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1. INTRODUCTION 

 The stress state is a characteristic parameter of the material state, together with the 

microstructure and the texture, it influences the material properties. That is why the stress 

analysis is of the great significance in industry and technology and became an important 

part of materials science. Progress in materials science and technology brought new 

challenges for stress analysis and various destructive and nondestructive methods have 

been developed. 

 Residual stresses are the stresses that remain after the original cause of the stresses 

(external forces, heat gradient) has been removed [1]. They can result from temperature or 

deformation gradients which are present in almost every step of material processing. 

Residual stresses can occur as a consequence of various technological treatments and 

manufacturing processes, but they can also arise in the component during its service life. 

Both the magnitude and the spatial distribution of residual stresses play key role in the 

behaviour of the material subjected either to heat treatment or plastic deformation. The 

strain - stress analysis is of particular utility for elucidating causes of failure. Depending on 

the orientation and value of the residual stresses superimposed by the external loads they 

can be unfavorable or beneficial for the component. The failure of a component in most 

cases starts in the near-surface area and occurs due to the initiation of plastic deformation 

or fracture when material is subjected to tensile loads. What is more, all kinds of scratches, 

notches, etc. concentrate additional applied tensile stress near the surface which can cause 

the initiation of a crack. That is why; usually it is favorable with respect to the component 

lifetime to create compressive residual stresses in the near-surface area, which can stop 

fatigue crack propagation [2]. The basic mechanical surface treatments which allow 

gaining compressive residual stresses are deep-rolling and shot-peening [2, 3].  
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 One of the ways to improve surface properties of the material are coatings. They 

can be beneficial in example for corrosion or wear resistance and can provide the long-

term surface protection. The lifetime of a coating is strongly dependent on the residual 

stresses profile in the surface area. 

 Residual stresses influence the strength and fatigue behavior of the materials, but 

also they affect the chemical, electrical behavior of the thin films and can be very 

important in stress corrosion process [2, 3]. That is why residual stresses have to be taken 

into account while designing the structural parts especially in view of the improvement of 

their properties and increase of their lifetime. Stress analysis is important for constructions 

and especially after various mechanical surface treatments. Studying the residual stresses 

of these materials is a challenging issue due to depth gradients of micro and macro residual 

stresses and the influence of different parameters on their stability or relaxation. 

Consequently, reliable experimental methods for residual stress determination are of great 

practical importance. That is why the diffraction method, which allows to separate micro- 

and macro-residual stresses and to study stress distribution in the sample is an 

indispensible tool. Despite great progress in stress analysis there are many questions which 

remain unsettled. 

 In the first part of this thesis (chapters 1-3), the diffraction methods of stress 

determination are introduced. The principles of lattice distortion, crystallite size and stress 

analysis based on the diffraction peak profile and measured lattice strain are described in 

chapter 2. Next, chapter 3 is devoted to a short characterization of different methodologies 

for stress determination using X-ray radiation (classical and synchrotron). The 

experimental methods are divided into two groups, i.e.: these in which the penetration 

depth of X-rays is constant or these for which penetration varies during measurement. On 

the basis of the first three chapters the aims of the thesis are specified in chapter 4.  

 In chapters 5  7 the original results of this work, concerning development and 

testing of the multireflection grazing incidence X-ray diffraction (MGIXD) method for 

stress determination are presented. At first, the most important corrections of experimental 

data and tests of experimental setups are described (chapter 5). 

 In chapter 6 two important theoretical developments of the MGIXD method are 

presented. The titanium and austenitic stelness steel samples will be studied for 
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development tests. The first one enabling determination of c/a parameter and significantly 

improving quality of experimental data analysis for hexagonal structure has been proposed 

and tested. The second one in which density of stacking faults is taken into account is 

applied. What is more a verification of different types of X-ray stress factors (XSF), which 

can be applied to interpret the experimental data obtained using MGIXD method, is 

presented. Finally, examples of stress determination in surface layer for materials having 

high and low single crystal elastic constants anisotropy are shown.  

 In chapter 7 the methodology of data interpretation is developed in order to treat 

data obtained not only for different incident angles but also using simultaneously different 

wavelengths. It is -re

-

verification of the MGIXD measurements. 

 Chapter 8 concludes all the results presented in the thesis and formulates practical 

recommendations for the users of MGIXD method. 
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2. STRAINS AND STRESSES MEASURED BY DIFFRACTION 

 The advantage of the diffraction method is its non-destructive character and the 

possibility of direct measurements of strains in precisely defined volumes of the material. 

Not only stresses can be determined from the diffraction methods. Intensities of the 

diffraction lines gives information about the crystallographic texture and the broadening of 

the diffraction lines allows to determine the size of the diffracting domains and the content 

of the crystalline defects such as dislocations and stacking faults [1]. Presence of stacking 

faults causes the diffraction peak shift and it depends on the probability of finding faults 

(Wagner 1966) [4].  

 The great need of precise stress determination has involved the introduction of new 

measuring methods and devices into experimental world. This progress would not have 

been possible without a detailed understanding of the theoretical principles of the used 

methodologies. In this work the diffraction methods of stress measurement will be used 

and developed. Because these methods are based on measurements of crystallographic 

lattice strains, the present chapter is devoted to explain how diffraction sees the strains 

caused by different kinds of stresses. 

 

2.1. RESIDUAL STRESSES AND STRAINS 

 All solid materials are deformed when subjected to external loads. The deformation 

is manifested in displacement of points in the body under load from their initial positions. 

When a body undergoes certain stresses, the strain response depends on the elastic 

properties of the material. The strain can be of elastic and of plastic kind. As long as the 

forces acting on the body are below a certain limit, the deformation is reversible and is 



10 

 

called elastic deformation. For this kind of deformation, when the load is removed the 

displacements vanish and the body returns to its unloaded configuration. However, when 

the forces acting on the material are higher than the limit, the material undergoes plastic 

deformation. In this case some permanent deformation remains after the load is removed. 

If the deformation of the material is homogeneous the deformation of all points of the body 

is the same. However, when the deformation varies from point to point along any direction 

in the material volume, the deformation distribution is considered heterogeneous [1, 3].  

 The relation between the stresses and elastic strain tensor for elastic body is given 

by the 1]: 

 or  
       

(2.1) 

where:  and are the components of the stress and the elastic strain tensors, while  (

) are the components of the stiffness (compliance) tensor. 
 

 ij is defined to be the force per area acting on the i-face in 

direction j (Fig. 2.1). ii components for which i-forces are normal to the i-faces are 

ij -forces are 

parallel to the i-faces are called shear components. Stresses form a 9 components 

symmetrical 2
nd

 rank tensor which can be written in the matrix notation [1]: 

11 12 13

21 22 23

31 32 33

ij
      

   (2.2) 

 

 

Fig. 2.1. Orientation of stress tensor components with respect to definition surfaces 

ij ijkl klc kl klij ijs

ij kl ijklc

klijs
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 In static conditions, the principle of conservation of angular momentum implies 

ij ji and only 6 of the 9 components are independent [1].  

 The external forces acting on the material causes the deformation which can be 

described by the strain tensor: 

11 12 13

21 22 23

31 32 33

ij           (2.3) 

where: 

0 0 0

1
lim lim lim

2i i j

ji i
ii ij

x x x
i i j

vw v
and for i j

x x x  

while i, j = 1, 2, 3 (the displacements for two dimentions are defined in Fig. 2.2). 

 

Fig. 2.2. Displacement of the body used in strain definition. 

 

 The proportionality constants cijkl in Eq 2.1 describe physical property of the elastic 

substance under load. The cijkl tensor relating strains and stresses (Eq. 2.1) is a 4-th rank 

tensor of elastic stiffnesses, and it has 81 components. Because of stress and strain 

symmetries it is possible to reduce the number of the components to 36 independent ones. 

In the case of a monocrystal this number furthermore can be reduced taking into 

consideration the symmetry of the crystal lattice [1]. For isotropic body the cijkl constants 

depend only on two parameters  Poisson's ratio), and they do not 
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change with direction in the body. However, for anisotropic materials these properties vary 

with orientation and more elastic constants are needed to describe elastic properties [3]. 

 By definition, the residual stresses are self-equilibrated stresses [2]. The residual 

stresses must fulfill the equilibrium condition in each point of the material [2, 3]: 

           (2.4) 

And surface condition: 

 i.e.  0ij in          (2.5) 

where  is the normal vector to sample surface.  

 When flat samples ar plane stress  condition can be 

assumed. It is possible due to their small expansion in one direction (e.g., x3) as compared 

to the other two directions, so often stresses in the x3-direction can be assumed to be 

13 23 33 = 0). The stress equilibrium conditions imply that tensile residual 

stresses in a certain direction within one part of a body are always balanced by matching 

compressive residual stresses in another part. Thus, the residual stress state can necer be 

homogeneous in a body due to equation (2.4) and (2.5). This also implies the presence of 

residual stress gradients. Strong residual stress gradients are often present in the near-

surface area of components, due to surface treatments, or because the residual stress 

component normal to the surface needs to vanish but stress continuity has to be observed in 

the bulk material [2].  

 Due to the granular structure of polycrystalline aggregates, the stress and strain 

states in these materials should be considered and described at different scales. It is 

possible to distinguish residual stresses of I
st
 type (macrostresses) and II

nd
 type, III

rd
 type 

(microstresses). The residual stress distribution in a material is the sum of type I, type II, 

and type III residual stresses [2]: 

( ) ( ) ( ) ( )I II III
r r r r        

 (2.6) 

0
ij

ix

0n

n
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(2.7) 

where: Vtot  is the total volume of the sample and  describes position.  

 Type I residual stresses 
I
 represent the average residual stresses acting within all 

phases and crystallites in the gauge volume Vga. These stresses are defined by mean value 

over volume of considered part of the sample (Vga, for example gauge volume in 

diffraction experiment), i.e.: 

1
( )

ga

I

ga V

r dV
V

          (2.8) 

The gauge must be large enough to represent macroscopic material containing a sufficient 

number of crystallites and all phases present in the material.  

Type I residual stresses (or first order) result from long range strain incompatibilities 

introduced, e.g., by strain or temperature gradients in a manufacturing process. The 

distribution and magnitude of type I residual stresses often can be controlled by modifying 

the process parameters of a production process [2]. 

 Type II residual stresses (
II

, second order) describe the mean deviation from the 

macroscopic residual stress level 
I
 averaged over the volume of individual 

polycrystalline grain (Vgr), i.e.: 

1
[ ( ) ]

gr

II I

gr V

r dV
V

         (2.9) 

In a multiphase material type II residual stresses (or second order) are taken as the volume 

weighted average residual stresses  calculated over the volume of crystallites belonging 

V

which contribute to the measurement: 

1
[ ( ) ]I

V

r dV
V

         (2.10) 

( ) 0

totV

r dV

r
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Type II residual stresses arise for instance due to deformation misfits between neighboring 

grains and due to temperature or deformation induced misfits between different phases in 

a multiphase material [2]. 

 Type III residual stresses  represent the local deviation of the residual 

stresses within an individual crystallite from its average residual stresses in the grain 

(variation on the atomic scale). Thus, the average type III residual stresses does not result 

in macroscopic distortions. Type III residual stresses are caused, e.g., by voids, solute 

atoms, or dislocations in the crystal lattice [1, 2].  

 All the three types are present simultaneously, for example, in mechanically 

machined samples. The microstructure of materials subjected to plastic deformation 

changes significantly. Due to twinning mechanism and slips occurring on the 

crystallographic planes plastic deformation of the grain occurs. In general, this irreversible 

deformation it is slightly different for neighboring grains, which leads to compression or 

stretching of single grains. This mechanism is a primary source of internal second order 

stresses. In addition, during the plastic deformation, a large amount of point defects and 

dislocations is generated. The latter phenomena lead to creation of internal stress fields. 

Accumulation of dislocation inside the grains produces the third order stresses. 

 Each type of stresses existing in material influences crystallographic lattice causing 

its distortion. The first and second order stresses cause mean elastic lattice strains for 

particular polycrystalline grains. The third order stresses leads to distortion and strain 

heterogeneity within grains. The three effects can be seen in diffraction experiment as the 

shift and broadening of the diffraction peaks. To present methods for strain measurement, 

at first the diffraction phenomenon must be described. 

 

2.2. DIFFRACTION 

 Diffraction on crystallographic lattice is associated with certain phase relationships 

between waves scattered in all directions by the atoms. However, in some particular 

directions the reflected waves exhibit the same phase and, due to constructive interference, 

they are strengthened, creating a diffracted beam.  

( )III
r



15 

 

 In order to describe the diffraction phenomenon using kinematic theory, a crystal 

can be treated as a periodic arrangement of atomic planes, which acts like a mirror for the 

incident radiation [5]. The incident beam strikes the crystallographic planes at an angle 

 and it is reflected by them also at an angle  (see Fig. 2.3b). Therefore, the total angle of 

deflection of the diffracted beam is equal to . If the distance between adjacent planes is 

equal to d  the difference of the paths for the rays reflected from these planes is equal to 

 (Fig. 2.3a). Constructive interferences will occur when the waves have the same 

phases, so when the path differences between them will be equal to integer multiples (m) of 

the wavelength ( ), so when the equation: 

2 sinm d           (2.11) 

1] and it is a basic geometrical 

diffraction condition. 

 

Fig. 2.3. Difference between paths of the beams reflected from neighboring 

crystallographic planes (a) and construction of the scattering vector (b), where  and  

denotes wave vectors for the incident and diffracted beams, respectively.  

 

Bragg s equation can be expressed also in an equivalent way. Let us denote by  a wave 

vector of the incident beam and by  a wave vector of diffracted beam. Diffraction vector 

can be defined as:  and it is perpendicular to the plane of reflection (Fig2.3 b). 

The length of the diffraction vector is given by:  

        (2.12) 

i
k

d
k

i
k

d
k

d i
k k k

4 sin
d ik k k
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 be rewritten as: 

          (2.13) 

where: hkl are the indices of reflection which for the first order reflection (i.e., for the 

lowest hkl and m

while for the m-th order of reflections =d/m where d is the interplanar space. 

Because  (where is the reciprocal lattice vector [2]), so the general 

condition for the occurrence of diffraction (when both vectors and 
 
have the same 

direction, i.e., they are perpendicular to the reflecting plane) can be written as:  

          (2.14) 

Expressing the  vector by primitive translation vectors of the reciprocal lattice 

 and multiplying both sides of Eq. (2.14) by primitive translation 

vectors  (where the latter basis vectors are defined for the real lattice) the Laue 

equations can be obtained [7]: 

       
and   

  
(2.15) 

 The Miller indices of crystallographic plane in the real space (h,k,l) correspond to 

the coordinates of lattice point in the reciprocal space. 

 Bragg or Laue equations give the geometrical condition of the diffraction; however, 

they do not contain the information about the intensity of the diffracted beam. The 

intensity will depend on the kind of the diffracting atoms and their arrangement in the unit 

cell. In the case of X-ray diffraction, electrons are responsible for coherent scattering of the 

electro-magnetic wave. During the diffraction, each of the electrons in the atom scatters 

elastically part of the incident beam. In order to describe the scattered power of each atom 

the atomic scattering factor f depending on the Z (atomic number) of the element is used 

[8]. In the direction of diffraction, specified by the Bragg condition, the power diffracted 

by the unit cell is described using the structural factor Fhkl. The complex value of this 

2

hkl

k
d

hkld

2
hkl

hkl

d
G

hkl
G

k hkl
G

hkl
k G

hkl
G

1 2 3hkl
G hb kb lb

1 2 3, ,a a a

1 2a k h 2 2a k k 3 2a k l
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factor is calculated as a sum of the amplitudes of the coherently diffracted rays from the 

atoms in the unit cell (assuming unit amplitude of the incident beam) [8]. For a unit cell 

having M atoms at positions described with the coordinates (xn, yn, zn), the structural factor 

can be expressed as [6]: 

       (2.16) 

where: hkl are the indices of considered reflection, fn is the atomic factor of the n-th atom 

and M denotes number of atoms in the unit cell 

 The intensity of the beam diffracted from all the atoms in the unit cell in the 

direction described by the Bragg s law is proportional to the square of the amplitude of the 

resultant beam, and consequently, it is proportional to | Fhkl |
2
. The above equation allows 

calculating the intensity of each hkl reflection when the atomic positions are known. 

Analyzing intensities of the beams diffracted on different planes (i.e., knowing the values 

of | Fhkl |
2
 from experiment) the arrangement of the atoms in unit cell can be refined. In this 

aim the numerical Rietveld method can be used [9].  

 In description of diffraction experiment it should be remembered that the crystals 

are not ideal and the incident beam is not strictly parallel and monochromatic. The actual 

X-ray beam contains divergent and convergent rays as well as parallel, so the intensity of 

diffracted beam will be registered not only for the Bragg angle but also in same small 

range around this angle. This effect is known as the instrumental broadening of registered 

diffraction peak. Also, the microstructure of the material significantly influences the 

profile of the measured peak, i.e. the broadening of the peak is affected by the size of 

diffracting crystal and its real internal structure containing lattice defects.   

To explain the role of finite crystal size, the ideal crystallite having N points (equal to 

number of unit cells) can be considered. The positions of n-th point of the real lattice can 

be defined by the vector:  

        (2.17) 

where:  are the basis translation vectors and m1, m2 , m3 are the integer or zero 

numbers.  

2 ( )

1

n n n

M
i hx ky lz

hkl n

n

F f e

1 1 2 2 3 3n m a m a m a

1 2 3, ,a a a
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 Next, the diffraction vector  can be expressed as the linear combination of the 

basis vectors in reciprocal space:  

         
(2.18) 

where h1, h2, h3 are the vector coordinates given by real values. These values are chosen 

close to the point of reciprocal lattice corresponding to the considered reflection hkl, 

i.e. h1=h, h2=k, h3=l when Eq. 2.14 is fulfilled and  determines the position of the 

reciprocal lattice point.  

 If the point of the observation (detector counting intensity of diffracted beam) is far 

away from the crystal the phase difference of the waves from two scattering centers is 

equal to: nn
k  Assuming amplitude of incident beam equal to unity, the amplitude 

An of the wave diffracted on a lattice point (representing unit cell) in the position  can be 

expressed as in: 

exp[ ] [ ]nn e hkl n e hkl
A A F i A F i k       (2.19) 

where: Fhkl stands for an amplitude of the beam diffracted on the unit cell which is equal to 

the structural factor defined by Eq. 2.16 and Ae is an amplitude of wave scattered by one 

electron. In order to gain the amplitude from all scattering centers it is necessary to sum up 

over all lattice points [:  

exp
N

ntotal e hkl

n

A A F i k        (2.20) 

Following the calculations given by for example by Kittel [10], the dependence of 

diffracted intensity on the length and direction of scattering vector (
 
) 

can be derived: 

22 2
2 2

3 31 1 2 2
1 2 3 2 2 2

1 2 3

sinsin sin
( , , )

sin sin sin
total e hkl

N hN h N h
I h h h A A F

h h h
   (2.21) 

where: N1, N2 and N3 are the numbers of real lattice point in directions of ,  and 

N= N1 N2 N3. 

k

1 1 2 2 3 3k hb h b h b

k

k

1 1 2 2 3 3k hb h b h b

1 2,a a 3a
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 Integrating the above equation around a point of the reciprocal lattice 

(e.g. ) the total diffracted intensity proportional to the number of 

unit cells (N) can be calculated, i.e.: 

   (2.22) 

 To see the intensity distribution around given point in reciprocal lattice the 

particular reflection 00l can be considered. If we follow the intensity variation only in the 

direction of vector we can put  and  in Eq.2.21, i.e.:  

        (2.23) 

Using Eqs. 2.12, 2.13 and 2.18 the value of can be related with  angle: 

         
(2.24) 

In Fig.2.4 the one dimensional function  vs.  for l=1 is shown. Also, this 

function vs.  is presented assuming =

 =500 and =1000 atoms (or crystallographic planes) in the direction along the 

scattering vector. This situation corresponds to the crystallite size of 50 nm and 100 nm 

along the direction of scattering vector. 

 

Fig. 2.4. Function  vs.  (for l=1) and the same function vs.  

(assuming  = =1A) are shown. 

1 2 3hkl
k G hb kb lb

1/2 1/2 1/2
2 2 2

1 2 3 1 2 3 1 2 3

1/2 1/2 1/2

( ) ( , , )

h k l

tot N e hkl e hkl

h k l

I hkl I h h h dh dh dh A A F N N N A F N

3b 1 0h 2 0h

2
2

2 2 3 3
3 1 2 2

3

sin
( )

sin
e hkl

N h
I h A F N N

h
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00
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2
sinld
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3
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sin
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00ld

3N 3N

h3

0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004
0.0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

N3=500

N3=1000

2  (o)

59.8 59.9 60.0 60.1 60.2
0.0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

N3=500

N3=1000

2

3 3

2

3

sin

sin

N h

h
3h

00ld



20 

 

 The following conclusions can be drawn from the above equations illustrated in 

Fig. 2.4:  

 the intensity at the point of reciprocal lattice (or for 0 angle which fulfill strictly 

Bragg low) is proportional to the square of the number of reflecting planes being 

perpendicular to the scattering vector (
3

2
23 3
320

3

sin
lim

sinh

N h
N

h
),  

 the broadening of the peak is proportional to 1/ , i.e. number of reflecting planes 

in the direction of scattering vector ,  

 the total (integrated) intensity is proportional to , 

 the broadening of the intensity around the point of reciprocal does not depend on 

the reflection order (the same peak profiles are obtained for different l, because the 

period of the function defined in Eq. 2.23 with respect to h3 is equal to1). 

The above conclusions can be generalized for any hkl reflection. 

 A more general derivation of the intensity distribution in the diffraction peak for 

crystallites with lattice distortion was given by Warren and Averbach [11]. In this case also 

the partial waves diffracted on scattering centres are considered but the calculations were 

performed for a powder sample and contributions of diffracted intensity from grains having 

different orientations was integrated. Moreover, the scattering centres are shifted from the 

points of the net. The result of the calculations is given as the Fourier series (presented also 

for the 00l reflection):  

     (2.25) 

which can be also written with respect to angle substituting  by relation 2.24. The 

coefficients of expansion are [11]:    

  (2.26 a)  and  
 

 (2.26 b) 

where and < > are the square mean and mean values of the lattice microstrains in 

the direction of scattering vector, inside a crystallite (those which are caused by defects 
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and associated with the third order stresses), and  is the factor depending on the 

crystallite size (also in the direction of scattering vector). 

 The  coefficients represent nonsymmetrical distribution of strains within the 

crystallite. However, if we consider only the effect of the third order stresses and the 

distribution of defects is random (or in more general case if the probability of  and -

occurrence is equal) the  coefficients vanish. 

 It is clear that, the coefficients bring important information about the size of a 

crystallite ( ) and the square mean strain of its lattice strains caused by the third order 

stresses. The  factors do not depend on the order of reflection (00l), and it can be shown 

[11] that: 

          (2.27) 

where  is an average number of reflecting plains along scattering vector. 

 On the other hand the function of  vs.  depend the order of reflection 

(00l). Therefore the analysis of size and strain by Warren-Averbach is based on the 

expansion of diffraction peak profile into a Fourier series and then calculation of 

and  (or rather , i.e., the size of the crystallite) in the direction of the scattering 

vector from An coefficients. In this method two diffraction peaks must be measured for two 

orders of reflections (usually the first and second order for example 111 and 222). 

 The next step in analysis of peakprofiles, after single crystal and powder sample is 

the case of a polycrystalline aggregate which is built from crystallites having different 

orientations (like in powder but often some orientations are preferred in the case of 

crystallographical texture). Moreover, in real structure of polycrystalline material, mosaic 

microstructures of grains can have a significant impact on diffraction (especially after large 

plastic deformation). Such a crystal does not have atoms arranged in a perfectly regular 

network, but a large number of small blocks, each of which is slightly disoriented with 

respect to its neighbors [6]. The diffraction peak results from the coherent scattering of the 

incident beam on the so-called domains which, in fact, represent crystallites considered by 
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Warren and Averbach [11, 12]. The size of such domains is of tens or hundreds of 

nanometres, so their effect on the peak broadening is comparable with that shown in 

Fig. 2.4. In the case of polycrystalline materials usually the same methods of profile 

analysis are used as for powder samples, however, in this case such properties as 

crystallographic texture, complex microstructure and moreover presence of residual 

stresses should be considered in the interpretation of the obtained results. 

 The polycrystalline grains are not free as in the powder sample but they interact 

elastically with their neighbours. Therefore, the first and second order stresses causing 

mean elastic deformation of the lattice which can be observed as a shift of the diffraction 

peak position. Using diffraction methods the mean lattice strain can be determined as the 

relative change of interplanar spacing and can be calculated from the relative shift of the 

peak: 

         (2.28) 

 

        (2.29) 

where is the mean interplanar spacing for {hkl} crystallographic planes 

determined in the studied sample,  is the interplanar spacing for these planes but in 

stress free crystallite, 2( ) is a shift of diffraction peak with respect to the 

position in stress free material ( 0). 

 It should be underlined that the <...>{hkl} is the volume of the crystallites (in fact 

domains in polycrystalline grains) which take part to diffraction, i.e., they have such lattice 

orientations for which the scattering vector  is perpendicular to symmetrically 

equivalent {hkl} planes (or strictly: as close to the normal as diffracted intensity appears), 

see Fig. 2.5. Therefore, diffraction gives information about average lattice strains for a 

group of grains, but not directly about stress in a particular grain. Further analysis is 

necessary to relate these strains to stresses of I
st
 and II

nd
 type [13, 14]. Also it should be 

mentioned, that the <...>{hkl} average is calculated over different grains exhibiting different 

strains (due to different lattice orientations or second order stresses), thus their contribution 
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in diffraction peak cause additional broadening (however in most cases much smaller than 

this produced by the third order stresses). 

 

 

Fig. 2.5. The selective character of diffraction. 

Only the grains for which the scattering vector  

law is fulfilled contribute to diffracted intensity.  

 

 Concluding, it should be underlined that the peak broadening of the diffraction peak 

measured for polycrystalline material brings important information about the size of so 

called coherent domain and mean square internal strains  (caused by defects and 

third order stresses), while the shift of diffraction peak can be related to mean lattice strains 

caused by the external or residual stresses acting on the grains embedded in polycrystalline 

aggregate (caused both by the first and the second order stresses). In the next chapters the 

method for extracting such information from experimental data will be shown. 

 

2.3. DETERMINATION OF STRESSES FROM DIFFRACTION DATA 

 The residual stress state analysis is based on the diffraction measurements of the 

interplanar spacings in different directions of the scattering vector  [1]. In order to 

describe the geometry of measurements it is necessary to introduce two coordinate 

systems: the coordinate system connected with the specimen (S) and the coordinate system 

connected with the scattering vector. The latter frame is called the laboratory system L, 

because scattering vector is often fixed with respect to the laboratory and the sample is 

rotated (e.g. Eulerian cradle). These systems are defined as follows (Fig. 2.6): 

The specimen reference system (S): The S3 axis is orientated perpendicular to the specimen 

surface. Axes S1 and S2 lie in the surface plane. If a preferred direction within the plane of 

the surface exists, e.g. the rolling direction, the S1 direction is usually orientated along this 

preferred direction. 

k

2

k
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The laboratory reference system (L): L3 axis coincides with the diffraction vector , and 

L2 axis lies in the surface plane. 

 Then the orientations so defined L system with respect to S system can be described 

by two angles  and  defined in Fig. 2.6, i.e.  is between S3 and L3 axes, while  is 

between L3 and its projection on the sample surface. These angles also determine 

orientation of the scattering vector. 
 

 

Fig.2.6. Orientation of the scattering vector with 

respect to the sample system S. The  and  

angles define the orientation of the L system (the 

L2 axis lies in the plane of the sample surface). 

Additionally,   rotation of the L system around 

scattering vector is shown (this rotation will be 

used in the scattering vector method, section 

3.1.3). 

  

2.3.1. DETERMINATION OF FIRST AND SECOND ORDER STRESSES  

To analyse first order stresses, the mean lattice strains has to be determined from measured 

shifts of the diffraction peak (Eqs. 2.28 or 2.29). Because the exact position of the 

diffraction peak must be determined with high accuracy it is necessary to take into account 

phenomena influencing the profile [1, 6] or position of the peak. To do this the following 

factors depending on are introduced in strain analyses: 

 Lorentz-polarization factor - LP( ,  

 absorption factor - Ab(  

 refraction factor (in the case of small incidence angles)  R( . 

 Usually, the dependence of the atomic scattering factor fn (see Eq. 2.15) and 

temperature factor do not significantly influence peak profile, and they are not taken into 

account in corrections. The LP( Ab(  factors are described in Cullity [6] or Noyan 

[3], while the R(  factor is considered in detail in this work.  

k
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 Also, the asymmetry of the background may be an imortant problem in the peak 

position determination. In order to make the correction for the background, it is necessary 

to apply function Ibcg(2 ) which can be obtained by fitting a low degree polynomial 

function (usually simply linear function) to the background intensities on both left and 

right hand sides of the diffraction peak [1]. To introduce all corrections the background 

must be subtracted from the measured intensities, the result must be divided by LP( and 

Ab(  factors for every 2  angle and next peak must be shifted by the - 2 R angle (in the 

case of small angle of incident beam), i.e.: 

        (2.30) 

where the Iexp(2 ) and Icor(2 ) are the experimental and corrected intensities, respectively.  

 After correction and proper preparation of data the precise position of the 

interference-peak can be determined by calculating the center of gravity of the peak or by 

fitting theoretical functions to the intensity profile (e.g.: Gauss, Pearson VII, Lorentz or 

Pseudo-Voigt functions) [1]. Although the displacement of the diffraction peak is generally 

small, the fitting procedures with, e.g., Lorentz, Gauss or Voigt functions allow to 

determine a very precise position of the peak. 

 

Centre-of-gravity method. In this method the intensities of K -K  lines are averaged out 

in the result. The peak position is calculated by [1]: 

         (2.31) 

Usually the integration is performed over some threshold value assumed relatively to the 

maximum peak-intensity. 
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Fitting of the Gauss function. In this method the diffraction peak is fitted by [9]: 

        (2.32) 

where:  and 

 

, w is the full width at half maximum (FWHM 

defined as the full angular width at half-maximum intensity of the diffraction peak [1]), 

related with integral breath by equation:  

area to the peak maximum [1]). 

 

Fitting of the Lorentz function [9]: 

         (2.33) 

where: ,  and w can be related to  by equation:  

 For better resolutions of determined positions it is recommended to use Pearson 

VII-functions or Voigt-functions instead of Gaussian or Lorentz distributions. Those 

functions are much more flexible in describing the peak profile and fits better to the 

measured intensities [1]. 

 

The Pearson VII-function is given by [9]: 

        (2.34) 

where: , -1)!, and m is the shape 

parameter. 
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The Pseudo-Voigt function [15, 16, 17] is superposition of Gaussian (G ) and Lorentzian 

(L ) functions, given by the expression [9, 17]: 

    (2.35) 

 

If Lorentzian and Gauss components are normalized, then pseudo-Voigt is also 

normalized. 

  

 It should be stated that from X-ray diffraction experiments performed on laboratory 

diffractometers (it is not the case of synchrotron radiation) the intensity of the incident 

beam is composed from two emission lines K  and K  exhibiting very similar 

wavelengths. The contribution of both lines cannot be experimentally separated totally and 

it has to be done at the stage of data analysis using one of two possible methods: 

 influence of K  intensity can be removed using Rachinger method [18] assuming 

theoretical ratios of intensities I(K )/I(K )=0.5 and knowing difference between 

K  K . Next, the center of gravity is calculated for one peak or 

peak profile is fitted by the functions defined above, 

 doublet of two measured is treated together: 

o superposition of the functions defined above: 

    
(2.36)

 

is fitted to experimental points (where  is the distance between 

two peaks resulting from two lines for given theoretical difference of 

K  2) ratio I (K )/ I (K )=0.5 is assumed, 

o or the centre of gravity is calculated for the doublet but the weighted mean 

mean )/3 

 In Fig. 2.7 examples of peak position determination were presented. Peaks were 

measured for Al powder using CuK  radiation (

' '

max max(2 ) (2 2 ) (1 ) (2 2 )
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PANalytical - MRD diffractometer  with 

parallel beam configuration, described in Table 5.4 (chapter 5). Different peak broadenings 

are seen and the highest accuracies of measured peak position were obtained when doublet 

K  and K  (two peaks) was fitted using the pseudo-Voigt function. 

a) b)  

c) d)  

Fig. 2.7. Examples of different methods for position determination: calculation of the 

center of gravity (a), and fitting of Gauss (b), Lorentz (c), pseudo-Voigt (d) functions. 

Experimental peak was measured for Al powder using PANalytical - 

diffractometer - configuration given in Table 5.4.). 

 

Table 2.1. Comparison of the determined positions for Al powder using 4 different 

methods. 

Fitting  

Pseudo-Voigt 65.1000
a
  

Lorentz 65.0982
a 

 

Gauss 65.1007
a 

 

center of gravity    65.1023
a
 (65.1620

b
) 

where: 
a
 is the position of K  component, while 

b
 is the position of K  + K 2 doublet.  
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 When the positions of diffraction peaks are determined, the stress analysis can be 

performed. The diffraction strain  measured along L3 direction (see Eq. 2.28 

and Fig. 2.6) are defined as the average strain over diffracted grains volume (Fig. 2.5) 

which is calculated as [19, 20]: 

     (2.37) 

where  is the strain along L3 direction for (hkl)  plane, and  are the 

angles describing the orientation of the diffraction vector (along L3) with respect to the 

specimen reference system,   the rotation around the diffraction vector (see Fig. 2.8), 

 is the function representing crystallographic texture, i.e. orientation 

distribution function ODF (defined in [21]) expressed in terms of measurement parameters 

and the rotation angle . Summation is over all symmetrically equivalent planes {hkl}. 

 

 

 

Fig. 2.8. Definition of lattice rotation 

around the scattering vector  normal to 

(hkl) plane. 

 

 

 In the above average only the criterion for selection of grain orientations is 

considered, but also the average must be calculated over the gauge volume using weight of 

the intensity scattered by different grains (accounting for absorption). 

 

 For polycrystal composed of elastically isotropic crystallites (for example tungsten) 

19] can be applied to relate the macrostrains with the first order stresses: 
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     (2.38) 

where:  and  are the first order stresses and strains (averaged over the whole 

diffraction gauge volume),  and  are crystal compliances (equal for isotropic 

crystals), S1 and S2 
are the only independent components of Sijkl for elastically isotropic 

specimen and  is the Kroneckers delta.  

In this case the elastic strain tensor is identical for all crystallites and also for diffracting 

group of grains [19]: 

         (2.39) 

where L superscript means that the strain is expressed in L system (tensor in S system do 

not have additional superscripts as in Eq. 2.38). 

Then it is possible to calculate  (L system) strain from tensor  (S system) [19]: 

, 2 2 2 2
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33 12 13 23

( , ) cos sin sin sin

cos sin(2 )sin cos sin(2 ) sin sin(2 )

I L I I I

hkl i ij j

I I I I

m m
   (2.40) 

where: is strain tensor in the specimen system of reference, is the unit vector, in the 

direction of the scattering vector, expressed in the specimen system of reference (S). 

          (2.41) 

 

Taking into consideration Hooke ) and Eq. 2.40 it is possible to obtain 

[19, 22]: 
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 The above equation is a general expression relating first order mean stresses (full 

tensor) with  strains measured for different directions of the scattering vector described by 

 and  angles and it is called the sin
2

 law, because the measured strains are plotted vs. 

sin
2

 (with constant ). If the shear stresses are equal to zero, i.e. the sample system (S) 

coincides with the principal axes of stress tensor, the latter plot is a straight line and the 

components of the stress tensor can be extracted from the slope of the line plotted for 

constant . 

 Usually a polycrystal is composed of elastically anisotropic crystallites (anisotropic 

), stresses and strains vary over the differently oriented crystallites in the specimen as 

a result of the elastic grain interaction [19]. Even when the whole specimen is 

macroscopically elastically isotropic (quasi-isotropic), i.e. when a crystallographic texture 

does not occur and the grain interaction is isotropic. For quasi-isotropic specimens the 

S1 and 1/2S2 in Eq. 2.42 need to be replaced by hkl-dependent X-ray elasticity constants 

(XEC) S1
hkl

 and 1/2S2
hkl 

[19], i.e.: 

 (2.43) 

In this case the XEC depends on the reflection hkl [23]. 

 The most complex case is the textured polycrystalline material when macroscopic 

elastic anisotropy is present. For such specimen the dependence of the X-ray-averaged 

strains on the mean stresses is described by the X-ray stress factors (XSF) Fij depending 

not only on hkl but also on the texture [1, 19, 24]: 

        (2.44) 

where f represents the ODF function.  

 For textured materials or in the case of direction dependent grain interaction, the 

sin
2

 plots are generally non-linear and the X-ray analysis can be challenging. The first 

works on stress analysis for sample having crystallographic texture were performed by 

 & Hauk (1978, 1979) [19].  
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 The X-ray elasticity constants S1
hkl

 and 1/2S2
hkl

 and the stress factors 

 can be evaluated experimentally by a uniaxial tension or bending test. It is 

also possible to calculate stress factors from single-crystal elastic constants using a model 

of crystallite coupling (Voigt, Reuss, Eshelby- ner) and the ODF as the weight function 

[1, 19]. Because the verification of  used in grazing incident method is one 

of the aims of this work, the different models used for the calculation of these constants 

will be presented in next chapters. 

 It should be stated that using the diffraction methods, the lattice strains are not 

directly measured but in fact the interplanar spacings are determined from 

diffraction peak positions. These positions are measured for different orientations of the 

scattering vector with respect to the sample, defined by the  and  angles. Using Eq. 2.44, 

after simple transformation the interplanar spacings can be expressed by the macrostresses 

 and  stress free interplanar spacing: 

     (2.45) 

or in the case of quasi-isotropic material: 

        (2.46) 

 The calculation of the stresses using Eqs. 2.45 or 2.46 can be performed using the 

least square method and adjusting components of stress tensor as well as . However, 

the whole stress tensor (principal stresses) can be calculated only if  (stress free 

parameter) is known. Fortunately, in the case of X-ray radiation penetrating thin surface 

layer (due to high absorption) we can assume that the forces normal to the surface are 

equal to zero and thus =0. Because one of principal stresses is known,  can be 

adjusted and its value can be also determined. 

 The least square procedure used in this work is based on minimising of the merit 

function called which is defined as:  
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     (2.47) 

where:  and are the experimental and calculated 

interplanar spacings , n n( ) is the measurement error (standard 

deviation) of the determined spacing for the n-th measurement, N and M are the number of 

measured points and fitting parameters, respectively. 

 -of-fit, i.e. [25]: 

 

within the limits of experimental uncertainty), 

 n( ) are overestimated 

or model contains too many parameters compared to the information content of the 

experimental data, 

 

(theoretical) values 
 
depending on stress factors Fij  are 

not accurate enough or modelis not adequate to describe the experimental data. 

 An example of stress calculation for the simplest case when elastic constants are 

isotropic (for tungsten) will be presented in the next chapter when two standard 

methodologies are compared (Fig.3.6). 

 Finally it should be mentioned, that  methods for determining  the second order 

stresses were developed using the elasto-plastic models [13, 14]. From these models the 

theoretical values of plastic incompatibility stresses (  - model values) and the 

corresponding strains  can be predicted (where mod is used for the 

theoretical values). Assuming that the stress variation with the  and  angles is correctly 

described by the models, the measured strains can be expressed by the theoretical values, 

i.e.: ; where: q - is a constant scaling factor. Finally, Eq. 

2.45 takes the form: 
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   (2.48) 

When the value of q parameter is determined (as additional adjusting parameter), the 

plastic incompatibility stresses ( ) can be found for all grain orientations, i.e.:

; where are the model predicted values. Thus, the macrostresses ( ) 

and the mismatch second order stresses ( ) can be determined simultaneously. 

 

2.3.2. DETERMINATION OF THIRD ORDER STRAINS AND CRYSTALLITE SIZE 

 One of the features that decide about physical and mechanical properties of a solid 

body is its microstructure, such as lattice distortion or mosaic structure of grains. Using 

sufficiently resolved diffractometers, it is possible to observe the broadening of the 

diffraction peak due to the sample microstructure. The width of the diffraction peaks is 

also dependent on the size of the coherently diffracting domains, faulting on certain (hkl) 

planes, and microstrains within the coherently diffracting domains [26]. Peak broadening is 

further complicated by strain anisotropy, which can be taken into account by using a 

contrast factor [27, 28]. Not only sample but also instrument contribution convolute into 

the observed diffraction peak profile. Instrumental aberrations depend on the measuring 

technique and geometry. This effect can be taken into account by measuring a standard 

powder sample. 

 It is possible to separate the peak broadening originated from different causes. The 

broadening produced by small crystallite sizes and faulting is independent of the order of 

reflection, whereas the strain broadening depends on the order of reflection. Two methods 

are usually applied to separate these effects from each other [29].  

 The first, Warren and Averbach method (1950), based on the Fourier expansion of 

the intensity function and separation of size and strain series coefficients using diffraction 

peaks measured for at least two orders of reflection. The second is Williamson-Hall 

method (1953). It allows determining the domain size and the mean squared lattice strain 

by an analysis based on full width half maximum values or on integral breadths [29, 26]. 

It should be stated that the presented methods of analysis can be applied for crystallites 

having the size D < 100 nm and lattice distortions  greater than 10
-3

. 
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Warren and Averbach method  

 This method is based on the expansion of peak profile into Fourier series. In the 

case of X-ray diffraction (on laboratory apparatus) it is necessary to remove the influence 

of the K  line from measured intensity. It can be done numerically with Rachinger 

method [30] or analytically with the assumption of theoretical function describing the 

shape of the diffraction line [31] in which it is assumed that the intensity of line K  is 

twice smaller than the intensity of line K  and both of the lines have the same shape and 

the same width. Next, the effect of instrumental influence on the peak profile must be 

taken into account. It can be done using proposed by Stokes [32] harmonic analysis of 

diffraction line profiles of the sample and reference sample. On the basis of them it is 

possible to obtain the actual intensity distribution function of the diffraction peak. The 

diffraction peak G  for reference is measured with the same conditions as this registered 

for the studied sample . The latter profile can be expressed as the convolution of 

instrumental  and structural functions : 

        (2.49) 

If both functions  and  are expanded into Fourier series (the coefficients of such 

series are ,  and , ), the coefficients of the series given by Eqs. 2.26a and 

2.26b can be calculated: 

   (2.50 a)  and  

  

 (2.50 b) 

where c is a constant factor.

 

 

 Finally the size of domain (D) in the direction of scattering vector and the square 

mean third order strain  can be calculated applying Eqs. 2.26a, 2.26b and 2.27 for 

peak intensities measured for two orders of reflections. 

 

Williamson-Hall method 

 The crystallites size D along the direction perpendicular to the {hkl} diffracting 

planes can be related to the width of the diffraction peak using Scherrer formula: 
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cos
s

K

D
          (2.51) 

where K is a constant close to unity, dependent on the method used for  peak width 

determination as well as from the geometric shape of the crystallites [27]. 

 Using the above equation, the crystallite size (coherent domain) D can be 

determined from the peak width measured by an X-ray diffractometer. This equation 

assumes that all the crystallites have the same size and the strains of the lattice are not 

present. In fact usually crystallites have some size distribution and additionally lattice 

distortion limiting application of this formula. 

 Broadening of the diffraction peak connected with the presence of the third order 

lattice distortion and can be calculated from Taylor formula: 

4T e tg           (2.52) 

where e is the lattice distortion. 

 According to Hall [33] the observed total structural broadening of the diffraction 

line  is a superposition of the broadening caused by lattice distortion and crystallite size 

so it can be expressed as: 

4
cos

e tg
D

         (2.53) 

 In order to evaluate the D and e values it is necessary to approximate the diffraction 

profiles of the studied specimen and of the reference sample (for example strain free 

which are in use: the Cauchy approximation and the Gauss approximation. The first 

assumes that both of the profiles (specimen and reference sample) can be approximated by 

Cauchy function. Then the total line broadening can be expressed as: 

cos 4 sine
D

   (2.54 a)       and              (2.54 b) 

where: B and b are the peak widths of the investigated sample and of the reference sample, 

respectively. 

B b
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After simple transformation the above formula can be written as: 

 * *1
d e

D
           (2.55) 

where:  and  

 The second method assumes that both of the profiles can be approximated by a 

Gaussian function. Assuming Gaussian distribution of the strains (e=
2

) the general 

formula can be expressed as: 

     

 (2.56 a)  and        (2.56 b) 

and after transformation: 

        (2.57) 

where:      and     

 In all of this methods by plotting 
* 

as a function of d
*
 for several diffraction lines 

the root mean square value of the lattice distortion and the crystallite size can be 

determined from the slope and the intercept of the plotted curve, respectively. In this aim a 

linear regression is used.  

 The width of the diffraction peak in the above formulas may be determined as 

the integral breadth or as the full width at half maximum (FWHM) [34].  

 An example of size-strain analysis using Gauss and Cauchy is presented in Fig. 2.9. 

The measurements were performed for mechanically polished W sample using the same 

experimental conditions as for peak measurement presented in Fig. 3.7. As the reference 

the LaB6 powder was used. In Table 2.2 the results of the analysis are shown.  

* cos * 4sin
d

2 2
2 2 2 2cos 16 sin

D

2 2 2
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a) b)  

Fig. 2.9. The linear function fitted to the experimental data in Williamson-Hall method for 

polished W sample using Gauss approximation (a), Cauchy approximation (b).  

 

Table.2.2. The slope and the intercept of the fitted linear function to the experimental data 

for polished W sample. Calculated with Williamson-Hall method values of the lattice 

distortion e and crystallite size (D). 

) function 
-4

] 
-4

] e   

5 Gauss 0.68 0.04 0.10 2 0.0021 1 494 42 

15 Gauss 0.45  0.07  0.0017  583 76 

5 Cauchy  -16   -957* 648 

15 Cauchy  -9  0.0  -1629* 653 
*
 large negative values of D means that the intercept point is negative but it is close to zero. 

 

 If the instrumental peak width is large in comparison with the broadening due to 

crystallite size, then it is not possible to determine properly the coherently diffracting 

domain size (some values of D are negative because intercept is negative and close to 

zero). When the peak profile is either pure Gaussian or pure Lorentzian the simplified 

breadth methods work well but when the peak shape is a convolution of Gaussian and 

Lorentzian than these methods cannot accurately determine the crystallite size. The 

Williamson-Hall analysis of polished W sample showed that on the basis of MGIXD 

measurements with classical diffractometer (PANalytical  Empyrean diffractometer, 

configuration is given in Table 5.4.) it is possible to estimate the value of root mean square 

of third order strain but the resolution of the diffractometer is not sufficient for crystallite 

size determination. The value of D can be calculated with a lardge uncertainty because the 

accurancy of the intercept determination (of the fitted linear regration line in Williamson-

Hall method) is rather small. However the slope of the regration line is well defined 

therefore value of e is determined with reasonable uncertainty. 
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3. METHODOLOGY OF STRESS MEASUREMENTS USING X-

RAYS 

 Although the neutron diffraction methods of stress measurement were significantly 

developed, X-ray diffraction remains the most important tool of stress analysis which can 

be used in industry or in laboratory.  X-ray diffraction in residual stress measurements of 

polycrystalline materials were applied for the first time in 1930 [35, 36, 37]. It is worth to 

emphasise that introduction of the sin
2

 method by 

[22, 37] was one of the greatest achievements in X-ray stress analysis (XSA).  

 

 

Fig. 3.1. Information depth of the diffractive stress analysis [38] 

 

 Due to high absorption of the X-rays (on laboratory diffracrometers) the stress 

measurements are performed using reflection method, i.e., the beam is reflected from the 

surface of the sample and penetrates the volume below the surface. The other methods 

based on the transmission mode can be used only for high energy synchrotron radiation or 
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neutron radiation. In all cases, the intensity of the beam penetrating the studied sample 

depends on the linear absorption of the material ( ) according to the exponential law: 

I(x) = I0 exp (- )         (3.1) 

where x is the length of the ray path in the material and I0 is the intensity of the incident 

beam. 

 In the present work only the reflection mode is considered for which the 

information depth can be estimated using the above law. In this case, if the strain free 

lattice parameters  as well as stress factors do not depend on depth [37]. 

The mean lattice strain  at information depth z , calculated over reflecting 

grains (as in Eq. 2.33) must be also averaged with the weight of beam intensity over depth 

z under surface. It was assumed that so calculated strain is related with the mean first order 

stress and also averaged with the intensity weight (see Fig. 3.5):  

   (3.2) 

where:        (3.3) 

and t is the sample thickness,  is the he distance from the 

surface of bulk material ( ), for which  part of total intensity of the 

incident beam is absorbed. 

 , 

which can be understood as the mean value of  z-depth weighted by an attenuation factor:  

  

     (3.4)
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A general formula for penetration depth  in the case of bulk material or thick coatings 

(i.e., ) is given by [39]: 

        (3.5)

 

where  is an angle of rotation of the sample around the diffraction vector i.e., L3 axis 

shown in Fig. 2.6. 

 In the case when the incident angle of X-ray beam (   angle between incident 

beam and sample surface, see Fig. 3.7) is close to the critical angle ( cr  angle for which 

total external reflection occurs), the expression for penetration depth takes the form [37]: 

 
2

2 2 2 2 2

( )

sin sin 4 sin sin
4

2

cr cr

  (3.6) 

where  is the wavelength and . 

In this case, as it can be seen in Fig. 3.2 small changes in  angle causes significant 
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Fig. 3.2. Penetration depth as a function of incident angle for aluminum and titanium. 

Curves change significantly close to the critical angle. 
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 In should be stated that for  (bulk materials) in Eq. 3.3, the upper limit of 

the integral can be replaced by the infinity and the equation takes the form of the Laplace 

transformation with respect to 1/  (see Eq. 3.3 in which should be replaced by ). In 

order to reveal the real depth profile of stress  it is necessary to perform inverse 

Laplace transformation for the data gained experimentally ( )I

ij z  [40].  

 Introducing a new variable: 
 

the mean stresses ( )I

ij  determined with 

absorption weight can be expressed as: 

0

0

( )

( )

s

ij

I

ij

s

e z dz

s

e dz

        (3.7) 

where z is the real depth under the surface. 

It can be noticed that the denominator of the above formula is a Laplace transform of 1, 

while the numerator is a Laplace transform of the stress function ( )I

ij
z . Thus, Eq. 3.7 can 

be rewritten as: 

        (3.8) 

and 

          (3.9) 

where denotes Laplace transform of the macrostrain function ( )I

ij
z .  

 In order to reveal the real depth profiles (z-profiles) of the macrostresses, the 

inverse Laplace transform of  have to be calculated. However, it should be noted 

that usually only a few values of the mean stresses  within a limited range of  can 

be determined experimentally. The fragmentary knowledge about  function causes 

that the inverse Laplace transform cannot be easily determined. Thus the experimental 

functions  are usually approximated by functions for which the inverse Laplace 
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transform can be easily designated. For example, it is possible to use the piecewise 

polynomials allowing dividing the Laplace space into small sections in which it is possible 

to describe the stress profile. Usually  polynomials of the first and second degree are used 

[41]. 

 Another method for determination of the stress profile ( )I

ij
z  in the depth was 

proposed by Genzel et al. (1996). In this work the inverse Laplace transform is calculated 

numerically by the methods of orthogonal polynomials. Several sets of orthogonal 

functions were used but the best results were achieved with the use of Jacobi polynomials. 

It seems that this method is mostly suitable in the case of steep gradients. If necessary it is 

possible to divide the depth profile into intervals and then calculate inverse transforms for 

each interval separately [40]. 

 To reveal the stress profile ( )I

ij
z  Huang et al. (1997) used the constrained linear 

inversion of the  profile. This analysis showed that the significant advantage of the 

numerical method is that there is no major restriction on the form of the penetration depth 

profile. What is more it is more likely to achieve the better fit to the experimental data 

numerically than with the inverse Laplace method [42].  

 In the present work the z-profile of stress is determined using a method based on 

the expansion into Taylor series of the quested stress function ( )I

ij
z , i.e.: 

0

( )
N

I n

ij n

n

z a z          (3.10) 

The Laplace transform of the above function is given by equation: 

        

 (3.11) 

and the measured profile of the stresses can be expressed as: 

          (3.12)  

as  it can be written: 
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         (3.13) 

where  . 

In the above equation the function of mean macrostress  gained from measurements 

is expressed by a polynomial with variable . If the polynomial coefficients are determined, 

also the coefficients of the Taylor expansion of the macrostress ( )I

ij
z can be calculated, 

i.e.: 

           (3.14) 
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Fig. 3.3. Experimental stresses for polished Al2017 alloy with polynomials fitted to 

the measured values (a) and corresponding profiles ( )I

ij
z obtained by using inverse 

Laplace transform (b). 

 

 At present, there are two basic ways to carry out the experiment: 

- in angle dispersive diffraction mode (AD) or 

- in energy-dispersive diffraction mode (ED). 

In the case of the AD method one uses a monochromatic radiation, while a white X-ray 

beam is diffracted by a polycrystalline material in ED mode. The later method was 
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introduced both by Giessen & Gordon (1968) and Buras et al. (1968) and it was firstly 

used in 1970 by Nagao & Kusumoto, 1977 [43].  

 AD diffraction methods with conventional X-ray tubes allow investigating the 

material only for the penetration depth of a few up to some tens of microns. It is also 

possible to get information on deeper regions below the surface of the sample in AD 

techniques by applying layers removal. This method, however, is a destructive method and 

it cannot be always used. On the other hand neutron diffraction allows getting the 

information for more than hundreds of microns. The high energy AD and ED diffraction 

are the non-destructive methods which give the opportunity of the sample investigation for 

such depth (up to tens or hu

on laboratory diffractometers. In the ED diffraction, in reflection mode, the white radiation 

in the energy range from about 10 up to 150 keV with a continuous photon energy 

spectrum is used. In this method the scattering angle d can be chosen freely and remains 

constant during the measurement [2, 44]. In this case, the lattice spacing  expressed as 

a function of the diffraction line  on the energy scale is given by: 

        (3.15) 

where: h is c the velocity of light.  

 A great advantage of this method, in comparison with AD diffraction techniques, is 

the multitude of reflections recorded simultaneously in one energy spectrum. Each of them 

differs in energy so it provides additional depth information [2, 43]. The penetration depth 

in ED method is given by Eq. 

coefficient which depends on the energy E of the radiation. In the symmetrical case of 

diffraction ( hkl reflection is [44]: 

         (3.16)

  

where 

 

for absorption between the absorption edges. 

 In this chapter a few geometries used for stress measurement by X-rays will be 

shortly presented and for each the problem of the information depth will be discussed. This 
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problem is certainly very important in the case of in depth stress gradient. Also, the 

principles of multireflection grazing incidence X-ray diffraction (MGIXD) developed in 

the present work will be introduced. The methods described below will be divided in two 

types: methods in which the penetration depth is variable or is constants during 

measurement. In the first case complex analysis should be used in order to extract the in-

depth stress profiles, while the latter methodologies are concentrated on designing  special 

geometries in which the lattice strains are measured for a constant penetration of X-rays 

(this simplifies the analysis of the data).    

 

3.1. METHODS WITH VARIABLE PENETRATION DEPTH 

 

3.1.1. STANDARD GEOMETRIES OF STRESS MEASUREMENT 

 In the standard sin
2

 method, the {hkl} vs. sin
2

 functions are measured 

using X-ray diffraction for a single reflection hkl and constant  angle. As shown in 

Fig. 3.4, the  angle can be changed in two different ways, i.e. by tilting diffraction plane 

( -geometry) or rotating both incident and diffracted beams in diffraction plane being 

perpendicular to the sample surface ( -geometry). In both cases the diffraction peak for 

the same reflection hkl is measured, thus the  angle remains approximately constants 

(excluding small shifts caused by lattice strains). The measurements of 

{hkl} vs. sin
2

 functions are repeated for different  angles. To set desired angles 

 and  the instrumental angles  and  are varied applying conditions defined in 

Fig. 3.4. 

 

Fig. 3.4. Two different geometries used in standard measurements of residual stresses. The 

instrumental angles are indicated by: ,  and , while  and  are the desired angles. 
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Orientation of diffraction plane, scattering vector, incident (i.b.) and reflected beam (r.b) 

are shown. 

 The standard method for stress measurement is not suitable for the analysis of 

heterogeneous stress states because the penetration depth of X-ray radiation varies 

significantly during measurement when both orientations of incident and reflected beams 

are varied (Fig. 3.5). The effective penetration depth can be calculated for the  and -

geometry:  

cos sin
:

2
geometry        (3.17) 

      (3.18) 

where , and 2  angles are defined in Fig. 3.4. 

 

Fig. 3.5. Penetration depth calculated from Eqs. 3.17. and 3.18. for polished tungsten 

(  = 3313 cm
-1

, Cu K  radiation) in function of sin
2

 . 

 

 Consequently, the volume for which the measurement is performed is not well 

defined and the interpretation of the results is not unique. Using the standard X-ray sin
2

 

method, the stress gradient can be estimated only if a special character of stress evolution 

is assumed (for example exponential or linear variation with depth). Moreover, this 

estimation is based on the curvature of the sin
2

 plot [3, 45], which can also be influenced 

by other effects (presence of the  or  shear stresses or sample anisotropy).  

:
sin( ) sin( )
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1
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 The example of sin
2

  plots for different  angles measured using and 

 geometries (mechanically polished tungsten was measured for the same experimental 

conditions as peaks presented in Fig. 2.9, details are given in Table 5.4 for PANalytical  

Empyrean diffractometer). The linear behaviour of the functions means that the stress 

gradient is not present in the penetration depth reached by diffraction. The results 

presented in Table 3.1 show the same stresses determined using both methods. 

a) b)  

Fig. 3.6. Interplanar spacings {hkl} vs. sin
2

  for a mechanically polished tungsten 

sample. Results for   geometry (a) and   geometry (b). 

 

Table 3.1. Comparison of the results obtained for two different geometries. 

geometry 
I
11 (MPa) 

I
22 (MPa) 

2 
 

 -  -787  4.8 0.9 

 -  -  4.2 1.0 

 

 Finally it should be stated that the standard method can be used to measure stress 

gradients using ED method with synchrotron radiation. In this case the -geometry is used 

with constant  angle and the reflections are obtained for different energies <E>{hkl} 

corresponding to interplanar spacings <d>{hkl} according to Eq. 3.15. Because the 

absorption coefficient  depends on the energy, also so measured <d>{hkl} vs. sin
2

 

function will be determined for different depths (Eq.3.16). Therefore, the mean stresses 

obtained for different reflections will be defined also for different  (see Eq. 3.16). The 

problem is that the penetration depth for each plot <d>{hkl} vs. sin
2

 (Fig. 3.5) changes 

significantly and in the case of significant stress gradient these functions are far from 

linearity. Consequently the ED standard method can be used only in the case of small in 

depth variation of the stress.  
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3.1.2. UNIVERSAL PLOT METHOD 

 An interesting modification of the standard diffraction experiment introduced in 

order to find  in depth profile was proposed and developed by Genzel [37, 44, 

46, 47]. In this method, an original treatment of standard sin
2

  plots was performed, 

assuming biaxial residual stress in a quasi-isotropic sample. With these assumptions the 

mean value from lattice strains measured for  = 0
0
 and  = 90

0
 can be related with so 

called in-plane residual stresses ( [37]: 

        (3.19) 

where:

   

,

 

 and 

  (3.19 a) 

 Then the principal stress components can be expressed by [37]: 

    (3.20) 

where (for quasi-isotropic polycrystalline materials): 

 

and

 

   

 Assuming a biaxial residual stress state ( =0) the stress free parameter 

 = can be measured in the strain-free direction  of the biaxial stress 

state, i.e. for =0 ( ). Therefore if  is known, the 

right hand side of the Eq. 3.8 contains only the experimental information and the unknown 

in-plane stresses is on the left hand side. As the result the profiles of biaxial stresses can be 

easily determined. However, in the presence of  stress fields in the eq. 3.20 the 

additional term occurs. It can falsify the in-plane stress depth distribution by a certain 

amount [44]. 
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In this method the stress distribution vs. penetration stress can be directly computed from 

single standard sin
2

  plot and presented as a plot versus penetration depth [37]. Moreover, 

applying high energy with ED mode the universal plots for different ranges of penetration 

depths can be determined and shown togethe universal plot .  

 

3.1.3. SCATTERING VECTOR METHOD 

 Another method used for determination of in depth stress gradient is the scattering 

vector method [39, 44, 46]. In this method the components of the stress tensor  (in 

function of the penetration depth ) are determined from a series of measured 

 depth profiles. The interplanar spacings  are measured 

for constant  and  angles, with stepwise rotation of the sample around the scattering 

vector (i.e., L3 axis in Fig. 2.6). To calculate penetration depths  (for given  and ) 

corresponding to different  angles Eq. 3.5 is applied. Using the AD diffraction, 

measurements are performed for at least two  angles. Next the self-consistent calculations 

of triaxial residual stress gradient are performed. In this variation procedure [46], the 

perpendicular stress is expressed by: 

     (3.21) 

(where:  -free 

) and the in-plane stress 

components  given by Eq. 3.20 are calculated for varying value of . The 

calculations are repeated for strain profiles obtained for two or more inclinations 

 receiving different profiles of triaxial stress  (or mean stress ). If the 

procedure is convergent, the same profiles of  (or ) must be gained for 

different  inclinations (the difference between such profiles determines a criterion of 

convergence). Finally, when the convergence is reached, the triaxial residual stress state 

within the accessible penetration depth and the strain-free lattice parameter are determined, 

without the need of some stress-free reference sample (assuming does not change 

with depth due to structure heterogeneity).  
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 The above described method was also applied using ED measurements with 

synchrotron radiation [44]. The advantage of this improvement is certainly the increased 

number of strain profiles measured at different penetration depths (for different energies). 

This provides more  input data used for stress calculations. Moreover, the stresses can be 

studied for significantly increased depth in comparison with laboratory apparatus (with X-

ray tubes).  

 

3.2. METHODS WITH A CONSTANT PENETRATION DEPTH 

 The geometry based on the grazing incidence X-ray diffraction can be applied to 

measure gradients of residual stresses in surface layers [14, 19, 39, 46, 48, 49, 50]. The 

principle of this method is the use of a small incidence angle ( in Fig. 3.7) for which the 

path in the material of the incidence beam is much longer than the path of diffracted beam 

(a>>b in Fig. 3.7). To perform stress measurements for constant penetration depth ( ), the 

orientation of scattering vector characterized by  

kept unchanged. To do this, different methods were proposed [19]: (a) multiple reflection 

and single wavelength  multi-reflection method [14, 48, 51, 52], (b) single reflection but 

multiple wavelengths  multi-wavelength method [53]; (c) single reflection and single 

wavelength - [54, 55]. 

 

3.2.1. MULTI-REFLECTION GRAZING INCIDENCE X-RAY DIFFRACTION 

 The multi-reflection grazing incidence X-ray diffraction (MGIXD) geometry [14], 

also called multiple {hkl} grazing incidence [19], is characterized by a small and constant 

incidence angle  and by different orientations of the scattering vector (variable 2  

angle for a constant wavelength; see Fig. 3.7) given by the equation: 

          
(3.22)  

where 2 are the diffraction angles corresponding to those reflections hkl for which 

diffraction peaks are measured [14, 49, 56]. 

 In this geometry the diffraction plane (defined by incident and diffracted beam) is 

always perpendicular to the sample surface.  

}{hkl

}{}{ hklhkl

}{hkl
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Fig. 3.7. Geometry of MGIXD-sin
2

 method. The incidence angle  is fixed during 

measurement while the orientation of the scattering vector is characterised by the angle {hkl}. 

  

 Analogically to the standard method, stresses can be determined from the 

interplanar spacings measured in direction of the scattering vector, i.e. in this case, for 

different  (and consequently various angles) and for constant  angle 

(Fig. 3.7). However, in the case of multi-reflection method instead of { }, hkl< d( , z )> , the 

so called equivalent lattice parameters { }, hkl< a( , z )>  are expressed by the macrostresses 

( )I

ij z  and strain free  lattice constant [14]:  

{ } 0 0, ( )I
hkl ij ij< a( , z )  = [ F (hkl, , ) z ] a a>      

  (3.23) 

where:  

for cubic crystal structure: 
2 2 2

{ } { }, ,hkl hkl< a( , z )  = < d( , z )  h k l> >             (3.24 a) 

or for hexagonal structure: 
1

2 2
2 2

{ } { } 2

4
, , ( )

3 ( / )
hkl hkl

l
< a( , z )  =< d( , z ) h hk k> >

c a
     (3.24 b) 

where  can be chosen arbitrary, while  depends on the diffraction angle for given 

reflection hkl (Eq. 3.22).  

 In the case of MGIXD method, the measurements of interplanar spacings 

are performed in the near surface volume, which is limited by radiation 

absorption. To define this volume, the path of the X-ray beam through the sample must be 

}{hkl }{hkl

0a

{ }, hkl< d( , )>
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considered (Fig. 3.7). The measured average interplanar spacings  are 

equal to:  

0

{ }

0

( , , , ) exp[ ( )]

, ,

exp[ ( )]

t

hkl t

d hkl z l z dz

< d( z )   

l z dz

   and       (3.25) 

where the above formula can be used if  >> cr ( cr is the critical angle for total external 

reflection), z is a depth below the surface and the average is calculated over the volume of 

all reflecting grains in the beam path, i.e. from surface ( z = 0 ) to the thickness of the 

coating ( z = t ). If the stresses are measured in a monolithic sample or in a thick coating 

. 

 For  >> cr, Eq. 3.25 is usually expressed in the equivalent corresponding to 

effective depth  given by Eq. 3.4:  

0

{ }

0

( , , , ) exp[ / ]

, ,

exp[ / ]

t

hkl t

d hkl z z dz

< d( z )   

z dz

    and          (3.26)  

By using a long incident beam path for small  angle (a(x)>>b(x) in Fig. 3.7), the above 

equation can be simplified, i.e.: , where  nor  does not depend on the {hkl} 

(or {hkl}) angle. What is more the penetration depth can be changed by appropriate 

selection of  angle to investigate materials on different depths below sample surface 

 

 Using Eq.3.23 and assuming  the other parameters of stress tensor and 

a0  parameter can be determined from least square fitting procedure (as described in the 

case of Eq. 2.45 and 2.46). On the other hand, if the value a0  is known, full stress tensor 

can be found for given  or . This gives a possibility to measure a stress gradient as well 

as the in-depth dependence of a0. It should be stated, that till now, in the case of hexagonal 

structure the value of c/a was taken from the tables [14, 48], and however in the next part 

of this work an original method for determination of c/a in depth profile will be proposed. 

{ }, hkl< d( , )>

)sin(sin
)(

}{hkl2
zzl

11

t

z

1-

)sin(sin }{hkl2

sin
z

33( ) 0I

z
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 In Fig. 3.8 the dependence of effective penetration depth for different geometries 

and two materials (Al and Ti) are presented. Calculations were performed for absorption 

Al = 135.6 cm
-1

 Ti = 918.9 cm
-1 

occurring for Cu X-ray radiation and for 

z ). Accordingly to the above discussion strong 

dependence of on  angle is seen in the case of standard  and  - geometries, while 

almost constant value of  was determined for MGIXD method. Moreover, grazing incident 

geometry allows investigating much shallower depths, which can be changed by setting 

different  angles. 

 

Fig. 3.8. The penetration depth ( ) vs. sin
2

 for classical ) and  geometries (shown 

for  corresponding to 422 reflection in the case of Al) and for MGID-sin
2

 method 

(shown for four incidence angles). Two scales of  corresponding to Al and Ti material 

with CuK  radiation are shown. 

 

 In present work the MGIXD method is significantly developed, tested and applied 

to measure in-depth profile of stresses and stress free lattice parameter as well as c/a 

parameter in the case of hexagonal crystal structure. A great advantage of this method is 

the possibility of using Williamson-Hall method for crystallite size and the root mean 

square of lattice strain determination [57, 58]. 
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3.2.2. MULTI-WAVELENGTH METHOD  

 Multi-wavelength method allows to perform measurements of stresses at a constant 

penetration depth by applying X-rays having different energies (wavelengths) by using 

synchrotron radiation or different tubes on laboratory equipment [19, 53]. The 

experimental configuration is similar as this used in the above described multireflection 

method (diffraction plane is perpendicular to the sample surface as shown in Fig. 3.5) but 

in this case peaks for the selected single hkl reflection are measured. In order to gain the 

proper set of data, i.e. to change  angles (determining inclination of the scattering vector), 

for a given hkl reflection the scattering angle  is varied by changing the value of the 

wavelength. The constant penetration depth is kept unchanged adjusting additionally the 

incident angle . In this method the relation between and  angles is given by 

Eq. 3.22. 

 

3.2.3. PSEUDO-GRAZING METHOD  

 Pseudo-grazing incident X-ray (p-GIXD) method, called also multiple  [19] allows 

evaluation of the average level of stresses and their distribution below the surface by 

setting the desired penetration depth which can be done choosing the proper incident angle 

59]. In this method only one hkl 

reflection is used but additional rotation of the sample by  angle (Fig. 3.4) is performed. 

 angle) the orientations of the sample and the angles of diffraction cannot be chosen 

independently. The values of these angles must be calculated from the directions of the 

incident beam, diffracted beam and diffraction vector as well as from the penetration depth 

which need to be constant when the sample is rotated. A combination of  

angles (see Fig. 3.4 a) allows to achieve the constant penetration depth of X-rays.  

 In this method the penetration depth can be expressed as [54]: 

       (3.27) 

where:  and . 

sin sin(2 )cos

[sin sin(2 )]cos( )

arccos[cos cos( )]
cos

cos
cos( )
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 For each value of desired  angle and given penetration depth it is necessary to 

select proper values of the instrumental angles  and according to Eq. 3.27. Next, in 

instrumental angle  which can be calculated from the following relation (see Fig. 3.4): 

         (3.28) 

 The main disadvantage of this method is the limitation of the accessible range of 

 for reflections having large  . This limits are 

define by the limit of both   (upper limit) geometries. Table 3.2 

summarizes the example of the results for polished Al2017 and Ti6Al4V samples showing 

-GIXD. Furthermore, this method can be applied only 

on the diffractometers giving 3 degrees of freedom for the specimen.  

 

Table 3.2. Possible range of the  angle in p-GIXD method for Cu K  radiation. 

hkl   sin
2

 

Ti6Al4V 

{103} 71 26-65 0.2-0.8 

{014} 93 37-68 0.4-0.9 

{114} 115 48-71 0.6-0.9 

Al2017 

{220} 64 23-64 0.2-0.8 

{311} 77 29-66 0.2-0.8 

{331} 111 46-71 0.5-0.9 

 

 

 

 

 

 

sin
arctan

tan



57 

 

3.3. X-RAY DIFFRACTION ELASTICITY CONSTANTS AND STRESS FACTORS 

 To study the stress state in a polycrystalline material the stresses must be related to 

the measured lattice strains using the X-ray elasticity constants or stress factors, as shown 

in Eqs. 2.43 and 2.44. In the present work X-ray diffraction methods are applied to 

measure residual stresses in materials and the problem of X-ray stress factors (XSF) used 

for the interpretation of results will be studied in chapter 5. To show the influence of the X-

ray stress factors on the interpretation of MGIDX results, polycrystalline materials having 

low (W, Ti alloy) and high elastic anisotropy of crystallites (Ni alloy, CrN coating) are 

investigated. The information about elastic anisotropy of a cubic symmetry monocrystal is 

given by so-called Zener anisotropy factor A, defined as [60]: 

          (3.29) 

where: c44 and (c11-c12)/2 represent the shear stiffness in a [100] direction on a (100) plane 

an in a [110] direction on a (110) plane, respectively (cij are single crystal stiffnesses 

written using Voigt matrix convention). For perfectly isotropic crystal A=1. Values of 

single crystal elastic constants and Zener factor for materials studied in this work are given 

in Table 3.3. 

 

Table 3.3. Single crystal elastic constants (cij) and Zener factors (A) for studied materials 

[61, 62, 63, 64, 65, 66, 67]. 

 

 

 

       

        

        

        

        

 

stainless 

steel 

       

* in the case of hexagonal symmetry, the anisotropy factors can be defined with for 

example by coeficients given by H.M.Ledbetter: A1=1.2, A2=A=1.34, A3=1.61, A4=0.73, 

A5=1.05 [68]. 

44

11 12

2

( )

c
A

c c
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 X-ray as well as macroscopic elasticity constants can be calculated from single-

crystal elastic constants by adopting a grain-interaction model [19, 69]. The commonly 

used methods for the calculation of the diffraction elastic constants are Voigt [70], Reuss 

[71 72] models or so called direction dependent Vook Witt [19] or recently 

proposed free- surface models [73, 74]. The difference between the models is the type of 

assumed intergranular elastic interaction. 

 

 

Fig. 3.9. Scheme of interactions between grains for four different models: a) Reuss - 

homogeneous stress, b) Voigt -homogeneous strain and c) Kr ner  (sc  self consistent) 

ellipsoidal inclusion within homogeneous medium and d) free surface  (sc-fs  self 

consistent free surface) ellipsoidal inclusion placed near the surface of the homogeneous 

medium [20]. 

 

The Voigt model 

 In the Voigt [70] model the uniform grain elastic strain is assumed to be equal to 

the elastic macro-strain value [75]. The strain distribution is homogenous in the sample so 

there is a continuity of the strain at the grain boundaries. Stress tensor for each differently 

orientated crystallite will not be the same [19]. 

 The X-ray stress factors (independent from hkl) can be calculated from [75]: 

        (3.30) 

where  is the macroscopic stiffness tensor expressed in the sample coordinate system 

S (Fig. 2.6) and versor  is defined in Eq. 2.41. 

1

( , , ) S

ij k l klij
F f m m C

S
C

m
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 The macroscopic stiffness tensor is calculated from single crystal stiffnesses 

 of grains having orientations  expressed in the S system, using 

orientation distribution function : 

    (3.31) 

where  are the Euler angles describing the lattice orientation of the grains [76]. 

 In the absence of texture, i.e. for =1, the polycrystal is macroscopically 

isotropic, and X-ray elasticity constants S1
hkl

 and 1/2S2
hkl 

 can be used instead of the stress 

factors. The XECs, according to the Voigt model do not depend on hkl and thus are equal 

to the mechanical constants. Following Welzel [19], the X-ray elastic constants S1 and 

1/2S2 can be calculated from the components of the single-crystal compliances defined 

with respect to the lattice (sij  two indexes convention). For cubic crystals: 

;          and     s0=s11-s12-s44/2 (3.32) 

 

The Reuss model 

 In Reuss model [75, 77] the stress is assumed to be uniform across the sample for 

all polycrystalline grains. For each crystallite, the strain tensor is different so at the grain 

boundaries a strain mismatch will occur [19]. 

 The X-ray stress factors can be calculated [1, 19]: 

   (3.33) 

where the same mean value as in Eq. 2.28 is calculated for s
S 

 single crystal elastic 

compliance tensor expressed in S system, i.e., average over volume of diffracting grains. 

S
C

1 2( , , )S

ijkl
c 1 2, ,

1 2( , , )f

2 2

1 2 1 2 1 22

0 0 0

1
( , , ) ( , , ) sin

8
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ijkl ijklC  = d d c f d
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2
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Both  and  values for given reflection hkl are expressed as 

functions of orientation angles defined in Fig. 2.8.  

 In the absence of texture i.e. when =1, the  S1
hkl

 and 1/2S2
hkl 

can be used 

instead of stress factors. For cubic crystals, the X-ray elastic constants S1
hkl

 and 1/2S2
hkl 

can 

be calculated from the components of the single-crystal compliances [19]: 

,          (3.34) 

where =(h
2
k

2
+h

2
l
2
+k

2
l
2
)/(h

2
+k

2
+l

2
) is called the orientation factor for cubic 

materials. 

XECs according to the Reuss model are hkl - dependent. 

 

The Eshelby   

 In the self-consistent [72] method the grain is approximated by an ellipsoidal 

inclusion [78], which is embedded into a homogenous and isotropic medium with the 

elastic properties of the entire polycrystal. In this model the inclusion has an elastic 

property of cubic symmetry [79]. Kneer (1965) [80] extended the model for textured 

specimens [19]. 

 Following Welzel [19] the elastic strain of a single-crystalline inclusion is given by: 

         (3.35) 

where tijkl is the tensor which describes the deviation of the elastic properties of an 

individual grain from the average elastic properties of the entire polycrystal/surrounding 

matrix. It depends on the shape of the inclusion, the single-crystal elastic constants and the 

macroscopic mechanical compliance tensor Sijkl of the aggregate. Usually, spherical 

inclusions are considered.  

 

 

( , , , )S

klij
s hkl ( , , , )f hkl

1 12 0 ( )hklS s s hkl 2 11 12 0

1
3 ( )

2

hkl
S s s s hkl

[ ] I

ij ijkl ijkl kl
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The X-ray stress factors can be calculated from: 

      (3.36) 

 In the absence of texture the =1, the X-ray elastic constants S1
hkl

 and 

1/2S2
hkl 

19, 81]: 

 
  and   

  
 (3.37) 

where T0=T11-T12-2T44,   , 

, 3K=1/(S11+2S12), 44 ,  11-S12) and  

K is the bulk modulus, G is the shear modulus and Sij are the macroscopic compliances 

(two indexes Voigt convention). 

 

Free surface model 

 The free surface model [73, 74] treats a grain as an ellipsoidal inclusion placed near 

the surface of the homogeneous medium. This is a direction dependent model in which the 

interaction between grains is changing with the direction with respect to the sample. 

 In this model the grains close to the surface interact differently for the forces 

normal and parallel to the surface. For the direction perpendicular to the surface the grains 

exhibit a Reuss type of interaction behaviour and for the in surface plane they follow 

model. This idea is similar to that used in the Vook-Witt model in which 

combination of Reuss and Voigt approaches is applied [19]. Therefore the elastic 

interaction between grains is neglected in the direction normal to the surface. Grains on the 

surface can freely deform in the normal direction.  
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 The X-ray stress factors can be calculated from: 

     

(3.38)

 

where: 

( , , , ) for k 3 or l 3 as in Reuss model
( , , , )

( , , , ) ( , , , ) for k 3 and l 3 as in Kroner model

s

klijS

klij s s

klij klij

S hkl
X hkl

S hkl t hkl

 

 It should be underlined that the presented above models approximate real 

polycrystalline aggregates and in fact, the grain to grain interactions depend on the grain 

size distribution, the grain boundary misorientation distribution and the Zener anisotropy 

factor. It is well known that a high crystal anisotropy together with a crystallographic 

texture leads to nonlinearities of the sin
2

 plots obtained from standard methods of stress 

measurement [14, 19, 75]. One of the aims of this work is a verification of XEF calculated 

by different models and their application for interpretation of the results obtained using 

MGIXD method. In this case the difference between XEF calculated for different 

reflection hkl is very important especially for high single crystal anisotropy.  
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4. AIMS OF THE THESIS 
 The aim of this work is to develop one of the methodologies for stress 

measurements based on the grazing incidence X-ray diffraction, namely: multireflection 

grazing incidence method. On the basis of the present knowledge and due to numerous 

advantages of this method it seems that it is a valuable tool for in-depth stress analysis, 

especially important for samples having stress gradient. That is why this method will be 

considerably developed and applied for coatings and surface layers of  materials subjected 

to different processes. Moreover, one of the main purposes of the thesis is to investigate 

the mechanical properties of the polycrystals such as: elastic constants and their elastic 

anisotropy. Different theoretical grain elasto-plastic interaction models will be considered 

and applied in X-ray stress analysis in the thesis. 

 Till now the multireflection grazing incidence diffraction is not a commonly used 

method for X-ray stress analysis. The commercial companies implemented this method in 

their software but without taking into account the elastic anisotropy. What is more the 

systematic verification of this method with synchrotron radiation was not presented and the 

precise limits of application were not summarized in the literature. That is why the main 

interests in the thesis will be concentrated on method developments. Firstly, physical and 

geometrical effects influencing X-ray stress analysis will be taken into consideration. 

Secondly, elastic anisotropy and proper choice of the grain interaction models will be 

analysed in order to perform the valuable in-depth stress analysis. Thirdly, MGIXD 

method will be compared with standard methods, in effect new possibilities of this method 

will be highlighted. What is more the method will be verified with synchrotron radiation. 

For the first time MGIXD method will be applied for EDDI (energy dispersive diffraction) 

experiments. Finally the method will be applied to measure in-depth profile of stresses in 

materials subjected to different kinds of surface treatment. 

 At the end of the thesis  conclusions and practical recommendations for the users of 

this method will formulated. 



64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 

 

 

 

 

 

5. TESTS, LIMITS AND EXPERIMENTAL DEVELOPMENTS OF 

THE MGIXD METHOD 

 The MGIXD method, proposed and developed by Skrzypek et al. [14, 49, 82], is an 

indispensable tool for non-destructive analysis of the heterogeneous stresses for different 

(well defined) volumes below the surface of the sample. There are important benefits in 

using different reflections to measure residual stresses. The most important is the wide 

range of scattering vector inclinations enabling sufficient range of measured 

>),a( < hkl}{  vs. sin
2

 plot which is used to calculate the stress tensor from a linear 

regression or least square method. The main disadvantage of the multi-reflection method is 

that the interplanar spacings must be measured using also the low  reflections (for 

example about 40
o
-50

o
). In this case the resolution of the strain obtained from measured 

peak shift is low (see Eq. 2.29) and this is why the peak position must be precisely 

determined. Precise measurement is possible due to simple experimental geometry in 

which the orientation of the scattering vector is changed in diffraction plane being 

configuration enables to use linear focus of the X-ray tube and application of the parallel 

beam geometry in which the parallel plate collimator (soller collimator) is used in the 

reflected beam optics (Fig. 5.13). Moreover, the incident beam can be collimated for 

example by a ror or a multi-capillary collimator. The advantage of parallel beam 

setting is its high resolution in determination of peak position and minimisation of the error 

caused by sample displacements in the z-direction (see Fig. 5.13). Till now, the parallel 

beam geometry used in MGIXD method was realised without collimation of the incident 

beam which was limited by slits [14, 49

mirror will be applied for stress measurements using MGIXD method. This experimental 

setup will be described and tested. The reproducibility of the results of XSA will be tested 

for different diffractometers on the powder sample [83]. 



66 

 

 In this chapter also some new developments of the methodology, mainly 

corrections of experimental data and tests will be presented.  

 

5.1. CORRECTIONS OF DETERMINED PEAK POSITION  

 In the case of stress measurement, it is of the highest importance to know the exact 

position of the diffraction peak. To do this a few factors [1, 6] should be taken into account 

[85]. Hence, these factors for MGIXD are discussed below. 

 

5.1.1. INTENSITY CORRECTIONS 

 As mentioned in section 2.4 there are different reasons of peak asymmetry which 

should be corrected before determination of peak position. The appropriate correction 

factor used for standard and MGIXD methods are summarised in Table 5.1. These factors, 

depending on angle, should be used to correct each peak accordingly to Eq. 2.30, after 

background subtraction. The LP(  correction is the same for all methods, Ab(  

correction is not necessary for   geometry, while the absorption correction is the same for 

 geometry and MGIXD methods. However, in the latter case different angles are kept 

constant during peak scanning (i.e.  and  for   geometry and MGIXD method, 

respectively). 

 

Table 5.1. The intensity correction factors for different methods of stress measurements 

[3, 6], where the angles: , 

 

and are defined in Fig. 3.7.  

   geometry  geometry MGIXD 

Lorentz-polarization: 

LP(  

2

2

1 cos 2

sin  
 

Absorption:      Ab(  1    (1 tan cot ) / 2  
.const  

(1 tan( )cot ) / 2  
.const  
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Fig. 5.1. Dependence of LP(  (a) factor and Ab(  (b) factors on the scattering angle  
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Fig. 5.2. Dependence of LPA= LP * Ab factor on the scattering angle A small range of 

variation for relatively low  (about 30
o
) is shown in figure b. 

 

 As seen on Figs. 5.1 and 5.2 the most important variation of intensity (LPA = 

LP*Ab) factor occurs for small  angles. However, even in this range the relative changes 

of intensity are very small for the range of about 1 degree corresponding to the width of the 

measured peak (in the case of high density of defects).  
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Fig. 5.3. The influence of LPA correction on the peak position for Al 2017 (a) and Ti grade 

2 (b) polished sample. The peak position without and with correction for K  lines are 

indicated by dashed lines (in some cases the lines overlap). The PANalytical - 

diffractometer was used for ground Al2017 measurements while the 

PANalytical -  (ENSAM, Paris) was used for polished Ti measurements. 

The configuration of both diffractometers is given in Table 5.4.  

 

 Examples of the diffraction peak shifts  and corresponding strains ( ) 

calculated from Eq. 2.29 caused by the LPA correction are shown in Fig. 5.3. The peaks at 

low and high  angles for ground Al and Ti samples having significant structural peak 

broadening were chosen. Also, the values of stresses and lattice parameters determined 

with and without corrections for the studied samples are presented in Table 5.2. It can be 

concluded that even in the case of relatively broad diffraction peaks the influence of LPA 

correction on the measured peak position, corresponding strain and consequently value of 

determined stress or strain free lattice constants is very small. 
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Table 5.2. The stresses ( ) and lattice constants (a0) determined for ground Al2017 and 

polished Ti grade 2 samples from the experimental data with and without LPA correction.  

 

calculation without LPA 

correction 

calculation with LPA 

correction 
difference 

 
ground Al 2017 (cubic) 

11(MPa)  206.9  2.7 

22(MPa) 126.4   129.4 7 3.0 

a0  4.04697 .00008 4.04698  0.00001 

 
polished Ti grade 2 (hexagonal) 

11(MPa) -  -40  5.6 

22(MPa) -  -  7.3 

a0  1 2.9506  - 

c/a  1.5881  - 

 

 

5.1.2. PEAK SHIFT DUE TO REFRACTIVE INDEX SMALLER THAN 1 

 The refraction of the X-rays on the boundary between two different media can 

significantly influence the position of the diffraction peak. The deviation of wave direction, 

described by Snell Descartes law, causes a change in the value of the diffraction angle 2  

and  a small additional inclination  of the scattering vector orientation. So far the only 

solutions for a refraction correction are given in the case of a smooth surface.  

 In this section the change of diffraction angle caused due to refractive index n < 1 is 

considered. The derived formulas are compared with those found in the literature. 

Assuming a perfectly smooth surface, the influence of  refraction on the position of the 

diffraction peak can be studied by taking into account: 

 the change of the wavelength value inside the studied material and its influence on  

 

 the refraction of the beam on the boundary between two different media described 

by Snell Descartes law. 
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Fig. 5.4. Influence of refraction on the value of the diffraction angle 2  (where 2 e  is the 

measured diffraction angle). 

 

 The complex value of refractive index is defined as: n=1-  +i . The imaginary part 

 indicates the amount of absorption loss when the electromagnetic wave propagates 

through the material, while the real part determining the refraction of the rays is slightly 

smaller than unity. The refractive index can be expressed by [85, 86]:  

n=1-  ,   where:   

2

0

2
at re

r
N f  ,                                                                     (5.1) 

where: Nat  number of atoms per volume, r0  classical electron radius (2.82 10
-15 

m),  

fre  real part of atomic scattering factor and   wavelength of X-ray radiation. 

 When the wave propagates from vacuum to the medium its length is changing: 

'
1n

          (5.2) 

where:  and '  are the wavelength values in the vacuum and in the material, 

respectively.  

 Inside the considered m '  

wavelength: 

' 2 sin '
1

m
m d         (5.3) 

where: 
'2 B  is the diffraction angle inside the material defined in Fig. 5.4 and m is the 

reflection order .
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By simple comparison of the above formula with that written for the wavelength  in the 

vacuum (i.e.: 2 sinm d ), we get: 

1sin( ' )sin
1

sin ' sin '
         (5.4) 

where: 1 ' .  

When assuming small value of 1 angle the above formula can be transformed: 

1 1
1

sin 'cos cos 'sin
1 1 cot '

sin '
     (5.5)

 

Finally, the correction of diffraction angle due to change of wavelength in Bragg law is 

given by: 

12 2 tan '

          

(5.6) 

 The second correction can be calculated from Snell Descartes law. For refractive 

index n less than 1, the relation between directions of the incident and diffracted beams is 

described by equations:  

sin(90 ) cos
1

sin(90 ') cos '

o

o
  (5.7 a)     

sin(90 ) cos
1

sin(90 ') cos '

o

o
    (5.7 b)

 

where the angles are defined in Fig 5.4. 

 Next, the deviations of the incident and diffracted beams '  and 

'  can be determined using two approximations: 

a)    
0

0
       or      b)      

0 '

0 '

and

and
     (5.8) 

In the first case (a), which will be applied for ' 5o  or/and ' 5o
, we can write 

(calculations are presented for  angle, but the same transformations could be done for 

small ) : 
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2 2 2 2' '
(1 )cos ' cos (1 ) 1 1 1 1

2 2 2 2
  (5.9) 

and 

2       or/and     2      (5.10) 

For total external reflection (when cr  ) only the reflected beam exists and 2 cr , 

where 2
cr  is a critical incident angle. 

The second approximation (b) is used for angles ' 3o  or/and ' 3o
: 

cos cos( ' ) cos 'cos sin 'sin
1 1 tan ' 1 tan

cos ' cos ' cos '
 

and consequently 

cot       or/and     cot        (5.11) 

 The change 22  of the scattering angle caused by refraction is equal to the sum of 

 and  deviations (see Fig. 5.4), i.e.: 2  

 Finally, the total shift of the diffraction peak 1 22 2 2
 
caused by the 

passing of the wave through a boundary between two different media and the change of the 

wavelength, can be expressed by: 

2 2 cot 2 tan 5

2 cot cot 2 tan 3

o

o

for

for
    (5.12) 

and
e e

 is the measured diffraction angle and 2  is the value which should 

2  was used in 

the above equation instead of '  because in good approximation ' e (angles 

defined in Fig. 5.4). In the above formula 5o
was considered (to keep constant 

information depth for MGIXD method the condition must be fulfilled) and in the 

intermediate range 3o  5o  both functions are convergent having practically the same 

value.  
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 It should be underlined that the choice of the boundary angles 3o  and 5o  is not very 

strict and it was checked that for all studied materials the range of functions convergence is 

much wider. This choice has been suggested by Genzel [37] and it can be applied for any 

other material analyzed by conventional X-rays and also synchrotron radiation.  

 The above derived formulae can be compared with that given by James (1993) and 

applied for grazing incidence geometry by Hart [87]: 

sin sin(2 )
2 2

sin 2 sin(2 ) sin
      (5.13) 

 

and another one derived by Genzel [37]: 

cos( )cos( )
2 arccos (cos 2 sin sin )

cos cos

sin( )sin( ) 2     

(5.14 a) 

where:  

2 52 5
/

cot 3 cot 3

oo

o o

forfor
and or

for for
(5.14 b) 

 After elementary transformations it can be shown that the first formula (5.13., given 

by Hart) is equivalent to the derivation done in the present work but only for higher range 

o
 in Eq. 5.12). To demonstrate graphically this 

equivalence the shift of peak position predicted by different approaches are shown in 

Fig. 5.5a, where the wavelength for Cu radiation and Al sample where considered (values 

of  and cr are given in Table 5.3). The results obtained with the second part of Eq. 5.12 

equation but they do not agree with the results obtained from Genzel approach.  

 On the other hand comparing Genzel approach (Eq. 5.14) with the incomplete 

Eq. 5.12 (i.e. setting 2 tan 0 ) we get perfect convergence as shown in Fig. 5.5b. This 

is not taken into account (as seen also in Eq. 5.14a). Finally, the complete formula derived 



74 

 

in the present work (Eq. 5.12) is compared with Hart (Eq. 5.13) and Genzel (Eq. 5.14) 

approaches in Fig. 5.6. It can be concluded that Eq. 5.

where 2 tan cr. In the case 

of Eq. 5.14 the shift of peak position is underestimated for all range of  (this effect is not 

well visible for low  because the shift caused by refraction is relatively large). 
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Fig. 5.5. Peak shift caused by refractive factor 1n  for 0.85 and cr 0.24
o
 and 

2 132.5o  (Al sample and Cu radiation). Genzel and Hart approaches compared with the 

formula 5.12, i.e. assuming (a) 2 (cot cot 2tan )  

(b) 2 tan 0 . 
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Fig. 5.6. Peak shift caused by refractive factor 1n  for the same parameters as in 

Fig. 5.5 compared for Genzel, Hart approaches and complete formula 5

). 

  

 Although in Figs. 5.5 and 5.6 the shift of peak position is shown, the most 

important for stress analysis is to estimate the lattice strain corresponding to that shift. 

Therefore in Fig. 5.7 the pseudo-strain (i.e. fictitious strain which would be measured if the 

refraction effect is not corrected) calculated as cot  (see Eq. 2.29) is shown for 

the same conditions as in previous Figs. 5.5 and 5.6 Moreover, the peak shift 2  and 

strain  calculated for other materials and wavelengths given in Table 5.3 are presented in 

Fig. 5.8. 

 Interesting conclusions can be drawn from the comparisons done in Figs. 5.7 and 

5.8.  angle due to significant 

shift of peak position (important pseudo-strain ) caused by the refractive index 1n . This 

is especially important for low 2  angles. The effect of wavelength change 

(term 1 2 tan ) is significant for large diffraction angle ( 2 ) and decreases for 

smaller 2 . This effect cause a constant (for all angles  ,   and  ) not significant 

negative pseudo-strain equal to 
1 ( cot )(2 tan ) / 2  (compare Genzel approach 

New formula  in Fig. 5.7). Thus the most important influence on the measured strain 

is caused by the refraction effect, i.e. 
2 2cot  (where 22 , see Eqs. 

5.10 and 5.11). Because 2  
is positive and does not depend on the 2 angle, the pseudo-

strain 
2

is negative and its absolute value strongly increases for low diffraction angle (see 

Figs. 5.7 and 5.8). 
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 It should be emphasized that effect of the refractive index 1n  on the strain 

measurement depends strongly on value of the  parameter, i.e. in the case of Al the 

pseudo-strain is about 4

2 1.5 10  for 5o  and for low diffraction angle 2 35.5o , 

while 3

2 1 10  for 5o  and 2 40.2o  in the case of tungsten (see Fig. 5.8). 

Moreover the pseudo-strains varies for different 2  angles what leads to pseudo-stress 

(because ), depending also on the value of X-ray diffraction constants. The 

pseudo-strains will cause also an erroneous value of determined stress free lattice 

parameter. Therefore the correction should be done for the experimentally determined peak 

position 2 e  according to the equation: 2 2 2e .  
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Fig. 5.7. Peak shift 2 and pseudo- 1n  for Al 

sample and Cu radiation (the same parameters as in Fig. 5.5 and 5.6; also given in 

Table 5.3) compared for Genzel approach (and 1 2 tan 0 New formula  

with different 2  angles. 
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Fig. 5.8. Peak shift 2 and pseudo-strain  caused by refractive factor 1n  for 

different materials and chosen wavelengths (see Table 5.3). Calculations were performed 

New formula  applied for low and high 2  angles corresponding to available 

hkl reflections. 
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Table 5 cr and  values calculated for the studied materials and used wavelengths 

using X-ray database of Lawrence Berkeley National Laboratory's Center for X-Ray 

Optics [88]. 

Material Al Ti Ni CrN Fe W 

 

X-ray tube 

1.54 

Cu 

1.54 

Cu 

1.54 

Cu 

1.54 

Cu 

1.94 

Fe 

1.54 

Cu 
-5 

0.85 1.35 2.73 2.15 3.42 4.63 

cr (
o
) 0.24 0.30 0.40 0.38 0.47 0.55 

 

 It was already mentioned above, that the refraction of the X-rays not only shifts the 

diffraction angle 2 , but also leads to a change of the orientation of the diffraction vector 

. This deviation is relatively small and practically does not influence the values stress 

determined from sin
2

 plot. The value of 
e

 (where 
e
 and  the correct 

values respectively) can be calculated from the formula given by Genzel [37]:  

arccos[sin( )sin cos( )cos cos ]e
    (5.15) 

where:  

1 1
sin ( ) sin (

2 2
cos 2 1

cos cos
  

or simply (see Fig. 5.4): 

( ) / 2

                                                                                            

(5.16) 
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Fig. 5.9. Deviation caused by refraction for different materials and chosen 

wavelengths (see Table 5.3) according to Eq. 5.15. 

 

 Because the deviation is smaller than 0.1
o
 for all considered ranges of  and all 

materials given in Table 5.3, the influence of refraction on the value of determined stress is 

negligible (such small deviation practically has not influence on the slope of sin
2

 plot). 

 The above derived formulae for correction of experimental data were derived for 

the case of perfectly smooth surface. The main difficulty of the application of such a 

correction is that the surface roughness can significantly reduce value of the peak shift 

( ) calculated for perfectly flat sample. A first model for an explanation of how surface 

roughness could influence the refraction effect was given by Ely et al. [89]. Ott M.H and 

90], showed that for smooth surface, theoretical corrections agree very well with 

experiments 

 

the refraction correction effect decreases.  

 To take into account that the refractive index is smaller than unity, the analysis of 

the experimental data should be performed twice (i.e. with and without correction), to see 

the boundary values of stresses and determined strain free lattice constant a0. The example 

results of such calculations are shown in Figs. 5.7, 5.8 and 5.9, and such comparison will 

be done later for each sample studied in this work. The examples (Figs. 5.7 and 5.8) were 

obtained using Kr ner model and applying fitting procedure based on Eq. 3.23 (the c/a 
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parameter for hexagonal Ti samples was determined using a new self-consistent method 

described in the next chapter). When the calculations are performed without correction, the 

value of a0 decreases for decreasing  incident angle, while the correction for smaller than 

unity refractive index leads to higher values of a0, and the increase is more significant 

close to the sample surface. After correction the lattice parameter is approximately 

and the mechanically polished samples in which the crystal structure should not change in 

function of the depth below the surface (and consequently on  angle). The stress values 

determined with and without correction are also different and this difference is certainly 

larger for Ti in comparison with Al, as expected comparing  values in Table 5.3. As we 

see in Fig. 5.10, in the case of powder sample, the refraction effect influences significantly 

the stress determined for small incidence angle (see  = 1
o
), i.e. compressive pseudo-stress 

is obtained without correction (this value is fictitious because zero stress is expected in the 

powder sample). However, by applying the correction we change the calculated stress to 

significant positive value. This would suggest that the assumption of smooth samples can 

be not exactly fulfilled and the correction of peak position is overestimated. Finally, we 

can see that refraction does not influence the value of the determined c/a parameter (Fig. 

5.18). This is due to the fact that variation of c/a will cause the shifts of relative peaks 

positions depending on hkl reflections which is not monotonic in function of . Therefore, 

the determined c/a value in fitting procedure is not influenced significantly by the 

monotonic variation with respect to  shifts of the diffraction peaks caused by smaller 

than unity refractive index. On the contrary, both strain free lattice constant a0 and stresses 

determined using MGIXD method depend (indirectly) on the monotonic variation of the 

peak position in function of angle, what leads to sensitivity of these values on the value 

of refractive index. 

 Summarizing, it should be stated that the influence of non-unit refractive index on 

the determined a0 parameter and residual stresses depends on the type of material, 

wavelength of X-rays, incident angle and moreover on the roughness of the surface. It is 

known that roughness reduces the refraction effect [90]. Therefore the interpretation of the 

experimental results performed with correction for flat surface and without correction 

establishes limits for the values of the stresses and a0 parameter in the studied sample. 

Such calculations must be always compared in order to see the range of incident angle for 
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which the correction is not significant (as for the samples presented in Figs. 5.8 and 5.9). 

If we want to analyze data for the range where the influence of refraction is significant we 

will know only the limits of the determined values. To verify the obtained results for 

mechanically machined surface it is important to follow changes of determined 

a0 parameter, which should not change significantly with incidence angle. In the case of the 

presented results we can say that after correction we obtained reasonable values of stresses 

and a0 parameter for the incidence angles 3o  (for both Al and Ti samples using Cu K  

X-ray radiation).  
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Fig. 5.10. Residual stress and strain free lattice parameter ao in function of the incidence 

 determined with and without correction for smaller than unity refractive index. The 

MGIXD method was applied for mechanically polished aluminium alloy (Al 2017) and for 

Al powder, using -PANalytical - onfiguration described in 

Table 5.4) with Cu K  X-ray radiation. In calculations the Kr ner XEC calculated from 

single crystal elastic constants given in Table 3.3 were used. 
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Fig. 5.11. Residual stress, c/a and ao parameters in function of the incidence angle 

 determined with and without correction for smaller than unity refractive index. The same 

experiment as described in caption of Fig 5.10 was used for mechanically polished 

titanium alloy (Ti6Al4V) and for Ti powder. 

 

5.2. TESTS OF THE EXPERIMENTAL CONFIGURATION  

 In diffractometry, both peak shape and angular resolution are influenced by the 

optical properties of the devices in the primary and reflected beam optics [91]. The main 

disadvantage of MGIXD method is its low accuracy in stress determination (about 

50 MPa for steel sample) when the classical line focus (with slit in incident beam optics) 

and parallel plate collimator (soller collimator) in the reflected beam optics were used [50]. 
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Fig. 5 soller 

collimator (diffracted beam optics). Shift of the sample in z direction moves the diffracted 

beam across the soller slits collimator, but the rays always reach the detector for the same 

value of 2  position [92]. The X-ray source is located in the focus of the mirror.   

 

 The accuracy of measurements can be considerably improved by using collimating 

X-ray optics realized by parabolically bent graded multilayer mirrors [91]. The multilayer 

is bent to parallelize the divergent beam of an X-ray tube and monochromatize the 

radiation to its K -contents [92

are composed as a combination of layers made of two materials having different atomic 

number (Z), which allows gaining high total reflectivity [93]. The distance of layers from 

each other as well as their slope depends on the wavelength and on the localization of the 

mirror in relation with the position of the source.  

 

 

Fig. 5.13. posed from the 

layers having different atomic numbers.  

 

 Typically used of 

mirror W/Si is composed from the layers having low atomic number (silicon, ZSi=14) and 

layers having high Z (tungsten, ZW=74) which are arranged alternately. Both elements have 

similar linear coefficient of thermal expansion. Using this kind of mirrors reduces 
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influence of sample misalignment and surface topography on the reflections positions. If 

the ted on the parabola in such a way that the X-ray beam impiges on it 

divergence radiation of the source is converted to monochromatic and parallel beam with 

an ac -  

 In parallel-beam geometry the angle of the diffraction must be measured directly. 

The soller slit (collimator) with blades perpendicular to the diffraction plane and 

a s penetrating under a different angle from 

reaching the detector (Fig. 5.12) [92]. 

 Although the 

the diffraction plane, it is still divergent in the direction perpendicular to the diffraction 

plane. It can cause the asymmetry of the diffraction peak which is dependent on the value 

of primary beam divergence. In order to reduce the asymmetry, the second soller slit, in the 

primary beam or/and in the front of the other soller slit, may be used. It reduces the axial 

divergence [92].  

 In diffraction methods it is very important to be able to perform measurements in- 

the depth of the sample with a very good accuracy. Gross M. et al. [92] showed that the 

parallel- s measurements with a varying 

angle of incidence with a high accuracy. 

 In the present work the X-ray measurements were performed on four 

diffractometers described in Table 5.4 using parallel beam configuration.  
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Table 5.4. Configurations of the laboratory X-ray diffractometers used in preset work. 

Diffractometer 

PANalytical - 

MRD 

(AGH, 

 

PANalytical  

Empyrean 

(AGH, 

 

PANalytical    

 

(ENSAM, 

Paris) 

Seifert  -  

PTS MZ VI 

(ENSAM, 

Paris) 

mirror (
o
) 

0.02 0.02 > 0.05 no mirror 

Type and size of slits 

forming the incident 

beam 

rectangular 

(1/2
o
 x 4 mm) 

rectangular 

(1/2
o
 x 4 mm) 

rectangular 

(1/2
o
  x 4 mm 

slits width : 

0.5mm 

vertical 

limitation : 

1.5 

Divergence of Soller 

collimator  in reflected 

beam optics  plates 

perpendicular to the 

diffraction plane (
o
) 

0.18 0.18 0.27 0.30 

Soller collimators  

plates perpendicular to 

diffraction plane 

present present not present not present 

X-ray tube focus line line 
point           

(1.2x0.  

point          

(1x1  

Type of radiation used Cu K  Cu K  Cu K  Fe K  

Monochromator not present not present 

for the 

reflected 

beam: 

graphite (cut 

the K ) 

not present : 

not 

necessary 

thanks to the 

type of 

detector 

(energy 

resolution) 

Type of detector 

proportional 

 point 

detector 

semiconductor 

 in point 

detector mode 

proportional  

point detector 

solid state 

detector 

 

 The first three diffractometers presented in Table 5.4 gave very similar results 

(it has been tested on powder samples), and the third configuration was used to measure 

stresses in austenitic steel (in this case Cu K radiation is not convenient due to high 

fluorescence causing high background and absorption). The reproducibility of the 

 different 
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powder specimens. It was found that the difference between the stresses measured using 

the MGIXD method was about 10 MPa for the Al powder [94, 56] (Table 5.5). 

Table 5.5. Comparison of results for Al powder for three different diffractometers. 

diffractometer   a0   

PANalytical - X  

 

5 -   0.06 

15 -   0.7 

PANalytical  Empyrean 
5 -   0.5 

15 -   1.0 

PANalytical   

(ENSAM, Paris) 

5 -  4.04949  0.2 

15 -   0.2 

 

 One of the aims of this work is to test the parallel configuration of the 

t beam optics. The test were 

performed on Al  powder samples having low elastic crystal anisotropy (Zenner factor 

A=  = 136 cm
-1

) enabling measurements at 

different depths shown in Fig. 3.8. The results of the tests and the analysis of experimental 

uncertainty used in the MGIXD method are described below.   

 

5.2.1. UNCERTAINTY ON PEAK POSITIONS   

 In the analysis of experimental data it is important to take the different sensitivities 

of the measured lattice strain on the value of scattering angle 2   into account. In this work 

the fitting procedure is based on Eq. 3.23, in which the uncertainties of equivalent lattice 

parameters { }( , )hkln < a( )> are treated as the weight in the calculation of the 
2
 value 

(compare Eq. 2.47): 

{ }

( , ) ( , )

( , )

2
exp calN

n n {hkl} n n {hkl}2

n 1 hkln n

a  a  1
 = 

N M < a( )>
     (5.17) 
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where ( , ) exp

n n {hkl}
a  and ( , ) cal

n n {hkl}
a  are the experimental and calculated lattice 

parameters and the { }( , )hkln n< a( )>  uncertainty is calculated directly from the 

uncertainty on peak position n(2 {hkl}), i.e.:  

{ } { } { }( , ) ( , ) cot(2 ) (2 )exp
hkln n n n {hkl} hkl n hkl

< a( ) a>     (5.18)  

 In the data analysis it can be assumed that the n(2 {hkl}) uncertainty is equal to the 

standard deviation of the peak position obtained from the procedure of peak adjustment. 

However, these values are very small (smaller than 0.01
o
) and other experimental errors 

play a more significant role, for example those due to the misfit of the sample position, 

defocusing or misalignment errors. Errors having different reasons are in fact unknown; 

therefore it was decided (if the standard deviation from peak adjustment is smaller than 

 to assume a reasonable value of peak position uncertainty, the same for all 

reflections. As shown in Fig. 5.14 (see error bars) the values of { }( , )hkln n< a( )> , 

calculated using Eq. 5.18 with n(2 {hkl}) = 0.01
o
, are different for different 2 {hkl}. This 

ensures different influences of measured equivalent parameters 
exp

{hkl}nna ,(  on the 

fitting quality criterion (Eq. 5.17) and consequently on the values of the determined 

stresses. As seen in Fig. 5.14 the uncertainties { }( , )hkln n< a( )>  are larger for lower 

a value of 2 {hkl} scattering angle, i.e., the low 2 {hkl} angle reflections affect the fitting 

results less than those for which 2 {hkl} is higher (cf. Eq. 5.18). It is also important to 

estimate the uncertainty of the determined stresses in the case when the n(2 {hkl}) values 

are unknown. Therefore, regardless of the reasons of the experimental errors or inaccuracy 

of the data treatment the stress uncertaint good fit  for 

which 1 
2

 [25]. 

 

5.2.2. TESTING INCIDENT BEAM OPTICS  

 MGIXD method and standard method (with 422 reflection) were applied to 

determine stress in Al powder samples. The measurements were performed on the 

diffractometer in parallel beam mode 

(configuration in Table 5.4) [94]. The tests for Al powder samples were repeated twice, 

Moreover, 
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the data treatment for XGIXD method was repeated applying two different conditions, i.e., 

using all measured reflections presented in Fig. 5.15 or excluding two low 2   reflections 

(111) and (200), for which 
exp

{hkl}nna ,(  deviate significantly from the theoretical values 

probably due to the  diffractometer misaligment or divergence of the beam. 

 

Table 5.6. Residual stress component 
11

 determined for the Al powder using two optics 

of incidence beam:  mirror or slit (stresses calculated excluding 111 and 200 

reflections compared with results obtained from all reflections). In calculations the free 

surface XEC calculated from single crystal elastic constants given in Table 3.3 were used. 

method 
 (

o
) 

or hkl 

z  
( m) 

primary 

beam config. 

11
(MPa) 

all 

reflections 

reflections 111, 200 excluded
 

11
 (MPa)

 a0   

MGIXD 

=5
o
 5.8 

 mirror -5.0 3.0 -1.6 1.5 
4.04936 

0.00003 
0.05 

Slit -22.1 5.3 -16.0 5.3 
4.04973 

0.00009 
0.55 

=10
o
 10.8 

 mirror -3.1 3.2 -0.4 1.1 
4.04948       

0.00002 
0.02 

Slit -28.1 6.4 -33.3 5.6 
4.04995        

0.00008 
0.64 

=15
o
 

14.9 

 

 mirror -3.0 4.4 0.4 3.8 
4.04945 

0.00006 
0.29 

Slit -7.3 6.1 -8.6 7.3 
4.04914 

0.00011 
1.07 

Standard 422 
12-

34 

 mirror -2.1 0.5 
4.04946 

0.00001 
0.65 

Slit -0.5 1.4 
4.04903 

0.00004 
3.08 
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Fig. 5.14. Measured lattice parameters (points) and theoretical results of fitting (continuous 

lines) vs. sin
2

 for Al powder sample. Results of grazing incidence method for three angles 

 and for two different beam geometries are shown. 
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Fig. 5.15. Similar comparison as in Fig. 5  method). 

 

 Results of stress analysis in Al powder are shown in Table 5.6. and the sin
2

 plots 

for grazing incidence method (MGIXD) and standard method are shown in Figs. 5.14 and 

5.15, respectively. All calculations were performed with the assumption (2 {hkl}

Comparing the results obtained using MGIXD method with and without two low 

2   reflections (i.e. 111 and 200) it can be stated that a small improvement of the results 

(lower fictitious stress and its uncertainty) was obtained when the latter reflections were 

excluded. As seen in Table 5.6 the values of 
2
 

used (for both MGIXD and standard methods). Small, but significant, values of fictitious 

stresses (between -8 and -33 MPa) were found, when the slit was used. As the real stress 

for the powder sample is equal to zero, the determined non-zero stresses can be treated as 

the values of systematic uncertainty caused by the diffractometer or sample misalignments. 

The latter uncertainties can be minimized using parallel optics of the incident beam. The 

near zero values of stresses measured in the Al powder (values lower than -5 MPa, see 

Table 5.6) show that the experimental errors were significantly reduced by use of the 

configurations used for the incident beam optics. 

 Finally it should be stated that using MGIXD method (especially with) a good 

accuracy of a0 

differences between a0 measured at different depths is in the order of about 10
-4

  

 



91 

 

5.2.3. INFLUENCE OF 2 - ZERO POSITION ON THE MEASURED STRESS 

 In order to precisely determine the stress value it is necessary to take into account 

-zero position. MGIXD method was applied to determine stress in Al powder sample 

and to verify t -zero position on the measured stresses and lattice 

parameter. The measurements were performed on the PANalytical   

(configuration in Table 5

d from single crystal elastic constants given in Table 3.3 were used. 

Al powder are presented on Fig. 5 -zero position on 

measured quantities, the stresses and a0 parameter were calculated for the data in which 

different - zero position were assumed (Fig. 5.16). 

 

Fig. 5.16. Influence of   zero position on the measured stress for powder sample. 

 

 In the light of the presented results it can be concluded that a deviation from  - 

 the measured stress value 

(for a0 lattice parameter. 
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5.2.4. INFLUENCE OF Z- POSITION ON THE MEASURED STRESS 

 Precise determination of the stresses is also dependent on the z - position of the 

sample. In order to investigate this effect for MGIXD method the measurements were 

performed on the PANalytical -  (ENSAM, Paris - configuration in Table 5.4) 

single crystal elastic constants given in Table 3.3 were used. Different deviations from z - 

zero position (in direction normal to the surface) were introduced experimentally and the 

values of stresses and lattice parameter for each z -position deviation were determined and 

compared. Results of the test are presented on Fig. 5.17. 

          

Fig. 5.17. Influence of z  zero position on the measured stress for powder sample 

 

 On the basis of the presented results it can be concluded that the deviation from z-

 zero position equal to 0.01 mm causes about 5 MPa deviation of calculated value of 

0 lattice parameter. 
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 Summarizing results obtained in section 5.2, it can be concluded that the use of a 

for collimating the incident beam decreases the uncertainty of the determined 

peak position and that it is possible to achieve an accuracy of even a few MPa for the 

stresses in Al sample (the accuracy in of the stress determination in another materials can 

be easily estimated comparing Young modulus of Al and this of the studied material). The 

accuracy of the determined strain free lattice parameter a0 is in order of 10
-4

 . Moreover it 

was shown that parallel optics gives the reasonable accurancy connected with displacement 

of the sample in the z direction (normal to sample surface). Experimental errors of about 5 

MPa for stress and less than 0.0002  for lattice parameter a0 corresponds to a shift of 0.1 

mm. It was also found that the most important source of systematic error is caused by the 

shift of  - zero value. The misalignment of the diffractometer equal to = 0.01
o
 leads 

to fictitious stresses of about 10 MPa and changes of a0 

determined for the Al stress-free powder. This error can be minimised by a careful 

alignment of the diffractometer or the results obtained for the studied sample can be 

corrected by using the powder diffraction data. Concerning the statistical uncertainty it will 

depend on the quality of measured peaks, and for the studied samples it was about 1.5-5 

MPa for stress and less than 10
-4

 a0, and the latter value is significantly smaller than 

the errors caused by misalignment of the sample position and diffractometer alignment. 

 The performed tests confirmed that we can expect the reproducibility of 

measurements for different experimental setups containi to be about 

10 MPa and a 0.0005 a0 in the case of Al elasticity constants. These 

values were confirmed in the performed experiments. Also, it is reasonable to assume that 

the position of the peaks is determined with accuracy not better than = 0.01
o
 (see the 

error bars corresponding to this value in Fig. 5.14). Finally, it should be stated that the 

above values of expected systematic and statistical errors are calculated for a particular 

sample and they can be different for another set of measured reflections. However, the 

presented results give a view on the accuracy of the experimental setup and the applied 

methodology.  
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5.3. CONCLUSIONS 

 In the light of presented results, the LPA correction does not influence the XSA 

significantly. Even in the case of relatively broad diffraction peaks the influence of LPA 

correction on the measured peak position, corresponding strain and consequently value of 

determined stress or strain free lattice constants is relatively small. On the other hand the 

refraction correction can significantly influence the results of the XSA. Comparing the 

 present thesis with the approaches proposed by Genzel 

and Hart it can be concluded that consistent 

with the one proposed by Hart, but it differs in comparison with Genzel s (in which the 

effect of wavelength change was neglected). For small incident angles the Genzel  

approach and the one proposed in thesis are consistent 

the effect properly. It is caused by an approximation which is not precise enough for small 

incident angles. The effect of refractive index n<1 on the stress measurement strongly 

depends on value of the  parameter (and thereby the type of material), wavelength, 

incident angle and surface roughness. On the basis of considered results, if MGIXD 

method is used, it is advised to perform the stress analysis with and without refraction 

correction and when the difference of obtained results is significant for the measured 

parameter then these results should be rejected. This effect is the limitation of MGIXD 

method. 

 Results presented in this chapter confirmed that both the statistical error and the 

misalignment 

primary optic of the diffractometer. In the case of the parallel beam geometry used for 

MGIXD method the z-position imprecisions do not significantly influence the obtained 

results of XSA, however the -zero position should be precisely adjusted. 
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6. NEW INTERPRETATIONS OF MGIXD MEASUREMENTS 

AND VERIFICATION OF X-RAY STRESS FACTORS (XSFS)  

 In this chapter two important theoretical developments of the MGIXD method are 

presented. The first one enabling determination of c/a parameter and significantly 

improving quality of experimental data analysis for hexagonal structure has been proposed 

and tested. The second one in which density of stacking faults is taken into account 

20]) will be applied to the case of tensile and 

compressive stresses in austenitic sample. Second part of the chapter concerns verification 

of different types of XSF, which can be applied to interpret the experimental data obtained 

using MGIXD method. Finally, examples of determination of stresses in surface layers for 

materials having high and low single crystal elastic constants anisotropy are presented. 

 

6.1. ITERATIVE DETERMINATION OF C/A PARAMETER 

 In the case of cubic crystal structure the experimental >),a( < hkl}{  lattice 

parameters are calculated directly from measured >),d( < hkl}{  spacings (Eq. 3.24a). 

Subsequently, the I

ij  and 0a  fitting parameters can be found by adjusting the 

>),a( < hkl}{ values obtained from Eq. 3.24a to the measured ones (Eq. 3.23), as in the 

standard method (it should be stated that not all components of the stress tensor and a0 

parameter can be determined independently, i.e. the value of a0 33 are dependent and 

one of them should known to calculate the second one). However, more complex 

procedure of experimental data must be applied for hexagonal structure since the value of 

c/a parameter must be known a priori to calculate the experimental >),a( < hkl}{  from 

Eq. 3.24a. To overcome this difficulty the iteration method can be applied. In the first step 
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of this procedure we substitute the theoretical value of c/a into Eq. 3.24b and the least 

square method is used to find out I

ij  and 0a  from Eq. 3.23 33=0). The 

result of the first adjustment is usually poor because the experimental >),a( < hkl}{  are 

not correctly calculated with the approximate value of c/a. Consequently the experimental 

>),a( < hkl}{   do not agree with those obtained from Eq. 3.23 for optimized 
I

ij and 0a

fitting parameters. Thus the procedure must be developed in order to correct the value of 

c/a for the studied material, taking into account the macrostresses present in the sample. In 

this aim Eq. 3.24b can be rewritten in the following form: 

xpy                                                                 (6.1) 

where: )(
3

4 22

2

}{

}{
khkh

>),d( <

>),a( <
y

hkl

hkl
 ,     2lx    and 

2)/(

1

ac
p . 

 The above linear equation vs. l
2
 allows us to determine p and consequently 

c/a parameters using a simple linear regression method. In calculations the measured 

>),d( < hkl}{  spacings and values of  >),a( < hkl}{  
calculated from Eq. 3.23 (for 

I

ij

and 0a  optimized in the first step for approximate value of c/a) are substituted. It should 

be stated that the so obtained c/a parameter is still approximate, but it can be applied in the 

second step of iteration to calculate >),a( < hkl}{  used in the least square procedure 

based on Eq. 3.24b. As the result the new values of 
I

ij and 0a  are determined. It will be 

shown that two iteratively applied simple fitting procedures lead to convergence allowing 

determination of macrostresses 
I

ij ,  strain free lattice parameter 0a and moreover a more 

accurate value of c/a.  Finally, if the iterative calculations are convergent a very good 

agreement between estimated values of >),a( < hkl}{  (obtained from Eq. 3.23) and 

experimental ones (determined from Eq. 3.24b) can be reached. 

 As an example, the results obtained with the new method for ground and polished 

samples are presented. These samples were chosen due to different signs of stresses 

generated in surface region. Measurements were performed in two directions (i.e. for =0
o
 

and =90
o
 which are assumed to be the principal directions of the stress tensor) and for two 

incidence angles (i.e. for  = 5
o
 and  = 15

o
), with Cu X-
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incidence beam optics. The PANalytical - and PANalytical - X

diffractometers were used for ground and polished samples, respectively (see Table 5.4). 

The diffraction peaks having  higher than 40
o
 were taken into the analysis.  

 At first the calculation of the stresses in polished and ground Ti (grade 2) was 

performed using assumed values of c/a parameter indicated in Figs 6.1a, b and Fig. 6.2a, b, 

respectively. In this case the value of c/a was not varied during data treatment. It can be 

noticed that the experimental points are spread far from the lines obtained by fitting 

Eq. 3.23 with the XSF calculated using Kr ner model (see >),a( < hkl}{  vs. sin
2

 plots 

in Figs. 6.1a, b and Figs. 6.2a, b from single crystal elasticity constants given in Table 3.3 

and orientation distribution functions (ODFs) given in Fig. 7.1 (in the next chapter when 

these sample are described). The correction for beam refraction was taken into account, 

however, this effect is reliable (smaller than uncertainly) for  = 5
o
 and  = 10

o
, as it was 

shown in Fig. 5.11, where the results with and without refraction corrections were 

compared. 

 Next, the iterative procedure was used and the value c/a was also adjusted. The 

resulting >),a( < hkl}{  vs. sin
2

 plots exhibit significantly better agreement between 

theoretical and experimental points (Figs. 6.1c and 6.2c). The values of c/a parameter and 

goodness of fit 
2
 determined using the presented above procedure are given in these 

figures. It can be seen that the value of 
2
 decreases significantly when experimental points 

approach the theoretical curves.  
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Fig. 6.1. The >),a( < hkl}{  vs. sin
2

 plots for mechanically polished Ti sample (under 

pressure of 5 N), measured with 
o
. In figures (a) and (b) the theoretical plots were 

fitted to the experimental points determined with assumed c/a values, while in the case of 

figure (c) the c/a  parameter was adjusted. Uncertainty of peak position 
o

0102 .)(  was 

assumed. 
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Fig. 6.2. Similar results as in Fig. 6.1 but for ground Ti sample. 
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Fig. 6.3. The results of the iterative fitting for mechanically polished Ti sample, measured 

with 
o
  = 15

o 
 assuming 33=0. The following values are presented: a) and b) - 

stresses in two directions, c) 
2
 - goodness of fit as defined in Eq. 4.17, d-e) lattice 

parameters. The horizontal lines indicate mean values calculated over all models for both 

samples (polished and ground). 
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Fig. 6.4. Similar results as in Fig. 6.3 but for ground Ti sample. 

 

 The quantitative results of fitting using different XSF models are presented in 

Figs. 6.3 and 6.4 for polished and ground samples, respectively. It can be concluded that a 

biaxial stress state was found for both the studied samples (compression after polishing and 

tensile after grinding as shown in Figs. 6.3a, b and 6.4a, b) and the stress values calculated 

using different models of diffraction elastic constants are not significantly different. Small 

differences between the models are expected because the elastic anisotropy of Ti single 

crystal is low (Zener anisotropy factor A= 1.34). Also, there is no large difference between 

goodness-of-fit 
2
 for different models and all results fit well to almost linear 

measured functions >),a( < hkl}{  vs. sin
2

. The determined lattice parameters show 

some regular differences between models. In Figs. 6.3 d, e, f and 6.4 d, e, f the values of 

determined a0, c/a and c0 (where the two first parameters are obtained from fitting, while 

the third one is calculated as 
0 0

cc a
a

 are compared with mean parameters calculated 

for both samples and both incidence angles (  = 5
o
 and  = 15

o
). These averages: 

a0 = 2.9514  c/a and c0 = 4.

calculated because samples are made from the same material (Ti grade 2) and different 

mechanical treatment should not influence strain free lattice parameters. Some differences 

between two samples can be caused by oxidation process or hydrostatic stress especially in 

the case of ground sample [95]. It should be underlined that the obtained lattice parameters 
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are very close to the accurate values for high purity Ti [96]: a0 = 2.95111  

c0  = 1.5873 (similar values can be found in [97]). It can be 

also noticed that when the Kr ner and Voigt XSF were used the determined lattice 

parameters were similar for the ground and polished sample. Moreover they are very close 

to the average values and these which are found in the literature. On the other hand the a0, 

c/a parameters obtained with XSF calculated by free surface or Reuss model are slightly 

overestimated for polished sample and underestimated for ground sample (opposite 

tendency occurs for c0).  

 It can be concluded that the elastic properties of the studied titanium sample are 

almost isotropic and this is why fitting results obtained with XSF calculated by all models 

give very similar results. The lattice parameters clousest to the theoretical values are 

obtained when Kr ner or Voigt method were applied. Finally it should be stated that the 

new methodology of experimental data treatment enables determination not only of the 

strain free a0 constant but also of the c/a parameter. This method is unambiguous for 

materials having low elastic anisotropy, however in the case of anisotropic materials the 

determined lattice parameters will depend more on the model used for calculation of XSF. 

Thus the problem of verification of XSF is a crucial one, not only for correct determination 

of the stresses but also to find out the correct strain free lattice parameters for hexagonal 

structure (XSF will be tested in this chapter).       

 

6.2. PEAK DISPLACEMENT CAUSED BY STACKING FAULTS  

 Not only residual stresses are the reason of diffraction peak shift with respect to the 

position corresponding to the perfect lattice. The diffraction lines can also be influenced by 

stacking faults in the material. Two types of stacking faults can be distinguished: 

deformation stacking faults and twin stacking faults. Both of them may cause a peak shift 

[1]. Typically the twin stacking faults occurs during the growth of a crystal. Wagner [98] 

showed that when the peak shift originates from high twin stacking fault density the shift 

of the peak is negligibly small. Deformation stacking faults may cause shift of the different 

diffraction lines in different directions. The first work concerning this effect was done by 

Paterson [99], Warren et al [100] and Wagner [98]. Wagner and Velterop et al. showed [4, 

101] that stacking faults can significantly change the position of the diffraction lines. This 
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effect is especially important for fcc crystals having low stacking fault energy (e.g. 

austenitic steels) [20]. In this case the magnitude of the displacement depends on the 

probability of finding the stacking fault and on the reflection hkl used in the experiment. 

In the absence of second order incompatibility stresses [20, 102]:  

{ } 0 0, [ , , ( )]I
hkl ijij

< a( )  = F (hkl, f)  + G hkl a a>                          (6.2) 

                             with   
b

222
lkh

lkh

bu4

3
hklG

)(

)(
)(  

where  = s - d, s and d are the probabilities of finding a single and a double layer 

stacking fault, respectively, between neighboring planes {111}, )(hklG  is the coefficient 

reflecting relative change of the interplanar spacings determined by diffraction, caused by 

stacking faults for the diffracting {hkl} planes, while b and u are the numbers of peak 

components which are affected and not affected, respectively, by the stacking faults, 

respectively [20, 103]. 

 For a quasi-isotropic sample the above equation can be written as: 

2 2 2

{ } 1 11 22 33 2 11 22 12

2

2 33 2 13 23 0 0

1
( , ) [ cos sin sin 2 sin

2

1 1
cos cos sin sin 2 ( )]

2 2

hkl I I I hkl I I I

hkl

hkl I hkl I I

a S S

S S G hkl a a

(6.3) 

As it can be seen in a Fig. 6.5 both the macrostress (Fig. 6.5a) and stacking faults 

(Fig. 6.5b) cause nonlinearities of the <a( , )>{hkl} vs. sin
2

{hkl} plots. This is caused due 

to the fact that XSC: S1
hkl

 2
hkl

 depend on hkl reflection. Macrostresses (500 MPa) 

influence the slope as well as the nonlinearites of the curve. In contrast the stacking faults 

increase only the nonlinearities of these plots. This fact allows to separate the effect 

originated from the stresses from the one connected to the stacking faults [20]. Thus the 

calculation of stresses values and the probability of stacking faults in polycrystal can be 

calculated. The idea of fitting is similar to that used by Baczmanski [20] in the case of 

determination of second order stresses, when q scaling factor was used in Eq. 6.2 as 

additional adjusting parameter. In the case of Eqs. 6.2 and 6.3, the value of  is varied in 

the fitting procedure in order to receive the best agreement of theoretic and experimental 
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results. The optimized  parameter has the meaning of a probability of finding stacking 

fault between neighboring planes {111}. 

Fig.6.5. Lattice strains calculated for different hkl reflections as the effect of (a) uniaxial 

stress and (b) presence of stacking faults on the planes {111} for austenitic sample (XSF 

were calculated using free surface model with elastic constants given in Table 3.3 and 

assuming random texture [20]).  

a)  

b)  

Fig. 6.6. The <a( , )>{hkl}  lattice parameters fitted to the experimental points using 

Eq. 6.3 (assuming   0 - continuous line or  = 0 - dashed line) for polished austenitic 

stainless steel ( ) and ground Ni alloy ( Table 6.1). XSF 

were calculated with free surface model using texture functions given in Fig. 6.19. 
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 In the light of these results, it appears that for Ni alloy it is not necessary to take 

into consideration the presence of stacking faults in stress analysis. The value of the 

 parameter is, in the margin of error, equal to 0. On the contrary for austenite stainless 

steel having low stacking fault energy it would appear likely that taking into account the 

presence of stacking faults in stress analysis can be beneficial. Admittedly the stacking 

fault effect improves the fit of the theoretical curve (calculated from the chosen grain 

interaction model) to experimental points but it seems possible that this effect causes the 

change in XSF values, which now may differ from the real ones. On the other hand it is 

worth to emphasize that the  parameter determined for austenitic samples always have 

a positive value regardless whether the sample is in tension (Fig. 6.7) or in compression 

(Fig. 6.6b). It means that the deviation of the experimental points from theoretical values is 

always in the same direction independently of the applied load. 

 

Fig. 6.7. The <a( , )>{hkl}  lattice parameters fitted to the experimental points using 

Eq. 6.3 (assuming   0 - continuous line or  = 0 - dashed line) for the ground austenitic 

steel -  XSF were calculated with free surface model. This result is 

taken from [20]. 
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6.3. VERIFICATION OF XSF USED IN MGIXD 

 A correct choice of model for calculation of XSFs is significant for materials 

exhibiting high elastic anisotropy. In order to select the proper model of XSF it is valuable 

to evaluate an agreement of theoretical >),a( < hkl}{ vs. sin
2

 curve with experimental 

results [104].  

 To show the influence of the diffraction elasticity constants on the interpretation of 

XSF results, polycrystalline materials having low (Ti, W) and high elastic anisotropy of 

crystallites (Ni, CrN, austenite stainless steel) were investigated. Zener factors for listed 

samples are gathered in Table 3.3. Compositions of the studied samples are given in 

Table 6.1. The orientation distribution functions were taken into account in XSF 

calculations for all investigated samples (Figs. 6.9 and 6.19). 

 Two samples exhibiting low (Ti) and high (austenite stainless steel) elastic 

anisotropy were investigated during tensile test, for other samples: polished W, ground Ni 

alloy, CrN coating and polished austenite stainless steel, the residual stresses after surface 

treatment or coating deposition were measured. 

 

Table 6.1. Composition of the materials used in thesis (wt.%).  

Material Components 

Ti 

grade 2 

Ti 

bal. 

O 

0.131 

Fe 

0.109 

Ni 

0.020 

C 

0.010 

N 

0.010 
    

Ni alloy 

Inconel 690 

(sample 

prepared by 

AREVA) 

Ni 

bal. 

Cr 

29.91 

Fe 

10.61 

Si  

0.38 

Ti 

0.33 

Mn 

0.29 

C 

0.022 

Cu 

0.01 

P 

0.009 

S 

0.002 

Austenite 

stainless 

steel 

AISI316L 

Fe 

bal. 

Cr 

17.24 

Ni 

11.14 

Mo 

1.96 

Mn 

1.67 

Cu 

0.35 

Si 

0.056 

P  

0.04 

S  

0.04 

C   

0.02 

Al 2017 
Al 

bal. 

Si  

0.5 

Fe 

0.7 

Cu 

4.0 

Mn 

0.65 

Mg 

0.6 

Cr 

0.1 

Zn 

0.25 

Ti 

0.15 
 

Ti6Al4V 
Ti 

bal. 

Fe 

0.25 

C 

0.008 

O  

0.2 

N 

0.05 

Al 

6.0 

V  

4.0 
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6.3.1. TENSILE TEST 

 The in situ  during tensile test in elastic range of 

deformation for austenite stainless steel (  and titanium (grade 2) samples. The 

MGIXD method and standard method ( -mode for austenite and -mode for titanium) 

were used to determine the stress in the sample under applied known stress (sample 

orientation with respect to incident and reflected beams is shown in Fig. 6.8. 

Measurements for Ti sample were performed on the PANalytical -  MRD (AGH, 

 and for austenite stainless steel on the Seifert - PTS MZ VI. The configuration of 

both diffractometers is given in Table 5.4. To prepare the sample, the surface layer of 200 

stresses or/and systematic errors of determined peak positions, the measurements were 

performed for the non-loaded sample and a sample under uniaxial stress. The relative 

differences between interplanar spacings for loaded sample (i.e. { }

load

hkl
d( , )  ) and non-

loaded specimen (i.e. initial: { }

init

hkl
d( , )  ) were calculated.  

{ } { }

{ }

{ }

load init

hkl hklrel

hkl init

hkl

d( , ) d( , )
( , )

d( , )
      

 (6.3) 

In the above equation the exact value of interplanar spacing for a stress free material is not 

needed and the strain { }

rel

hkl
( , )  corresponding directly to the applied stress 

11
 is 

calculated and the effect of residual stresses or/and systematic errors of determined peak 

positions is avoided. The main challenge of this part of work is to verify if the value of 

applied stress 
11

 can be recalculated from diffraction data and what type of XSF allows 

determining the stress accurately. Moreover, it will be tested which model of XSF 

calculation properly describes grains interaction, especially for elastically anisotropic 

crystallites. 
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Fig. 6.8. Orientation of the sample during tensile test in MGIXD experiment. The uniaxial 

stress 
11

  

a) b)  

Fig. 6.9. Orientation distribution function (ODF) determined using Mn K  radiation for 

austenitic (a) and Cu K  radiation for Ti (b) samples (these samples were used in tensile 

tests). The sections through Euler space [76 2  

axis: a) 0
o 

1 2

o
 for austenite stainless steel and b) 0

o
 1

o
 and 0

o
 2

60
o
 for Ti (grade 2). The sample frame was difined according to the direction of load i.e. x1 

|| loading direction, x2 || transvers direction and x3 || normal direction.  

 

High anisotropy  austenitic sample 

 In order to investigate the influence of the grain interaction model on the values of 

calculated stresses austenite stainless steel (Table 6.1) having high elastic anisotropy 

(A=3.3, see Table 3.3) was subjected to a controlled tension (
11

= 50 MPa, 180 MPa and 

300 MPa) during loading and unloading in the tensile test. For each value of given load the 

stress measured by X-ray diffraction was determined using the XSF calculated by four 
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models with ODF function presented in Fig. 6.9a. In the case of MGIXD method the 

m). 

 for lower incident angles the 

shadow of the grips disturbed the stress measurment. Initial value of calculated stresses and 

lattice parameters for non-loaded sample are gathered in Table 6.2. The { }

init

hkl
< a( , ) vs. 

sin
2

 plots for initial sample are presented in Fig. 6.10. Small compressive and tensile 

stresses (comparable with their uncertainties) were found for   

respectively. In calculation least square fitting procedure was applied using Eq. 3.23.  

  

Table 6.2. The initial values of stresses and lattice parameters for non-loaded austenite 

stainless steel. 

model  ( ) 11 (MPa) 22 (MPa) a0   

free surface 

20 

-    1.5 

 -   3.  1.7 

Reuss -    1.5 

Voigt -    1.9 
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Fig. 6.10. The { }

init

hkl
< a( , ) vs. sin

2
 plots for initial non-loaded austenite stainless steel 

(uncertainty of peak position 
o

0102 .)(  was assumed). 
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 The relative lattice strains { }

rel

hkl
( , ) vs. sin

2
  (for 

according to Eq. 6.3 for each load and four grains interaction models during loading and 

unloading are shown in Figs. 6.11 and 6.12, respectively. In these figures the experimental 

data are compared with the results of least square fitting based directly on the relation: 

{ } 11 11 22 22( , , , ) ( , , , )rel I I

hkl
( , ) F hkl f F hkl f      (6.4)  

where the adjusted values of 
11

I and 
22

I  stresses can be compared with the values of 

applied stress 
11

 and 
22 0 MPa , respectively. 

 The non-linearity of the plots in Figs. 6.11 and 6.12 is associated with 

a strong elastic anisotropy of the sample. As it can be deduced from these plots the lattice 

strains are smallest in direction <111> and largest in direction <200> for loaded the 

austenitic sample. This result qualitatively agrees with evolution of 2 and s1 values for 

different reflections hkl (in the approach of quasi-isotropic material), which explains the 

observed tendency. If the interaction between grains is well predicted the nonlinearities of 

the theoretical curves should reflect this dependence.  
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Fig. 6.11. Relative lattice strains { }

rel

hkl
( , ) vs. sin

2
  

the austenitic sample. Experimental results are fitted using Eq. 6.3 with XSF calculated by 

four tested models.  
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Fig. 6.12. Similar comparison as in Fig. 6.12 but for unloading of the austenitic sample. 

 

 From the  plots in Figs. 6.11 and 6.12 it is seen that the experimental values 

model. The linear dependence of lattice strains vs.  predicted by Voigt model cannot 

be applied for austenite stainless steel having a strong elastic anisotropy. Quantitative 

2
 which value is compared in 

Fig. 6.13 for all applied loads and four tested models. Analysing Eq. 2.47 it can be stated 

that 
2
 must increase if the differences between experimental values and theoretical results 
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increases. If a given model perfectly predicts XSF, the 
2
 value is determined only by 

experimental uncertainties and it should not increase for larger applied stresses (the lattice 

strain due to stress increases by the same value as the theoretically predicted strain and 

consequently distance between them does not change). However, if the XSF values are not 

correctly calculated by model (even for some orientations) the difference between 

theoretical and experimental interplanar spacings enlarges with increasing applied load 

causing significant increase of the 
2
 value (due to squaring in definition of 

2
).  

a) b)  

Fig. 6.13. Comparison of the values of  for four different grain interaction models during 

tensile of austenitic sample (loading and unloading) for MGIXD method (a) and standard 

-geometry (b). 

 

 Co
2
 and its dependence on the applied load it can be concluded 

that Reuss and free surface model correctly predict elastic anisotropy of XSFs (Fig. 6.13). 

2
 is small and constant for all applied external stresses. In contrast 

2
 obtained with Kr ner and Voigt models are larger and rise with applied stress. This 

effect is especially significant for linear dependence of lattice strains vs.  predicted by 

Voigt model and it is also evidence that any models giving linear  plot should not be 

used to interpret results of MGIXD measurements.         

 In order to determine which of these models is the best the comparison of the 

stresses re-calculated from diffraction data (Eq. 6.4) with the values of applied load is 

presented in a Fig. 6.14, for loading and unloading sample. The measurements were done 

6.14a) and standard  -geometry 
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(Fig. 6.14b). It can be seen that the loading and unloading processes are exactly reversible 

(points for the same applied stress overlap for both experimental methods), i.e., the 

measurements were performed within elastic range of deformation. Also the stress after 

unloading is very close to zero value (within the uncertainty range). The stresses state in 

the sample was successfully determined from diffraction data i.e. the re-calculated stress 

11

I  approaches applied stress 
11

, while 
22

I  is close to zero value, especially for larger 

loads (180 MPa and 300 MPa). It must be underline that good agreement between results 

obtained with both standard and MGIXD methods and values of applied stress 
11

 was 

found in the case of Reuss and free surface models, while 
11

I  obtained with Kr ner and 

Voigt models deviate from the value of applied stress 
11

.  For the latter models especially 

large deviation between applied and re-calculated stresses is seen in the case of standard 

measurements (Fig. 6.14b). The worst results i.e., the largest deviation between applied 

and recalculated stress was obtained when the Voigt model was used. 

 Summarizing the presented results concerning quality of strain fitting (Figs. 6.11-

6.13), as well as from the comparison of the calculated stresses and applied loads 

(Fig. 6.14) it appears that the Reuss and free surface models fit the best the experimental 

data in the case of anisotropic austenite stainless steel. 
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Fig. 6.14. Comparison of the values of 
11

I and 
22

I  re-calculated stresses compared with 

the applied stress 
11

 and 
22 0 MPa , respectively (dashed line indicates value of the 

stress  
11

I = 
11

 or 
22

I = 
22 0 MPa ). Results of loading and unloading are shown and 

the point for 
11

= 0 MPa corresponds to the state after unloading. The MGIXD method 

(a) and standard method -  mode (311 reflection) (b) were used. 
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Low anisotropy  Ti sample 

 Second investigated sample was Ti (grade 2; see Table 5.1) sample having low 

elastic anisotropy (A=1.34, see Table 3.3). Ti was subjected to a controlled tension 

(50 MPa, 150 MPa, 210 MPa) during loading in the tensile test. For each value of given 

load the stress measured by X-ray diffraction was determined using the XSF calculated by 

four models with ODF function presented in Fig. 6.9b. In the case of MGIXD method the 

measurements were performed for   

-geometry was used for standard 

measurements. Initial value of calculated stresses and lattice parameters for non-loaded 

sample are gathered in Table 6.3, while the { }

init

hkl
< a( , ) vs. sin

2
  plots for initial 

sample are presented in Fig. 6.15 (MGIXD method). Compressive stresses of about minus 

30 MPa was found for for 

In calculation least square fitting procedure was applied using self-consistent method 

described in section 6.1.  

 

Table 6.3. The initial values of stresses, strain free lattice constants and c/a parameters for 

non-loaded Ti (grade 2) sample - MGIXD method. 

model 11 (MPa) 22 (MPa) a0  c/a  

  

free 

surface 
-30.9  -4.7  2.9511  1.5872  1.3 

 -31.9  -4.9  2.9511  1.5872  1.3 

Reuss -30.2  -4.4  2.9511  1.5872  1.3 

Voigt -33.5  -5.3  2.9511  1.5872  1.4 

 

free 

surface 
-33.1  10.7  2.9514  1.5869  2.9 

 -35.3  10.4  2.9514  1.5869  2.9 

Reuss -32.3  11.4  2.9514  1.5869  2.9 

Voigt -38.2  9.4  2.9514  1.5869  3.0 
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Fig. 6.15. The { }

init

hkl
< a( , ) vs. sin

2
 plots for initial non-loaded Ti (grade 2) sample 

measured measured using MGIXD with = 20  (uncertainty of peak position 
o

0102 .)(  was assumed).  

 

 The results obtained for tensile test are presented in the following figures: 

 Fig. 6.16 - the relative experimental lattice strains { }

rel

hkl
( , ) vs. sin

2
  for 

D method), 

 Fig. 6.17 - values of goodness-of-fit parameter  

(MGIXD method); 

 Fig. 6.18 - values of re-calculated stresses compared with applied ones. 

 

 As it is seen in Fig. 6.16, in the case of Ti sample having low elastic anisotropy the 

nonlinearities of the { }

rel

hkl
( , ) vs. sin

2
  plots are very small in comparison with 

austenitic sample. However, for the largest applied stress 
11

= 210 MPa we can see that 

the experimental points are approached by theoretical lines when Reuss and free surface 

methods are used and slightly worse result was obtained for Kr ner model. Again, the 

linear { }

rel

hkl
( , ) vs. sin

2
  plots obtained with Voigt XSF do not match the 

experimental points. The same conclusions can be drawn from Fig. 6.17 where values of 

 are compared. It should be also stated that the goodness parameter slightly increases 
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with increasing value of applied stress (of course the effect is strongest in the case of Voigt 

model). Thus, the XFS are not as well predicted as in the case of Reuss or free surface 

model applied for austenite stainless steel. 

 Finally, comparing the re-calculated stress 
11

I  with applied stress 
11

 and the 
11

I  

stress with zero value, it can be concluded that a very good agreement was obtained for the 

largest stress 
11

= 210 MPa. If a smaller load is applied the re-calculated value 
11

I  is 

overestimated, especially for 
11

= 150 MPa. It should be underlined that exactly the same 

values of the recalculated stress were obtained for both incident angles   

(MGIXD method) and for standard method ( -mode). Hence, we can conclude that 

MGIXD method gives reasonable results (comparable with standard method) and the 

disagreement between recalculated 
11

I  and applied 
11

 stresses can be caused by sample 

heterogeneity or non-uniaxiality of the stress in the sample. Finally, it should be stated, that 

the stresses obtained with different models for calculation of XSFs are almost identical. 

This is evidence that the elastic anisotropy plays a minor role in interpretation and any 

model can be applied to calculate XSFs. 
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Fig. 6.16. Relative lattice strains { }

rel

hkl
( , ) vs. sin

2
  

the Ti sample. Experimental results are fitted using Eq. 6.3 with XSF calculated by four 

tested models.  

 

 
a)     b)     c) 

Fig. 6.17. Comparison of the values of  for four different grain interaction models during 

tensile of Ti sample for ,  (b) MGIXD method and -geometry standard 

method (c). 
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6.3.2. MEASUREMENTS OF RESIDUAL STRESSES 

 Next samples having significant surface residual stresses and not subjected to the 

external load were investigated. 13 23 are neglectable 

were used. This assumption was verified using standard methods for stress determination. The 

pole figures were measured for polished W (high-purity), CrN coating and ground Ni alloy, 

and the determined ODF functions are presented in Fig. 5.19. In the case of the polished W 

sample and the deposited CrN coating the fiber type of texture was found, while the ground 

sample does not exhibit significant sample symmetry. These textures were used in 

calculations of XSF from single crystal elastic constants given in Table 3.3. 

          a)          b)  

c)  

6.19. Orientation distribution function (ODF) determined using Cu radiation for polished 

W (a), CrN coating (b) and ground Ni alloy (c) samples for which residual stresses were 

measured. The sections through Euler space [76

2  axis and ranges 0
o

1 , , 2

o
 for W and CrN (a, b) and 0

o
 , 2

o
, 0

o
 1

360
o
 for ground Ni alloy.  
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 Firstly, elastically isotropic sample (A=1, see Table 3.3) tungsten (W) was 

investigated. To generate stress in the surface layer, the sample was manually polished (paper 

2000 grit, non-directional polishing) causing a roughness equal to Ra

method for different incident  angles as well as 

with 321 reflection) were applied to measure lattice strains. In order to calculate stresses, the 

fitting procedure based on Eq. 3.23 and two components 11 and 22 of biaxial stress were 

determined. Comparison of stresses determined using different XSFs (calculated using single 

crystal elastic constants from Table 3.3 and texture shown in Fig. 6.19 a) and the values of 

 parameter obtained in this analysis are presented in Fig. 6.19. The { }hkl
< a( , ) vs. sin

2
  

plots for an example incident angle  

shown in Fig. 6.20, while the comparison of the sin
2

 plots for different incident angles  is 

shown in Fig. 6.21 (XSFs given by free surface model were applied in calculations). 

 

Fig. 6.19. Values of determined stresses in polished W sample using MGIXD method and 

standard method (a) and comparison of  parameter values (b) for four grain interaction 

models (refraction correction was not introduced). 
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Fig. 6.20. Experimental points and theoretical { }hkl
< a( , ) vs. sin

2
 for polished 

W -geometry (b) and 

-geometry (c) methods (uncertainty of peak position 
o

0102 .)(  was assumed). 

 

 

Fig. 6.21. Example of the { }hkl
< a( , )  vs. sin

2
 plots for polished W sample. Results 

presented for MGIXD method for incident angles  

 

 In the light of these results it is clearly seen that in the case of elastically isotropic 

sample there is no any difference in the values of calculated stresses, for MGIXD and 

standard method, for any of chosen grain interaction models. In the case of isotropic 

W sample the { }hkl
< a( , )  vs. sin

2
 plots are straight-lines for each of considered models. 

This is definitely due to perfect elastic isotropy of W crystals and consequently equal values 

of XSF for all reflections. 
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 Presenting the stresses determined by MGIXD method (Fig. 6.22), it is also important 

to define the range of information depths z  (or  angles) for which the results of analysis 

are reasonable. In the case of studied sample we can assume that the real values of the stresses 

as well as the strain free lattice parameter are between those obtained with and without 

refraction correction. We can see that the uncertainty of the obtained results increase 

 
o
 ( , because the difference between results 

with and without correction increases. As shown in Fig. 6.22, the value of strain free 

parameter does not change significantly with the information depth. The stress in the 

11  22. 

The stress value determined by MGIXD method is almost constant for the studied penetration 

depth (slowly decreasing with depth), and perfectly agrees with the results of both standard 

methods. The stresses obtained with the latter method were presented for an average value of 

penetration depth for all -inclination angles. The larger  observed on figure 6.19b 

for standard  and  geometries can easily be explained by the curvature of the  curves 

due to the stress gradient. Indeed, it can be seen, at geometrie and at 

for  geometrie, that the slope is smaller at higher penetration depths (low  values) than at 

shallower depths.
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Fig. 6.22. Residual stresses and strain free lattice parameter in function of the information 

depth  (equal to , see Eq. 3.4) determined with and without correction of the refraction 

effect for the polished W sample.  

z
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 Secondly, samples having high elastic anisotropy were investigated: ground Ni alloy 

(A=2.76), polished austenite stainless steel (A=3.3) and CrN coating (A=0.34). The Ni alloy 

(composition given in Table 6

and feed rate 88 mm/s). Such surface treatments cause rough surface (Ra 

topography presented in Fig. 6.23  with amplitude of 

10 a period of about 100 the crystallographic 

texture after grinding does not exhibit sample symmetry (the ODF is shown for grinding). The 

stress measurements were performed using Cu radiation on PANalytical -  

(ENSAM, Paris) diffractometer having configuration given in Table 4.4. 

a)      b)   

Fig. 6.23. Surface topography of ground Ni alloy sample with orientations of measured 

stresses (a) and roughness characterisation in the direction perpendicular to direction of 

grinding (b). The measuring area is indicated in figure (a). 

 

 

substrate. The coating was obtained by means of the arc-vacuum method in a nitrogen 

atmosphere at a pressure of N2 equal to 3.5x10
-2

 mbar and a  [105, 106]. 

The average speed of deposition was 60 nm/min. As a result, the coating exhibited an average 

surface roughness Ra a <111> fibre crystallographic texture (Fig. 6.19 c) was 

produced. The stresses were measured using Cu radiation on PANalytical - 

diffractometer  with configuration given in Table 5.4. 

 In the case of the austenite stainless steel (the same material as used in tensile test - 

 with composition given in Table 6.1) the sample surface was mechanically 

(manually) polished in all two directions, changing orientations of the sample during 

polishing. In this case the average roughness equal to Ra = 0.13 

measurements were performed on a Seifert - PTS MZ VI using Fe K  radiation (Table 5.4).  
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 The MGIXD method and the standard method were applied to determine the stresses 

in the aforementioned samples. The fitting procedure based on Eq. 6.2 showed that only in the 

case of austenitic sample the determined probabilities of finding stacking fault between 

neighbouring planes (  value) has a significant influence on the results and its value exceeds 

the uncertainty. Therefore  parameter was adjusted in the case of the polished austenite 

stainless steel, while for the other samples  = 0 was assumed. The result of stress analysis for 

different considered grain interaction models and for all samples is presented in a Fig. 6.24 

while the values of  test are shown in Fig. 6.25. The example of { }hkl
< a( , ) vs. sin

2
 

plots, compared for all the analysed samples are presented in Fig. 6.26 (for different grains 

interaction models) and in Figs. 6.26  6 nt angles). 

 

a)   

b) c)  

Fig. 6.24. Comparison of influence of four models of the grain interaction model on the 

results of X-ray stress analysis for ground Ni alloy (a), polished austenite stainless steel (b), 

and CrN coating (c). The results for differ

method  for hkl reflections. 
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a)    b)    c) 

Fig. 6.25. Comparison of the values of  parameter for different grain interaction model for 

ground Ni alloy (a), polished austenite stainless steel (b), CrN coating (c). The results for 

different incident angle  are compared with standard method for hkl reflections. 

 

 The results presented for all the considered samples show that the theoretical curves 

do not match the experimental points when Voigt model is used to calculate XSF. Comparing 

values of stresses determined using different models of XSF calculation we can notice large 

discrepancies, especially for Ni alloy and austenitic stainless steel (Fig. 6.24). On the basis of 

the values of  parameter (Fig. 6.25), it can be concluded that for Ni alloy as well as polished 

austenite stainless steel 

models is the best one. In such a case we must accept larger uncertainty of measured stress 

values due to difference between these three models if the XSF are not verified in tensile test 

as for Ni alloy. Certainly, in the case of austenite stainless steel the results presented in 

Fig. 6.25 confirms conclusion drawn previously from tensile tests, that the Reuss and stress 

free models correctly predict XSFs. For CrN sample it would appear that free surface model 

fit the best the experimental data. It is worth to emphasize that the considered uncertainty of 

determined peak position 
o

0102 .)(  is much too small, relative to the actual value, also 

for the models which seems to correctly fit the experimental points. This is due to the fact that 

discrepancies between the model and the experimental values will increase with increasing 

stress value. For example, if the goodness of fit caused by model discrepancy (not due to 

other sources of the experimental errors) is on the level  =1-2 for 300 MPa (such value was 

measured for austenite stainless steel or Ti the tensile tests) it will increase proportionally to 

squared stress, reaching value  =16-32 for 1200 MPa (as in the case of ground Ni alloy, 

excluding Voigt method),  =4-8 for 600 MPa (as for polished austenite stainless steel, 

excluding Voigt method and all methods for  = 5
o
) and  =100-200 for 3000 MPa (as for 

CrN coating, excluding Voigt method and standard method for 422 reflection). Therefore, in 

spite of large values of  the discrepancy of the models (excluding Voigt) is on the same 

level for the tensile tests as well as for samples with residual stresses almost for all 

measurements. 
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a) b)
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c)  

Fig. 6.26. The { }hkl
< a( , ) vs. sin

2
 plots, compared for different grain interaction 

mode stainless steel (b), CrN 

coating (c). Only in the case of austenitic sample parameter was fitted and determined 

(  ). 

  

 In the sight of presented results it seems that free surface as well as Reuss model are in 

a very good agreement with experimental results in comparison with other models (see Fig. 

6.26). In particular the Voigt model cannot be taken into account stress analysis because it 

does not reflect the anisotropy of XSF, which is seen as the nonlinearities of { }hkl
< a( , )

vs. sin
2

 plots. In the case of the polished austenite stainless steel (A=3.3) and ground Ni 

(A=2.76) alloy the lattice strains in direction <111> are relatively smaller than in the direction 

<200>, while opposite tendency occur for CrN coating (A=0.34). It can be deduced from 

Figs. 6.26 -6.29 analysing shift of the experimental points from straight line and considering 

the sign of stress (compressive for austenite stainless steel and CrN coatingand, tensile for Ni 

alloy). This confirm opposite type of single crystal anisotropy for crystal having A >1 and 

A<1 (Young modulus is smaller in <200> direction in comparison with <111> for A>1 and 

the opposite tendency occurs for A<1). The latter results can be compared with elastically 
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isotropic (W) sample for which the { }hkl
< a( , ) vs. sin

2
 experimental plots are linear and 

the experimental point lie (in a margin of error) on the straight line. 

 For more precise analysis of the influence of the chosen model for investigated 

stresses the { }hkl
< a( , ) vs. sin

2
  plots are presented in Figs. 6.26 - 6.28 for different 

incident angle  in MGIXD method for free surface model, which is in the best agreement 

results for some samples. 

 

a)  

b)  

Fig. 6.27. Example of the { }hkl
< a( , ) vs. sin

2
  plots for ground Ni alloy. Measurements 
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a)  

b)  

Fig. 6.28. Example of the { }hkl
< a( , ) vs. sin

2
 plots for polished austenite stainless steel. 

er (b) 

models. 

a)  

b)  

Fig. 6.29. Example of the { }hkl
< a( , ) vs. sin

2
 plots for CrN coating. Measurements 

calculated from single crystal data using f  
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 Finally, the results of residual stress analysis in anisotropic samples are presented in 

Fig. 6.30 where the dependence of stresses and strain free parameters vs. information depth is 

shown (Eq. 3.4). Analysis was performed applying XSF calculated by the free surface model 

with refraction correction or without this correction. 
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Fig. 6.30. Residual stresses, strain free lattice parameter 

austenitic sample) in function of the information depth  (see Eq. 3.4) determined with and 

without correction refraction effect index for ground Ni alloy (a), CrN coating (b) and 

polished austenite stainless steel (c).  
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 Analysing the results from Fig. 6.30 it can be concluded: 

 Tension stresses were found in the ground Ni alloy sample (such stress is generated 

due to temperature gradient during grinding). Residual stresses are large and constant for 

different incident angles in the direction of grinding ( 22

I
- along ridges and furrows), while it 

is much smaller and decreasing to zero value at surface for perpendicular direction ( 11

I
), see 

Fig. 6.23. This effect can be easily explained due to shadows for the X-ray beam causing from 

the ridges which are important when the measurement is performed in transfers direction 

( 11

I
 are measured for the top ridge where its relaxation close to the surface is very large). 

The stress 22

I

 
is measured for the ridges and furrows as well (no shadow) and it does not 

relax significantly at the top of ridge (in direction of grinding). The standard measurements 

confirm tendency of stress evolution in larger depth. It should be also emphasised that no 

significant difference was observed for the stresses determined taking into account refraction 

correction and without correction. This is because the shift of the diffraction peak is very 

small in comparison to the large shift caused by large stress (strain). However, we can see 

influence of refraction on the value of strain free lattice parameter a0. It should be underlined 

that determined value of a0 is constant for different depths (even for so large stresses) if the 

refraction correction is not applied and the correction causes unexpected variation of a0. 

It means that refraction should not be taken into account due to very rough surface 

(Ra=3.3  

 Compressive very large stress was found in CrN coating ( 11

I
 = 22

I
 was assumed 

because of fibre texture and process symmetry). It results from different shrinking amplitudes 

of the CrN layer and the steel substrate during cooling (their thermal expansion coefficients 

are, respectively 6 x 10
-6

 K [107] and 11-12 x 10
-6

 K [108, 109]). It should be noted that the 

observed important compressive stress is caused not only by the temperature effect but also 

due to the peening of the growing coating by accelerated atoms, interdiffusion and the 

reactions with the substrate [109, 110]. A similar level of the stresses in the CrN coating 

deposited on the steel base was previously observed in [105, 109, 110]. For this sample the 

stresses are so large that the effect of refraction correction is relatively small (Fig. 6.30b). 

 Compressive stress was determined in polished austenitic sample. Higher value of 

compressive stress was found in the direction in which the last polishing was applied 

(i.e. 22 11| | | |I I
) and the stress in transverse direction (

11

I  ) relaxes close to the surface. 
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The dependence of a0 vs. depth is not constant but the variation is rather small. Concerning 

probability of stacking fault finding it can be seen that it decreases with penetration depth. 

Fitting or not fitting of the  parameter does not change the results of calculated stresses and 

a0 (but the quality of fitting is better, see Fig. 6.31). This is because  influences only 

deviation of points from the straight line in { }hkl
< a( , ) vs. sin

2
  plot but does not 

change its slope. Finally, it can be concluded that results difference between results corrected 

and not corrected for reflection effect increase significantl  
o
 (

m). 
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Fig. 6.31. The influence of fitting or not fitting of the  parameter on the results of calculated 

stresses and a0 parameter. 

 

6.4. CONCLUSIONS 

 In this chapter the interpretation of the MGIXD was significantly developed in order 

to determine c/a parameter in hexagonal materials and the probabilities of finding stacking 

fault  between neighboring planes {111}. The method of c/a determination was tested on 

polished Ti (grade 2) sample showing that for the material having low elastic anisotropy the 

stresses, strain free parameter a0 as well as c/a value can be determined using presented in this 

work self-consistent iteration method (the experimental values determined in the case of 

tensile as well compressive stresses were compared with literature). Significantly better fitting 

of the theoretical values to experimental ones was obtained when c/a was adjusted. It should 

be underlined the c/a value can be estimated in good approximation for elastically isotropic 

material (as Ti) or if the XSF are known (measured or verified). The second case was not 

considered in the present work but this test is an important issue for further development of 

MGIXD method (using for example elastically anisotropic Zr alloy sample). 
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 Probability of finding stacking fault  was determined for polished austenitic stainless 

steel (alloy having low stacking fault energy). Reasonable values were of  was determined in 

the case compressive stress in the polished sample. Similar calculation has been done 

previously for ground sample (the same austenitic steel) by Baczmanski [20] receiving similar 

value of This methodology also requires knowledge of XSF for anisotropic material (like 

austenite stainless steel). This is why it is important to verify different models of XSF 

calculations what has been done in the second part of this chapter. 

 The best verification of the XSF can be done measuring lattice relative strains during 

tensile test (we avoid influence of initial residual stresses, stacking faults, systematic errors 

due to misalignments, refraction and other effects). From the performed tests it is evident that 

both the experimental and the calculated { }

rel

hkl
< ( , ) vs. sin

2
  functions based on 

different hkl reflections exhibit nonlinerities in the case of sample having elastic anisotropy 

(austenite stainless steel), in contrary for elastically isotropic sample (like Ti) this dependence 

is almost linear. Anisotropy of XSF was also observed on the {hkl} < a( , ) > vs. sin
2

 plots 

obtained when the residual stresses were measured in Ni alloy, austenite stainless steel and 

CrN samples. In view of the nature of presented results obtained using MGIXD and standard 

method, it can be concluded that Reuss and free surface grain interaction models are in the 

best agreement with the experimental results. These models reflect in the best way the elastic 

anisotropy of the studied samples. This conclusion does not agree with the previous studies 

[1] in which the type XEC/XSFs were positively verified for quasi-isotropic materials 

(without texture) or in some cases for textured samples [1]. However, it was also shown that 

in the case of textured samples the anisotropy of XSF is better predicted by Reuss or free 

surface models than by the approach [1,104]. The coupling of the grains in the 

measured sample depends on the material but also on the depth above the sample surface. 

Indeed in the case of  MGIXD method the penetration depth is usually lower than in the case 

of standard measurement, thus the conditions of free surface are better fulfilled for the 

measured volume.  

 Concluding, reliable diffraction stress analysis is only possible when an appropriate 

grain interaction model is applied for anisotropic sample. Therefore the free surface model 

(having physical explanation in contrast to Reuss model) was applied to determine probability 

of finding stacking fault ( ) in polished austenite stainless steel. In this chapter the examples 

of stress analysis for isotropic (W) as well anisotropic samples samples (Ni alloy, austenite 

stainless steel, CrN) were performed taking into accounts uncertainty due to refraction effect. 
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7. MGIXD METHOD USING DIFFERENT WAVELENGTHS OF 

SYNCHROTRON RADIATION  
 In the previous chapter the role of XSF, refraction and other effect influencing results 

of MGIXD measurements were considered. In this part the attention will be paid on the 

possibility of measuring stress evolution vs. depth below the sample surface. Moreover the 

methodology of data interpretation is developed in order to treat data obtained not only for 

different incident angles but also using simultaneously different wavelengths. Finally, it will 

be shown that using our software also the results of energy dispersion diffraction 

measurements can be successfully treated. Therefore, the new elaborated method is not only 

multi-reflection  but also multi-wavelength . The advantage of the method is that more 

experimental data are available to calculate the stresses. Moreover, application of different 

wavelengths enables verification of the MGIXD measurements. 

 The preliminary experiments were performed for two samples exhibiting low crystal 

anisotropy: Al  fcc structure and Ti  hcp structure, using X-Pert Philips X-ray 

diffractometer (Cu K   

(Table 5.4). The results obtained using classical X-ray diffraction were verified by 

synchrotron radiation in order to test the MGIXD method and to precisely designate the 

variation of stresses in function of depth. Measurements were performed at G3 beamline at 

the DORIS III (HASYLAB) storage ring. For selected samples, MGIXD geometry was used 

to measure stresses at different depths below the surface.  

 Secondly, selected samples which did not exhibit the stress gradient when measured 

on the classical diffractometer, were investigated using EDDI method with the synchrotron 

radiation at BESSY (EDDI beamline). This method was used to perform the measurements in 

the deeper regions of the sample in order to reveal if the stress gradient occurs. 

 

 

 

 



134 

 

7.1. X-RAY MEASUREMENTS 

 At first measurements were performed using MGIXD method on a PANalytical  

  and PANalytical - MRD (ENSAM, Paris) both equipped 

2107 

alloy and Ti samples were ground or polished. In the case of grinding the speed of rotation of 

the grinding wheel (external diameter equal to 300 mm, internal diameter equal to 127 mm 

and width equal to 40 mm) was 2000 rpm while the work speed was 9 m/min. Several passes 

were carried and in each pass the layer of 20 m was removed. Such treatments were applied 

for Al2017 alloy and Ti (grade 2) samples (compositions are given in Table 6.1). Two types 

of mechanical two-directional manual polishing were applied for other samples:  

I) with 5 steps using emery papers: 800, 1200, 2000, 2500, 4000 grit and the last 

treatment was performed with pressing force of 5 N, next polishing paste was used for final 

treatment (size of the polished surface: 1.5 mm per 1.5 mm);  

II) one polishing with emery paper 2000 grit and without any pressing.  

 Polishing type I was applied for the Al2017 and Ti (grade 2) samples, while polishing 

II was performed for Al2017 and Ti6Al4V alloys (composition given in Table 5.1). The 

surface roughness Ra parameter for all mechanically treated samples was gathered in 

Table 7.1. 

   

Table 7.1. Values of surface roughness parameter (Ra) for investigated sample. 
Surface treatment Ra  

Al2017 

Polishing type I  (5 N) 0.13 

Polishing type II 0.27 

Grinding 1.18 

Ti (grade 2) 

Polishing type I  (5 N) 0.04 

Grinding 1.87 

Ti6Al4V 

polishing type II 0.29 

 

 The orientation distribution functions were determined using Cu radiation in reflection 

geometry for all mechanically treated samples (Fig. 7.1). The penetration depth in texture 

measurement was always larger (MGIXD) or comparable (standard method) with that in the 

case of stress determination. The gradients of texture were not considered in this work. It can 

be seen that the grinding process changes the texture significantly for both Al 2017 and Ti 

(grade 2) samples. The initial texture (before grinding) for Ti sample is given in Fig. 6.9, 

while the initial texture of Al2017 was almost random. These texture has not sample 

symmetry and the ODFs are presented for 0
o

1 
 o
. Polishing also modifies texture but 
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the changes are small, i.e. the texture of Al 2017 remains almost isotropic after both types of 

polishing, while the preferred orientations in Ti (grade2) are shifted after polishing type I. 

Polished Ti and Ti6Al4V samples exhibit orthorhombic sample symmetry, and the range 0
o

 

1  
 o
 was shown. 

        

    

  
a)                                                                      b) 

Fig. 7.1. Orientation distribution functions (ODF) determined using Cu K  radiation for 

ground and polished Ti, Ti6Al4V and Al2017 samples. The ranges of Euler angles depending 

on sample and crystal symmetry are given.  

 

Al samples 

 Examples of peak profiles for powder Al, polished (type II) and ground aluminum 

alloy obtained using pseudo-Voigt function, are presented in Fig.7.2 while examples of 

<a( , )>{hkl} vs. sin
2

 plots are shown in Figs. 7.3 for polished (type II) and ground Al2017, 

respectively. 
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Analyzing peak profile it can be concluded that the polished as well as ground samples 

exhibit significant broadening of diffraction peaks in comparison with those obtained for 

recrystallized Al powder. The peak profiles can be successfully fitted by two pseudo-Voigt 

functions corresponding to K  and K lines. The <a( , )>{hkl} vs. sin
2

  plots were fitted 

using procedure based on Eq. 3.23, in which the XSF calculated by Kr ner method from 

single crystal elastic constants given in Table 3.3. Because of low crystal anisotropy for Al 

samples all methods of XSF calculation give almost the same results, moreover the effect of 

texture is also not significant. As shown in Fig. 7.3 a significant difference between  = 0
0
 

and  = 90
0
 was found, while no such difference was observed in the case of polished 

samples.  

The in-depth stress and a0 lattice parameter profiles as a function of penetration depth 

( ) determined for different incident angles ( ) for all studied Al2017 samples are compared 

with measurements performed for Al powder sample (Fig. 7.4). Refraction correction was 

taken into account; however it is not significant for the studied range of incident angles as 

shown in Fig 5.10. Moreover, the stresses obtained using two methods for determination of 

peak positions were compared in the case of sample for which stress gradient occurs 

(polishing type II), i.e., fitting by pseudo-Voigt function (Fig. 7.5a) and center of gravity 

method (Fig.7.5b). Analyzing Figs. 7.4 and 7.5, it can be concluded that: 

 Stresses close to zero were measured in Al powder. 

 Tensile stresses were generated after grinding. This is caused due to temperature 

gradient effect because of interaction between sample body and the heated surface 

layer (this layer contracts during cooling). The stress along direction of grinding 11 is 

higher than in the transverse direction ( 22). No significant evolution of stresses occurs 

in the depth penetrated by X-rays. 

 Compressive stresses 11  22 were found in the polished samples. No significant in-

depth evolution was found for polishing type I (5N pressing force), while stress 

gradient occurs after type II of polishing. 

 No significant in-depth evolution was found for a0 lattice parameter. Large difference 

was found between a0 determined for Al powder and Al2017 alloy.  

 Approximately the same stresses were obtained using both method for determining of 

peak position (fitting with pseudo-Voigt and center of gravity - CG). 
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 Finally, the Williamson-Hall method was used for investigation of the in- depth 

evolution of root mean square of the third order strain and crystallite size (coherent domain). 

The fitted linear functions to the experimental points in Williamson-Hall method for both 

polished and ground Al2017 are presented on Figs. 7.6. The calculated results are summarized 

in Table 7.2. As the reference the LaB6 powder was used. 

 

a) b)  

Fig. 7.6. The linear function fitted to the experimental data in Williamson-Hall method for 

polished  type II (a) and ground (b) Al2017 samples (analysis with Gaussian approximation, 

see chapter 2.3.1). 

 

 

Table 7.2. The root mean square of the third order strain ( 2 ) and crystallite size (D) 

calculated with Williamson-Hall method for Al 2017 ground and polished (type II) samples. 

  2
  

Al2017 polished (type II) 

5 5.8 0.0017  619  

15 14 0.0015  540  

Al2017 ground 

5 5.8 0.0019  --- ---- 

15 14 0.0016  791  

 

 It can be concluded that similar values of the third order strains ( 2 ) were found 

for polished (type II) and ground samples. The strain 2  decreases with depth. Large 

uncertainties of the determined crystallite size (D) unable study of D evolution with depth. 

Measurement of D is close to the limit of method sensibility, i.e. only D smaller than about 

500  can be measured using applied configuration of the diffractometer (instrumental 

broadening is about FWHM  verified using LaB6 powder). 
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Ti samples 

 As it was mentioned the second series of samples was prepared from Ti and Ti alloy. 

The example of peak profiles for all investigated samples and Ti powder, obtained with 

pseudo-Voigt fitting function are presented in Figs. 7.7 and 7.8. The example <a( , )>{hkl} 

vs. sin
2

 plots for polished (type I) Ti6Al4V alloy are shown in Figs. 7.9, while similar plots 

for Ti (grade 2) sample were already presented in Figs. 6.1 and 6.2 (chapter 6).  
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 Similarly like for Al2017 samples, the polished and ground Ti samples exhibit 

significant broadening of diffraction peaks in comparison with recrystallized powder. The 

pseudo-Voigt functions fit correctly the experimental peaks measured for ground or 

polished (with pressing force equal 5 N - type I) Ti (grade 2) sample while disagreement 

between theoretical and experimental profiles was found in the case of polished Ti6Al4V 

alloy (type II); see asymmetries indicated by arrows in Fig. 7.8. The disagreement is 

particularly evident for high 2  angles. The <a( , )>{hkl} vs. sin
2

  plots were fitted using 

procedure based on Eqs. 6.1 and 3.23, in which the XSF are calculated by Kr ner method 

from the single crystal elastic constants given in Table 3.3 and c/a parameter was adjusted. 

Similarly, as in the case of Al sample low crystal anisotropy causes that the choice of 

XSF model and crystallographic texture is not significant. It should be stated that the 

a( , )>{hkl} vs. sin
2

  plots were limited to the range of sin
2

 for which acceptable fitting 

of pseudo-Voigt function was obtained (Fig. 7.9). 

The in-depth stress and lattice parameters (a0 and c/a) profiles as a function of 

angles ( ), and compared with analogous measurements performed for the Ti powder 

sample (Fig. 7.10). Refraction correction (taken into account) is not significant for the 

studied range of incidence as shown in Fig. 5.11. The stresses obtained using the two 

methods (fitting by pseudo-Voigt function and center of gravity) for determination of peak 

positions were compared in the case of polished Ti6Al4V alloy (type II) exhibiting 

significant stress gradient (Fig. 7.11). Analyzing the presented above results concerning 

residual stresses for Ti and Ti alloy samples, it can be concluded that (see Figs. 7.10 and 

7.11): 

 Stresses close to zero were measured in Ti powder. 

 Different types of stresses were generated after application of both surface 

treatments, i.e. tensile stresses after grinding (higher stress along direction of 

grinding) and compressive stress after polishing. No significant evolution of 

stresses occurs in the depth penetrated by X-rays for ground and polished (with 

pressing force) samples, while a significant gradient of stresses occurs for polished 

Ti alloy in the range of penetration depth accessible on the classical diffractometer. 

 No significant in-depth evolution was found for a0 and c/a parameters for all 

measured samples. The values of a0 lattice parameters for Ti (grade 2) polished and 

ground samples are comparable with each other and are close to the lattice 
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parameters of powder sample (similar to the values characterizing pure material: 

a0 [96]). On the other hand the value of 

the lattice parameters of Ti6Al4V alloy, as it was expected, is significantly different 

from those obtained for Ti (grade 2) sample (Ti6Al4V parameters are close to 

a0 = c/a = 1.5957, obtained by Bernier et al. [111] for similar alloy, 

using synchrotron radiation).  

 The determined c/a parameter does not depend on depth if stress gradient does not 

occur, thus for Ti powder and polished or ground Ti (grade 2). However, in the case 

of stress gradient in polished Ti6Al4V alloy, c/a exhibits small monotonic in depth 

dependence which is slightly more significant in the case of XSF given by Kr ner 

than in the case of free surface model (Fig. 7.11a). On the other hand, also a0 shows 

small deviation close to the surface, which in turn, is smaller for Kr ner model 

(Fig. 7.11a). Because the deviations of a0 are c/a are small and could be caused by 

other reasons, it is not possible to decide which model better describes grain 

interactions in the studied sample. However, the hypothesis that stress relaxation 

close to the surface causes different grains interaction at different depths should be 

in future verified. 

 Different values of stresses and a0 and c/a parameters were obtained depending if 

the peak positions were determined by fitting pseudo-Voigt function or calculating 

the center of gravity (Fig. 7.11b). This important problem will be considered in this 

work and it is expected that such difference is due to asymmetry of peak caused by 

the stress gradient (the measured peak is integrated from different depths exhibiting 

different lattice strains).   

 

 Williamson-Hall analysis was used for investigation of the in- depth evolution of 

root mean square of the third order strain and crystallite size (coherent domain). The fitted 

linear functions to the experimental points in Williamson-Hall method for investigated Ti 

samples are presented in Fig. 7.12 (as the reference the LaB6 powder was used). The 

calculated results are summarized in Table 7.3.  
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a) b)  

Fig. 7.12. The linear function fitted to the experimental data in Williamson-Hall method 

for Ti (grade 2) polished  type I (a) and for polished (type II) Ti6Al4V alloy (b) - 

Gaussian approximation. 

 

Table 7.3. The root mean square of the third order strain ( 2 ) and crystallite size (D) 

calculated with Williamson-Hall method for Ti and Ti6Al4 samples. 

  2
  

Ti6Al4V polished  Type II 

5 0.9 0.0018  438  

15 2.1 0.0006  408  

Ti (grade 2) polished  type I 

5 0.9 0.0025  501  

15 2.1 0.0016  430  

Ti (grade 2) ground 

5 0.9 0.0039  238  

15 2.1 0.0020  474  

 

 The values of the third order strains ( 2 ) in polished (type I) and ground 

Ti (grade 2) samples are higher than in Ti6Al4 alloy, for which polishing type II was 

applied. In all samples the strain 2  decreases with depth. In the case of slightly 

polished Ti6Al4 alloy very small value of strain 2

 
was measured in the depth 

 = 2.1 m where material is not deformed plastically. Similarly as for Al sample due to 

large uncertainty of the determined crystallite size the study of D evolution is not possible. 
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 As mentioned before, the classical X-ray measurements were an introduction to the 

study performed with synchrotron diffraction. X-ray measurements enabled to choose 

appropriate samples, i.e. the samples having important in-depth gradients (Al2017 and 

Ti6Al4 - type II of polishing). Next these samples were studied using similar wavelengths 

(energies), as used on the laboratory diffractometers, with synchrotron radiation. 

Additionally for the ground and polished (with pressing force) Ti (grade 2) samples much 

higher energies was used (EDDI  energy dispersion diffraction) to study stress behavior in 

deeper layers.  

 

7.2. SYNCHROTRON MEASUREMENTS USING MGIXD WITH DIFFERENT 

WAVELENGTHS AND INCIDENT ANGLES.  

The results for samples exhibiting a high in-depth stress gradient (the results 

obtained using classical X-ray diffraction) were verified using synchrotron radiation. The 

experiment was performed at HASYLAB, DORIS III storage ring, on beamline 

G3 spectrometer, using soller collimator (with equatorial 

scintillation detector. A double-crystal germanium monochromator was used. The beam 

dimension at monochromator was about 5 mm per 10 mm. All monochromator movements 

were driven by stepper motors. A tilted gold mirror was used for suppression of the higher 

harmonics. The advantages of synchrotron radiation are its perfect collimation, 

monochromatization, high intensity and possibility of wavelength variation. Moreover, 

very valuable advantage is that penetration depth can be changed for the same incident 

angle by changing the wavelength. In Fig. 7.13 the penetration depths for different 

wavelengths are shown. Three different wavelengths (  =1.541  

 the incidence angles ( ), for which the penetration depth is 

the same, were calculated. The important question verifying the methodology was if the 

same stresses will be determined for such combination of wavelengths and incident angles. 

The sets of incident angles and wavelengths corresponding to the same penetration depths 

were determined drawing horizontal lines in Fig. 7.13.  
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Fig. 7.13. The penetration depth vs. incidence angle  for Al (a) and Ti (b) samples. Curves 

for three, different, selected wavelengths are shown. Horizontal lines are drawn for 

constant penetration depths. 

 

 

Al2017 sample 

First studied sample was mechanically polished (type II) Al 2017 alloy for which a 

significant gradient of stresses was determined using classical X-ray diffractometer. The 

MGIXD method with radiations having three different wavelengths: 

   were applied. Synchrotron radiation enabled to extend the 

penetration depth ( ) for which the stresses are determined. The measured peaks were fitted 

by the pseudo-Voigt function. Examples of peak profiles are presented in a Fig. 7.14.  
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Fig. 7.14. Example peak profiles fitted with the pseudo-Voigt function presented for 

different incident angle and different wavelengths: a)  

c)   
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 In the case of synchrotron radiation having better resolution (FWHM   in 

  the diffraction 

data measured at G3 spectrometer show more accurate peak profiles. Consequently peak 

asymmetry occurs when peaks are fitted by pseudo-Voigt function and the physical reason 

of this asymmetry will be discussed later (Fig. 7.14). 

 In order to check agreement of the in-depth profiles obtained for different 

absorption of synchrotron radiation (depending on energy), the stresses and a0 parameter as 

the functions of penetration depth ( ), were determined for each wavelength independently. 

The positions of peaks were found by fitting a pseudo-Voigt function (Fig. 7.15a) or 

calculating the center of gravity (Fig. 7.15b), and next the fitting procedure based on 

Eq. 3.23, with Kr ner, XSF was applied to calculate the values of stresses 
11 22

I I

 

(this assumption was previously confirmed by X-ray measurements) and a0 parameter. 

When peaks were fitted by pseudo-Voigt function, a very good agreement was achieved 

between data obtained using synchrotron radiation (for three different wavelengths) as well 

as classical diffractometer (preliminary measurements on PANalytical   

(ENSAM, Paris)). If the peak positions are calculated as center of gravity (Fig. 7.15b) the 

agreement is not so good but the stresses are still equal, in the margin of uncertainty, for 

different wavelengths and classical diffractometer. Both methods (pseudo-Voigt and center 

of gravity) give very similar results. To confirm that the determined stresses really depend 

on the penetration depth and not on the geometrical conditions also the stresses as the 

function of incident angle  were drawn in Fig. 7.16. As expected, due to different 

absorption significant difference of stresses measured with different wavelengths are seen 

for the same value of  angle.     
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Fig. 7.15. The in-depth profiles of stresses and a0 lattice parameter for polished Al2017 

sample. Comparison for different peak positions determined by pseudo-Voigt function (a) 

and center of gravity (b). The results for different wavelengths of synchrotron radiation and 

for laboratory diffractometer are shown. 

 

 

 

 

 

 

Fig. 7.16. Stress values for 

polished Al2017 sample as 

a function of incident angle 

( ) for different wavelengths 

using synchrotron radiation 

and for laboratory X-rays. 
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Fig. 7.17. The <a( , )>{hkl} vs. sin

2
  plots for polished Al2017 sample obtained with 

three wavelengths and different incident angle ( ). In each figure experimental data 

corresponding to the same penetration depth are shown together with fitted theoretical line. 
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The agreement between results obtained with different wavelengths allows 

developing the MGIXD. The idea is to collect <a( , )>{hkl} values corresponding to the 

same penetration depth  on the same sin
2

  plot. Therefore <a( , )>{hkl} vs. sin
2

  curves 

(containing information obtained using different wavelengths) are presented on separate 

plots corresponding to chosen penetration depths (Fig. 7.17). Subsequently, for the first 

time the MGIXD method based on Eq. 3.23 was simultaneously applied for all 

<a( , )>{hkl} values measured at the same penetration depth as determined by a 

combination of chosen wavelength and incident angle (XSF calculated by Kr ner method). 

As seen in Fig. 7.17 the experimental points are close to the fitted lines and systematic 

decrease of the negative slope of the <a( , )>{hkl} vs. sin
2

  plot (representing 

compressive stress) with penetration depth is seen for both experimental and fitted results. 

The stress in-depth profile obtained with the developed method is presented in Fig. 7.18a. 

The advantage of this approach is that each point on the in depth dependence was obtained 

not only with different reflections hkl corresponding to different incident angles (multi-

reflection) but also with different wavelengths (multi-wavelengths).   

Having values of mean stress vs. penetration depth  the variation of stress vs. z  

real depth can be calculated using the inverse Laplace transform applied to a polynomial 

function (see chapter 3). It was found that the solutions (
11( )I z ) are similar for polynomial 

of 2
nd

 and 3
rd

 degree as presented in Fig. 7.18b. 
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Fig. 7.18. The stress profile for polished Al2017 sample for all experimental points 

obtained for three different wavelengths as a function of  - penetration depth (a) and z - 

real depth in sample (b). The uncertainty bounds are given for polynomial of 2
nd

 degree. 
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Although the stress profile was found and presented in Fig. 7.18b two important 

questions must be answered, i.e.: 

a) for which maximum z- depth the presented approximation can be applied,  

b) does the determined stress gradient explains asymmetry of diffraction peak 

measured using synchrotron radiation? 

 

To answer the above question the inverse analysis was performed, i.e., assuming the 

determined stress distribution 
11( )I z

 
the experimental results were simulated.  

 

a) The mean stress denoted by 
11( )I  and calculated using equation: 

/ /

0 0

( ) ( )

x x

I I z z

ij ij z e dz e dz       (7.1) 

up to different limits x , instead of x  as in the real thick sample (where 
11( )I z  is the 

dependence of stress vs. real depth z). The results were compared with the measured mean 

stresses which should correspond to the recalculated 
11( )I  values. It was found that the 

recalculated profiles do not change significantly and agree with experiment if the 

integration is performed at least up to x = 40 m, i.e. the stresses over 40 m does not 

influence significantly measured values. Therefore, the distribution of stresses 
11( )I z

 
up to 

m was correctly determined, however it was not proved that the solution 

is unique.  
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Fig. 7.19. The stress profiles for polished Al2017 sample: 

11( )I z calculated from inverse 

Laplace transform, 
11( )I  measured or recalculated from 

11( )I z using Eq. 7.1. Polynomial 

of 2
nd

 (a) and 3
rd

 (b) degree were applied to fit the 
11( )I experimental values. 
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b) The experimental diffraction peak profiles were simulated. Each peak was modeled as 

the superposition of pseudo-Voigt functions having positions corresponding to the 

interplanar spacing modified by different stresses 
11( )I z at different depths z. In calculation 

of lattice strains the XSF (Kr ner method) were used. The main problem of such modeling 

is that both FWHM and  (contribution of Lorentz component) are unknown and they can 

depend on the depth z. Only the dependence of peak intensity is known and described by 

absorption law. In this work the  parameter was assumed constant for different depths and 

it was determined by fitting pseudo-Voigt function to experimental peak for given hkl 

reflection (and corresponding 2 ). In the simulation, the superposed pseudo-Voigt profiles 

were weighted by intensity depending on absorption (corresponding to the depth z) and 

different dependences of FWHM on the depth were assumed in order to reproduce one of 

the most asymmetric peaks (  2  
o
 and  = 15

o
). The following in-depth 

profile of FWHM = b was assumed: 

0 1 exp( / )b b b z                                              (7.2) 

where b0 is the FWHM for z  and , b1 describes the evolution of FWHM for 

decreasing depth z, caused by microstructure variation due to polishing.  

 The evolution of FWHM described by Eq. 7.2 and arbitrarily assuming b0 = b1 with 

different  parameters is shown in Fig. 7.20. It was found that the experimental 

asymmetrical peak (  2  
o
 = 15

o
) is correctly modeled for  

and b0 = b1. In calculations the determined 
11( )I z  dependence was used and the model 

peak profiles were compared with experimental points as well as with calculations 

assuming zero stress (see Fig. 7.21a). In Fig. 7.21b, a similar comparison but assuming 

constant FWHM is shown. An important question is if the other peaks (at different 

and for different ) are also correctly reproduced for the FWHM evolution described by 

. In this aim different peaks were modeled assuming the same variation of 

microstructure (described by ) and stress dependence 
11( )I z . Only the values of b0 

(assuming b0 = b1) was adjusted for different reflections hkl (see Table 7.4). In Fig. 7.22 

the experimental profiles were compared with the modeled ones assuming stress variation 

11( )I z  or stress equal to zero. Very good agreement between experimental and theoretical 

peaks confirms that the 
11( )I z

 
function correctly describes in-depth stress dependence. 

Moreover, it can also be seen that the stress gradient differently influences the diffraction 

peaks measured for different penetration depth. If the penetration depth  is relatively small 
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(in comparison with stress variation distance), compressive stress causes significant shift of 

the diffraction peak (  = 3.7 m,  = 5.9 m in Fig. 7.22 and  = 2.6 m in Fig. 7.23), while 

for deeper penetration depth (  = 14.5 m,  = 17.5 m in Fig. 7.22 and  = 31 m in Fig. 

7.23) the peak is not much shifted but significant asymmetry appears due to superposition 

of the intensities from regions where compressive stress decreases and next change to 

tensile one.   

 

 

 

 

 

 

Fig. 7.20. Variation of FWHM described by 

Eq. 7.2 with different values of parameter 

(assuming b0 = b1). 
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Fig. 7.21. Comparison of diffraction peak profiles: experimental, simulated for 
11( )I z  

stress function and assuming zero stress (   
o
 and  = 15

o
). Results for 

FWHM variation described by Eq. 7.2 with =10 m (a) and for constant FWHM (b) are 

shown. 

 

 It can be concluded that the inverse analysis (integration of stress 
11( )I z  with 
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given by 
11( )I z . In the latter calculation increase of FWHM for the peaks coming from the 

regions closer to the surface was assumed. This effect is due to microstructure change 

caused by mechanical polishing (increase of number of defects and decrease of crystallite 

in deformed material). It should be mentioned that similar simulation of peak profile was 

also done by Genzel et al. [37] in order to explain influence of stress gradient on the profile 

asymmetry. However, calculations were performed for one peak in the case of the 

deposited coating, i.e. when constant FWHM can be assumed.  

 

Table 7.4. Values of b0 (assuming b0 = b1) used in modeling of the peaks for different 

2  angles and wavelengths. 

    

 (
o
) 38.6 82.7 138.2 44.0 91.6 151.5 31.15 84.8 132.7 

b0 (
o
) 0.12 0.20 0.75 0.12 0.26 0.90 0.115 0.22 0.65 
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Fig. 7.22. Comparison of diffraction peak profiles: experimental, simulated for 
11( )I z  

stress function and assuming zero stress. For all peaks (

FWHM described by Eq. 7.2 with was used in calculations (b0 = b1 is given in 

Table 7.4). 
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Fig. 7.23. Similar comparison as in Fig 7.18 but for example peaks measured with 

 7.18, described by 

Eq. 7.2 with  was used in calculations and b0 = b1 given in Table 7.4). 

 

   

 

 Finally the root mean square strains 2 corresponding to density of 

dislocations but also influenced by stress gradient 
11( )I z

 
were calculated using 

Williamson-Hall method for polished Al2017 sample. Fitted linear function to 

experimental data is shown in Fig. 7.24. The results of calculation are summarized in 

Table 7.5. As the reference the LaB6 powder was used. 
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a)  

b)  

Fig. 7.24. The linear function fitted to the experimental data using Williamson-Hall 

method for polished Al2017 (Gauss approximation). Results compared for different 

wavelengths but for the same penetration depth (a) and for the same wavelength but 

 

 

 

Table 7.5. The root mean square of the third order strain ( 2 ) and crystallite size (D) 

calculated with Williamson-Hall method for Al 2017 polished samples 

(different wavelengths and incident angles). 

  ) 2
  

1.2527 2.6 5.9 0.0015  0.0001 596    96 

1.7512 7.6 5.9 0.0015  0.0001 747  261 

1.5419 5 5.9 0.0016  0.0001 915  413 

1.5419 10 10 0.0015  0.0001 868  330 

1.5419 15 15 0.0014  0.0001 438    55 

1.5419 20 17 0.0012  0.0001 553    48 

 

It can be concluded that results obtained using Williamson-Hall analysis are in 

a good agreement for the data collected with different wavelengths and comparable with 
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those obtained using classical diffractometer (in the margin of uncertainty). As expected 

the third order strain systematically decreases with the depth in the sample (this supports 

the above analysis concerning simulation of peak profiles), however the uncertainty of D is 

too large to determine the variation of the coherently diffracting domain size with depth. 

The results of Williamson-Hall analysis have rather qualitative character, showing 

tendency of variation, because it should be underlined that the 2  strain is influenced 

not only by the defects (third order stresses) but also by the gradient of stress 
11( )I z

integrated over diffracting volume.  

 

 

 

Ti6Al4V sample 

 The second studied sample was polished Ti6Al4V alloy (polishing type II) for 

which the gradient of stresses was observed for data obtained from classical diffractometer 

(Fig. 7.11). The example peak profiles obtained using synchrotron radiation is presented in 

Figs. 7.25-7.27 (for the comparison the diffraction peak profile from classical 

difractometer is presented on a Fig. 7.28). In this case, the strong asymmetry of the 

diffraction peaks suggest that two irradiated regions of the sample have different 

microstructure, i.e. layer of about 0.5-1 m which has been severely plastically deformed 

(region of high density of dislocations) and the base material, under this layer, having 

much lower density of dislocations (smaller plastic deformation). Indeed the diffraction 

peaks can be separated into two pseudo-Voigt functions having different integral widths 

and position (Figs. 7.25-7.27). This effect was not clearly visible for diffraction peaks from 

the classical diffractometer because of larger divergence of the beam and the presence of 

CuK 2 line. But still it is possible to separate two peaks for chosen profiles as shown in Fig. 

7.28 (compare also the same peak measured by synchrotron radiation, shown in Fig. 

7.25b). It should be underlined that in this case the separated peaks represent different 

regions in the sample and they can be treated independently. The broad peak (representing 

hard  deformed material in the layer) shifts relatively to the narrow one (coming from 

soft  base material), i.e. when = -  angle increases (together with 2 , for constant ) the 

broad peak shifts from the left to the right site of the narrow one (see Fig. 7.25). It was also 

found that the relative contribution of the narrow peak increases for deeper penetration 



164 

 

depths when larger volume under the layer is irradiated. This effect is presented for chosen 

measurements, showing: 

 almost constant intensity ratio for different 2 , but constant  and   (Fig. 7.25a and 

b), as well as for combinations of  and  giving the same  (Fig. 7.27); 

 increase of the severe ) layer contribution when penetration 

depth decreases, i.e. when  decreases for constant  (compare Fig. 7.25a with 

7.25b) or when  increases for approximately the same (Fig. 7.26). 

The above qualitative analysis shows that upper lay hard ) than the 

deeper base material. 
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b) 

Fig. 7.25. Comparison of fitted with pseudo-
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Fig. 7.26. Examples of peak profiles for more less the same incident angle  but for 

different wavelengths and penetration depths. Two pseudo-Voigt functions were fitted to 

the experimental data. 
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Fig. 7.27. Examples of peak profiles for the same penetration depth   

 

 

 

 

 

 

Fig. 7.28. Example of a peak profile obtained using 

classical diffractometer and fitted by two peaks. 
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 At first, the residual stresses were determined using lattice parameters 

>),a( < hkl}{  
vs. sin

2
 measured by three different wavelengths. Due to the presence of 

heterogeneity of the layers in the sample the peak position was determined by centre of 

gravity method (one pseudo-Voigt function cannot be fitted to the measured peaks). The 

in-depth profiles of the determined stresses 
11( )I z , lattice stress free a0 and c/a parameters 

are compared with those obtained using laboratory diffractometer (Fig. 7.29). The Kr ner 

XSF was used in procedure based on Eqs. 6.1 and 3.23) 

 

( m)

0 1 2 3 4 5 6 7

   
(M

P
a)

-800

-600

-400

-200

0

200

synch.  =1.2527 A (CG)
synch.  =1.5419 A (CG)
synch.  =1.7512 A (CG)
mean synch. (CG)

( m)

0 1 2 3 4 5 6 7

   
(M

P
a)

-800

-600

-400

-200

0

200

X-ray Cu rad. (p-V)
mean synchrotron (CG)
X-ray Cu rad. (CG)

 

( m)

0 1 2 3 4 5 6 7

a 0 
  (

A
)

2.914

2.916

2.918

2.920

2.922

2.924

2.926

2.928

2.930

2.932

2.934

synchrotron  =1.2527 A (CG)
synchrotron  =1.5419 A (CG)
synchrotron  =1.7512 A (CG)
X-ray Cu radiation (CG)

( m)

0 1 2 3 4 5 6 7

c/
a 

  

1.590

1.592

1.594

1.596

1.598

1.600

synchrotron =1.2527 A (CG)
synchrotron =1.5419 A (CG)
synchrotron =1.7512 A (CG)
X-ray Cu radiation (CG)

 
Fig. 7.29. The in-depth profiles of the stresses 

11( )I z , a0  and c/a parameters, for Ti6Al4V 

sample. Comparison for three different wavelengths (synchrotron) and laboratory 

diffractometer using pseudo-Voigt fitting (p-V) and centre of gravity method (CG) for 

determining of peak position. 

 

 The in-depth profile of stresses presented on Fig. 7.29 is similar for the three 

different wavelengths used in experiment. Furthermore the results obtained from 

synchrotron measurements are not far from those obtained on classical diffractometer. 

The largest uncertainty and significant shift disagreement of the results (with other data) 

was obtained when centre of gravity method was used to determine peak position 

measured on laboratory diffractometer. 
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 The above results represent average values weighted by absorption, but more 

superior analysis can be performed for synchrotron data. As it was mentioned before the 

diffraction peaks can be easily separated into two pseudo-Voigt functions and the 

calculation of stresses can be performed for both of the regions in sample. To do this 

>),a( < hkl}{  
vs. sin

2
  functions were determined independently from the positions of 

broad ( hard  region) and narrow ( soft  region) peaks. The sin
2

 plots are almost linear 

(Fig. 7.30) and they allow to determine stresses 
11( )I z , a0 and c/a parameters for each 

region, independently. Significant negative slope of the curves suggests large compressive 

stress in the hard  region and almost horizontal lines correspond to small stress in the 

soft  region.  
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a)                                                           b) 

 
Fig. 7.30. The example <a( , )>{hkl} vs. sin

2
  plots for polished Ti6Al4V sample 

obtained with three wavelengths and different incident angle ( ) (the same penetration 

depth ). The plots for the soft  (a) and hard  (b) regions are separated. In each 

figure experimental data are shown together with fitted theoretical lines. 
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Fig. 7.31. The in-depth profiles of the stresses 
11( )I z , a0 and c/a parameters, for Ti6Al4V 

sample. Results after peak separation are plotted as the function of penetration depth . 

The results are compared with those obtained using center of gravity method for peak 

position. 

 

 In-depth profiles of the measured values for hard  and soft  regions of the sample 

are presented in Fig. 7.31. High compressive stress of about 500-700 MPa has been found 

in the layer (irradiated for all wavelengths and geometrical conditions), while in the base 

material a small tensile stress increases with penetration depth within the range of about 0-

120 MPa. The stress determined using centre of gravity method is approximately equal to 

the average from the values measured in the layer and base material, weighted by the 

intensity of reflected beam. For smaller penetration depth contribution of the layer causes 

relatively higher value of the measured stress, while for deeper penetration stress value 

approaches to this measured in the base material. It should be also noted that using 
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comparison with classical X-ray results (in this case stresses in the strongly deformed layer 

cannot be determined because of very low contribution of the broad peaks). It should be 

underline that almost the same values of a0 and c/a parameters were obtained both for 

soft  and hard  regions (after separation of two peaks), as well as for the mean results 

calculated using centre of gravity method. These parameters do not vary with penetration 

depth.  

 

 Now, it is possible to evaluate the thickness of the deformed layer. As it was 

mentioned before, the information gained from the diffraction experiment is weighted by 

the absorption of X-ray in the material. On the basis of the exponential attenuation law it is 

possible to find the thickness of the layer from the relative intensities of the diffraction 

peaks. The intensities of the separated pseudo-Voigt profiles corresponding to the hard  

(Ihard) and soft  (
softI ) regions of the sample, respectively can be expressed as: 

0 0

0 0

1

t z z t

hard
I I e dz e dz I e       (7.3) 

0 0

0

z z t

soft

t

I I e dz e dz I e        (7.4) 

where t is the thick hard ) layer and I0 is the total peak 

intensity.  

By dividing both sides of above equations by each other and after simple transformation 

the thickness of the layer is given by: 

ln 1hard

soft

I
t

I
.         (7.5) 

Using Eq. 7.5 the values of t- thickness were determined from hard

soft

I

I
for all peaks for which 

separation of two peaks is possible. The results presented in Fig. 7.32 show that the 

uncertainty of t thickness increases for low  as well as for decreasing wavelength  and 

not all peaks can be used to det hard  layer. In order to precisely 

estimate the thickness of the layer peaks with the smallest uncertainty were chosen for each 
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wavelength. The ratio Ihard/Isoft as a function of penetration depth for chosen diffraction 

peaks is presented on a Fig. 7.33a, where an increase of contribution of hardI  intensity with 

decreasing penetration depth is seen. The results obtained for three different wavelengths 

and incident angles coincide when they are plotted vs. . This proves that the Ihard/Isoft 

ratio really depends on the absorption phenomenon.  

 Knowing the ratio Ihard/Isoft ratios the layer thicknesses were calculated. Fig. 7.33b 

shows the estimated size of the layer as a function of the penetration depth. As it can be 

seen the thickness of the layer is about 1.38 m and does not change for the data obtained 

with different experimental conditions (determined t thickness is constant for various depth 

, penetrated by the beam). 
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Fig. 7.32

ent diffraction peaks. 
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Fig. 7.33. The ratio Ihard/Isoft (a) and calculated layer thickness t (b) as a function of 

penetration depth for chosen diffraction peaks fitted with two pseudo-Voigt profiles. 

  

 After estimation of the layer thickness it is possible to present results from the 

synchrotron measurements as a function of the information depth z  defined by Eq. 3.4. 

Fig. 7.34 presents the in-depth profile of stresses and lattice parameters. The results 

coming from both parts of the sample are gathered separately. As it can now be clearly 

seen there are two regions in the sample: the hard  region, where z  is calculated for 

a layer having thickness t =1.38 m and the soft  material for which z  is defined for 

the infinite base material, starting at depth of 1.38 m. The high compressive stresses is 

present in the layer of the thickness up to 1.38 m, on the other hand the part of the 

sample, deeper than 1.38 m, exhibits a small value of increasing tensile stress. Values of 

calculated lattice parameters a0 and a/c are nearly constant in both parts (Fig. 7.34).  

In the above analysis the sample was divided into two different parts having 

different properties and stresses. The reason of such treatment was that two peaks were 

seen and well separated from the diffraction profile. However, this approximation is 

artificial because the properties of the sample and stresses (for example FWHM) changes 

more or less smoothly. Therefore, it is necessary to compare the obtained results with 

another approach in which the stresses change gradually. It can be done, by using inverse 

Laplace transformation for the data obtained from the peak positions determined by the 

center of gravity method (presented in Fig. 7.29). The assumption of this approach is that 

the evolution of the stresses can be approximated by polynomial i.e., the step change of 

stress is not possible. Therefore, the results are smoothed  too much and the separation of 
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two profiles should not be seen in the diffraction peak. The result of the invert Laplace 

transform (using polynomial of degree 2) together with the results of peak separation 

method are shown in Fig. 7.35. A quantitative agreement of both methods is seen, 

i.e. compressive stress close to the surface, zero stress at the same depth (2-3 m) and 

tensile stress in the base material were obtained for both approaches. Also, the values of 

stresses are not very different. Concluding it can be stated that the results of the method 

with separation of two peaks are more reasonable because they have confirmation in peak 

profiles and some smoothing of the stress distribution between two separated parts of the 

sample should not introduce significant errors (a shown using inverse Laplace method). 
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Fig. 7.34. The in-depth profiles of the stresses 

11( )I z , a0 and c/a parameters, for Ti6Al4V 

sample. Results for different wavelengths after peak separation and with division into two 

regions in the sample separated by dashed vertical line.  
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Fig. 7.35. The in-depth profiles of stresses for Ti6Al4V sample. Results after peak 

separation and with division into two regions in the sample (points, 11( )I z
 
) are compared 

with the in-depth stress profile (lines, 
11( )I z ) as a function of real depth obtained with 

Laplace method (center of gravity for peak position). 
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Finally the root mean square strains 2 corresponding to density of defects 

and influenced by the stress gradient were calculated using Williamson-Hall method 

independently for the two separated peaks obtained from polished Ti6Al4V alloy (the LaB6 

powder was used as reference). As expected, a higher value of %3.0%2.02  

was obtained from the severely deformed layer in comparison with the base material 

( 
2 0.08% 0.1% ). For the hard  region the 

2
 strain does not depend on 

the value of penetration depth  (in the margin of uncertainty), while small but systematic 

decrease of 
2

ap soft  region (Table 7.6). Indeed, the whole volume of 

hard  layer always contributes in the broad diffraction peak, while the gauge volume of 

soft  part increases with larger penetration depth , showing small decrease of 

2
 in deeper volumes measured using narrow peak.  

The size of coherently diffracting domain was determined only in the case of the 

broad peak coming from hard  region, but still with large uncertainty (Table 7.6). Some 

results are not shown because uncertainty exceeds D value. In the case of the soft  part, 

the D size is too large to be determined in this experiment for all results, i.e., the 

experimental uncertainty exceeds few times the obtained D values. 
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Fig. 7.36. The linear function fitted to the experimental data in Williamson-Hall method 

for polished Ti6Al4V (Gauss approximation). Results compared for different wavelengths 

but for the same penetration depth from hard  (a) and soft  (b) regions of the sample. 
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Fig. 7.37. Similar presentation as in Fig. 7.36, but the results are compared for the same 

  (i.e. for different depths in the 

sample) hard  (b) regions are shown separately.  

 

Table 7.6. The root mean square of the strain ( 2 ) and crystallite size (D) calculated 

with Williamson-Hall method for Al2017 polished samples (different wavelengths and 

incident angles). 

  m) 2
  

Hard region 

1.2527 2.4 0.8 0.0020 0.0005 441 280 

1.7512 7.4 0.8 0.0023 0.0003 406 149 

1.5419 5 0.8 0.0029 0.0004 --- ---- 

1.5419 10 1.5 0.0020 0.0003 478 217 

1.5419 15 2.1 0.0021 0.0001 --- ---- 

1.5419 20 2.5 0.0022 0.0004 --- ---- 

Soft region 

1.2527 2.4 0.8 0.0011 0.0002 --- ---- 

1.7512 7.4 0.8 0.0010 0.0002 --- ---- 

1.5419 5 0.8 0.0013 0.0001 --- --- 

1.5419 10 1.5 0.0010 0.0001 --- --- 

1.5419 15 2.1 0.0009 0.0001 --- ---- 

1.5419 20 2.5 0.0008 0.0001 --- ---- 
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On the basis of presented results obtained measuring mechanically polished 

samples with synchrotron radiation on G3 spectrometer (DESY, HASYLAB), it appears 

that for three different wavelengths the same in-depth profiles of stresses 11( )I z
 
were 

obtained analyzing shifts of the peak positions. What is more the results perfectly agree 

with those obtained previously using classical X-ray diffraction ( CuK 1

As the result, it was verified that absorption phenomenon limits the penetration depth of X-

rays and stress gradient can be measured using MGIXD method. Furthermore, synchrotron 

radiation (

comparison with classical X-rays ( CuK 1

independent on the depth values of a0 and c/a were determined. 

The analysis of peak profiles brings more information concerning dependence of 

the stress vs. real depth (
11( )I z ). In the case of polished Al2017, the asymmetry and/or 

shift of the peak correctly reflects the stress gradient calculated applying inverse Laplace 

transform for the 11( )I z function. On the other hand, two different regions having different 

microstructure were separated when diffraction peak was fitted by two pseudo-Voigt 

function. (it was clearly seen that the diffraction peak is composed from two profiles). 

Finally, the Williamson - Hall method was applied to determine evolution of the root mean 

square of the strain ( 2 ) from the depth. A small decrease of this value was found for 

polished Al 2017 sample and in the soft region. Significantly, larger 2  strain was 

measured in the severely deformed upper layer of polished Ti6Al4V alloy. The size of 

coherently diffracting domain (D) cannot be determined, because of large uncertainty. 
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7.3. ENERGY DISPERSION MEASUREMENT USING SYNCHROTRON RADIATION. 

 In the next experiment multireflection method was applied for the energy 

dispersion method in which white beam containing radiation having different wavelengths 

was used ( 0.18/ E (keV): 40-68). The measurements were performed in polished 

(type I) and ground Ti (grade 2) samples on the EDDI beamline at BESSY synchrotron 

(Berlin, Germany). These specimens did not exhibit stress gradient when measured using 

laboratory diffractometer (see section 7.1). The synchrotron white beam was generated by 

the 7T-Wiggler and passed about 30 m through few optical components up to the place of 

the experiment. An absorber mask limits the beam diameter to 3.9 mm per 3.9 mm. 

In order to gain required characteristics of the beam, system of slits and filers is provided. 

The stress analysis was performed using three different methods (the XSF were 

 

 The first was the standard sin
2

method (  - geometry) in which constant  

used. Each >),a( < hkl}{  
vs. sin

2
  plot was measured for different reflection hkl 

using appropriate wavelengths. Due to various absorption corresponding to different 

energies (and wavelengths) of radiation, each plot was determined for different 

average penetration depths. However, the penetration depth is not constant and varies 
 

vs. sin
2

 .  

 Universal plot method (described in section 3.1.2) was applied for 100 reflection and 

stresses close to the surface were determined. 

 Using multireflection analysis it was possible to separate the data for chosen and 

>),a( < hkl}{  for the same penetration depth (different wavelengths and 

hkl reflections) were chosen to create one sin
2

g iteration fitting procedure 

based on Eqs. 3.23 and 6.1 the stresses were determined for constant depths.  

 

The example >),a( < hkl}{  
vs. sin

2
 plots for standard analysis are shown in 

Figs.7.38 and 7.39, while similar plots for multireflection method are presented in 

Figs. 7.40 and 7.41. The comparison of the in-depth stress profiles determined with all the 

used methods of analysis, is presented in the Fig. 7.42.  
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Fig. 7.38. The example of sin
2

Ti sample for standard analysis. 
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Fig. 7.39. The example of sin
2
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Fig. 7.40. The example of sin

2
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Fig. 7.41. The example of sin

2

analysis. 
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Fig. 7.42. The in-depth profile of stresses for polished (type I) and ground Ti (grade 2) 

sample. Comparison of the results from classical diffractometer (MGIXD) and synchrotron 

EDDI experiment, for which three different methods of analysis were used (standard sin
2

, 

multireflection, universal plot). Two different ranges of penetration depth are compared: 

a) 0- ) 0-  

 

 In the light of presented results (Fig. 7.42) it is visible that for the range of the 

penetration depth 0-50 a significant spread of experimental points occurs. In view of the 

nature of these results it appears that the spread of the experimental points is caused by 

rather weak intensities of the large energy lines which lead to poor experimental data 

fitting. Furthermore the deeper the penetration depth, the smaller the number of available 

reflections since the small energy lines are no longer sensitive in this region. Narrowing 

the analyzed range of penetration depth to 0-

obtained from different methods. Moreover the synchrotron data perfectly agree with the 

results obtained on laboratory diffractometer (Cu K  radiation) close to the surface. For the 

results obtained for larger depth than m the experimental points exhibit significant 

spread and do not agree with the results of standard method.  
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Concluding, for the range of penetration depth 0-

agree. Results obtained using with synchrotron radiation confirmed values of stresses 

measured close to surface using Cu K  radiation. Moreover, it was shown, that the 

multireflection method, in which the experimental data are collected for the same depth in 

one plot, can be used for data obtained with white beam (EDDI).  

 

7.4. CONCLUSIONS 

 Summarizing the results obtained with synchrotron radiation (MGIXD) it can be 

stated that using different wavelengths (energies) of radiation the same similar in-depth 

stress profiles were obtained. In addition the determined values of ao and c/a vs. depth do 

not vary significantly with depth. For the first time also the multireflection method in 

which the data for the same penetration depth are selected was successfully used to analyze 

the EDDI data.    

Perfect agreement was obtained between the measurements performed using 

synchrotron radiation as well as Cu K  radiation on laboratory diffractometer (for MGIXD 

and also for EDDI methods). Certainly, synchrotron radiation with higher energies allowed 

measurements for larger depths in comparison with laboratory X-rays. 

Synchrotron radiation (with better resolution) shows asymmetry of diffraction 

peaks caused by stress gradients. If the asymmetry is small (polished Al2017) the analysis 

of this effect is difficult to analyze directly but inverse analysis, i.e. simulation of peak 

profile with stress gradient can be used as the confirmation of the stress measurements. It 

also happens that two regions exhibiting significant difference of microstructure can 

produce a large asymmetry of the peak which can be fitted by two peaks. In this case the 

data can be treated separately for these regions.  

The stress in-depth distribution vs. real depth z can be determined from stress 

profile measured as the function of information (or penetration) depth using inverse 

Laplace transform. In this work the limit of z for which the stress dependence is calculated 

was established using inverse analysis, i.e. comparing function 
11( )I z  integrated with the 

weight of intensity with experimental 11( )I z . It should be also underlined that it was not 

proven that the result of Laplace transform is unique. In the case of separated two peaks 
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corresponding to two regions in the sample, the thickness of the upper layer having 

different stress and microstructure can be determined by analyzing contributions of 

intensities of these regions in the diffraction peak. 

Finally the Wiliamson Hall analysis allowing determination of the root mean square 

strains 
2

 and size of coherent domain D was used. It was found that the uncertainty 

of D  is too large to obtain reasonable results when parallel geometry is used in 

MGIXD method. The values of 
2

 measured using synchrotron and Cu K  radiations 

agree very well. It should be stated that in the case of stress gradient, the 
2

 value is 

influenced by third order stresses but also by the stress heterogeneity in the measured 

volume.  
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8. GENERAL CONCLUSIONS  
The MGIXD (multireflection grazing incident X-ray diffraction) is one of the 

methods used for determination of in-depth stress distribution. Such measurement is 

possible through the use of a small angle between incidence beam and sample surface, and 

consequently constant penetration depth of X-ray radiation in the studied material. The 

information depth can be changed by setting different angles of incidence. As it was 

presented in the thesis the MGIXD method has very important advantages in comparison 

with other diffraction methods of stress determination. The important feature of this 

method is that the lattice strains are measured in different crystallographic direction and 

next simultaneously used in analysis. This enables the study of the elastic anisotropy and 

the choice of the appropriate model of grains interaction for the interpretation of the 

experimental results. Furthermore not only stresses but also strain free a0 and also c/a (for 

hexagonal structure) parameters and their in-depth variation can be determined. Finally the 

in-depth evolution of the root mean square strain 
2

 and crystallite size (coherent 

domain) can be studied using Williamson-Hall method. The main disadvantage of the 

MGIXD method is the requirement of perfect adjustment of the experimental setup. To 

obtain reasonable results the measurements must be performed using parallel beam 

configuration of the diffractometer.   

In this work the MGIXD was developed and applied to measure in-depth stress 

distributions in coatings and surface layers of materials subjected to different mechanical 

treatments. The effect of physical and geometrical factors on the XSA was considered. 

The method of c/a parameter determination was proposed for hexagonal samples and the 

influence of stacking faults on the XSA was taken into account. Moreover in the thesis the 

mechanical properties of the polycrystals such as: elastic anisotropy of elastic constants 

and grain interactions were investigated. Different theoretical grain elasto-plastic 

interaction models were considered and applied in XSA. Finally, the MGIXD method was 

verified using synchrotron radiation and for the first time it was applied for EDDI 

experiment. 
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 In the light of the results presented in thesis, the following conclusions can be 

drawn: 

 for the samples investigated in the thesis, the LPA correction did not influence 

significantly the results of XSA, even in the case of relatively broad diffraction 

peak. However this correction should be always applied when MGIXD is used 

because diffraction peaks having different  positions are measured..  

 The refraction can significantly influence the results of the MGIXD method. 

The new approach, presented in this thesis, takes into account the refraction effect 

as well as the accompanying wavelength change. It was shown that the effect of 

refractive index n<1 on the stress measurement strongly depends on value of the 

 parameter (and thereby the type of material), wavelength, incident angle. 

The study of the literature indicates that surface roughness can strongly affect the 

influence of refraction correction on XSA. This problem was not analysed in the 

thesis but study of the problem would be a valuable addition to the research.  

 In the case of parallel beam geometry used for MGIXD method z-position 

imprecisions do not significantly influence the obtained results, however special 

attention should be paid to adjust accurately the -zero position. Moreover, both 

statistical error and the misalignment error can be significantly reduced when a 

radiation is applied for measurements. 

Secondly in the thesis, the following issues were developed: 

 the method of c/a determination was proposed and tested for hexagonal samples 

with residual stresses (polished Ti - grade 2). It was shown that for a material 

having a low elastic anisotropy the stresses, strain free parameter a0 as well as c/a 

value can be determined using self-consistent iteration method presented in this 

work (the experimental values determined in the case of tensile as well compressive 

stresses were compared with those found in the literature). Significantly better 

fitting of the theoretical values to experimental ones was obtained when c/a was 

adjusted.  

 Probability of finding stacking fault  was determined for polished austenitic 

sample (alloy having low stacking fault energy). Reasonable values of  but with 

very large uncertainty were determined in the case compressive stress in the 

polished sample. 
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 The influence of XSF (X-ray stress factors) anisotropy on XSA was considered. 

Verification of the XSF was done by measuring lattice relative strains during 

n 

and calculated { }

rel

hkl
< ( , )  vs. sin

2
 functions based on different 

hkl reflections exhibit nonlinearities in the case of elastically anisotropic samples 

(austenite stainless steel) but for elastically isotropic sample (titanium) this 

dependence is almost linear. Anisotropy of XSF was also observed on the 

{ }hkl
< a( , )  vs. sin

2
 plots obtained when the residual stresses were measured 

in ground Ni alloy, polished austenite stainless steel and CrN coating. The results 

presented in thesis, obtained using MGIXD and standard method, show that Reuss 

and free surface grain interaction models are in the best agreement with the 

experimental results. Both models reflect in the best way the elastic anisotropy of 

the sample but the free surface model has a physical explanation in contrast to 

Reuss model. 

Thirdly, in thesis the MGIXD method was verified using synchrotron radiation. In this aim 

two experiments were performed. 

 In the first measurement performed at G3 spectrometer (DESY, Hamburg) three 

different wavelengths (energies) of radiation were used in MGIXD method. 

As the result: 

o almost the same in-depth stress profiles were obtained for all applied 

wavelengths. 

o The determined values of ao and c/a vs. depth do not vary significantly with 

depth. 

o Due to its very good resolution of applied synchrotron radiation it was 

possible to observe the diffraction peak asymmetry caused by stress gradient.  

o The stress in-depth distribution vs. real depth z was determined from stress 

profile measured as the function of the information (or penetration) depth 

using inverse Laplace transform. It should be underlined that it was not 

proven that the result of Laplace transform is unique.  

o In the case of sample having strong diffraction peak asymmetry (polished 

Ti alloy) the separation of two peaks, corresponding to two regions in the 

sample, was performed and the thickness of the upper layer having different 
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stress and microstructure was determined analyzing contribution of intensities 

of these regions in the diffraction peak. 

o The Williamson-Hall analysis showed that the uncertainty of D is too large to 

obtain reasonable results when parallel geometry is used in MGIXD method. 

The values of 
2

 measured using synchrotron and Cu K  radiations 

agree very well. It should be stated that in the case of stress gradient, the 

2
 value is influenced by the third order stresses but also by the stress 

heterogeneity in the measured volume.  

  For the first time also the proposed multireflection method (data selected for the 

same penetration depth) was successfully used to analyze the EDDI data. Very 

good agreement was obtained between the measurements performed using 

synchrotron radiation as well as Cu K  radiation on the laboratory diffractometer 

(for MGIXD and also for EDDI methods). The great advantage of using high-

energy synchrotron radiation was the possibility to measure stresses for larger 

depths in comparison with laboratory X-rays. 

 Concluding, it can be stated that MGIXD method is an indispensable tool to study 

the distribution of stresses in the surface layers, but the applicability of this method is 

limited by factors such as refractive correction or interpretation problems associated with 

the anisotropy of elastic constants. On the basis of considered results, if MGIXD method is 

used, it is advised to perform the stress analysis with and without refraction correction and 

when the difference is significant the results should be rejected or accepted with so 

estimated large uncertainty. This is one of the limitations of MGIXD method which is 

significant for small incidence angle . What is more, special attention must be paid to 

accurately adjust the diffractometer (parallel beam configuration) and the  - zero position 

must be carefully verified. It should be also underlined, that the reliable diffraction stress 

analysis is only possible when an appropriate grain interaction model is applied in 

calculation of XSF for anisotropic sample. On the bases of the results presented in this 

thesis it appears that free surface model is the one which not only correctly reflects the 

anisotropy of XSF well but also has a physical explanation concerning elastic interaction 

of the grains.  
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