Coherence measurements at P04

Click to edit Master subtitle style

Petr Skopintsev
P04 Users Meeting, 13.06.2014

DESY, Hamburg, Germany
NRC “Kurchatov Institute”, Moscow, Russia

Collaboration between:
Jens Viefhaus (P04 – Beam line)
Axel Rosenhahn (Analytical Chemistry Group, Ruhr-University Bochum)
Ivan Vartanyants (Coherent Imaging Group)
Outline

- Theory of spatial coherence measurements

- First P04 experiment
 - Comparison of NRAs and Double Pinholes

- Second P04 experiment
 - Additional investigation with NRAs

- Summary
Spatial coherence

\[\text{Intensity} \downarrow \quad \text{Coherence Factor} \downarrow\]

Incoherent field

Coherent field
Young's Experiment

Double pinholes diffraction intensity distribution $I(q)$

Fourier transform of $I(q)$
Young’s Experiment

J.W. Goodman, Statistical optics

Petr Skopintsev | Coherence measurements at P04 | 13.06.2014 | Page 5
Young’s Experiment

J.W. Goodman, Statistical optics

Petr Skopintsev | Coherence measurements at P04 | 13.06.2014 | Page 6
Non-Redundant Array of Slits

1 experiment with 5 slits

= 10 experiments with 2 slits

Petr Skopintsev | Coherence measurements at P04 | 13.06.2014 | Page 7
P04 beamline (PETRA III) experiment

A Undulator tuned to 400 eV

Undulator

Plane mirror

Exit slits

Aperture

Detector

Exit slit openings: 40 µm and 230 µm

* Vacuum chamber constructed by Hans Peter Oepen group (Hamburg University)
Data: Typical Intensity Scans

NRA

Double pinholes

Detector plane Fourier Transform
Data: Typical Intensity Scans

NRA

Double pinholes

Detector plane

Fourier Transform

Second harmonics (monochromator)
Data: Typical Intensity Scans

NRA

Double pinholes

Detector plane

Fourier Transform

Second harmonics (monochromator)
Data: Typical Intensity Scans

Detector plane

$I(q)$

Momentum transfer q, μm$^{-1}$

Fourier Transform

$\hat{I}(\Delta x)$

Slits separation Δx, μm

NRA

Double pinholes

$I(q)$

Momentum transfer q, μm$^{-1}$
Data: Beam Profile Scans

- Performed on double pinholes separated by 15 µm
- FWHM found with double Gauss functions fits

Exit slit 40 µm

Exit slit 230 µm
Results: NRA & D.P. are identical

E = 400 eV

Exit Slit width 40 µm

\[l_{c}^{\text{NRA}} = 4.3 \pm 0.2 \, \mu\text{m} \]
\[l_{c}^{\text{DP}} = 3.8 \pm 0.2 \, \mu\text{m} \]
\[\zeta^{\text{NRA}} = 0.41 \pm 0.04 \]
\[\zeta^{\text{DP}} = 0.38 \pm 0.03 \]

Exit Slit width 230 µm

\[l_{c}^{\text{NRA}} = 2.3 \pm 0.1 \, \mu\text{m} \]
\[l_{c}^{\text{DP}} = 2.1 \pm 0.1 \, \mu\text{m} \]
\[\zeta^{\text{NRA}} = 0.06 \pm 0.01 \]
\[\zeta^{\text{DP}} = 0.06 \pm 0.01 \]
P04 beamline experiment

- Exit slit cut out 396.5, 400 and 403 eV fraction of the beam
- Beam defining slit opening varied

* Vacuum chamber constructed by Hans Peter Oepen group (Hamburg University)
Beam defining slit variation

$E = 396.5\ eV,\ 400\ eV,\ 403\ eV$

Exit Slit width 230 μm

Features of coherence dependence on beam defining slit opening observed
Aim – measure spatial coherence prior to ptychography experiment
Second experiment at P04

Undulator energy
500 eV

Exit slit opening
1. 50 μm
2. 100 μm
3. 200 μm

NRA orientation
a. Horizontal
b. Vertical

* HORST chamber constructed by Axel Rosenhahn group (Ruhr-University Bochum)
P04 diffraction patterns

Typical diffraction image

Fourier transform

Area for further analysis
P04 Vertical coherence

Exit slit:

- 50 μm
 - FWHM = 7 μm
 - Coherence:
 - \(l_c = 7.5 \) μm
 - \(\zeta = 0.73 \)

- 100 μm
 - FWHM = 12.6 μm
 - Coherence:
 - \(l_c = 4.2 \) μm
 - \(\zeta = 0.37 \)

- 200 μm
 - FWHM = 29.5 μm
 - Coherence:
 - \(l_c = 2.4 \) μm
 - \(\zeta = 0.10 \)
Petr Skopintsev
Coherence measurements at P04 13.06.2014

P04 Horizontal coherence

Exit slit:
- 50 μm
- 100 μm
- 200 μm

FWHM estimated as 100 μm
<table>
<thead>
<tr>
<th>Energy</th>
<th>NRA Direction</th>
<th>Exit slits separation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50 µm</td>
</tr>
<tr>
<td>500 eV</td>
<td>Vertical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04</td>
<td>$l_c = 8.1$ µm</td>
</tr>
<tr>
<td></td>
<td>U49</td>
<td>$l_c = 2.3$ µm</td>
</tr>
<tr>
<td></td>
<td>P04</td>
<td>$\zeta = 0.80$</td>
</tr>
<tr>
<td></td>
<td>U49</td>
<td>$\zeta = 0.05$</td>
</tr>
<tr>
<td></td>
<td>Horizontal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04</td>
<td>$l_c = 12.5$ µm</td>
</tr>
<tr>
<td></td>
<td>U49</td>
<td>$l_c = 2.1$ µm</td>
</tr>
<tr>
<td></td>
<td>P04</td>
<td>$\zeta = 0.15$</td>
</tr>
<tr>
<td></td>
<td>U49</td>
<td>$\zeta = 0.03$</td>
</tr>
</tbody>
</table>
Conclusions

1. NRA allows to measure full spatial coherence function in one exposure
2. Results with NRAs and double pinholes are identical
3. NRA method works especially well with large beams
4. This approach can be effectively used prior to any coherent imaging experiment
5. May be useful for measuring single pulse coherence properties of FELs
Thanks to

DESY:
A. Singer
O.Y. Gorobtsov
D. Dzhigaev
A. Shabalin
O.M. Yefanov
M. Rose
R.P. Kurta
I.A. Vartanyants

Bochum:
J. Bach
B. Beyersdorff
R. Frömter
H.P. Oepen
T. Senkbeil
A. Buck
T. Gorniak
A. Rosenhahn

Uni. Hamburg:

SLAC:
A. Sakdinawat

DESY:
L. Glaser
L. Müller
S. Schleitzer
G. Grübel

J. Viefhaus

Thank you for your attention!
S1. Temporal coherence

[Diagram showing radiation passing through a double pinhole and a detector]
S2. Two-dimensional NRA

S3. Non-uniformity of coherence
S3. Non-uniformity of coherence

![Graph showing non-uniformity of coherence with data points and lines indicating measurements at different scales in μm (50, 100, 200).]
S4. More data on coherence

Energy:
- 396.5 eV
- 400 eV
- 403 eV