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1 Introduction

Cosmic rays provide us with invaluable information about the most energetic processes hap-
pening in our universe. They also play an important role in the search for particle dark
matter whose pair-annihilations might leave traces in the spectra of cosmic rays. In this
light, the upcoming release of the antiproton measurement by the AMS-02 experiment [1] at
the international space station, is eagerly expected.

The dominant contribution to the antiproton flux in our galaxy — the so-called sec-
ondary antiproton flux — arises from the spallation of primary cosmic rays on the interstellar
matter in the galactic disc. In order to identify a subdominant signal on top of the astro-
physical background, the latter must be modeled precisely. This holds in particular as the
antiproton signal from the most commonly considered dark matter candidates has a very
similar spectral shape as the background flux.

The prediction of the secondary antiproton flux requires knowledge of the differential
antiproton production cross section in proton proton and proton nucleus collisions. Existing
parameterizations [2, 3] are mainly based on experimental data from the 1970s and early 80s.
In this work, we revise those earlier parameterizations by making use of new precision data
from the NA49 experiment at CERN [4, 5]. Our approach also extends previous calculations
in a number of ways:

• In a collider experiment — depending on detector setup and kinematics — antiprotons
stemming from the decay of long-lived hyperons could partially escape detection. This
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would induce a systematic error in the measured antiproton production cross section.
In this work we treat the antiprotons from hyperon decay separately and determine
their production from the measured phase-space distribution of the parent hyperons.

• A standard assumption in previous cosmic ray studies is the equal production of an-
tiprotons and antineutrons in pp scattering. More recently, it was noted that isospin
effects may induce an asymmetry in the number of pn̄ and np̄ pairs leading to a pref-
erence for antineutron production [6, 7]. We investigate the possible impact of isospin
effects on the antiproton source term.

• We improve the calculation of proton helium and helium helium scattering by making
use of the simple empirical model introduced in [5].

Our approach is to construct the total inclusive antiproton production cross section directly
from the experimental data and well-established scaling arguments. For each step in our
construction, we are able to include a realistic estimate of the related uncertainty. The
resulting cross section is then translated into the secondary source term which we compare
with previous calculations in the literature. As a further cross-check, we determine the source
term with different Monte Carlo event generators.

Finally we use the two-zone diffusion model [8, 9] for describing the propagation of the
antiprotons. As a result, we obtain a fully realistic prediction for the secondary antiproton
flux, which includes a realistic assessment of the uncertainties in antiproton production down
to lowest energies.

2 Data-driven vs. Monte Carlo approach

The main uncertainty in the secondary antiproton source term is inherited from uncertainties
in the inclusive cross sections which enter its determination. While dedicated attempts to
evaluate the antiproton production cross sections using Monte Carlo generators have been
performed [9–11], it is very difficult to estimate the uncertainties in the underlying hadroniza-
tion models. In particular the low energy regime is a cause of concern as there exists no
reliable theoretical description of soft hadronic processes. In this work, we therefore base our
determination of the antiproton cross sections on experimental data. Nevertheless, several
Monte Carlo tools will be used for the sake of comparison.

2.1 Experimental situation

The dominant contribution to the antiproton source term arises from the scattering of cosmic
ray protons with hydrogen in the galactic disc. One may think that in the LHC era proton
proton scattering can be modeled with high precision. However, current collider experiments
have been designed for the discovery of new physics. Detectors like CMS and ATLAS do
not cover the high-rapidity region of the phase space, where most antiprotons are produced.
Further, the energy scale relevant for cosmic ray experiments is considerably below the energy
scale of operating colliders. AMS-02 is expected to detect antiprotons up to kinetic energies of
several 100 GeV, which descend from primary cosmic rays with energies E ' 10–10000 GeV.
This corresponds to CMS energies

√
s ' 5–100 GeV of two colliding nucleons — far below

LHC energies.
The major part of proton proton scattering data in the relevant energy window were

collected in the 1970s and early 80s. The most recent parameterization of the invariant
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antiproton cross section by Duperray et al. [3] fits these data with χ2/d.o.f. ∼ 4 [3]. While
one would naively consider this a relatively poor fit, it is hardly possible to improve the
level of consistency. The reason is that these data sets show a considerable scatter which
complicates the determination of the differential cross section. Systematic errors in the old
published data e.g. due to uncertainties in the beam luminosity are difficult to estimate.
Certainly, a major source of error arises from the so-called “feed-down problem”: about
1/4 of the antiprotons in hadron collisions are produced via the decay of strange hyperons.
Hyperons have a macroscopic decay length in the range cm to m, depending on their boost.
One can only speculate which fractions of antiprotons from hyperon decay where properly
identified by the old detectors. Clearly the fraction of escaping antiprotons depends on the
boost of the parent hyperons and details of the detector setup. In particular, it varies between
different regions of the phase space and between different experiments.

Fortunately, the situation has drastically improved due to the NA49 experiment at
CERN. NA49 was a fixed target experiment with an incoming proton beam of energy Ep =
158 GeV at the Super Proton Synchrotron. While the experiment was completed already
in 2002, data on antiproton production were published only recently [4]. They provide a
high phase-space coverage and drastically exceed the precision of previous data sets. The
“feed-down problem” is absent as the antiprotons descending from hyperon decay have been
identified using micro vertex detection and precision tracking. Therefore, we have decided
to attempt a new determination of the antiproton source term based on the NA49 data.
Different from previous approaches, we do not try to find a parameterization of the differential
antiproton cross section, but we directly use the NA49 data as an input.

Apart from proton proton scattering, processes involving helium contribute consider-
ably (in total about 40%) to the antiproton flux. Unfortunately, experimental data on pHe
scattering do not exist in the relevant energy window. Therefore, one has to extrapolate
the helium cross sections from the measured cross sections of heavier nuclei. Fortunately,
there exist new precision data on proton carbon scattering by NA49 [5]. The collaboration
has introduced a simple empirical model which relates the antiproton cross section in proton
nucleus scattering with the cross section in proton proton scattering. This model was shown
to describe pC scattering with good precision over the whole phase space and shall be used
for pHe and HeHe scattering in this work.

2.2 Monte Carlo generators

As a possible alternative to the data-driven approach, Monte Carlo tools have been used
to determine the secondary antiproton flux as well as a possible primary component from
dark matter annihilations. In this light, it is important to investigate the range of applica-
bility of the underlying hadronization models. In this work, we will employ the Monte Carlo
generators PYTHIA 8.1 [12], DPMJET-III [13] and GEANT4 [14] for an independent de-
termination of the differential antiproton production cross sections. For the simulation with
PYTHIA we took into account all inelastic soft QCD processes. In the case of DPMJET,
we used the implemented standard PHOJET model without elastic collisions. GEANT was
developed as a detector simulation, but we adjusted the code to trace the event chain of
single inelastic collisions. For the hadronization, we chose the build-in FTFP model which is
based on the FRITIOF description of string fragmentation. The tool ROOT [15] was used
for data analysis and procession.

PYTHIA only deals with proton proton interactions, therefore it can only be used to
determine the dominant component of the antiproton source term. Subleading components
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from processes involving helium can be obtained by use of DPMJET and GEANT. As is
pointed out in the documentation of the Monte Carlo generators, none of the three tools is
suited for the low energy regime, where the hadronization models break down. At higher
energies, however, reasonable agreement between the data-driven and Monte Carlo based
evaluation of the antiproton source term is expected.

3 Antiproton production in pp scattering

Proton proton scattering is the dominant source of antiprotons in our galaxy. In hadronic
collisions antiprotons are promptly produced due to the factorization of the colliding partons.
Additionally, antiprotons descend as decay products of long-lived intermediate states like
antineutrons or hyperons. Before we discuss the different contributions to the inclusive
antiproton production cross section, we shall turn to the energy scaling of the cross section.

3.1 Invariant cross section and radial scaling

We are interested in the inclusive production of a hadron h in the reaction pp → h + X,
where X stands for the sum of the remaining final state particles. For this we introduce the
Lorentz invariant cross section

fpp→h = Eh
d3σ

dp3
h

=
Eh
π

d2σ

dpLdp2
T

, (3.1)

where Eh is the energy of the detected hadron and d3σ/dp3
h the differential cross section with

respect to the three-momentum ph. The longitudinal and transverse components of ph are
denoted by pL and pT respectively. It is useful to express the invariant cross section in terms
of pT and a scaling variable. The radial and Feynman scaling variables are defined as

xR =
E∗

E∗max

, xf =
p∗L√
s/2

, (3.2)

where E∗ and p∗L denote the energy and longitudinal momentum of h in the center of mass
frame. The maximal energy is determined as E∗max = (s−M2

X +m2
h)/(2

√
s) with MX being

the minimal mass of the recoiling particles X.

In [16, 17] a large set of experimental data was analyzed. It was shown that the invariant
cross section approaches a radial scaling limit

fpp→h(
√
s, xR, pT) −→ fpp→h(xR, pT) (3.3)

for
√
s & 10 GeV independent of the nature of the final state hadron. This is an enormous

simplification as — within the radial scaling regime — the cross section at all center of mass
energies can be deduced from the cross section at one energy. If, instead, one expresses
the invariant cross section in terms of the scaling variable xf , it also approaches a scaling
limit [18], however only at considerably higher energies [17]. Therefore, the use of xR as a
scaling variable is clearly preferred.

From a theoretical viewpoint, constituent exchange models predict a power law behavior
of the invariant cross section [19–21]

fpp→h ∝ (1− x)n . (3.4)
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Here x denotes the light cone fraction of the considered hadron which is not directly observ-
able, but can be approximated as x ' xR [22]. The fragmentation power n is determined
by the dimensional counting rule. It increases with the minimal number of spectator quarks
necessitated by quantum number requirements. In particular, n is expected to be larger
for antibaryon production compared to meson production due to baryon number conserva-
tion. Quantitatively, the quark exchange model predicts the fragmentation power n = 9 for
antiproton production in pp collisions [22].

3.2 Contributions to the inclusive cross section

In cosmic ray physics, one is ultimately interested in the total number of antiprotons irrespec-
tive of their origin. However, in a collider experiment, antiprotons appearing macroscopically
displaced from the initial collision vertex may escape detection. While antineutrons decay
far outside any contemplable detector, the situation is more subtle for the strange hyperons
Λ̄ and Σ̄ which have decay lengths comparable to typical detector scales. It was mentioned
previously that this leads to the so-called “feed-down problem” as the fraction of escaping
antiprotons from late decays remains dubious in the old experimental data.

In this work, we mainly rely on antiproton data from the NA49 experiment. In contrast
to previous experiments, antiprotons from hyperon decay have systematically been identified.
This allows us to split the antiproton production cross section into individual components
which we discuss separately. The total invariant antiproton cross section in pp collisions can
be written as

fpp = fpp→p̄ + fpp→n̄ . (3.5)

Here fpp→n̄ accounts for the antiprotons from very late decaying antineutrons. This contribu-
tion is not directly accessible to experiments and has to be determined by use of symmetry
arguments. We further split

fpp→p̄ = f 0
pp→p̄ + f Λ̄

pp→p̄ , (3.6)

where f 0
pp→p̄ and f Λ̄

pp→p̄ denote the contributions from prompt hadronization and from the
weak decay of strange hyperons, respectively.

3.2.1 Prompt antiproton production

The NA49 collaboration has performed a precision measurement of inclusive antiproton pro-
duction in pp scattering [4]. Only the antiprotons from prompt hadronization are included
in the data, while antiprotons from hyperon decay were systematically rejected. The beam
energy Ep = 158 GeV corresponds to

√
s = 17.4 GeV — well within the radial scaling regime.

We can thus, in principle, use the NA49 data to determine the cross section at all energies√
s > 10 GeV.

The collaboration provides the invariant differential cross section f 0
pp→p̄ in bins of xf and

pT . Additionally, an eyeball fit to the data is specified. As Feynman scaling is only reached
at considerably higher energies, it is convenient to translate xf into xR. In figure 1, we depict
a subset of the NA49 data and the corresponding eyeball fit in terms of the radial scaling
variable. Different from previous works, we do not attempt to find a parameterization for
the invariant cross section, but simply use the fit given by the collaboration (after expressing
it in terms of xR).

Despite the large phase-space coverage of NA49, we still have to use some extrapolation.
The region at xR ' 0 − 0.1 is kinematically not accessible at NA49 as xR > mp/E

∗
max by

definition. Further, as the cross section decreases rapidly towards large xR and pT , no data
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Figure 1. Measured invariant antiproton cross section expressed in terms of the radial scaling variable

and eyeball fit with extrapolation (see text).

exist in this regime due to the limited statistics. In the covered region of phase space the
invariant cross section shows virtually perfect power law behavior f 0

pp→p̄ ∝ (1 − xR)n with
n = 7.5 at all pT . We assume that this behavior continues outside the covered region
of xR and include an uncertainty in the fragmentation power n = 7.5 ± 1. This power
law form is expected in theoretical hadronization models. As we will show explicitly later,
our extrapolation is also consistent with experimental data taken at higher energies. We
further observe an exponential decrease of the invariant cross section with the transverse

mass mT =
√
p2
T +m2

p which we assume to continue at pT > 1.5 GeV. We note, however,

that this assumption is not of relevance as the cross section is negligibly small at high pT .

Statistical errors in the NA49 data reside at the level of ∼ 5%. Their effect on the
antiproton source term is, however, washed out by the phase space integration. They can
be neglected compared to other sources of uncertainty. However, we shall take into account
systematic errors which can affect the overall normalization of the cross section. Using a
conservative linear error propagation, the NA49 collaboration has estimated the systematic
uncertainty to be 6.5% which we adopt in the following.

3.2.2 Hyperons

The NA49 data set [4] includes only the promptly produced antiprotons, while antiprotons
from hyperon decay were systematically rejected. In order to determine f Λ̄

pp→p̄, we can use
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Figure 2. Multiplicity distribution of hyperon-induced antiprotons integrated over transverse mo-

menta as extracted from the NA49 data (blue circles). The prediction from the GEANT Monte Carlo

is shown for comparison (green dashed line). The multiplicity distribution of promptly produced

antiprotons scaled by 0.2–0.3 is indicated by the blue band.

the measured phase-space distribution of the parent hyperons. In figure 22 of [23], the
collaboration has published the differential multiplicity of Λ̄-hyperons(

dn

dxfΛ̄

)
pp→Λ̄

=
1

σinel
pp

(
dσ

dxfΛ̄

)
pp→Λ̄

, (3.7)

where σinel
pp denotes the total inelastic cross section in pp collisions. The hyperons decay into

antiproton and pion with a branching fraction Br(Λ̄→ p̄ π) = 0.64 [24]. We can make use of
the fact that mΛ ' mp +mπ, which implies that the momentum of Λ̄ is distributed between
the decay products according to their masses. Therefore we can express the Feynman variable
xf of the antiproton in terms of the Feynman variable of the parent hyperon

xf '
mp

mΛ
xfΛ̄

. (3.8)

This allows us to predict the multiplicity distribution of antiprotons from hyperon decay(
dn

dxf

)̄Λ

pp→p̄

= Br(Λ̄→ p̄ π)× mΛ

mp

(
dn

dxfΛ̄

)
pp→Λ̄

+ (Σ̄ contribution) . (3.9)

Note that there is a subdominant contribution to nΛ̄
pp→p̄ from Σ̄ hyperons. By symmetry

arguments the ratio of produced Σ̄−/Λ̄ can be estimated to be 0.33 [4].1 We set the branching
fraction Br(Σ̄− → p̄ π) = 0.52 [24] and assume that the antiprotons from Σ̄-decay follow the
same xf -distribution as the antiprotons from Λ̄-decay.

In figure 2, we depict the differential multiplicity of antiprotons from hyperon decay.
The data points were obtained from the measured differential multiplicity of Λ̄ [23] by use
of (3.9) (including the contribution from Σ̄). For comparison, we also provide the distribution

1According to [4], the ratio of produced Σ̄−/Σ+ is expected to be 0.8 Λ̄/Λ. If one uses the measured

multiplicities of Λ and Σ+ from [23] this leads to the estimate of Σ̄−/Λ̄ ' 0.33.
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obtained with the GEANT Monte Carlo, which is in reasonable agreement with the data.2

The differential multiplicity of the promptly produced antiprotons scaled by a factor of 0.2
and 0.3 is also shown. The latter was determined by integrating the invariant cross section
over transverse momenta (

dn

dxf

)0

pp→p̄

=
π

σinel
pp

√
s

2

∫
dp2

T

f 0
pp→p̄

Ep̄
. (3.10)

It can be seen that the antiprotons from hyperon decay and those from prompt hadronization
exhibit a very similar momentum distribution. Unfortunately, error bars are not available
for the hyperon data. But we presume that within the current precision, both distributions
match up to a scaling factor. In the following we take the uncertainty band in f Λ̄

pp→p̄ such
that all data points of figure 2 are included. This leads to the estimate

f Λ̄
pp→p̄

f 0
pp→p̄

= 0.2–0.3 . (3.11)

We do not require this ratio to be strictly momentum-independent. Rather, we assume that
it only varies between 0.2 and 0.3 over the whole phase space.

3.2.3 Antineutrons and isospin effects

In previous cosmic ray studies, it was assumed that there is no distinction between p̄ and n̄
production in pp collisions. Serious concerns about this hypothesis have been raised in [6].
There, data from proton collisions at different CMS energies were analyzed. It was noted
that the net proton density, defined as the number of protons minus antiprotons per inelastic
event, revealed a considerable energy dependence. At increasing

√
s, this quantity was found

to grow dramatically towards low xf . Baryon number conservation requires that baryons
and antibaryons are produced in pairs. Under the assumption that the numbers of p̄n and
pn̄ pairs match, the above defined net proton density should correspond to the non-pair
produced protons. The mentioned steep increase seems to indicate a problem with baryon
number conservation — given the assumption of equal numbers of p̄n and pn̄ pairs holds.
The authors of [6] conclude that there must be an asymmetry between p̄ and n̄ production.

While the inclusive process pp → n̄ + X is not directly observable, it is instructive to
consider the flipped reaction np → p̄ + X. We will decompose the antiproton multiplicity
into a projectile and a target component(

dn

dxf

)
np→p̄

=

(
dn

dxf

)pro

np→p̄

+

(
dn

dxf

)tar

np→p̄

. (3.12)

The validity of this decomposition requires the independence of target and projectile fac-
torization, such that the total multiplicity arises from the simple superposition of both con-
tributions. This assumption has been experimentally verified in other hadronic interactions
(e.g. by comparing πp and pp scattering [25]).

In the forward (xf > 0) and backward (xf < 0) region, the multiplicity is dominated
by projectile and target factorization respectively. However, there appears a small feed-over
at |xf | . 0.1, where both contributions slightly leak into the “wrong” hemisphere. One

2The distribution obtained with GEANT is slightly shallower towards large xf . This is expected as GEANT

also predicts a too flat xf distribution of the promptly produced antiprotons compared to experimental data.
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Figure 3. Differential antiproton multiplicity in pp and np collisions. The difference between the two

distributions can possibly be related to an isospin effect (see text).

can define the target overlap function Ftar(xf ) to project out the target contribution of the
multiplicity (

dn

dxf

)tar

hp→p̄

= Ftar(xf )

(
dn

dxf

)
pp→p̄

, (3.13)

where h denotes an arbitrary baryon or meson projectile. The overlap function was found to
be independent of the transverse momentum pT and of

√
s if expressed in terms of xf [25].

We take Ftar(xf ) from table 14 in [5], the projectile overlap function is simply given as
Ftar(1 − xf ) and fulfills the relation Ftar(xf ) + Fpro(xf ) = 1. Using overlap functions to
project out the target and projectile components, we can express(

dn

dxf

)
np→p̄

= Fpro(xf )

(
dn

dxf

)
nn→p̄

+ Ftar(xf )

(
dn

dxf

)
pp→p̄

(3.14)

= (NIS Fpro(xf ) + Ftar(xf ))

(
dn

dxf

)
pp→p̄

. (3.15)

In the second step, we made use of the fact that proton and neutron can be understood as
doublet under an isospin symmetry which implies nnn→p̄ = npp→n̄. Further, we defined(

dn

dxf

)
pp→n̄

= NIS

(
dn

dxf

)
pp→p̄

. (3.16)

Here NIS denotes the isospin factor which parameterizes a possible asymmetry between n̄
and p̄ production in pp collisions.

In figure 3, we depict the antiproton multiplicity in pp and np collisions measured by
NA49 [6]. In the case NIS = 1 both multiplicity distributions should match which appears
inconsistent with the data. Indeed using a ∆χ2-test and taking the isospin factor to be
constant, we obtain 1.37 ± 0.06 at the 90% confidence level. The multiplicity distribution
corresponding to the best fit point is also indicated in the figure.
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This argumentation indicates a preference for the production of pn̄ pairs compared to
np̄ pairs in pp collisions. One should note, however, that the np data of NA49 are still at
the preliminary level, systematic uncertainties have not been discussed. There are additional
sources of concern: deviations from the independent target and projectile fragmentation
would affect the above result. As we shall discuss later, the pC scattering data of NA49 are
consistent with isospin effects, but hint at a somewhat smaller NIS ∼ 1.2. The hadronization
models implemented in the Monte Carlo generators PYTHIA, GEANT and DPMJET yield
no clear preference for n̄ production at all. LHC data indicate that at very high energies, the
p̄/p ratio in the mid-rapidity window approaches unity [26] which seems to speak against a
preference for pn̄ pairs in pp collisions. Finally, it is not guaranteed that the isospin factor is
constant in the whole phase space: the data in figure 3 prefer a larger isospin effect at low
xf , although not at a statistically significant level.

As the current situation is inconclusive, a conservative treatment of the isospin effect
seems appropriate. In the following, we will assume an isospin factor NIS = 1.0–1.43. The
lower end of this window corresponds to the standard assumption fpp→p̄ = fpp→n̄, the upper
end to the 95% CL upper limit on the isospin factor deduced from np scattering (see above).

An additional contribution to antineutron production arises from hyperon decay, com-
pletely analogous as in the antiproton case (see section 3.2.2). Assuming equal production of
Σ̄− and Σ̄+ and using the branching fractions from [24], we find that the number of hyperon-
induced antineutrons is by a factor of 1.05 higher than the number of hyperon-induced
antiprotons.

3.3 Corrections to radial scaling

Let us now turn to the energy dependence of the invariant cross section. The latter is
expected to be independent of the CMS energy for

√
s > 10 GeV if expressed in terms of the

radial scaling variable and the transverse momentum. This can be verified by considering
high energy collider data.

In figure 4, we used the invariant cross section extracted from the NA49 data, to predict
fpp→p(xf , pT ) at a higher CMS energy

√
s = 53 GeV.3 Corresponding experimental data from

the CERN ISR collider by Capiluppi et al. [27] and Alper et al. [28] are also shown. We have
included the antiprotons from hyperon decay in the NA49 prediction as a large fraction of
them is expected to be contained in the CERN ISR data [4]. The indicated uncertainty band
includes the systematic error of NA49, uncertainties related to our extrapolation of the NA49
data to low xR as well as the uncertainty in the hyperon contribution. Given that there is
a considerable scatter in the CERN ISR data, one may take the shown experimental error
bars with a grain of salt. But there is an overall good agreement between the measured cross
section and the NA49 expectation.

For further comparison, we use a data set from the BRAHMS experiment at Brook-
haven [29] which was taken at CMS energy

√
s = 200 GeV for two different rapidities y = 2.95

and y = 3.3. The measured invariant cross section is in very good agreement with the NA49
prediction as can be seen in figure 5. This gives further confidence in the radial scaling
hypothesis as well as our extrapolation of the NA49 data towards low xR.

We note that deviations from radial scaling are expected at very high energies. The
BRAHMS data indicate that, for pT < 1.5 GeV, radial scaling is valid up to CMS energies

3Note that in the radial scaling regime f(xf , pT ) still depends on the CMS energy. This is because xf is

a function of xR and
√
s. Only in the very high energy limit xf → xR and f(xf , pT ) becomes independent of√

s. This corresponds to the Feynman scaling regime.
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√
s = 200 GeV. Deviations from radial scaling at higher pT can be neglected as the cross

section is anyway highly suppressed in this region of the phase-space. The BRAHMS energy
corresponds to the scattering of an incoming proton with Ep ∼ 20 TeV on the interstellar
hydrogen. More energetic protons only marginally contribute to the antiproton flux in the
energy window covered by AMS-02. Further, the growing uncertainty in the primary proton
flux dilutes any effect caused by the violation of radial scaling at high

√
s. Therefore, we can

safely work under the hypothesis of radial scaling for
√
s > 10 GeV.
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At energies
√
s� 10 GeV, however, radial scaling is heavily broken. In order to model

the low energy antiproton flux, we clearly have to quantify the violation of radial scaling.
We follow [2] and define the energy-dependent ratio

R(
√
s, xR, pT ) =

fpp(
√
s, xR, pT )

fRS
pp (xR, pT )

, (3.17)

where fRS
pp (xR, pT ) denotes the invariant cross section in the radial scaling limit. In [17]

a large number of hadronic processes was considered. Independent of the inclusive chan-
nel, it was found that the radial scaling limit is approached asymptotically from above, i.e.
R(
√
s, xR, pT ) ≥ 1. Further, it was noted that the cross section enters the scaling regime

faster at low xR, while R only weakly depends on pT [2, 17].
Unfortunately, experimental data on inclusive p̄-production at

√
s < 10 GeV are rare.

There exist only two data sets [30, 31] with reasonable phase-space coverage. Both were
recorded at the CERN Proton Synchrotron in the early 1970s. We have attempted to find a
parameterization of R with the qualitative behavior described above. For this, we neglected
the dependence of R on pT , and required R(xR,

√
s = 10 GeV) = 1. Empirically we arrived

at the function

R(xR,
√
s) =

(
1 + C1

(
10 GeV−

√
s

GeV

)5
)

exp

[
C2

(
10 GeV−

√
s

GeV

)
(xR − xR,min)2

]
,

(3.18)
for
√
s ≤ 10 GeV. The parameters were determined as C1 =(1±0.4)×10−3 and C2 =0.7± 0.04.

Given that error bars are only partially available for the data sets, we have chosen the
uncertainties in C1,2 such that the error band encloses the data points. Our parameterization
as well as the experimental data [30, 31] can be seen in figure 6. A slightly more involved
function R was suggested in [2]. We have verified that the antiproton source term does
virtually not depend on which of the two parameterizations we use. This is not surprising
as [2] employed the same limited amount of data available at low

√
s.

3.4 Analytic approximation

In this work, we decided to use the fit to the Na49 data for the invariant antiproton cross
section. To allow for a quick comparison with our results, we nevertheless want to specify an
analytic approximation for fpp . In the NA49 data we observe an almost perfect factorization
of f 0

pp→p̄ with respect to the variables xR and pT . A good fit (χ2 = 1.4/d.o.f.) can be obtained
with the parameterization

f 0
pp→p̄(xR, pT ) =

(
400 mb GeV−2

)
× (1− xR)7.76 exp (−5.95mT ) , (3.19)

where mT stands for the transverse mass. To obtain fpp one has to include the contributions
from antineutron and hyperon decay. Further in the low energy regime the correction function
R must be applied. Using central values for the hyperon induced antinucleons, we arrive at

fpp(xR, pT ,
√
s)

= (400 mb GeV−2)×R(xR,
√
s)× (1.51 +NIS)× (1− xR)7.76 exp (−5.95mT ) . (3.20)

where we left the isospin factor unspecified. We have verified that the antiproton source term
calculated from the analytic approximation agrees with the source term obtained from the
NA49 fit within a few % precision.
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4 Antiproton production in pA and AA scattering

Given the lack of experimental data on pHe and HeHe scattering, the corresponding differ-
ential cross sections must be determined by means of extrapolation. Duperray et al. [3] have
therefore employed a modified version of the Kalinovskii formula [32] which describes generic
proton nucleus collisions. The parameters of the formula were fitted by using a large set of
data, including scattering of protons on very heavy nuclei like lead. However, one should be
aware that the nuclear medium effects in such scatterings depend crucially on the size of the
nucleus. While they are almost absent for pHe processes, they completely distort the phase
space distribution of resulting hadrons in pPb scattering. It is, therefore, questionable to
which extent data involving heavy nuclei are useful for the extrapolation of the pHe cross
section. In this work, we construct the pHe and HeHe cross sections from the elementary
hadronic processes.

4.1 Empirical description

In [5], it has been realized that the differential antiproton multiplicity in pC scattering is
closely related to the multiplicity in pp scattering. Indeed, it was found that both multi-
plicities virtually match in the projectile hemisphere, i.e. in the forward direction. At the
same time, a significant increase of the multiplicity is observed in the target hemisphere. The
origin of this excess can be traced back to multiple scatters of the projectile in the nucleus.
By measuring the increase of pion yields in the backward hemisphere, the average number
of proton interaction was found to be 〈νC 〉 = 1.6 in carbon. Using the overlap functions
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introduced in section 3.2.3, the multiplicity can be written as(
dn

dxf

)
pC→p̄

=

(
1 +NIS

2
〈νC 〉Ftar(xf ) + Fpro(xf )

)(
dn

dxf

)
pp→p̄

. (4.1)

Note that in addition to multiple scatters, there appears a possible isospin enhancement
due to the fact that the carbon nucleus contains half neutrons. In figure 7, we depict the
measured antiproton multiplicity in pC collisions and the prediction derived from (4.1). For
the isospin factor we have used the uncertainty band NIS = 1–1.43 as given in section 3.2.3.
It can be seen that the empirical model yields a very good description of pC scattering within
the given uncertainties. Minor deviations arising in the projectile hemisphere can be related
to nuclear medium effects like the Cronin effect [33]. They reside, however, at the level of a
few per cent for carbon and are expected to be completely negligible for helium.

4.2 Cross section for pHe and HeHe scattering

In order to determine the pHe, Hep and HeHe cross section we adopt the same method as
for pC scattering. We assume that the differential antiproton multiplicity is given as(

dn

dxf

)
A1A2

=
(
〈νA2
〉Ftar(xf ) + 〈νA1

〉Fpro(xf )
)( dn

dxf

)
pp

, (A1,2 = p,He) . (4.2)

Here nA1A2
= nA1A2→p̄ + nA1A2→n̄ stands for the total antiproton multiplicity including the

contributions from hyperon and antineutron decay. Note that all isospin effects are already
contained in npp , there appear no extra isospin factors. This is because isospin effects may
induce an asymmetry between antiproton and antineutron production, but they do not affect
the total number of antinucleons which are produced.

The average number of interactions is 〈νp〉 = 1 for protons. In the case of helium, we
determine 〈νHe〉 from the total inelastic cross section as

〈νHe〉 = 4
σpp,inel

σpHe,inel
, (4.3)
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where the factor 4 originates from the nucleon number of helium. Extracting the total
inelastic proton helium cross section from [34], we find 〈νHe〉 = 1.25.4 The invariant cross
section is related to the multiplicity via (3.10). Assuming the same transverse momentum
distribution of antiprotons in proton and helium scattering, we arrive at the invariant cross
section

fA1A2
=
σA1A2,inel

σpp,inel

(
〈νA2
〉Ftar(xf ) + 〈νA1

〉Fpro(xf )
)
fpp , (A1,2 = p,He) . (4.4)

We will assume that (4.4) holds independent of the CMS energy. Note that fpHe and fHeHe

inherit the uncertainties contained in fpp .

5 The secondary antiproton flux

5.1 The source term

Primary cosmic rays create antiprotons by inelastic interactions with the interstellar gas in
the galactic disc. In the following, we want to determine the secondary antiproton source
term qp̄ which is defined as the differential p̄ production rate per volume, time and energy.
For this, we make use of the invariant cross sections evaluated in the previous sections. To
obtain the uncertainty band for the source term, we perform a conservative linear error
propagation which is necessitated by the fact that errors are not normally distributed in our
case.5 We include the previously discussed uncertainties arising from systematic errors in
the NA49 experiment, from the extrapolation of cross sections towards low xR, from the
hyperon-induced antinucleon production as well as from isospin effects. We also account for
the uncertainty in the function R which relates the invariant cross section at low collision
energies with the cross section in the radial scaling regime. For our reference source term we
use central values and set NIS = 1.

The secondary source term is determined by

qp̄(T ) =
∑

A1,2=p,He

4π

∞∫
Eth

dT ′
(
dσ

dT

)
A1A2

%A2 ΦIS
A1

(T ′) . (5.1)

Here T ′ denotes the kinetic energy per nucleon of the incoming primary cosmic ray particle
(proton or helium), T the kinetic energy of the outgoing antiproton. The differential antipro-
ton production cross section (dσ/dT )A1A2

can be obtained from the invariant cross section
fA1A2

(cf. (3.1)). The threshold energy is given as Eth = 6mp, while for the interstellar

number densities of hydrogen and helium, we set %p = 0.9 cm−3 and %He = 0.1 cm−3 [35].6

The contribution of heavier elements to qp̄ can be neglected [10].
To allow for independent use of our results in cosmic ray propagation codes, we made

available the differential cross sections dσ/dT ′ which enter (5.1) in the Ancillary Files of the
arXiv version.

4In [34] an interpolation formula for inelastic proton nucleus cross sections is presented. It is noted in the

text that this formula overestimates the proton helium cross section by 20%. Applying this correction, one

arrives at σpHe,inel = 45 mb× 40.7/1.2.
5In the case of isospin effects, there is e.g. a finite probability that NIS = 1, which is at the edge of the

considered uncertainty band.
6For a self-consistent approach, we have to employ the same input values for the hydrogen and helium

densities as were used for the determination of the propagation parameters which we adopt later.
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Figure 8. Primary cosmic ray fluxes measured by AMS-02 and power law fits employed in this work

(see text).

The interstellar fluxes of primary cosmic rays ΦIS
p,He exhibit a power law behavior in the

energy range T > 10 GeV relevant for the secondary antiproton production. They can in
principle be taken from previous studies [36, 37]. However, as a new precision measurement
of proton and helium fluxes by AMS-02 became available [38], we decided to reevaluate the
primary fluxes. Experimental data always refer to the top-of-the-atmosphere fluxes ΦTOA

p,He .
Therefore, we have to account for the effects of solar modulation. This is done by means of
the force field approximation [39]. To obtain the interstellar fluxes, we have fitted power law
functions to the AMS-02 data, which we modulated by a force field φ = 700 MV.7

In figure 8, we depict the envelope of (modulated) power law functions which are con-
sistent with the measured proton and helium fluxes (at the 90% CL using a χ2-metric). In
the calculation of the source term we include the shown bands as an additional source of
uncertainty. For our reference source term we take the best-fit functions

ΦIS
p (T ) = 17407 m−2sr−1s−1GeV−1 ×

(
T

GeV

)−2.775

, (5.2)

ΦIS
He(T ) = 597.2 m−2sr−1s−1GeV−1 ×

(
T

GeV

)−2.630

. (5.3)

In figure 9 we depict the antiproton source term which results from the invariant cross
sections used in this work. The source term includes contributions from pp, pHe, Hep and
HeHe scattering, the pp component is shown separately. The associated error in qp̄ resides at
the level of 25% for intermediate energies T ∼ 10 GeV. In this regime it is dominated by the
uncertainty in the isospin factor which affects antineutron production. Towards low T , the
width of the error band increases drastically and reaches ∼ 50% at T = 1 GeV. This results
from the uncertainty in the hadronic cross sections due to the breakdown of radial scaling

7The force field φ = 700 MV was determined by comparing the low energy proton flux measured by AMS-02

with the interstellar flux of [36].

– 16 –



J
C
A
P
0
9
(
2
0
1
4
)
0
5
1

10
-1

1 10
1

10
2

10
3

10
-35

10
-34

10
-33

10
-32

10
-31

10
-30

10
-29

T @GeVD

q
p

@Hc
m

3
s

G
e

V
L-

1
D

pp Hscaled
by

0.1L

pp
+

pH
e

+
H

ep
+

H
eH

e

DPMJET
GEANT
PYTHIA
Duperray
Tan
this work

1 10
1

10
2

10
3

10
-35

10
-34

10
-33

10
-32

10
-31

10
-30

10
-29

T @GeVD

q
p

@Hc
m

3
s

G
e

V
L-

1
D

pp Hscaled
by

0.1L

pp
+

pH
e

+
H

ep
+

H
eH

e

Figure 9. Secondary source term determined from the NA49 data as described in the text and

corresponding uncertainty band (also available in the Ancillary Files of the arXiv version). The pp

component of the source term, scaled by 0.1, is shown separately. Also depicted are the source terms

arising from previous parameterizations of the invariant cross sections (left panel). Source terms

obtained with different Monte Carlo tools are shown in the right panel.

and the lack of low-energy collider data. Towards high kinetic energies, the error in qp̄ also
rises which is related to the growing uncertainties in the primary cosmic ray fluxes.

For comparison we have determined qp̄ by using previous parameterizations of the in-
variant antiproton cross section by Tan et al. [2] and Duperray et al. [3] (see left panel of
figure 9). In the pp channel the Tan source term virtually matches with our reference source
term. This is remarkable as our description of pp scattering relied on a disjoined set of ex-
perimental data compared to Tan et al.. Duperray et al. have attempted to find a single
parameterization of the invariant cross section fpp in- and outside the radial scaling regime.
This induces a tendency to underestimate fpp at high energies and to overestimate it at low
energies. We believe that this explains the shape of the Duperray source term. We note,
however, that the latter still resides within the uncertainty band of our qp̄.

In the right panel of figure 9, we show qp̄ as obtained with the Monte Carlo tools
PYTHIA, GEANT and DPMJET. While the Monte Carlo tools qualitatively reproduce the
expected shape of the source term, they generically predict too high qp̄. At T > 10 GeV
the GEANT and DPMJET source terms are only marginally outside the uncertainty band
of our data-based source term, while PYTHIA already overestimates qp̄ by a factor of 2.
The level of discrepancy increases continuously towards low T which is most likely caused
by the hadronization models, arriving at the edge of their validity. We have traced back the
discrepancy between data-based and Monte Carlo approach to the fact, that the Monte Carlo
generators predict too large multiplicities already in pp collisions. As an example, the Monte
Carlos find npp→p̄ = 0.006, 0.005, 0.008 (GEANT, DPMJET, PYTHIA) at a collision energy√
s = 6.1 GeV which has to be compared with the experimental value npp→p̄ = 0.002 [40].

Therefore, it seems that the tested Monte Carlo tools can not be used “out of the box” to
determine the secondary antiproton flux.
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δ K0 (kpc2 ·Myr−1) L (kpc) Vc (km · s−1) Va (km · s−1)

0.86 0.0042 4 18.7 35.5

Table 1. Propagation parameters taken from the boron to carbon analysis in [35].

5.2 Propagation in the diffusion model

The antiproton flux induced by the source term qp̄ is determined through the diffusion
equation

∇(−K ∇Np̄ + V cNp̄) + ∂T (btotNp̄ −KEE ∂TNp̄) + ΓannNp̄ = qp̄ + qter
p̄ , (5.4)

where Np̄ denotes the antiproton space-energy density, K accounts for diffusion and V c is
the galactic wind. The function btot describes energy losses, ionization and reacceleration,
it can be taken from [41], KEE is the so-called energy diffusion coefficient [42] and Γann

the annihilation rate which describes the antiproton annihilation with interstellar matter.
The tertiary source term qter

p̄ arises from inelastic scattering of secondary antiprotons in the
galactic disc.

We solve this equation semi-analytically within the two-zone diffusion framework in-
troduced in [8, 9]. Further details can be found in our previous publication [43].8 In the
two-zone diffusion model, propagation depends on five parameters: the height of the diffu-
sion cylinder9 L, the galactic wind Vc, the Alfvén speed Va which enters KEE as well as the
diffusion parameters K0 and δ which are related to K as

K = K0β
( p

GeV

)δ
. (5.5)

Here β and p stand for the antiproton velocity and momentum. We use the propagation
parameters shown in table 1 which were taken from a recent boron to carbon analysis [35].
As the focus of this study is on the particle physics uncertainties contained in the antiproton
flux, we do not attempt to include the uncertainties in the propagation parameters.10 The
latter can be obtained by propagating the antiproton source term with all configurations
consistent with the boron to carbon ratio and taking the envelope of the obtained antiproton
fluxes (see e.g. [50]).

5.3 Prediction for the antiproton flux and comparison with data

In figure 10 (upper panel), we depict the interstellar antiproton flux obtained from the source
term of figure 9 within the two-zone diffusion model. The shown error band comprises
the particle physics uncertainties and the uncertainties of the primary cosmic ray fluxes,
propagation uncertainties have not been included. The error band is practically inherited
from the source term. Only at low T , the uncertainty in ΦIS

p̄ is slightly reduced compared to
the uncertainty in qp̄ due to the tertiary component of the flux.

To compare the obtained flux with existing experimental data, we have to account
for solar modulation. For this we use the force field approximation. The currently most
accurate measurements of the antiproton flux were performed by the PAMELA [51] and the

8For a full numerical approach to the diffusion equation, see [11, 44, 45].
9See [46–48] for recent discussions on L.

10See e.g. [49] for a recent discussion of astrophysical uncertainties.
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Figure 10. Interstellar antiproton flux and particle physics uncertainty band obtained in this work

(upper panel, also available in the Ancillary Files of the arXiv version). In the lower panel, the top-

of-the-atmosphere flux obtained by modulating ΦIS
p̄ with a force field φ = 500–600 MV is compared

with the experimental data from PAMELA and BESS-Polar II.

BESS-Polar II [52] collaborations. Both data sets were obtained in a period of low solar
activity, where a force field of φ = 500–600 MV can be used to account for modulation [36].
In figure 10 (lower panel) we compare the top-of-the-atmosphere flux from our calculation
with the experimental data of PAMELA and BESS-Polar II. It can be seen that a very good
agreement within the given uncertainties is obtained. We notice that the measured flux
resides more towards the lower end of the uncertainty band which seems to speak against
strong isospin effects in the antineutron production. However, this conclusion might be
premature as we have not included the propagation uncertainties in the antiproton flux.
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6 Conclusion

The AMS-02 experiment is about to release a high precision measurement of the cosmic
ray antiproton flux. In this light, we have rederived the secondary antiproton source term
which arises from cosmic ray spallations in the galactic disc (figure 9). We employed new
experimental data on proton proton and proton nucleus scattering recorded by the NA49
experiment at CERN. Important improvements of our study include the careful treatment
of antiprotons arising from antineutron and hyperon decay as well as a revised approach
to proton helium scattering. For the first time, we were able to assign a realistic particle
physics error band to the secondary source term, which is an important input for constraining
possible primary antiproton signals in the galaxy. Our source term is publically available and
can be used with a generic propagation setup.

We have identified two major sources of uncertainty in the secondary source term: one
stems from the lack of experimental data on low energy proton collisions, where hadronic
cross sections do not follow a scaling behavior. The other is related to a possible isospin
effect which may result in an enhanced n̄-production in pp collisions. In this regard, the
experimental situation, however, remains dubious and further investigation is required.

Independently, we determined the source term by use of the Monte Carlo tools PYTHIA,
GEANT and DPMJET. While there appears a qualitative agreement with the data-based
evaluation of the source term at antiproton energies T > 10 GeV, the Monte Carlo generators
substantially overestimate qp̄. We have identified the origin of the discrepancy in the too
large antiproton multiplicities predicted by the Monte Carlo generators. At T � 10 GeV the
predictions of all three Monte Carlo tools become rather poor which is most likely explained
by the breakdown of the underlying hadronization models.

In the last step, we have propagated the source term within the two-zone diffusion
framework in order to obtain the secondary antiproton flux. The latter was then confronted
with existing experimental data by the PAMELA and BESS-Polar II experiments and a very
satisfying agreement was obtained (figure 10). The comparison with the upcoming AMS-02
data is eagerly awaited.

Note added. In the final stage of this work we became aware of a related study by F. Do-
nato, A. Goudelis, M. Di Mauro and P. Serpico [53]. While it also determines the proton
scattering cross sections relevant for cosmic ray physics, the approach is quite complementary
to ours. We focus on the NA49 data sets which we use as a basis to discuss prompt and
hyperon-induced antiproton production, antineutron production and proton nucleus scatter-
ing. The focus of [53] on the other hand is on a global reanalysis of the existing pp scattering
data. In this light [53], provides a very important comparison for our work.
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