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Abstract

A major challenge in biology is to understand how molecular processes determine phenotypic
features. We address this fundamental problem in a class of model systems by developing a
general mathematical framework that allows the calculation of mesoscopic properties from
the knowledge of microscopic Markovian transition probabilities. We show how exact ana-
lytic formulae for the first and second moments of resident time distributions in mesostates
can be derived from microscopic resident times and transition probabilities even for sys-
tems with a large number of microstates. We apply our formalism to models of the inositol
trisphosphate receptor, which plays a key role in generating calcium signals triggering a wide
variety of cellular responses. We demonstrate how experimentally accessible quantities, such
as opening and closing times and the coefficient of variation of inter-spike intervals, and other,
more elaborated, quantities can be analytically calculated from the underlying microscopic
Markovian dynamics. A virtue of our approach is that we do not need to follow the detailed
time evolution of the whole system, as we derive the relevant properties of its steady state
without having to take into account the often extremely complicated transient features. We
emphasize that our formulae fully agree with results obtained by stochastic simulations and
approaches based on a full determination of the microscopic system’s time evolution. We
also illustrate how experiments can be devised to discriminate between alternative molecular
models of the inositol trisphosphate receptor. The developed approach is applicable to any
system described by a Markov process and, owing to the analytic nature of the resulting for-
mulae, provides an easy way to characterize also rare events that are of particular importance
to understand the intermittency properties of complex dynamic systems.
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1. Introduction

A major problem in biology is how characteristic features of living systems can be
explained as emergent properties from underlying, elementary physico-chemical pro-
cesses (Schrödinger, 1944). The rapid technological advancements in the field of molecular
biology allow observation of phenomena at many scales simultaneously. Thus, not surpris-
ingly, in the last decades again a strong focus has been put on the occurrence of emerging
properties in self-organizing systems, the understanding of which is essential for a more
complete picture of life (Laughlin and Pines, 2000).

A fruitful approach to study complex systems, which include biological systems as promi-
nent examples, is by scale separation, separating the dynamics on a microscopic scale from
that on a mesoscopic or macroscopic scale at which the elementary, microscopic subunits
are functionally organized (Mézard et al., 1987). The definition of what has to be consid-
ered as “microscopic” depends on the scale at which observations are made. For molecular
interaction networks, for example, elementary subunits can be atoms or molecules, the con-
figuration of which define the mesoscopic state of a cell. In population dynamics single cells
or organisms should be considered as elementary units, the interplay of which gives rise to
the mesoscopic dynamics on the population level. This scale separation allows decoupling the
“fast” dynamics of the self-interacting elementary constituents from the “slower” evolution
of the emergent mesoscopic degrees of freedom, driven or influenced by external “forces”.

The notion of scale separation is very useful because it provides a conceptually appealing
and mathematically consistent way to model the system at different complexity scales. At
a lower scale level the number of relevant degrees of freedom is usually quite large and the
network of their interactions is extremely complicated. Taking inspiration from the “central
limit theorem”, one can hope to be able to describe the system’s underlying micro-dynamics
by some sort of simple stochastic process, most often of the Markov type, that is intended to
model the complicated network of individual molecular interactions. At a higher and more
structured level, new collective degrees of freedom emerge from the more basic ones, that are
in turn driven by external “forces”, such as temperature, pH, concentrations or gate poten-
tials, eventually back-reacting on the microscopic dynamics. Of course many variations of
this general scheme are possible and have been explored in the literature with applications
to the description of channel activation (Shuai et al., 2007; Colquhoun and Hawkes, 1982),
neuronal activity (Schwalger and Lindner, 2010), organelle interaction within the cell (Hein-
rich and Rapoport, 2005), homopolymer folding (La Penna et al., 2004), immunological
response (Parisi, 1990) and many other processes.

In this paper we develop a general mathematical formalism able to describe the micro-to-
meso transition step, showing how from the underlying microscopic Markovian dynamics it is
possible to derive fairly simple analytic formulae characterizing and describing the emergence
of higher level mesoscopic properties. The key feature of the present approach is that one
can directly compute steady-state properties of mesostates, which we define as any ensemble
of microstates, without the need of following the whole time-dependent transient dynamics
of the system. Our analytic formulae are directly derived from the underlying Markovian
dynamics by considering all possible paths of the system. Despite the straight-forward na-
ture of our approach, we are not aware of any analogous method previously published. An
approach that is based on following in detail the dynamics of micro- and mesostates (though
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the authors do not call them this way) has been developed in the seminal paper of Colquhoun
and Hawkes (1982), which is based on analysing the system dynamics in terms of the Laplace-
transform of the time evolution equations. The time evolution of microstates is guided by the
standard ”master equation”, that is in turn ruled by the elementary Markovian transition
probabilities between pairs of microstates, while the time evolution of mesostates is driven
by non-Markovian equations resulting from summing over the microstates defining each one
of the mesostates. Applications and the further development of this approach have been
reviewed in Ball et al. (2000) and have been applied in a variant in Moenke et al. (2012). A
notable difference of our method, compared to other approaches, is that it provides an effi-
cient way to compute the first statistical moments of the observable mesoscopic process for
an underlying arbitrarily complex microscopic dynamics, as it avoids inversion of the often
extremely large transition probability matrices encoding the elementary underlying Markov
processes, by breaking them down into smaller sub-matrices. In this way one is in position
to more easily discriminate among different models by comparing experimentally measurable
moment relations with their analytic expressions.

We illustrate our concepts and methods by studying the opening and closing dynamics
of calcium driven channels of which the so-called inositol trisphosphate receptor (IP3 recep-
tor, or IP3R) (Allbritton et al., 1992; Bezprozvanny and Ehrlich, 1994) is an important and
intensively studied biological prototype. The IP3 pathway is a predominant release mecha-
nism of calcium from intracellular stores and an important physiological second messenger
pathway (Berridge et al., 1998). The release is induced by moderate increase of the cytosolic
calcium concentrations, known as calcium induced calcium release (CICR), but inhibited
by higher calcium concentrations (Bezprozvanny et al., 1991). The release is countered
by an ATP-dependent transport of free calcium back into storage compounds by SERCA
pumps (MacLennan et al., 1997). A spatially inhomogeneous distribution of calcium chan-
nels leads to a strong local coupling with the consequence that the stochastic behavior of
single channels influences the whole-cell behavior (Skupin et al., 2008, 2010). Thus, the
IP3 receptors form the microscopic basis for the generation of complex mesoscopic calcium
signaling behavior (Berridge, 1997; Falcke and Malchow, 2003; Skupin and Falcke, 2009).

We select this particular example because a) it represents an important biological process
required for the generation of calcium signals, b) the underlying microscopic dynamics can
be described as a Markov process, c) mesostates and their statistical properties, such as
opening times, inter opening event intervals (inter-spike intervals) and their corresponding
coefficients of variation (CV), are important and experimentally measurable output quantities
and d) more complex mesostates can be defined whose properties are highly illustrative for
understanding how higher level properties emerge from the underlying microscopic structure.
We first present in detail the theory of dwell times in mesoscopic states, which allows analytic
calculations of the first and second moments of resident time distributions from the underlying
Markovian dynamics of the microstates. We then apply our approach to several alternative
models of the IP3 receptor dynamics and show how predicted moment relations can be used
for model discrimination.
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2. Mesostates: definition and transition probabilities

We consider a general Markovian system with s microstates. Let kmn denote the rate con-
stant for the elementary transition from microstate m to n and pm the stationary probability
of being in microstate m. Then the stationary probability rates, vmn, are defined by

vmn = pmkmn . (1)

�

�

�

Figure 1: The configuration space of a Markov system. Small filled circles denote microstates.
Sets of microstates enclosed by a curve correspond to mesostates.

Stationarity means that the probability of being in a particular microstate remains con-
stant in time. This requires that the stationary probability rates for transitions to a mi-
crostate must be balanced by the rates for transitions from that state. This condition is
expressed by the sum rule ∑

m

vmn =
∑

l

vnl. (2)

Using Eq. 1, the vector of stationary probabilities is obtained as a solution of the linear
system ∑

m

pm(kmn − δmn

∑

l

kml) = 0 . (3)

The corresponding mean dwell (also called “residence”) time in a microstate is given by

τm =
pm∑

n′
vmn′

=
1∑

n′
kmn′

, (4)

in terms of which the transition probability between microstates m and n can be expressed
as

πmn =
kmn∑

n′
kmn′

= τm kmn . (5)

We define mesostates as sets of microstates (see Fig. 1). If not stated otherwise, we assume
that mesostates are finite and non-overlapping. From the elementary (microscopic) quantities
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defined above we will derive transition probabilities (P ) between mesostates and dwell times
(T ) in mesostates, which are the essential properties of the process. These quantities depend
on the history of the system and it is therefore crucial to take into account the possibility
that certain transitions between micro and/or mesostates may have occurred before entering
or are occurring after leaving a particular mesostate.

We use the convention that mesostates are denoted by upper case letters whereas mi-
crostates are denoted by lower case letters and are indicated as subscripts, as already used
in Eqs. 1–5.

2.1. Probabilities for mesostate transitions

A transition between two mesostates U and V is defined as any series of microstate
transitions that lead from one mesostate (U) to the other mesostate (V ) without visiting
a microstate not belonging to either U or V . To characterize the mesoscopic observable
dynamics, we have to calculate transition rates which are non-Markovian and therefore in
general depend on the history of the system. The history dependence of the system is reflected
by conditional probabilities that take the different microscopic transition paths into account.

Probability that next mesostate is V when system is in i ∈ U . This quantity is the probability
that for a system in a microstate i of the mesostate U the next mesostate transition will lead
to V , and is computed as the sum of the probability of leaving U directly from i to V plus
that of leaving to V after freely moving within U (see Fig. 2 for an illustration). It can thus

W

U

V

k'

i

j'

Figure 2: Different paths leading to a U→V mesostate transition starting from microstate
i ∈ U . Two classes of possible events can occur: either the system visits another microstate
j′ in U , or the system leaves directly to k′ ∈ V

be calculated recursively by the formula

P
(
U→V

∣∣i ∈ U
)

=
∑

k′∈V

πik′ +
∑

j′∈U

πij′P
(
U→V

∣∣j′ ∈ U
)

=
∑

j′∈U

(1− π)−1ij′

∑

k′∈V

πj′k′ , (6)

where π = (πij) is the matrix with coefficients πij. The recursive nature of Eq. 6 enables for
an efficient calculation of the first statistical moments of the mesoscopic process generated
by arbitrary complex microscopic dynamics.
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To introduce a notation that can be used for more complex transition chains we write
Eq. 6 in the more transparent form

P
(
U→V

∣∣i ∈ U
)

=
∑

k′∈V

P
(
i∈U→k′∈V )

+
∑

j′∈U

P
(
i∈U→j′∈U ∧ U→V ) ,

where P
(
i∈U→j′∈U ∧ U→V ) denotes the probability that the system will undergo a direct

transition from i ∈ U to j′ ∈ U and that the next visited mesostate is V (this leads to the
second term of Eq. 6). Similarly, P

(
i∈U→k′∈V ) denotes the probability that the system will

undergo a direct transition from i ∈ U to k′ ∈ V , implying that the next visited mesostate
is V (and therefore equals πik′).

Probability that first visited microstate in V is k when system is in i ∈ U and the next
mesostate is V . With the help of Eq. 6 we derive the probability that the next mesostate
transition from microstate i ∈ U arrives in microstate k ∈ V , under the condition that the
next mesostate transition is U → V . Similar to Eq. 6, we get a recursive formula

P
(
U→k ∈ V

∣∣i ∈ U ∧ U→V
)

=P
(
i∈U→k∈V

∣∣U→V )

+
∑

j∈U

P
(
i∈U→j∈U

∣∣U→V ) P
(
U→k ∈ V

∣∣j ∈ U ∧ U→V
)
,

(7)

where the first summand describes a direct transition to V , without visiting any other mi-
crostate within U , and can be calculated by normalizing the unconditional probability πik
with the probability that the next mesostate is V

P
(
i∈U→k∈V

∣∣U→V ) =
πik

P
(
U→V

∣∣i ∈ U
) . (8)

The second summand takes into account the alternative process of non-direct transitions in
which the system visits another state j 6= i within U before leaving to V . With Mij defining
the matrix elements (for a detailed derivation of the second summand see Supplementary
Material S1.1)

Mij = P
(
i∈U→j∈U

∣∣U→V ) =


1−

∑
k′∈V

πik′

P
(
U→V

∣∣i ∈ U
)


 πijP

(
U→V

∣∣j ∈ U
)

∑
i′∈U

πii′P
(
U→V

∣∣i′ ∈ U
) , (9)

the solution of the recursive formula Eq. 7 reads

P
(
U→k ∈ V

∣∣i ∈ U ∧ U→V
)

=
∑

j∈U

(1−M)−1ij

πjk

P
(
U→V

∣∣j ∈ U
) . (10)
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Probability that mesostate transition from W to U arrives in microstate i ∈ U . To calculate
the probability of arriving in i ∈ U , all stationary probability rates from any state in W to
i ∈ U are summed up and normalized by all stationary probability rates from W to any state
j′ in U , leading to

P
(
W→i ∈ U

∣∣W→U
)

=

∑
g∈W

pgkgi

∑
g′∈W

∑
j′∈U

pg′kg′j′
. (11)

In contrast to expressions 6 and 10, this probability is conditional on a particular mesostate
transition (i.e. not only on microstate properties). Therefore, it can only be determined
under the assumption of stationarity and depends on the stationary probabilities.

2.2. Transitions between mesostate subsets

In some cases we might be interested in subsets of mesostates and transition between
them. To derive statistical properties of such a subclass of mesostates, we need to know
probabilities and dwell times of transition chains passing through mesostate V , where the
first visited microstate in V is from a subset V ′⊂V . We denote such a transition chain by

· · · → V ′:V → . . . .

Determination of the probability of the transition chain U → V ′:V → Z when currently in
i ∈ U involves summing only over the microstates of V ′

P
(
U→V ′:V→Z

∣∣i ∈ U
)

=
∑

k∈V ′
P
(
U→k ∈ V ′

∣∣i ∈ U
)
P
(
V→Z

∣∣k ∈ V ′
)
. (12)

The first term ensures that the first microstate in V is from V ′ (because the sum only includes
microstates from V ′), the second term implicitly allows to move within the whole mesostate
V before the system finally leaves to Z.

3. Mesostate dwell times and raw moments

From the knowledge of the rate constants, kmn, for microstate transitions, we derive in
this section analytic formulae for the average and variance of dwell times in mesostates.
Because the dwell times are in general not Markovian variables, their values will depend on
the particular microstate transition by which the mesostate was first entered. In general, the
dwell times depend both on the microstate from which the previous mesostate was left and
on the microstate through which the current mesostate was entered. We will denote dwell
times in a mesostate by T

(
U
∣∣ . . .

)
.

The derivation of mesostate dwell times is not limited to a single mesostate, but can also
be performed for consecutive mesostates. For example, the dwell time in the two consecutive
mesostates U and V (i.e. the dwell time in U plus the dwell time in the subsequent V ) will
be denoted by T

(
U→V

∣∣ . . .
)
.
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Time spent in mesostate U when system is in i ∈ U . The time spent in mesostate U from
the moment the system first arrived in i ∈ U is given by the recursive equation (see Eq. 4)

T
(
U
∣∣i ∈ U

)
= τi +

∑

j′∈U

πij′T
(
U
∣∣j′ ∈ U

)

which leads to

T
(
U
∣∣i ∈ U

)
=
∑

j′∈U

(1− π)−1ij′ τj′ . (13)

To calculate the second raw moments of dwell times, one has to distinguish between
consecutive events and alternative events which occur with certain probabilities. The micro-
scopic dwell times of two consecutive events are independent random variables. In general,
the second raw moment of the sum of two independent random variables, Xa and Xb, is
given by 〈(Xa +Xb)

2〉 = 〈X2
a〉+ 〈X2

b 〉+ 2〈Xa〉〈Xb〉. The second raw moment of the expected
dwell time of two alternative processes is simply the mean of the individual second raw mo-
ments weighted with their probabilities. Thus, the second raw moment for the dwell time
distribution in a mesostate (Eq. 13) is

T (2)
(
U
∣∣i ∈ U

)
=

(
1−

∑

j′∈U

πij′

)
τ
(2)
i

+
∑

j′∈U

πij′
(
τ
(2)
i + T (2)

(
U
∣∣j′ ∈ U

)
+ 2τi T

(
U
∣∣j′ ∈ U

))

= τ
(2)
i +

∑

j′∈U

πij′
(
T (2)

(
U
∣∣j′ ∈ U

)
+ 2τi T

(
U
∣∣j′ ∈ U

))
, (14)

where τ
(2)
i denotes the second raw moment of the microscopic dwell time τi. The above for-

mula simplifies if we assume that the microscopic dwell times have an exponential probability
distribution, so that τ

(2)
i = 2τ 2i . In this case

T (2)
(
U
∣∣i ∈ U

)
= 2τ 2i +

∑

j′∈U

πij′
(
T (2)

(
U
∣∣j′ ∈ U

)
+ 2τi T

(
U
∣∣j′ ∈ U

))

= 2τi

(
τi +

∑

j′∈U

πij′T
(
U
∣∣j′ ∈ U

))

︸ ︷︷ ︸
T
(
U

∣∣i∈U
)

+
∑

j′∈U

πij′T
(2)
(
U
∣∣j′ ∈ U

)
, (15)

leading to

T (2)
(
U
∣∣i ∈ U

)
= 2

∑

j′∈U

(1− π)−1ij′ τj′T
(
U
∣∣j′ ∈ U

)
. (16)

Time spent in mesostate U when system is in i ∈ U and the next visited mesostate is V . The
computation exactly parallels the line of arguments developed in the derivation of Eq. 10 and
leads to the equation

T
(
U
∣∣i ∈ U ∧ U→V

)
= τi +

∑

j∈U

P
(
i∈U→j∈U

∣∣U→V )︸ ︷︷ ︸
Mij

T
(
U
∣∣j ∈ U ∧ U→V

)
,
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which has the solution

T
(
U
∣∣i ∈ U ∧ U→V

)
=
∑

j∈U

(1−M)−1ij τj . (17)

Similar to the derivation of Eq. 16 one finds for the second raw moment

T (2)
(
U
∣∣i ∈ U ∧ U→V

)
=

∑
k′∈V

πik′

P
(
U→V

∣∣i ∈ U
)τ (2)i (18)

+
∑

j∈U

P
(
i∈U→j∈U

∣∣U→V )︸ ︷︷ ︸
Mij

×
(
τ
(2)
i + T (2)

(
U
∣∣j ∈ U ∧ U→V

)
+ 2τi T

(
U
∣∣j ∈ U ∧ U→V

))
.

For exponentially distributed τi, one gets

T (2)
(
U
∣∣i ∈ U ∧ U→V

)
= 2τ 2i +

∑

j∈U

Mij

(
T (2)

(
U
∣∣j ∈ U ∧ U→V

)
+ 2τi T

(
U
∣∣j ∈ U ∧ U→V

))

= 2τi
(
τi +

∑

j∈U

MijT
(
U
∣∣j ∈ U ∧ U→V

))

︸ ︷︷ ︸
T
(
U

∣∣i∈U∧U→V
)

+
∑

j∈U

Mij T
(2)
(
U
∣∣j ∈ U ∧ U→V

)

finally leading to

T (2)
(
U
∣∣i ∈ U ∧ U→V

)
= 2

∑

j∈U

(1−M)−1ij τjT
(
U
∣∣j ∈ U ∧ U→V

)
. (19)

4. Application to models of the IP3R channel

IP3R channels are the elementary building blocks of calcium (Ca2+) signals (Berridge,
1997) and thus play a crucial role as physiological signal mediators. Despite a lot of effort
devoted to finding a mechanistic interpretation of their properties (De Young and Keizer,
1992; Gin et al., 2009), our understanding is still rather poor. We apply the general formalism
developed in the previous sections to three interesting IP3R models. We show how, from the
basic processes defined by these models, important mesoscopic physico-chemical properties
of the system can be obtained by our approach. These include first and second raw moments
of opening and closing time distributions and coherence (quantified by the coefficient of
variation) of inter-spike intervals. Comparison of theoretical results for such quantities with
experiments (Dellis et al., 2006; Rahman et al., 2009) may allow to identify the correct
model of receptor structure and dynamics. Similar channel properties have been subjected
to theoretical investigations (Higgins et al., 2009) aimed at a deeper understanding of cell
physiology.

Model descriptions. In the popular and comprehensive De Young-Keizer model (De Young
and Keizer, 1992) IP3Rs are assumed to consist of four identical (independent) subunits, each
endowed with three kinds of binding sites: a sensitizing IP3 binding site, an activating and
a deactivating Ca2+ binding site. Since every site is either occupied or unoccupied, every
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subunit can reside in one of 8 states. We therefore term this model the 8-state model. The
IP3R releases Ca2+ from the endoplasmic reticulum if at least three of the four subunits are
active, i.e. if the IP3 and the activating Ca2+ binding sites are occupied and the deactivating
Ca2+ binding site is unoccupied. Due to the release of Ca2+ its concentration in the cytosol
increases and can cause the deactivation of the subunits by binding back to the deactivating
site.

Shuai et al. (2007) have argued that with such a simple model some important experimen-
tally established results cannot be explained and therefore proposed a model with a further
activating state for each subunit, which we refer to as the 9-state model. A key difference
with the 8-state model is that in the 9-state model the deactivation of a single subunit is
independent on the ligand concentrations and allows for a fast modulation of the open state.
The main features of the two alternative models are summarized in Fig. 3.

s101

a1[IP3] b1

a4[Ca
2+]

b4

a5[Ca
2+]

b5

s000

s100

s110

s001

s011

s111

s010

(a) 8-state model

s101

a1[IP3] b1

a4[Ca
2+]

b4

a5[Ca
2+]

b5

a0

b0

s000

s100

s110

A

s001

s011

s111

s010

(b) 9-state model

Figure 3: Schematic representation of microstate transitions of a single IP3R subunits in the
(a) 8-state and (b) 9-state model. Horizontal transitions denote binding and release of Ca2+,
vertical transitions denote binding and release of IP3. The three binary digits denote the
occupation state of the IP3, activating and deactivating Ca2+ binding site. In the 8-state
model a subunit is active when it is in the state 110. In the 9-state model a subunit is active
when from state 110 it undergoes a transition to the active state, A.

To calculate mesoscopic properties of the models we are going to exploit the stochastic
analysis of probabilities and dwell times developed in the previous sections. To this end one
has to first provide the rate constants kij between each pair of microstates characterizing the
model. The microstates are denoted by three binary digits corresponding to the occupation
of the IP3, activating and deactivating Ca2+ binding site while A denotes the activated state.
For a single subunit in the 9-state model, the matrix k reads (see Shuai et al. (2007))
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k =

s000 s001 s010 s011 s100 s101 s110 s111 A






0 a4[Ca
2+] a5[Ca

2+] 0 a1[IP3] 0 0 0 0 s000
b4 0 0 a5[Ca

2+] 0 a3[IP3] 0 0 0 s001
b5 0 0 a4[Ca

2+] 0 0 a1[IP3] 0 0 s010
0 b5 b4 0 0 0 0 a3[IP3] 0 s011
b1 0 0 0 0 a2[Ca

2+] a5[Ca
2+] 0 0 s100

0 b3 0 0 b2 0 0 a5[Ca
2+] 0 s101

0 0 b1 0 b5 0 0 a2[Ca
2+] a0 s110

0 0 0 b3 0 b5 b2 0 0 s111
0 0 0 0 0 0 b0 0 0 A

.

(20)

Naturally, in the absence of external fluxes, detailed-balance has to be obeyed by the
elements of the matrix defined in Eq. 20, so that certain restrictions hold for the parameters
ai and bi (for details see Shuai et al. (2007)). A channel with four independent subunits can
assume 94 different microstates. Considering symmetries (i.e. assuming that the subunits
are indistinguishable), the transitions for the full four-subunit model can be described by a
495×495 matrix. The single-subunit matrix for the 8-state model looks similar to the 9-state
model, with the row/column related to the active state A removed, as a subunit is considered
already active if it is in state 110. The 84 different microstates of the four-subunit model can
be described by 330 microstates when symmetries are taken into account.

From a molecular perspective, the fast modulation of the channel opening may be more
realistically considered as a whole molecule or protein phenomenon. Once the channel is in an
“excitable” state with at least 3 active subunits, the protein may exhibit emergent dynamics
leading to the final opening of the channel. Thus, we discuss as a third model a modification
of the 8-state model which also displays a ligand-independent subunit deactivation. The
difference with the models discussed above is, that instead of each subunit individually un-
dergoing a conformational change, we assume that a channel opens by a joint conformational
change of the four subunits, locking the ligands until the channel closes again. Therefore we
refer to this model as the global-activation model.

To describe this global conformation change, we have to introduce new microstates reflect-
ing open channels. In analogy to the 8-state model, we assume that conformation change
is only possible if at least 3 subunits are in state 110. Channel opening and closing are
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described by the following additional microstate transitions

4s110
aO−→ O4 O4

bO−→ 4s110

3s110 + s000
aO−→ Os000

3 Os000
3

bO−→ 3s110 + s000

3s110 + s001
aO−→ Os001

3 Os001
3

bO−→ 3s110 + s001

3s110 + s010
aO−→ Os010

3 Os010
3

bO−→ 3s110 + s010

3s110 + s011
aO−→ Os011

3 Os011
3

bO−→ 3s110 + s011

3s110 + s100
aO−→ Os100

3 Os100
3

bO−→ 3s110 + s100

3s110 + s101
aO−→ Os101

3 Os101
3

bO−→ 3s110 + s101

3s110 + s111
aO−→ Os111

3 Os111
3

bO−→ 3s110 + s111.

(21)

Here, the symbol Osijk
3 denotes the open state with 3 subunits locked in the occupation state

s110 and the remaining subunit locked in the occupation state sijk. The symbol O4 denotes
the open state with all 4 subunits locked in the s110 microstate. As in the 9-state model we
assume that the rate constants for activation (aO) and deactivation (bO) do not depend on
the Ca2+ and IP3 concentrations. In total, this model has 84 + 8 · 4 + 1 microstates which
can be reduced to 338 by taking symmetries into account.

Derivation of channel properties. In the 8- and 9-state models, the channel is open if at least
three subunits are active. In the following we derive channel opening and closing properties
in the general case where the number of channel subunits is N and the channel is open when
at least Kth ≤ N of them are active. To this end it is convenient to define the mesostates
(with the integers fulfilling 0 < M < L ≤ N)

C set of microstates corresponding to a closed channel
(between 0 and Kth − 1 subunits are active)

O set of microstates corresponding to an open channel
(Kth or more subunits are active)

AL set of microstates with L active subunits
A[M,L] set of microstates with M to L active subunits

We further introduce the notation · · · → AL:A[M,L] → . . . to denote the fact that in a
transition chain passing through A[M,L] the first visited microstate in that mesostate belongs
to AL (see Sect. 2.2).

Opening and closing probabilities, mean opening time. The basic probabilities for the channel
being in an open or closed state are simply

P
(
O
)

=
∑

i∈O

pi P
(
C
)

=
∑

i∈C

pi . (22)

For the mean opening and closing time we have

T (O) = T
(
O
∣∣C→O→C

)
, (23)
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T (C) = T
(
C
∣∣O→C→O

)
. (24)

Time spent in an AL-related opening event. An AL-related opening event is defined by the
fact that a maximum of L active subunits with L ∈ [Kth, N ] is reached during the time
the channel is open. Although the dwell time and the corresponding probability are not
directly measurable, their knowledge is nevertheless interesting because understanding how
long a channel remains open in an AL-related opening event and how probable such an event
is may give useful insight on the extent the internal structure of a channel influences its
global characteristic opening behavior. Such quantities are highly non-trivial but with our
present approach, these and even more complicated quantities can be derived systematically.
The probabilities and dwell times required here are similar or closely follow the derivation
described in the general section introducing the mesostate subsets.

Kth

L− 1

L

phase 1

A[Kth,L−1]

phase 2

AL:A[Kth,L]

Figure 4: The time spent in an AL-related opening event can be divided into two parts.
During phase 1 a maximum of L − 1 subunits are active. Phase 2 begins when for the first
time L subunits are active and ends when the channel closes.

First the dwell time in the mesostate A[Kth,L−1] has to be calculated under the condition
that from this mesostate only states with a maximal number of L active subunits are visited
before the system reaches the closed state C (phase 1 in Fig. 4). For this we need the
probability of the transition chain A[Kth,L−1] → AL:A[Kth,L] → C when currently in i ∈
A[Kth,L−1], which is (see Eq. 12)

P
(
A[Kth,L−1]→AL:A[Kth,L]→C

∣∣i ∈ A[Kth,L−1]
)

=
∑

l∈AL

P
(
A[Kth,L−1]→l ∈ AL

∣∣i ∈ A[Kth,L−1]
)
P
(
A[Kth,L]→C

∣∣l ∈ A[Kth,L]

)
. (25)

Using this expression, the probability that the first microstate in A[Kth,L−1] is i, given the
transition chain C → A[Kth,L−1] → AL:A[Kth,L] → C, can be written in the form (for details
see Eq. S1.18 in the Supplementary Material S1)

P
(
C→i ∈ A[Kth,L−1]

∣∣C→A[Kth,L−1]→AL:A[Kth,L]→C
)

=
P phase 1
i∑

i′∈A[Kth,L−1]

P phase 1
i′

, (26)

where

P phase 1
i =P

(
C→i ∈ A[Kth,L−1]

∣∣C→A[Kth,L−1]
)

× P
(
A[Kth,L−1]→AL:A[Kth,L]→C

∣∣i ∈ A[Kth,L−1]
)
.
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The time spent in phase 1 is therefore (see Eq. S1.17 in the Supplementary Material S1)

T
(
A[Kth,L−1]

∣∣C→A[Kth,L−1]→AL:A[Kth,L]→C
)

=
∑

i∈A[Kth,L−1]

P
(
C→i ∈ A[Kth,L−1]

∣∣C→A[Kth,L−1]→AL:A[Kth,L]→C
)

× T
(
A[Kth,L−1]

∣∣i∈A[Kth,L−1] ∧ A[Kth,L−1]→AL:A[Kth,L]→C
)
. (27)

For computing the dwell time in phase 2 the conditional probability to arrive in microstate
l ∈ AL ⊂ A[Kth,L], knowing that the next mesostate is closed (i.e. C), is needed. In analogy
with Eq. 26 this probability can be derived to be

P
(
A[Kth,L−1]→l ∈ AL

∣∣C→A[Kth,L−1]→AL:A[Kth,L]→C
)

=
P phase 2
l∑

l′∈AL

P phase 2
l′

, (28)

with

P phase 2
l = P

(
A[Kth,L−1]→l ∈ AL

∣∣C→A[Kth,L−1]→AL

)
P
(
A[Kth,L]→C

∣∣l ∈ A[Kth,L]

)
.

The time spent in phase 2 is therefore

T
(
A[Kth,L]

∣∣C→A[Kth,L−1]→AL:A[Kth,L]→C
)

=
∑

l∈AL

P
(
A[Kth,L−1]→l ∈ AL

∣∣C→A[Kth,L−1]→AL:A[Kth,L]→C
)

(29)

× T
(
A[Kth,L]

∣∣l ∈ A[Kth,L] ∧ A[Kth,L]→C
)
.

Altogether, summing Eqs. 27 and 29, the mean time spent in an AL-related opening event is

T (AL) =T
(
A[Kth,L−1]

∣∣C→A[Kth,L−1]→AL:A[Kth,L]→C
)

+ T
(
A[Kth,L]

∣∣C→A[Kth,L−1]→AL:A[Kth,L]→C
)
. (30)

Probability of an AL-related opening event. We now seek for an expression for the probability
of an AL-related opening event, P(AL), i.e. for the fraction of the opening events with a
maximum of L active subunits. To this end, we first have to compute the auxiliary probability
of leaving A[Kth,L] to the closed state (i.e. without visiting AL+1), under the condition that
we reached A[Kth,L] from the closed state. For this auxiliary probability one finds

∑

l′∈AL

P
(
A[Kth,L−1]→l′ ∈ AL

∣∣C→A[Kth,L−1]→AL

)
P
(
A[Kth,L]→C

∣∣l′ ∈ A[Kth,L]

)
. (31)

To obtain P(AL) this has to be multiplied by the probability of arriving in L, finally leading
to

P(AL) =P
(
A[Kth,L−1]→AL

∣∣C→A[Kth,L−1]
)

(32)

×
∑

l′∈AL

P
(
A[Kth,L−1]→l′ ∈ AL

∣∣C→A[Kth,L−1]→AL

)
P
(
A[Kth,L]→C

∣∣l′ ∈ A[Kth,L]

)
.
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Inter-spike interval. An important measurable quantity is the so-called inter-spike interval,
T (I), i.e. the interval between two opening events. It can be calculated by the weighted
average over all the dwell times in O leading to a specific microstate in C, to which one has
to add the subsequent dwell time in C. This leads to the expression

T
(
O→C

∣∣i ∈ O
)

=
∑

j∈C

(
P
(
O→j ∈ C

∣∣i ∈ O ∧O→C
)[
T
(
O
∣∣i ∈ O ∧O→j ∈ C

)
+ T

(
C
∣∣j ∈ C ∧ C→O

)])
.

(33)

The associated second raw moment is consequently

T (2)
(
O→C

∣∣i ∈ O
)

=
∑

j∈C

(
P
(
O→j ∈ C

∣∣i ∈ O ∧O→C
)[
T (2)

(
O
∣∣i ∈ O ∧O→j ∈ C

)
+ T (2)

(
C
∣∣j ∈ C ∧ C→O

)

(34)

+ 2T
(
O
∣∣i ∈ O ∧O→j ∈ C

)
T
(
C
∣∣j ∈ C ∧ C→O

)])
.

To get quantities that are independent of the microstate i, Eqs. 33 and 34 have to be weighted
with the probability of arriving in the microstate i ∈ O. One gets in this way for the inter-
spike interval

T (I) =
∑

i∈O

P
(
C→i ∈ O

∣∣C→O
)
T
(
O→C

∣∣i ∈ O
)
, (35)

and for its second raw moment

T (2)(I) =
∑

i∈O

P
(
C→i ∈ O

∣∣C→O
)
T (2)

(
O→C

∣∣i ∈ O
)
. (36)

From Eqs. 33 and 34 one can construct the coefficient of variation

CV
(
T (I)

)
=

(
T (2)(I)− (T (I))2

)1/2

T (I)
. (37)

5. Mesoscopic properties of the IP3R models

In this section, using the analytical formulae derived in previous sections, we show results
for the behavior of some of the observables we have defined before as function of the Ca2+

and/or IP3 concentrations for the three models of IP3Rs. All our analytic results are checked
against Gillespie-type simulations (Gillespie, 1977).

In all the plots solid curves correspond to the results obtained with the analytical ap-
proach, while isolated symbols denote Gillespie simulation points. Error bars on the latter
denote standard error of the mean. In most cases, the error bars are smaller than the sym-
bols. In all cases where the comparison was possible we find perfect agreement between the
two methods.
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5.1. 9-state model

In order to demonstrate that our analytic approach leads to the same results as other
methods of calculation, we first reproduce the known results of ref. (Shuai et al., 2007) on
opening times and probabilities in the 9-state model. Figures 5a and 5b show the opening
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[Ca2+] (µM)

(a) Total opening probability (Eq. 22)
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T
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)
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[Ca2+] (µM)

[IP3]=10.000 µM
[IP3]=0.033 µM
[IP3]=0.020 µM
[IP3]=0.010 µM

(b) Mean opening time (Eq. 23)

Figure 5: Total opening probability and mean opening time for the 9-state model for various
IP3 concentrations as a function of Ca2+ concentration. The symbols show results from
stochastic simulations and the solid lines the results obtained from the analytic expressions
derived in the text. Error bars represent the standard error of the mean along the simulation
history. Only errors on rare events, which occur at very high Ca2+ concentrations, are visibly
large in the figures.

probability and the mean opening time (Eqs. 22 and 23), respectively. A different analytic
derivation for these observables was provided in ref. Shuai et al. (2007).

Figures 6a and 6b show observables associated to L-related opening events. Restricting
to the case N = 4 and Kth = 3, we show in particular the time spent in a 3- or 4-related
opening event (T (AL), see Eq. 30 with L = 3, 4), and the probability that an opening
event is 3- or 4-related (Eq. 32). For these quantities, analytic expressions have, to the best
of our knowledge, not been established previously. Thus, these examples demonstrate the
general applicability and usefulness of our approach. The advantage of analytic expressions
of general validity is apparent: Expected times and their variances can be computed directly
and exactly without the need for stochastic simulations. This is in particular valuable for
rare events where computing times for stochastic simulations can dramatically increase.

5.2. Comparing different models

A particular strength of theoretical approaches to biology is the principle ability to suggest
experiments which allow discriminating between conflicting models. We apply our theory to
calculate measurable quantities which display a qualitatively different dependency on the
external Ca2+ and IP3 concentrations and are therefore in principle suitable to differentiate

16



0.004

0.008

0.012

0.016

0.01 0.1 1 10 100 1000

T
(s
)

[Ca2+] (µM)

T (A3)
T (A4)

(a) Time spent in L-related opening (Eq. 30)
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Figure 6: Statistics for 3- and 4-related opening events for a concentration of [IP3] = 10 µM .
Shown are (a) the mean time spent in 3- and 4-related opening and (b) the relative frequencies
of these events, determined by stochastic simulations (crosses) and through the analytic
formulae (solid lines), as a function of Ca2+ concentration.

between the three discussed IP3R models. For the 9-state model we use the parameters as
published in Shuai et al. (2007). For the 8-state model we simultaneously fit (see Supple-
mentary Material S2) the total opening probability P(O) and the opening time T (O) to
values obtained from the 9-state model for various Ca2+ concentrations at [IP3] = 10µM and
[IP3] = 0.33µM (the parameters do not strictly correspond to the best obtained fit but rather
represent a trade off between fitness and reasonable magnitude; for details see Supplementary
Material S2). The parameters of the global activation model are the same as the parameters
of the 9-state model, with aO = a0 and bO = b0. All parameters are listed in Table 1.

Experimentally accessible quantities are the opening and closing times of channels as
well as the inter-spike intervals. In Fig. 7, the opening and closing times predicted by the
three discussed models are depicted as a function of the Ca2+ concentration for a fixed value
of [IP3]. Whereas the closing times show qualitatively similar behavior, the opening time
predicted by the global activation model is clearly distinguishable from the 8- and 9-state
models. In particular, T (O) is constant as a function of the Ca2+ concentration for the global
activation model, which can be understood because the deactivation rate of the open state,
bO, is a concentration independent constant.

Thus, we can conclude that the assumption of global channel activation is invalid since the
predicted constant open time T (O) contradicts experimental measurements which display a
bell-shaped dependency on the cytosolic Ca2+ concentration (Bezprozvanny et al., 1991).
This calculation nicely illustrates the power of our approach since it allows to generate
functional relations between measurable quantities and possible hidden mechanisms that
can be studied in a parameter dependent manner.

While opening and closing times alone do not allow to test whether the 8- or the 9-state
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9-state 8-state global

a1 60.0 56.9338 60.0
b1 0.216 0.200904 0.216
a2 0.2 0.190167 0.2
b2 3.2 13.591 3.2
a3 5.0 5.0 5.0
b3 4.0 3.35775 4.0
a4 0.5 0.5 0.5
b4 0.036 0.18777 0.036
a5 150.0 476.698 150.0
b5 120.0 88.3325 120.0
a0 540.0
b0 80.0
aO 540.0
bO 80.0

Table 1: Model parameters used for Gillespie simulation and analytic calculations.
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Figure 7: Comparison of mean opening and mean closing times in the 8-state, 9-state and
global activation model for [IP3] = 10µM .

model describes experimental data better, this is possible by investigating the coefficient
of variation (CV) of the inter-spike intervals between opening events. Figure 8 shows the
functional forms of the CV of the inter-spike intervals as functions of the Ca2+ and IP3

concentrations. All models show a qualitatively similar shape, with large changes of the CV
being observed for Ca2+ concentrations between [Ca2+] = 0.1µM and [Ca2+] = 10µM , and
the largest changes for low IP3 concentrations with a local maximum around [Ca2+] = 2µM .
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Figure 8: Coefficient of variation of inter-spike intervals (Eq. 37) as function of IP3 and Ca2+

concentration.

Only for the case of the 8-state model the base-level of the CV at low concentrations reaches a
value around 1, meaning that the inter-spike interval distributions collapse to an exponential-
like functional form.

This feature may be used to design experiments specifically targeting low Ca2+ concen-
trations to distinguish among different models.

5.3. Receptor channels with an arbitrary number of subunits

For the IP3R it is established that the internal structure consists of four subunits (Suhara
et al., 2006; Mikoshiba, 1993; Michikawa et al., 1994; Jiang et al., 2002). However, in nature
complexes with an almost arbitrary number of subunits exist (Unwin, 1989). With the
theoretical analysis presented here, it is in principle possible to distinguish between different
models describing the internal structure of a receptor channel. We consider a generalized
9-state model by assuming that a channel consisting of N subunits is open if at least Kth

subunits are in an active state. We illustrate the effect of a different internal receptor structure
on the dynamic channel properties for the two cases of a 5-subunit channel which opens with
at least 3 active subunits (N = 5, Kth = 3) and a 7-subunit channel which also opens if at
least 3 of the subunits are in the activated state (N = 7, Kth = 3).

The functional form of the CV of the inter-spike intervals are plotted in Fig. 9 as functions
of the Ca2+ and IP3 concentrations for the two hypothetical channel configurations. The
shape of the functions display peculiar features. In particular in the regime of high IP3

concentrations the CV exhibits an interesting multimodal form for N = 7. This demonstrates
the capability of our analytic approach to distinguish between similar models which only differ
in the internal configuration of the channel.

6. Conclusions

The emergence of higher (mesoscopic) levels of organization from a lower level dynamics
is a characteristic feature of complex systems. An established technique to study mesoscopic
properties resulting from underlying stochastic processes is by detailed numerical simula-
tions (Gillespie, 1977). Alternatively, analytical approaches have been developed to deter-
mine how the lower-level processes can lead to observable mesoscopic behaviors such as bursts
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Figure 9: Coefficient of variation of inter-spike intervals (Eq. 37) as function of IP3 and Ca2+

concentration for models with different numbers of subunits. Both models assume that a
channel opens if at least Kth = 3 subunits are in the activated state. The results in the left
panel are computed for a hypothetical channel with 5 subunits, the right panel for 7 subunits.

of ion channels (Colquhoun and Hawkes, 1982). These analytical approaches allow in prin-
ciple for an exact definition and calculation of transition probability densities and thus for a
fully detailed description of the system properties, as they are based on the spectral expan-
sion of the transition matrix. Therefore they rely on solving the corresponding eigenvalue
problem and require following the whole time-evolution of the system. In this work we have
developed an alternative analytic approach allowing for a direct computation of statistical
properties of mesoscopic quantities from the underlying Markovian dynamics. Our method-
ology provides an attractive computational improvement able to circumvent time-consuming
stochastic simulations and also to capture rare events in their entirety. In contrast to other
analytical approaches (Colquhoun and Hawkes, 1982), our method is not able to determine
the full probability density. However, due to the use of efficient recursive formulae, applicable
to even very large systems, the present approach is able to provide analytic equations for
the computation of the experimental predominant first statistical moments at the mesoscopic
level from elementary microscopic rate constants.

To illustrate the potential of our general theoretical developments, we have studied the dy-
namics of three stochastic models of the so-called IP3 receptor channels, i.e. calcium channels
releasing calcium from intracellular stores in a calcium and IP3 dependent manner. These are
of high interest since their local properties shape cell-wide Ca2+ signals (Rüdiger et al., 2007;
Skupin et al., 2010; Rüdiger et al., 2012) and are thus responsible for a variety of physiological
processes (Berridge et al., 1998). In this context, our approach can be seen as a generalized
and applicable method to predict mesoscopic behavior from underlying complex microscopic
dynamics, which was for instance explicitly approximated for clustered IP3 receptors (Hig-
gins et al., 2009). A slightly different approach for characterizing the dynamics of such a
mesoscopic system was recently developed that is based on waiting time distributions of ob-
servable mesoscopic variables (Moenke et al., 2012). Due to the non-Markovian character
of the mesoscopic dynamics, the considered waiting-time probabilities are non-exponential
making calculations of the statistical moments of the dynamics based on Laplace transforma-
tion potentially problematic. Using reasonable approximations for the channel waiting-time

20



distributions, the approach, however, enables direct and fast simulations of Ca2+ dynamics
that fits experimental results nicely even though it does not make reference to a mechanistic
molecular channel model.

We demonstrate the general applicability of our theory by deriving analytic formulae for
mesoscopic quantities which previously were only accessible through stochastic simulations.
These quite complex mesoscopic quantities, corresponding to channel opening events in which
only a certain number of subunits are activated, are illustrative for understanding how the
average channel opening times and probabilities are governed by the molecular structure of
the receptors.

As a key application of our theoretical concepts we systematically investigate alterna-
tive models of the IP3 receptor channels and predict experimentally accessible mesoscopic
quantities which can be used to discriminate between the models and establish which mecha-
nistic model best describes the experimental observations. In particular, we have shown that
the assumption of the global activation mechanism contradicts experimental data because
it predicts a Ca2+ independent open time whereas a bell-shaped dependency is observed in
experiments. Such ability to distinguish between competing mechanistic models is a key
motivation for theoretical approaches to biology in general. A particular strength of analytic
formulae is that they automatically capture rare events, which in stochastic simulations may
easily be missed or are only accurately described with extremely long simulations. However,
precisely these rare events are at the basis of the intermittency properties (Frisch, 1996) of
complex dynamic systems and neglecting rare events may result in an inaccurate description
of the dynamic properties of the investigated system.

While the investigated models all represent closed systems without external fluxes into or
out of the system, our approach is applicable also to open systems in stationary state. The
only assumption that enters our theoretical approach is that of stationarity, which means
that the sum of the probability rates leading to a microstate should equal the sum of the
probability rates of processes leaving that state, see Eq. 2. For the calculation of all quantities
which do not depend on stationary probabilities, including all those which are conditional
on the residence of the system in a particular microstate, no modification is necessary for
open systems. Those quantities depending on the stationary probability distribution also
keep their functional form, but the presence of external fluxes requires a modification of the
calculation of the stationary probabilities (Eq. 3). Let vinn and voutn denote the external fluxes
into and out of microstate n, respectively. For the fluxes leaving the system, we can assign
rate constants analogous to Eq. 1 and write

voutn = pnk
out
n , (38)

leading to the balance equation

vinn +
∑

m

pmkmn = pn

(
koutn +

∑

l

knl

)
,

from which the stationary, non-equilibrium, probabilities can be determined by solving the
inhomogeneous linear system of equations

∑

m

pm

(
kmn − δmn

(
koutm +

∑

`

km`

))
= −vinn . (39)
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The derivation of the expressions for second moments of the dwell time distributions was
based on the assumption that the underlying Markovian microscopic process is a Poisson
process. The same assumption is fundamental for the Gillespie algorithm (Gillespie, 1977)
on which stochastic simulations are based. For atomic and molecular interactions, this is
a reasonable assumption which also underlies the derivation of the mass-action kinetic rate
law for chemical reactions. Under this condition, there is no principle obstacle to derive
expressions for the higher moments of the dwell time distribution in mesostates. With such
expressions available the distribution of residence times can be approximated by analytic
expressions with in principle arbitrary accuracy. The limitations of the applicability of this
approach will probably lie in an increasing complexity of the resulting expressions and a
concomitant difficulty of their numerical evaluation. However, even only with the analytic
expressions for first and second moments presented in this work, the possibility has been
established to extract relevant information about mesoscopic and experimentally accessible
quantities for model discrimination and refinement.
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S1.1. Detailed derivation of P
(
U→k ∈ V

∣∣i ∈ U ∧ U→V
)

In this section we derive in detail the formula of the matrix elements Mij (Eq. 9 in the
main text), which describes the process of visiting another state j 6= i within U before leaving
to V .

We first calculate the probability that the system leaves directly to any microstate of V ,
under the condition that from i ∈ U the next mesostate is V , by summing over k in Eq. 8 in
the main text ∑

k′∈V
πik′

P
(
U→V

∣∣i ∈ U
) . (S1.1)

So, conversely, the conditional probability that the system first visits any other microstate
in U , and later leaves to mesostate V , is

1−

∑
k′∈V

πik′

P
(
U→V

∣∣i ∈ U
) . (S1.2)

Given that the next mesostate transition is U → V , but first a microstate in U is visited,
the conditional probability that this microstate is j ∈ U is

P
(
i∈U→j∈U ∧ U→V )∑

i′∈U
P
(
i∈U→i′∈U ∧ U→V )

=
πijP

(
U→V

∣∣j ∈ U
)

∑
i′∈U

πii′P
(
U→V

∣∣i′ ∈ U
) . (S1.3)

Altogether this leads to

Mij = P
(
i∈U→j∈U

∣∣U→V ) =


1−

∑
k′∈V

πik′

P
(
U→V

∣∣i ∈ U
)


 πijP

(
U→V

∣∣j ∈ U
)

∑
i′∈U

πii′P
(
U→V

∣∣i′ ∈ U
) . (S1.4)

S1.2. Derivation of more complex dwell times

Time spent in mesostate U when the system is in i ∈ U and in the next mesostate transition
it arrives in k ∈ V . This quantity differs from Eq. 17 in the main text by the requirement
that the system arrives in a specific microstate k ∈ V , therefore the matrix elements needed
for its derivation are different. Apart from that the derivation is similar and one obtains

T
(
U
∣∣i ∈ U ∧ U→k ∈ V

)
= τi

+
∑

j∈U

P
(
i∈U→j∈U

∣∣U→k∈V )︸ ︷︷ ︸
Nij

T
(
U
∣∣j ∈ U ∧ U→k ∈ V

)

T
(
U
∣∣i ∈ U ∧ U→k ∈ V

)
=
∑

j∈U

(1−N)−1ij τj , (S1.5)

where the matrix elements Nij are

P
(
i∈U→j∈U

∣∣U→k∈V ) =



(

1− πik

P
(
U→k ∈ V

∣∣i ∈ U
)
)

πijP
(
U→k ∈ V

∣∣j ∈ U
)

∑
i′∈U

πii′P
(
U→k ∈ V

∣∣i′ ∈ U
)




(S1.6)
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For the corresponding second raw moment one then gets under the assumption of exponen-
tially distributed τi

T (2)
(
U
∣∣i ∈ U ∧ U→k ∈ V

)
= 2

∑

j∈U

(1−N)−1ij τj T
(
U
∣∣j ∈ U ∧ U→k ∈ V

)
. (S1.7)

Time spent in mesostate U given that the mesostate transition chain is W → U → V .
The formulae derived in the main text allow us to calculate probabilities and dwell times of
arbitrary complicated transition chains. For example, the time spent in mesostate U , given
that the mesostate transition chain is W → U → V , is

T
(
U
∣∣W→U→V

)
=
∑

j∈U

P
(
W→j ∈ U

∣∣W→U→V
)
T
(
U
∣∣j ∈ U ∧ U→V

)
, (S1.8)

where

P
(
W→j ∈ U

∣∣W→U→V
)

=
P
(
W→j ∈ U

∣∣W→U
)
P
(
U→V

∣∣j ∈ U
)

∑
j′∈U

P
(
W→j′ ∈ U

∣∣W→U
)
P
(
U→V

∣∣j′ ∈ U
) (S1.9)

is the probability that in the chain W → U → V the first visited microstate in U is j.
The corresponding second raw moment is calculated by weighting each T (2)

(
U
∣∣i ∈ U ∧

U→V
)

with its probability (Eq. S1.9)

T (2)
(
U
∣∣W→U→V

)
=
∑

j∈U

P
(
W→j ∈ U

∣∣W→U→V
)
T (2)

(
U
∣∣j ∈ U ∧ U→V

)
. (S1.10)

Similar to Eq. 11 in the main text, T
(
U
∣∣W→U→V

)
and T (2)

(
U
∣∣W→U→V

)
are con-

ditional only on mesostates (not on a particular microstate) and therefore depend on the
stationary probabilities.

Time spent in mesostate U when system is in i ∈ U given that the mesostate transition chain
is U → V → Z. For a transition chain with more than one mesostate visited “in the future”,
the matrix that needs to be inverted changes, but the derivation follows the same procedure
as used when deriving simpler dwell times. We will derive the dwell time in U where the
next mesostates will be V and Z

T
(
U
∣∣i∈U∧U→V→Z

)
= τi+

∑

j∈U

P
(
i∈U→j∈U

∣∣U→V→Z) T
(
U
∣∣j∈U∧U→V→Z

)
, (S1.11)

leading to

T
(
U
∣∣i∈U ∧ U→V→Z

)
=
∑

j∈U

(
1−MUV Z

)−1
ij
τj , (S1.12)

where the matrix elements are MUV Z
ij = P

(
i∈U→j∈U

∣∣U→V→Z). Similar to Eq. 9 in the
main text, these can be calculated in the following way

P
(
i∈U→j∈U

∣∣U→V→Z)

=

(
1−

∑
k′∈V P

(
i∈U→k′∈V ∧ U→V→Z)

P
(
U→V→Z

∣∣i∈U
)

)
P
(
i∈U→j∈U ∧ U→V→Z)∑

j′∈U P
(
i∈U→j′∈U ∧ U→V→Z)

=

(
1−

∑
k′∈V πik′P

(
V→Z

∣∣k′ ∈ V
)

P
(
U→V→Z

∣∣i∈U
)

)
πijP

(
U→V→Z

∣∣j∈U
)

∑
j′∈U πij′P

(
U→V→Z

∣∣j′∈U
) , (S1.13)
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where the probability that from i ∈ U the mesostates V and Z are visited is

P
(
U→V→Z

∣∣i∈U
)

=
∑

k′∈V

P
(
U→k′ ∈ V

∣∣i ∈ U
)
P
(
V→Z

∣∣k′ ∈ V
)
. (S1.14)

Time spent in mesostate U given that the mesostate transition chain is W → U → V → Z.
Here we will derive the dwell time in U when the previous mesostate was W and the next
will be V and then Z. Similar to Eq. S1.8, we write this as

T
(
U
∣∣W→U→V→Z

)
=
∑

j∈U

P
(
W→j∈U

∣∣W→U→V→Z
)
T
(
U
∣∣j∈U ∧ U→V→Z

)
, (S1.15)

where the first term corresponds to Eq. S1.9

P
(
W→j∈U

∣∣W→U→V→Z
)

=
P
(
W→j ∈ U

∣∣W→U
)
P
(
U→V→Z

∣∣j∈U
)

∑
j′∈U P

(
W→j′ ∈ U

∣∣W→U
)
P
(
U→V→Z

∣∣j′∈U
) , (S1.16)

and the second term is the dwell time derived in the previous paragraph (Eq. S1.12).
The examples presented above illustrate how an arbitrary complex quantity can be ex-

pressed by quantities of lower complexity.

S1.3. Derivation of more complex quantities for mesostate subsets

For the calculations in Sect. 4 of the main text, we require the time spent in mesostate
U given that the mesostate transition chain is W→U→V ′:V→Z, which is given by

T
(
U
∣∣W→U→V ′:V→Z

)
=
∑

j∈U

P
(
W→j ∈ U

∣∣W→U→V ′:V→Z
)
T
(
U
∣∣j∈U ∧ U→V ′:V→Z

)
.

(S1.17)

The probability which enters Eq. S1.17 takes the form

P
(
W→j ∈ U

∣∣W→U→V ′:V→Z
)

=
P
(
W→j ∈ U

∣∣W→U
)
P
(
U→V ′:V→Z

∣∣j ∈ U
)

∑
j′∈U

P
(
W→j′ ∈ U

∣∣W→U
)
P
(
U→V ′:V→Z

∣∣j′ ∈ U
) .

(S1.18)

The matrix elements MUV ′:V Z
ij = P

(
i∈U→j∈U

∣∣U→V ′:V→Z) needed for the derivation

of T
(
U
∣∣i∈U ∧ U→V ′:V→Z

)
can be calculated in analogy to Eq. S1.13. For the calcula-

tion, the transition chains U→V→Z in the probabilities have to be replaced by the chains
U→V ′:V→Z. These probabilities are defined in Eq. 12 in the main text.
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S2.1. Fitting 8-state model parameters

To determine parameters for the 8-state model (p8-state), we have first calculated the total
opening probability P(O) and the opening time T (O) of the 9-state model at various Ca2+

and IP3 concentrations using the parameters p9-state from Shuai et al. (2007), and used these
values as input for a fitting procedure.

As the two observables P(O) and T (O) do not depend on all parameters, the fitting
procedure was reduced to the parameters a1, b1, a2, b2, b3, b4, a5, b5, with the parameters a3 = 5
and a4 = 0.5 held fixed.

To have equally logarithmically spaced calcium concentrations we took [Ca2+] = 10xµM
with x = −0.7,−0.6, . . . , 1.9, 2.0, leading to concentrations in the range [Ca2+] = [0.2, 100]µM .
For the IP3 concentrations we have chosen [IP3] = 10µM and [IP3] = 0.33µM .

We used the genetic optimization package rgenoud (Mebane and Sekhon, 2011) to mini-
mize a χ2 function where the P(O) and T (O) contributions are weighed with the coefficients
WP(O) and WT (O)

χ2 =WP(O)

∑

Ca2+,IP3

(
P(O)

(
p9-state,Ca2+, IP3

)
− P(O)

(
p8-state,Ca2+, IP3

))2

+WT (O)
1

s

∑

Ca2+,IP3

(
T (O)

(
p9-state,Ca2+, IP3

)
− T (O)

(
p8-state,Ca2+, IP3

))2
.

Note that 1
s

is required to make the contribution of the opening times dimensionless.
We arbitrarily chose WP(O) = WT (O) = 0.5. Depending on the given random seed,

the fitted parameters differ dramatically while having compatible values of χ2, indicating
that the fitness landscape is rather flat but bumpy. We therefore decided to restrain all
parameters between 0.01 and 500 (using genoud’s Domains parameter) to look for parameters
of reasonable size, and randomly chose one of the solutions.

We should emphasize here that this result does not correspond to a proper fit, but rather
represents a solution of χ2-minimization leading to reasonable values of the parameters.
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