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Abstract

We consider the (process-independent) Green function for the BFKL equation in the next-
to-leading order approximation, with running coupling, and explain how, within the semi-
classical approximation, it is related to Green function of the Airy equation. The unique
Green function is obtained from a combination of its required ultraviolet behaviour compat-
ible with asymptotic freedom and an infrared limit phase imposed by the non-perturbative
sector of QCD. We show that at sufficiently large gluon transverse momenta the correspond-
ing gluon density matches that of the DGLAP analysis, whereas for relatively small values
of the gluon transverse momentum the gluon distribution is sensitive to the Regge poles,
whose positions are determined both by the non-pertubative QCD dynamics and physics at
large transverse momenta.
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1 Introduction

In recent papers [1–3], it has been shown that the discrete BFKL [4] pomeron can reproduce
the low-x structure functions at HERA very well, by properly determining the oscillation
phases of wavefunctions at the infrared boundary. The discrete pomeron arises from the
accounting for the running of the coupling with gluon transverse momentum and the im-
position of such phases (see [5]). It was furthermore shown that the quality of the fit is
sensitive to the exact ω-plane positions of third and higher Regge poles which are influenced
(according to the BFKL equation) by hypothetical heavy particles and their interactions [3].
Note that the thresholds for such particles beyond the Standard Model (BSM) may be
above the energy scale at which the structure functions are measured. Such sensitivity of
the pomeron spectrum is similar to the sensitivity of the weak-mixing angle, θW , to different
Grand Unified Theories (GUTs). The pomeron spectrum, ωn, and the corresponding com-
plete set BFKL eigenfunctions, satisfying appropriate boundary conditions, fn(t), determine
the Green function

G(t, t′, Y ) =
∞
∑

n=1

e−ωnY fn(t)f
∗
n(t

′). (1.1)

The main problem with this representation is a very slow convergence of the sum over
pomeron contributions, so that in refs. [2, 3] it was necessary to take a very large number
(> 100) of them in order to obtain a good desciprtion of the data. One of the purposes
of this paper is to find an alternative representation of the Green-function which does not
suffer from this disadvantage.

The use of the Green function approach enables the calculation of the ampltidue for
each specific process (such as structure fiunctions in deep-inelastic scattering) solely as a
convolution of this Green function with impact factors that encode the coupling of the
Green function to the external particles that participate in that process. Thus, for example,
the structure function, F2(x,Q

2) at low-x is given by

F2(x,Q
2) =

∫

dtdt′ΦDIS(Q
2, t)G(t, t′, Y )ΦP (t

′), (1.2)

where, Y = ln(1/x), t = ln(k2/Λ2
QCD), t′ = ln(k′ 2/Λ2

QCD); k, k′ being the transverse mo-
menta of the gluons entering the BFKL amplitude. ΦDIS(Q

2, t) describes the (perturbatively
calculable) coupling of the gluon with transverse momentum k to a photon of virtuality Q2

and ΦP (t
′) describes the coupling of a gluon of transverse momentum k′ to the target proton.

In the discrete version of the BFKL formalism the Mellin transform of the Green function

Gω(t, t
′) ≡

∫

dY e−ωY G(t, t′, Y ),

for positive ω, has a set of poles at ω = ωn (as opposed to a cut along the real axis in the
case where there is no restriction on the infrared behaviour of the BFKL amplitude).

We can define the Mellin transform of the unintegrated gluon density, Aω(t) as the
convolution of the Mellin transform of the Green function with the proton impact factor

Aω(t) ≡
∫

dt′Gω(t, t
′)Φp(t

′) (1.3)
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This immediately poses the question as to how the results from the discrete BFKL for-
malism can match those of a DGLAP analysis [6] in DLL limit where both Y and t are large,
but obey the inequality

αs(t)Y ≪ 1,

for which the function Aω(t) obeys the DGLAP equation

e−t/2 ∂

∂t

{

et/2Aω(t)
}

=
CAαs(t)

πω
Aω(t). (1.4)

In the case of the purely perturbative BFKL formalism with a cut singularity in ω, this
match is understood [7, 8] from the fact that at large t and small ω, the Mellin transform
function from the BFKL analysis is approximated by

Aω(t) ∼ exp

{

−
∫ t CAαs(t

′)

πω
dt′
}

, (1.5)

which is a solution to eq.(1.4) and the unintegrated gluon density (i.e. inverse Mellin trans-
form of Aω(t)) is dominated by a saddle-point at

ω =

√

CAαs(t)

πY
. (1.6)

In this paper, we show that provided the Green function is carefully defined and its
boundary conditions adequately specified, then at sufficiently large gluon virtuality, a similar
matching occurs. In section 2, we discuss the semi-classical approximation for the Green
function of the BFKL equation, without reference to any specific process and in section 3 we
consider its application to deep-inelastic scattering and discuss under what circumstances
we expect a match to the result of a DGLAP analysis in the double-leading-logarithm (DLL)
limit.

2 The BFKL Green Function

Our approach to the BFKL equation is similar to the DGLAP approach with the difference
that instead of the first order differential equation in t, as we have in the DGLAP case, we
will write a simplified BFKL equation as a second order differential equation, which could
be considered as a quantized version of the DGLAP equation.

In general, the BFKL Green function (in Mellin space) Gω(t, t
′) (with appropriate bound-

ary conditions) obeys the equation

(

ω − Ω̂(t, ν̂)
)

Gω(t, t
′) = δ(t− t′), (2.1)

where Ω̂ is the (Hermitian) BFKL operator (with running coupling) and ν̂ ≡ −i∂/∂t is the
operator conjugate to t. In the LO approximation (and neglecting quark masses) the BFKL
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operator is given in terms of the leading order expression for the characteristic function,
χ(αs(t), ν), by

Ω̂ =
1

√

β̄0t

(

2Ψ(1)−Ψ

(

1

2
+

∂

∂t

)

−Ψ

(

1

2
− ∂

∂t

))

1
√

β̄0t
, , (2.2)

where we have used the notation ᾱs ≡ CAαs/π, β̄0 = β0π/CA. The hermiticity of the
operator is assured by placing

√

ᾱs(t) on either side of the hermitian differential operator.

Beyond leading order, the characteristic function, χ, acquires an explicit ω dependence
due to the summation of collinear divergences [9]. In this case, the quantity Ω(t, ν) is
obtained from the solution to

Ω = χ (Ω, ᾱs(t), ν) . (2.3)

If Ω is expanded as a power series in αs the result up to order α2
s coincides with the NLO

characteristic function [10]. The operator Ω̂ is constructed by promoting the variable ν to the
operator ν̂ defined above, and symmetrizing as necessary in order to generate a Hermitian
operator 1. The function, Ω(t, ν) must be determined for all values of t and ν by numerical
methods. Importantly, however, we note that it is symmetric under ν ↔ −ν - i.e. it depends
on ν2 - so that the operator Ω̂ contains only even derivatives with respect to t.

For a given eigenvalue, ω, we define the classical frequency, νω(t) by

ω = χ (ω, ᾱs(t), νω(t)) , (2.4)

(the subscript ω serves as a reminder that this classical frequency is ω-dependent as well as
t-dependent). For any positive value of ω, there exists a critical value, tc of t such that

χ(ω, ᾱs(tc), 0) = ω (2.5)

(tc is also ω-dependent). For t < tc, the classical frequency, νω(t) is real and the eigen-
functions of the operator Ω̂ are oscillatory functions of t, whereas for t > tc the classical
frequency is purely imaginary and the (physically acceptable) eigenfunction is a monotically
decreasing function of t. Thus t = tc represents a turning point in the eigenfunctions of Ω̂.

In the neighbourhood of the turning point, the BFKL equation (2.1) is known to reduce
to the Airy equation. To see this, we first define two related variables, sω(t) and z(t) (both
variables are implicitly dependent on ω) . The variable sω(t) denotes the corresponding
classical action and is defined as

sω(t) =

∫ tc

t

dt′ νω(t
′) , (2.6)

and the (real) variable z(t), defined as

z(t) = −
(

3

2
sω(t)

)
2

3

(2.7)

1There is some ambiguity in the ordering of operators for the construction of a Hermitian operator, but
this ambiguity does not affect the solution of the eigenvalue problem in the semi-classical approximation.
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which obeys the differential equation

dz(t)

dt
=

νω(t)
√

−z(t)
(2.8)

with boundary value z(tc) = 0. Near the critical value of t, (t ∼ tc), we have

z ≈ (t− tc)

(

2Ω̇

Ω′′

)1/3

|t=tc,ν=0

, (2.9)

where ′ indicates partial differentiation with respect to ν and · indicates partial differentiation
with respect to t. To derive this relation we used the fact that near the critical point we can
expand the BFKL function as,

Ω (t, νω(t))− ω ≈ Ω̇(t− tc) + Ω′′ν2
ω/2, (2.10)

corresponding to the diffusion approximation. By substituting ν → ν̂ and changing variables
to z (2.9) the BFKL operator, Ω̂, (for a given eigenvalue, ω) is simply related to the Airy
operator

(

ω − Ω̂

(

t,−i
∂

∂t

))

=

(

Ω′′

2

)1/3

(Ω̇)2/3
(

z − ∂2

∂z2

)

. (2.11)

2.1 Generalized Airy Operator

We now show that, in the semi-classical approximation, the BFKL operator can be related
to the “generalized Airy operator”, both in the vicinity of the turning point and far away
from it. This means that in both cases we can generalize eq. (2.11) to

(

ω − Ω̂

(

t,−i
∂

∂t

))

≈ 1

Nω(t)

(

żz − ∂

∂t

1

ż

∂

∂t

)

1

Nω(t)
. (2.12)

The RHS of this equation denotes the generalized Airy operator. Near t = tc, (where ż
becomes a constant) the equation (2.12) becomes exact, as can be seen from eq.(2.11). For
t far away from tc we will derive eq.(2.12) in the semi-classical approximation in which it is
assumed that νω(t) is a sufficiently slowly varying function of t so that

∣

∣

∣

∣

d

dt
ln ν(t)

∣

∣

∣

∣

≪ 1, (2.13)

and we may neglect higher than the first derivatives of sω(t) with respect to t.

We begin by determining the normalization function Nω(t) in the region t ≈ tc. Near tc,
where the approximations (2.9) and (2.10) are taken as exact, eq.(2.12) becomes exact with

Nω(t) =

∣

∣

∣

∣

1

2

√

Ω̇ Ω′′

∣

∣

∣

∣

−1/3

|t=tc,ν=0

(2.14)
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Using the fact that

Ω′′ ν→0→ Ω′

ν
,

it will turn out to be convenient to re-express this as

Nω(t) =
(−z)1/4
√

1
2
|Ω′|

(2.15)

In the next step we consider the region where t is far from tc. Noting that

(

żz − ∂

∂t

1

ż

∂

∂t

)

= ż

(

z − ∂2

∂z2

)

, (2.16)

we see that the two eigenfunctions of the operator Ω̂ with eigenvalue ω are given, in the
approximation of eq.(2.12), by

Nω(t)Ai(z(t)) and Nω(t)Bi(z(t))

where Ai(z), Bi(z) are the two independent Airy functions.

Thus, in order to relate eqs. (2.11) and (2.12) we seek a function Nω(t) such that

(

ω − Ω̂

(

t,−i
∂

∂t

))

Nω(t)Ai(z(t)) = 0, (2.17)

valid in the semi-classical approximation, for values of t far from tc.

To determine the function Nω(t) we expand the operator Ω̂ as an (even) power series in
ν, with coefficients c2n(t) so that the operator may be written (in explicitly Hermitian form)

Ω̂ =
∞
∑

n=0

√

c2n(t)

(

−i
∂

∂t

)2n
√

c2n(t) (2.18)

and take the asymptotic form for the Airy function 2

A±(z) ≈ 1

2
√
π(−z)1/4

exp

(

±i

∫ t

νω(t
′)dt′

)

. (2.19)

Using (2.18) and (2.17), inserting into (2.16), and keeping only the terms which are non-
negligible in the semi-classical approximation (as described above) we obtain

(

ω −
∞
∑

n=0

c2n(t)

[

ν2n
ω − 2n iν(2n−1)

ω

d

dt
ln

(

√

c2n(t)Nω(t)

(−z(t))1/4

)

− i
2n(2n− 1)

2
ν(2n−2)
ω ν̇ω(t)

])

·Nω(t)A±(z(t)) = 0. (2.20)

2 The Airy functions Ai and Bi are linear superpositions of the functions denoted here by A±.
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Performing the resummation, the first two terms of eq.(2.20) cancel by virtue of (2.4),
and the remaining terms lead to

∂

∂t
Ω′(t, νω) + Ω′′(t, νω)ν̇ω + 2Ω′(t, νω)

d

dt
ln

(

Nω(t)

(−z)1/4

)

= 0 (2.21)

or
d

dt
ln

(√
Ω′Nω

(−z)1/4

)

= 0 (2.22)

with solution

Nω(t) =
(−z(t))1/4
√

1
2
|Ω′(t, νω)|

, (2.23)

where the overall constant has been chosen to match the normalization constant for t ∼ tc
given by eq.(2.15). This establishes the relation (2.12) with Nω given by eq.(2.23), both far
away from the critical value, tc, and in the region near tc.

2.2 Green function of the BFKL operator

We can now derive the Green function of the BFKL operator starting from the Green function
of the Airy operator, Gω(z, z

′),
(

z − ∂2

∂z2

)

Gω(z, z
′) = δ(z − z′). (2.24)

Owing to asymptotic freedom, the BFKL scattering amplitude should tend to zero when

z(t)
t→∞→ ∞, which leads to the ultraviolet boundary condition

Gω(z, z
′)

z,z′→∞→ 0 (2.25)

From the Wronskian of the two independent Airy functions

Ai(z)
d

dz
Bi(z)− Bi(z)

d

dz
Ai(z) =

1

π
, (2.26)

we see that a solution to eq.(2.24) with the required ultraviolet behaviour is given by

Gω(z, z
′) = π (Bi(z)Ai(z

′)θ(z′ − z) + Ai(z)Bi(z
′)θ(z − z′)) (2.27)

However, eq.(2.27) is not a unique solution to eq.(2.24) since we may add to it any solution
of the homogeneous equation with the required ultraviolet boundary condition, i.e. a term
proportional to A(z)Ai(z

′). The general solution is therefore

Gω(z, z
′) = π

(

Bi(z)Ai(z
′)θ(z′ − z) + Ai(z)Bi(z

′)θ(z − z′)
)

, (2.28)

with Bi(z) being the linear superposition of Ai(z) and Bi(z)

Bi(z) = Bi(z) + c(ω)Ai(z), (2.29)
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where c(ω) denotes a constant which only depends on ω.

The function Ai(z(t)) has the required asymptotic behaviour as t → ∞, namely that it
vanishes in that limit, whereas the function Bi(z(t)) has some oscillatory phase for small t,
which must match the phase of a physical wavefunction from non-perturbative QCD, valid
in the infrared region. Therefore, within the accuracy of the semi-classical approximation,
the Green function, Gω(t, t

′), of the BFKL operator, with the required boundary conditions,
can be constructed from the Green function for the Airy operator, (2.28), allowing for the
correcting normalization factors Nω(t):

Gω(t, t
′) = πNω(t)Nω(t

′)
(

Bi(z(t))Ai(z(t
′))θ(t′ − t) + Ai(z(t))Bi(z(t

′))θ(t− t′)
)

. (2.30)

From eq.(2.12) and usingNω(t) given by eq.(2.23), we see that this expression satisfies (within
the semi-classical approximation) the Green function equation for the BFKL operator

(

ω − Ω̂

(

t,−i
∂

∂t

))

Gω(t, t
′) = δ(t− t′), (2.31)

2.3 Infrared boundary

We now show how the properties of the infrared boundary determine the properties of the
BFKL Green function. First we note that for a fixed value of t′, the behaviour of the
Green function for t < t′ is controlled by the behaviour of Bi(z(t)), with the oscillation
phase determined by the (non-perturbative) infrared properties of QCD. This removes the
ambiguity of the Green function given in eq.(2.30) by fixing the ω-dependent constant c(ω).
To see how this works we first write c(ω) in the form

c(ω) = cot (φ(ω)) , (2.32)

so that for t ≪ tc, we have

Bi(z(t)) ≈ 1√
πz1/4

sin
(

sω(t) +
π
4
+ φ(ω)

)

sin (φ(ω))
. (2.33)

Imposing the (non-perturbative) phase condition that the argument of the sine function is
ηnp(ω) at t = t0 (where t0 is small) fixes φ(ω) to be

φ(ω) = ηnp(ω, t0)−
π

4
− sω(t0). (2.34)

Note that this difference of the non-perturbative and perturbative phase should not depend
on t0.

We note, furthermore, that for the specific values of ω for which

φ(ω) = nπ, (2.35)

c(ω) (and consequently the Green function given by eq.(2.30)) has poles. This is to be
expected since we know that the Green function may be written in the form

Gω(t, t
′) =

∑

n

fn(t)f
∗
n(t

′)

(ω − ωn)
+ terms analytic in ω, (2.36)
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where fn(t) are the complete set of normalized eigenfunctions of the BFKL operator with
eigenvalues ωn, subject to the ultraviolet boundary condition

fn(t)
t→∞→ 0, (2.37)

which fixes the phase of the oscillations at t ≤ tc(ωn). The non-perturbative, infrared,
behaviour of QCD determines the phase of the oscillations at the infrared boundary, t = t0,
which we denote as ηnp(ωn). The two phase conditions at t = t0 and t = tc serve to determine
the allowed eigenvalues, ωn.

From eqs.(2.29) and (2.32) we see that the two expressions for (2.30) and (2.36) match
at the poles if we identify

fn(t) = Nωn
(t)

√

π

φ′(ωn)
Ai (z(t))|ω=ωn

= Nωn
(t)
√

πφ′(ωn) lim
ω→ωn

{

(ω − ωn)Bi (z(t))
}

(2.38)

The pole-part of the Green function is thus given by

Gpole
ω (t, t′) =

∑

n

πNωn
(t)Nωn

(t′)
Ai (z(t))Ai (z(t

′))

φ′(ωn)(ω − ωn)
, (2.39)

which, apart from slowly varying prefactors Nωn
(t) and Nωn

(t′), coincides with the Green
function used in our analyses [1–3].

In addition to the discrete spectrum ωn, with positive values of ω, the Green function
has a contribution from the continuum of states for negative values of ω. For negative ω
there is no turning point, tc, so the negative ω states are not quantized. Their continuum
gives rise to a cut of Gω along the negative real axis in the ω-plane and could be necessary in
order for the eigenfunctions of the BFKL operator to form a complete set of functions. The
discontinuity of Gω for negative ω appears owing to the condensation of the poles of c(ω)
(2.32) as ω → 0.

The inverse Mellin transform of Gω, eq.(2.30), as a function of the rapidity Y is given by

G(Y, t, t′) =
1

2πi

∫

C

dωeωY Gω(t, t
′), (2.40)

where the contour C must be taken to the right of all the poles at ω = ωn which are given
by 3

sωn
(t0) = ηnp(ωn) +

(

n− 1

4

)

π, n = 1, 2, 3.... (2.41)

as follows from eqs.(2.33 -2.35). The discrete values, ωn are the intercepts of the individual
Regge trajectories that comprise the QCD pomeron. The perturbative quantities sωn

(t0)
depend on the precise details of the running coupling accounting for heavy quarks and any

3The sign of n has been chosen here to agree with the sign convention of our previous papers [1–3].

9



possible new physics whose threshold is below tc(ωn), that determines the allowed spectrum of
Regge poles. In addition, in the contour integral of eq.(2.40), there will be also contributions
from the cut at negative ω, corresponding to the above-mentioned continuum of states.

Therefore, if the function ηnp(ω) were known then the BFKL Green function would be
uniquely determined and applicable to all processes which are dominated by the interaction
of the QCD pomeron. In reality, however, the infrared properties of QCD are unknown 4

and so we need to leave ηnp(ω) as a free function and fit it from the measured structure
functions at low-x and other available forward diffractive data.

As well as the pole contributions for positive ω and the cut (for negative ω), the complete
Green function, eq.(2.30), also contains the part which is analytic in ω except for an essential
singularity at ω = 0 (where z(t) becomes infinite for any finite value of t). This analytic
part, together with the essential singularity, is necessary, as we shall show below, in order
to be able to match the analysis of deep-inelastic scattering at low-x, using the discrete
BFKL pomeron with a DGLAP analysis since it plays an important role in the transition
between very large and moderate values of t. In contrast to our previous evaluations [1–3],
in the approach presented here, the contributions of all the poles of the Green function can
be evaluated using the contour integral in the complex ω plane, removing the necessity to
account explicitly for more and more poles in order to improve the accuracy of the fit as was
found to be necessary in [1–3]. Moreover, the other contributions to the Green function, i.e.
of the cut and of the analytic part are automatically taken into account.

3 Application to Deep Inelastic Scattering

So far, we have been considering the universal Green function of the BFKL operator, without
reference to any physical process to which this Green function is to be applied in order to
determine the amplitude for that process. This means, in particular, that the intercepts,
ωn of the discrete Regge poles which comprise the QCD pomeron, are process-independent
but are sensitive to any physical thresholds which may affect the running of the coupling at
momenta

k < ΛQCD etc(ωn)/2,

(which is larger than 10 TeV for n ≥ 3).

We now wish to apply this Green function to the case of deep-inelastic structure func-
tions at low-x, which are constructed out of the unintegrated gluon density, ġ(x, t) (t =
ln(Q2/Λ2

QCD)). The unintegrated gluon density is given in terms of the Green function and
proton impact factor by

ġ(x, t) =
1

2πi

∫

C

dωx−ω

∫

dt′Gω(t, t
′)ΦP (t

′). (3.1)

The impact factor cannot be calculated in perturbative QCD and must be fitted to data. It
encodes the coupling of the QCD pomeron to the proton and it is the only quantity in the
analysis which is explicitly process-dependent.

4 In principle one might be able to extract information about these infrared phases from lattice QCD.
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Figure 1: The ω- plane and the contour of integration of eq.(3.1) for the case ωs(t) > ω1 .
The x’s indicate the positions of the poles, which accumulate as ω → 0

The integrand in eq.(3.1) possesses a saddle point at ω = ωs in the ω-plane, where ωs is
given by

d

dω
ln (Aω(t))|ω=ωs

= ln(x) (3.2)

where Aω(t) is defined by eq.(1.3). Provided this saddle point is also to the right of all
singularities of Gω, i.e. ωs > ω1, then the contour of integration can be deformed, as shown
in Fig.1, so that it passes though the saddle point in the direction of steepest descent and
the saddle-point approximation

ġ(x, t) ≈ 1

2
√
π d2

dω2
s
ln (Aωs

(t))
x−ωs(t)Aωs

(t) (3.3)

is a good approximation to the integral over ω in the Mellin inversion eq.(3.1).

For t > tc(ωs), the amplitude Aωs
has a t-dependence

Aωs
(t) ∼ exp

{

−
∫ t

|νωs
(t′)| dt′

}

. (3.4)

For sufficiently large t, the classical frequency, νωs
(t), is approximately given by

|νωs
(t)| t→∞→ 1

2
− ᾱs(t)

ωs
(3.5)

and, as explained in refs. [8,11,12], in this limit the saddle-point ωs coincides with the saddle-
point obtained from inverting the gluon anomalous dimension, γN

gg in the limit N → 0. Thus
we obtain a match between the BFKL analysis and the t-dependence of a DGLAP analysis
in the double logarithm limit, where both t and | lnx| are large, namely (at leading order)

Aω(t)
t→∞∼ e−t/2 (t)

1

ωβ̄0 (3.6)

In this case the t-dependence of the unintegrated gluon density (and consequently the t
dependence of the structure functions) is unaffected by the discrete nature of the BFKL
spectrum.
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Figure 2: The ω- plane and the contour of integration of eq.(3.1) for the case ℜe{ωs(t)} < ω1

On the other hand, if t is not sufficiently large so that the (real part of the) saddle-point
ωs falls below one or more of the discrete eigenvalues ωn, then if one attempts to deform the
contour so that it passes through the saddle-point (as shown in Fig.2 ) one has to surround
one or more of the discrete poles of Gω. In this case the contribution from the saddle-point
given by eq.(3.3) has to be supplemented by the contribution from the contour surrounding
the first j discrete poles for which

ωj+1 < ωs < ωj ,

i.e. we must add the contribution

j
∑

n=1

x−ωnAωn
(t).

It is these extra terms that are sensitive to the heavy particle threshold behaviour of
QCD and which give substantial deviations to the qualitative behaviour of the structure
functions compared with the behaviour extracted from a purely DGLAP analysis. It is
therefore important to emphasize that it is at relatively low values of Q2 and small x that
we expect to see a signal of BFKL dynamics which can be clearly distinguished from the
predictions of DGLAP.

4 Summary

In this paper, we have analyzed the (Mellin transform of the) Green function for the BFKL
amplitude in the semi-classical approximation in which it can be cast into the form of the
Green function of Airy’s equation after a suitable change of variables. The general solution
contains terms with poles for positive ω as well as an analytic part constructed from the two
independent solutions to Airy’s equation. Our expression for the Green function differs from
that previously obtained in refs. [1–3] in that in addition to the component consisting of a set
of discrete poles in the Mellin transform variable, ω, there is a component which is analytic
in ω. This latter part turns out to be necessary in order to generate a match to the result
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of a DGLAP analysis in the DLL limit. We have obtained an approximate expression for
the unintegrated gluon density by considering the saddle-point approximation to the inverse
Mellin transform. For sufficiently large values of transverse momentum the saddle-point lies
to the right of all the poles and the match with the result of a DGLAP analysis in the DLL
limit follows in the same way as the case of the continuum BFKL pomeron. However, as
the gluon transverse momentum becomes small, the saddle-point lies to the left of some of
the discrete poles and in such cases the unintegrated gluon density is supplemented by the
contribution from the integral around these poles.

A complete numerical analysis, which does not rely on the saddle-point approximation,
following the programme described in this paper is currently under way and will be published
in a forthcoming paper.
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