Upgraded Fast Beam Conditions Monitor
for CMS online luminosity measurement
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Upgrade Carriage
Design

Improving Frontend Electronics

Test Beam Results

A BCM1F frontend unit was tested in the DESY test beam in 2014.
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BCM1F sensors as well as the frontend electronics. The optical
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a single PCB panel. Production of the PCB is in progress, with one
board already being assembled and tested.
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spacing interval for LHC Run Il. This could potentially cause a large
variation in detected signal arrival time. In addition, occasional large
signals caused the preamplifier output to remain over threshold for a
period on the order of 100 ns. During this time no signals could be
detected. After this saturation, the amplifier signal would then go into
an overshoot state lasting up to several ps, during which time any

developed at AGH-Krakow using IBM CMOS8RF 130nm technology.
It has ~50 mV/fC charge gain and less than 1k e- equivalent noise
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The backend electronics strategy will retain the
parallel path design from the Run | setup. The “tried
and true” VME discriminator path will be used for
initial running, while a yTCA digitizer system with fast
peak-finding will be commissioned for future use.

VME discriminator path

As in Run [, the analog signal will be passed to a fast,
low-deadtime discriminator to measure hit arrival
The resulting digital signal will be fed into a
Lookup Table (LUT) unit to register hit coincidences

time.

between channels.

purpose of separating collision products,

In addition, a Multiple Gate and
Delay (MGD) unit will provide gated hits for the

beam

background, and albedo or afterglow from secondary
interactions in the detector body. This data will be
read out by a dedicated board, the RHU, and passed
to the DAQ for the Iluminosity subsystems (see
sections Dedicated Readout Board and Luminosity

Hit coincidences

MTCA digitizer path
In parallel with the discriminator path, a uTCA

Subsystem Integration at right).

The

Dedicated readout board

A dedicated readout board, the Real-time Histogramming Unit
(RHU), was developed at DESY-Zeuthen to record the BCM1F
data for LHC Run Il. The RHU provides deadtimeless readout
of full-orbit histograms for 8 ECL input channels. The
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The LumiDAQ software framework receives raw data from each
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the peak-finding algorithm on the ADC data.

produced histograms (hits vs. time and hit amplitude
spectra) will be passed directly to the DAQ system
responsible for collecting the data from the different

subs

ystems

Integration at far right).

(see section Luminosity Subsystem
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of the subdetector readouts. The raw data is put into an eventing
stream, from which downstream subscriber modules can retrieve
the data for processing, storage, or publishing. Processed
histograms may also be put back into the eventing stream for the
same purpose. The software framework and the respective
components are currently being developed.
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