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Abstract. The onset of Severe Plastic Deformation (SPD) regime is quite instructive on the 
possible origins of the nano-microstructures developed in metals and alloys. It is known that 
grain fragmentation and dislocation accumulation, among other defects, proceed at different 
paces depending fundamentally on grain orientations and active deformation mechanisms. 
There have been many attempts to characterize nano-microstructure anisotropy, leading all of 
them to sometimes contradictory conclusions. Moreover, the characterizations rely on different 
measurements techniques and pos-processing approaches, which can be observing different 
manifestations of the same phenomena. 
On the current presentation we show a few experimental and computer pos-processing and 
simulation approaches, applied to some SPD/alloy systems. Williamson-Hall and Convolutional 
Multiple Whole Profile (CMWP) techniques will be applied to peak broadening analysis on 
experimental results stemming from laboratory Cu K  X-rays, and synchrotron radiation from 
LNLS (Laboratório Nacional de Luz Síncrotron, Campinas, Brazil) and Petra III line (HEMS 
station, at DESY, Hamburg, Germany). 
Taking advantage of the EBSD capability of giving information on orientational and topological 
characteristics of grain boundaries, microstructures, grain sizes, etc., we also performed 
investigations on dislocation density and Geometrically Necessary Dislocation Boundaries 
(GNDB) and their correlation with texture components. 
Orientation dependent nano-microstructures and domain sizes are shown on the scheme of 
generalized pole figures and discussions provide some hints on nano-microstructure anisotropy. 

Keywords: Nanostructure, SPD, Texture, Peak Broadening Analysis. 

1. Introduction 
Materials subject to mechanical processing accumulate energy by generating defects, such as 
sub-grain boundaries, Geometrically Necessary Dislocations (GND), Incidental Dislocations 
(ID), twins, stacking faults, etc..  It is suspected, and sometimes confirmed, that the storage 
of micro/nanostructural features, and their related energy accumulation, is dependent on 
grain orientation besides the known dependence on crystallography, alloy, strain path, etc.. 
However no general rules can be envisaged for energy accumulation despite the huge amount 
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of experimental results already available on the literature. To make the things worst, the 
investigations have been made by using different techniques, instruments, protocols and 
analysis tools. X-ray diffraction has become a standard for microstructural investigation, as 
well as EBSD has developed as a powerful technique for that purpose more recently. Both 
techniques allow to observe the same landscape with different lenses. The scale of both 
techniques somehow overlap and their interpretation leads alternatively to consistent or  
contradictory results [1-3] . 
On the current Conference a set of publications show some results obtained by three different 
x-ray sources, laboratory x-ray machine (x-pert MPD, Cu K 1,2 radiation, x-ray lenses), 
synchrotron radiation at Laboratorio de Luz Sincrotron, Campinas, Brazil, and synchrotron 
radiation at DESY, Petra III, Hamburg, Germany [4-6]. Williamson-Hall and CMWP 
approaches have been used for extracting data from X-ray data about nano-microstructural 
defects like domain sizes, dislocation densities and twins [7-9]. Also EBSD has been applied 
to evaluate microstructure development. A few systems have been investigated and a few 
conclusions can be obtained that seems to be general, despite more investigations need to be 
performed. 
The current work shows data and analysis dealing with massive data, obtained at HEMS line, 
Petra III, DESY, Germany, with the goal of understanding better nano-microstructural 
development during severe deformation on a few alloys [4-9]. Also EBSD scans, supporting 
the main conclusions of the work, are shown. 
 
2. Experimental approach 
2.1. Synchrotron radiation 
Transmission synchrotron X-ray diffraction with a beam size of 100 m x 100 m and 

=0.14235  was used. A Mar345 solid state detector, set on square shaped 3450 pixels x 
3450 pixels of 100 m x 100 m, was located at 1081 mm behind the target sample. Typical 
detection times were in between 20 s and 100 s. A translation-rotation stage is set as a 
holding device allowing the positioning and vertical axes rotation of the samples every 5o, for 
the determination of complete textures for each sample. Further analysis on peak profiles has 
been performed by a few methods (Williamson-Hall, CMWP), including the one to be 
presented here, based on a combination of the results obtained by Stress Tex Calculator and 
an extension of Williamson-Hall method [10-11].  

2.2. EBSD 
The samples have been inspected exhaustively by EBSD in search of microstructural features 
that might help on the understanding of the current results and shed light on the 
development of nano/microstructure developed by deformation. Many of the results are 
shown elsewhere on the same conference proceedings. Only the ones pertinent to the current 
discussion will be shown here. The materials were properly polished by 9, 6, 3 and 1 m 
diamond water suspension and 30' polishing with 0.05 colloidal silica. They were subject to 
EBSD scans on a FEI-FEG Quanta 200 by using a TSL-EDAX EBSD system. Step size was 
fixed to 70 nm and typical scans comprised 1o6 points or more. 

3. Materials 
3.1. 70% rolled Copper and Aluminum 
Commercially pure Cu and Al were rolled at room temperature in several passes until 
reaching 70% reduction. The samples were polished and characterized by regular laboratory 
X-ray diffraction (MPD Panalytical diffractometer, Cu K 1,2 radiation), textures were 
measured before and after rolling deformation. Starting texture is characterized in both 
materials by a large Cube component, typical of rolled and recrystallized materials.  A 
complete analysis of the data by Williamson-Hall and CMWP method, together with EBSD 
data and GND calculation is presented elsewhere on the current conference.  
 
3.2. F-138 stainless steel subject to rolling and ECAP deformation. 
F-138 steel has been deformed by rolling until 70% reduction and by 1 and 2 passes of ECAP 
following route Bc. The samples were consecutively subject to measurements on a Panalytical 
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a)  
 

 
b) 

 
c) 

7. Discussion and conclusions 
Fig. 6 shows that not always broad peaks are associated with simultaneously decreasing grain 
sizes and increasing dislocation densities but that the correlation is more complex and have 
to be analyzed by more elaborated models like the Modified W-H approach. We can see there 
is a trend for having the lower dislocation densities on the directions where the domain sizes 
are smaller, exception made for the center of the pole figures where a low dislocation density 
is accompanied by a moderately larger domain size. That shows that not only the peaks widen 
but the quality of the broadening distinguishes well between order dependent and 
independent effects, reflected that on the complex ( , ) variations of D and . By 
comparison with the regular intensity PF it seems that the low dislocation density in the 
center of the –GPF is correlated with a high intensity on the center of the (110) PF, showing 
a preferred (110) direction perpendicular to the rolling plane. Same correlation seems to exist 

Figure 7 a).  EBSD scan 
of 70% rolled F-138 steel. 

Step size = 70 nm, no 
cleaning procedure. 

Average CI= 0.76 

Figure 7. IPF and KAM calculated until the 4th neighbor for b) all directions except the 
ones with (110) perpendicular to the rolling plane c) only the (110) directions 

perpendicular to the rolling plane. 

Rolled 70% no (220) 
KAM 4th neighbor 
Average KAM: 5.56o 

Rolled 70% only (220) 
KAM 4th neighbor 
Average KAM: 3.87° 

TD

RD 
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between a low value on –GPF in a ring at approximately 45o-50o and a similar ring shown 
on the (110) PF.  

 
Figure 8. a) IPF, Step size = 70 nm, no cleaning procedure. 

Average CI= 0.93; and KAM calculated until the 4th 
neighbor for b) all directions except the ones with (110) 

perpendicular to the rolling plane c) only the (110) 
directions perpendicular to the rolling plane. 

b)

c)

D-GPF shows large values on the RD and TD directions (in plane directions) what is 
compatible with the expected average sizes of the grains, elongated but fractured along RD 
and almost constant, although also fractured, along TD (what is called "chocolate bar" 
shape). This characteristic seems to be associated to macroscopic rather than to 
microstructural effects. 
The small features showing large D dimensions on the center of the D-GPF remain to be 
explained but might be correlated with the low dislocation density, in the sense that, given 
the sensitivity of highly collimated X-rays to very low misorientations, absence of loose arrays 
of dislocations may also increase the measured domain size. 
The lower dislocation density on the center of the –GPF, apparently correlated with high 
population of (110) planes contained on the rolling plane (direction (110) coincident with ND) 
is well described by the EBSD data and KAM charts shown on Fig. 7 a-c. KAM is usually 
connected with the storage of defects, mainly GND and ID boundaries. The KAM for the 
partition showing the grains with <110> direction perpendicular to the rolling plane has a 
smaller average and lower standard deviation than the rest of the grains on the other 
partition. Similar scans and distributions for the same material heat treated during 1 h at 600 
oC (Fig.8 a-c)), showed that the difference between both grain partitions starts vanishing, 
with the average misorientations due to dislocation arrays on the most misoriented grains 
converging to values similar to the <110>//ND direction. That shows that the large 
concentrations of dislocation arrays on the most populated directions, not in coincidence 
with <110>//ND, are more unstable and prone to rearrange and combine. 
The smaller dislocation densities are mostly located on the sample directions in coincidence 
with the directions showing the smallest domain sizes, and also in coincidence with the more 
intense directions of some of the PF. We can only risk a model by which the more populated 
orientations would be composed of smaller and dislocation cleaner domains than the grains 
remaining on the background of the Orientation Distribution Function (ODF), which would 
be composed of larger domains populated by more or less loosely distributed dislocations. It 
seems like the dislocations on the stable texture components might be arranged in compact 
GND, fragmenting the grains in small domains, more or less clean of dislocations and low 
internal misorientations. The opposite would happen on the grains randomly oriented on the 
background of the ODF. 

Rolled 70% no (220) 
KAM 4th neighbor 
Average KAM: 3.98o 

Rolled 70% only (220) 
KAM 4th neighbor 
Average KAM: 3.18° 

RD

TD 
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