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Abstract

The topic of this thesis is the study of the neutrino flavor conversions in
high-density environments: the supernovae and the the Early Universe. Re-
markably, these represent the only two cases in which neutrinos themselves
contribute to the ”background medium” for their propagation, making their
oscillations a non-linear phenomenon. In particular, in the dense supernova
core, the neutrino-neutrino interactions can lead in some situations to sur-
prising and counterintuitive collective phenomena, when the entire neutrino
system oscillates coherently as a single collective mode. In this context, we
have shown that during the early SN accretion phase (post-bounce times <
0.5 s) the matter density is so high to dominate over the neutrino density,
suppressing the collective flavor conversions. We have characterized this sup-
pression numerically solving the neutrino propagation equations. We have
also supported our finding with a stability analysis of the neutrino equations
of motion. Neutrino flavor conversions in the Early Universe are another fasci-
nating problem involving collisional damping, refractive effects from charged
leptons and neutrino self-interactions. In this thesis, we have studied the fla-
vor conversions of active-sterile system of neutrinos in the Early Universe.
This study has been motivated by hints for low-mass sterile neutrinos, com-
ing from precision cosmological measurements and laboratory oscillation ex-
periments. We performed an accurate solution of the kinetic equations for
the evolution of the active-sterile ensemble in order to determine the relic
abundance of sterile neutrinos. We took into account a possible primordial
neutrino asymmetry (L > 10−3) in order to suppress the sterile neutrino
production and to find a better agreement between the cosmological and
laboratory hints. Finally, we discuss the implications of our results on Big-
Bang Nucleosynthesis and on the Cosmic Microwave Background from data
measured by the Planck experiment.
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Zusammenfassung

Das Thema der vorliegenden Arbeit ist die Analyse der gegenseitigen
Umwandlung der Neutrinoflavors für Umgebungen hoher Dichte - Super-
novae und das Frühe Universum. Bemerkenswerterweise sind dies die beiden
einzigen Fälle, in denen die Neutrinos selbst zum ”Hintergrundmedium” ihrer
eigenen Ausbreitung beitragen und es sich somit bei ihren Oszillationen um
ein nichtlineares Phänomen handelt. Insbesondere im dichten Kern einer Su-
pernova können Neutrino-Neutrino-Wechselwirkungen unter bestimmten Be-
dingungen zu überraschenden und kontraintuitiven kollektiven Phänomenen
führen, wenn das gesamte System aus Neutrinos kohärent in Form einer
einzigen kollektiven Mode oszilliert. In diesem Zusammenhang haben wir
gezeigt, dass während der frühen Akkretionsphase der SN (d.h. für Post-
Bounce-Zeiten < 0.5 s) die Materiedichte hoch genug ist, um die Neutrin-
odichte zu dominieren und somit die kollektiven Flavorumwandlungen zu
unterdrücken. Wir haben diese Unterdrückung durch numerisches Lösen der
Gleichungen für die Ausbreitung der Neutrinos charakterisiert und konnten
unsere daraus erhaltenen Ergebnisse durch eine Stabilitätsanalyse der Be-
wegungsgleichungen für Neutrinos bestätigen. Umwandlungen der Neutri-
noflavors im Frühen Universum sind ein weiteres faszinierendes Problem,
bei dem Stoßdämpfung, Brechungseffekte geladener Leptonen und Neutri-
noselbstwechselwirkungen mit einbezogen werden müssen. In dieser Arbeit
haben wir die Flavorumwandlung aktiv-steriler Neutrinosysteme im Frühen
Universum untersucht. Dies wurde motiviert durch die aus kosmologischen
Präzisionsmessungen und Oszillationsexperimenten im Labor stammenden
Hinweise auf sterile Neutrinos geringer Masse. Durch sorgfältiges Lösen der
kinetischen Gleichungen zur Beschreibung der Entwicklung des aktiv-sterilen
Ensembles konnten wir den Wert der Relikthäufigkeit steriler Neutrinos er-
mitteln. Hierbei haben wir eine mögliche primordiale Neutrinoasymmetrie
(L > 10−3) berücksichtigt, um die Produktion steriler Neutrinos zu un-
terdrücken und eine bessere Übereinstimmung zwischen den Hinweisen aus
der Kosmologie und aus Laborexperimenten zu erzielen. Abschließend disku-
tieren wir die Auswirkung unserer Ergebnisse auf die primordiale Nukleosyn-
these und auf die Kosmische Mikrowellenhintergrundstrahlung basierend auf
den Messdaten des Planck-Experiments.



Sinopsi

L’argomento di questa tesi è lo studio delle oscillazioni di sapore dei neu-
trini in ambienti ad alta densità come le supernovae e l’Universo primordiale.
Notoriamente, questi due ambienti rappresentano i due unici casi in cui i neu-
trini si propagano in un bagno di neutrini stessi. Questa caratteristica rende
le loro oscillazioni un fenomeno non-lineare. In particolare, nelle regioni più
interne di una supernova, le autointerazioni fra i neutrini possono produrre,
in alcune situazioni, dei sorprendenti fenomeni collettivi in cui l’intero sis-
tema dei neutrini oscilla coerentemente come un sistema a singolo modo. In
questo contesto abbiamo dimostrato che nella fase iniziale di accrescimento
di una supernova (a tempi dopo l’esplosione t < 0.5 s) la densità di materia
è cos̀ı alta da dominare quella dei neutrini, sopprimendo le loro oscillazioni
collettive di sapore. Abbiamo caratterizzato questo effetto di soppressione
risolvendo numericamente le equazioni di evoluzione del sapore. Abbiamo
anche confermato i nostri risultati numerici applicando un’analisi di stabilità
alle equazioni linearizzate.

Le oscillazioni di sapore nell’Universo primordiale costituiscono un altro
affascinante problema in cui i neutrini sono interessati da effetti collisionali
e rifrattivi sui leptoni carichi e sui neutrini stessi. In particolare, in questa
tesi abbiamo studiato le conversioni di sapore di neutrini attivi in neutrini
sterili. Questo studio è stato motivato da alcune indicazioni di neutrini ster-
ili leggeri fornite da misure cosmologiche di precisione e da esperimenti di
laboratorio sulle oscillazioni. Abbiamo condotto uno studio accurato delle
equazioni cinetiche per l’evoluzione del sistema composto da neutrini attivi e
sterili per determinare l’abbondanza fossile dei neutrini sterili nell’Universo
primordiale. Abbiamo inoltre considerato la possiblità di asimmetrie primor-
diali fra i neutrini attivi (L > 10−3) invocate per sopprimere la produzione
dei neutrini sterili e permettere un accordo migliore fra le indicazioni cosmo-
logiche e quelle di laboratorio. Infine, abbiamo discusso le implicazioni del
nostro studio sulla nucleosintesi primordiale e sullo spettro della radiazione
cosmica di fondo misurato dal satellite Planck.
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Introduction

The possibility of neutrino flavor oscillations, first suggested half a century
ago [1, 2, 3], is based on the fact that if neutrinos are massive, one would ex-
pect a leptonic mixing matrix analogous to the Cabibbo-Kobayashi-Maskawa
(CKM) matrix for the quarks. Due to this flavor mixing, neutrinos produced
with one flavor could be detected in another flavor state, in analogy with
the well-known K0-K̄0 oscillation mechanism. Since the original proposal,
the search for neutrino flavor mixing has been pursued with increasing vigor.
After many years of atmospheric, solar, accelerator and reactor neutrino ob-
servations, we have a good understanding of how neutrinos oscillate.

The current neutrino phenomenology based on the data from the above
experiments (see, e.g., [4] for a review) is consistent with the simplest ex-
tension of the standard electroweak model needed to accommodate non-zero
neutrino masses and mixings; namely, with a scenario where the three known
flavor eigenstates να ≡ νe,µ,τ are mixed with three mass eigenstates νi ≡ ν1,2,3
through a unitary matrix U ,

να =
∑

i

U∗
αiνi, (1)

where U = U(θ12, θ13, θ23, δCP ) is a unitary matrix depending on the three
mixing angles θij and on a leptonic CP violating phase δCP . Currently, the
two independent neutrino mass splittings, identifing the two oscillation scales,
and the three mixing angles have been determined with an accurate precision
[5, 6]. Notably, in 2012 the reactor experiments Daya-Bay [7], RENO [8] and
Double-Chooz [9] determined the last unmeasured neutrino mixing angle θ13.
This result is important also for future perspectives since it gives access to the
measurement of the CP violation in the neutrino sector with future planned
experiments.

Now that the three-flavor oscillation framework is well determined, neu-
trino physics enters a new phase, where studies of neutrinos from new sources–
in particular, cosmic neutrinos–are in the agenda. In spite of their weak inter-
actions, there are two environments where neutrinos reach thermal equilib-
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rium: a supernova core and the Early Universe. Neutrinos thus play a dom-
inant role in the supernova and cosmic evolution. In particular, these two
environments offer unique conditions to probe neutrino flavor conversions.

Core-collapse supernovae (SN) represent a unique laboratory to probe
neutrino properties in the extreme conditions offered by a stellar gravita-
tional collapse (see, e.g., [10] for a review). The role of astrophysical mes-
sengers played by neutrinos during a stellar collapse is largely associated
with the signatures imprinted on the observable SN neutrino burst by fla-
vor conversions occurring deep inside the star. At this regard, the dense SN
core represents a crucial environment to investigate neutrino flavor mixing
in high-density conditions. Indeed, within a radius of a few hundred kilo-
meters, the neutrino gas is so dense to become a “background to itself”,
making the neutrino flavor evolution highly non-linear and leading in some
situations to surprising and counterintuitive collective phenomena, when the
entire neutrino system oscillates coherently as a single collective mode. As a
result of these phenomena SN neutrinos can have their energy spectra par-
tially swapped. This effect is sensitive to the (still unknown) neutrino mass
hierarchy.

The Early Universe offers another, different environment to test neutrino
properties in high-density conditions. In particular, neutrino flavor conver-
sions in Early Universe are a fascinating problem involving collisional damp-
ing, refractive effects from charged leptons, and neutrino self-interactions [66].
In this context, there is a renewed interest for active-sterile neutrino oscilla-
tion in the Early Universe, after intriguing but controversial hints of extra
radiation in the Universe coming from precision cosmological measurements,
supporting the existence of low-mass sterile neutrinos [12]. On the other hand,
anomalous results of short-baseline neutrino oscillation experiments may also
be interpreted in terms of sterile neutrinos, as recently emphasized [13]. How-
ever, it is not so simple to link the laboratory hints for sterile neutrinos with
the cosmic extra-radiation, since the primordial abundance of thermal sterile
neutrinos would be in tension with cosmological observables.

Given the importance for particle physics, cosmology and astrophysics of
neutrino oscillations in supernovae and in the Early Universe, we devote this
thesis to perform a detailed study of the neutrino flavor transitions in these
two environments. The structure of this thesis is as follows.

In Chapter 1 we present a general introduction on the current framework
in which neutrino oscillations are described. We discuss neutrino oscillations
in vacuum and in matter and we summarize the current status of the three-
flavor neutrino oscillation phenomenology. Finally, we discuss about different
anomalies recently found in short-baseline experiments, that seem to point
towards the existence of low-mass (m ∼ 1 eV) sterile neutrinos.
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In Chapter 2 we describe the neutrino equations of motion, necessary to
characterize the oscillations of neutrinos which are in thermal equilibrium
as in the supernova core or in the Early Universe. In these environments
neutrinos scatter on the background medium and on themselves. Boltzmann-
type kinetic equations in terms of the neutrino density matrix are presented
to take into account simultaneously neutrino oscillations and collisions.

In Chapter 3 we present the general picture of stellar collapse and Super-
nova explosion, with emphasis on the time evolution of the neutrino burst
from such an event. Then we discuss about the non-linear oscillations oc-
curring in the deepest supernova regions associated to the neutrino-neutrino
interactions. We present different oscillations regimes that can be encoun-
tered by neutrinos propagating in the supernova envelope and the possible
signatures induced on the observable supernova neutrino spectra.

In Chapter 4 we discuss our study on the non-linear flavor conversions
for supernova neutrinos emitted during the early time accretion phase (post-
bounce time t < 0.5 s). This phase would offer the best opportunity to detect
effects from neutrino flavor oscillations, since the emitted neutrino fluxes
are large with a distinct flavor hierarchy. We perform a dedicated study
of this problem, characterizing the neutrino emissivity and the SN matter
density profile, using results from recent neutrino radiation hydrodynamical
simulations. We realize that during the accretion phase the matter density,
piled-up above the neutrino-sphere, is so high that it dominates over the
neutrino density. In contrast to what is expected in the presence of only
neutrino-neutrino interactions, we find that the trajectory-dependent effects
associated with the dense ordinary matter suppress collective oscillations. We
discuss the phenomenological consequences of our findings. We also present
the results from an analytical approach to interpret and predict the outcome
of our numerical simulations, based on a stability analysis of the linearized
equations of motion.

In Chapter 5 we describe the role of neutrinos in cosmology. At first, we
discuss the neutrino thermalization in the Early Universe. Then, we consider
the impact of neutrinos on different cosmological observables like the Cosmic
Microwave Background and Big Bang Nucleosynthesis. Finally, we present
the current situation concerning the determination of the extra-radiation in
the Early Universe and we comment about the data from different experi-
ments.

In Chapter 6 we present the results of our study on active-sterile neutrino
oscillations in the Early Universe. We describe the kinetic equations for the
mixing of active and sterile neutrinos in multi-flavor systems. Motivated by
the recent data release of the Planck satellite experiment, we perform an
extensive scan of the sterile neutrino parameter space. Once more we con-
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firm the tension between the cosmological data and the mass and mixings
suggested by the laboratory hints. As a possible escape-route to relieve this
tension we consider a primordial neutrino asymmetry to suppress the sterile
neutrino production. We solve the equations of motion in this situation, cal-
culating the sterile neutrino abundance for different values of the neutrino
asymmetries (L > 10−3). Then, we discuss also the impact of these flavor
conversions on the Big-Bang Nucleosynthesis.

Finally in the Conclusions we summarize our results and we draw the
conclusions of this work.
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Chapter 1

Neutrinos properties and
oscillations

1.1 Neutrinos in the Standard Model

Postulated by Pauli in 1930 as a “verzweifelter Ausweg” (desperate way
out) to save the energy conservation in the beta decay of nuclei, the existence
of (electron) neutrino was really established only in the 1956, detecting the
νe emitted by nuclear reactors. Now we know that there are three flavors
of neutrinos νe, νµ, ντ (with the corresponding antiparticles νe, νµ, ντ ) and
the only force trough which these electrically-neutral, fermionic and nearly
massless leptons interact is the weak force, described by the Standard Model
(SM) of fundamental interactions among elementary particles. Indeed, neu-
trinos of each flavor participate in reactions, mediated by W± bosons, in
which the charged leptons of the corresponding type are involved, like the
decay W± → l±a + νa(νa), where a = e, µ, τ , or related processes. In addi-
tion to these charged-current reactions (CC), neutrinos can participate in
neutral-current interactions (NC), mediated by the Z0 boson, like the elastic
or quasi elastic scattering processes and the decay Z0 → νaνa. In particular,
the last process is crucial to determine the number of light active neutrino
species, measuring the invisible width of the Z0 boson, which depends on the
number of (kinematically allowed) decay channels. The measurement of the
Z0 boson width at LEP agrees with a number (2.98± 0.01) of neutrinos [14].

In the minimal version of the electroweak part of the SM, based on the
symmetry group SU(2)L x U(1)Y , the neutrinos are left-handed particles
“νL” and there are no right-handed neutrino states “νR”. Conversely, their
antiparticles νe, νµ, ντ are right-handed. The Lagrangian density governing
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the weak interactions is the following:

Lweak = LCC + LNC = − g

2
√
2
Jµ
CCWµ + h.c.− g

2 cos θw
Jµ
NCZµ + h.c. (1.1)

where g is the coupling constant of the SU(2)L group, θw is the Weinberg
angle. Jµ

CC , J
µ
NC are the weak leptonic charged-current and weak leptonic

neutral-current, respectively, describing three-body process involving two
fermions and W± or Z0 gauge bosons:

Jµ
CC = 2(νeLγ

µeL + νµLγ
µµL + ντLγ

µτL) + quark terms

Jµ
NC = 2(gνL ναLγ

µνα
L + glL lαLγ

µlαL + glR lαRγ
µlαR) + quark terms (1.2)

with gνL = 1
2
, glL = −1

2
+ sin2 θw, g

l
R = sin2 θw.

The left-handed fields are given by the left-handed projection chirality
operator PL = (1− γ5)/2, such that

νlL γµ lL = νl γ
µ1

2
(1− γ5) l; l = e, µ, τ.

Conversely, PR = (1+γ5)/2 is the right-handed projection chirality operator.
In the massless limit, left chirality fields are associated to left-handed helicity
particles and right-handed helicity antiparticles, where the helicity is the spin
component along the direction of motion.

For energies carried by the fermions much smaller than the mass of the
gauge bosons (MW ,MZ ∼ O (100) GeV), the weak CC and NC processes at
tree level are described by the effective Lagrangian in terms of the 4-fermions
point-like interaction (the so called Fermi interaction)

Leff = −GF√
2
Jµ†
CCJµCC − 2

GF√
2
Jµ
NCJµNC , (1.3)

where GF =
√
2 g2/(8 m2

W ) = 1.166× 10−5 GeV−2 is the Fermi constant.

1.2 Neutrinos mass

The most sensitive probe of the neutrino mass is represented by neutrino
oscillations. In the last two decades, a long series of neutrino oscillation ex-
periments has established that neutrinos mix and than have non zero mass.
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Indeed a flavor eigenstate, produced via CC interactions, is a mixture of neu-
trino mass eigenstates and therefore the probability of detecting a particular
flavor for a neutrino oscillates with time as it propagates. The nature and the
absolute scale of the mass of neutrinos are still unknown together with the
question if neutrinos coincide with their antiparticles (Majorana neutrinos)
or not (Dirac neutrinos).

The mass term connects the left-handed field to its right-handed partner,
namely it flips the chirality of the particles.p There are two ways to extend the
electroweak part of the standard model in order to include massive neutrinos.
One is represented by the Dirac mass term (like for the other charged leptons
and quarks)

LDirac = −mν ν = −m(νRνL + νLνR), (1.4)

adding three right-handed neutrinos fields νR which are sterile in the sense
they are singlets for the gauge group since they do not interact with the other
particles. In this case, neutrino and antineutrino are two different particles,
each one with two possible values of the helicity, for a total of 4 degrees
of freedom. Moreover, the neutrino and antineutrino fields are independent
and the neutrino field splits into two independent components with definite
chirality, νL and νR. The Dirac mass term preserves the lepton number.
For neutrinos, it is possible to build a mass Lagrangian, in term of only the
left-handed states νL, the so called Majorana mass term

LMajorana = −1

2
M(νC

L νL + νLν
C
L ) (1.5)

where νC
L is the charge conjugated neutrino field with right-handed chiral-

ity and the factor 1/2 takes into account the double counting of degrees of
freedom. This mass term violates the lepton number of two units and it is
possible only for neutral fermions such as neutrinos, making the neutrino and
the antineutrino indistinguishable and giving a total of 2 degrees of freedom.
Even if one introduces a right-handed neutrino, it would be not independent
but rather related to the left-handed (by a matrix transformation) and only
one chirality is possible.

In the massless limit, the distinction between Dirac and Majorana neu-
trinos is irrelevant and is not necessary to introduce both chiral components.
Instead for massive neutrinos, while this distinction does not affect oscillation
experiments [15], it is crucial in situations where the lepton number violation
plays a role (as in the case of neutrinoless double beta decay [16]). Moreover
the nature of the neutrino mass is very important in some theories used to
explain both the small value of the neutrinos mass with respect to the other
fermions and the baryon asymmetry of the universe by leptogenesis (see, e.g.,
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[17] for a review). In particular the seesaw mechanism (see, e.g., [18] for a
review) provides a very simple and fascinating explanation of the smallness
smallness of the neutrino mass since it relates it to the existence of very large
mass scale: “the heavier on side, the lighter the other side”. The right-handed
neutrino νR has a large Majorana mass M ∈ [1010 − 1012] GeV, while the
left-handed neutrinos νL has mass

mν =
m2

D

M
, (1.6)

where mD is the Dirac mass, responsible for the mixing between νL and νR.

1.3 Neutrino oscillations

The idea of neutrino flavor conversions was first suggested by Pontecorvo
in the 1957 [1] and it is based on the fact that if neutrinos are massive, one
would expect a leptonic mixing matrix analogous to the Cabibbo-Kobayashi-
Maskawa (CKM) matrix for the quarks. Consequently, neutrinos produced
with one flavor could be detected in another flavor state, in analogy with

the K0 − K
0
oscillation mechanism. Neutrino oscillations are a quantum

mechanical phenomenon, generated by the interference of different massive
neutrinos. Indeed, the neutrinos are produced via CC interaction as flavor
eigenstates that are a linear superposition of mass eigenstates. As a neutrino
propagates through space, the quantum mechanical phases of the mass states
diffuse at different rates due to the slight differences in their masses, resulting
in a changing mixture of mass states as the neutrino travels.

The first experimental research was stimulated by the necessity to under-
stand the “solar neutrino problem”, namely, the deficit of the measured solar
νe flux with respect to the theoretical predictions based on the standard solar
model [19, 20, 21], and finally solved in terms of solar νe → νx oscillations
(with x = µ, τ) [22, 23]. Additional evidences for neutrino oscillations came
from a long series of different detection strategies: atmospheric neutrino os-
cillations [24] and terrestrial neutrino oscillations from reactor [25, 7, 8, 9]
and accelerator experiments [26].

If neutrinos are massive, the flavor eigenstates |να〉, α = e, µ, τ , which
diagonalize the charged current, can be expressed as a quantum superposition
of mass eigenstates |νi〉, i = 1, 2, 3 which diagonalize the mass matrix:

|να〉 =
∑

i

U∗
αi |νi〉 . (1.7)
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The unitary 3 × 3 mixing matrix U (the leptonic analogue of the quark
mixing matrix), sometimes referred to as the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix [14] is:

U =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
−iδ c12c23 − s12s23s13e

−iδ s23c13
s12s23 − c12c23s13e

iδ c12s23 − s12c23s13e
iδ c23c13


×



1 0 0
0 eiβ 0
0 0 eiγ




(1.8)

with sij= sin θij, cij= cos θij and θ12, θ23, θ13 are the three mixing angles.
The phase δ is a CP-violating phase present in both Majorana and Dirac
neutrino cases, while β and γ are CP-violating phases present only in the
case of Majorana neutrinos.

Even if the most evident proof of the neutrino masses are the neutrino
flavor oscillations, these are not sensitive to the absolute mass but only to
the mass-square differences m2

i −m2
j . The current neutrino phenomenology

implies that three-neutrino mass spectrum {mi}, with i = 1, 2, 3, is formed
by a doublet of relatively close states and by a third single neutrino state,
which may be either heavier than the doublet (“Normal Hierarchy”, NH) or
lighter (“Inverted Hierarchy”, IH) (Fig. 1.1).

Figure 1.1: Neutrino mass ordering: normal mass hierarchy (left) and inverted
mass hierarchy (right).

The lightest neutrino of the doublet is usually referred as ν1 while the
heaviest one is ν2 and the corresponding mass-square difference is defined as

∆m2
21 = ∆m2

sol = m2
2 −m2

1 > 0 (1.9)

and indicated as solar mass-square difference.
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The single state is labeled as ν3 and the sign of m2
3 −m2

1,2 distinguishes
the two hierarchies. The second independent mass-square difference, known
as the atmospheric mass-square difference, is defined by

∆m2
32,1 = ∆m2

atm =

∣∣∣∣m
2
3 −

m2
1 +m2

2

2

∣∣∣∣ . (1.10)

1.3.1 Oscillations in vacuum

As discussed before, in the standard theory of neutrino oscillations, a
neutrino with flavor α (= e, µ, τ) and momentum p, created in a CC inter-
action process from a charged lepton or together with a charged antilepton,
is described by the quantum superposition Eq. (1.7). The massive neutrino
states νi (i = 1, 2, 3) are eigenstates of the Hamiltonian H |νi〉 = Ω0

i |νi〉 with
energy eigenvalues Ω0

i =
√

p2 +m2
i .

For propagation of ultrarelativistic neutrinos the full spin structure is not
probed. Weak-interactions couple only to left-handed component of ν and
chirality conservation is satisfied to O(m/E). Since for E ≫ m, only the
propagation of νL is relevant, eliminating the spin structure, one gets the
Schrödinger-like equation [27]:

i∂t |νi〉 = H |νi〉 , (1.11)

whether the ν is a Dirac or Majorana particle. This equation implies that
the massive neutrino states evolve in time as plane waves:

|νi(t)〉 = e−iΩ0
i t |νi〉 . (1.12)

Consequently, the time evolution of a neutrino created with a definite
flavor is given by

|να(t)〉 =
∑

i

U∗
αie

−iΩ0
i t |νi〉 . (1.13)

Using the unitarity of the matrix U , finally we obtain

|να(t)〉 =
∑

β=e,µ,τ

(
∑

i

U∗
αi e

−iΩ0
i t Uβi

)
|νβ〉 . (1.14)

The transition probability from one state to another is given by:

Pνα→νβ = |〈νβ| να(t)〉|2 . (1.15)

Sometimes the neutrino oscillation phenomenology can be described in terms
of simplified 2-ν scenarios associated with a mass-squared splitting and a
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mixing angle θ. In this case, the two flavor neutrino states are linear su-
perpositions of the two massive states ν1 e ν2 with coefficients given by the
elements of the 2× 2 orthogonal mixing matrix

U =

(
cθ sθ
−sθ cθ

)
, (1.16)

where θ is the mixing angle, with a value in the interval 0 ≤ θ ≤ π/2.
Considering that there is only one mass-squared difference, ∆m2 = m2

2 −m2
1

and expanding Ω0
i =

√
p2 +m2

i ≃ p +m2
i /2p ≃ p +m2

i /2E, the probability
να → νβ, with α -= β, after an interval of t is:

Pνα→νβ = |〈νβ| να(t)〉|2 =

=

∣∣∣∣(0 1)

(
cθ sθ
−sθ cθ

)(
e−iΩ0

1t 0

0 e−iΩ0
2t

)(
cθ −sθ
sθ cθ

)(
1

0

)∣∣∣∣
2

=

=
1

2
sin2 2θ

[
1− cos(Ω0

2 − Ω0
1)t

]
≃ sin2 2θ sin2

(
∆m2

4E
t

)
. (1.17)

Since for ultra-relativistic neutrinos L ≃ t, one can write:

Pνα→νβ = |〈νβ| να(t)〉|2 = sin2 2θ sin2

(
∆m2

4E
L

)
. (1.18)

where L is the distance between the source and the detector. For α = β,
the survival probability Pνα→να is obtained by unitarity from the previous
transition probability:

Pνα→να = |〈να| να(t)〉|2 = 1− sin2 2θ sin2

(
∆m2

4E
L

)
. (1.19)

From the previous expression one can infer the following considerations. First
the oscillation amplitude A = sin2 2θ is determined by the mixing angle
and does not allow to distinguish between θ and π/2 − θ, leading to the
“octant” degeneracy of the transition probability in vacuum. The degeneracy
will be removed in the case of neutrino propagation in matter. Moreover, the
oscillation wave-length is given by

λ =
4πE

∆m2
= 2.48 km

E

GeV

eV2

∆m2
(1.20)

and it is then macroscopic. Finally in a realistic setup, since the neutrino
beam is not monochromatic and the energy resolution of the detector is not
perfect, one need to average the oscillation probability around some energy

21



range ∆E. Furthermore, the production and detection regions typically have
finite size, so it is also necessary to average around some path-length range
∆L, loosing the phase information. Then the transition probability is just
the classical one. Indeed, the phase acquired during neutrino propagation
is averaged out and it is possible to sum incoherently over the propagation
eigenstates, i.e. the mass eigenstates. The resulting averaged probability of
transition from a flavor to another one is simply

〈Pνα→νβ
〉 = 1

2
sin2 2θ. (1.21)

1.3.2 Oscillations in matter

Neutrino oscillations in matter may significantly differ from the oscilla-
tions in vacuum due to modification of the neutrino propagation. For ex-
ample, it is known that the photon which is massless in vacuum acquires
an effective mass in medium, due to the refractive effects associated with
the interactions with the particles in the medium. In analogy to the photon,
Wolfenstein suggested that neutrinos propagating in matter are subject to
an interaction potential, equivalent to a refraction index, due to the coherent
forward scatterings (at the first order in the Fermi constant GF ), with the
particles in the medium [28]. As we will see this would profoundly modify
the mixing properties. Actually, neutrinos in matter are also affected by in-
coherent scatterings at the second order in GF . These incoherent scatterings
are extremely small in most situations and can be in general neglected. We
will comment later on their role in the flavor conversions of neutrinos in the
Early Universe.

It is intriguing that even if the vacuum mixing angle is small, matter
effects can significantly enhance it. In particular, Mikheyev and Smirnov [29]
understood that, in case of varying density medium, the neutrinos traveling
in it can experience resonant flavor transitions through the famous Mikheyev,
Smirnov, Wolfenstein effect (MSW). This mechanism plays a crucial role in
interpreting oscillations of neutrinos during their propagation in matter, as
e.g. in the case of solar and supernova neutrinos. The evolution equation
is affected by two effective potentials associated with the forward CC and
NC scatterings with the constituents of the medium. The CC interactions,
mediated by the W± bosons, are possible only for νe since µ and τ are
not present in the normal matter. For an unpolarized medium, the effective
potential becomes (see [27] for details)

VCC =
√
2 GF ne, (1.22)

22



with ne the electron density. For what concerns the NC contributions to
the matter-induced neutrino potentials, being flavor independent, they are
irrelevant for neutrino oscillations.

Considering an ultrarelativistic neutrino να of flavor α = e, µ, τ , this
is a superposition of massive states |νi〉 [Eq. (1.7)], eigenstates of the free
Hamiltonian H0. The total Hamiltonian in matter is given by H0 + HI ,
where HI is the interaction Hamiltonian, diagonal in the flavor basis, such
that HI |να〉 = Vα |να〉.

In the Schrödinger picture, the evolution of the neutrino να is given by:

i
d

dt
|να(t)〉 = (H0 +HI) |να(t)〉 . (1.23)

For the sake of brevity, we consider only two neutrino families, the νe and
νx (x = µ, τ) and the two mass eigenstates ν1 and ν2, with mass-squared dif-
ference ∆m2. Neglecting common phases, irrelevant for neutrino oscillations
which depend only on the phase differences, the evolution equation can be
written as

i
d

dt

(
νe
νµ

)
=

1

4E

(
−∆m2 cos 2θ + 2|p|VCC ∆m2 sin 2θ

∆m2 sin 2θ −∆m2 cos 2θ − 2|p|VCC

)(
νe
νµ

)
.

(1.24)

The diagonalization of the effective Hamiltonian in Eq. (1.24) gives the
following neutrino eigenstates in matter [27]

(
νm
1

νm
2

)
=

(
cos θm − sin θm
sin θm cos θm

)(
νe
νµ

)
(1.25)

where the mixing angle in matter θm is given by

sin2 2θm =

(
∆m2

2E

)2

sin2 2θ
[
∆m2

2E
cos 2θ −

√
2GFne

]2
+
(
∆m2

2E

)2
sin2 2θ

. (1.26)

The MSW resonance condition occurs for [28, 29, 27]

√
2GFne =

∆m2

2E
cos 2θ. (1.27)

which corresponds to the electron number density

nres
e =

∆m2 cos 2θ

2
√
2EGF

. (1.28)

In this circumstance the mixing angle is maximal, i.e. θm = π/4, leading to
a complete transition from one flavor to another, if the resonance region is
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wide enough. Since in normal matter VCC is positive, the resonance can exist
only for θ ≤ π/4, otherwise the cosine would be negative.

For constant matter density, the vacuum solution can be converted to
the solution in a medium by replacing the vacuum quantities with their
corresponding medium quantities

Pm νe→νµ = sin2 2θm sin2

(
∆m2

m

4E
L

)
(1.29)

with the effective squared-mass difference in matter

∆m2
m =

√(
∆m2 cos 2θ − 2

√
2EGF ne

)2

+ (∆m2 sin 2θ)2. (1.30)

Conversely, in the case of not constant matter density, it is necessary to
take into account the variation of the mixing angle in matter θ̇m = dθm/dx
along the neutrino trajectory. In particular the off-diagonal terms propor-
tional to this variation could be responsible of transitions between the instan-
taneous neutrino mass eigenstates. These transitions are, however, negligible
if the off-diagonal terms are much smaller than the diagonal ones. This is
the case of the adiabatic propagation in which the density is slowly changing
on a distance scale of roughly the wave length in matter and the mass states
become eigenstates of the Hamiltonian. An important consequence of the
adiabatic evolution is the possibility of large flavor swaps even in presence of
small mixing angles, when neutrinos encounter a resonance [27].

1.4 Neutrino phenomenology

Experiments on neutrinos aim at determining the neutrino mixing prop-
erties studying their flavor conversions. Moreover, the determination of the
absolute neutrino mass scale and its nature (Dirac or Majorana) is an im-
portant independent goal. In addition, a significant boost to the knowledge
of different neutrino properties comes from astrophysical and cosmological
observations. In the following we will briefly introduce the determination of
the mass and mixing parameters.

1.4.1 Mass searches

For what concerns the absolute scale of the neutrino mass, information
can be obtained by measuring the spectrum of electrons near the end point
in β-decay experiments and from cosmological and astrophysical data. The
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present experimental upper bound on the νe mass was obtained in the Troitzk
experiment studying 3H β-decay: mνe < 2.05 eV [30]. The KArlsruhe TRI-
tium Neutrino (KATRIN) β-experiment, currently under construction, will
be able to reduce this bound by one order of magnitude [31]. The Cosmic
Microwave Background (CMB) data of the Wilkinson Microwave Anisotropy
Probe (WMAP) experiment, combined with galaxy clustering data can be
used to obtain an upper limit on the sum of neutrinos masses. Depending on
the cosmological model and the dataset used one obtains

∑
i mi < 0.3−1.3 eV

[32]. The recent results of Planck experiments give the bound
∑

i mi < 0.28
eV combining CMB and Baryonic Acoustic Oscillation (BAO) data [135].

The best method to probe the nature of neutrinos is represented by the
study of the neutrinoless double β-decay of nuclei. Indeed, 0ν2β decays,
in which only two electrons or two positrons are emitted but no neutrinos,
violating lepton number by two units, are allowed for Majorana neutrinos
and forbidden for Dirac neutrinos [16]. All 0ν2β experiments provide only
upper bounds on the neutrino mass (the most sensitive in the eV range [34].
An exception is represented by the Heidelberg-Moscow experiment [35], with
the claim of a positive (but highly debated [34]) 0ν2β signal, corresponding
to a Majorana mass in the sub-eV range at best-fit [36].

1.4.2 Neutrino mixing parameters

Neutrino mixing parameters have been studied for more than 40 years
in a long series of oscillation experiments exploiting different techniques and
sources. In Fig. 1.2 are represented different classes of neutrino experiments
with the corresponding neutrino energy and path length. We see that neu-
trinos have been studied from both natural sources or artificial ones. In
particular the pioneering experiments on neutrino oscillations were related
to the solar neutrino detection (at MeV energies) [20], followed by exper-
iments on atmospheric neutrinos (at GeV energies) [24]. Neutrinos in the
MeV energy range have been detected also from the explosion of Supernova
1987A [37, 38, 39]. Neutrinos from artificial sources like accelerators (at GeV
energies)[26] and reactors (MeV energies [25]) are also crucial in probing the
neutrino mixing. An experiment with typical neutrino energies E and a dis-
tance L between source and detector is sensitive to a minimal value of the
mass-squared difference of

(
δm2

)
min

≃ E

L
. (1.31)

In Table 1.1 is indicated the minimum δm2 probed by different experi-
ments. In particular in Figure 1.2 the solar (with ∆m2

sol ∼ 7× 10−5 eV2) and
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Figure 1.2: Energy and pathleght for different neutrino sources and experiments.
Figure taken from [4].

Table 1.1: Characteristics of typical oscillation experiments.

Source Flavor E [GeV] L [km] (δm2)min [eV2]

Atmosphere
(−)
νe ,

(−)
νµ 10−1 . . . 102 10 . . . 104 10−6

Sun νe 10−3 . . . 10−2 108 10−11

Reactor ν̄e 10−4 . . . 10−2 10−1 10−3

Accelerator νe,
(−)
νµ 10−1 . . . 1 102 10−1

atmospheric (with ∆m2
atm ∼ 3× 10−3 eV2) neutrino oscillations occur below

the black lines.
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In the following we will describe in more details these different classes of
experiments.

1. ∆m2
21 and θ12: solar and reactor neutrinos

The Sun is a powerful source of νe of energy of MeV, produced in the
thermonuclear fusion reactions occurring in the core. Several exper-
iments have been devoted to measure the solar neutrino flux, start-
ing from the historical Chlorine experiment (1965) in the Homestake
mine in the US [19], which provided the first evidence of a neutrino
deficit, with respect to the theoretical prediction of the solar model.
This deficit, known as the Solar Neutrino Problem, has stimulated an
enormous amount of theoretical investigations to give an explanation
of this anomaly in terms of possible modifications of the solar model
or alternative particle physics scenarios. Now it is well-known that this
deficit is due to neutrino flavor conversions and the determination of
the solar neutrino mass and mixing parameters are mainly provided by
Super Kamiokande (SK) [40], Subdury Neutrino Observatory (SNO)
[22, 23], Borexino [41]. The ∆m2

12 and θ12 have been independently
confirmed by the reactor experiment KamLAND in Japan studying
the disappearance of νe produced by nuclear reactors on a baseline of
∼ 200 km [25].

2. ∆m2
32 and θ23: atmospheric and terrestrial long-baseline experiments

The experimental determination of ∆m2
32 and θ32 is principally due to

the Super-Kamiokande measurement of atmospheric neutrinos.

Atmospheric neutrinos are produced by collision of primary cosmic rays
(typically protons) with nuclei in the atmosphere, creating a shower of
hadrons, mainly pions which in turn decay into muons, electrons and
neutrinos. This would give a flavor ratio νe : νµ = 1 : 2. Muons pro-
duced by νµ reactions at E >GeV show an anomalous zenith angle dis-
tributions. Indeed the flux of up-ward going muons is about two times
lower than the flux of down-ward going muons. Instead, the electron
sample is compatible with no oscillations. By the analysis of all data,
Super Kamiokande has established, without any doubt, the occurrence
of νµ → ντ oscillations, while νe were unaffected [24, 42]. The results
of Super Kamiokande have been confirmed by a series of experiments
using neutrinos produced at accelerators. These experiments, using νµ
with energy higher than 1 GeV, are for example, MINOS, OPERA and
Tokai-to-Kamioka (T2K). Minos is situated in the Sudan mine, 735 km
north of Fermilab. Observing νµ charged current events and therefore
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Parameter Best fit 1σ range 2σ range 3σ range

∆m2
12/10

−5 eV2 (NH or IH) 7.54 7.32 – 7.80 7.15 – 8.00 6.99 – 8.18

sin2 θ12/10−1 (NH or IH) 3.07 2.91 – 3.25 2.75 – 3.42 2.59 – 3.59

∆m2
13/10

−3 eV2 (NH) 2.43 2.33 – 2.49 2.27 – 2.55 2.19 – 2.62
∆m2

13/10
−3 eV2 (IH) 2.42 2.31 – 2.49 2.26 – 2.53 2.17 – 2.61

sin2 θ13/10−2 (NH) 2.41 2.16 – 2.66 1.93 – 2.90 1.69 – 3.13
sin2 θ13/10−2 (IH) 2.44 2.19 – 2.67 1.94 – 2.91 1.71 – 3.15

sin2 θ23/10−1 (NH) 3.86 3.65 – 4.10 3.48 – 4.48 3.31 – 6.37
sin2 θ23/10−1 (IH) 3.92 3.70 – 4.31 3.53 – 4.84 ⊕ 5.43 – 6.41 3.35 – 6.63
δ/π (NH) 1.08 0.77 – 1.36 — —
δ/π (IH) 1.09 0.83 – 1.47 — —

Table 1.2: Results of the global 3ν oscillation analysis [5].

νµ disappearance, MINOS provides a determination of θ23 and ∆m2
32 in

agreement with the SK one [43, 44]. Opera is a detector located at the
Gran Sasso laboratory in Italy designed to explicitly detect ντ appear-
ance from a νµ neutrino beam produced at CERN [45]. The appearance
of a third ντ (the latest in March 2013) confirms the indirect, but solid,
interpretation of the SK results in terms of νµ → ντ oscillations.

3. The latest neutrino mixing angle: θ13

The determination of θ13 is important for several reasons. First it com-
pletes the determination of the mixing angle, giving possible indications
for flavor models. Moreover, as results from Eq. (1.8), θ13 is necessary
condition to have access to possible CP violation effects in the neutrino
sector. The first hints for a value different from zero of θ13 emerged in
in the 2008 by a global analysis of different neutrino oscillations data
[46] and in the 2011 by the T2K experiment[26], but only the last year
the reactor experiments Daya Bay [7] and RENO [8] have definitely
established θ13 > 0 at 5 σ. This results has been confirmed by the
reactor experiment Double Chooz [9].

In conclusion, except for a few anomalous results (to be discussed later),
recently observed in short-baseline terrestrial neutrino experiments, all data
from neutrino oscillation experiments can be interpreted in the standard
three-neutrino framework, described in terms of six parameters governing
neutrino mixing. Still unknown are the mass ordering (the neutrino mass
hierarchy) and the CP violating phase. The current status of the 3 ν mass
and mixing framework is summarized in Table 1.2, taken from [5].

1.4.3 Anomalies and sterile neutrinos

Even if the 3 ν scenario successfully explains most of the data coming
from the oscillation experiments, there exist a few experimental results (called
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“anomalies”) that cannot be explained in this framework. If interpreted as
oscillation signals, these anomalies point towards the possible existence of
additional sterile neutrino species behind the 3 active species (see [13] for
a review). These sterile particles, predicted as new gauge singlets by many
theoretical models beyond the Standard Model, are neutral leptons insensi-
tive to weak force interacting only gravitationally. Their masses are usually
postulated heavy, but lighter sterile neutrinos are anyway possible. Indeed,
although the most popular models of neutrino mass-generation, the seesaw
mechanisms, normally involve sterile neutrinos with mass close to the grand
unification scale or the TeV scale, a priori there is no theoretical constraint
on the mass of these particles.

The first evidence, at 3.8σ level, comes from the short baseline LSND ex-
periment [47], studying νµ → νe oscillations, providing a ∆m2 = 1 eV2 much
larger than those required from a three-neutrino analysis. The KARMEN
experiment, built with characteristics very similar to LSND, did not support
such evidence [48], although a joint analysis of the two experiments shows
that their data sets are compatible with oscillations at ∆m2 either in a band
[0.2–1] eV2 or in a region around 7 eV2 [49]. The experiment MiniBooNE, de-
signed to test the LSND anomaly, and sensitive both to νµ → νe and νµ → νe

transitions, has given different results during the last few years. The initial re-
sults of the MiniBooNE experiment did not verify oscillation evidence in the
νµ → νe [50]. Later the collaboration presented new results for the antineu-
trino oscillation channel supporting the LSND evidence, requiring ∆m2 = 1
eV2 [51]. In a new preliminary data release, this significance has decreased,
but it is still consistent with the LSND signal. In addition, an unexplained
excess of electron-like events is observed in MiniBooNE at low energies. The
simultaneous analysis of LSND (antineutrino) and MiniBooNE (neutrino and
antineutrino) could be explained in terms of sterile neutrino oscillations only
assuming CP-violation or some other exotic scenarios. An independent test
of the LSND and MiniBooNE anomalies has been recently performed at
the LBL accelerator experiment ICARUS [52]. The combination of the four
experiments LSND, KARMEN, MiniBooNE and ICARUS, restricts the al-
lowed mass-mixing parameters to a small region around ∆m2 ∼ 0.5 eV2 and
sin2 2θ ∼ 5× 10−3.

An additional anomaly supporting oscillations with sterile neutrinos has
recently appeared from a revaluation of reactor antineutrino fluxes, with a
3% of increase relative to previous calculations of the mean flux. As a re-
sult, data from reactor neutrino experiments at very short distances can be
interpreted as an apparent 6% deficit of νe [53]. Known as the reactor an-
tineutrino anomaly, it is again compatible with sterile neutrinos having a
∆m2 ∼ O(1) eV2. However the calculation of the emitted antineutrino spec-
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3+1 3+2
∆m2

41 [eV
2] 0.89 0.90

|Ue4|2 0.025 0.017
|Uµ4|2 0.023 0.019

∆m2
51 [eV

2] 1.61
|Ue5|2 0.017
|Uµ5|2 0.0061

Table 1.3: Best–fit values of the mixing parameters obtained in 3+1 and 3+2
fits of short-baseline oscillation data taken from [55].

trum is very difficult, involving the sum of thousands of β-branches weighted
by the branching ratio of each transition. Finally, an independent experi-
mental evidence for νe disappearance at very short baseline exists from the
Gallium radioactive source experiments GALLEX and SAGE which consist
in the detection of electron neutrinos produced by intense artificial 51Cr and
37Ar radioactive sources placed inside the detectors [54]. The exact statis-
tical significance of the deficit depending on the assumptions made on the
theoretical estimate of the cross section νe +71 Ga →71 Ge + e−. Both the
reactor and gallium anomalies can be interpreted in terms of a phenomenon
of νe disappearance driven by sterile neutrino oscillations. Scenarios with one
(dubbed “3+1”) or two (“3+2”) sub-eV sterile neutrinos have been proposed
to fit the different data [55, 56, 57, 58]. In the Table 1.3, taken from [55], are
reported the best-fit values of the mixing parameters obtained in 3+1 and
3+2 fits of short-baseline oscillation data and used in our study.1

As we will see later, cosmology provides an important arena to test these
scenarios. In fact, neutrinos are abundantly produced via weak interactions
in the hot (temperature T ≫ 1 MeV) primordial cosmological plasma. The
sterile mass eigenstate(s) can be produced via oscillations with the active
ones and can modify cosmological observables.

1See Chapter 6 for details on the 4 ν formalism.
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Chapter 2

Neutrino oscillations in high
density environments

2.1 Density matrix formalism

As discussed in the previous Chapter, the treatment of neutrino mixing
is well understood in terms of the the propagation of a beam of particles, in
vacuum or in a medium. In particular the evolution of the neutrino flavor
transitions has been described by means of the Schrödinger equation. How-
ever this simple formalism is insufficient whenever we are concerned with the
evolution of a statistical ensemble of neutrinos simultaneously mixing and
scattering in a medium. This is a typical situation encountered during stellar
collapse or in the early Universe. Such problems cannot be easily understood
in terms of the propagation of a beam. Indeed, while this treatment allows
to obtain the transition probabilities between single-particle states and to
study the oscillations between field amplitudes, it cannot be directly applied
to many-particle states. Specifically, we need to handle the interactions be-
tween the medium and the coherent superposition of states that are involved.
In presence of a propagation medium it is important to follow the evolution
of the whole ensemble, including those particles scattered out of the beam.
Two types of effects have to be considered. One concerns the refractive effect
described in Sec. 1.3.2. The second effect is due to collisions which destroy
the coherence of the evolution and can influence the behavior of the mixing
process.

In addition to the interactions with the external medium, one has also
to consider the interactions of neutrinos among themselves (self-interaction).
Indeed, as pointed out by Pantaleone in the 1992 [59] , in the deepest region
of the Supernova (SN) and in the Early Universe, the neutrinos gas is so
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dense that the neutrinos themselves form a background medium leading to
intriguing non-linear effects in the neutrino flavor conversions.

A proper treatment of all these effects requires to exploit the density
matrix formalism, in which mixed quantum states for neutrinos and possible
loss of coherence due to real collisions are described together. We will strictly
follow the derivation of [60]. See also [61, 62, 63, 64].

Let us consider the momentum expansion of a left-handed massless neu-
trino field

ψL(x) =

ˆ

dp(apup + b†−pu−p)e
ip·x (2.1)

where dp = d3p/(2π)3, the Dirac spinors up and vp refer to massless
negative-helicity neutrinos and positive-helicity antineutrinos, respectively.
Moreover, ap is the annihilation operator for negative helicity neutrinos of
momentum p, while b†p is the creation operator for positive helicity antineu-
trinos. For n neutrino flavor states, either active or sterile, these operators
are column vectors with anticommutation relations

{ai(p), a†j(p′)} = {bi(p), b†j(p′)} = δij(2π)
3δ(3)(p− p′). (2.2)

From all possible bilinears involving the operators a and b, the only ones
that do not violate lepton number by two units, or whose expectation values
do not oscillate around zero, are a†a b†b. Requiring also the spatial homo-
geneity, their expectation values contribute only for equal momenta p = p′.
Therefore, a homogeneous ensemble of neutrinos and antineutrinos can be
characterized by the n× n density matrices ̺p(t) and ̺p(t) defined for neu-
trinos and antineutrinos, respectively, as

〈a†j(p)ai(p′)〉 = (2π)3δ(3)(p− p′)(̺p)ij (2.3)

〈b†i (p)bj(p′)〉 = (2π)3δ(3)(p− p′)(̺p)ij

The reversed order of the indices in the definition of ̺ guarantees that both
density matrices transform in the same way under a unitary transformation
ψ′ = U †ψU . The diagonal elements of ̺p and ̺p are the usual particle and
antiparticle distribution functions (occupation numbers) for the correspond-
ing neutrino species, while the off-diagonal ones encode phase information
and vanish for zero mixing,

̺p =




̺ee ̺eµ ̺eτ
̺µe ̺µµ ̺µτ
̺τe ̺τµ ̺ττ


 , ̺p =




̺ee ̺eµ ̺eτ
̺µe ̺µµ ̺µτ
̺τe ̺τµ ̺ττ


 . (2.4)
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2.2 Equations of motion for the neutrino en-

semble

The evolution in time of ̺p and ̺p is obtained as a perturbative expansion
in the Heisenberg formalism, assuming the appropriate Hamiltonian of weak
interactions. Considering up to the second order in the perturbation expan-
sion, we can write the equation of motion (EoM) in the form Boltzmann-like
collisional equation for neutrinos

i ˙̺p = i∂t̺p = +[Ωvac
p , ̺p] + [Ωref

p , ̺p] + C[̺p], (2.5)

where [·, ·] is a commutator. The equation for antineutrinos is obtained adopt-

ing the following prescription: ̺p → ̺p, Ω
ref
p → Ω

ref

p , The first term at the
r.h.s of the Eq. (2.5) represents, in the flavor basis, the usual vacuum oscil-
lation effects in absence of interactions. For ultrarelativistic neutrinos

Ωvac
p = U

M2

2p
U † (2.6)

where U is the mixing matrix and M2 is the squared mass matrix which,
apart from a common term proportional to the identity matrix and irrelevant
for the oscillations, is parametrized as [176]:

M2 = diag
(
m2

12,m
2
12,m

2
23

)
=

(
−∆m2

21

2
,+

∆m2
21

2
,±∆m2
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2

)
. (2.7)

The second term represents the refractive potential term at the first order
in the perturbation expansion (∝ GF ) responsible for an energy shift due to
forward scattering in the medium. This term is the sum of two contributions:

Ωref
p = ΩM

p + Ωνν
p (2.8)

where ΩM
p describes the interactions with all other particles of the medium

except for neutrinos, Ωνν
p represents the “self-interactions” with the other

neutrinos in the medium and, depending on the neutrino ensemble ̺p itself,
it makes the problem non-linear.

Finally, the last term at the right-hand side (r.h.s) of the Eq. (2.5) is
the second order in the perturbative expansion (∝ G2

F ), known as collisional
term, responsible for the breaking of the coherence of the neutrino ensemble.

In the next section, we will discuss more in details the different terms
involved in the EoM.
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2.2.1 Neutrino interaction terms

Refraction terms with an ordinary background medium For the en-
vironments and temperatures which we are interested in, we can consider the
ordinary background medium as composed only by electrons and positrons.
The Feynman diagrams for these interactions are represented in the panel
(a) and (b) of the Fig. 2.1.

- Leading order

Starting from the four-leptons weak Hamiltonian

Heff
νe =

GF√
2
[νeγ

µ(1− γ5)νe] [eγµ(1− γ5)e] (2.9)

and considering a gas of unpolarized electrons with a statistical distri-
bution function f(k), the refractive potential can be written as [65]

Vνe = ±
√
2GFne−

ˆ

dkf(Ek)(1− vk · vp) (2.10)

where ne− is the the number density of the electrons and the + sign
refers to neutrinos while the − one to antineutrinos. The term (1−vk ·
vp) comes form the the current-current structure of the weak interac-
tions, with vk and vp the electron and neutrino velocities. It reduces
to 1 in case of isotropy of the electron background. The same proce-
dure for positrons yields an opposite sign in the result. Therefore, the
refractive potential experienced by neutrinos travelling in a isotropic
background of electron and positron is

ΩM(0) = ±
√
2 GF ne, (2.11)

where ne = (ne− − ne+) is the net electron density.

- Higher order

Including the mass of gauge bosons in the Hamiltonian, the contri-
bution due to CC interaction with the isotropic background medium
is:

ΩM(1) = −8
√
2 GFp

3m2
W

(ǫe− + ǫe+), (2.12)

where ǫe is the energy density of electrons and positrons. The sign is
the same for neutrinos and antineutrinos.
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Figure 2.1: Representative amplitudes contributing to forward scatterning: (a)
leading order and (b) higher order CC interactions (c) leading or-
der and (d) higher order NC interactions, (e) and (f) momentum
conserving and momentum exchanging processes, respectively, corre-
sponding to the low-energy limit of (c).

Self-interaction terms In extreme environments, such as the SN and the
Early Universe, the density of the neutrinos can be very high that the neu-
trinos themselves form a background medium for their propagation [59]. The
neutrino-neutrino interactions, ∝ GF , make an additional contribution to the
refractive energy shift. In particular, in addition to the diagonal refractive
index, there will be present also “off-diagonal refractive potentials” given by
the zero-momentum transfer processes in which neutrinos exchange flavor.
The amplitudes contributing to these processes are shown in the panel (c),
(d), (e), (f) of the Fig. 2.1.
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- Leading order

Neutrino-neutrino forward scattering at three level presents not only
processes in which ν do not exchange momenta, corresponding to the
effective Hamiltonian

Heff
νν =

GF√
2
[νe(p)γ

µ(1− γ5)νe(p)] [νx(q)γµ(1− γ5)νx(q)] (2.13)

but also processes in which neutrinos exchange their flavors, which
results in a exchange of the momenta:

Heff
νν =

GF√
2
[νe(q)γ

µ(1− γ5)νe(p)] [νx(p)γµ(1− γ5)νx(q)] . (2.14)

In [60] it was shown that, using the density matrix formalism, the
leading order self interaction term can be written as

Ω
νν(0)
p = ±

√
2GF

ˆ

dq (1− vq · vp)
{
GS(̺q − ̺q)GS +GS Tr

[
(̺q − ̺q)GS

]}
,

(2.15)

where GS is the standard model coupling matrix which in the tree-
level case is the unit matrix in flavor space, GS = 1. (This is not true
anymore if one or more neutrinos are sterile). The term (1−vq ·vp) =
(1−cos θqp) takes into account the angular dependence of the scattering
amplitude. In the case of isotropic medium, it averages to 1, as in
the case of the Early Universe. Instead it is important for neutrinos
streaming form a SN core. Again, + sign refers to neutrinos while the
− one to antineutrinos.

- Higher order

In order to include the correction due to the non-local nature of the
Z-boson propagator which mediate forward scattering on neutrinos of
the same species, we consider also the term

Ω
νν(1)
p = −8

√
2GF p

3m2
Z

ˆ

dq
3

4
(1− vq · vp)

2 q GS(̺q + ̺q)GS . (2.16)

The sign does not change in the antineutrino equations.
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Collisional term The term C[̺p] accounts for processes ∝ G2
F such as

creation and annihilation and all the momentum exchanging processes of
neutrinos with the leptonic background and among neutrinos themselves. In
particular it contains the scattering processes with the medium X of the
form νpX → X ′νp′ , production and absorption by CC processes of the type
X → X ′νp or νpX → X ′ (and the same processes for antineutrinos) and also
the NC pair processes XX ′ → νpνp′ and νpνp′ → XX ′.

Following again [60], we consider the part of the interaction Hamiltonian
which is bilinear in the left-handed neutrino field ψ. After a suitable Fierz
transformation, the Hamiltonian can be written as an affective NC interaction
with an external medium consisting of various particle species. Assuming
these different target species uncorrelated, their interference terms can be
neglected (being proportional to the second order forward scattering) and
then the collisional term becomes an incoherent sum over all target species.
A lengthy calculation gives

(C[̺p])NC = +
1

2

ˆ

dp′ [W (p′, p)(1− ̺p)G̺p′G−W (p, p′)̺pG(1− ̺p′)G] +

+
1

2

ˆ

dp′
[
W (−p′, p)(1− ̺p)G(1− ̺

p′)G−W (p,−p′)̺pG ̺
p′G+ h.c.

]
,

(2.17)

where the isotropy of the medium was assumed. The non-negative transi-
tion probabilities W (p′, p) ≡ W (pµ, p

′
µ) are Wick contractions of medium

operators of the form

W (p′, p) = 2 G2
F Mµν(p′ − p) Nµν(p

′, p) (2.18)

with Mµν(p′−p) and Nµν(p
′, p) the “medium structure function tensor” and

the “neutrino tensor”, respectively. G represents a n×n matrix of dimension-
less coupling constant, which in the flavor basis reads G = diag(g1, ..., gn).
The first two terms at the r.h.s. of the Eq. (2.17) are due to neutrino scatter-
ing off the medium, the positive term being a gain term corresponding to a
scattering process while the negative one being a loss term corresponding to
the inverse reaction. The third and fourth terms account for pair processes
with the positive term being a gain term from pair creations by medium,
while the negative one is a loss term from pair annihilations. For a more de-
tailed treatment see [60] and the references therein. We note that in the limit
of a single neutrino flavor, or several unmixed flavors, the role of ̺p is played
by the usual occupation number while the matrix G is the unit matrix. Then
the Eq. (2.17) resembles the usual Boltzmann collisional integral, which we
will discus later.
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- Damping prescription

The complete form of the collisional term is quite complicated. How-
ever, in many cases, a sufficiently accurate description can be achieved
if the scattering and pair processes are mimicked by a damping term.
Concerning the scattering processes, from the several heuristic formu-
lations present in literature, we take advantage of the following form
for the collisional integral:

C[̺p] = −1

2
Γp[G, [G, ̺p]] (2.19)

where Γp denotes a total rate for all the interactions considered. For the
explicit forms of the rate and of the matrix G, we refer to the Chapter
6. Finally, we remark that the double commutator structure ensures
that the total lepton number is conserved.

2.3 Two extreme environments: the Early Uni-

verse and the supernova core

Neutrinos play a dominant role in the evolution of the Early Universe
and of the supernova core. In particular, these two environments offer unique
conditions to probe neutrino flavor mixing in high-density conditions, involv-
ing refractive effects from charged leptons and collisional damping. Moreover,
these represent the only two cases in which neutrinos themselves contribute
to the background medium for their propagation, making their oscillations
a non-linear phenomenon and leading, in some situations, to surprising and
counterintuitive collective phenomena.

In the most general situation, the flavor evolution for the density ma-
trices ̺p,x and ¯̺p,x (depending in general on the momentum p and on the
coordinate x) in dense environments is governed by the Boltzmann collision
equations

L̂[̺p,x] = −i[Ωp,x, ̺p,x] + Ĉ[̺p,x] (2.20)

and a similar equation for ¯̺p. At r.h.s. Ωp,x = Ωvac
p +Ωref

p,x. The l.h.s. contains
the Liouville operator

L̂[̺p,x] = ∂t̺p,x + vp · ∇x ̺p,x + ṗ · ∇p ̺p,x, (2.21)

which includes temporal evolution and spatial transport phenomena. In par-
ticular, the first term represents an explicit time dependence, the second
a drift caused by the particles free-streaming, and the third the effects of
external macroscopic forces, for example gravitational deflection.
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In the following we will study in detail the flavor evolution in both SNe
and Early Universe. For the moment we find useful to briefly compare the
main differences in the treatment of the flavor evolution in the two cases.

1. Early Universe

The evolution in time in the form of Boltzmann-like equations applied
to the Early Universe, safely considered isotropic and homogeneous at
large scale, reduces to

∂t̺p = −i[Ωp, ̺p] + Ĉ[̺p] , (2.22)

where
∂t → ∂t −Hp ∂p (2.23)

with H the Hubble parameter which encodes the information about
the universe expansion.

Refractive matter term: in the Early Universe there were almost equal
numbers of baryons and antibaryons with an asymmetry fixed by
observations to be ηB ∼ 10−10. Due to the charge neutrality of
the Universe, the electron-positron density is expected to be of
the same order and its contribution to the refractive term ΩM(0),
Eq. (2.11), is subdominant. It is necessary to consider the higher
order which depends on the sum of the electron and positron en-
ergy densities, [Eq. (2.12)].

Self-interaction term: in absence of a neutrino-antineutrino asymme-
try (̺ − ̺), as expected in the standard case, the only contribu-
tion is given by the second order term Eq. (2.16) (̺ + ̺) which
is subleading for the neutrino evolution, since its numerical value
is small. Conversely, in the case of large neutrino asymmetries,
the leading order term Ω

νν(0)
p [Eq. (2.15)], becomes important and

the evolution is dominated by the effect of synchronized oscilla-
tions, i.e. the self-potential forces all neutrino modes to follow the
same oscillation pattern [66]. In the following we will discuss in
details the role of neutrino asymmetry in the case of active-sterile
neutrino oscillations.

39



Collisional term: at high temperature of the primordial plasma, this
term is very important since it breaks the coherence of the neutrino
ensemble. It damps the off diagonal terms of the density matrix
̺p and it pushes the diagonal terms towards their equilibrium
distributions.

2. Supernova

In the case of radiating object such as the supernova, we have to include
spatial transport phenomena in the EoMs. Indeed a proper description
requires to consider a stationary system evolving in space instead of
a homogeneous system evolving in time. Once the core of a massive
star becomes gravitationally unstable, it quickly collapses, leading to a
fast increase of density. The neutrinos initially trapped within a region
called “neutrinosphere”, are then ejected from it in according to a free
streaming emission. Therefore, the evolution equations become:

vp · ∇x ̺p,x = −i[Ωp,x, ̺p,x] , (2.24)

where in the Liouville operator we ingnored an explicit temporal evo-
lution of ̺p,x, as well as the effect of external macroscopical forces, like
the gravity. At r.h.s. we have neglected collisional terms that play no
role in the SN flavor evolution.

Refractive matter term: the relevant term for the SN oscillations is
given by the leading order in which the matter potential assumes
the form of the Eq. (2.10). This term is trajectory dependent,
inducing different oscillation phases for neutrinos traveling in dif-
ferent directions. This effect can be relevant in the region close to
the neutrinosphere. Moreover MSW effect in supernovae can leave
a peculiar imprint on the observable neutrino signal, sensitive to
the propagation of the shock wave in the SN envelope.

Self-interaction tem: differently from the case of the Early Universe, in
the case of SN one expects relevant flux differences among different
flavors. Therefore, for the SN environment it is enough to consider
the leading order in the self interaction term, Eq. (2.15), in which
the non-isotropic nature of neutrino emission would lead to pecu-
liar multi-angle effects in the flavor evolution. The large neutrino
densities in the deepest stellar regions can result in significant
coherent ν − ν forward scatterings, which give rise to collective
features for the flavor oscillations. The fate of these fascinating
effects depends on the competition between the ordinary electron
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matter potential and the neutrino potential itself, as we will dis-
cuss later.

Collisional term: this term is completely negligible in the SN evolution
since one can separate the neutrino spectra formation problem in
the scattering dominated high-density region, from the flavor evo-
lution after the neutrino-sphere where neutrinos are free stream-
ing.
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Chapter 3

Self-induced neutrino
oscillations in Supernovae

Core-collapse supernovae (SNe) represent one of the most energetic and
spectacular phenomena in the Universe. They are powerful explosions which
mark the violent death of massive stars (M ! 8 M⊙) as they become unsta-
ble during the late phases of their evolution [67]. The explosion is driven by
a shock wave that eventually ejects the outer mantle of the collapsing star,
liberating a gravitational binding energy EB ≃ 3 × 1053 erg. Remarkably,
99% of this binding energy is carried away by neutrinos and antineutrinos of
all the flavors, making a core-collapse SN one of the most powerful neutrino
source. Therefore, neutrinos emitted during such a process are a promising
tool to probe neutrino mass and mixing properties and to provide valuable
information about SN mechanism itself [68]. The neutrino fluxes and spectra
are sensitive to many details of SN physics, notably the progenitor mass,
the nuclear equation of state, and the occurrence of convection inside and
outside the SN core. Originating deep inside the core and passing through
the mantle of the star, the neutrino flavor conversions are affected by dense
matter on their road through the stellar envelope [28, 29, 69]. Moreover, in
the deepest SN regions the neutrino density is so high that can dominate
the flavor evolution, eventually producing a surprising collective behavior in
the SN neutrino ensemble [70]. As a consequence of these effects, the SN
neutrino fluxes reaching the detectors would be deeply modified with re-
spect to the initial ones, carrying fascinating signatures of oscillation effects
occurring in the deepest SN regions. Thus detection of a high-statistics neu-
trino signal from the next nearby SN represents a new frontier in low-energy
neutrino physics and astrophysics. In this Chapter we describe the SN explo-
sion mechanism with particular emphasis on the expectation for the initial
neutrino fluxes. After that we discuss in details the supernova neutrino fla-
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vor conversions, focusing particularly on the the collective effects, induced
by the neutrino-neutrino interactions. This presentation is mainly based on
[67, 70, 71, 72, 73, 74, 75, 76, 77] to which we address the reader for more
details.

3.1 Core-collapse SN dynamics

During its life a star is kept in equilibrium by two effects operating in
opposite directions: the gravitational force which tends to collapse the star
and the thermal pressure which tends to expand it. In order to maintain
this equilibrium the star will undergo a series of nuclear burning stages,
starting with the burning of the Hydrogenum in the Helium and proceeding
with heavier elements, leading to the “onion” structure with several burning
shells, an expanded envelope, and a degenerate iron core (see Fig. 3.1).

Figure 3.1: Different stages of the stellar evolution. Left : hydrogen fusion in the
stellar core. Centre : helium burning star. Right: onion-structure of a
massive star with an iron core and shells of lighter elements produced
during the different phases of nuclear fusion.

The fate of the star is determined when the mass core reaches the Chan-
drasekhar limit, which is the maximum mass that can be supported by the
electron degeneracy pressure. Then the gravitational pull wins over the in-
ternal pressure and the core starts to collapse, leading to a fast increase of
density. Indeed, the collapsing star can not ignite nuclear fusion because iron
is the nucleus with the largest binding energy. The first stage of the collapse
occurs when densities of ρ ≃ 1012 g cm−3 are reached and matter becomes
opaque to neutrinos, due their large NC scattering cross sections on heavy
nuclei. This stage is know as “neutrino trapping”, since the neutrinos are con-
fined within a “neutrinosphere” . Therefore, the collapse continues until the
equation of state stiffens at about nuclear density (ρ ∼ 3× 1014 g cm−3). At
this point the inner core becomes incompressible, the implosion is suddenly
halted and the core rebounces. The core bounce generates sound waves that
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start propagating radially out of the inner core, producing a density, pressure,
and velocity discontinuity in the flow. A hydrodynamic shock wave forms and
travels outward, ejecting the outer layers.

Technically, even if the bounce and shock explosion mechanism [78, 79,
80, 67] is essentially a hydrodynamical phenomenon, the realistic numerical
simulations have difficulties in triggering the explosion for a physical reason.
The shock wave forms within the iron core. As it moves outward it dissipates
energy by the dissociation of iron. Therefore, the shock wave stalls with-
out driving off the stellar mantle and envelope. The standard scenario holds
that the stagnating shock is revitalized by energy deposition so that enough
pressure builds up behind the shock to trigger the explosion.

3.1.1 Emission of SN neutrinos

During and after the explosion, the star emits neutrinos in three main
phases (Fig. 3.2).

1. Prompt νe burst : As the shock wave passes through the neutrino sphere,
a νe burst, lasting t ≃ 10 ms, is released due to rapid electron capture
on dissociated nuclei (deleptonization of the outer core layers) e− +
p → n + νe, leading to leads to a sudden rise in the luminosity up to
L = 1053 erg s−1. In this phase the fluxes of the other neutrino flavors
are negligible compared to νe.

2. Accretion phase: The shock wave quickly loses its energy in dissociating
nuclei and stagnates at a radius of 150-200 km. Material continues to
fall onto the core (“accretion shock”) for the following few 100 ms and
powers the emission of neutrinos and antineutrinos of all species, with
a luminosity of L = 1052 erg s−1 and caracterized by a strong excess of
the νe species over the others. Pronounced hierarchy of average energies
〈Eνx〉 > 〈Eν̄e〉 > 〈Eνe〉, where x stands for any of νµ,τ or ν̄µ,τ .

3. Kelvin-Helmholtz cooling phase: After the successful explosion, the re-
maining proto-neutron star cools by neutrino emission over about 10 s.
The luminosity is approximately equipartitioned between different species
L = 3×1051 erg s−1 and the flavor hierarchy of average energies is prob-
ably mild.

A supernova can be roughly considered as a black-body that cools via
neutrino emission. Indeed, supernova simulations typically provide neutri-
nos emitted with “quasi-thermal” spectra. In particular, a simple analytical
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Figure 3.2: Neutrino signal of a core-collapse SN for a 10.8M⊙ progenitor accord-
ing to a numerical simulation of the Basel group [81]. In this spher-
ically symmetric simulation the explosion was triggered by hand.
Left: Prompt neutrino burst. Middle: Accretion phase. Right: Cooling
phase.

parametrization of the neutrino spectra is given in terms of the so-called
“alpha-fit” [82]:

Fνα(E) =
Lν

〈Eν〉2
(α + 1)(α+1)

Γ(α + 1)

(
E

〈Eν〉

)α

exp

[
−(α + 1)

E

〈Eν〉

]
, (3.1)

with 〈Eν〉 the average energy. The numerical parameter “pinch” α controls
the width of the distribution,

〈E2〉 − 〈E〉2
〈E〉2 =

1

1 + α
, (3.2)

and α = 2 corresponds to a Maxwell-Boltzmann spectrum, α > 2 to a pinched
spectrum with suppressed high- and low-energy tails, and α < 2 to an anti-
pinched spectrum. Simulations find values of α typically in the range 2-5, so
the spectra are generally pinched.

The spectral characteristics evolve in time (Fig. 3.2), are expected to vary
for different supernova progenitors, and depend on uncertain input physics
such as the nuclear equation of state and the treatment of neutrino transport.
Typically, one expects 〈Eνe〉 ≃ 10–12 MeV, while the νe energies are expected
to be somewhat larger, 〈Eνe〉 ≃ 12–15 MeV, due to their smaller charged-
current interaction rate in neutron-rich matter, allowing them to escape from
deeper and hotter layers. Interactions are almost identical for νµ, ντ , and their
antiparticles. They will have nearly identical primary fluxes Fνx and average
energies 〈Eνx〉 ≃ 15–18 MeV.
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Figure 3.3: Snapshots of SN potentials for different post-bounce times. Continu-
ous curves refer to the matter potential λ, dot-dashed to the neutrino
potential µ. The horizontal bands represent the vacuum oscillation
frequencies relevant for the MSW resonant conversions associated to
the ∆m2

atm (ωH) and to the ∆m2
sol (ωL), respectively (see the text

for details).

3.2 Supernova potential profiles and neutrino

flavor conversions

Effects of flavor conversions on supernova neutrinos depend on the dif-
ferent densities encountered by neutrinos in their propagation in the stellar
envelope. In Fig. 3.3 is represented a snapshot of the different interaction
potentials associated with different supernova densities obtained from the
Basel-Darmstadt simulations of a 10.8 M⊙ SN progenitor for different post-
bounce times [81]. As we will discuss in the following, self-induced neutrino
oscillations, associated with the neutrino-neutrino interactions are related
to the neutrino number densities. In Fig. 3.3 is represented the neutrino-
neutrino potential

µ =
√
2GF [nνe − nνe ] =

1

4πr2

(
Lνe

〈Eνe〉
− Lνe

〈Eνe〉

)
, (3.3)
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The non-electron neutrino has not included since it cancels between νx and
ν̄x. We realize that this neutrino potential decrease in time as the SN cools.

Matter effects on SN neutrinos depend on the potential

λ =
√
2GFne , (3.4)

where ne is the net electron density ne encountered by neutrinos in their prop-
agation. The numerical values of µ and λ from the previous two expressions
are quoted in km−1, as appropriate for the SN case. From Fig. 3.3, we realize
that the SN electron density profile is non-monotonic and time-dependent
and presents an abrupt discontinuity, corresponding to the position of the
shock-front. In general the shock wave, while propagating outwards at su-
personic speed, leaves behind a rarefaction zone, and creates a high-density
front with a sharp density drop (down to the static value). The two horizontal
strips represent the regions associated with MSW resonant flavor conversions
with the atmospheric oscillation frequency ωH (violet band) and with the so-
lar one ωL (light blue) for an energy range E ∈ [1− 50] MeV.

From the comparison of the different densities we realize that in the deep-
est SN regions (r < 103 km) nν ≫ ne, except during the accretion phase
(t < 0.5 s). We will see that when the neutrino density dominates over
the matter one (as during the cooling phase) self-induced flavor conversions
would develop without any hindrance.

Conversely, at larger radii, the flavor conversions will be dominated by
the ordinary matter effects. The L-resonance is always adiabatic. The H-
resonance is adiabatic for values of θ13 as large as the one recently measured
[7, 8], except at the shock-front where strong non-adiabatic conversions occur
[83]. The H resonance takes place in the neutrino sector for normal mass
hierarchy and in the anti-neutrino one for inverted mass hierarchy. Therefore,
in principle, the neutrino burst is sensitive to the neutrino mass hierarchy.

Neglecting for the moment the self-induced effects, the flux arriving at
Earth relevant for the detection can be expressed in terms of energy-dependent
νe survival probabilities p(E) in the form [69]

Fνe = p(E)F 0
νe(E) + [1− p(E)]F 0

νx(E), (3.5)

where 0 indicates the initial neutrino fluxes. An analogous expression exists
for ν̄e with survival probabilities p̄(E). In particular, considering for simplicity
a static SN matter profile one finds (p, p̄) = (0, cos2 θ12) in normal mass
hierarchy, and (p, p̄) = (sin2 θ12, 0) in inverted mass hierarchy [69].
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3.3 Self-induced flavor evolution of SN neu-

trinos

As already described in the Chapter 2, the evolution equations for the
SN neutrino ensembles are given by

vp · ∇x̺p,x = −i[Ωvac
p , ̺p,x]− i[Ωref

p,x, ̺p,x], (3.6)

where the vacuum term for relativistic neutrinos is represented by Ωvac
p =

diag(m2
1,m

2
2,m

2
3)/2p, while the refractive terms are:

Ω
ref
p,x = λL+

√
2GF

ˆ

d3q

(2π)3
(̺q,x − ¯̺q,x) (1− vq · vp) . (3.7)

The ordinary refractive matter effect is represented by λ =
√
2GF(ne− −ne+)

and L = diag(1, 0, 0) in the weak interaction basis. The second term at r.h.s.
of the Eq. (3.7) describes the self-interactions where the factor (1−vq ·vp) =
(1− cos θpq) comes from the current-current nature of the weak interaction,
and vp = p/p is the velocity. The angular term averages to zero if the gas is
isotropic. Different approximations have been proposed in literature in order
to simplify this challenging problem. In the following sections we will present
different toy-models at increasing levels of complexity, proposed to capture
different aspects of this flavor dynamics.

3.3.1 Polarization vectors formalism for two-flavor sys-
tem

Since νµ and ντ behave equally in core collapse SN, neutrino oscillations
can be described at first approximation in two-flavor scenario. Therefore, we
expand all the 2× 2 matrices in the EoMs in terms of the 2× 2 unit matrix I

and the Pauli matrices σ. All the quantities involved in the EoMs can written
as [72]

ρp = 1
2

(
fpI+Pp · σ

)
,

ρ̄p = 1
2

(
f̄pI+ P̄p · σ

)
,

Ω
vac
p = 1

2

(
ω0I+ ωp B · σ

)
,

Ω
M
p = λ

2

(
I+ L · σ

)
,

Ω
νν
p = µ

2

(
I+ V · σ

)
, (3.8)

in which we have only considered the leading terms in refraction and self-
refraction. The vectors Pp and P̄p are the ν and ν̄ polarization vectors in
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flavor space. The coordinate system in flavor space is chosen in such a way
that in an ensemble of pure electron neutrinos, the z-component of Pp cor-
responds to the electron neutrino occupation number, and the total number
density of electron neutrinos would be nνe =

´

P z
p d3p/(2π)3, whereas an

orientation in the negative z-direction corresponds to a combination of muon
and tau neutrinos, which we denote νx. We remark that Pp = 0 means that
it contains an incoherent equal mixture of νe and νx. In this formalism, the
survival probability of νe is [1 + Pz]/2 [72].

Moreover, we have ω0 = m2
1+m2

2 and vacuum oscillations are determined
by the mass differences and vacuum mixing angle θ, so that

ωp = (m2
1 −m2

2)/2p ,

B = (sin 2θ, 0, cos 2θ) . (3.9)

where the unit vector B is oriented in the the mass eigenstate direction in
flavor space, such that B · L = cos 2θ. In an ordinary medium composed by
electrons and positrons, L is a unit vector in the positive z-direction L = ez
and λ is an effective electron density, i.e., the density of electrons minus that
of positrons, λ =

√
2GFne . Finally, we define the parameter µ =

√
2GFnν

which normalizes the neutrino-neutrino interaction strength, given by:

V =

ˆ

d3q

(2π)3
(1− vq · vp)(Pq −Pq). (3.10)

As further approximation, instead of considering the spatial evolution of
neutrinos emitted from the neutrino sphere, we consider an homogeneous
and isotropic neutrino gas evolving along an affine coordinate t. Then, the
neutrino and antineutrino EOMs assume the form:

∂tPp = [+ωB+ λL+ µV]×Pp ,

∂tPp = [−ωB+ λL+ µV]×Pp . (3.11)

In the limit of isotropic distributions one obtains the so-called “single-
angle” self-refractive potential:

V =
(
J− J

)
, (3.12)

where

J =

ˆ

d3p

(2π)3
Pp , J =

ˆ

d3p

(2π)3
Pp. (3.13)
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Figure 3.4: Synchronized neutrino oscillations: evolution of the νe survival prob-
ability for three values of the neutrino energy in presence of large
ν − ν interaction term. Here τ = (∆m2/2E)t. Figure taken from [84]
.

3.3.2 Single-angle approximation

We want to show some types of collective behaviors that can arise in
dense neutrino gases in the single angle approximation for few representative
cases.

Gas of only ν. We consider as first case a dense neutrino gas composed
of only νe. In the presence of only vacuum oscillations, modes with differ-
ent energies would oscillate with different oscillation frequency ω, leading to
what is called kinematical decoherence. If now one switches on a large ν − ν

interaction term µ ≫ ω, one realize that the different modes are locked to
oscillate together as a single-energy mode (Fig. 3.4) whose precession motion
is described by [84]

∂tJ = ωsynchB× J , (3.14)

with oscillation frequency

ωsynch =

〈
∆m2

2E

〉
=

1

Nν

Nν∑

j=1

∆m2

2Ej

, (3.15)

where we have assumed a discrete ensemble of Nν neutrinos. This is the first
example of collective oscillations behavior, called synchronized oscillations. A
system consisting of ν and ν behaves in the same way of the one constituted
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by ν only, except that the role of J is played by V, and ωsynch is given by [84]

ωsynch =
1

|V|

(
Nν∑

j=1

∆m2

2pj
V̂ ·Pj +

Nν̄∑

k=1

∆m2

2pk
V̂ ·Pk

)
. (3.16)

Equal densities of ν and ν We consider now the simplest system initially
composed of equal densities of pure ν and ν. In this case, since V=0, syn-
chronized oscillations are not possible. However, we will see that depending
on the flavor content and on the mass hierarchy this system can be unstable
in the flavor space, experiencing significant flavor conversions.

1. Vacuum + self-interaction (µ =const)

We consider a system consisting of only νe and νe with a small vacuum
mixing angle (θ ≪ 1) and a strong self-interaction term (µ ≫ ω). We
neglect the matter term λ in the EoMs [Eq. (3.11)] and for simplicity
we consider a mono-energetic ν ensemble. If we consider inverted mass
hierarchy 1, the evolutions of Pz and P z are shown in the Fig. 3.5.

Initially, both Pz and P z stay put in their initial flavor state. After
some time they flip completely, but immediately they return to their
original state, leading to periodic motion, with complete and simulta-
neous conversion of νe and νe to νx and νx and back (pair conversions
of νeνe ↔ νxνx) which conserve the total flavor content. On the other
hand, for the normal hierarchy the system is totally stable and no
flavor conversions take place. It is important to comment that if we
would have taken an ensemble composed of only νµ and νµ, we would
have found large flavor conversions in normal hierarchy, instead of the
inverted one. Indeed, the unstable case is when the initial ensemble con-
sists of that flavor which is dominated by the heavier mass eigenstate.

This evolution can be explained in analogy to a pendulum in flavor
space [72, 85]: for normal hierarchy the system initially sets near the
minimum of the pendulum potential and is therefore blocked leading
to no visible effects. Conversely, in the inverted hierarchy the evolution
starts with the system close to the maximum of the potential in an
unstable equilibrium and so it moves to situation of minimum, leading
to this periodic pendular conversions. The pendular period (the sep-
aration between dips), scales logarithmically with the small vacuum

1In the 2-ν formalism of Sec. 3.3.1, the inverted mass hierarchy is obtained sending
θ → π/2− θ [72]

52



Figure 3.5: Evolutions of Pz and P z for θ = 0.01, ω = 1, and strong neutrino-
neutrino interaction µ = 10. Figure taken from [72].

mixing angle. Indeed it is intriguing that the sort of flavor conversions
being associated with an instability in flavor space take place also for
very small values of the mixing angle (θ < 10−10) [86].

2. Vacuum + matter + self-interaction (µ =const)

Taking into account also the matter term, the evolution equations in
matter [Eq. (3.11)], can be reduced to the ones in vacuum, going to
the frame co-rotating around the L-direction, with a time dependent
B [72]:

B =



sin(2θ0) cos(−λt)
sin(2θ0) sin(−λt)

− cos(2θ0)


 . (3.17)

In this picture B rotates around the z-direction with frequency −λ. If
this rotation is faster than all other frequencies, the transverse compo-
nents of B would average to zero, leaving us with 〈B〉 along the z-axis,
i.e., an effectively vanishing mixing angle and no flavor conversions.
However this fast rotating transverse components are still enough to
trigger conversions, with a matter suppressed effective mixing angle,
extending logarithmically the pendular period, as in Fig. 3.6.

3. Vacuum + self-interaction (µ varying)

In order to mimic more realistically the SN scenario always with a toy-
model, one has to consider a self-induced potential µ declining with
distance. In particular, there is a factor scaling like r−2 from the geo-
metrical neutrino flux dilution at which adds another r−2 factor due to
the collinearity suppression, coming from the average on 〈1 − vq · vp〉
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Figure 3.6: Evolution of Pz and P z for the same parameters of the Fig. 3.5 and
different strengths of background matter: λ = 102 (blue/dotted line),
λ = 103 (green/dashed line), λ = 104 red/solid line. Figure taken
from [72].

Figure 3.7: Survival probabilities for νe or νe in presence of a radial-dependent
ν − ν potential term with µ0 = 7 × 105 km−1 and sin 2θ = 0.001
Figure taken from [72].

factor, leading essentially to an r−4 decline for the self-interaction term
[72]. In this case, the evolution Pz and P z for a νe and νe ensemble in
inverted hierarchy are shown in Fig. 3.7. The oscillation amplitude has
declined as a function of radius leading to a complete flavor conversion
caused by the pendular effect. Comparing this result with the case of
constant density µ and using again the pendulum analogy, one can un-
derstand that by reducing µ, also the energy of the system is reduced
and therefore, after each oscillation, the pendulum will not come back
to its initial position (the maximum of the potential) but to a lower
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Figure 3.8: Evolution of Pz (blue curve) and P z (red curve) in presence of
neutrino-antineutrino fluxes asymmetry ǫ = 0.75 and sin 2θ = 0.001.
The grey shaded bands represent the synchronization (dark) and pen-
dular regions (light). Figure taken from [87].

one, which will be closer and closer to the rest point as µ decreases.

ν and ν asymmetry. In addition to the radial dependence of µ, an-
other feature to characterize the SN neutrino case is the initial neutrino-
antineutrino asymmetry.

As described in the Sec. 3.1.1 one expects some hierarchy among the
neutrino number fluxes, in particular, during the accretion phase, Fνe >
Fνe > Fνx . This feature is taken into account imposing the initial conditions
P z = 1 and Pz = 1 + ǫ, where the asymmetry parameter ǫ, representing the
electron neutrino excess coming from the deleptonization of the collapsed
core, is defined as:

ǫ =
Fνe − Fνe

Fνe − Fνx

(3.18)

with Fνx = Fνx . The evolution of the polarization vectors in this case is shown
in the Fig. 3.8 where we have considered a small vacuum mixing angle and
inverted mass hierarchy. From this figure, it is possible to distinguish three
different regimes of evolution, corresponding to different relative strengths of
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µ with respect to the vacuum frequency ω:

-syncronized oscillations (µ > µsyn), right behind the neutrino sphere and
up to about 100 km, corresponds to the first stage of evolution, where
synchronized oscillations occur. Since the mixing angle is small, ν e ν

stay in their original flavor up to a distance called rsyn. The condition
for the synchronized oscillations is given by [72, 73]:

µ(rsyn) =
2ω

(1−
√
1 + ǫ)2

. (3.19)

-pendular oscillations (µsyn < µ < ω) represent the second stage of evolution
characterised by of pendular conversions, where complete pair transfor-
mation are developed, conserving the initial flavor lepton asymmetry.

-vacuum oscillations (µ < ω) the neutrino-neutrino interactions cease and
ordinary oscillations take place, where the normal matter can play an
important role via the usual MSW effect.

Multi-energy spectral splits Finally, we have to consider that in SN are
emitted neutrinos of all the flavors with continuos energy distributions. In
Fig. 3.9 we show the flavor evolution in inverted mass hierarchy of the inte-
grated polarization vectors J and J̄ [Eq. (3.13)] for representative supernova
conditions as the ones considered in [74]. We realize the the behavior of Jz
and J̄z is similar to the single-flavor and single-energy cases shown before.
At the same time, antineutrinos tend to totally invert the polarization vector
(J̄ → −J̄), in order to minimize their potential energy. Neutrinos also try to
reverse their global polarization vector when the alignment approximation
breaks down at r ! 100 km and so J decreases.

In Fig. 3.10 we show the corresponding evolution of the individual po-
larization vectors Pz (upper panel) and P̄z (lower panel) as a function of r
for different representative energy values. One realizes that the evolution of
each Pz or P̄z depends on energy. For neutrinos (upper panel in Fig. 3.10),
one can distinctly see the occurrence of spectral split around a critical en-
ergy Ec ≃ 7 MeV. For curves at E > Ec, Pz ends up at the same initial
value, while the curves at E > Ec show the expected inversion Pz → −Pz.
For antineutrinos, as expected, (lower panel in Fig. 3.10), all curves present
complete polarization reversal (P̄z → −P̄z). We will show in Sec. 3.4 how
these behaviour of the polarization vectors would imprint peculiar spectral
splits in the oscillated SN neutrino fluxes.
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Figure 3.9: Single-angle simulation in inverted hierarchy: modulus and z-
component of the global polarization vector J and J, as a function
of radius. Figure taken from [74].

3.3.3 Self-induced and matter-induced multi-angle ef-
fects

The main complication in the self-induced flavor evolution for SN neutri-
nos with respect to the toy models discussed before, is that the flux of neu-
trinos emitted from a SN core is not isotropic. The current-current nature of
the weak-interaction Hamiltonian implies a term proportional to (1−vp ·vq)
for the interaction energy between neutrinos with momenta p and q, where
vp is the neutrino velocity (see Eq.(3.7)). In the non-isotropic medium this
velocity-dependent term would not average to zero, leading to a different
refractive index for neutrinos which propagate on different trajectories. We
have then the so-called “multi-angle effects”, which challenge the occurrence
of the coherent oscillation behavior for different neutrino modes [88]. In [89] it
has been shown that in an anisotropic dense neutrino gas initially composed
only of νe and ν̄e with equal flavors, instead of the pendular oscillations found
for an isotropic ensemble, multi-angle effects would be responsible for flavor
decoherence, leading to a flux equilibration among electron and non-electron
(anti)neutrino species. On the other hand in the presence of important flavor
asymmetries between νe and ν̄e the multi-angle effects are suppressed [73].
Therefore, in order to have a realistic characterization of these effects in the
context of the SN neutrino flavor evolution, it is necessary to perform a nu-
merical study of the equations of motion [Eq. (3.6)] for time evolving SN ν
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Figure 3.10: Single-angle simulation in inverted hierarchy: z-component of the
polarization vector Pz (upper panel) P z (lower panel) as a function
of radius, for five representative values of the energy. Figure taken
from [74].

fluxes.
As discussed in Sec. 3.3, the complete set of equations of motion for neu-

trinos streaming-off a supernova core involves a space evolution in a quasi-
stationary situation described by partial differential equations [Eq. (3.6)].
This problem has never been solved till now in its full complexity. However,
since few years have been developed the first large-scale “multi-angle” simu-
lations of the flavor evolution in the so-called “bulb model” [77]. The basic
assumptions adopted in this model are the following:

- Neutrinos are emitted uniformly and half-isotropically (i.e. with all
the outward-going modes occupied, and all the back-ward going modes
empty) from the surface of a spherical neutrinosphere, like in a black-
body.

- The half-isotropical neutrino angular distributions are assumed energy
and flavor-independent.
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Figure 3.11: The geometrical picture of the neutrino bulb-model.

- Azimuthal symmetry in the SN is assumed, i.e. physical conditions only
depend on the distance r from the center of the star.

Under the assumption of the azimuthal symmetry one can reduce the gen-
eral partial differential equations [Eq. (3.6)] into a ordinary differential equa-
tions problem, projecting the evolution along the radial direction, i.e. vp ·
∇x → vrd/dr. The geometry of the bulb-model is represented in Fig. 3.11.
Considering a neutrino emitted at an angle θ0 relative to the radial direction.
Its radial velocity is

vrν = cos θ0 . (3.20)

At r > rν , the angle of the trajectory relative to the radial direction is given
by simple geometry to be [77]:

rν sin θ0 = r sin θpq . (3.21)

Therefore, the radial velocity at r is

vu,r = cos θpq =

√
1− r2ν

r2
u (3.22)

where we have introduced

u = 1− v2rν = sin2 θrν , (3.23)

and rν is the radius of the neutrino-sphere.
For a blackbody-like emission the flux modes are uniformly distributed

in the interval 0 ≤ u ≤ 1. For the polarization vectors labeled in function of
the u angular variable, Pu,r and Pu,r, the EoM becomes [73]:

∂r = Hu,r ×Pu,r , (3.24)
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where the Hamiltonian is

Hu,r =
ωB+ λrL

vu,r
+ µr

(
Dr

vu,r
− Fr

)
. (3.25)

For antineutrinos we have, as always, ω → −ω. The global density and flux
polarization vectors are respectively

Dr =

ˆ 1

0

du
Pu,r −Pu,r

vu,r
,

Fr =

ˆ 1

0

du
(
Pu,r −Pu,r

)
, (3.26)

using the normalization
´ 1

0
du P̄u,r = 1 and

´ 1

0
duPu,r = 1 + ǫ. The matter

coefficient
λr =

√
2GF[ne−(r)− ne+(r)] (3.27)

encodes the effective electron density at radius r whereas the ν− ν potential
is given by:

µr = µrν

r2ν
r2

. (3.28)

Here µrν =
√
2GF [nν̄e(rν)− nν̄x(rν)], where nν̄e and nν̄x are respectively the

electron and the non-electron antineutrino densities at the neutrinosphere.
Neglecting for the moment the matter effects, i.e. putting λr = 0 we see that
the presence of the trajectory-dependent term vu,r in the neutrino-neutrino
interaction term in Eq. (3.25) leads to the multi-angle effects in the self-
induced oscillations. Indeed, as already said before, if the flavor asymmetry
ǫ between neutrinos and antineutrinos in small, it can rapidly lead to flavor
decoherence in the neutrino ensemble.

Considering now also the matter term, we realize that it also contain
a multi-angle effect due to the factor vu,r. It has been shown in [75] that
self-induced flavor conversions are not affected by this matter effect if

ne− − ne+ ≪ nν̄e − nν̄x . (3.29)

Conversely, if ne− − ne+ ≫ nν̄e , the multi-angle matter effects can produce a
large spread in the oscillation frequencies of neutrinos travelling on different
trajectories, blocking the self-induced flavor conversions. Finally, when ne− −
ne+ ∼ nν̄e −nν̄x , it can produce a matter-induced multi-angle decoherence in
the neutrino ensemble. According to realistic SN models, matter density is
expected to dominate over the neutrino one during the early accretion phase.
At this regard, in Chapter 4 we will discuss in details the matter suppression
of collective oscillations, during the accretion phase.
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3.4 Self-induced spectral splits during the dif-

ferent supernova phases

In the bulb-model first large-scale multi-angle simulations have been per-
formed in 2006 in the seminal work by [77]. Their results represented a ma-
jor breakthrough in the characterization of self-induced effects for supernova
neutrinos and stimulated a torrent of activities to characterize many aspects
of this intriguing flavor dynamics. In this context, different groups developed
independent multi-angle simulations (see, e.g. [73, 74]) that confirmed the
seminal findings of Duan and Fuller [77] and explored the dependence of the
flavor evolution on the initial supernova neutrino fluxes. Many surprises and
unexpected results were found with a strong dependence on many details
(i.e. neutrino flavor asymmetries, angular distributions, three-flavor effects)
and at the moment a complete picture of the self-induced flavor conversions
in SNe is still missing. However, following [76] we can summarize the most
important results of the self-induced flavor conversions in the different SN
phases as follow:

- Neutronization burst. As shown in Fig. 3.2, during this phase one ex-
pects an excess of νe over ν̄e and a deficit of νx over ν̄e. Under this
situation, the pendular flavor conversions, proceeding through pair pro-
ductions of νeν̄e → νxν̄x are not possible [72]. Therefore, only synchro-
nized oscillations occur, with no relevant effect of flavor conversion,
since the in-medium mixing angle is small. Multi-angle effects are also
negligible.2

- Accretion phase. One expects a large excess of electron neutrino species
over non-electron ones. As an example of this situation, in Figs. 3.12
and 3.13 is considered the three-flavor flavor evolution in inverted mass
hierarchy for a flux ordering Φ0

νe : Φ
0
ν̄e : Φ

0
νx = 2.40 : 1.60 : 1.0. As wee

will see in Chapter 4, during the accretion phase the dense matter can
dominate over the neutrino density, suppressing the self-induced flavor
conversions. However, for the moment we are neglecting this effect,
assuming λr = 0. In particular Figure 3.12 refers to the single-angle
flavor evolution, while Fig. 3.13 show the multi-angle case. In the upper
panels are represented the initial νe fluxes (dashed curves) and the

2A different situation could be encountered in the case of low-mass SNe with an oxygen-
neon-magnesium core. In this situation the profile of the matter density can be very steep.
Then, the usual MSW matter effect occur within the region of high neutrino densities
close to the neutrino sphere. Therefore, self-induced flavor conversions will be possible at
low-radii [90, 91].
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Figure 3.12: Accretion phase: 3-flavor evolution in the single-angle case and in
inverted mass hierarchy for neutrinos (left panels) and antineutri-
nos (right panels). Upper panels: initial energy spectra for νe (long-
dashed curve) and νx,y (short-dashed curve) and for νe after collec-
tive oscillations (solid curve). Lower panels: probabilities Pee (solid
red curve), Pey (dashed blue curve), Pex (dotted black curve). Figure
taken from [76].
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Figure 3.13: The same of the Fig. 3.12 but in the multi-angle case. Figure taken
from [76].

62



final ones for νe and νx,y where νx,y are linear combinations of the νµ,τ
fluxes. In the lower panels are represented the conversion probabilities
Pee, Pey, Pex. One can see that the final ν̄e flux is completely swapped
with respect to the initial one, while the final νe flux presents a peculiar
spectral split at E ≃ 10 MeV, being swapped to νy at higher energy.
From the conversion probabilities we realize that the flavor conversions
occur in the 2ν (e−y) sub-system associated with ∆m2

atm and θ13. From
the comparison with the multi-angle case, we see that these effects play
a sub-leading role, being suppressed by the large flavor hierarchy of the
accretion phase. Finally, we comment that in normal mass hierarchy
no self-induced flavor conversions occur.

- Cooling phase. In this case one expect a less pronounced flavor hier-
archy among the different species. We consider here Φ0

νe : Φ0
ν̄e : Φ0

νx =
0.85 : 0.75 : 1.0. Figures and 3.14 and 3.15 are in the same format
of Figs. 3.12 and 3.13 for the accretion phase. We realize that dif-
ferently from the accretion phase, multiple spectral splits are present
in both neutrino and antineutrino channel. Moreover, three-flavor ef-
fects associated with (e − x) conversions in the ∆m2

sol and θ12 sector
are also relevant. Conversely, in the multi-angle case, this three-flavor
dynamics is suppressed. Moreover, the spectral swaps and splits are
less pronounced, as due to some amount of multi-angle decoherence in
the flavor conversions. It has been shown in [76] that further reducing
the flavor asymmetry, complete decoherence would occur. Finally, we
mention that for the flux ordering of the cooling phase also in normal
hierarchy spectral splits and swap can occur [92].
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Figure 3.14: Cooling phase: the same of the Fig. 3.14. Figure taken from [76].
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Figure 3.15: The same of the Fig. 3.14 but in the multi-angle case. Figure taken
from [76].
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Chapter 4

Matter suppression of
self-induced neutrino
oscillations during the SN
accretion phase

The development of the self-induced ν conversions in supernovae crucially
depends on the primary SN ν spectra. At this regard, the post-bounce ac-
cretion phase of core-collapse SNe would offer the best opportunity to detect
signatures of collective ν flavor oscillations. Indeed, during this phase, the
absolute ν fluxes are large with significant spectral differences between the
different ν species and a flux order Fνe > Fνe ≫ Fνx . As discussed in Chapter
3, self-induced spectral swaps and splits would occur in inverted mass hier-
archy. However, it is important to realize that also the net electron density
ne should be large during the SN accretion phase. When it is not negligible
in relation to the neutrino density nν , the large phase dispersion induced
by the matter for ν’s traveling on different directions is responsible for a
partially or totally suppression of the collective oscillations through peculiar
trajectory-dependent multi-angle effects [75].

In this context we have performed a numerical study of the matter sup-
pression during the accretion phase, numerically solving the multi-angle equa-
tions of motion. We characterized the matter and the neutrino density pro-
files using the recent long-term neutrino radiation hydrodynamical simula-
tions [81], based on three flavor Boltzmann neutrino transport in spherical
symmetry. In contrast to what is expected in the presence of only neutrino-
neutrino interactions, we found that the multi-angle effects associated with
the dense ordinary matter strongly impact collective oscillations. Further-
more, we confirmed these results performing a linearized stability analysis of
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the neutrino equations of motion, in the presence of the realistic SN density
profiles. The results shown here are based on our works:

• S. Chakraborty, T. Fischer, A. Mirizzi, N. Saviano and R. Tomàs, “No
collective neutrino flavor conversions during the supernova accretion
phase,” Phys. Rev. Lett. 107, 151101 (2011).

• S. Chakraborty, T. Fischer, A. Mirizzi, N. Saviano and R. Tomàs,
“Analysis of matter suppression in collective neutrino oscillations dur-
ing the supernova accretion phase,” Phys. Rev. D 84, 025002 (2011).

• N. Saviano, S. Chakraborty, T. Fischer and A. Mirizzi, “Stability anal-
ysis of collective neutrino oscillations in the supernova accretion phase
with realistic energy and angle distributions,” Phys. Rev. D 85, 113002
(2012).

4.1 Neutrino signal from SN model for the

accretion phase

As already explained in the Sec. 3.1.1, neutrinos are emitted in differ-
ent stages after the core-collapse of the star. In particular, the post-bounce
accretion phase represents a very interesting scenario being characterised
by large fluxes of neutrino and with significant spectral differences between
the different neutrino species. At this regard, we characterize the neutrino
emission during the accretion phase from core-collapse supernova simula-
tions of massive progenitor stars of 8.8, 10.8 and 18 M⊙, developed by the
Basel-Darmstadt group [81]. The first mass, 8.8 M⊙ belongs to the class
of O-Ne-Mg-core progenitors [93, 94] and constitutes the threshold between
thermonuclear explosions and core-collapse supernovae [95, 81]. Conversely,
10.8 and 18 M⊙ are iron-core progenitors [96]. All models have been evolved
through core collapse, bounce and the early post-bounce phase up to several
seconds after the onset of explosion [81]. The core-collapse model is based on
relativistic radiation hydrodynamics that considers three flavor Boltzmann
neutrino transport in spherical symmetry and a complex equation of state for
dense and hot nuclear matter [97] (for details about the supernova model,
see [98, 81] and references therein). We note that the explosions of mas-
sive iron-core progenitors cannot occur in spherically symmetric supernova
models and it has to be triggered by hand. Indeed for the 10.8 and 18 M⊙

progenitor mass, the heating rates are artificially increased in the gain re-
gion where neutrinos deposit energy in order to revitalize the stalled bounce
shock.
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Figure 4.1: Neutrino luminosities (left panels) and average energies (right pan-
els) during the accretion phase for 3 different progenitor mass core-
collapse SN simulations: 8.8 M⊙ (top), 10.8 M⊙ (middle) and 18.0 M⊙

(bottom). The continuous line represents νe, the dashed line the ν̄e
and, finally, the dotted line the νx .

In Fig. 4.1 are shown the evolution of the neutrino luminosities Lνα (left
panels) and average energies 〈Eνα〉 (right panels), during the post-bounce
accretion phase for all models we consider. Here, να = (νe, νe, νx) where νx
indicates both (µ, τ)-neutrinos and antineutrinos. As already discussed, the
large electron flavor neutrino luminosities O(1052) erg/s are caused by the
continuous mass accretion at the neutrinospheres and the νe luminosities are
ruled by the charged current reactions. We remark that the slightly excess
of the νe luminosity with respect to the νe one and the magnitude of the
differences obtained in the these different models are still under investigation
and may slightly change improving weak rates and using multi-dimensional
supernova models. The increasing and decreasing electron flavor luminosities
mimic the propagating bounce shock (and the mass accretion rate at the
neutrinospheres): it contracts during the accretion phase driven by neutrino
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heating and expands driven by neutrino cooling. Moreover, νµ/τ ’s are pro-
duced only after bounce by pair-processes being the muonic charged current
processes suppressed and then the (µ/τ)-neutrino luminosities are generally
smaller than the electron flavor neutrino ones. Concerning the average ener-
gies during the accretion phase, for all models under investigation, we have
the following hierarchy: 〈Eνe〉 < 〈Eν̄e〉 < 〈Eνx〉. As shown in In Fig. 4.1 (right
panels), the average energies rise continuously for all neutrino flavors.

The situation changes after the onset of explosion, when mass accretion
vanishes. Indeed, the luminosities and average energies of all flavors decrease
on a longer timescale (on the order of seconds). For the O-Ne-Mg-core, we
consider the neutrino signal only up to tpb=0.25 s (top panel of Fig. 4.1).
We note that in this case the mass accretion at the neutrinospheres cancels
out already at about tpb=0.03 s, determining the onset of the explosion. For
the 10.8 and 18 M⊙ progenitor models, we show the neutrino signal up to
tpb=0.6 s. For these cases, the explosion starts at about tpb=0.36 s. This is
caused by the more massive envelopes surrounding the iron-core responsible
for a more extended accretion (and hence neutrino heating) phase. Further-
more, referring still to Fig. 4.1, we observe a sharp drop of the luminosities
and average energies of all neutrino flavors after the onsets of explosion. This
is due to the overturn of matter velocities from infall to expansion when the
explosion shock passes through the distance of 500 km. Finally, we note that
these results suggest lower average energies than usually assumed in the pre-
vious literature [99] and a less pronounced spectral hierarchy, in particular
during the later proto-neutron star cooling phase. The results obtained for
the low mass O-Ne-Mg-core collapse supernova explosion are in qualitative
and quantitative good agreement with recent simulations performed by the
Garching-group [100].

4.2 Characterization of the flavor conversions

during the accretion phase

In this Section we present our assumptions in order to characterize the
flavor conversions during the accretion phase. In particular, we first describe
the geometry model for SN neutrino emission and neutrino number fluxes of
different flavors, then we discuss the neutrino-neutrino and matter potentials
and finally we introduce the different oscillation regimes.
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Figure 4.2: Angular distributions for νe of 10.8 M⊙ progenitor mass, at tpb=0.4 s
for Erms = 11.5 MeV at different radii: r=20 km (dotted line),
r=50 km (continuous line), r=70 km (dashed line).

4.2.1 Neutrino emission geometry

To take into account the geometry of the neutrino emission, we refer to
the “bulb” model represented in the Fig. 3.11, in which neutrinos and an-
tineutrinos are assumed emitted from spherically symmetrical source, the
neutrinosphere, at radius r = rν . We define rν as the radius where the neu-
trino radiation field is assumed to be “half-isotropic”.We note that this con-
ventional definition of the neutrinosphere is intended only to fix a boundary
condition for the flavor evolution. Indeed, the half-isotropic definition does
not necessarily coincide with the definition of the neutrinosphere as neutrino
last scattering surface, defined as the radius where the optical depth becomes
2/3. However, the collective oscillations start at radii much larger than the
adopted boundary that neutrinos can be safely assumed in a free-streaming
regime [101]. Therefore, we do not carry about the details of the ν decoupling.

We fix rν consistently with the SN simulations which provide the angular
distributions of the different neutrino species as a function of time and energy
at different radii. We choose the νe’s distribution as representative for all
the different flavors since, during the accretion phase, they reach the free-
streaming regime at larger radii with respect to the other neutrino species.
Since the angular distributions are functions of the energy, we consider as
reference the root mean square (rms) energy relevant for the average neutrino-
nucleon interaction rates, which define the neutrino angular distributions. In
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Fig. 4.2 we plot the νe angular distribution f(cos θ0) = dnν/d cos θ0, where
θr is the zenith angle of a given mode relative to the radial direction at
distance r (see Fig. 3.11). Here Erms = 11.5 MeV at three different radii
at the selected post-bounce time tpb = 0.4 s, as taken form the 10.8 M⊙

model. At small radii (r = 20 km in the Fig. 4.2) the angular distribution
is isotropic being the neutrinos in a trapping regime and then isotropically
emitted in all directions. At large radii (r = 70 km in the Fig. 4.2), the
angular distribution becomes forward peaked due to the free-streaming of
neutrinos. We schematically assume the neutrinosphere radius as the one at
which the νe’s angular distribution has no longer significant backward flux,
i.e. a few % of the total one (at r = 50 km in the Fig. 4.2).1 Finally, we
remark that the real angular distribution is not half-isotropic, rather more
forward-peaked than what we are assuming, leading to a reduction of strength
of the neutrino-neutrino potential. Therefore, our simplified choice has to be
considered conservative.

4.2.2 Neutrino number fluxes for different flavors

The neutrino number flux for the different flavors is defined as Fνα =
Lνα/〈Eνα〉, while the flux asymmetries among the different ν species is de-
scribed by the flavor asymmetry parameter ǫ in the Eq. (3.18)[73].

In Fig. 4.3 are shown the neutrino number flux Fνα (left panels) and the
asymmetry parameter ǫ (right panels) for the three benchmark SN simula-
tions considered. We observe that, as expected during the accretion phase,
the particle fluxes present the following hierarchy Fνe > Fνe ≫ Fνx , where
the first part of the hierarchy is caused by the deleptonization of the collapsed
stellar core, while the second is due to the absence of charged-current inter-
actions for νx. Consequently, the electron and non-electron neutrino particle
fluxes differ by almost a factor of two during the accretion phase. Conversely,
during the cooling phase (tpb > 0.05 s), the flux differences tend to become
much smaller.

Concerning the asymmetry parameter ǫ, the strong excess of νe’s during
the early post-bounce deleptonization (tpb " 0.05 s) leads to an increase,
such that ǫ ≫ 1. Then, ǫ drops and reaches values between 0.3-0.5 during
the accretion phase (see Fig. 4.3). Finally, since the flux difference Fνe −Fνx

drops more rapidly than Fνe−Fνx , ǫ rises again, becoming larger than 1 for the
iron-core SNe. This behavior will impact the development of the self-induced
flavor conversions.

1Changing the neutrinosphere radius by a factor of three, we checked that the results
on matter effects remained basically unchanged, indicating a weak dependence of the
oscillation analysis from the decoupling region.
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Figure 4.3: Neutrino particle fluxes (left panels) and flavor asymmetry parameter
ǫ (right panels) for νe (continuous line), νe (dashed line), νx (dotted
line).

4.2.3 Set-up of the flavor evolution

We study the non-linear neutrino flavor conversions in the two-flavor os-
cillation scenario, driven by the atmospheric mass-square difference∆m2

atm ≃
2.6 × 0−3 eV2 and by a small (matter suppressed) in-medium mixing θeff =
10−3 and considering the inverted mass hierarchy case. Indeed, the three-
flavor effects, associated with the solar sector, are small for the neutrino flux
ordering expected during the accretion phase [103, 76]. Moreover in the nor-
mal mass hierarchy and for the spectral ordering of the accretion phase, no
self-induced flavor conversion will occur.

We take into account the effect of the non-isotropic nature of neutrino
emission on collective oscillations by “multi-angle” simulations [77], where
one follows a large number [O(103)] of neutrino trajectories [Eq. (3.24)–
(3.25)]. Even if the neutrinos are emitted with a broad energy distribution,
we will assume all ν’s to be represented by a single energy, E = 15 MeV,
in order to simplify the numerical calculation. This assumption is justified
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by the fact that large matter effects would lock togheter the different neu-
trino energy modes, both in case of supression [75] and of decoherence [73]
of collective oscillations.

This choice results in the neutrino vacuum oscillation frequency

ω =

〈
∆m2

atm

2E

〉
= 0.4 km−1 . (4.1)

The strength of the neutrino-neutrino interaction, normalized at the neu-
trinosphere, is parametrized by [73]

µr =
√
2GF [nνe(r)− nνx(r)]

= 7× 105 km−1

(
Lνe

〈Eνe〉
− Lνx

〈Eνx〉

)

× 15 MeV

1052erg

(
10 km

r

)2

(4.2)

where nνα(r) is the flux of the neutrino species να at radius r defined as
nνe,ν̄e = Fνe,ν̄e/(4πr

2) .
The matter potential is represented by [69]

λr =
√
2GFne(r) = 1.9× 106 km−1

×
(
Ye

0.5

)(
ρ

1010 g/cm3

)
(4.3)

encoding the net ne ≡ ne− − ne+ electron density, whit Ye = Ye− − Ye+ the
net electron fraction and ρ the matter density. We note that λr is given by
the detailed matter profile from the SN simulations.

4.2.4 Oscillation regimes

In the case of absence of matter suppression, collective neutrino flavor
conversions start outside the synchronization radius, given by [73]

rsync
rν

=

(√
1 + ǫ− 1

2

)1/2
(
µr

∣∣
r=rν

ω

)1/4

, (4.4)

and they develop at least up to the radii rend in which the neutrino-neutrino
interaction strength becomes comparable to the vacuum term, i.e. at [74]

rend
rν

=

(
µr

∣∣
r=rν

2ω

)1/4

. (4.5)
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Figure 4.4: Time evolution of rν (continuous line), rsync (dashed curve) and rend
(dotted curve), for 10.8 M⊙ progenitor mass.

We remind the reader that outside rsync the multi-angle nature of the neu-
trino trajectories can lead to self-induced flavor decoherence between differ-
ent angular modes. However, if the asymmetry parameter ǫ is significantly
large, multi-angle effects are suppressed and self-induced neutrino conversions
present the collective behavior [73].

According to these definitions, in Fig. 4.4 we present for the case of the
10.8 M⊙ SN simulation, the neutrinosphere radius Rν , the synchronization
radius rsync and the radius rend at which collective effects saturate. We observe
that Rν ∼ 102 km during the accretion phase and drops to ∼ 30 km at the
beginning of the cooling phase.

Collective oscillations should occur in the range r ∈ [rsync, rend]. This
range is at r ∼ [600, 1500] km at tpb = 0.1 s when the neutrinosphere ra-
dius Rν > 102 km, driving the flavor conversions to larger radii. Then, due
the contraction of the neutrinosphere radius, the conversion range shifts at
smaller radii r ∼ [200, 500] km at tpb ≃ 0.4 s. Finally at tpb ≃ 0.6 s, the lower
neutrino luminosity and the larger asymmetry parameter ǫ operate together
to push rsync towards rend [see Eqs. (4.4)–(4.5)].

It is important to note, that in the range [rsync, rend], the self-induced
neutrino oscillations can be affected by the dense matter when [75]

ne ! nνe − nνx . (4.6)

In particular, as discussed in Sec. 3.3.3, when the electron and neutrino den-
sities are comparable, matter effects induce multi-angle decoherence among
different neutrino modes, leading to a flavor equilibration among the differ-
ent species. When the net electron density is significantly larger than the
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neutrino one, collective oscillations are suppressed at all [75].
We remark that previous numerical studies of collective oscillations typ-

ically considered smaller neutrinosphere radii, namely rν = O(10 km) (see,
e.g., [73]). Nevertheless, this choice is more indicate for the cooling phase
rather than for the accretion one. As a consequence, in the our work the
neutrino oscillations start at larger radii than typically assumed in previous
studies.

4.3 Results of matter effect for different pro-

genitor mass

In this Section we present the results of our study regarding the effects
of dense matter on of the self-induced neutrino oscillations for the three
representative SN simulations based on the different progenitor masses.

4.3.1 10.8 M⊙ progenitor mass

We start our study with the case of the 10.8 M⊙ iron-core SN. In Fig. 4.5
are shown, for different post-bounce times, the net electron density ne (left
panel) as well as the difference of neutrino densities nνe − nνx (right panel)
which defines the potential µr [Eq. (4.2)]. While the neutrino density simply
scales as r−2, the electron density presents a more complicated behavior as
we can infer observing the abrupt discontinuity in ne associated with the
supernova shock-front that propagates in time. The shock-wave starts to
dissipate its energy due to heavy nuclei dissociation and eventually stalls at
tpb = 0.05 s. The standing accretion shock is then revitalized via neutrino
heating, on a timescale on the order of 0.1 seconds, and expands accordingly
as well as contracts via neutrino cooling. After 0.35 seconds post-bounce, the
standing accretion shock turns into a dynamic shock with positive matter
velocities, giving rise to the onset of explosion at about 0.4 seconds post-
bounce.

During the accretion phase of the 10.8 M⊙ iron-core SN model, the matter
density in the post-shock region decreases slower than the neutrino density,
in particular as ∼ r−1.5. From the comparison between the electron and the
neutrino densities, we notice that at the different post-bounce times, ne is
always larger than or comparable to nνe −nνx suggesting that is not possible
to neglect matter effects on self-induced flavor conversions.

We quantify the relative strength of the electron and neutrino densities
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Figure 4.5: Radial evolution of the net electron density ne (left panel) and of
the neutrino density difference nνe − nνx (right panel) at different
post-bounce times, for 10.8 M⊙ progenitor mass.

Figure 4.6: Radial evolution of the ratio R between electron and neutrino den-
sities at different post-bounce times, 10.8 M⊙ progenitor mass. The
two dashed vertical lines define the position of rsync (left lines) and
rend (right lines).

considering the ratio

R =
ne

nνe − nνx

. (4.7)

as a function of the radial coordinate r at different post-bounce times for tpb ∈
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[0.1, 0.6] s, shown in in Fig. 4.6. The range rsync < r < rend, delimited in the
same figure with two vertical dashed lines, set the possible range for the self-
induced flavor conversions and the shock radius rsh presents the abrupt drop
in the electron density. Therefore, their relative position is very important to
estimate the impact of matter effects on the self-induced oscillations. In this
range, R ≫ 1 will imply a strong matter dominance in the flavor conversions
and thus complete suppression of the collective effects, while, when electron
and neutrino densities are comparable (R ! 1), decoherence will occur for
the collective oscillations.

Let us discuss in more detail the Fig. 4.6. At very early post-bounce times
(tpb = 0.1 s) the matter term strongly predominates the neutrino term also
behind the shock-front (R ≫ 1) blocking the oscillations. At intermediate
times (tpb = 0.225, 0.3 s), in the shock-post region (where the flavor conver-
sion are expected), the matter density drops faster than the neutrino one,
leading the R = 1 − 2. In this case matter-induced decoherence is possible.
Next, at tpb = 0.325 s, oscillations are suppressed behind the shock front,
but then decoherence will develop at larger radii (r ! 300 km) when R ! 1.
Finally, at later times (tpb = 0.4, 0.6 s), the shock has restarted its forward
motion and the region relevant for the oscillations is at r < rsh, where R ≫ 1,
leading to the suppression of self-induced oscillations.

These expectations are confirmed by the results of our multi-angle numer-
ical study of the equations Eq. (3.24)–(3.25) for neutrino evolution. In Fig. 4.7
are shown the radial evolution of the νe survival probability Pee (continuous
black curve) for different post-bounce times, obtained taking into account the
effects of the SN matter profile. For comparison, are also shown the results
obtained setting ne = 0 (dashed red curve). At this regard, we comment that,
in absence of ordinary matter, for the given flavor asymmetry ǫ ! 0.3, we
would have expected the “quasi-single angle” behavior described in Ref. [73],
where after the onset of the conversions at r = rsync, the survival probabil-
ity Pee decrises smoothly approaching zero at large radii. However, in our
study the flavor conversions develop at radii larger than what is typically
shown in previous works (see, e.g., [73]). Therefore, the evolution is more
adiabatic (i.e. the evolution length scale lµ ∼ r [102]) and, consequently, ef-
fects of self-induced multi-angle decoherence could develop, producing some
small disturbance in the smooth decline of the survival probability at large
radii (visible at tpb = 0.1, 0.3, 0.325 s for r ! 700 km). Even if this finding
is potentially interesting, we did not investigate more due to the fact that
matter effects will alter this picture.

In reference to the Fig. 4.7 , we observe that, in presence of matter,
at tpb = 0.1, 0.4, 0.6 s the flavor oscillations are completely blocked, since
R ≫ 1 in the conversion range. For the other three intermediate times (tpb =

76



Figure 4.7: Radial evolution of the survival probability Pee for νe at different
post-bounce times, in presence of matter effects (continuous curve)
and for ne = 0 (dashed curve), considering a multi-angle evolution
for the 10.8 M⊙ progenitor mass.

0.225, 0.3, 0.325 s), the presence of a large matter term at rsync significantly
delays the onset of the flavor conversions with respect to the case with ne = 0.
Then, at larger radii (r > 700 km) when R !1–2, matter effects partial
suppress the flavor conversions. When the flavor decoherence is complete,
it leads to Pee → 1/2 (at tpb = 0.3, 0.325 s), implying a complete mixture
between νe and νx.

4.3.2 18.0 M⊙ progenitor mass

In addition to the 10.8 M⊙ progenitor mass, we also consider the SN
simulation of the more massive 18 M⊙ iron-core progenitor, for which the
net electron density ne (left panel) and the difference of neutrino densities
nνe−nνx , at different post-bounce times, are shown in the Fig. 4.8. Comparing
with Fig. 4.5, we see that their evolution in time is similar to the case 10.8 M⊙

SN simulation. Therefore, we expect a similar impact for the matter effects
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Figure 4.8: The same description of the Fig. 4.5 for 18 M⊙.

Figure 4.9: Radial evolution of the net electron density ne (left panel) and of
the neutrino density difference nνe − nνx (right panel) at different
post-bounce times, for 8.8 M⊙ progenitor mass.

on the neutrino flavor evolution. Indeed we observe an analogous pattern
of complete 0.05 " tpb " 0.2 s), partial (0.2 " tpb " 0.35 s) and complete
(0.35 " tpb " 0.6 s) matter suppression in the self-induced flavor conversions,
that we do not show here for sake of brevity.

4.3.3 8.8 M⊙ progenitor mass

As last case, we study the SN neutrino flavor evolution for the low mass
8.8 M⊙ O-Ne-Mg core SN model. In Fig. 4.9 are presented the net electron
density ne (left panel) and the difference of neutrino densities nνe − nνx

(right panel) for different post-bounce times. We find a notably difference in
these density profiles with respect to the iron-core SN cases. In particular we
observe that the electron density profile above the core is very steep, declining
as ∼ r−2.5, faster than the neutrino density. This is due to the fact the matter
density of the envelope is very low compared to the iron-core progenitors.
Moreover, also the neutrino densities for tpb " 0.2 s are roughly a factor
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Figure 4.10: Radial evolution of the survival probability Pee for νe at different
post-bounce times, in presence of matter effects (continuous curve)
and for ne = 0 (dashed curve), considering a multi-angle evolution
for the 8.8 M⊙ progenitor mass.

∼ 3 smaller than in the previous cases, reflecting the practical absence of an
extended accretion phase for this low-mass star. Since the explosion succeeds
very shortly after the core-bounce, the shock-front is already beyond the
radial range which is interesting for the flavor conversions.

The time-evolution of the νe survival probability Pee at different post-
bounce times presents a change between a regime dominated by the ν–ν effect
at very early times and one of matter-suppressed oscillations at later times,
as shown in Fig. 4.10. We find that at tpb = 0.08 s, the matter suppression
is relatively small and the neutrino-neutrino interactions produce a quite
almost complete swap between νe and νx spectra (Pee = 0.15 at the end
of the evolution). Conversely, for the later times, the flavor conversions are
strongly suppressed with a final Pee ≃ 0.7− 0.9.

4.4 Stability analysis of the self-induced fla-

vor conversions

Our results of the matter suppression on the collective flavor conversions
presented in the previous section have stimulated further independent stud-
ies. In particular, in [105] it has been proposed to investigate the matter
effects with a linearized stability analysis of the neutrino equations of mo-
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tion [106] in order to obviate the numerical challenges of full “multi-angle”
simulations for the flavor evolution. Indeed if one is interested only in the
issue of the flavor stability of the dense neutrino gas, i.e. if the flavor con-
versions occur or not, the stability analysis allows to determine the possible
onset of the conversions. In particular, one seeks for an exponentially growing
solution of the eigenvalue problem, associated with the linearized equations
of motion for the neutrino ensemble. Driven by this insight, we have decided
to apply the stability analysis to the same models discussed before, taking
into account also realistic energy and angle neutrino distributions, finding a
complete agreement with our previous numerical result.

4.4.1 The stability condition equations

We present the main ingredients to perform the stability analysis of the
neutrino equations of motion following the treatment of [106]. The flavor
scenario adopted in this study is the same of that presented in the Sec. 4.2.
Following [106], we find useful to express the equations of motion [Eqs. (3.24)–
(3.25)] in terms of the flux matrices ΦE,u = (r2E2/2π)ρE,u as function of the
radial coordinate. The diagonal ΦE,u components are the ordinary number
fluxes Fνα(E, u) integrated over a sphere of radius r, while the off-diagonal
elements, which are initially zero, denote a phase information due to flavor
mixing. We normalize the flux matrices to the total νe number flux nν̄e at
the neutrino-sphere and we define negative E and negative number fluxes for
anti-neutrinos Then the equations of motion read:

i∂rΦE,u = [HE,u,ΦE,u] (4.8)

with the Hamiltonian

HE,u =
1

vu

(
M2

2E
+
√
2GFNl

)

+

√
2GF

4πr2

ˆ +∞

−∞

dE ′

ˆ 1

0

du′

(
1− vuvu′

vuvu′

)
ΦE′,u′ . (4.9)

To follow the stability prescription, we first switch to the frequency variable
ω = ∆m2

atm/2E so that E(ω) = |∆m2
atm/2ω| and we introduce the neutrino

flux difference distributions gω,u ≡ g(ω, u) defined as

gω,u =
|∆m2

atm|
2ω2

×
{
Θ(ω) [Fνe(E(ω), u)− Fνx(E(ω), u)]

+Θ(−ω) [Fνx(E(ω), u)− Fνe(E(ω), u)]

}
(4.10)

80



normalized to the total νe flux at the neutrino-sphere. At this point, we write
the flux matrices in the form

Φω,u =
TrΦω,u

2
+

gω,u
2

(
sω,u Sω,u

S∗
ω,u −sω,u

)
. (4.11)

The term TrΦω,u is conserved and then irrelevant for the flavor conversions.
The initial conditions for the “swapping matrix” in the second term on the
right-hand side are sω,u = 1 and Sω,u = 0. Self-induced flavor conversions
start when the off-diagonal term Sω,u grows exponentially.

In the small-amplitude limit |Sω,u| ≪ 1, and considering a large distances
from the neutrino-sphere r ≫ rν , the linearized evolution equations for Sω,u

in inverted mass hierarchy (∆m2
atm < 0) assume the form [106]

i∂rSω,u = [ω + u(λ∗
r + ǫµ∗

r)]Sω,u

− µ

ˆ

du′dω′(u+ u′)gω′,u′Sω′,u′ , (4.12)

where

ǫ =

ˆ

du dω gω,u , (4.13)

quantifies the asymmetry parameter of the neutrino spectrum, normalized to
the total νe number flux. The ν-ν interaction strength is given by

µ∗
r = µr

r2ν
2r2

=
3.5× 109

r4

(
Lνe

1052 erg/s

)(
15 MeV

〈Eνe〉

)( rν
10 km

)2

,

while ordinary matter background term is given by

λ∗
r = λr

r2ν
2r2

=
0.95× 108

r2

(
Ye

0.5

)(
ρ

1010g/cm3

)( rν
10 km

)2

,

Writing the solution of the linear differential equation [Eq. (4.12)] in the
form Sω,u = Qω,ue

−iΩr with complex frequency Ω = γ + iκ and eigenvector
Qω,u, a value of κ > 0 would indicate an exponential increasing Sω,u, i.e.
an instability. Moreover we reformulte the solution of Eq. (4.12) in the form
of an eigenvalue equation for Qω,u. Splitting this equation into its real and
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imaginary parts we arrive, for a multi-angle case, at two real equations that
have to be satisfied [106]

(J1 − µ∗
r
−1)2 = K2

1 + J0J2 −K0K2 ,

(J1 − µ∗
r
−1) =

J0K2 +K0J2
2K1

, (4.14)

where

Jn =

ˆ

dωdu gω,uu
n ω + u(λ∗

r + ǫµ∗
r)− γ

[ω + u(λ∗
r + ǫµ∗

r)− γ]2 + κ2
,

Kn =

ˆ

dωdu gω,uu
n κ

[ω + u(λ∗
r + ǫµ∗

r)− γ]2 + κ2
. (4.15)

A flavor instability is present whenever Eqs. (4.14) admit a solution (γ,κ).

4.4.2 Stability analysis for the accretion phase

In this section we present our results of the stability analysis applied
to the SN models with 10.8 M⊙ and 8.8 M⊙ progenitor masses considering
realistic energy and angular neutrino distributions. 2

Energy and angular neutrino distributions Realistic supernova sim-
ulations show that ν angular distributions at the decoupling are not half-
isotropic and, moreover, they are flavor-dependent (see, e.g., [105, 107]).

Therefore we take into account the angle and energy distributions Fνα(E, u)
of the different neutrino species, extracted from SN simulations of [81]. We
label the ν angular spectra in terms of the variable u = sin2 θ0, where θ0 is
the emission angle with respect to the neutrino-sphere (see Sec. 3.3.3).

In Fig. 4.11 we present the (angle-integrated) flux energy spectra Fνα(E)
(upper panels) and the (energy-integrated) flux angular spectra Fνα(u) (lower
panels) for νe, νe, νx, with x the non-electron flavors. In particular, the fluxes
for the 10.8 M⊙ SN progenitor are shown at tpb = 225 ms (left panels), while
that for the 8.8 M⊙ SN progenitor at tpb = 250 ms (right panels). The
angular variable 0 ≤ u ≤ 1 characterizes the geometry of the problem (see
Sec. 3.3.3), with Rν = 69 km for the 10.8 M⊙ model and Rν = 47 km for
the 8.8 M⊙ model. The energy and angular distributions are normalized to
the total neutrino number fluxes of the different species (in arbitrary units in
the Fig. 4.11). Concerning the neutrino energy distributions for the different
flavors, the angle-integrated energy spectra are represented by the Eq. (3.1).

2We omitted to show the results for the 18 M⊙ SN progenitor, since it is qualitatively
similar to the 10.8 M⊙ case.
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Figure 4.11: Supernova neutrino flux spectra (in arbitrary units) for 10.8 M⊙

progenitor at tpb = 0.225 s (left panels) and for 8.8 M⊙ progenitor
at tpb = 0.250 s (right panels). The energy (upper panels) and the
angular (lower panels) spectra are shown for νe (dotted curves), νe
(continuous curves) and νx (dashed curves) (see the text for details).

From the angular flux spectra in the Fig. 4.11, we realize that in the case
of the 10.8 M⊙ model, these are significantly forward enhanced (i.e. peaked at
small u), with respect to the half-isotropic emission model. In addition, the
angular distributions of the three ν species at the neutrinosphere are different.
Indeed the νx distributions are more suppressed in the direction tangential to
the neutrino-sphere (i.e. at u ∼ 1), since the νx decouple at smaller radii with
respect to νe and νe. Conversely, the case of 8.8 M⊙ presents angular spectra
for the electron species less forward-enhanced than in the previous case, and
with less pronounced differences with the non-electron species. As for the
energy spectra, this behavior is dominated by the neutral-current processes
in the spectra formation.

10.8 M⊙ iron-core In Fig. 4.12 we show the radial evolution of the eigen-
value κ function obtained from the solution of Eqs. (4.14) and we discuss
them in comparison with the survival probability of electron antineutrinos
Pee presented inSec. 4.3 (see Fig. 4.7), for the same post-bounce times. We
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Figure 4.12: 10.8 M⊙ progenitor mass. Radial evolution of the κ function at dif-
ferent post-bounce times for different cases: (a) ne = 0 for a half-
isotropic neutrino emission (red dashed curves), (b) in presence of
matter effects, with a half-isotropic neutrino emission (black contin-
uous curves), (c) in presence of matter effects with flavor-dependent
angular distributions ( blue dotted curves). Quasi-thermal ν energy
spectra are assumed (see the text for details).

consider the following cases: (a) ne = 0 and a half-isotropic neutrino emis-
sion (dashed curves), (b) dense matter effects and a half-isotropic neutrino
emission (continuous curves) and, (c) dense matter effects and non-trivial
neutrino angular distributions (dotted curves). In all these cases we have al-
ways assumed quasi-thermal neutrino energy distributions, parametrized as
in Eq. (3.1).

Starting with the case (a), we observe that when the neutrino system
enters an unstable regime (κ > 0), the κ function rapidly grows from zero to
a peak value greater than one. Comparing this result with the numerical solu-
tion presented in Fig. 4.7, we see a perfect agreement between the start of the
self-induced flavor conversions and the position of the peak in the κ function
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found here. We note, that the multi-energy effects included in the stability
does not affect the onset of the flavor conversions with respect to what ob-
served in our previous mono-energetic investigation. Conversely multi-energy
effects would play a crucial role in determining the splitting features in the
final neutrino spectra, once the conversions are triggered. Passing to the case
(b), as expected, the flavor instability is strongly suppressed in relation to the
previous case with ne = 0. In particular, the κ function is non-zero only at in-
termediate post-bounce times, i.e. tpb = 0.225, 0.3, 0.325 s in Fig 4.12 and rise
of the κ function is shifted at larger radii (by ∼ 400−500 km) with respect to
the case with ne = 0, consistently with the development of the self-induced
flavor conversions (see Fig. 4.7). In particular, the instability happens when
ne ∼ nν̄e . Moreover, the peak value of κ in these cases reaches at most ∼ 0.5,
exhibiting a slower growth of the instability with respect to the case with
ne = 0. Finally, we discuss the case (c) in which we also take into account
the flavor-dependent forward-peaked neutrino angular distributions. We find
that the κ function is further suppressed with respect to the half-isotropic
case and this is consistent with the weaker ν-ν strength for forward-peaked
distributions, leading to a more stable system under the effect of the mat-
ter. We comment that at tpb = 0.325 s when the accretion is ending, the
effect of the angular-distributions is less pronounced, since these become less
forward-enhanced. As last remark, we mention that we applied the stability
analysis also to the case of a 18.0 M⊙ iron-core supernova, finding a very
good agreement with what obtained with the multi-angle simulations.

8.8 M⊙ O-Ne-Mg core We remind the reader that this model is char-
acterised by an absence of an extended accretion phase, since the explosion
succeeds very shortly after the core-bounce. From the Fig. 4.10 we have re-
alized that the matter suppression of self-induced flavor conversions is never
complete, since the matter density is very low with respect to iron-core pro-
genitor. In the Fig. 4.13 we plot the corresponding radial evolution of the κ

function, for the (a), (b), (c) cases introduced before. For the case (a) with
ne = 0 (dashed curves) we find again a perfect agreement between the peak
of the κ function and the onset of the flavor conversions in Fig. 4.10.

Concerning the matter case, we first realize that the presence of non-
trivial angular distributions (c) (dotted curves) does not further suppress
the instability with respect to the case with a half-isotropic emission (b)
(continuous curves). This different behavior with respect to the case of 10.8
M⊙ SN model, is consistent with the Fig. 4.11, in which the angular spectra
of different flavors for the 8.8 M⊙ SN are significantly less forward-peaked
than in the case of the 10.8 M⊙ SN. This produces a less pronounced effect
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Figure 4.13: 8.8 M⊙ progenitor mass. Radial evolution of the κ function at dif-
ferent post-bounce times for different cases: (a) ne = 0 for a
half-isotropic neutrino emission (dashed curves), (b) in presence
of matter effects, with a half-isotropic neutrino emission (continu-
ous curves), (c) in presence of matter effects with flavor-dependent
angular distributions (dotted curves). Quasi-thermal ν energy spec-
tra are assumed (see the text for details).

on the flavor stability. Moreover, referring to the Fig. 4.13, at tpb = 0.08 s
(when nν̄e " ne) the κ function presents a peculiar shape due to the interplay
between the self-induced and the matter effects with a comparable strength.
The κ curve broadens at smaller r with respect to the case with ne = 0.
Even if the peak of κ is slightly reduced by the matter effects, its position
is consistent with the onset of the flavor conversions found numerically. At
later times, when ne dominates over nν̄e , the matter suppression becomes
more relevant but never as strong as in the case of the iron-core SNe since
at most ne ! 2nν̄e . Also in this case, the matter effect shifts the start of the
oscillations at larger radii.

4.5 Phenomonelogical consequences

Summarizing, taking as benchmark the matter profiles from the recent
long-term core-collapse SN simulation of the Basel/Darmstadt group, we
have performed a detailed multi-angle numerical study and a stability anal-
ysis of the neutrino flavor evolution for different progenitors SN masses. In
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all the cases examined, the electron density is never negligible with respect
to the neutrino density during the accretion phase and, consequently, the
trajectory-dependent matter effects always influence the development of the
self-induced transformations. We found that during the accretion phase both
the condition of matter suppression (ne ≫ nν) and matter-induced decoher-
ence (nν ∼ ne) are realized. Matter suppression has been obtained also in
[105] using progenitor SN models from the Garching. In the past [104, 77]
it has been argued that swaps of neutrino fluxes between electron and non-
electron flavors in the deepest SN regions could increase the neutrino energy
deposition and hence the neutrino heating revitalizing the standing bounce
shock and triggering the neutrino-driven explosions. We have shown that the
occurring of the matter suppression of flavor conversions at high densities,
behind the shock front, rules out this possibility to revitalise the shock. Fi-
nally, since the time evolution of the neutrino oscillation probability during
the accretion phase is significantly different with respect to the case of the
iron-core supernovae here studied, this could allow the distinction of a O-
Ne-Mg-core SN from a iron-core SN, in the case of the detection of a future
galactic event.

The matter suppression of collective oscillations during the accretion
phase would be a benefit in order to diagnose the neutrino mass hierarchy
exploiting the ordinary MSW effects on the SN accretion burst [see Sec. 3.2].
At this regard it has been proposed the rise-time of the SN neutrino signal
[108], or the Earth matter effect [109] during the accretion phase have been
suggested as possible observables sensitive to the ν mass hierarchy.
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Chapter 5

Introduction to neutrinos in
cosmology

The Early Universe offers another, different environment to test neu-
trino properties in high-density conditions. Indeed Big Bang Nucleosynthe-
sis (BBN), baryogenesis, Cosmic Microwave Background (CMB) radiation,
Large Scale Structure formation (LSS), lepton asymmetry could be essen-
tially influenced by neutrino oscillations and non-zero neutrino mass. In par-
ticular, cosmological neutrino flavor conversions are a fascinating problem
involving collisional damping, refractive effects from charged leptons and neu-
trino self-interactions and they can play a considerable role in the dynamics
of the primordial Universe. In this context, I extensively worked on the flavor
conversions among active and sterile neutrinos in the Early Universe and on
their impact on different cosmological observables. In this Chapter we will
revise the cosmological framework in which our study has been developed.
We will also present different cosmological observables that can be affected
by active-sterile neutrino oscillations. Our presentation is based on [110] and
on [111], to which we address the reader for a more exhaustive treatment.

5.1 The isotropic and homogenous Universe

Historical and current observations support the idea of an expanding
Universe, which can be elegantly described in terms of the Friedmann and
Lemaitre solution of Einstein equations. In particular the large-scale homo-
geneity and isotropy and an almost perfect black-body spectrum of cosmic
microwave background (CMB) radiation further strengthen the idea that
on sufficiently large scales, and at earlier times, the Universe is widely ho-
mogeneous and isotropic. The assumptions of spatially homogeneity (phys-
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ical conditions are the same at every point of a fixed time hypersurface)
and isotropy (they are independent of direction at any given point), which
found their formulation in the Cosmological Principle, lead to the well known
Friedmann-Robertson-Walker (FRW) expression:

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (5.1)

where the coordinate t, proper time measured by a comoving observer (i.e.
with constant spatial coordinates ρ, θ,φ as time flows) is the “physical time”,
a(t) is the scale-factor and k = 1, 0,−1 determines the spatial curvature for
closed, flat and open Universe respectively. The dynamics of the expansion
is completely encoded in the time-dependent function a(t) which appears
in the metric components gµν . These are the dynamical variable in General
Relativity and satisfy the Einstein equations

Gµν = Rµν −
1

2
Rgµν = −8πGNTµν + Λgµν (5.2)

where Rµν and R are the Ricci tensor and scalar, respectively and Λ is the
Einstein cosmological constant, GN the Newton constant. Finally, Tµν is the
stress-energy tensor of all matter species which fill the Universe. This tensor
is symmetric and is covariantly conserved, ∇µT

µν = 0, where ∇ denotes the
covariant derivative. In most of the cases the matter can be describes as a
perfect fluid characterised by a energy density ǫ, pressure P and 4-velocity
uµ:

T µ
ν = (ǫ+ p)uµuν + P δµν (5.3)

The spatial part has to be isotropic consistently with the metric used and
the constituents of the fluid have to be comoving in the cosmological rest
frame, implying

T 0
0 = −ǫ , T i

j = P δij . (5.4)

Information on the particular fluid considered is encoded into the equa-
tion of state, relating pressure and energy density, P = P (ǫ). For radiation
(relativistic particles) P = ǫ/3, while for matter (nonrelativistic particles),
P = 0. Moreover, the covariant conservation of T µν for a perfect fluid leads
to the conservation law for the expanding universe

ǫ̇+ 3
ȧ

a
(ǫ+ p) = 0. (5.5)

Applying the Einstein equations to cosmology, given the previous form
of the stress-energy tensor and considering the FRW metric, we obtain the
following equations for the dynamics of the expansion:
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1. Friedmann equation, which relates the scale factor (and so the Hubble
expansion parameter H) to the total energy density of the universe

H2 ≡
(
ȧ

a

)2

=
8πGN

3

∑

i

ǫi −
k

a2
, (5.6)

where i indicates all the species.

2. Acceleration rate equation

ä

a
= −4πG

3

∑

i

(ǫi + 3pi). (5.7)

In terms of the critical density

ǫc =
3H2

8πGN

(5.8)

the Friedmann equation can be written in the form

Ω(a) =
ǫtot

ǫc
= 1 +

k

H2a2
(5.9)

where Ω(a) is the total energy density in unit of ǫc. A universe filled with a
critical energy density is flat (k = 0).

5.2 Equilibrium Thermodynamics

For much of its history, the Early Universe has been in thermal equilib-
rium to a good approximation. Considering a fluid composed by different
particles, the equilibrium is established by interactions processes such as
scatterings, which redistribute particle momenta and are crucial to reach ki-
netic equilibrium, and interactions where the number of particles of a given
species is not conserved, such as pair annihilations, which keep the chemical
equilibrium among different species. Since the Universe is expanding, equi-
librium is maintained if the rate of microscopic interactions Γ is larger than
the expansion rate H:

Γ > H ⇒ Equilibrium

In this case the evolution of the system is quasi-static, and can be consid-
ered as a sequence of different thermodynamic equilibrium phases with a
temperature T decreasing as a−1. It is then possible a description based on
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macroscopic quantities such as the number density, the energy density and
pressure defined using the methods of the statistical mechanics. We start
with the phase space-distribution function f(x,p, t), 1 which gives the num-
ber of particles at a given point and at a given time. For a homogeneous
and isotropic background the distribution function depends only on the time
and on the modulus of momentum. Integrating over the physical volume we
obtain the particle number density

n(t) = g

ˆ

d3p

(2π)3
f(p, t) (5.10)

and, similarly, the diagonal terms of the energy-stress tensor

T 0
0 =− ǫ = −g

ˆ

d3p

(2π)3
Ef(p, t) (5.11)

T i
i =P = g

ˆ

d3p

(2π)3
p2

3E
f(p, t) (5.12)

where g is the number of internal degrees of freedom, such as helicity.
For a species i in equilibrium, the phase space distribution function f is

given by the Fermi-Dirac (FD) or Bose-Einstein (BE) distribution:

fi(p, T ) =
1

e

(

Ei−µi
Ti

)

± 1
(5.13)

where +/− corresponds to the FD/BE statistics and µi the chemical potential
of the species, typically parametrized in terms of ξi = µi/Ti. From these
equilibrium distributions we obtain the number density, the energy density
and the pressure for the following cases:

- relativistic limit (T ≫ m,µ)

ni =

{
(3/4)(ζ(3)/π2)giT

3
i (FD)

(ζ(3)/π2)gT 3 (BE)
(5.14)

ǫi =

{
(7/8)(π2/30)giT

4
i (FD)

(π2/30)gT 4 (BE)
(5.15)

Pi =ǫi/3 (5.16)

where ζ(3)=1.202.

1p = |p| is the physical momentum such that E =
√
p2 +m2
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- non-relativistic limit (T ≪ m) and µ ≪ m

ni ∼gi

(
miTi

2π

)3/2

e(−mi±µi)/Ti (5.17)

ǫi ∼mini +
3

2
Tini (5.18)

Pi ∼Tini ≪ ǫi. (5.19)

It is useful to introduce the particle-antiparticle asymmetry of a fermionic
species, in particular for each neutrino flavor α = e, µ, τ it writes

Lα =
nα − nα

nγ

=
1

12ζ(3)

(
Tν

Tγ

)3

(π2ξα + ξ3α) . (5.20)

with Tγ and Tν the photon and neutrino temperatures, respectively. When
the thermal equilibrium holds, the entropy per coming volume is conserved.
Introducing the entropy density s, which scales as ∼ a−3,

s ≡ S

V
=

ǫ+ P

T
, (5.21)

the total entropy density in relativistic species can be written as

sR =
4

3
ǫR ≡ gs

2π2

45
T 3, (5.22)

where for vanishing chemical potential

gs =
∑

i,boson

gi

(
Ti

Tγ

)
3 +

7

8

∑

j,fermion

gj

(
Tj

Tγ

)3

. (5.23)

At T ∼ mi, the i-th species becomes non-relativistic and its contribution
becomes negligible, leading to a decrease of gs. All the other species which
are still in thermal equilibrium with the i particles are reheated by the entropy
released by the i− i annihilations.

5.2.1 Out of equilibrium: Boltzmann equation

Even if the Universe has been mostly in equilibrium, luckily there have
been a number of relevant departures from thermal equilibrium, such as neu-
trino and background radiation decouplings, primordial nucleosynthesis, etc.

As seen before, a rough criterion to establish if a fluid of particles is
coupled to the primordial plasma is given by the comparison of the interaction
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rate of the particles with the expansion rate of the Universe. Even if this
criterium provides a reliable estimate of the decoupling temperature, as we
will see later, a proper description of the phenomenon is obtained following
the evolution of the phase space particle distribution function, governed by
the Boltzmann equation

L̂[f ] = Ĉ[f ] (5.24)

where L̂ is the Liouville operator and Ĉ is the collisional integral opera-
tor. The homogeneity and isotropy assumptions of the FRW universe imply
that the phase space distribution function depends only on time and on the
modulus of the momentum, p, (or equivalently on energy E), f(p, t). The
relativistic generalization of the Liouville operator assumes the form:

L̂[f((p, t)] = E

(
∂f(p, t)

∂t
−Hp

∂f(p, t)

∂p

)
. (5.25)

In terms of the number density of the species a,

na(t) = ga

ˆ

d3p

(2π)3
fa(p, t) (5.26)

and integrating by parts, the Boltzmann equation can be written as

ṅa + 3Hna = ga

ˆ

d3p

(2π)3 Ea

Ĉ[f ] (5.27)

with ga the number of internal degrees of freedom of the species a. The term
Ĉ[f ] depends on the distributions of the all particles interacting with a. For
its expression we consider, for simplicity, the particular case of two-body
processes a+ b ↔ c+ d:

Ĉ[fa; fb, fc, fd] =
1

Ea

ˆ

dπ(pb)dπ(pc)dπ(pd)(2π)
4δ(4)(pa + pb − pc − pd)

×
[
|Mcd,ab|2fc(pc, t)fd(pd, t)− |Mab,cd|2fa(pa, t)fb(pb, t)

]
,

(5.28)

where we have neglected all the quantum statistical factor. M denotes the
invariant amplitude for the processes and dπ(p) is the relativistic invariant
measure

dπ(p) =
d3p

(2π)3 2E(p)
. (5.29)

In the Boltzmann equation [Eq. (5.27)], the term 3Hna accounts for the
dilution effect due to the expansion of the Universe and the collisional term
accounts for interactions that change the number of particles a. In absence
of interactions, the solution is na ∝ a−3.
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5.3 Neutrino decoupling and relic neutrino

formation

In the Early Universe the three flavour active left-handed neutrinos να,
α = e, µ, τ , and their antiparticles are thermally excited in the primeval
plasma of particles, being in thermal equilibrium with charged leptons, baryons
and photons by weak interactions. In this regime the neutrino distribution
is the Fermi-Dirac one, with a negligible contribution of their mass to the
energy:

fνα(p) =
1

e(
p
T
−ξα) + 1

, fνα(p) =
1

e(
p
T
+ξα) + 1

, (5.30)

with p the physical momentum and T = Tν = Tγ. The neutrino (and antineu-
trino) energy density and pressure are given by the expression Eq. (5.15) and
Eq. (5.19).

Due the expansion of the Universe, the temperature decreases and the
neutrino interaction rate decreases faster than the Hubble rate.
When Γν(T ) < H(T ) occurs, the weak rates are then inefficient to keep neu-
trinos in equilibrium: the neutrino species decouple from the electromagnetic
plasma. The leading processes contributing to equilibrium are scattering over
relativistic electrons/positrons and pair conversions, νe ↔ νe, νν ↔ e+e−.
The corresponding (thermally averaged) cross section times velocity is of the
order of:

〈σv〉 ∼ G2
FT

2. (5.31)

Therefore, the weak interaction rate for neutrinos is given by

Γν ∼ 〈σv〉 ne ∼ G2
FT

2 T 3 ∼ G2
FT

5, (5.32)

with ne is the electron/positron number density.
The Hubble parameter in the radiation-dominated epoch, given by the

Eq. (5.47), is expressed here in terms of the Planck mass, mP l.

H(T ) ∼ √
g∗

T 2

mP l

(5.33)

where g∗ is the effective number of degrees of freedom. We will define it
later [Eq. 5.46]. The decoupling temperature of neutrinos is defined as the
temperature at which the two rates become equally: H(Tν,d) = Γν(Tν,d). It is
given by

Tν,d =

( √
g∗

G2
FmP l

)1/3

∼ g1/6∗ ∼ O(1 MeV). (5.34)
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A more accurate computation of the decoupling temperature comes from
the solution of the kinetic equation in the limit of instantaneous decoupling
[112, 113], gives the the following values

Tνe,d = 1.87 MeV, Tνµ/τ ,d = 3.12 MeV, (5.35)

. The slightly smaller value for the νe species is due to the fact they remain in
equilibrium a bit longer since they can also have CC interactions (in addition
to the NC) with the plasma composed by only electrons and positrons at that
temperature.

After the decoupling, neutrinos freely propagate becoming transparent to
the Universe forming the Cosmic Neutrino Backgorund (CNB). They repre-
sent an hot relic, in the sense that they decouple when they are relativistic
particles. In this way their FD distribution remains unchanged except for the
effect of redshift of the physical momentum. In particular, the distribution in
terms of physical momenta is entirely specified by a temperature parameter
which scales as Tν,dad/a, with ad the scale factor at the decoupling. Actually
some small thermal distortions will be imprinted in the neutrino distribution
with respect to a standard FD function [114, 115] as a result of e−- e+ an-
nihilation occurring at T ∼ me.

2 Indeed the decoupling of neutrinos is not
really instantaneous but it takes place over an extended range of time and
more energetic neutrinos will be kept in equilibrium longer.

Concerning the temperature of the photons Tγ, it simply scales as a−1 as
long as electron/positron pairs are relativistic. When the temperature drops
below the electron mass me, the electron and positrons annihilate heating the
photons. Assuming the neutrinos undisturbed by pair annihilations (except
for a small fraction due to the non-instantaneous decoupling but not taken
into account here), the neutrino to photon temperature ratio assumes the
value [see Fig. (5.1)]:

Tν

Tγ

=

(
4

11

)1/3

. (5.36)

Today, the number density of cosmic neutrinos for each flavour is nν =
56 cm−3. Even if they are not detected yet, they are well established by cos-
mological observables at different epochs, contributing to radiation at early
times and to matter at later times.

2The final spectrum of ν is not modified if all particles in contact with them are
relativistic during the full decoupling period. This is not the case for e−, e+ at temperature
of annihilation Tann ∼ me where the effect of the me becomes important.
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Figure 5.1: Evolution of the the neutrino to photon temperature ratio during the
process of e e−-e+ annihilations.

5.4 Big-Bang Nucleosynthesis

Big Bang Nucleosynthesis (BBN) is the epoch of the Early Universe when
the primordial abundances of light elements were produced, in particular 2H,
3He, 4He and 7Li offering the oldest picture of the Early Universe and of its
evolution up to the MeV scale. Predictions of the abundances of the light
elements, based on weak and nuclear processes at the MeV scale or lower,
are in good overall agreement with those inferred from observational data,
though the latter are still affected by systematics.

Soon after neutrinos decouple, charged-current weak neutron-proton in-
terconversions also become too slow to guarantee the n− p chemical equilib-
rium. For temperatures below Td ∼ 0.7 MeV, the n/p density ratio departs
from its equilibrium value and freezes out at the asymptotic value

nn

np

=
n

p
= e

−∆m
Td ∼ 1

6
(5.37)

where ∆m = 1.29 MeV is the neutron-proton mass difference. This ratio is
then reduced to the value n/p = 1/7 by neutron decays, when the Universe
is several hundred seconds old, a time comparable to the neutron lifetime τn.

At temperature TBBN ∼ 0.08 MeV, nuclear reactions burn a relevant
fractions of free nucleons into light nuclei, starting from deuterium formation

n+ p ↔ D + γ. (5.38)

At earlier times the newly-formed deuterons are photodissociated by high
density and energetic photons. Therefore the large photon-baryon (i.e, nu-
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cleon) density ratio η−1
B = (nB/nγ)

−1 ∼ 109, delays deuterium synthesis until
the photo-dissociation process become ineffective (deuterium bottleneck).

As soon as deuterium forms, a whole network of nuclear reaction takes
place producing heavier nuclei up to 7Li, Fig. 5.2. 3 In particular, the deu-
terium is quite immediately burned into 4He, which has the largest binding
energy per nucleon among light nuclei [111, 116]. A crude but accurate esti-

Figure 5.2: Chain of the most relevant nuclear reaction for the synthesis of the
primordial abundance.

mate of the abundance 4He, main outcome of the BBN, is obtained assuming
that basically all neutrons are captured in Helium nuclei, gives the Helium
mass fraction YP :

YP =
4n4He

nB

=
4n/2

n+ p
=

2n/p

1 + n/p
≃ 0.25. (5.39)

A more accurate determination of the primordial abundances of 4He and
especially of the other light nuclei requires the numerical solution of a set of
coupled kinetic equations for the nuclei together with the equation for the
expansion of the Universe and conservation equation of both total stress-
energy tensor and baryon number [117]. The calculation of the primordial

3The production of heavier nuclei such as 12C and 16O, is disfavored since there are
not stable isotopes with A = 5, 8 and moreover, Coulomb barrier starts to be significant.
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abundance is affected by experimental uncertainties in the nuclear reaction
rates and the free neutron lifetime τn. In particular the latter is the most
important parameter in determine YP . The experimental value is τ expn =
880.1± 1.1 s [14].

Cosmological neutrinos influence the production of the primordial light
elements in two ways. First, νe and νe directly participate in the charged cur-
rent weak interactions which rule the neutron/proton chemical equilibrium:

(a) νe + n → e− + p , (d) νe + p → e+ + n

(b) e− + p → νe + n , (e) n → e− + νe + p (5.40)

(c) e+ + n → νe + p , (f) e− + νe + p → n

To get an accurate theoretical prediction for light-element abundances, the
processes (a) − (f) require a careful and accurate treatment. Since νe and
νe enter the BBN equations at a fundamental level, any change in the neu-
trino momentum distributions can shift the n/p ratio freeze out temperature
and then modifies the primordial 4He abundance. An example is represented
by electron neutrino-antineutrino asymmetry parameterized by the chemical
potential ξe, which leads to the chemical equilibrium condition

n

p
∼ e(−

∆m
T

−ξe) . (5.41)

Second, cosmological neutrinos of each flavor contribute to the radiation en-
ergy density that governs the expansion rate of the Universe before and dur-
ing BBN epoch. Changing the expansion rate alters the n/p ratio at the onset
of BBN and hence the light element abundances, especially the 4He abun-
dance. The expression of the radiation energy density in terms of relativistic
degree of freedom, included neutrinos, is discussed in the next section.

Light element observations Extracting primordial yields from measure-
ments performed in astrophysical environments is not a trivial task, since
the latter are altered by the stellar activity throughout the history of the
Universe and then they are evolved with respect to the primordial composi-
tion. Indeed, the abundances are observed at much later epochs after stellar
nucleosynthesis has already begun, which can also produce heavy elements
such as C, N, O, and Fe. For this reason, one considers astrophysical sites
with low metal abundances, in order to measure light element yields which
are closer to primordial ones. For sake of brevity and also due to the relevance
for our work, we will discuss only the Deuterium and Helium abundances.

• Deuterium. It is believed that astrophysical sources of deuterium are
absent due to its burning in the stellar evolution processes. For this rea-
son, any astrophysical deuterium measurement can represent a lower
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bound for its primordial abundance. The best criterium to evaluate the
deuterium abundance is the D/H ratio from the observation of the ab-
sorption lines of hydrogen-rich clouds at high redshifts, on the light of
background quasars. This is a difficult measurement which requires the
right combination of redshift, hydrogen column density and internal
velocity structure of the absorbing gas. Consequently, there are only
few measurements that are useful for the primordial deuterium deter-
mination. An average value of the D/H ratio was obtained considering
seven determinations from different quasar absorption system [118]

D/H = (2.87± 0.22)× 10−5. (5.42)

More recently, analyzing a high-quality spectrum of the metal-poor
damped Lyman alpha system (DLA), which presents near-ideal prop-
erties for an accurate deuterium determination, was found the following
value for D/H [119]

D/H = (2.535± 0.05)× 10−5. (5.43)

• Helium. The situation concerning the primordial abundance of 4He is
different form the deuterium case, being the helium content enriching
by the stellar burning. This process is correlated with the metallicity
of the astrophysical objects due to the fact that also the heavier nu-
clei are the product of nuclear processes. Since in the Early Universe
the amount of nuclei heavier then 7Li is negligible, the Helium mass
fraction YP is obtained extrapolating the YP - O/H and YP - N/H cor-
relations to zero metallicity and then correcting for a model-dependent
star evolution. In particular, very important are the observations of
helium and hydrogen emission lines from the recombination of ionized
hydrogen and helium in low-metallicity extragalactic HII regions. The
estimated value for YP together with the possible systematic effects
which dominate the uncertainty is given by [196]

YP = 0.2565± 0.0010(stat.)± 0.0050(syst.). (5.44)

5.5 Radiation content of the Universe and

Neff

The total energy density and pressure of radiation can be expressed in
terms of the photon energy density for each polarisation degree of freedom
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as follows:

ǫR = 3PR = g∗
π2

30
T 4
γ , (5.45)

where g∗ is the effective number of degrees of freedom contributing to ǫR. For
particles with relativistic FD or BE distributions and ξ = 0, one has:

g∗ =
∑

i,boson

gi

(
Ti

Tγ

)4

+
7

8

∑

j,fermion

gj

(
Tj

Tγ

)4

, (5.46)

where the additional factor of 7/8 comes from the differences in the first
moments of relevant distributions and we allow for different temperatures
for different species. The Friedmann equation [Eq. (5.6)], restricting to a
spatially-flat Universe favored by present observations, gives the Hubble pa-
rameter during the radiation-dominated era:

H(T ) =

√
8πGN

3
ǫR =

√
8πGN

3
g∗
π2

30
T 4
γ (5.47)

At temperatures 1 MeV ≤ T ≤ 100 MeV, the equilibrium plasma consists
of photons, electrons and positrons and three types of neutrinos and antineu-
trinos, therefore the effective number of relativistic species is g∗ = 10.75.

After the e+ − e− annihilation, for temperature T < me, the remaining
relativistic degrees of freedom are photons and the three light neutrinos. The
Eq. (5.45) reads:

ǫR = ǫγ

(
1 +

7

8

(
4

11

)4/3

3

)
, (5.48)

where we remark that the factor 4/11 comes form the heating of the pho-
tons due to the e+ − e− annihilation. However the above expression holds
strictly if: the limit of instantaneous neutrino decoupling is considered, the
neutrino distributions are standard FD function with zero chemical potential
and of course in absence of other relativistic species. In order to take into
account possible deviation from these assumption it is useful to define the
radiation density in terms of the effective number of neutrino species Neff,
which represent the non electromagnetic radiation content of the Universe:

ǫR = ǫγ

(
1 +

7

8

(
4

11

)4/3

Neff

)
(5.49)

The Standard Model expectation (plus active neutrino oscillations) for this
parameter is [115]

NSM
eff = 3.046. (5.50)
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where the slightly excess with respect to 3 is to due to the non instantaneous
neutrino decoupling thanks to which neutrinos share a small part of the
entropy release after the e+ − e− annihilation. This process produces non-
thermal distortions on the neutrino spectra especially for νe. This standard
value is only marginally modified even accounting for non standard neutrinos-
electrons interactions [121].

Furthermore, the presence of a cosmological neutrino-antineutrino asym-
metry, when neutrinos are still interacting, implies that their spectrum presents
a FD form characterized by neutrino degeneracy parameters ξα = µα/Tν ,
α = e, µ, τ leading to a contribution given by

Neff = 3 +
∑

α

[
30

7

(
ξα

π

)2

+
15

7

(
ξα

π

)4
]
. (5.51)

This means that, even without additional relativistic particles, a non-vanishing
flavor neutrino asymmetry leads to Neff > 3 (even if a degeneracy parameter
of order ξα ≥ 0.3 is needed to start having a sizeable contribution). However,
a combined analysis of active neutrino flavor oscillations and BBN has led
to an almost standard value for the effective number also in the presence of
neutrino asymmetries, with Neff < 3.2 [122]. We will come back later on the
role of the neutrino-antineutrino asymmetry on Neff, especially in relation to
the active-sterile neutrino oscillations.

The most important question concerning Neff, is the possible existence of
other light particles in addition to the three standard neutrinos. In this case
we can parametrize the radiation content Eq. (5.49) as follows

ǫR = ǫγ

[
1 +

7

8

(
4

11

)4/3

(3.046 +∆Neff).

]
(5.52)

The extra radiation may be accounted for by different particles, such
as sterile neutrinos totally or partially thermalised, axions and axion-like
particles, hidden sector photons, majorons, or even gravitons [123, 124, 125,
126, 127]. Among them, in our study, we consider the presence of light sterile
neutrinos (∆m2

s ≤ 1 eV2) oscillating with the active ones.

5.6 Extra-radiation: cosmological observable

effects

Cosmological measurements represent a powerful tool to probe the num-
ber of relativistic degrees of freedom Neff and measuring it is still of great
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interest today. Indeed, the primordial nucleosynthesis and the spectra of both
CMB anisotropies and matter fluctuations can provide strong constrains on
the radiation content ǫR and therefore on Neff. In particular, this number
enters directly the Hubble expansion rate in the radiation dominated regime,
Eq. (5.47), affecting the Early Universe observables.

- Impact on BBN

Focusing on the sterile neutrinos, if these additional states are produced
before the active-neutrino decoupling, they could acquire quasi-thermal
distributions (depending of their temperature) and behave as extra de-
grees of freedom at the time of primordial nucleosynthesis. This would
anticipate weak interaction decoupling leading to a larger neutron-to-
proton ratio, eventually resulting into a larger 4He fraction. Further-
more, sterile neutrinos can distort the νe phase space distribution via
flavor oscillations with the active ones, leading to a possible effect on
the Helium and Deuterium abundance. We will examine this aspect in
more detail in the following chapter, presenting our results.

- Impact on CMB and LSS

Unlike BBN, both the later time observables, CMB anisotropies and
LSS distributions, are not sensitive to the flavor content of the neutrino
sector, but only to Neff and to the mass of the neutrino species.

If additional degrees of freedom are still relativistic at the time of CMB
formation, Neff can be constrained by a detailed study of the CMB
angular power spectrum, especially when combined with other cosmo-
logical probes. In the Fig. 5.3 by the 9-years Wilkinson Microwave
Anisotropy Probe Satellite (WMAP9) results [128], are represented the
effects of changing the Neff value on the CMB spectrum:

• A first effect of increasing Neff is the decrease of the comoving sound
horizon at the decoupling, rs, and so the decrease of the angular size of
the acoustic scale which determines the peak positions. However this
effect is degenerate with the present-day Hubble parameter H0.

• Another important effect of extra radiation density is the delay of the
epoch of matter-radiation equality (zeq) and thus the enhancement of
the first and second peaks via the Early Integrated-Sachs-Wolfe (ISW)
effect.4 This effect can be compensated by increasing the cold dark mat-
ter density ΩDM , which brings the matter-radiation equality epoch back

4This effect represents an additional redshift of the photon temperature given by the
fact that, at time of decoupling, the Universe is still near the beginning of the matter
domination and there is still enough radiation around.
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Figure 5.3: Illustration of four effects in the CMB anisotropy that can compen-
sate for a change in Neff . The nine-year WMAP data are represented
by the filled circles with errors (black), while the ACT data in green
[136], and the SPT data in violet [132]. Figure taken from [128].

into agreement. Because of the strong Neff-ΩDM and Neff-H0 degenera-
cies, measurements of the CMB acoustic peaks alone do not completely
constrain Neff .

• The CMB spectrum is also affected by the anistropic stress (πν) of
free-streaming relativistic neutrinos, defined by:

πij =

ˆ

d3p

(2π)3
p

(
pipj −

1

3
δij

)
f(x,p, t). (5.53)

This stress suppresses the amplitude of higher harmonics (l > 200)
[129, 130] and is somewhat degenerate with the effects of changing the
primordial fluctuation amplitude.

• The problem of the degeneracies can be alleviated combining the
CMB measurements with other data such as the baryonic Acoustic
Oscillations (BAO) and Hubble Space Telescope (HST) data, and in
particular with measurements of the CMB damping tail, occurring at
very high multipoles of the spectrum (l ≥ 1000), by Atacama Cosmo-
logical Telescope (ACT) and South Pole Telescope (SPT) experiments
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[131, 132]. Indeed, increasing the expansion rate increases the diffusion
length of the photons relative to the sound horizon, 5 which enhances
the Silk damping of the small-scale anisotropy. However this effect is
degenerate with the Helium abundance [133].

Further information can came from the effect of the neutrino mass on
the LSS. Indeed, small-scale neutrino density fluctuations are damped,
in a scale-dependent way, by the free-streaming caused by small neu-
trino masses [134]. Moreover, other bounds on extra radiation can be
derived from a joint constraint analysis on Neff and

∑
mν , since extra

relics could coexist with massive neutrinos or they could themselves
have a mass [135].

5.6.1 Present observable constraints

For a long time the WMAP experiment has provided the best constraints
on the CMB temperature spectrum for (l < 1000), complemented by smaller
angular scale (l > 1000) observations performed by ACT and SPT exper-
iments. Combing the CMB data with other experiments it is possible to
obtain information on the Neff and on the neutrino mass. In the last few
years a possible cosmological hint of extra radiation (especially in the form
of sterile neutrino) (see e.g. [12, 137]) was found by combining the results
in a best fit of WMAP, SDSS II-Baryon Acoustic Oscillations and Hubble
Space Telescope data, yielding a 68 % C.L. range on Neff = 4.34+0.86

−0.88 [138]
for a ΛCDM universe. This number has stimulated a long series of inves-
tigations on the possible existence of exotic particles, in particular sterile
neutrinos. The recent results of WMAP-9 [128], SPT [139] and ACT [140],
exploiting the damping tail features at high multipoles, have weakened this
evidence to less than 2-σ. Moreover, a recent important contribution in con-
straining the extra radiation and neutrino mass is represented by the first
data release in March 2013 of the Planck collaboration, a satellite experiment
with unprecedented sensitivity in the high multipole range. The Planck re-
sults prefer a value Neff = 3.30 ± 0.27 at 68 % C.L., compatible with the
standard expectation [135], leaving nevertheless the opportunity for an extra
species, if combined with the Hubble Telescope data. This discrepancy is due
to the smaller Planck value of the Hubble constant (HPlanck

0 = (67.3 ± 1.2)
km s−1 Mpc−1) with respect to the HST one (HHST

0 = (73 ± 2.4) km s−1

Mpc−1) [141]. The tension between the CMB estimations and the astrophys-
ical measurements of the Hubble parameter represents a non trivial issue,
due to the strong degeneracy between ΩDM and H0. In particular, the shift

5Comoving distance travelled by a wavefront.
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necessary to match the HST data would require a large change in ΩDM which
is disfavored by the Planck data.

Concerning the BBN constraint on sterile neutrino, one fully thermalized
sterile neutrino is still marginally allowed [142, 119]. Then, a value corre-
sponding to two sterile states appears largely excluded [143].

In oder to summarize the results from different experiments, in Table 5.1
we report the different recent constraints on Neff and on neutrino mass.

CMB combined Neff

∑
ν (eV)

WMAP9+ACT+SPT; Yp fixed 3.89 ± 0.67 (68% CL) < 1.5 (95% CL)
WMAP9+ACT+SPT+BAO+H0; Yp fixed 3.84 ± 0.40 (68% CL) < 0.44 (95% CL)
WMAP9+ACT 2.79 ± 0.56 (68% CL) -
Planck+ WMAP+BAO+ highL 3.30 ± 0.27 (68% CL) < 0.3 (95% CL)
Planck+ WMAP+BAO+ highL +H0 3.52 ± 0.48 (68% CL) -

BBN < 4 (95% CL) -

Table 5.1: Different recent constraints on Neff and on neutrino mass from data
of cosmological observations.
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Chapter 6

Active-sterile neutrino
oscillations in the Early
Universe

In recent years a renewed attention has been devoted to low-mass sterile
neutrinos (m ∼1 eV), after intriguing but controversial hints coming from
precision cosmological measurements and laboratory oscillation experiments.
Sterile neutrinos can be produced by oscillations with the active neutrinos
in the Early Universe, contributing to the radiation content beyond photons
and ordinary neutrinos and leaving possible traces on different cosmological
observables. In order to determine the relic abundance of sterile neutrinos,
it is necessary an accurate solution of the kinetic equations for the evolution
of the active-sterile ensemble. In this context, we performed a detailed study
of the kinetic equations for the active-sterile neutrino ensemble, removing
several approximations adopted in the previous literature. This goal has re-
quired, in addition to an accurate characterization of the physical processes
contributing to the neutrino flavor conversions, also the development of ad-
vanced numerical codes. All the original results presented in this thesis are
included in the following references:

• A. Mirizzi, N. Saviano, G. Miele and P. D. Serpico, “Light sterile neu-
trino production in the early universe with dynamical neutrino asym-
metries,” Phys. Rev. D 86, 053009 (2012).

• N. Saviano, A. Mirizzi, O. Pisanti, P. D. Serpico, G. Mangano and
G. Miele, “Multi-momentum and multi-flavor active-sterile neutrino
oscillations in the early universe: role of neutrino asymmetries and
effects on nucleosynthesis,” Phys. Rev. D 87, 073006 (2013).
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• A. Mirizzi, G. Mangano, N. Saviano, E. Borriello, C. Giunti, G. Miele
and O. Pisanti, “The strongest bounds on active-sterile neutrino mixing
after Planck data,” Physic Letter B 726, 8-14 (2013).

6.1 Light sterile neutrinos and cosmology

As discussed in the Sec. 1.4.3, light sterile neutrinos, m ∼ 1 eV, mix-
ing with the active ones, have been suggested to solve different anomalous
results observed in short-baseline and reactor neutrino experiments. Many
analyses have been performed to explain the anomalies and scenarios with
one (dubbed “3+1”) or two (“3+2”) sub-eV sterile neutrinos [55, 57, 144]
have been proposed to fit the different data. The search for sterile neutrinos
in laboratory experiments is presently open. Indeed, since each experimental
measurement has its own systematic uncertainties, it is important to use as
many observations as possible to corner sterile neutrinos (see, e.g., [145]). In
this context, cosmological observations represent a valid complementary tool
to probe these scenarios, being sensitive to the number of neutrinos and to
their mass at eV scale (see, e.g., [146, 147, 148]). As discussed in the previous
chapter, the CMB measurements slightly favor the existence of some extra
radiation and one fully thermalized sterile neutrino is still marginally allowed
by BBN. However even a single extra thermalized sterile neutrino with mass
m ∼ 1 eV appears to be inconsistent with mass bounds from CMB and LSS
data [12, 137, 149, 150, 58, 135].

Given this partially contradictory situation and the existence of the lab-
oratory anomalies, it is necessary to study the physical conditions under
which the sterile neutrino production can actually occur. As already men-
tioned, sterile neutrinos are produced in the primordial plasma by the mixing
with the active species. Therefore, in order to assess their abundance it is
necessary to solve the quantum kinetic equations for the the active-sterile
oscillations system [60, 151]. This problem has been investigated in a long
series of papers (see e.g. [152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162,
163, 164, 165, 166, 167, 168, 169, 179, 171, 172, 173]), finding a broad range
of possible outputs depending on the sterile mass and mixing parameters.
Due the numerical challenges of the problem, involving non-linear refractive
effects and neutrino scatterings (see Chapter 2), different approximations
have been adopted. In particular, most of the previous studies have solved
the equations in a simplified (1+1) scenario in which only one sterile neu-
trino mixes with an active one. Recently, also multi-flavor studies have been
performed [168, 172]. In particular, in a (3+2) scheme with mass and mixing
parameters as suggested by experimental anomalies, sterile neutrinos would
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be completely thermalized in the Early Universe, creating a tension with
cosmological observations as has been mentioned above.

The purpose of our work is, therefore, to revisit the production and ther-
malization of sterile neutrinos in the Early Universe for multi-flavor scenar-
ios, going beyond several approximations used in the previous studies. In
particular, motivated by the recent data release of the Planck experiment,
we performed an extensive scan of the sterile neutrino parameter space in a
3+1 model, in the range (10−5− 102) eV2 for the active-sterile mass splitting
∆m2

st and accounting, for the first time, the possibility of two non-vanishing
active-sterile mixing angles. Once more we confirm the tension between the
cosmological data and the mass and mixing suggested by the laboratory hints,
see Sec. 6.4. A possible escape route to relieve this tension would be the sup-
pression of the sterile neutrino production introducing a primordial neutrino
asymmetry among the active species. At this regard, in Sec. 6.5 we present
our results in (3 +1) and (2+1) scenarios. At first we perform an exploratory
investigation solving the evolution equations assuming an equal thermal mo-
mentum for all the neutrino ensemble (the so called “average-momentum
approximation”). Then we remove this assumption performing for the first
time a multi-momentum treatment in a multi-flavor scenario. The impact of
active-sterile conversions on the BBN have been also explored.

6.2 Set-up of the flavor evolution

(3+1) neutrino framework In the 3+1 scenario, the flavor neutrino basis
is constituted by the three active neutrinos νe, νµ, ντ and by a sterile one νs.
The flavor eigenstates να are connected to the mass eigenstates νi (i = 1, . . . 4,
ordered by growing mass) by a unitary matrix U through [174, 13]

να = U∗
αi νi , UU † = U †U = I , (6.1)

Neglecting for the moment arbitrary phases responsible for CP violation ef-
fects, the matrix U can be parameterized as a product of 4×4 Euler rotation
matrices Rij acting in the (i, j) mass eigenstate subspace, each one charac-
terized by a mixing angle θij. According to [175] one can write

U = R34R24R23R14R13R12 , (6.2)

where the flavor eigenstates are ordered in such a way that (νe, νµ, ντ , νs) =
(ν1, ν2, ν3, ν4) if all angles are vanishing. In the limit of the three mixing
angles θi4 vanish, we have

lim
θi4→0

U =

(
U(θ12, θ13, θ23) 0

0 1

)
, (6.3)

109



where U is the 3× 3 unitary mixing matrix for the active neutrinos as define
in the Eq. (1.8).

In our study we fix the values of three active mixing angles to the current
best-fit from global analysis of the different active neutrino oscillation data
as in the Table (1.2):

sin2 θ12 = 0.307 , sin2 θ23 =0.398 , sin2 θ13 = 0.0245 . (6.4)

Moreover, we neglect CP violating effects in the active sector.
Concerning the mixing angles between the active neutrinos and the sterile

one, we assume (according to phenomenological studies) that at most two
mixings are non vanishing, in particular we put Uτ4 = 0. We will specify the
values chosen later.

Coming to the 4ν mass spectrum, it is parameterized as [176]

M2 = diag(m2
1,m

2
2,m

2
3,m

2
4) = diag

(
0 ,+∆m2

sol ,∆m2
atm ,∆m2

st

)
, (6.5)

where the solar and the atmospheric mass-square differences are given

∆m2
sol/eV

2 = 7.54× 10−5 , ∆m2
atm/eV

2 = 2.43× 10−3, (6.6)

Concerning the values of the sterile mass and mixing parameters, we will
specify them later.

(2+1) neutrino framework In order to reduce the numerical complexity
of the complete 3+1 problem, sometimes it is useful to characterize the flavor
evolution in a simplified (2+1) scenario, composed by only two active neu-
trino species plus the sterile one. In particular, one can consider two different
sub-sectors associated with (∆m2

sol, θ12) and (∆m2
atm, θ13), respectively. After

checked that, for the cases analized, there are marginal differences in the
flavor evolution in these two sub-sectors, in the following we will refer only
to the (∆m2

atm, θ13).
The mass-squared matrix is consequently given in terms of the atmo-

spheric mass-squared difference and of the active-sterile mass splitting:

M2 = diag(0,∆m2
atm,∆m2

st). (6.7)

6.3 Equations of motion

As discussed in the Chapter 2, a proper characterization of the evolution
of a neutrino ensemble, simultaneously mixing and scattering in the Early
Universe, requires to use of the density matrix formalism. According to it
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the neutrino (antineutrino) ensemble for the scenario (3+1) is expressed in
terms of 4× 4 density matrices ̺ (¯̺): 1

̺(x, y) =




̺ee ̺eµ ̺eτ ̺es
̺µe ̺µµ ̺µτ ̺µs
̺τe ̺τµ ̺ττ ̺τs
̺se ̺sµ ̺sτ ̺ss


 , (6.8)

where, following [66], it has been worthwhile to introduce the following di-
mensionless variables which replace time, momentum and photon tempera-
ture, respectively

x ≡ ma y ≡ p a z ≡ Tγ a . (6.9)

The parameter m is an arbitrary mass scale which can be put e.g. equal
to 1 MeV or to me. The function a is normalized so that a(t) → 1/T at
large temperatures, with T the temperature of the particles in equilibrium.
Consequently, a−1 can be identified with the initial temperature of thermal,
active neutrinos.

In terms of these new variables, the equations of motion Eq. (2.5) for
the neutrino (and antineutrino) ensemble in the expanding Universe (∂t →
∂t −Hp ∂p) assume the form [151, 60, 66]

i
d̺

dx
=+

x2

2m2 y H

[
M2, ̺

]
+

√
2GF m2

x2 H

×
[(

− 8 y m2

3 x2 m2
W

Eℓ −
8 y m2

3 x2 m2
Z

Eν + Nν

)
, ̺

]
+

x Ĉ[̺(y)]

mH
, (6.10)

i
d ¯̺

dx
=− x2

2m2 y H

[
M2, ¯̺

]
+

√
2GF m2

x2 H

×
[(

+
8 y m2

3 x2 m2
W

Eℓ +
8 y m2

3 x2 m2
Z

Eν + Nν

)
, ¯̺

]
+

x Ĉ[ ¯̺(y)]

mH
, (6.11)

x
dε

dx
=ε− 3P . (6.12)

Here H denotes the properly normalized Hubble parameter

H ≡ x2

m
H =

x2

m

√
8π ǫ(x, z(x))

3M2
P l

=

(
m

MP l

)√
8πε(x, z(x))

3
, (6.13)

1The restriction to a 3× 3 matrix for the system (2+1) is trivial.
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where the total energy density ǫ and pressure of the plasma P are present
through their “comoving transformed” ε ≡ ǫ(x/m)4 and P ≡ P (x/m)4 re-
spectively. Since for the temperatures of interest, electrons and positrons are
the only charged leptons populating the plasma copiously, we can consider
to a very good approximation the total energy density composed by:

ε(x, z(x)) ≃ εγ + εe + εν , (6.14)

where

εγ =
π2

15
z4(x), (6.15)

εe =
1

π2

ˆ ∞

0

dy y3 [fFD(y/z(x)− φe) + fFD(y/z(x) + φe)] ≃
7 π2

60
z4(x),

(6.16)

εν =
1

2π2

ˆ

dy y3Tr[̺(x, y) + ¯̺(x, y)] ≡ 7

8

π2

15
Neff . (6.17)

In this expressions, we have assumed massless e± in the range of tempera-
ture considered and e± have a Fermi-Dirac distribution fFD(y/z(x)∓ φe) ≡
1/(exp(y/z(x)∓φe)+1) due to the fast electromagnetic interactions. Further,
the reduced electron chemical potential φe is, in general, a dynamical variable
that requires an extra equation (the electric charge conservation) in order to
be evolved consistently. In some cases, the electrons are only important when
their energy density is dominated by pairs, rather than by the e− excess due
to the baryon asymmetry. In this case φe can be put equal to zero.
Passing to the different terms involved in the evolution equations [Eqs. (6.10),
(6.11)], (see also Chapter 2), the first term on the r.h.s. is responsible for the
vacuum neutrino oscillations, where in the flavor basis M2 = U †M2U . The
successive term represents the second order contribution refractive term with
the background medium (electrons and positrons). The diagonal matrix Eℓ,
related to the energy density of the charged leptons under the previous as-
sumptions, is

Eℓ ≡ diag(εe, 0, 0, 0) = diag

(
7 π2

60
z4(x), 0, 0, 0

)
. (6.18)

The other two terms in the brackets correspond to the leading and the higher
order of the self-interactions, related, respectively, to the difference and to
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the sum of the density matrices of neutrinos and antineutrinos:

Nν =
1

2π2

ˆ

dy y2 {Gs(̺(x, y)− ¯̺(x, y))Gs + GsTr [(̺(x, y)− ¯̺(x, y))Gs]}
(6.19)

Eν =
1

2π2

ˆ

dy y3 Gs(̺(x, y) + ¯̺(x, y))Gs , (6.20)

where the matrix Gs = diag(1, 1, 1, 0) in flavor space contains the dimen-
sionless coupling constants. We remind the reader that these terms make
the EoMs non-linear and then represent the main numerical challenge in the
study of this physical system. Moreover we remark that, in the presence of
more than one active specie, the Nν matrix also contains off-diagonal terms.
The last term at r.h.s. of Eqs. (6.10) and (6.11) is the collisional term pro-
portional to G2

F . Using the approximate form [179] for the collisional terms,
we obtain the expressions

Ĉ[ρ(y)] =− i

2
G2

F m4({S2, ρ(y)− ρeq} − 2S(ρ(y)− ρeq)S+ {A2, (ρ(y)− ρeq)}
+ 2A(ρ̄(y)− ρ̄eq)A) (6.21)

Ĉ[ρ̄(y)] =− i

2
G2

F m4({S2, ρ̄(y)− ρ̄eq} − 2S(ρ̄(y)− ρ̄eq)S+ {A2, (ρ̄(y)− ρ̄eq)}
+ 2A(ρ(y)− ρeq)A). (6.22)

where ρeq is the equilibrium density matrix written in terms of the FD dis-
tributions. Even if these expressions have been derived for null neutrino
asymmetry, the correction induced by its presence would be negligible if
restricting to a small values for it (as those adopted in the following) (see,
e.g., [163]). In flavor space, the matrices S,A write S = diag(ges, g

µ
s , g

τ
s , 0) and

A = diag(gea, g
µ
a , g

τ
a , 0), respectively, and include the numerical coefficients

for the scattering and annihilation processes of the different neutrino flavors.
Numerically one finds [153]

(ges)
2 = 3.06 , (gea)

2 = 0.50 ,

(gµ,τs )2 = 2.22 , (gµ,τa )2 = 0.28 . (6.23)

We note that this collisional form, even though approximate, guarantees that:
i) the correct collisional term is found when integrating the EoMs over mo-
menta, ii) the overall lepton number conservation is preserved. This is not the
case for alternative damping prescriptions usually used in literature, where
the lepton number conservation is obtained imposing an additional equa-
tion (see e.g. [177]). We comment that possible minor inaccuracies in the
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y−dependence of the collisional terms are of slight significance for our appli-
cation.

Finally, Eq. (6.12) provides an evolution equation for the quantity z(x).
On the other hand, even when a fourth neutrino is populated in the plasma
via early oscillations (before the active neutrino decoupling), the correction
with respect to the initial value of ε is at most of the order of ∼ 10%. We
have tracked z(x) by using the integrated entropy ratio formula (see e.g. Eq.
(15) in [178], with dfi/dx at the right-hand side put to zero).

Concerning the initial conditions for the density matrix ̺, they are given
by

̺in = diag (feq(y, ξe), feq(y, ξµ), feq(y, ξτ ), 0) ,

¯̺in = diag (feq(y,−ξe), feq(y,−ξµ), feq(y,−ξτ ), 0) , (6.24)

with the equilibrium distribution

feq(y, ξ) = 1/[exp(y − ξ) + 1]. (6.25)

In absence of primordial neutrino asymmetry, ξα = 0.

6.3.1 “Average momentum” approximation

In the presence of continuous neutrino momentum distributions, to solve
the full set of EoMs (6.10) and (6.11) represents a computationally challeng-
ing and time consuming task. In our first study on the subject, in order to
perform a more treatable numerical treatment of the flavor evolution, which
nevertheless would be able to catch the main features of the complete calcu-
lation, we took advantage of a “average-momentum approximation” (called
also single-momentum approximation), based on the ansatz (and similarly
for antineutrinos)

̺(x, y) → fFD(y) ρ(x) . (6.26)

In terms of Eq. (6.26) the set of EoMs (6.10) and (6.11) can be rewritten as

i
dρ

dx
=+

x2

2m2 H

〈
1

y

〉[
M2, ρ

]
+

√
2GF m2

x2 H

×
[(

− 8〈y〉m2

3 x2 m2
W

Eℓ −
8〈y〉m2

3 x2 m2
Z

Eν + Nν

)
, ρ

]
+

Ĉ[ρ]

x4 H
(6.27)

i
dρ̄

dx
=− x2

2m2 H

〈
1

y

〉[
M2, ρ̄

]
+

√
2GF m2

x2 H

×
[(

+
8〈y〉m2

3 x2 m2
W

Eℓ +
8〈y〉m2

3 x2 m2
Z

Eν + Nν

)
, ρ̄

]
+

Ĉ[ρ̄]

x4 H
, (6.28)
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where by definition 〈g(y)〉 ≡
´∞

0
y2 g(y) fFD(y) dy/

´∞

0
y2 fFD(y) dy. Accord-

ing to this notation 〈y〉 = 3.15 and 〈1/y〉 = 0.456 -= 1/〈y〉. The non-linear
terms Nν and Eν of Eqs. (6.19,6.20) assume the form

Nν =
3 ζ(3)

4π2
{Gs(ρ− ρ̄)Gs + GsTr [(ρ− ρ̄)Gs]} , (6.29)

Eν =
7

8

π2

30
Gs(ρ+ ρ̄)Gs . (6.30)

In absence of primordial neutrino asymmetries, the equilibrium initial
conditions for the density matrix are ρ = I. Instead, in presence of non
vanishing primordial neutrino asymmetry, Lν = (nν − nν̄)/nγ, the initial
conditions for the density matrix ρ are written

ρin = diag

(
1 +

4

3
Le, 1 +

4

3
Lµ, 1 +

4

3
Lτ , 0

)
,

ρ̄in = diag

(
1− 4

3
Le, 1−

4

3
Lµ, 1−

4

3
Lτ , 0

)
, (6.31)

where the neutrino asymmetries in the different neutrino flavors α = e, µ, τ
are related to dimensionless chemical potentials ξα = µα/Tν through

Lα =
π2

12ζ(3)
(
Tν

Tγ

)3
(
ξα +

ξα
3

π2

)
. (6.32)

The expression in Eq. (6.31) is only valid at leading order in L.

Neutrino interaction terms and resonances conditions

We estimate the different dimensionless factors multiplying ρ and ρ̄ on the
r.h.s. of Eqs. (6.27) and (6.28), respectively. The vacuum oscillation term is
proportional, except for a matrix whose coefficients are O(1), to the quantity

Ωvac ≡
x2 ∆m2

2Hm2

〈
1

y

〉
= 2.3× 10−13

(
∆m2

eV2

)
x2

H
, (6.33)

Taking into account the e+e− pairs only, the matter potential in Eqs. (6.27)
and (6.28) apart from the different sign for neutrinos and antineutrinos, is
proportional to

Ωmatt =
8
√
2〈y〉GF m4

3m2
W

7 π2

60

(
1

x4 H

)
= 2.4× 10−20 1

x4 H
. (6.34)
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The asymmetric and symmetric terms given by the neutrino-neutrino
interactions are proportional to

Ωasy =

√
2GF m2

x2 H

3 ζ(3)

4 π2
= 1.5× 10−12 1

x2 H
,

Ωsym =
8
√
2〈y〉GF m4

3m2
Z

7 π2

240

(
1

x4 H

)
=

1

4

(
mW

mZ

)2

Ωmatt =
cos2 θW

4
Ωmatt .

(6.35)

Finally, the collisional term is proportional to

Ωcoll =
G2

F m4

2 x4 H
= 6.8× 10−23 1

x4 H
. (6.36)

The refractives terms can induce MSW-like resonances between the ac-
tives (a = e, µ, τ) and sterile state when they become O(∆m2

st), i. e. when
one of the following conditions is satisfied [163]:

Ωvac cos 2θas − Ωasy∆a + ΩsymΣaa + Ωmat = 0 for ν ,

Ωvac cos 2θas + Ωasy∆a + ΩsymΣaa + Ωmat = 0 for ν . (6.37)

The quantities ∆a and Σaa are given in terms of the difference and the sum
of the density matrix diagonal components, respectively. In particular for the
νe they reads: ∆e = 2(ρee− ρ̄ee)+ (ρµµ− ρ̄µµ)+ (ρττ − ρ̄ττ ) ∝ (2Le+Lµ+Lτ )
and Σee = (ρee + ρ̄ee) ≃ 2. These conditions are obtained in the limit of only
one mixing angle between the active and the sterile neutrinos, but can be
generalized to the multi-flavor case. We remark that the possible resonances
depend on the different mass hierarchies in the active and sterile neutrino
sector.

6.4 Bounds on sterile mass and mixing pa-

rameter space

In this section we present the bound update on the sterile mass and
mixing parameter space in (3+1) sterile neutrino scenarios using the value of
Neff = 3.30±0.27 at 68 % C.L. measured with a quite a good precision by the
Planck satellite experiment [135], as well as the constraint Ωνh

2 " 0.0045 at
95 % C.L. coming from the neutrino mass bound data of the same experiment.
We consider a broad range for active-sterile neutrino mass squared splitting
(which covers the regions where laboratory hints emerge) in both normal and
inverted mass hierarchies for the active and sterile states. For the first time,
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Figure 6.1: Schematic representation of the possible resonances occurring for dif-
ferent combinations of active (continuous curve) and sterile (dashed)
hierarchies.

we have taken into account the possibility of two non-vanishing active-sterile
mixing angles.

Depending on the sign of∆m2
31 and∆m2

41 = ∆m2
st, we define the following

cases:

- active normal mass hierarchy (NH, ∆m2
31 > 0)

- active inverted mass hierarchy (IH, ∆m2
31 < 0)

- sterile normal mass hierarchy (SNH, ∆m2
41 > 0)

- sterile inverted mass hierarchy (SIH, ∆m2
41 < 0).

In our study we consider the following mass splitting ranges:

10−5 ≤ ∆m2
41/eV

2 ≤ 102 (in SNH) , 10−5 ≤ |∆m2
41|/eV2 ≤ 10−2 (in SIH).

Concerning the SIH case, larger values of |∆m2
41| are disfavored due to the

cosmological bounds on the neutrino masses [128, 135]. For the mixing angles
between active and sterile neutrinos we choose as representative range 10−5 ≤
sin2 θi4 ≤ 10−1 (i=1,2,3).
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Since we want to perform an extensive scan of the sterile neutrino param-
eter space, we follow the evolution of the [Eqs. (6.27)-(6.28)] in the averaged-
momentum approximation Eq. (6.26), in order to make more treatable the
numerical analysis. Moreover we consider the most conservative scenario,
with zero neutrino asymmetries, as small as the baryon asymmetry.

As discussed before, the matter terms in the Eqs. (6.27)-(6.28), can in-
duce MSW-like resonances. The possible resonances depend on the different
mass hierarchies in the active and sterile neutrino sector, as schematically
described in the Fig. 6.1. In particular, in the absence of neutrino asymme-
tries, the resonance condition Eq. (6.37) can be satisfied (in both neutrino
and antineutrino sectors) only for ∆m2

4i < 0. When more than one ∆m2
4i

is negative, multiple resonances can occur, influenced the sterile neutrino
production. In the presence of non-zero θ13 the resonance conditions become
more complicated, since more than one active neutrino species can resonate
with the sterile state, even in the presence of a single active-sterile mixing an-
gle. An example of a possible resonance pattern is shown in Fig. 6.2, where
we plot the sterile neutrino density matrix element ρss for sin2 θ14 = 10−2

versus temperature T , for different values of the ∆m2
41 mass splitting. For

∆m2
41 = +10−5 eV2 (continuous curve), since both ∆m2

43 and ∆m2
42 are neg-

ative, we find two resonances. The first at T ≃ 6.5 MeV between ν4 and
ν2,3 associated with ∆m2

43, and a second one at T ≃ 3.5 MeV between ν4
and ν1,2,3 associated with ∆m2

42. For ∆m2
41 = −10−5 eV2 (dashed curve) we

also have a further resonance at T ≃ 2.5 MeV between ν4 and ν1,2,3. Finally,
for ∆m2

41 = 5 × 10−2 eV2 (dotted curve), since all the mass splitting be-
tween active and sterile neutrinos are positive, this case is associated with
no resonances. The presence of possible multiple resonances implies that the
sterile neutrino production would be strongly dependent on the active and
sterile mass hierarchies. When Ωasy∆ii is the dominant term, if ∆m2

4i > 0
resonances can occur for ∆ii > 0 in the ν sector and for ∆ii < 0 in the ν one,
and viceversa if ∆m2

4i < 0.

Results The quantity we are exploiting to constrain the sterile neutrino pa-
rameter space is the overall non electromagnetic radiation content, parametrized
via Neff ,

Neff =
1

2
Tr(ρ+ ρ̄) . (6.38)

Our bounds are given comparing this number with the one measured by
Planck experiment, Neff < 3.80 at 95 % C.L. [135]. We mention that at 3 σ,
Neff > 4 and then no useful constraint can be put. Moreover, also combining
the Planck data with the measurement of the Hubble parameter H0 given
by the Hubble Space Telescope experiment, one would allow for one sterile
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Figure 6.2: Evolution of the density matrix element ρss in function of the tem-
perature for different value of ∆m2

41 mass splitting: +10−5 eV2 (con-
tinuous curve), −10−5 eV2 (dashed curve), 5 × 10−2 eV2 (dotted
curve).

neutrino [135]. Given the current limit on the sum of the neutrino masses
we remark that the constraints on Neff can set upper bounds on the sterile
neutrino mixing parameters for sterile mass m4 < 0.5 eV considering a fully
thermalised extra neutrino species [135]. Larger values of the sterile neutrino
mass would be not relativistic anymore at the CMB decoupling and therefore
they could not be constrained exploiting the measurement of Neff by Planck.
In order to probe them, one should include sterile neutrinos in the codes
computing the CMB observables. However, one can get a qualitative bound
evaluating the neutrino contribution to the energy density in the Universe.
Assuming the existence of a thermalized massive sterile neutrino together
with two massless active neutrinos and a massive one with mass fixed by the
atmospheric mass-splitting(i.e. m 0.06 eV), we have

Ωνh
2 =

1

2

√
∆m2

41 · (ρss + ρss)

94.1 eV
. (6.39)

The Planck+BAO constraint on the neutrino energy density is Ωνh
2 " 0.0045

at 95 % C.L, coming from the Planck bound on the effective sterile mass
meff

s ≤ 0.42 eV. We note that the calculation of Ωνh
2 assumes the sterile

mass contribution as the dominate one being much larger than the active
neutrino ones, in agreement with the Planck analysis. Therefore, this bound
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Figure 6.3: Exclusion plots for the active-sterile neutrino mixing parameter space
for different scenarios (see the text for details).

is insensitive to the active mass hierarchy.
In Fig. 6.3 we present our exclusion plots at 95 % C.L. in the planes

(∆m2
41, sin

2 θi4). For simplicity, we show our findings only for NH, while we
consider both SNH and SIH. Moreover, since the results as a function of
sin2 θ34 and sin2 θ24 are very similar, we omit to present the sin2 θ34 case.

In the upper panels a), b) we consider SNH, while in the lower panels c),
d) we show the SIH case. Left panels correspond to the exclusion plots in the
plane (∆m2

41, sin
2 θ14) for different values of sin

2 θ24, while right panels refer
to the plane (∆m2

41, sin
2 θ24) for different values of sin

2 θ14. In all the cases,
sin2 θ34 is fixed to zero. The excluded regions from the extra-radiation Neff are
those on the right or at the exterior of the (closed) contours (black curves).
The obtained constrains from the energy density Ωνh

2 are represented by the
red curves. We now discuss the different panels in more details.

• Panel a) The most conservative bound corresponds to sin2 θ24 = 0,
where for ∆m2

41 ! 10−2 eV2 the radiation exclusion contour is given
by a straight line in this plane. The cut in the contour at (∆m2

41 ∼
10−1 eV2 , is due to the fact that the neutrinos with higher masses
are not relativistic anymore at the CMB epoch and so we cannot use
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radiation constraints. However, mass bounds from Ωνh
2 give important

information.

Concerning the radiation constraints, lowering the value of ∆m2
41 one

triggers first a ν4 − ν3 resonance (when ∆m2
41 < ∆m2

31) and then also
a ν4 − ν2 resonance (when ∆m2

41 < ∆m2
21) which is the dominant one.

These cause the changes of the slope in the exclusion contour. In par-
ticular, increasing the value of sin2 θ24, the constraint on the parameter
space becomes more severe. Large values of sin2 θ24 would rule the ster-
ile neutrino production and excluding regions otherwise permitted for
only the mixing angle sin2 θ14 different from zero. The only part allowed
is then the transition region between the efficient non-resonant produc-
tion range at large ∆m2

41 and the one of resonant production at small
∆m2

41. Concerning the bounds from Ωνh
2, the most conservative limit

is for sin2 θ24 = 0 for which values of ∆m2
41 ! 10−1 eV2 are excluded

for sin2 θ14 ! 10−2, since the sterile neutrinos are fully thermalized. For
smaller values of sin2 θ14 ! 10−2 the constraint becomes less stringent,
due to the incomplete thermalization of the sterile species, allowing
e.g. ∆m2

41 " 1 eV2 for sin2 θ14 " 10−4. The bound becomes more se-
vere increasing the value of sin2 θ24. In particular, for sin2 θ24 ! 10−2,
∆m2

41 ! 10−1 eV2 is excluded independently on the value of sin2 θ14,
since sterile neutrinos would be always thermally produced. For com-
parison, we also show the slice at sin2 θ24 = 10−2 of the 95 % C.L.,
allowed region obtained from the global analysis of short-baseline oscil-
lation data [144, 180] (filled blue region in the up right part of the plot
indicated by SBL). We see that it seems to be completely ruled out by
the cosmological bound. We also show in orange the 90 % C.L. expected
sensitivity of the KATRIN experiment (measuring the spectrum of elec-
trons from tritium beta decay) after 3-years of data taking [181]. We
see that, in absence of any additional ingredient, such us a significant
primordial neutrino asymmetry [179, 173], also this region is excluded
by cosmology, in particular for sin2 θ24 > 10−3. Finally, we represent
with a grey square in the lower part of the plot, the region of param-
eters corresponding to a light sterile neutrino with ∆m2

41 ≃ 10−5 eV2

and sin2 θ14 ∼ 10−4−10−3, suggested to solve the problem of the upturn
of the solar neutrino spectrum [182].

• Panel b) The description of the exclusion plot is analogous to the one
of panel a), with the roles of θ14 and θ24 interchanged. In particular, the
region of resonant sterile neutrino production is at ∆m2

41 ≃ 10−3 eV2

when a ν4 − ν3 resonance is efficient. We have also drawn the slice
at sin2 θ14 = 10−1.5 of the 95 % C.L. allowed region from the global
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analysis of short-baseline oscillation data [144, 180], which is another
view of the SBL region shown in panel a), and, moreover, the exclusion
curve obtained from the combined analysis of the data of νµ and ν̄µ
disappearance experiments. We can see that also in this case the region
is excluded by the cosmological limit.

• Panels c) and d) Since ∆m2
41 < 0 also a ν4-ν1 resonance is present

leading to an increase in the production of sterile neutrinos, with re-
spect to the case of SNH. Therefore, the excluded regions are larger
than the corresponding ones in the upper panels. We note that only
|∆m2

41| < 10−2 eV2 is considered, due to the cosmological bound on
active neutrino masses.

Summarizing, using as benchmark the joint constraints on Neff and
∑

mν

(translated in a constraint for Ωνh
2 ), as measured by the Planck experiment,

we find that the sterile neutrino mass and mixing parameter space is severely
constrained, and the excluded area covers the region accessible by current and
future laboratory experiments. Therefore we confirm that there is a tension
with the sterile neutrino hints from short-baseline experiments.

6.5 Role of the neutrino asymmetry in the

sterile neutrino production

From previous studies and also from our analysis on the sterile parameter
space one infers that, for the mass and mixing parameters needed to describe
the short-baseline anomalies, sterile neutrinos would be completely thermal-
ized in the Early Universe, creating tension with cosmological observations
on Neff and on the neutrino mass bound. Therefore, non standard scenarios
have to be invoked to alleviate this tension. A possible escape-route to recon-
cile sterile neutrinos with cosmological data is represented by the inclusion
of a primordial asymmetry between neutrinos and antineutrinos [161]

L =
nν − nν̄

nγ

. (6.40)

Considering the very small value of the baryonic asymmetry, η = (nB −
nB̄)/nγ ≃ 6× 10−10, it is reasonable to expect the same order of magnitude
for the charged lepton asymmetry, in order to respect the charge neutrality.
In the neutrino case, being neutral particles, the constrains on L are quite
loose, allowing also |L| ≃ 10−2 − 10−1 [66, 183, 184, 185, 186, 122, 187].
Moreover, there are models for producing large L and small η [188, 189, 190].
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An initial neutrino asymmetry implies an additional “matter term poten-
tial” in the equations of motion [Eq. (6.10)-(6.10)]. If sufficiently large, it can
block the active-sterile flavor conversions via the in-medium suppression of
the mixing angle. However, this term can also generate MSW-like resonant
flavor conversions among active and sterile neutrinos, enhancing the sterile
neutrino production. In order to assess which of the two effects dominates the
flavor evolution it is mandatory to perform a study of the kinetic equations for
active-sterile neutrino oscillations. This problem has been treated in a long
series of paper [156, 159, 160, 161, 162, 163, 166, 167, 168, 169, 166, 173].
Among the recent ones, it is worthwhile to mention [179], where the au-
thors solved the equations of motion in a simplified (3+1) single-momentum
scheme, inspired by LSND, to look for the minimal value of L necessary to
have a significant reduction of the sterile neutrino abundance. They found
that L ∼ 10−4 was enough to suppress the sterile production, relieving the
tension between sterile neutrinos and cosmology. However, this result has to
be taken with caution, since the authors adopted some severe approxima-
tions. In particular, they fixed the neutrio asymmetry as an initial condition
taken constant during the flavor evolution. However this quantity is expected
to dynamically evolve due to the flavor conversions. Moreover, they solved
the coupled equations of motion only for the neutrino system, missing in
this case possible resonant transitions between sterile and active neutrino
that could occur in the antineutrino sector for the negative value of neutrino
asymmetries they used. Finally, they considered only a single active-sterile
mixing angle. In a more recent (1+1) multi-momentum study [173] it has
been found that for sterile neutrinos with parameters preferred by the labo-
ratory hints, a neutrino asymmetry L = 10−2 would strongly suppress their
production. However, once again, this scenario is too simplified to detect fea-
tures proper to multi-flavor system, such as equal or opposite asymmetries
between the active species.

We devoted our work to a detailed study of the flavor evolution for (3+1)
and (2+1) scenarios inspired by the laboratory anomalies, in presence of
primordial neutrino asymmetry, going beyond most of approximations used
in previous studies. The results are presented in the next section.

6.5.1 Sterile neutrino production: our explorative study

Here we present the results of the sterile neutrino production for different
scenarios and cases. First we analyse the (3+1) scenario for different values of
the primordial neutrino asymmetries, taken equal among the different active
flavors. Then, we calculate the sterile neutrino abundance in a (2+1) scenario,
considering both cases with equal and opposite initial neutrino asymmetries
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among the active species, as well as the effects of CP violation in the sterile
sector. We remark that in all the cases, we take into account both the active-
sterile mixing angles θes and θµs,

2 from the fits of the short-baseline data [55]

sin θes ≃ |Ue4| =
√
0.025 ,

sin θµs ≃ |Uµ4| =
√
0.023 . (6.41)

The sterile-active mass splitting from the short-baseline fit in the 3+1 model
is given by [55]

∆m2
st/eV

2 = 0.89 . (6.42)

Therefore, it results in a clear hierarchy among the mass differences, i.e.
∆m2

st ≫ ∆m2
atm ≫ ∆m2

sol.
Given the number of the examined cases and the numerical challeng-

ing of the problem, we make use of the average-momentum approximation
[Eq. (6.26)]. In order to get an idea of the strength of the interaction terms
involved in the evolution equations [Eqs. (6.27)-(6.28)], it is useful to con-
front them in function of the temperature T . Referring to the Sec. 6.3.1, in
Fig. (6.4) we plot as a function of the temperature T , Ωvac (solid curve),
Ωmatt (long-dotted curve), Ωasy × ∆e (dashed curve), Ωsym × Σee (short-
dotted curve), Ωcoll × [(ges)

2 + (gµs )
2] (dash-dotted curve). Here we use as

mass square difference ∆m2
st, ∆e = 2(ρee − ρ̄ee) + (ρµµ − ρ̄µµ) + (ρττ − ρ̄ττ ) =

8/3(2Le + Lµ + Lτ ), where for illustration we fixed Le = Lµ = Lτ = 10−4.
Finally Σee = (ρee + ρ̄ee) ≃ 2.

As expected, the system remains in collisional regime down to a few MeV.
Moreover it dominates over the vacuum oscillation term at T ! 20 MeV,
thus breaking the coherence of the neutrino enable and preventing significant
oscillations. From the resonances condition [Eq. (6.37)], in the hypothesis of
sterile normal mass hierarchy we are considered (SNH, m4 > m1), we obtain
that in absence of lepton asymmetries (∆a = 0) the resonance condition
cannot be satisfied neither for the ν’s nor for ν’s. Instead, when Ωasy∆a is
the dominant term, as our case, resonance conditions can occur for ∆a > 0
in the ν sector and for ∆a < 0 in the ν one. In particular, in Fig. 6.4 it
was considered an initial neutrino asymmetry of L = 10−4 and the resonance
occurs around T ≃ 3 MeV. We also note that, due to the dynamical nature
of the asymmetries, ∆a can rapidly change sign so that both sterile neutrinos
and antineutrinos get populated. Resonances can also take place in the active
sector at lower temperatures. However, their effect can be considered sub-
leading, since active neutrino distributions are expected not to depart too
much from their equilibrium values.

2The angle θτs is unconstrained by laboratory experiments. For definitess, we will take
it zero in the following.
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Figure 6.4: Different interaction rates (normalized in terms of the Hubble rate) in
function of temperature T . In particular are shown: Ωvac (solid curve),
Ωmatt (long-dotted curve), Ωasy × ∆e (dashed curve), Ωsym × Σee

(short-dotted curve), Ωcoll× [(ges)
2+(gµs )2] (dash-dotted curve). Here

we use ∆m2
st, ∆e = 32L/3 with L = 10−4 and Σee = 2 (see the text

for more details).

3+1 results In order to calculate the sterile neutrino abundance in the
3+1 scenario, we numerically solved the EoMs [Eq. (6.28)], using a Runge-
Kutta method for the equations written in the variable x = m/T and
evolved in the range x ∈ [10−2, 1.0]. We take 105 steps in log(x) in the
integration interval. We consider equal and negative neutrino asymmetries,
L = Le = Lµ = Lτ < 0, but the results presented in the following do not
change considering positive asymmetries. In the left panel of the Fig. 6.5 we
show the evolution of the sterile component of the density matrix ρss (i.e. the
flavor content of the sterile state) in function of the temperature T for dif-
ferent initial neutrino asymmetries, namely L = 0 (solid curve), L = −10−4

(dashed curve), L = −10−3 (dotted curve), and L = −10−2 (dash-dotted
curve). We realise that in absence of lepton asymmetries sterile neutrinos
are copiously produced at T " 30 MeV until they reach ρss = 1, confirming
the results presented in the literature. Instead, including a non-zero initial
neutrino asymmetry, the sterile neutrino production is suppressed as long
as |Ωasy| ≫ |Ωvac|. However, these two functions at some time they will
cross, due to their opposite dependence on the temperature, and they will
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Figure 6.5: (3+1) scenario. Left panel: Evolution of the density matrix element
ρss in function of the temperature T for different values of initial
neutrino asymmetry L. Right panel: Evolution of the effective number
of degrees of freedom Neff for the same L values.

producing a resonance. Sterile neutrinos are then produced profusely, albeit
with a non-linear, dynamical resonance condition which is itself influenced
by the evolution of the system. Increasing the value of L, the position of
the resonance shifts towards lower temperatures, where the resonance is less
adiabatic and so the sterile production less efficient. Indeed, the adiabatic-
ity parameter scales as ∼ T , as shown in [191]. In particular, asymmetries
greater than |L| = 10−3 are required in order to significantly suppress the
sterile neutrino production. Moreover, the asymmetric term changes sign and
thus the resonance occur in both neutrino and antineutrino sectors, which
turn out to be populated almost equally.

From this result we can infer that a neutrino asymmetry of L = −10−3

is needed in order to suppress the sterile neutrino production. This value is
greater at least by an order of magnitude with respect to what found in a
previous study on the subject [179]. The discrepancy is due to the fact that
keeping constant the neutrino asymmetry, they missed resonant effects that
would have occurred in the antineutrino sector.

In the right panel of the Fig. 6.5, we show the impact of the sterile neutrino
production on the increase of the neutrino degrees of freedom in the Early
Universe, parameterized via Neff . Note that for vanishing or small asymmetry
and for the parameters chosen, the active-sterile flavor conversions occur early
enough that the depleted active states are rapidly repopulated by collisions.
Consequently, Neff reaches the value 4. On the other hand, for |L| = 10−3

the conversion starts around the decoupling time, and the repopulation of
the active neutrinos is only partial, with a difference between Neff and ρss
of about 0.1 units. Finally, for |L| = 10−2, Neff = 3 even if about 10%
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of a “thermal-equivalent” sterile state has been produced. This is due to
the fact that the flavor conversions occur after the decoupling and only a
negligible fraction of the converted active neutrinos are repopulated. Since
the temperature at which the sterile production starts depends on when the
resonance takes place, there is a strong relation from the exact values of the
active neutrino mass, mixing, and the initial value of |L|.

2+1 results We present the results of the flavor conversions in the same
cases as before, considering a (2+1) sub-sectors with the active mixing as-
sociated with (∆m2

atm, θ13) as described in the Sec. 6.2. Finding results very
similar to the ones presented before, we decide, in order to make more treat-
able the numerical calculations, to explore the sterile neutrino production in
the four different cases of the Fig. 6.6, referring to (2 + 1) scenarios. In all
plots, the solid curve corresponds to L = 0, the dashed curve to L = −10−4,
the dotted curve to L = −10−3 and the dash-dotted one to L = −10−2.

Figure 6.6: (2+1) scenario. Evolution of the sterile component ρss in function
of the temperature T for different values and combinations of initial
neutrino asymmetries. In particular, upper panels correspond to L =
Le = Lµ, lower panels correspond to L = Le = −Lµ. The solid
curves represent L = 0, the dashed curves L = −10−4, the dotted
L = −10−3 and the dash-dotted L = −10−2. Moreover, left panels
show cases with no CP violation in the sterile neutrino sector, while
right panels refers to ϕCP = π/2.
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1. upper-left panel : Le = Lµ, ϕCP = 0

This case is very close to the (3+1) scenario shown in Fig. 6.5. For
L = 0, at T " 30 MeV, when collisional rates became week enough (see
Fig. 6.4), sterile neutrinos are produced copiously. Considering non-zero
initial neutrino asymmetries, since θes and θµs are non-vanishing, both
the active states can have resonances with the sterile one. In the case
with initial L = −10−4 the production of νs starts at T ≃ 10 MeV when
an active-sterile resonance occurs. In the other two cases, L = −10−3

and L = −10−2, the position of the resonance coincides with the onset
of the ρss rise. However, the lower the resonance temperature, the less
adiabatic the resonance and therefore, the sterile neutrino production
is further inhibited.

2. upper-right panel : Le = Lµ, ϕCP = π/2

CP violation effects have been include in the sterile sector fits for
laboratory anomalies, to accommodate some controversial data (see
e.g. [192]). Moreover, whenever three or more neutrinos mix, CP-violating
“Dirac phases” entering oscillations are present in the theory. For both
reasons, it proved useful to investigate the impact of CP-violation in
our framework, including an extra phase in the sterile-active mixing
matrix [Eq. (6.3). This inclusion could generate an asymmetry among
sterile neutrinos and antineutrinos, which could be transferred by os-
cillations into the active sector, with a feedback on the further growth
of sterile neutrinos. For definiteness we consider ϕCP = π/2. From
the comparison with the CP conserving case (left-top panel) one infers
that the suppression of the sterile neutrino abundance due to ϕCP is
sub-leading.

3. lower-left panel : Le = −Lµ, ϕCP = 0

Here we discuss the case in which the initial neutrino asymmetries in
the active sector are opposite for νe and νµ, i.e. L = Le = −Lµ. For
a non-vanishing initial L, the sterile neutrino production is enhanced
with respect to the previous case and an asymmetry of |L| ∼ 10−3 is
not enough anymore to achieve a significant suppression of the sterile
species. Indeed one needs an initial |L| ∼ 10−2. We note that since the
initial asymmetries have opposite signs, resonances can occur simulta-
neously in the neutrino and antineutrino channels. When these occur,
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they tend to produce flavor equilibrium between νe and νµ, leading to
a vanishing final lepton number. When the total neutrino asymmetry
is destroyed, sterile neutrinos can be produced without any obstacle
leading to the increase in the final ρss found in this case.

4. lower-right panel : Le = −Lµ, ϕCP = π/2

The sterile production is further enhanced when we consider both the
case of opposite initial neutrino asymmetries and ϕCP = π/2. In par-
ticular, also for an initial L = −10−2, the final abundance of sterile
neutrinos is significant. This is due to the fact that CP violating effects
tend to produce an asymmetry in the sterile sector. As a consequence,
the active system would be pushed earlier to equilibrium in order to
conserve the total null neutrino asymmetry, leading to a more efficiently
production.

Summarizing, we have analysed the evolution of the active-sterile system in
presence of neutrino asymmetry, for (3+1) and (2+1) scenarios. A primordial
neutrino asymmetry, originally introduced to suppress the sterile production,
can also generate resonant conversions whose effects depend on the tempera-
ture that they occur. Starting from equal asymmetries between the different
flavors, we find that an asymmetry of |L| ∼ 10−3 is required to achieve e no-
table suppression of the sterile production. This is not guaranteed anymore,
if we consider opposite asymmetry signs between the active neutrinos and
the situation get worse if we include also a CP violating phase in the sterile
sector, requiring an initial asymmetry of |L| ∼ 10−2. However this value shifts
the position of the resonance near or after the neutrino decoupling where the
active neutrinos cannot be repopulated by collisions, leading to possible effect
on the BBN observables. In particular, as we will see in a while, the absence
of repopulation of electron neutrinos would produce distorted neutrino distri-
butions, which can anticipate the n/p freeze-out and hence increase the 4He
yield. To asses this point, we have to relax the average momentum approx-
imation used in this exploratory study. Due to the momentum-dependence
of the resonant conversions between active and sterile neutrinos, a detailed
treatment solving the full momentum-dependent equations is mandatory to
derive quantitative phenomenological predictions.

6.5.2 Multi-momentum and multi-flavor active-sterile
neutrino oscillations

We present a full multi-flavor and multi-momentum treatment of the
active-sterile neutrino oscillations for the (2+1) scenario described before,

129



with parameters suggested by the short-baseline neutrino anomalies. In par-
ticular, we have considered large neutrino asymmetries (|Lν | ! 10−3 − 10−2)
to suppress the sterile production in the Early Universe in order to get a
better agreement with the cosmological observations. However, as discussed
before, for these large values, the resonant active-sterile flavor conversions oc-
cur at lower temperature where the repopulation of the active neutrinos by
collision is less efficient, leading to significant distortion in the active spectra.
The larger the asymmetry, the more relevant the impact of the distortions
on the primordial nucleosynthesis.

In order to characterize these effects, we numerically solved the momentum-
dependent EoMs [Eqs. (6.10)-(6.11)] using an integration routine for stiff or-
dinary differential equations taken from the NAG libraries [193] and based
on an adaptive method. The range for x is chosen to be x ∈ [2×10−2, 0.5]. In
order to obtain a good compromise between energy resolution of the spectral
distortions and computational cost, we took Ny = 21 momentum modes in
the range y ∈ [0, 10]. The grid points are not chosen to be equally spaced, but
are instead fixed by imposing weighted Gaussian quadrature of the integrals
in the right-hand-side of Eqs. (6.19)–(6.20).

Concerning the initial conditions for the flavor evolution, we remind the
reader that in the presence of primordial neutrino asymmetries, the original
active neutrino spectra are given by Fermi-Dirac distributions Eq. (6.25)
parametrized in terms of a temperature Tν and chemical potentials µα for
α = e, µ, τ , connected to neutrino asymmetry through the [Eq. (6.40)]. In
order to conform with the notation usually used in literature, in the following
we shall indicate the neutrino asymmetries in terms of the ξα parameters
rather than Lα.

Due to the momentum dependence of the resonance conditions, the evo-
lution in in the multi-momentum treatment of the EoMs could show signif-
icant deviations with respect to average momentum case. At this regard, in
Fig. 6.7 we plot the comparison between the sterile production obtained in the
single-momentum and in the multi-momentum cases. In detail, we show the
momentum-integrated sterile neutrino density matrix element (solid black
curves) normalized to the integral of a Fermi-Dirac distribution with zero
chemical potential,

ρss(x) =

´

dy y2̺ss(x, y)
´

dy y2feq(y, 0)
, (6.43)

and the sterile neutrino density matrix element ρss in the average momentum
treatment (dot-dashed red curves), normalized correspondingly. In the left
panels we consider the case of equal initial neutrino asymmetries, ξe = ξµ,
while in the right panels we take the opposite ones, ξe = −ξµ. In the upper
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panels we refer to ξe = 10−3, while in the lower panels we have ξe = 10−2.
We find that in all the cases the values of ρss for the single momentum
approximation underestimates the sterile neutrino abundance with respect
to the multi-momentum treatment. In particular, the enhancement obtained
is significant, ∼ 20% of a degree of freedom.

Moreover, from the Fig. 6.7 we infer that the sterile neutrino production
in the multi-momentum case occurs at higher temperatures with respect to
the average momentum one. Indeed, in the multi-momentum evolution the
sterile neutrino population receives contribution also from lower momenta
modes, that resonate earlier than the average momentum 〈y〉 = 3.15. This
anticipates the dynamical evolution of ξ producing the difference observed.
Furthermore, at higher temperature the resonance is more adiabatic and leads
to a more efficiently production. Hence, the average momentum treatment of
the EoMs is expected to underestimate the sterile neutrino abundance.

Finally we comment that the dynamical evolution of the asymmetries is
such that both neutrinos and antineutrinos get populated resonantly with
similar abundances.

Figure 6.7: Evolution of the total value of the sterile neutrino density matrix
element ρss for the multi-momentum case (continuos curves) and the
average momentum (dot-dashed curves) one with a thermal momen-
tum 〈y〉 = 3.15, as function of the temperature T . Left panels refer
to ξe = ξµ, while in the lowers ξe = −ξµ. Upper panels correspond to
ξe = 10−3 and right to ξe = 10−2.
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6.5.2.1 Impact on Big-Bang Nucleosynthesis

The primordial abundances of light element are affected by active-sterile
neutrino flavor conversions in two ways: by the distortions of the electron
(anti)neutrino spectra (a basic input for BBN weak rates) and by the non-
electromagnetic radiation content, parametrized via Neff .

In the upper panels of Figs. 6.8 and 6.9 are shown the y-dependent νe
energy spectrum y2̺ee(y) (dashed curve) at T = 1 MeV, compared with the
initial one y2feq(y, ξe) (solid line). In particular Figs. 6.8 refers to ξe = 10−3

and Fig. 6.9 to ξe = 10−2. In each figure, in the left panels ξe = ξµ, while
in the right ones ξe = −ξµ. In order to show clearly the distortion in the νe
spectrum with respect to the initial one, in the lower panel we plot the ratio

R =
̺ee(y)

feq(y, ξe)
. (6.44)

In the case of ξe = 10−3, R ! 0.95 for equal asymmetries and R ! 0.98 in the
case of opposite asymmetries. Conversely the spectral distortions are more
evident for ξe = 10−2, reaching the value of R ! 0.82 for equal asymmetries
and R ! 0.9 for opposite ones.

Indeed for ξe = 10−2, the resonant active-sterile conversions occur near
the active neutrino decoupling temperature and the spectral distortions in
the active neutrinos become more evident, as pointed out at first in [166].

Concerning the effective number of neutrino species, neglecting sub-leading
corrections, we take Neff = 3 +∆Neff . This enters the dynamics only via its
contribution to the Hubble parameter, see Eq. (6.13), rescaling the standard
neutrino energy density contribution εν as

εν(x,Neff) → εν(x, 3)

(
1 +

∆Neff

3

)
. (6.45)

We numerical compute ∆Neff in the above equation via the following integral

∆Neff =
60

7π4

ˆ

dy y3Tr[̺(x, y) + ¯̺(x, y)] − 2 , (6.46)

the factor “−2” being due to the fact that we are considering only two active
neutrino species.

This quantity is shown in Figure 6.10 for two representative values of
asymmetries: ξe = 10−3 (solid curves) and ξe = 10−2 (for dashed curves),
taken equal for the e and µ sector in the left panel and opposite in the right
one. We observe that for ξe = 10−3 the resonant production of sterile neutri-
nos starts around T ≃ 5 MeV for equal asymmetries, while at T ≃ 8 MeV
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for opposite ones. Since at these temperatures the active-sterile neutrino con-
versions mostly occur when the collisional regime is still effective, the active
neutrinos are almost fully repopulated, reflecting in a ∆Neff ≃ ρss in both
cases (see Fig. 6.7). This is still true for the case ξe = −ξµ = 10−2, but
not when ξe = ξµ = 10−2. Namely, in this latter situation, the resonant
population occur at temperatures T ∼ 2MeV, comparable to neutrino de-
coupling temperature, where repopulation of the depleted electron neutrinos
is only partial. An appreciable difference (in this case of ∼ 0.1) is established
between ρss and Neff .

Figure 6.8: Cases with ξe = 10−3. In the upper panels we show the final νe energy
spectra at T = 1 MeV (dashed curve) and initial ones (continuous
curve). In the lower panel we present the ratio R between final and
initial νe energy spectra. Left panels correspond to ξe = ξµ while
right panels to ξe = −ξµ.

The numerical values of the ∆Neff ’s found in these representative cases
are reported in Table 6.1 together with the values of the abundance of 4He
mass fraction Yp and deuterium 2H, as obtained from a modified version of the
numerical code PArthENoPE [117], considering a baryon fraction ωb = 0.02249
and the neutron lifetime τn = 880.1 s, [14]. In the same table, we also show
for comparison the “degenerate BBN” case (i.e. with neutrino asymmetries
but no sterile neutrinos) as well as the standard BBN case (i.e. no sterile and
no asymmetry).

Technically, we note that the rates Γn→p[fνe , fν̄e ] and Γp→n[fνe , fν̄e ] are
functionals of the distributions fνe , fν̄e . Denoting with Γ0 the rates computed
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Figure 6.9: Cases with ξe = 10−2. In the upper panels we show the final νe energy
spectra at T = 1 MeV (dashed curve) and initial ones (continuous
curve). In the lower panel we present the ratio R between final and
initial νe energy spectra. Left panels refer to ξe = ξµ while right
panels are for ξe = −ξµ.

in the Born approximation3 for Fermi-Dirac spectra, and with Γ the actual
rates for the cases under consideration, we have calculated the effect of sterile
neutrinos by rescaling the rates implemented in the code PArthENoPE [117]
(see also [194]) by Γ/Γ0, which has been numerically evaluated and then inter-
polated. This amounts to a first-order correction in a perturbative approach.
The error due to this approximation is safely below 0.3% (see e.g. [195] for
the analysis of corrections to Born weak rates) and it is comparable or lower
than neglecting the modification to the reheating in the standard scenario.
The main source of error in determining the shape of the distribution func-
tion, especially for the cases with |ξ| = 10−2, comes from the discretization
of the neutrino distribution (and the corresponding interpolation). However,
test runs performed with a Ny = 30 points grid in momentum space, suggest
that this does not invalidate the reliability of the size of the effects we found.

With reference to Table 6.1 we note that:
for sufficiently small values of ξe,µ, the effect of the sterile neutrino production
on both Yp and 2H is due to the increase of Neff . For higher values, |ξe,µ| ∼
10−2, some fraction of the sterile neutrino population is produced relatively
late, namely after the the decoupling of the active neutrinos. These cases are
associated to a ∆Neff significantly smaller than 1. While this quantity is still

3Limit of infinite nucleon mass.
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Figure 6.10: Evolution of ∆Neff in function of the temperature T for equal
asymmetries ξe = ξµ (left panel) and opposite ones ξe = −ξµ (right
panel). Solid curves refer to ξe = 10−3 while dashed curves to ξe =
10−2.

the main cause of the change in 2H, the effect on Yp is mainly due to the
changes of the weak rates regulating the n ↔ p chemical equilibrium as a
consequence of the distorted νe and ν̄e distributions. In the case ξe = −ξµ =
10−2, this effect is estimated to account ∼ 75% of totally with respect the
one related to the speed-up of the expansion induced by ∆Neff , while for ξe =
ξµ = 10−2 it becomes three times larger than the other 4. Quantitatively, we
observe sizeable modifications in the BBN yields induce by sterile neutrinos.
For comparison, the statistical error on the astrophysical Yp determination
can be as small as 0.001 (although the systematic error is at present several
times larger) [196], the determination of 2H/H in the highest quality Quasar
system is (2.535±0.05)×10−5 [119], and the 1σ errors on Neff and Yp reported
by the combined analysis of the Planck team amount to ∆Neff ≃ 0.27 and
∆Yp ≃ 0.021 [135], in substantial agreements with earlier forecasts [197].

Important considerations are in the following:

1. The presence of both sterile neutrinos and asymmetries in the evolu-
tion produces an increase of the Helium abundance YP with respect
to the standard BBN, confirming the prediction based on analytical
estimations presented in [198]. This trend is opposite of what obtained
in degenerate BBN.

2. Since one thermalized sterile neutrino is marginally accepted by the
BBN constraint [142], it was speculated by some authors (like in [149])
that a degenerate BBN could relieve the tension with the laboratory

4For this case the evolution is extremely slow and there is still a small evolution in the
parameters taking place at T " 1MeV. Hence the results presented here are conservative.
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Case ∆Neff ∆N
〈y〉
eff Yp

2/H (×105)

|ξ| ≪ 10−3 1.0 1.0 0.259 2.90
ξe = −ξµ = 10−3 0.98 0.89 0.257 2.87
ξe = ξµ = 10−3 0.77 0.51 0.256 2.81
ξe = −ξµ = 10−2 0.52 0.44 0.255 2.74
ξe = ξµ = 10−2 0.22 0.04 0.251 2.64

ξe = |ξµ| = 10−3, no νs ∼ 0 – 0.246 2.56

ξe = |ξµ| = 10−2, no νs ∼ 0 – 0.244 2.55

standard BBN 0 0 0.247 2.56

Table 6.1: We report the values of ∆Neff and the computed abundances of 4He
mass fraction Yp and deuterium 2H in the different cases considered
in our investigation. For comparison we also show in the third column
the increase in the effective degrees of freedom obtained in the average

momentum approximation, ∆N
〈y〉
eff .

hints. Indeed large positive neutrino asymmetry decreases the n/p ratio
trough the equation

n

p
∼ e(−

∆m
T

−ξe) . (6.47)

leading to a decreasing of the YP . This decrease would compensate
the increase induced by adding sterile neutrinos, creating a positive
correlation between the increase of ξ and Neff , as shown e.g. in Fig. 6
of Ref. [149]. However this conclusion is not valid when the sterile
neutrinos is properly take into account in the evolution (see comment
1).

3. The scenario considered in this work, could lead to a possible inconsis-
tency in the value of Neff extracted from CMB and BBN. Indeed, as
shown in the Table 6.1, sterile neutrinos and large asymmetries would
produce a relatively low value of Neff (as for example probed by CMB)
and an increase of Yp effecting the BBN. However, the same increase of
Yp could be mimicked by a larger Neff .

As final remark, we checked that changing the mass and mixing param-
eters within current uncertainties [199], one can easily obtain O(10%) dif-
ferences in Neff . For example, the disappearance experiments prefer larger
values of sterile mass splitting than the 0.89 eV2 used in our work [200],
leading to an easier thermalization of the sterile state. Therefore, the results
presented here are rather on the conservative side and “precision” computa-
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tions would be illusory and premature, given the dependence from unknown
or poorly constrained parameters.
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Conclusions

Since neutrinos were postulated in 1930 as “desperate way out” to save
the energy conservation in the beta decay of nuclei, they have always raised
questions. For many decades one of the most pressing issue has been to un-
derstand which of the three neutrinos has mass. At this regard, the discovery
of atmospheric and solar neutrino oscillations has implied that at least two
neutrinos are massive. At present, neutrino oscillations have been firmly es-
tablished by increasingly accurate measurements using different sources and
experimental techniques. Now that the neutrino oscillation framework has
been probed, measuring all the mixing angles and the two mass-squared
splittings, still interesting questions related to neutrino oscillations are open.
In particular, the flavor structure reproducing the observed neutrino mix-
ing still misses a deep theoretical understanding where an initial prejudice
seemed to support small values for the neutrino mixing angles, in analogy
with what observed in the quark sector. It was quite a surprise to discover
a completely different structure with relatively large mixing angles among
neutrinos.

Another important question, that has been the topic of this thesis is: “How
do neutrinos oscillate in high-density environments?” In this context, core-
collapse supernovae and the Early Universe represent unique environments
to probe the flavor mixing of neutrinos in conditions that cannot realized in
any other natural or artificial site. Remarkably, these represent the only two
cases in which neutrinos themselves contribute to the background medium
for their propagation, making their oscillations a non-linear phenomenon.

In 2006 it was surprising to discover that in the deepest supernova regions
these non-linear effects, associated with the neutrino-neutrino interactions,
can lead to a collective behavior in the flavor evolution. This can imprint
peculiar spectral swaps and splits that are sensitive to the unknown neutrino
mass hierarchy. The rich phenomenology associated to this non-linear flavor
dynamics is still in its infancy and many unexpected results have been found
in the last years.

The study of flavor conversions in the Early Universe is another fasci-
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nating problem involving collisional damping, refractive effects from charged
leptons, and neutrino self-interactions. In particular, we used this environ-
ment as a cosmic laboratory to deal with this timely question: “Do exist
more than three species of neutrinos?” Recent analysis from cosmological
observation data leave open the possibility of extra radiation in the Universe
beyond photons and ordinary neutrinos, supporting to the existence of sterile
neutrinos. Moreover, anomalous results coming from neutrino oscillation ex-
periments seem to point towards the existence of low-mass sterile neutrinos.
However the primordial abundance of thermal sterile neutrinos, with mass
preferred by laboratory, would be in tension with cosmological observables.
Given this contradictory situation it is very important to study the physi-
cal conditions under which sterile neutrinos could be produced in the Early
Universe, contributing as extra radiation.

This dissertation presents our results about flavor transitions of neutri-
nos in supernovae and Early Universe. Let us summarize the main original
findings of this work.

In the Chapter 4 we have presented our results on the matter suppres-
sion of the self-induced flavor conversions during the supernova accretion
phase. We numerically solved the neutrino equations of motion, characteriz-
ing the neutrino emissivity and the SN matter density profile, using results
from recent neutrino radiation hydrodynamical simulations. We found that
collective flavor conversions would be inhibited by a trajectory-dependent
effect associated with the large matter term. The matter suppression implies
that neutrino oscillations will start outside the neutrino transport region
and therefore have a negligible impact on the neutrino heating and explosion
dynamics. Furthermore, the possible detection of the next galactic SN neu-
trino signal from the accretion phase, based on the usual MSW effect in the
SN mantle, can allow to determine the neutrino mass hierarchy for values
of θ13 as large as the one recently measured. We also supported our results
presenting a stability analysis of the linearized equations of motion.

In the Chapter 6 we have discussed our results on the active-sterile neu-
trino oscillations in the Early Universe. We derived strong bounds on the
active-sterile neutrino mixing using the recent measurement of the the ef-
fective number of neutrino species by the Planck satellite experiment. Our
results point towards a strong tension with the short-baseline hints of sterile
neutrinos. In order to relieve this disagreement, we proposed to modify the
standard cosmological scenario, introducing primordial asymmetries in the
active neutrino species. These would inhibit the sterile neutrino production
via in-medium suppression of the sterile-active mixing. Nevertheless, neutrino
asymmetries permit also a resonant sterile neutrino production. Solving the
kinetic equations of motion for the active-sterile neutrino ensemble, we have
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found that an asymmetry L > 10−3 is necessary in order to have a sufficient
suppression of the sterile neutrino abundance, improving the agreement with
the laboratory hints. However, for such asymmetries, active-sterile flavor con-
versions happen so late to significantly distort the electron (anti)neutrino
spectra. We explored the effect of these distortions on the Big Bang Nucle-
osynthesis.

In conclusion, the study of neutrino physics has been always accompanied
by surprises. Often our theoretical prejudices have been disproved by experi-
mental results, that required to significantly modify our previous pictures. In
this context, supernvoae and Early Universe represent two laboratories where
amazing effects can still arise. A complete understanding of flavor conversions
in supernovae is mandatory in order to interpret the neutrino signal from the
next Galactic explosion. This could shed light on the mechanism of a stel-
lar gravitational collapse and on neutrino fundamental properties, like the
mass ordering. Early Universe will continue to be an important environment
to probe neutrino properties, such as the mass and the possibility of extra
sterile neutrinos.

Therefore, further studies are motivated in order to better understand
the neutrino flavor conversions in these high-density media and their impact
on cosmology and astrophysics.
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