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In September 2011, a proposal was submitted to the Royal Society to hold two,
2-day workshops on the application of free-electron X-ray lasers to biology by
Dame Professor Louise Johnson FRS, Henry Chapman and John Spence. The
first 2 days, at the Royal Society in London, were to be devoted to biological
applications, and the second 2 days following, at Chicheley Hall, on instrumen-
tation development and data analysis methods. The conference was the first in
an annual series to be supported on this theme by the new US National Science
Foundation’s Science and Technology Center on Biology with X-ray lasers.

We were therefore most grateful to the Royal Society when it agreed to
financially support these workshops, which began on 14 October 2013. About
80 scientists attended each workshop, coming from many countries, at which
half-hour talks were given by 15 leaders in the field at each workshop, together
with poster sessions. The speakers were then invited to submit papers for this
special issue of Philosophical Transactions, in which the resulting 26 papers
are published.

It is often said that ‘to see something new, you must do something new’,
and the invention of the X-ray free-electron laser (XFEL) (outlined briefly by
Altarelli & Mancuso [1] in this issue) is a fine example of how a technological
breakthrough (in this case, pulsed lasing for hard X-rays) can give scientists
new eyes. Because radiation damage has historically imposed a near-fundamen-
tal limitation on the quality and resolution of images in nearly all forms of
biological microscopy, the first suggestion that sufficiently brief X-ray pulses
could outrun damage (to provide a useful image before the sample is
destroyed) in 1982 was of considerable importance. Detailed simulations (see
Neutze’s [2] contribution for this background) confirmed this, and the effect
was first demonstrated experimentally in 2006 (see [3]), so that over the past
decade progress has been rapid. The opportunity this capability provides to
image biomolecules at room temperature (without freezing to avoid damage)
in their native environment, and to explore the domain of much faster time res-
olution was clear from the beginning. The construction of the world’s first hard
X-ray laser, the Linac Coherent Light Source by the U.S. Department of Energy
at the Stanford Linear Accelerator Center (SLAC) in California was completed
in 2009, allowing many of us at this workshop to obtain the first results for
biology in that year. The machine, in a 2-mile-long tunnel near Stanford, gen-
erates 120 pulses of hard or soft X-rays per second, containing about 1 ! 1012

photons per 10 fs pulse, and, using purpose-built detectors, allows the
diffraction pattern from each pulse to be read-out and saved. Broadly, three
types of experiments were first attempted—those in which hydrated protein
nanocrystals were sprayed across the pulsed beam (serial femtosecond nano-
crystallography, SFX), those in which the hard X-ray beam of micrometre
dimensions traverses many biomolecules in a liquid jet (fast solution scattering,
FSS—see contributions by Haldrup [4], Mendez et al. [5] and Pande et al. [6]),
and single particle (SP) imaging, in which a beam of submicrometre dimensions
scatters from an SP such as a virus [7–9]. Before long many other experimental
arrangements had also been tried during this exciting first 4 years, including
fixed samples scanned across the beam for the study of two-dimensional mem-
brane protein crystals [10], time-resolved SFX [11] (see also Moffat [12]), and
new types of sample delivery devices, such as those based on the lipid cubic
phase [13,14] and on electrospraying [15].

At the same time, the highly coherent nature of the XFEL has resulted in
entirely new kinds of data, providing both opportunities and challenges in data
analysis. It was immediately realized that the high spatial coherence provided
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new approaches to the phase problem, for both SPs (Loh [7],
Ourmazd and co-workers [8], Martin [9], Schwander et al.
[16]) and nanocrystals (Millane & Chen [17], Kirian et al. [18],
Spence et al. [19] and Barty et al. [20]). Atomic resolution has
so far been obtained from unknown structures only using nano-
crystals (and near-atomic resolution in the FSS when small
changes in a known structure are studied), so that a crucial
area for development of the BioXFEL field is the development
of new methods for growing nanocrystals (Kupitz et al. [21],
Caffrey et al. [22], Gallat et al. [23] and Stevenson et al. [24]).
When the study of the evolving damage processes (reviewed
by Chapman et al. [3]), diffraction physics (White [25]), simul-
taneous emission spectroscopy (Kern et al. [15]) and detector
development (Denes [26]) is added to this list of subfields,
it will be seen that structure and dynamics in biology
with XFELs is an extremely rich interdisciplinary field, now
undergoing rapid innovation and creative development.

With the first ‘new biology’ results recently published (see
papers of Liu et al. [14], Gallat et al. [23]), and the first high-
resolution time-resolved solution-scattering results from
proteins about to appear (Neutze [2]), it appears that the con-
fidence of the founders of this new field of structural and
dynamic biology was not misplaced, and the US Department
of Energy’s gamble in building the first XFEL will pay off
scientifically in many fields. New XFELs are now under con-
struction in several countries. In addition to the second XFEL
now operating in Japan, new machines will start soon in
Hamburg, Germany, and Villigen, Switzerland. We look for-
ward to the time when the use of XFELs in biology will be as
common as that of synchrotrons, with the added benefits of
improved time resolution for structural dynamics, coherence,
ability to study proteins which are difficult to crystallize

with the possibility for rapid high-throughput structure
determination, and radiation damage amelioration.

Louise Johnson’s pioneering contributions to structural
biology are well-known to all its practitioners, and will be
documented in detail in the Royal Society’s obituary notices.
Her book with Sir Tom Blundell FRS, is an indispensable
reference in universities and at many beamlines. Her support
for this field, at a time when it had many sceptics, was typical
of her adventurous approach to science. She took part in
some of the first experiments at the FLASH soft X-ray FEL
where she was very satisfied with ‘flying’ her samples
across the beam, and was a strong advocate for building an
FEL in the UK. As a young student in the earliest days of
protein crystallography, she worked with David Phillips
KBE, FRS and others to solve the first enzyme structure, lyso-
zyme, in 1965 (then only the third protein to be solved). It
was that structure which first demonstrated, around the
time of her death, that the SFX method could, indeed,
demonstrate atomic resolution. Her death was an immense
loss to this new field, and we will always be grateful for
her help in founding it.

The excitement of developing a new field, being first to
see new effects, the design of novel instrumentation and the
long-term prospects for imaging molecular machines at
work emerges strikingly from all these papers. As in the
early days of the development of the scanning tunnelling
microscope, the discovery of a new signal is generating an
enormously creative initial period of invention, ferment and
stimulus, in which many ideas are being tried out, only
some of which will mature to become useful techniques for
biologists. As is clear from these papers, the birth of a new
field is the most exciting time to be involved in research.
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