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Limits on metastable gluinos from ATLAS SUSY searches at 8 TeV

The ATLAS Collaboration

Abstract

In some models of supersymmetry, the gluino is metastable and travels a measurable
distance in the detector before decaying to quarks (or a gluon) and a neutralino. Results
of ATLAS SUSY searches designed for promptly decaying squarks and gluinos, produced
at 8 TeV pp collisions at the Large Hadron Collider, are reinterpreted in the context of
metastable gluinos. Limits are presented as a function of gluino mass, gluino lifetime, and
neutralino mass. Decays of the gluino to tt_/\?? are studied separately from decays to qc‘j/\?(l)
(where q is a non-top quark) or gk (1). The gluino is excluded at 95% confidence level up to
mg = 850 (900) GeV for decays to qgX1/ g} (1i%}), for a lifetime of 1 ns and my = 100 GeV.
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1 Introduction

Gluinos (g) would be strongly produced with large cross sections and thus could be observable up to
large masses at the LHC. ATLAS has excluded gluinos up to a mass of 1350 GeV, assuming prompt
decays of the gluino to jets and missing transverse momentum (E‘T“iss) [1]]. For very long-lived gluinos,
ATLAS and CMS have excluded charged gluino R-hadrons that escape the detector before decaying with
a mass less than 1300 GeV [2, 3] and those that stop in the detector and then decay with a mass less
than 830 GeV [4]. However, no limits on metastable gluinos decaying in flight inside the detector are
available up to now since such a scenario was not explicitly considered.

Several compelling models of SUSY predict a metastable gluino. The observed value of the Higgs
boson mass indicates squark masses around 103-10° TeV for small values of tan8, a moderately fine-
tuned scenario known as mini-split SUSY [5]. For these squark masses, a 1 TeV gluino could be
metastable and decay within the detector with a visible decay length, as shown in figure ]
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Figure 1: Left: The preferred scalar SUSY mass to have a Higgs boson mass consistent with observation,
as a function of tang, for large and small top mixing (A;). Right: Region of displaced gluino decays
(metastable gluinos) as a function of scalar SUSY mass vs. gluino mass. The figures are taken from
ref. [5]).

Though designed to look for promptly decaying SUSY particles, various ATLAS searches can also be
sensitive to metastable gluino decays. For instance, searches using high energy jets and large EITIliSS could
observe a signal from metastable gluino decays before the calorimeters. Searches using jets containing
b-quarks (referred to as b-jets) and E‘TniSS can identify displaced jets from metastable gluino decays as
b-jets. The sensitivity of these analyses to metastable gluinos depends on the reconstruction algorithms
and analysis selections as well as the expected interactions of the gluino decay products with the detector.

This note presents the first re-interpretation of ATLAS SUSY searches in the context of metastable
gluinos. The metastable gluino signals are fully simulated, including the hadronization of the colored g
into a colorless R-hadron, its possible interactions with the detector, and its decay. The signal simulation
is further described in section 2] Two decay types, shown in figure [2] are considered separately:

° g—>tt_)~(?, which would be the dominant decay if the top squark were the lightest squark; and

. g—>qq/\7(1) (where ¢ is a non-top quark: u,d,s,c,b), which is predicted for a mass-degenerate squark
flavor scenario, or §—gX (1). The model assumes equal branching ratios of the two decays, gg¥ ? or

ety

The following searches are considered, which use 20.3 fb~! of pp collisions at /s = 8 TeV recorded
in 2012:



Figure 2: Diagrams for the decays of a long-lived gluino in split SUSY, from ref. [6]. The blob represents
the four-point vertex generated after integrating out the heavy squark. The diagram on the left is a tree-
level three-body decay to two quarks and a neutralino, while the diagram on the right is the loop-level
two-body decay to a neutralino and a gluon. In certain regions of parameter space, the loop-induced
decay can become dominant over the three-body decay [7].

e “7-10 jets”: the event selection is based on 7,8,9,0r >10 jets, E?iss, and 0,1, or >=2 b-tagged
jets [8]]

e “2-6jets”: the event selection is based on 2,3,4,5,0r >6 jets and E%liss [

Both searches look for new particles in final states with significant hadronic activity, E%‘iss, and no iso-
lated electrons or muons.

2 Simulation

The simulated metastable gluino samples have gluino masses in the range 400-1400 GeV and neutralino
masses in the range 20-1300 GeV. The gluino lifetime is varied from 1 ps—10 ns in general and up to
5 us for some cases. The PyTria program [9]], version 6.427, with CTEQGL1 parton distribution functions
(PDF) [10], is used to simulate pair production of gluinos. The cross sections are calculated to next-to-
leading order in the strong coupling constant as, including the resummation of soft gluon emission at
next-to-leading-logarithmic accuracy (NLO+NLL) [11} 12} 13} 14} [15]].

The string hadronization model [[16], incorporating specialized hadronization routines [[17] for R-
hadrons, is used to produce final states containing two R-hadrons. The ratio of singly-charged to neutral
R-hadrons depends slightly on the gluino mass. In this analysis it is set close to unity, following LHC
standards for R-hadron searches. The analysis sensitivity is assumed not to depend on the initial R-hadron
charge. The simulation of R-hadron interactions with matter is handled by a special detector response
simulation [[18,[19] using Geant4 [20, [21]] routines based on the generic [18,22] scattering and spectrum
model.

The gluinos within R-hadrons decay via the radiative process, §— g)?? or via §—qg¥ ?(decays involv-
ing top quarks are studied separately). These R-hadron decays are also simulated with PyTHia, after being
propagated in Geant4. Similarly, any bottom or charm hadrons resulting from the R-hadron decays are
also decayed using PyTHia, after being propagated in Geant4. The final simulated events then proceed
through the standard ATLAS digitization simulation [21]], which includes a realistic modeling of pileup
pp interactions as observed during the 2012 data period, followed by event reconstruction.

3 Results

The results of the two searches are re-interpreted in the context of the metastable gluino models. The
signal region definitions, background yields and their systematic uncertainties, statistical treatment, and



exclusion limit extraction methods used for these interpretations are those documented in refs. [1] and
[8]. For the signal models, the yields are extracted by running these analysis selections. The sources
of systematic uncertainties as well as the procedures used to extract them are the same as described in
the corresponding references. Additional systematic uncertainties that may originate from reconstruct-
ing displaced objects are not considered in this study. The dominant sources of systematic uncertainty
on the signal generally arise from the jet energy scale and resolution uncertainties. The b-tagging effi-
ciency uncertainties dominate in signal regions where more than one b-jet is required, since the b-tagging
efficiency for non-b (and non-c) jets has large uncertainties.

The achieved 95% confidence level (CL) exclusion limits are shown in figures [3{5] for the gluino
decays to gt/ ¢¥) and in figures for the gluino decays to ##¢). For both gluino decay modes
studied, we show limits on the %° mass for mg= 800 GeV (near the sensitivity limit for heavy )?0) and

limits on the g mass for m3=100 GeV and a “compressed” spectrum with the %° mass close to the g mass
(minus the mass of the gluino decay products), as a function of gluino lifetime. The expected exclusion
limits are shown for the “7-10 jets” analysis and the “2-6 jets” analysis separately, together with the
expected and observed combined results. The best expected limit at each point in parameter space is
used for the combination of the two searches. The black points indicate the parameters of the simulated
samples used to draw the limit curves.

Limits are only displayed within the boundary of the simulated points in parameter space (black dots
on limit figures) and interpolated between those points; sensitivity is still expected for lower § or X 0
mass and in many cases for longer or shorter lifetimes than was simulated. The “7-10 jets” search has
no sensitivity to the gluino decays to qc"]/\??/ g)?(l) as this model leads to a relatively small jet multiplicity
compared to the jet multiplicity requirements of that search. Both searches have good sensitivity in the
gluino decays to tZ¥ (1) where they are are complementary. An example event display is shown in fi gure@

The sensitivity decreases for long lifetimes. Studying the effect of the analyses selections (tables
for various samples that only differ in the gluino lifetime, we observe that:

e The jet multiplicity decreases for lifetimes longer than 1 ns, as gluino decays often occur within
or outside the calorimeter.

e In models with decays giving leptons (such as the gluino decays to tf/f/(l)) fewer events fail the lepton
veto as the lifetime increases since leptons significantly displaced from the primary vertex are not
identified.

e The standard object and event cleaning decrease the signal acceptance as the lifetime increases.
The largest acceptance drop comes from a selection on the “charged fraction” (f.,), defined as the
ratio of the scalar sum of the pr of the tracks associated to the jet and divided by the jet pr, and
on the “electromagnetic energy fraction” (fgn), defined as the fractional energy measured in the
electromagnatic layer of the calorimeter. The two leading jets with pt > 100 GeV and || < 2.0
are required to have fop, > 0.02, or fop > 0.05 and fgm > 0.9; the event is otherwise rejected. This
selection is very effective at rejecting cosmic and beam background events. Other event cleaning
cuts are defined in reference [23]], with the “Looser” selection being used. It should also be noted
that the pr of the jets selected in the analyses is large enough to not necessitate explicit additional
requirements on them originating from the primary vertex, so no efficiency is lost due to such a
requirement for displaced jets.

e Signal regions that require b-jets have enhanced acceptance for small gluino lifetimes that are
comparable with the b-quark lifetimes, as jets are more often reconstructed as b-jets, as shown in

figure [10]



4 Conclusion

We have studied the sensitivity to metastable gluinos of several ATLAS searches for strongly produced
SUSY particles and their combination, as a function of gluino mass, gluino lifetime, and neutralino mass.
The gluino is excluded up to my = 850 (900) GeV for decays to gg¥ (1)/ gk (1) (11X (1)), for a lifetime of 1 ns
and meo = 100 GeV.
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Figure 3: 95% CL excluded )?(1) mass as a function of g lifetime, for m; = 800 GeV and gqu)??/ gf((l)
decays.
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Figure 4: 95% CL excluded g mass as a function of § lifetime, for myo = 100 GeV and g—>qq/\?(1)/ g/\?(l)
decays.
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Figure 5: 95% CL excluded § mass as a function of § lifetime, for Mo = Mg = 100 GeV and §—qgX (1)/

g/?(l) decays. Samples were not simulated for lifetimes longer than 10 ns for this compressed scenario, as
the small mass gap can only affect events with decays before or within the calorimeters. Sensitivity for
these longer lifetimes is shown in figure ]
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Figure 6: 95% CL excluded )?(1) mass as a function of g lifetime, for mz = 800 GeV and g—nf)?? decays.
At low lifetimes, the “7-10 jet” analysis has sensitivity beyond the “2-6 jets” analysis due to the use of
b-tagging information.
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Figure 7: 95% CL excluded § mass as a function of g lifetime, for Mgy = 100 GeV and g—m‘)?? decays.
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Figure 8: 95% CL excluded § mass as a function of § lifetime, for Mo = mg = 480 GeV and g—nﬁ\??
decays. The mass difference of 480 GeV leaves a mass gap of ~100 GeV, similar to the other decay
case, after accounting for the masses of the two hadronized top quarks. Samples were not simulated for
lifetimes longer than 10 ns for this compressed scenario, as the small mass gap can only affect events
with decays before or within the calorimeters. Sensitivity for these longer lifetimes is shown in figure
Samples were also not simulated for lifetimes less than 100 ps, but sensitivity does extend to these lower
lifetimes, as seen in figure[6]
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Figure 9: Displays of a simulated event with 600 GeV gluinos with 1 ns lifetime decaying to 17" with
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pt above 1 GeV.
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Figure 10: b-jet multiplicity for events passing the “7-10 jets” analysis (flavour-stream) preselection,
with gluino to tt_)?(l) decays, a gluino of mass 600 GeV, and a #of mass 100 GeV, for various gluino
lifetimes. The samples corresponding to 1072 s and 107! s have very similar behavior: the gluino
lifetime is comparable to the b-quark lifetime (1072 s), therefore most jets are reconstructed as b-jets.
The prompt gluino decay sample shows much smaller b-jet multiplicity, as expected.
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