVA training: pT,3/pT,1
(a), η1 (b), sphericity (c), ∆φ23 (d).
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The normalized BDT distributions for the signal and the background in a test sample indepen-
dent of the sample used in the training are shown in the Figure 5.19. A good separation between
the signal and the background is observed.

A control triple-b-tagged sample, corresponding to the highlighted region in Figure 5.19, is
defined, where the signal will be depleted. The cut on the BDT, BDT ≤−0.06, is chosen what
corresponds to an enhancement by a factor of 3 of the background to signal ratio.
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Figure 5.19: The distributions of the BDT for events in the signal (blue) and background (red)
samples. The “control region” denotes the BDT discriminant range, where the
signal is depleted.

In the control region, using the selection of the low-mass scenario, the expected signal fraction,
S/B, for a Higgs boson with mass MH = 120 GeV in the MSSM mmax

h scenario at tanβ = 20 is
0.0067. This is shown in Figure 5.20.

After selecting the control sample, the shape of the M12 distribution, obtained in simulated
heavy-flavor multijet QCD events, is slightly changed at low values, as shown in Figure 5.21.

5.7.2 Closure test of background modeling

A priori estimates of the background normalizations is done for the bbX, bXb and Xbb double-
b-tagged samples. Using QCD events simulated by the Pythia6 program, the fractions of
c and b flavors for the untagged jet are estimated. The light-flavor fraction is taken to be the
complement of the heavy-flavor fractions. The fractions are parametrized as function of the jet
pT and varied from 4% to 8% and 4% to 6% in the case of b and c jets, respectively. Each of the
nine double-b-tagged templates is weighted by the flavor fraction according to the assumed flavor
of the untagged jet. The background predicted from double-b-tagged data sample is compared
then with the triple-b-tagged data sample in the BDT control region. An agreement within a few
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Figure 5.20: The di-jet mass M12 distribution for events selected in the low-mass scenario for
the heavy-flavor multijet QCD enriched by b quarks (red) and Higgs boson signal
with MH = 120 GeV in the mmax

h scenario at tan = 20 (blue) samples selected by
the requirement BDT ≤−0.06.
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Figure 5.21: The distributions of di-jet invariant mass M12 in the low-mass scenario for the
whole background sample (red) and for events in the control region (blue). Both
distributions are normalized to unity.
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per cent between the M12 distributions of events from the signal-depleted data sample and of
the background prediction from extrapolation of the double-b-tagged data sample is shown in
Figure 5.22 for the low-mass scenario. The ratio of the M12 distributions in the signal-depleted
data sample and the extrapolation of the double-b-tagged data sample is close to 1, as shown in
Figure 5.22.
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√
s = 7 TeV

Figure 5.22: The M12 distributions of events in the BDT control sample (solid points) and of
the background prediction from the extrapolation of the double-btag sample (open
squares) and their ratio in the low-mass scenario.

The fit, discussed later in Section 5.8.4, of templates built in the BDT control samples is used
to test the procedure of the background normalization. The fit results are plotted in Figure 5.23.
The fit shows χ2/Nd f = 120/115 with a corresponding probability of 0.33. According to the
template fit, the dominant background contribution of about 70% is attributed to triple-b-jets
events, in a good agreement with the Monte Carlo predictions summarized in Table 5.5.

5.8 Signal modeling

In order to measure the signal yield, the proper templates are derived for each Higgs mass
hypothesis using the Monte Carlo samples generated for Higgs boson masses of 90, 100, 120,
130, 140, 160, 180, 200, 250, 300 and 350 GeV.

The modeling of the signal templates is based on the following chain:
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Figure 5.23: The M12 (a) and X123 projections after the fit of the (Bb)b, (Cb)b, (Qb)b, bbB
bbX templates to the data using events from the BDT sample in the low-mass
scenario. The dots are data and the stacked histograms are the combination of the
templates normalized to data.

∙ selection of the events according to the criteria of the mass scenario, as discussed in
subsection 5.5;

∙ splitting the signal sample into independent subsamples, applying the L1/L2 (5.1) and
relative trigger b-tagging (5.6) efficiencies in the subsamples to simulate the trigger;

∙ application of the offline b-tagging efficiencies, shown in Figure 5.7, to model the CVS
b-tagging at the tight working point;

∙ the pile-up reweighting, as described in subsection 5.8.1, to take into account pile-up
interactions in data;

∙ combining the subsamples in proportions relative to the integrated luminosities of the
triggers and calculation of selection efficiency of the merged signal samples.

For example, the signal events used in the low-mass scenario are splitted into two statistically
equal subsamples to simulate the two triggers of the scenario. Each subsample is reweighted
on an even-by-event basis by the same relative trigger and offline b-tagging efficiencies and the
pile-up weights. The L1/L2 weights for the two triggers are different. In each subsample the
signal template is built. Afterwards the signal templates are merged in fractions of 0.64 and 0.36
in accordance with the integrated luminosities for each trigger. The obtained two-dimensional
histogram is normalized to unity. Figure 5.24 presents the distribution of M12 for the signal
events with the Higgs boson mass of 120 GeV selected by the two triggers, “Trig0” and “Trig1”,
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in the low-mass scenario. The distributions are summed and normalized to unity giving the
signal template.

CMS Private Work 2011,
√
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Figure 5.24: The M12 normalized to unity distributions of the signal events with the assumed
Higgs boson mass of 120 GeV selected with “Trig0” (blue) and “Trig1” (green)
triggers in the low-mass scenario. The red histogram, normalized to unity, represents
M12 after merging the “Trig0” and “Trig1” distributions.

There are only marginal changes in shapes of the signal subtemplates caused by difference in
the L1/L2 efficiencies of the two triggers.

The final signal templates, obtained by merging the histograms of the subsamples, are shown
in Figure 5.25 for Higgs mass hypotheses of MH=120, 180 and 250 GeV.
As expected, the X123 distributions are almost identical for the given masses, while the M12

projections are characterized by peaks around the assumed values of the Higgs boson mass.

5.8.1 Pile-up reweighting

The signal Monte Carlo samples are generated with pile-up interactions superimposed on the
process of the Higgs boson production, gg → bb+Φ(= h/H/A). These simulated additional
interactions roughly cover the distribution of the number of pile-up interactions in the data.
Therefore, the Monte Carlo samples must be reweighted such the distribution of the number of
pile-up interactions matches the observed distribution in the data.

There are at least two relatively robust ways of obtaining the distribution of the observed
number of pile-up interactions in the data. One of these is to simply count the number of recon-
structed primary vertices in events of the data sample. The average number of additional vertices
is proportional to the number of additional interactions with about 70% vertex reconstruction
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Figure 5.25: The M12 (a) and X123 (b) projections of the signal templates for three different
masses of the Higgs boson, MA = 120,180,250 GeV applying the low-mass sce-
nario selection.

efficiency to be taken into account. So, the average number of reconstructed vertices divided by
0.7 is a good estimate of the number of additional interactions in the data.

However, the final distribution for the number of reconstructed primary vertices is sensitive to
the settings of the primary vertex reconstruction and properties of underlying events, a priori
different for data and MC. Additionally, the trigger may introduce a bias in the distribution for
the number of reconstructed vertices.

Due to these reason, an approach, based on the measurement of the instantaneous luminosity,
Linst is applied. Multiplying the instantaneous luminosity by the minimum bias cross section,
σmb ∼ 71.3, average number of pile-up interactions per bunch crossing, BX, is

Npile-up
BX =

Linst ·σmb

Nb
, (5.19)

where Nb is the number of bunch crossings per second. The distribution of observed pile-
up interaction in one luminosity section, LS, corresponding to 23.3 seconds, is a Poisson
distribution with the mean corresponding to Npile-up

BX (5.19). To obtain the distribution of the
pile-up interactions for a full run, the Poisson distributions are summed up with fractions of the
integrated luminosity in the LS in the run.

The distributions of the number of pile-up interactions observed in the LHC 2011 runs and
simulated in the Monte Carlo samples are shown in Figure 5.26. The distributions are normalized
to unity.
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Figure 5.26: The distribution of the number of pile-up interactions per BX in data (black) and
Monte Carlo (red).

The Data/MC ratio of the distribution of the number of pile-up interactions per BX, shown at
the bottom of Figure 5.26, is used to reweight the signal Monte Carlo samples.

As a closure test, the signal events with the assumed Higgs boson mass of 120 GeV are
reweighted by this ratio on the event-by-event basis. The distributions for the number of the
PV selected, as discussed in Section 5.5, are obtained with and without applying the pile-up
reweighting to the signal events. This is shown in Figure 5.27. Good agreement between the
distributions of the number of the PV from data and Monte Carlo after the pile-up reweighting is
found.

5.8.2 Di-jet mass resolution

The di-jet mass resolution is essential for mass measurements of the MSSM Higgs bosons
produced in the channel gg → bb+Φ(= h/H/A)→ 4b+ jets. To study the resolution in the
measurements of the invariant mass of two leading jets, we calculate M12 in the signal samples.
Using the information from the Monte Carlo generator, we distinguish between two categories
of events:

∙ the two leading jets originate from b quarks of the Higgs boson decay;

∙ one or two leading jets are not stemming from the Higgs boson decay.

150



CMS Simulation 2011
√
s = 7 TeV

Figure 5.27: Distributions of the number of reconstructed primary vertices with (red) and with-
out (blue) pile-up reweighting in simulated events, The black histogram is the
distribution of the number of the PV observed in 2011 data.

From the di-jet mass distribution of events in the first category its peak position, Mpeak, and its
RMS are obtained. The mass resolution is defined as

σM12 =
RMS
Mpeak

. (5.20)

The distribution of the di-jet invariant mass of the jets from the Higgs boson is almost Gaussian.
The M12 spectrum of events from the second category is used to estimate the combinatorial
background. The purity of the Higgs boson signal is defined as

purity =
N1stcateg.

events

N1stcateg.
events +N2ndcateg.

events

, (5.21)

where N1stcateg.
events and N2ndcateg.

events are numbers of the signal events in the first and second categories,
respectively. The purity equals to unity, when all pairs of leading jets, contributing to M12, stem
from the Higgs boson. Zero purity corresponds to the case when there are no selected signal
events with two leading jets originating from b quarks of the Higgs boson decay.

Figures 5.28 (a) and (b) shows M12 spectra of triple-b-tagged events in the two signal categories
with the assumed Higgs boson masses of 120 and 200 GeV. The RMS of the green spectra,
where the two leading jets stem from the Higgs boson decay, are 15 and 25 GeV, respectively.
The positions of the corresponding peaks are at 117 GeV and 188 GeV, respectively. The
combinatorial background has an asymmetric shape with a long tail to large mass values. The
resolution of di-jet mass for jets stemming from the Higgs boson and the purity of the Higgs
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signal as functions of the Higgs mass are shown in Figures 5.29 (a) and (b). The quantity σM12 is
slightly varying from 12% to 14% with increasing values of the Higgs boson mass.

CMS Private Work 2011,
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Figure 5.28: The M12 distributions in the triple-b-tagged signal samples generated with the Higgs
boson masses of 120 GeV (a) and 200 GeV (b). The green distributions originate
from events of the first category, while the brown distributions correspond to the
second event category.

Two different modes of the purity estimation are considered. In the first case, the ratio (5.21)
is calculated over all bins of the M12 distributions. This is illustrated as the black curve in
Figure 5.29 (b). It is found that the signal with Higgs boson masses up to 100 GeV has large
contamination of M12 from the combinatorial background which may reach up to 80%. In the
case of medium masses of the Higgs boson, the combinatorial background is reduced to 40%
and 30%, when the Higgs boson mass reach 180 and 350 GeV, respectively. In the second case,
the purity calculation is restricted to the events in the mass window of ± RMS around Mpeak. In
these events, the signal purity is increased by a factor varying between 2.5 for the MH value of
about 100 GeV and 1.2 for the Higgs mass of about 350 GeV, as demonstrated by the blue curve
in Figure 5.29.

5.8.3 Signal efficiencies

The efficiencies of the signal trigger and offline selections, discussed in Sections 5.2 and 5.5, are
estimated from simulated signal samples and summarized in Table 5.6. Figure 5.30 plots the
efficiency of the signal selection in the low- and medium-mass scenarios as a function of the
mass of the MSSM pseudoscalar Higgs boson.
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Figure 5.29: The di-jet mass resolution (a) and signal purities (b) as functions of the Higgs boson
mass. The blue curve in (b) is the purity obtained for events within the ± RMS
window around Mpeak, while the black graph is the purity estimated in the whole
range of M12 values.

Table 5.6: Signal efficiencies εS for several masses of the MSSM pseudoscalar neutral Higgs
boson in the low- and medium-mass scenarios.
MA [GeV] εS(low-mass) εS(medium-mass)
90 0.129% 0.070%
100 0.179% 0.099%
120 0.342% 0.183%
130 0.430% 0.247%
140 0.522% 0.334%
160 0.707% 0.536%
180 0.876% 0.717%
200 1.001% 0.901%
250 1.256% 1.227%
350 1.416% 1.401%

The signal efficiencies in the medium-mass scenario are smaller than the efficiencies in the
low-mass hypotheses. Depending on the Higgs boson mass, the efficiency varies from 0.13% to
1.40%, corresponding to the expected numbers of signal events from 351 to 6580 at an assumed
Higgs boson production cross section of 100 pb.
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The efficiency of the signal selection of the low-mass scenario is about two times larger than the
efficiency of selection in the medium-mass scenario at low values of the Higgs boson mass. This
is explained by the fact that the jet triggers of the low-mass scenario have lower pT thresholds,
making them more efficient, in comparison with the jet triggers of the medium-mass scenario.
At medium Higgs boson masses, 250 GeV < MΦ < 350 GeV, b jets, originating from the Higgs
decay, have harder pT spectra, suppress the discrepancy between the selection efficiencies of the
low- and medium-mass scenarios.
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Figure 5.30: Signal efficiencies as function of MA in the low-mass (red curve) and medium-mass
(blue curve) scenarios.

5.8.4 Signal extraction from the data

A linear combination of the signal and background templates is fitted to data using a binned
least-squares fit [199, 200] in the two dimensions, M12 and X123. The χ2 function minimized in
the fit is defined as

χ
2 = ∑

i j

[
Nobs

i j −
(

∑b fbNb
i j + fsNs

i j

)]2

(σobs
i j )2 +(σ templ

i j )2
, (5.22)

where Nobs
i j is the number of observed events in the bin (i,j), Nb

i j and Ns
i j are the bin contents of

the five background and one signal templates. The parameters fb and fs are free parameters to be
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fitted. They represent the fractions of the background and signal, respectively. The parameters
fb are constrained to be non-negative. The templates content is scaled to the total number of
observed events. The denominator in equation (5.22) is the sum of the quadratic errors of the
number of observed events, σobs

i j , and the statistical uncertainty of the templates, σ
templ
i j , in the

bin (i,j).
Due to statistical fluctuations, bins with no observed events may give numerically unstable

solutions on the fb and fs parameters, which minimize the χ2 function (5.22). The following
two additional criteria are required in order to have a stable chi-square minimization:

∙ we restrict the fit to bins, where Nobs
i j ≥ 1;

∙ the range and binning of (M12,X123) is adopted such that 80% of bins contain Nobs
i j ≥ 5.

Therefore, the binning and range of X123 is fixed and defined as six bins of equal width in
the range (−0.5,6). The binning and range of M12 is chosen to be flexible allowing us to avoid
bins with low-event occupancy. The final configuration of the M12 projection covers the range of
[60,440] GeV with bins of equal width.

5.8.5 Test of the fit with signal templates

The fitting procedure has been validated by artificial injection of the simulated signal events
into the signal-depleted data sample. The fits are performed and the fractions of the injected
signal events are compared with the fit results. We run 100 pseudo-experiments for Higgs boson
masses of 90, 120, 180 and 250 GeV. In each pseudo-experiment the number of signal events
added to the data histogram is

Ns = εs(MH)σ
mhmax
NNLO (MH , tanβ = 20)Lint , (5.23)

where εs(MH) is the signal efficiency reported in Table 5.6, σmhmax
NNLO (MH , tanβ = 20) is the cross

section (2.75) of the Higgs boson production calculated with NNLO accuracy [181, 182, 183]
in the MSSM mmax

h scenario at tanβ = 20 and Lint is the integrated luminosity of either low-
or medium-mass scenarios. Lint amounts for 2.67 fb−1 and 3.99 fb−1, respectively, for the
selection in the low- and medium-mass scenarios. In each pseudo-experiment the injected signal
is randomized accordingly to the Poisson distribution.

The results for each considered MH value are summarized in Table 5.7. The statistical errors
of the fitted parameter fs, σ( fs), correspond to the variation of χ2 around the minimum by
∆χ2 = 1.
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Table 5.7: The fit results on fs · (Ns +Nobs) and σ( fs) · (Ns +Nobs) for various masses of the
MSSM pseudoscalar neutral Higgs in Nobs events of the triple-b-tagged BDT sample,
when Ns signal events were injected.

MA [GeV] Ns fs · (Ns +Nobs) σ( fs) · (Ns +
Nobs)

90 3733 4538 865
120 3804 3954 354
180 1969 2174 263
250 680 560 176

5.8.6 Background-only fit

A priori estimation of the background in both scenarios is needed to evaluate the expected upper
limits on the Higgs boson cross sections, discussed later in Section 5.11. The fit (5.22) with
unconstrained parameters fb is performed in the triple-b-tagged sample without the inclusion of
the signal template. The obtained results for the low- and medium-mass scenarios are given in
Table 5.8 and Figures 5.31 and 5.32.

Table 5.8: The fractions of the various background templates in the data samples selected in the
low- and medium-mass scenarios from the background-only fit.

Template fb (low-mass) fb (medium-mass)
(Bb)b 0.48 ± 0.02 0.46 ± 0.02
(Cb)b 0.13 ± 0.01 0.14 ± 0.01
(Qb)b 0.00 ± 0.01 0.00 ± 0.01
bbB 0.27 ± 0.01 0.29 ± 0.03
bbX 0.13 ± 0.01 0.11 ± 0.01

As can be seen from Figures 5.31 and 5.32, the background model fits the data well within the
statistical uncertainty, given by the upper area of each bin of cyan color. According to the fit,
events with three b jets constitute the largest contribution to the background, (74.3 ± 2.5)%,
in the sample selected in the low-mass scenario. This is qualitatively expected and consistent
with (72.0 ± 4.1)% obtained from Monte Carlo samples generated by Pythia6, as listed in
Table 5.5. The fit of background templates to the data converges with χ2/Nd f = 121/112 and
χ2/Nd f = 100/112 for the triple-b-tagged sample selected in low- and medium-mass scenarios,
respectively.

156



CMS 2011, L=2.7 fb−1,
√
s = 7 TeV

Figure 5.31: The results of the background-only fit in the triple-btag data sample selected in the
low-mass scenario: the projection to di-jet invariant mass (a), the projection to the
X123 axis (b). The cyan area corresponds to uncertainties originating from statistical
errors of the templates.

CMS 2011, L=4.0 fb−1,
√
s = 7 TeV

Figure 5.32: The results of the background-only fit in the triple-btag data sample selected in the
medium-mass scenario: the projection to di-jet invariant mass (a), the projection
to the X123 axis (b). The cyan area corresponds to uncertainties originating from
statistical errors of the templates.
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5.9 The systematic uncertainties

The systematic uncertainties are divided into two different types. The first type consists of
uncertainties, that affect only the signal efficiency and thus the measured signal yields. They
are called “signal yield” uncertainties. The uncertainties of the second type affect the signal
efficiency, but also change the shapes of the signal and background templates. The shape change
is quantified by its effect on the estimated signal fraction fs. Such uncertainties are called “shape”
uncertainties.

5.9.1 The uncertainties on the signal yield

There are several kinds of uncertainties altering the signal yield.
First, there is the luminosity uncertainty, measured to be 2.2%. The second source of uncer-

tainty is the turn-on behavior of the the L1/L2 efficiency (5.1), given the rather low thresholds
used in the event selection. Varying the parameters of equation (5.1) within the statistical errors
given in Table 5.4, the relative change of at most 10% for the L1/L2 efficiency is observed. Next,
there are a few sources of uncertainties affecting the measurement of the b-tagging efficiency
and thus the scale factors SFb,c,udsg. They are identified in Refs. [201, 174] and the uncertainties
given there are taken. Effects of these uncertainties on the scale factors SFb,c and SFudsg are
shown in Figures 5.33 (a) and (b).

CMS Private Work 2011, L=4.7 fb−1,
√
s = 7 TeV

Figure 5.33: The combined statistical and systematic uncertainties on the scale factors SFb,c (a)
as functions of the jet pT , presented as bands of yellow, for b jets, and cyan, for c
jets, colors. The systematic uncertainty on the scale factor SFudsg as a function of
the jet pT (b).

The factor SFc is conservatively taken as fully correlated with SFb meaning that when the value
of SFb is varied by ±2σ because of the uncertainty, the scale factor SFc is also changed by ±2σ .
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The scale factor SFudsg is uncorrelated to SFc and SFb. From Figures 5.33 (a) and (b), the relative
uncertainties on the scale factors are varied between 10% and 20% at low (high) and medium
values of the jet pt , respectively.

We have estimated from simulations of the triggers a relative uncertainty of 15% on the
efficiency of the trigger b-tagging for each b-tagged jet at the HLT path. In addition, using
simulated tt̄ and multijet QCD events, we observe that the efficiency of the CSVT b-tagging
depends on event topology, i.e. kinematic configuration of jets. This uncertainty is found to be
about 5-8% for each b-tagged jet depending on the jet rank and pT . The effect of this uncertainty
on the template shapes is negligible.

Systematic uncertainties result also from the measurements of the jet energy correction E ,
defined in equation (4.12). These effects are combined in the so-called uncertainty on the jet
energy scale, JES. The relative JES uncertainty ranges between 1% and 4% depending on the
jet pT and η . As example, the JES uncertainties as functions of the jet pT are shown in Figures
5.34 (a) and (b) for jets with η = 1.0 and η = 2.0, respectively.
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Figure 5.34: The relative uncertainties of the jet energy scale shown as a function of the jet pT
for the jet η = 1.0 (a) and η = 2.0 (b).
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In the analysis we apply in the signal templates a correction on the jet energy resolution, JER,
defined as

rJER(pT, jet ,η jet) = JERData/JERMC.

This is done by modifying the 4-momenta of the reconstructed jets as follows

preco
i, jet j

′ = sign(preco
i, jet j

)(|pgen
i, jet j

|+ rJER(preco
T, jet ,η

reco
jet ) · (|preco

i, jet j
|− |pgen

i, jet j
|)), (5.24)

where preco(gen)
i, jet j

is the ith coordinate of the 4-momentum of the jth jet at the reconstruction
(generator) level. The resolution JERData is measured and results are summarized in Ref. [163].
The ratio rJER and its uncertainty is show in Figure 5.35 for jets with pT = 100 GeV as a function
of the jet η . The relative uncertainty on the JER is between 6-9%. The impact of both the
JES and JER uncertainties is evaluated along with the corresponding shape effects which are
discussed below.

0.5

1

1.5

2

0 1 2 3 4 5

rJ
E
R

|η|

rJER

±1σ uncertainty

CMS Private Work 2011, L=4.7/fb ,
√
s = 7 TeV

pT =100 GeV

Figure 5.35: The ratio rJER and its uncertainty as a function of the jet η for pT = 100 GeV of
the jet.

Figure 5.36 illustrates the relative effects of different uncertainties on the signal efficiency
calculated for the Higgs boson masses of 100, 200 and 300 GeV. The green (red) bars of the plots
indicate the relative effect on the signal efficiency εS from the +2σ(−2σ) uncertainty variations,

∆εS(±2σ)

εS
=

εS(±2σ)− εS

εS
,

where εS(±2σ) is the estimated signal efficiency, when either SFb,c, SFudsg, JES or JER are
shifted by ±2σ of the corresponding uncertainty, and εS is the signal efficiency calculated at the
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nominal values of these factors. The largest effect stems from the uncertainty on the scale factors
SFb,c and ranges between 10-13%. The JER and JES uncertainties contribute to the uncertainty
on the signal efficiency between 1 - 6%.
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Figure 5.36: The effects of systematic uncertainties on the signal efficiency εS in the signal
samples with the Higgs boson masses of 120 GeV (a), 200 GeV (b), 300 GeV (c).
The green bars show the relative change of εS for a +2σ variation of SFb,c,udsg, JES
and JER, while the red bars illustrates the relative effect for −2σ systematic shifts.

5.9.2 The shape uncertainties

The shape-altering effects from uncertainties on the jet energy scale, jet energy resolution, b-
tagging efficiency and mistag fraction are accounted for in the fit by using nuisance parameters
[202]. The parameters which describe signal and background and are not constrained in the
analysis are called nuisance parameters. The systematic errors on the signal and background
normalizations are parametrized in terms of these nuisance parameters.

Uncertainties on the b-tag efficiency and mistag fraction affect the shape of the background
templates. We use the technique of continuous variation of the two-dimensional templates. The
original χ2 function (5.22) is modified to

χ
2,shape = χ

2 +
np

∑
k=1

p2
k , (5.25)

where np is the number of nuisance parameters pk which are mainly pulls. We consider the
±2σ variations of the shapes, therefore the ±1σ shape-altering effect in the fit is defined using
piecewise-linear interpolation strategy

−2 ≤ pk ≤+2,

S±1σ (pk) = S0 + pk ·
np

∑
k=1

{
Sk
+2σ

−S0
2 , pk > 0

S0−Sk
−2σ

2 , pk < 0

}
.

(5.26)
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In equation (5.26) S0 is unaltered shape, Sk
±2σ

are the shapes after ±2σ variations due to the
uncertainty of the type k. An example of the shape altering for the Bbb and Cbb background
templates due to variation of the scale factors SFb,c is demonstrated in Figures 5.37 (a) and (b).
The +2σ(−2σ) change of SFb,c leads to a shift of the M12 spectrum to higher (lower) values.
This shift is within 10 GeV and its relative effect is significantly larger than the statistical error
in the M12 region far above and below the peak. Such variation relatively affects the M12 shape
at the maximum level of 5% and 10% for the Bbb and Cbb templates, respectively.

Another important shape-altering quantities are the JES and JER uncertainties. As an example,
their relative effect are shown in Figure 5.38 for the signal template with a Higgs boson mass
of 300 GeV. The JES and JER variations differently affect the signal M12 shape. The increase
(decrease) of JES and JER factors shifts the spectrum to higher (lower) and lower (higher) values,
respectively. Their relative effects in the shape changing are considerable and correspond at most
to 30% and 20%, respectively.

Figure 5.37: The change of the shape of the M12 projection under variations of the scale factors
SFb,c within ±2σ for the Bbb (a) and Cbb (b) background templates. The yellow
band in the plot of the ratio indicates the statistical uncertainty in the bins of the
background templates.

The effect of the shape uncertainty of the type k on the signal is defined by the difference
between values of fs given by fits with inclusion and without inclusion of the parameter pk.
For this purpose, we exclude pk from the sum (5.25) and repeat the procedure for each of the
SFb,c, SFudsg, JES, JER uncertainties and for each assumed value of the Higgs boson mass. The
uncertainties arising from JES and SFb,c,udsg on the template shapes are found to increase fs by a
value in the range [0.001,0.004] depending on the Higgs boson mass. The shape-altering effect
from JER uncertainty changes fs by a value in the range [0.001,0.003].
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Figure 5.38: The change of the M12 shape under variations of JES (a) and JER (b) within ±2σ

for the signal template corresponding to the Higgs boson mass MH = 300 GeV. The
yellow band in the plot of the ratio indicates the statistical uncertainty in the bins of
the signal template.

An additional systematic shape-altering uncertainty is coming from the impurity of the double-
b-tagged sample and the trigger pattern correction. Using simulated QCD events, we estimate
their relative effect on the fitted signal fraction fs between 0.001 and 0.003, and between 0.001
and 0.004, depending on the Higgs boson mass, respectively for the bb-purity and trigger pattern
corrections.

The statistical uncertainty of the offline b-tagging efficiency is propagated directly into the
templates and accounted for. Its relative impact on fs is found in the range [0.001,0.006]
depending on the Higgs boson mass.

Table 5.9 summarizes the effects from the shape-altering systematic uncertainties on the signal
fraction fs.

Table 5.9: Summary of the shape-altering systematic uncertainties, expressed in their effects on
the fitted signal fraction fs.

Uncertainty ∆ fs

JES and b-tag 0.001 - 0.004
JER 0.001 - 0.003
bb purity correction 0.001 - 0.003
pattern correction 0.001 - 0.004
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stat. error of offline b-tag 0.001 - 0.006

All systematic uncertainties are summarized in Table 5.10. The percentage in the “Value”
column of Table 5.10 represent the size of these uncertainties. The table includes also the
statistical uncertainties of the signal Monte Carlo samples which sizes are shown in Table 4.2.

Table 5.10: Summary of the systematic uncertainties.
Source Value Applied to Type
luminosity 2.2% signal rate
signal MC statistics 1.1-2.6% signal rate
trigger L1/L2 efficiencies 10% signal rate
offline b-tag efficiency 3-10% signal/background rate/shape
mistag rate 10-20% background shape
b-tag efficiency on topology dependence 6% signal rate
relative online b-tag efficiency(per jet) 15% signal rate
bb purity correction see text background shape
trigger pattern corrections see text background shape
jet energy scale 1-2%12 signal rate/shape
jet energy resolution 6-9%12 signal rate/shape

5.10 Results

First, we test the background-only hypothesis by performing the fit (5.25) without including
a signal template, but only a linear combination of the background templates, as described in
subsection 5.8.6. Results are shown in Figures 5.32 and 5.33, and summarized in the Table
5.8. The background model fits data well within the uncertainty propagated from the templates,
indicated by the area filled with cyan color.

Now, a signal template is included together with background templates in the fit, and the signal
fraction fs is allowed to vary freely. The fit is performed for the Higgs boson masses from 90 to
350 GeV. As an example, the fit result for the Higgs boson mass hypothesis of MH = 200 GeV
is illustrated in Figure 5.39. The shape-altering systematic variations, discussed in 5.9.2, are
included in the fit.
The measured signal fractions are summarized in Table 5.11 for Higgs boson masses in the

range of [90,350] GeV.

12This type of systematic uncertainty depends on the jet pT and η . The size of the systematic effect varies between
numbers shown in the appropriate cell.

164



Figure 5.39: Results of the fit including a signal template for a Higgs boson with a mass of 200
GeV in the triple-b-tagged sample, of the medium-mass scenario: (a) the projection
in the di-jet invariant mass, (b) the projection on the X123 axis.

Table 5.11: The signal fractions obtained by the fit and the number of observed signal events for
different masses of the MSSM pseudoscalar Higgs boson. The uncertainties of the
fractions include statistical and shape-altering systematics.

MA [GeV] fitted signal fraction fs number of observed
events

90 -0.0205 ± 0.0138 -2194 ± 1677
100 -0.0383 ± 0.0164 -4094 ± 2308
120 -0.0082 ± 0.0104 -873 ± 1158
130 -0.0034 ± 0.0096 -365 ± 1031
140 -0.0044 ± 0.0097 -474 ± 1050
160 -0.0022 ± 0.0074 -235 ± 795
180 0.0021 ± 0.0077 189 ± 684
200 0.0109 ± 0.0069 968 ± 706
250 0.0041 ± 0.0043 360 ± 405
350 -0.0057 ± 0.0026 -508 ± 297

5.10.1 Cross sections

The cross section for the production of the neutral MSSM Higgs bosons as a function of MA is
measured in a model independent way. We convert the fitted values of the signal fraction fs to
the cross section times branching fraction using the formula
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σ(MA, pp → bb̄+Φ)×Br(Φ → bb̄) =
fs(MA)Ndata

εS(MA)L
, (5.27)

where fs(MA) and εS(MA) are the observed signal fractions given in Table 5.11 and the signal
efficiencies, as defined in subsection 5.8.3, respectively. Ndata and L are the total number of
data events in triple-b-tagged samples and the integrated luminosities, respectively. The event
samples selected in the low- and medium-mass scenarios are treated separately. The systematic
uncertainties affecting the signal efficiency are taken into account to calculate the error on the
cross section. The errors from statistical, normalization and shape uncertainties are combined in
quadrature. The measured cross section σ(pp → bb̄+Φ) times branching fraction Br(Φ → bb̄)
as a function of MA is shown in Table 5.12 and Figure 5.40.

Table 5.12: The measured cross sections times branching fraction, σ(pp → bb̄+Φ)×Br(Φ →
bb̄) for different masses of the neutral pseudoscalar Higgs boson. The uncertainties
includes normalization, statistical and shape-altering systematic effects.

MA [GeV] observed σ(MA) × Br(Φ)
[pb]

90 -630 ± 481
100 -845 ± 477
120 -94 ± 125
130 -31 ± 89
140 -34 ± 75
160 -12 ± 42
180 7 ± 24
200 27 ± 20
250 7 ± 8
350 -9 ± 5

No significant evidence of the signal is observed in data.

5.11 Limit setting procedures in the Higgs boson search

In this analysis a theoretical model is given by the MSSM Lagrangian (2.34), and the LHC
data are used to determine fundamental parameters of the Lagrangian, like coupling strengths
or masses, by fitting the quantitative predictions of the model to experimental data. The CLS
method [203]provides a mean of setting upper limits on cross sections derived from data and
constrains the possible range of fundamental parameters.
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Figure 5.40: Measured cross sections times branching fractions as a function of the mass of the
Higgs boson A. In (a) the full mass range and in (b) MA ≥ 130 GeV are shown.
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To test the model, a factor µ is introduced to scale the cross section for the production of
the Higgs bosons. This parameter is referred to as signal-strength modifier or parameter of
interest. In the case when no evidence of signal is found, an upper limit on cross section times
branching ratio is established. For theses purposes a threshold on the signal-strength modifier,
µ95%, is calculated, and the hypothesis with the signal strength µ for a certain Higgs boson mass
is excluded at the 95% confidence level (CL95%), if µ is larger than µ95%.

We use the RooStats [204, 205] package to numerically evaluate the µ95% thresholds for
the signal from the pseudoscalar Higgs boson A with MA =90, 120, 130, 140, 160, 180, 200, 250
and 350 GeV. RooStats is built on top of the ROOT [206] framework and on the classes of
the RooFit toolkit [207], which provides a convenient description of the probability density
functions needed to qualify the model to describe the data.

5.11.1 Profile likelihood ratios

The CLS method considers a likelihood function L(X |µ,{νk}) as the probability density function,
pdf, for the observation X to be predicted by the model with the certain parameter of interest µ

and the set of nuisance parameters {νk}. The set {νk} consists of the signal-yield uncertainties,
{νs

k}, and shape-altering nuisance parameters {pk},

{νk}= {ν
s
k}+{pk}.

We refer L(X |µ,{νk}) to as the data model. The observation X is the two-dimensional
distribution

X = (M12,X123).

Its values are used to construct a one-dimensional histogram {ni},

X ≡ {ni}= (n1,n2, ...,nN),

with N bins and the number of entries ni in the ith bin.
The expectation E[n j] of the number of entries n j to be observed in the bin j is written as

E[n j](µ,ν
s
yield,{pk}) = µ · s j(ν

s
yield,{pk})+b j({pk}), (5.28)

where the mean number of entries in the jth bin from signal and background are

s j(ν
s
yield,{pk}) = ν

s
yield · stot ·

∫
bin j

f S(X ,{pk})dX ,

b j({pk}) = btot ·
∫

bin j

f B(X ,{pk})dX . (5.29)

Here the f S(X ,{pk}) and f B(X ,{pk}) are the pdfs for the signal and background expectations.
They are functions of the shape-altering nuisance parameters, {pk}, and expressed as the
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normalized 2D shapes S±1σ (pk) given in equation (5.26). The parameter νs
yield, introduces

the overall uncertainty on the signal yield as a multiplication of the factors νs
k ,

ν
s
yield = ∏kν

s
k ,

where the index k determines the type of the signal yield uncertainty, k =Lumi, SFb,c, SFudsg,
JER or JES.

The total number of background events, btot , is estimated from the background-only fit, while
the signal expectation stot is calculated as

stot = 1[pb1] · εs(MA) ·L (MA)int [pb−1], (5.30)

where L (MA)int is the total luminosity of the data used in the mass scenario and expressed in
pb−1, εs(MA) is the signal efficiency evaluated as a function of MA, as discussed in subsection
5.8.3.

In the frequentist way of thinking, the nuisance parameters {νs
k} and {pk} are usually con-

strained by independent experiments or by theoretical assumptions. These constraints are
modeled as outcomes of an auxiliary measurement by defining the pdf π(νk|ν̃k), being the prob-
ability of the experimental outcome νk for the nuisance parameter of the type k to be observed
assuming that its true value is ν̃k. This means that upon repeating the auxiliary experiment
many times the observed nuisance parameters would randomly fluctuate around unknown a
priori ν̃s

k and p̃k. To determine the likelihoods π(νs
yield|ν̃s

yield) and π(pk|p̃k), corresponding to
the signal-yield and shape-altering nuisances, respectively, we choose the appropriate functions
which are parametrized by ν̃s

k and p̃k. The “log-normal” function is used for the likelihood of the
signal-yield systematic uncertainties νs

k

π(νs
k |ν̃k

s) =
1√

2π lnδνs
k

1
νs

k
exp

(
−(lnνs

k − ln ν̃s
k)

2

2(lnδνs
k
)2

)
, (5.31)

where δνs
k

is the relative effect on the signal efficiency εS due to the ±1σ systematic variation of
the kth signal-yield uncertainty, k=Lumi, SFb,c, SFudsg, JER or JES,

δνs
k
= 1+

∣∣∣∣εS(+1σk)− εS(−1σk)

εS

∣∣∣∣ . (5.32)

The mean ν̃s
k , usually called nominal value, of the log-normal pdf is constant and equal to unity

for all types of the signal-yield uncertainty.
The standard normal distribution is used to constraint the shape-altering nuisance parameters

pk

π(pk|p̃k) =
1√

2πσpk

exp

(
−(pk − p̃k)

2

2σ2
pk

)
, (5.33)
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where p̃k is fixed to zero and σpk is unity. The pdf π(pk|p̃k) for the different shape-altering
nuisances pk are equal.

In general, the likelihood function L(X |µ,{νk}) for a specific set of measurements X = {ni}
in a single experiment is the product of Poisson probabilities for all bins times the likelihood to
observe the values of nuisance parameters {νk} from independent experiments

L(X |µ,{ν
s
k , pk}) =

N

∏
j=1

E[n j](µ,ν
s
yield,{pk})n j

n j!
e−E[n j](µ,ν

s
yield ,{pk}) ·∏

k
πk(ν

s
k |ν̃s

k) ·∏
k

πk(pk|p̃k).

(5.34)

To assess the agreement of the measurements X = {ni} with one prediction (E[no](µ,ν
s
yield,{pk}),

we consider the profile likelihood ratio

λ (µ) =
L(X |µ,{ ˆ̂νk})
L(X |µ̂,{ν̂k})

. (5.35)

Here { ˆ̂νk} in the numerator denotes the values of {νk} that maximize L(X |µ,{νk}) for a
certain value of µ, being the conditional maximum-likelihood estimator of {νk}. It is a function
of µ . The denominator of λ (µ) (5.35) is the maximized likelihood function, i.e. µ̂ and
{ν̂k} are unconditional maximum-likelihood estimators of µ and {νk}. The nominator and
denominator of equation (5.35) depend on the Higgs boson mass probed. Figure 5.41 illustrates
the negative logarithm of the profile likelihood ratio (5.35) as a function of µ for the signal model
corresponding to the pseudoscalar mass MA = 200 GeV.
The presence of the nuisance parameters in the definition (5.35) broadens the profile likelihood
ratio relative to what one would have if the nuisances were fixed. This reflects the loss of
information about µ due to the systematic uncertainties.

The profile likelihood ratio can be used to derive the lower, µ95%
low , and upper, µ95%

up , limits
on the parameter of interest µ . If one assumes that Wilks’ theorem [208] to be valid for the
data model, then −2ln(λ (µ)) is asymptotically distributed as a χ2 with one degree of freedom.
In this case, the p-values [209] of χ2 are used to impose the limits and determine the 95%
confidence interval CI95%:

µ
95%
low ≤ µ ≤ µ

95%
up . (5.36)

The p-value for CI95% is 0.05. This means that predictions of the signal hypothesis with µ

values outside CI95% (5.36) can be experimentally observed only in less than 5% of all cases.
Thus such µ values are not considered and said to be excluded at the 95% confidence level.
The p-value of 0.05 is reached at χ2 = 3.84 for one degree of freedom [210]. This corresponds
to − ln(λ (µ)) = 1.92, which is show in Figure 5.41 as a vertical horizontal line. Therefore
− ln(λ (µ)) = 1.92 determines CI95% which is shown as the vertical green lines in Figure 5.41.
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Figure 5.41: Measured − ln(λ (µ)) as a function of the signal strength µ for the signal with
the pseudoscalar Higgs boson mass MA = 200 GeV: The blue graph shows the
behavior of − ln(λ (µ)) calculated with the conditional and unconditional maximum-
likelihood estimators { ˆ̂νk} and {ν̂k}. The red one is the case when the nuisance
parameters {νk} are fixed to their true values.
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The maximum-likelihood estimator µ̂ can be used to make a statement on the observed cross
section times branching fraction, σobs. The unconditional maximum-likelihood estimator µ̂ is
determined by the minimum of − ln(λ (µ)), as shown in Figure 5.41. This provides the following
observed cross section and the upper 95% CL limit for the signal model with MA = 200 GeV:

∙ σobs = 20 pb;

∙ σ95%
up = 64 pb.

These numbers are in a good agreement with the results of the χ2 fit shown in Table 5.12.

5.11.2 Test statistic

To derive the 95% CL upper limits on the cross sections, we use the CLS method [203] which
employs test statistic. Here, we follow the prescription outlined in Ref. [211]. From the definition
(5.35) of λ (µ), one notes that 0 ≤ λ ≤ 1, with λ near 1 implying good agreement between the
data and the hypothesized value of µ . Eventually, it is more convenient to use the quantity

tµ =−2ln(λ (µ)), (5.37)

as the basis of a statistical test. Higher values of tµ indicates on increasing incompatibility
between the data and the hypothesized µ .

To quantify the level of disagreement we compute the p-value [209]

pµ =
∫

∞

tµ,obs

f (tµ |µ)dtµ , (5.38)

where tµ,obs is the value of tµ observed in data and f (tµ |µ) denotes the pdf of tµ as a function of
the signal strength µ . The p-values less than the threshold α = 0.05 indicate large incompatibility
of µ with the data. When using the test statistic tµ , the data set {ni} may give such low p-value
in two distinct cases: the maximum-likelihood estimated signal strength µ̂ may be found greater
or less than the hypothesized value µ .

Analytic evaluation of f (tµ |µ) is in general impossible. One way to approximate the pdf of
tµ is to evaluate tµ for a large number of simulated toy measurements [211]. First, a toy mea-
surement X = {ni} is obtained by Monte Carlo simulations generating Poisson random numbers
{ni} for every considered bin i with an expected number of events E[ni](µ,{νs

k},{pk}). Also
we consider the statistical fluctuations in the auxiliary measurements described by ∏k πk(ν

s
k |ν̃s

k)
and ∏k πk(pk|p̃k). Therefore we also generate random numbers {νk} distributed according to
πk(νk|ν̃k) simultaneously with X = {ni}. Next, we find the values of the nuisance parameters
{ ˆ̂νk} performing the maximum-likelihood fit, using equation (5.34), to the simulated toy mea-
surement X = {ni} for a given value of µ . Then the unconditional likelihood fit of L(X |µ,{νk})
is performed to obtain µ̂ and ν̂k. Finally, the test statistic tµ is calculated using equations (5.35)
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and (5.37). By repeating this procedure a certain number of different toy experiments, we obtain
the distribution f (tµ |µ). In principle, it is possible to determine the distribution with arbitrary
precision. However, computational costs increase with the number of toy experiments. To
calculate the median (expected) upper limits , we additionally, compute f (tµ |µ = 0) using the
background only predictions

Ebkg[n j]({pk}) = b j({pk}).
There is another, computationally less expensive, alternative to obtain the pdf f (tµ |µ). The

method is based on approximate analytical expressions as described in Ref. [212]. This approach,
referred to as the asymptotic method, is stating that for large values of {ni} in the measurement
X , the test statistic tµ can be approximated by

tµ ≡−2ln(λ (µ)) =
(µ − µ̂)2

σ2 +O(
1√
N
). (5.39)

Here the unconditional maximum-likelihood estimator µ̂ follows a Gaussian distribution with a
mean µ ′ and standard deviation σ , and N = ∑i ni represents the data sample size. The standard
deviation σ of µ̂ is obtained from the covariant matrix Vi j of the estimators for all parameters, µ

and {νk}

V−1
i j =−E

[
∂ 2 ln(L(X |µ,{νk}))

∂θi∂θ j

]
, (5.40)

where θi = {µ,{νk}} and the expectation value E[...] assumes the strength parameter µ ′. V−1
i j

is a function of µ ′ and therefore, σ = V00 is dependent on µ ′ as well. The mean value µ ′ is
unknown a priori. We can only guess on µ ′. The statistical procedure of the analysis considers
only two possible choices of µ ′ :

∙ µ ′ = µ, to test if the hypothesized µ describes the dataset X well;

∙ µ ′ = 0, to find what p-value to expect if the data correspond to the background-only
hypothesis. In this case the smaller p-value we expect for the background-only model, the
more sensitive to discovery our analysis is.

If µ̂ is Gaussian distributed and N is large enough to neglect the O(1/
√

N) term in equation
(5.39), then the test statistic tµ follows a non-central χ2-distribution for one degree of freedom
[212]

f (tµ |Λ) =
1

2
√

2π

1√
tµ

[
exp
(
−1

2
(
√

tµ +
√

Λ)2
)
+ exp

(
−1

2
(
√

tµ −
√

Λ)2
)]

, (5.41)

where the non-centrality parameter Λ is

Λ =
(µ −µ ′)2

σ2 . (5.42)
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In the case of µ ′ = µ the pdf in (5.41) becomes the central χ2-distribution. If µ ′ = 0, the
non-centrality parameter Λ = µ2

σ2 is non-zero, and we need to estimate it. A special, artificial data
set, that is called the Asimov data set, XA [212], is introduced to determine Λ. The Asimov data
XA = {nA

i } are equal to their expectation values when all statistical fluctuations are suppressed:

nA
i = E[ni](µ

′,{ν
′,s
k },{p′k}) = µ

′ · si({ν
′,s
k },{p′k})+bi({p′k}). (5.43)

Here {ν
′,s
k } and {p′k} are sets of the nuisance parameters which are found by profiling the

likelihood function L(X |µ ′,{νk}) :

µ
′ = µ̂, ν

′,s
k = ν̂

s
k , p′k = p̂k.

Finally, Λ is expressed in terms of the test statistic tA
µ , evaluated on the Asimov data XA, as

Λ =
(µ −µ ′)2

σ2 =−2ln(λ A(µ))≡ tA
µ ,where

λ
A(µ) =

L(XA|µ,{ ˆ̂νk})
L(XA|µ̂,{ν̂k})

≡ L(XA|µ,{ ˆ̂νk})
L(XA|µ ′,{ν ′

k})
.

(5.44)

In practice, to get the non-centrality parameter Λ for the case of µ ′ = 0, we calculate the test
statistic tA

µ using results of the background-only fit, shown in Table 5.8, as Asimov dataset XA.
The significance, Zµ , of the hypothesis with the parameter of interest µ to observe the test

statistic tµ,obs in the measurement X is related to the p-value as

Zµ = Φ
−1(1− pµ) = Φ

−1(F(tµ,obs|0)) = Φ
−1(2Φ(

√
tµ,obs)−1), (5.45)

where Φ−1(1− pµ) and Φ(x) are the quantile and cumulative functions of the standard normal
distribution [213]. The function F(tµ |Λ) in (5.45) is the cumulative distribution of tµ (5.41)
which is defined [212] as

F(tµ |Λ) = Φ(
√

tµ +
√

Λ)+Φ(
√

tµ −
√

Λ)−1. (5.46)

Because the significance Zµ is a monotonic function of
√

tµ , we can set up the 95% CL upper
limit on tµ by finding the root t95%

µ of the equation

Z95%
µ = Φ

−1(2Φ(
√

t95%
µ )−1) = 1.64.

The 95% confidence interval CI95% for the signal strength µ is determined as

µ
95%
low ≤ µ ≤ µ

95%
up ,where

µ
95%
up/low = µ̂ ±σ

√
t95%
µ .

(5.47)
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The unknown, so far, standard deviation σ is estimated from the Asimov data set XA, as

σ
2
A =

µ2

tA
µ

. (5.48)

where tA
µ is the test statistic obtained on the Asimov data set XA.

5.11.3 Sensitivity of the analysis

To characterize the sensitivity of the search for the Higgs boson, we are interested not in the
observed significance Zµ obtained from a single data set, but rather in the expected, more
precisely, median significance med[Zµ ], which characterizes the probability to discover the
signal13 with the strength µ assuming that there is no signal in the data. The quantity med[Zµ ] is
defined as

med[Zµ ] = Φ
−1(2Φ(

√
tA
µ )−1). (5.49)

The numerical value of med[Zµ ] is anticorrelated to the probability for an upward background
fluctuation. Hence, the larger med[Zµ ] is, the higher the sensitivity of the analysis is expected.
The median significance med[Zµ ] is related to the probability β of a type II error [214], which
occurs when the signal hypothesis is a priori false, but erroneously fails to be rejected. The
probability β of the type II error for CI95% is estimated as

β =
∫ t95%

µ

0
f (tµ |0)dtµ . (5.50)

From the relations

1−β =
∫

∞

t95%
µ

f (tµ |0)dtµ =
∫ tA

µ

t95%
µ

f (tµ |0)dtµ +
1
2
,⇒

β =
1
2
−
∫ tA

µ

t95%
µ

f (tµ |0)dtµ ,

(5.51)

and

med[Zµ ]∼
√

tA
µ , (5.52)

13Hereafter under the signal we mean the data model containing the signal s j and the background b j expectations.
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we conclude that

lim
med[Zµ ]∼

√
tA
µ→∞

β → 0. (5.53)

This means that the probability β is monotonically decreasing with the increase of med[Zµ ]. The
probability β is proportional to the overlapping between the pdf f (tµ |µ ′ = µ) and f (tµ |µ ′ = 0).
A significantly large distance between tµ,obs and tA

µ , and, therefore, between Zµ and med[Zµ ],
will qualitatively indicate the presence of the non-background contribution in the particular
measurement X .

Figure 5.42 illustrates the pdfs f (tµ |µ ′ = µ) (red) and f (tµ |µ ′ = 0) (blue), obtained from toy
experiments, which characterize the expectation from signal of the strength µ and background
only to be compatible with the measurement X shown as the black vertical line. The Higgs
model corresponding to MA = 200 GeV in the two cases of µ = 27.5 and µ = 45 is shown at (a)
and (b), respectively.

CMS Private Work 2011,
√
s = 7 TeV

Figure 5.42: The pdf of the test statistic for the signal with MA = 200 GeV (red) and background-
only (blue) models for the hypothesized values µ = 27.5 (a) and µ = 45 (b). The
measured tµ and expected tA

µ are shown as black and green vertical lines, respectively.
The solid curves in colors correspond to asymptotic predictions of formula (5.41).
All nuisance parameters {νk} are maximum-likelihood fitted.

The plots contain the histograms representing the distributions of the test statistic from 500
toy experiments. The solid curves show the asymptotic predictions given by equation (5.41).
We see the good agreement between two approaches for calculating the probability distribution
functions f (tµ |µ ′ = µ) and f (tµ |µ ′ = 0). The black and green vertical lines in the plots indicate
the values of tobs

µ /2 and tA
µ/2.

The smaller the overlapping between f (tµ |µ ′ = µ) (red) and f (tµ |µ ′ = 0) (blue) is, the higher
the sensitivity of the analysis is expected. This is directly related to the effects coming from
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systematic uncertainties in our analysis. Any change of nuisances {νk} modifies shapes of the
pdfs f (tµ |µ ′ = µ) and f (tµ |µ ′ = 0), and that reflects in the probability β . Figure 5.43 shows
what happens with both f (tµ |µ ′ = µ) and f (tµ |µ ′ = 0), if one fixes the nuisance parameters at
their nominal values.

CMS Private Work 2011,
√
s = 7 TeV

Figure 5.43: The pdf of the test statistic in the signal with MA = 200 GeV (red) and background-
only (blue) models for the hypotheses with µ = 27.5 (a) and µ = 45 (b). Measured
tµ and expected tA

µ are shown as black and green vertical lines, respectively. The
solid curves in colors correspond to asymptotic predictions of the formula (5.41).
All nuisance parameters {νk} are fixed at their nominal values.

Comparing Figures 5.42 and 5.43, we note that the overlapping between red and blue pdfs
is significantly reduced when the nuisance parameters are fixed. The probability β is getting
smaller, and it even approaches zero for the case of µ = 45. No upward fluctuations in the
data models appear now. Both hypotheses of µ = 27.5 and µ = 45 are excluded at the 95%
confidence level.

Hence, to increase the analysis sensitivity, what is identical to the β probability decreasing, in
the future, significant reduction of systematic uncertainties will be required for preventing the
loss of information on the signal strength µ.

5.11.4 The asymptotic CLS technique and exclusion limits

Given a measurement X = {ni} and the corresponding observed test statistics tµ,obs as well as
the corresponding distributions f (tµ |µ ′ = µ) and f (tµ |µ ′ = 0), the statistical significance of the
observation whether it arose by chance, needs to be determined. Previously, we have introduced
the p-value (5.39) as a measure of the disagreement between the measurement X and prediction
from the model with hypothesized signal strength µ . In the CLS method, this p-value is denoted

177



as “CLS+B”,

CLS+B =
∫

∞

tµ,obs

f (tµ |µ)dtµ . (5.54)

CLS+B is the cumulative probability of observing a measurement X ′ with t ′
µ,obs ≥ tµ,obs assuming

that the signal model is true and resulted to the measurement outcome. Therefore, large values of
CLS+B suggest a high chance that the observation X = {ni} is compatible with the expectation

E[ni](µ,ν
s
yield,{pk}) = µ · si({ν

s
yield},{pk})+bi({pk}).

The probability to observe a measurement that has a larger tµ=0,obs than the observed one,
when background is only expected, is given by the p-value, called “1−CLB”,

1−CLB =
∫

∞

tµ=0,obs

f (tµ=0|0)dtµ . (5.55)

The quantity CLB is a measure for the disagreement of X with the background-only expectation:
the larger CLB is, the more incompatible the observations X = {ni} with the expectations bi({pk})
are. We should distinguish between the test statistics tµ=0,obs and tA

µ : their definitions, given by
(5.35) with µ = 0 and (5.44), where µ ̸= 0, are different. For the Higgs boson searches 1−CLB
estimates how frequently a signal would be observed from background fluctuations.

We define the ratio

CLS(µ) =
CLS+B(µ)

1−CLB
, (5.56)

which is a measure of how well the set {µ, ˆ̂νk} of our hypothesis can be statistically distinguished
from the set {µ̂, ν̂} preferred by nature. In the literature, this is referred to as CLS

14 confidence
level [203]. Small values of CLS(µ) suggest that X strongly disfavors the set {µ, ˆ̂νk}. Normal-
izing to 1−CLB ensures the confidence of statements, even in the cases when the best-fitted
estimations {µ̂, ν̂k}, are more likely from the background fluctuations in data.

We want to find the maximum µα% of the signal strength µ that a prediction {µ, ˆ̂νk} is
statistically not distinguished from the nature favored set {µ̂, ν̂k}. The α% indicates on the
confidence level of CLS,

CLS(µ)≥ (1−α), µ ≤ µ
α%. (5.57)

A prediction corresponding to µ > µα% is statistically distinguished and excluded at the α%
confidence level. The quantity µα% is referred to as exclusion limit for the parameter of interest
µ. We use α = 0.95 to set the exclusion limit on µ.

14Further on, we omit CLS in the name of the confidence level.
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An issue still open to question is the way to find the value of µα%. One can invert the relation
(5.57)

µ
α% =CL−1

S (1−α), (5.58)

and obtain the needed value. In general, analytical solving of the equation (5.58) is not possible.
In the current analysis the inversion (5.58) is done numerically by scanning the hypothesis test
results, CLS+B(µ), CLB and CLS(µ), for various values of the parameter µ . The exclusion limit
µα% is derived when CLS(µ) intersects the desired level of 1−α . The RooStats framework
[204, 205] provides a class, HypoTestInverter, which implements the scan over a range of
µ values. We use 100 points in the range 1 ≤ µ ≤ 1001 to obtain µ95% for the signal hypotheses
with the Higgs boson masses between 90 and 350 GeV. To perform fast calculations of the
p-values (5.54) and (5.55), the asymptotic formulae of the probability density f (tµ |µ ′) (5.41)
and the corresponding cumulative F(tµ |µ ′) (5.46) functions are used. Such approach to evaluate
CLS+B, CLB and CLS are known in the literature as “asymptotic” CLS method [212].

Running the HypoTestInverter code on the Asimov data set XA provides the CLS
numbers expected from background-only events. For the nice presentation of results, the error
bands for the expected CLS(µ), med[CLS(µ)], which are corresponding to ±Nσ variations of µ̂ ,
are usually depicted in plots. N15 is either 1 or 2. To find the bands, we map the ±Nσ variation
of tA

µ ,

√
tA
µ,+Nσ

=
µ̂

σ
+N,√

tA
µ,−Nσ

= max[
µ̂

σ
−N,0],

(5.59)

into med[CLS(µ)] plane, iteratively performing for each hypothesized µ .
For a vivid example of the scanning procedure and deriving med[CLS(µ)], we run the CLS

test of the Higgs model for MA = 200 GeV over 5 equally distributed points in the range of
10 ≤ µ ≤ 80. Figure 5.44 shows the obtained results for CLS+B, 1−CLB, CLS, med[CLS] and
±1(2) σ bands.
As expected, the observed CLS+B is lowering, while 1−CLB increasing with µ . The upper

limit µ95%
up is determined from the intersection of the CLS(µ) curve with the red horizontal line

indicating the p-value=0.05. The following values of the observed and expected upper limits are
obtained from the scan:

∙ µ95%
up = 57.47,

∙ med[µ95%
up ]=37.09,

15Sometimes 1σ band is called “68%” band, while 2σ one is “95%” band.
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Figure 5.44: The scan of the asymptotic CLS+B (blue), 1−CLB (black), CLS (red) using data.
The signal model with MA = 200 GeV is used in the calculations. The dashed
line indicates med[CLS] obtained from Asimov data set. The green (yellow) area
corresponds to the ±1(2)σ error band for med[CLS]. The red horizontal line is
placed at 0.05 corresponding to the 95% confidence level CL95%.
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∙ med[µ95%
up ]+1σ = 52.04,

∙ med[µ95%
up ]−1σ = 26.05,

∙ med[µ95%
up ]+2σ = 76.06,

∙ med[µ95%
up ]−2σ = 23.36.

Comparing µ95%
up and med[µ95%

up ], we find that there is an upward fluctuation in the data, and
this corresponds to 1.2σ effect visible in the 95% CL upper limits on the observed cross section
σobs(MA = 200 GeV) times branching fraction.

It is worth to mention that the computing time of the asymptotic five-points scan is about 4
seconds, which is much less than 7 minutes needed on average for the CLS technique which
generates 500 toy experiments to calculate the pdfs in five scan points.

5.12 95% CL upper limits on cross sections

Using the asymptotic CLS method, we repeatedly perform the scan of the signal strength µ

in the data for the Higgs boson mass range from 90 to 350 GeV using data. The normaliza-
tions of the background templates are free parameters. To realize the maximum likelihood fit
with unconstrained background, we introduce five nuisance parameters {νm

back.}, one for each
background template: m =(Bb)b, (Cb)b, (Qb)b, bbB and bbX. These nuisance parameters
are distributed as the log-normal random variables with the large variance. The background
expectations bi({pk}) (5.28) are modified by the factors {νm

back.} as

b j({pk})→
5

∑
m=1

ν
m
back ·b j,m({pk}), (5.60)

The 95% CL observed and the median expected limits on the cross section times branching
fraction as a function of the pseudoscalar mass MA are shown in Table 5.13 and Figure 5.45.

Table 5.13: Observed and median expected limits at the 95% CL on σ(pp → bb+Φ)×BR(Φ →
bb̄).

MA [GeV] observed µ95%
up [pb] med[µ95%

up )]
[pb]

90 537 897
100 451 708
120 174 251
130 149 175
140 116 138
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160 74.7 84.1
180 45.7 49.8
200 55.5 36.2
250 28.1 19.4
350 7.55 10.8

All observed limits are well within the expected ±2σ band. There is no indication of a
statistically significant excess.

5.12.1 95% CL lower limits on the MSSM tanβ parameter

As the final step of the analysis, we perform the interpretation of obtained 95% CL upper limits
on σ(pp → bb+Φ)×BR(Φ → bb̄) within the MSSM mmax

h [95, 92] scenario. This benchmark
scenario is an improved version of the maximal mixing benchmark scenario [215, 56] which is
defined in equation (2.64). The mmax

h conditions, for a given tanβ and fixed SUSY scale MS,
maximize not only the theoretical upper bounds on the mass of the lightest CP-even Higgs boson
h, Mmax

h , as given in equation (2.62), but predict also the chargino and neutralino masses to be
beyond the reach of LEP-2 [215, 56]. This is achieved by requiring relatively small values of the
Higgsino mass parameter |µ|. The values of the Higgsino mass parameter are either +200 or
−200 GeV. Using this benchmark scenario, the most conservative bounds on tanβ is obtained.

In the effective coupling approximation [80] the MSSM cross section σ(pp → bΦ) reads

σ(gg → bb+h/H/A)MSSM =
g2,MSSM
(h/H/A,bb̄)(tanβ )

g2,SM
(H,bb̄)

σ
NNLO,SM(gb → b+H), (5.61)

where the ratios of the couplings, g2,MSSM
(h/H/A,bb̄)(tanβ )/g2,SM

(H,bb̄), are non-trivial functions of tanβ

and the factor ∆b given in equation (2.76) [91, 92, 93, 94], including the SUSY NNLO correction.
σNNLO,SM(gb → bH) is the cross section of the Standard Model Higgs boson produced in
association with b quarks. The cross section σNNLO,SM(gg → bb+H) is estimated with the
NNLO accuracy and dependent on the Higgs boson mass MH . In general, formula (5.61) is
not written in terms of analytical functions, but rather Monte Carlo generators are used to
numerically estimate it. We have used several Monte Carlo codes to numerically parametrize
σ(gg → bb+Φ(= h/H/A))MSSM as a function of MA and tanβ :

∙ FeynHiggs [80], [216], [184] to evaluate the ratios of couplings g2,MSSM(h/H/A,bb̄)
g2,SM(H,bb̄) , the

Higgs boson masses Mh/H/A and branching fractions Br(h/H/A → bb̄) at NLO;

∙ BBH@NNLO [181], [182], [183] to calculate the NNLO SM cross section σNNLO,SM(gb →
bH) in the 5-flavor scheme as discussed in Section 2.9.
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Figure 5.45: The observed 95% CL upper limits on the cross section times the branching fraction,
(a) linear scale and (b) logarithmic scale for the ordinate.
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To parametrize the response of the Monte Carlo generators in each bin of the (MA, tanβ ) plane,
two scans of σ(gg → bb+h/H/A)MSSM constrained by requirements of the mmax

h scenario at
7 TeV energy are performed for µ =+200 and µ =−200 GeV [217]. Steps of 1 GeV for MA
between 90 and 1000 GeV and of 1 for tanβ between 1 and 60 are used. Two-dimensional
histograms are filled with the values of σ(gg → bb+h/H/A)MSSM. Figure 5.46 shows, as an
example, the two-dimensional scan for µ =+200 GeV.

CMS Private Work 2011,
√
s = 7 TeV

Figure 5.46: The scan of the cross section σ(pp → bb+Φ)MSSM ×Br(Φ → bb̄) as a function of
tanβ and MA. The mmax

h benchmark scenario with µ =+200 GeV is used.

The derivation of limits on tanβ from the limits on the cross section is based on the knowledge
of the functional form

tanβ (σ [gg → bb+Φ]MSSM ×Br(Φ → bb̄)),

the inverse function of equation (5.61). The linear interpolation of the cross section values
stored in bins of the scan histograms is used to parametrize tanβ as a function of σ(gg →
bb+Φ)MSSM ×Br(Φ → bb̄) when MA is varied between 90 and 350 GeV. The tanβ (σ [gg →
bb+Φ]MSSM ×Br(Φ → bb̄)) dependence for the Higgs signal of MA = 200 GeV is depicted in
Figure 5.47. As expected, the tanβ function reads

tanβ (σ [gg → bb+Φ]MSSM ×Br(Φ → bb̄))∼
√

σ(gg → bb+Φ)MSSM ×Br(Φ → bb̄).

The 95% CL observed, median limits and error bands on the tanβ parameter are obtained using
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the following prescription:

tanβ
95% = tanβ (µ95%

up ),

med[tanβ
95%] = tanβ (med[µ95%

up ]),

med[tanβ
95%]±Nσ = tanβ (med[µ95%

up ]±Nσ),

(5.62)

where N =1 or 2.

Figure 5.47: The function tanβ (σ [gg → bb+Φ]MSSM ×Br(Φ → bb̄)) obtained for the fixed
MA = 200 GeV in the mmax

h benchmark scenario with the Higgsino mass parameter
µ =+200 GeV.

The uncertainties of the renormalization and factorization scales, µr and µ f , parton distribution
functions and the strong coupling αS have large impacts on cross-section predictions at the LHC
[218]. They are considered as follows:

∙ The µr, f scale uncertainties. The scale uncertainties are the consequence of missing
higher order corrections in the evaluated cross section. For the Higgs boson production
processes, µ f = µr = MH/2 is chosen as a most likely value for the renormalization and
factorization scales [96, 219] An estimation of the uncertainty on the cross section is done
by variations of µr, f in the interval [MH/4,MH ]. Figure 5.48 (a) illustrates the effect from
the variations of the scales µr, f to σ(pp → bb+Φ)MSSM ×Br(Φ → bb̄) at MA = 200 GeV.

∙ Parton distribution function uncertainties. Calculation of physics observables at the
level of quarks are done using quark and gluon momentum distributions, hereafter denoted
as parton distribution functions, inside the proton. These distributions cannot be computed
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in the framework of perturbative quantum field theory and need to be measured. Both
parton distribution functions and αS uncertainties, mostly arising from experimental
uncertainties, are quadratically combined to the pd f +αS uncertainty. The LHC Higgs
Cross Section Working Group (LHC Higgs XSWG) [82, 218] gave recommendations on
how to estimate an impact from the pd f +αS uncertainty on cross sections. Using these
recommendations, the effect of the pd f +αS uncertainty on the σ(pp → bb+Φ)MSSM ×
Br(Φ → bb̄) at MA = 200 GeV is shown in the Figure 5.48 (b).

We include these uncertainties in our analysis following the prescription from LHC Higgs
XSWG [218]. The signal expectation s j (5.29) in the jth bin of the observable X is modified by
two multiplicative nuisances parameters ν

QCD
yield and ν

pd f+αS
yield ,

s j(ν
QCD
yield ,ν

pd f+αS
yield ,{ν

s
yield},{pk}) = ν

QCD
yield ·ν pd f+αS

yield · {ν
s
yield} · stot ·

∫
bin j

f S(X ,{pk})dX

(5.63)

We model the uncertainties ν
QCD
yield and ν

pd f+αS
yield by the log-normal distribution

π(ν
QCD,pd f+αS
yield |ν̃QCD,pd f+αS

yield ) =
1√

2π lnδ
QCD,pd f+αS
yield

1

ν
QCD,pd f+αS
yield

×

exp

(
−
(lnν

QCD,pd f+αS
yield − ln ν̃

QCD,pd f+αS
yield )2

2(lnδ
QCD,pd f+αS
yield )2

)
,

(5.64)

where δ
QCD,pd f+αS
yield [220] is the relative variation of σ(pp → bb+Φ)MSSM ×Br(Φ → bb̄). The

modification (5.63) of the signal expectation and the nuisance likelihoods (5.64) change the
profile likelihoods ratio λ (µ) (5.35), the basis for the test statistic in the CLS method. Figure
5.49 shows the effect from ν

QCD
yield and ν

pd f+αS
yield on the quantity − ln(λ (µ)). The presence of the

nuisance parameters ν
QCD
yield , ν

pd f+αS
yield broadens the profile likelihood function shifting the upper

limit µ95% from 65 to 67 pb.
Figure 5.50 and Table 5.14 present the 95% CL observed and expected median lower limits on

tanβ as a function of MA. The MSSM mmax
h benchmark scenario with µ =+200 GeV is used to

translate model-independent upper limits on the cross section, µ95%, to tanβ 95%. The green and
yellow bands correspond to ±1σ and ±2σ of the median expected limit med[tanβ 95%].

Next, we derive the 95% CL exclusion limit as the function tanβ and MA in the mmax
h scenario

with µ = −200 GeV. Figure 5.51 shows the obtained result together with previous limits set
by Tevatron [221] and by LEP [222] experiments. All points of the observed tanβ 95% in this
analysis are well within the expected ±2σ bands, med[tanβ 95%]±2σ . The improvement of the
sensitivity at relatively low values of tanβ for the search in the pp → bb+Φ → 4b channel is
nicely seen. The current analysis does not confirm the excess over the expected SM background
for high values of tanβ , in the range 100 ≤ MA ≤ 150 GeV, as it was previously reported by
CDF and D0 experiments [221].
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Figure 5.48: The effect of the scale µr, f (a) and pd f +αS (b) uncertainties on the cross section
as a function of tanβ at MA = 200 GeV in the mmax

h benchmark scenario with the
Higgsino mass parameter µ =+200 GeV. The green band (and red dashed curves)
indicates the interval of the cross section variations due to the uncertainties.
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Figure 5.49: Measured − ln(λ (µ)) as a function of the signal strength µ . The expectation values
s j in the data model L(X |µ,{ν}) correspond to the signal hypothesis of the Higgs
mass MA = 200 GeV. The blue graph shows the behavior of − ln(λ (µ)) including
the scale and parton distribution uncertainties. The red dashed curve corresponds to
the case when the µr, f and pd f +αS uncertainties are not considered.
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Figure 5.50: Observed and median expected 95% CL upper limits on tanβ as a function of MA
in the mh

max scenario for µ =+200 GeV. The expected 1σ (green) and 2σ (yellow)
bands are also shown.
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Table 5.14: Observed and median expected lower limits at 95% CL on tanβ in the mmax
h bench-

mark scenario for the Higgsino mass parameter µ =+200 GeV.
MA [GeV] observed tanβ 95% med[tanβ 95%]
90 27.0 36.0
100 29.7 36.0
120 25.4 30.2
130 26.2 28.8
140 27.7 30.4
160 27.8 29.7
180 27.0 28.3
200 38.8 29.9
250 44.1 35.6
350 51.1 64.7

Figure 5.51: Observed and median expected 95% CL upper limits on tanβ versus MA in the
mh

max scenario for µ =−200 GeV. One- and two-standard deviation ranges for the
expected upper limit are represented by the gray bands. Previous exclusion regions
from LEP [222] and Tevatron in the multi-b jet channel [221] are overlaid.
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6 Conclusions

In this thesis, a search for neutral Higgs bosons in the channel pp → bb+Φ → 4b with Φ = h,
H and A has been performed using data of the CMS experiment at the LHC. In the analysis
events with at least three jets within the tracker acceptance were selected imposing asymmetric
requirements on their pT . These three jets must be identified as b jets. Two analysis scenarios
were adopted to perform a search for additional neutral Higgs bosons of low and medium masses,
respectively.

To model the background, two-dimensional templates, based on the invariant mass of the two
leading b jets and the variable, reflecting b-jet content of the three leading jets, were derived from
selected double-b-tagged data. Signal was modeled by templates obtained from Monte Carlo
samples applying simulation of the High Level Trigger and correction for multiple interactions in
a single bunch crossing. The resolution of the invariant mass of two leading jets, used to search
for a signal, was estimated to be about 13%.

A Multivariate analysis method, called the gradient boosted-decision trees, was used to select a
control sample with three b-tagged jets where the ratio of background to signal was enhanced by
a factor of 3. During development and commissioning of the analysis, we tested the background
modeling using distributions obtained in this MVA-based control sample.

The systematic uncertainties affecting the signal efficiency and changing shapes of the signal
and background templates were identified. They were quantified by their effects on the number
of the observed signal events.

Using a binned least-squares fit of the signal and background templates to data of a total
luminosity of 2.67 and 3.99 fb−1. in the low-mass and medium-mass scenarios, respectively, the
signal and background yields were obtained. No significant evidence of a signal was observed in
the data. The upper limit at the 95% confidence level on the signal cross section times branching
fraction as a function of the pseudoscalar mass MA was estimated exploiting the asymptotic CLS
method. The observed limit is decreasing from 537 to 7.55 pb with an increase of MA from 90 to
350 GeV, respectively. This is well within the expected ±2σ band.

We performed the interpretation of the obtained 95% CL upper limits on σ(pp → bb+Φ)×
BR(Φ → bb̄) within the MSSM mmax

h scenario. The 95% CL observed and expected median
lower limits on the MSSM parameter tanβ were obtained as functions of MA for the two choices
of the Higgsino mass parameter, µ = ±200 GeV. The 95% confidence level bounds on tanβ

varies from about 27 to 51 and from about 22 to 37 for the considered range of MA in the mmax
h

scenario for µ = +200 GeV and µ = −200 GeV, respectively. This analysis has excluded a
region of the parameter space previously unexplored for this final state and did not confirm the
excess over the expected SM background in the 100-150 GeV mass range for large values of
tanβ , reported by the CDF and D0 experiments.
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The result of this analysis extends the sensitivity for MSSM searches in the Φ → bb̄ channel
down to values of tanβ , never reached before for the masses MA between 90 and 350 GeV.
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