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We monitored bone regeneration in a tissue engineering approach. To visualize and understand the

structural evolution, the samples have been measured by X-ray micro-diffraction. We find that

bone tissue regeneration proceeds through a multi-step mechanism, each step providing a specific

diffraction signal. The large amount of data have been classified according to their structure and

associated to the process they came from combining Neural Networks algorithms with least square

pattern analysis. In this way, we obtain spatial maps of the different components of the tissues

visualizing the complex kinetic at the base of the bone regeneration. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4852056]

Heterogeneous media are typically composed of multi-

ple phases coexisting on micrometric scale. This characteris-

tic makes quite difficult to model their structural features

with conventional experimental approaches, requiring high

spatial resolution probes. X-ray micro diffraction (lXRD) is

a powerful tool allowing to carry out fundamental structural

information on multiple length scale onto small areas, com-

bining wide range of momentum transfer with smallness of

probed domains. This wide range in reciprocal space allows

to measure momentum transfer from Small Angle X-ray

Scattering (SAXS) to Wide Angle X-ray Scattering ranges

(WAXS); in this way, the structural properties can be investi-

gated simultaneously from nano to atomic arrangement.1,2

At the same time, the smallness of probed domains, obtained

by the small X ray beam size, is particularly appropriate in

the study of heterogeneous samples, where different phases

coexist on (sub)micrometric areas. Recently, the heterogene-

ity in matter has been attracting more and more attention

because of its role in functional materials in several fields

ranging from material science3–5 to biology,6–9 and medi-

cine.10 This is particularly true in the tissue engineering and

in biomedical field where tissues are naturally complex and

show multiscale heterogeneity.11,12 One of the most typical

examples is given by the bone tissue whose formation occurs

via dynamic interactions between supra-molecular assem-

blies of bio-macromolecules producing mixtures of different

organic and inorganic phases.13,14 The organic phase consists

of matrix proteins, mostly collagen (C) type I, with some

minor non-collagenous proteins and minor amounts of lipids

and osteogenic factors (e.g., bone morphogenetic proteins).15

The inorganic phase is composed by calcium phosphates in

both crystalline, Hydroxyapatite (HA), and amorphous

(ACP) state.16 Thus, monitoring what happens in the region

where organic-mineral interactions occurs, becomes crucial

and requires probes able to catch tissue structural properties

with high spatial resolution.

In this framework, we investigated the biomineralization

process in an ectopic bone formation mouse model using

lXRD. In our model, ex vivo expanded bone marrow mesen-

chymal stem cells are seeded onto a porous ceramic scaffold

and implanted subcutaneously in the mouse.17 After the

established implantation time the scaffold is removed from

the host animal and the newly formed bone analyzed. We

monitored the early stage in the bone tissue development

scanning the sample with a micrometric sized beam at differ-

ent distances from the scaffold (SC), corresponding to differ-

ent mineralization stage.13 We found mainly two different

type of tissues: the new bone tissue (B) formed by HA nano-

particle crystallization and the connective soft tissue (ST)

formed through the vascularization process and filling the

scaffold pores.

The tissues spatial distribution corresponded to a tempo-

ral monitoring of the bone growth and the mineralization

process. Thus, in order to image the structural evolution of

bone tissue formation, we needed to locate the different tis-

sues, by classifying each measured diffraction pattern

according to its provenance tissue. Neural networks are typi-

cally used to perform complex functions, such as pattern rec-

ognition, identification, classification, and control

systems,18,19 aiming to mimic the biological nervous systems

by connection of based elements, neurons. A neural network

can be trained to perform a particular function by adjusting

the values of the connections, weights, so that a particular

input leads to a specific target output. Since each diffraction

pattern shows specific features from the different specific
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tissue, here we apply neural networks at basic level, as a sig-

nal recognition tool, to spatially classify and associate each

measured diffraction pattern to its proper type tissue that is

SC or B or ST. Moreover, for each type of tissue we distin-

guished different phases in different reciprocal space q-range,

corresponding to organic, C, inorganic HA and ACP,13 quanti-

fied by a least square approach. Finally, we composed spatial

maps of these phases, in the different tissues, evidencing inter-

esting features of mammalian bone tissue formation.

Bone Marrow Stromal Cells (BMSC) were obtained

from iliac crest marrow aspirates from healthy adult sheep

(Italian Biellese strain). All donor animals had reached sex-

ual maturity, animal care and treatment is conducted in con-

formity with institutional guidelines in compliance with

national and international laws and policies (European

Economic Community (EEC) 1987; Guide for the Care and

Use of Laboratory Animals 1996; Kon 2000). BMSC cul-

tures were performed as previously described.20 Osteogenic

properties of the BMSC were evaluated by an “in vivo” assay

in an immuno-deficient mice model.21 First passage cells

expanded in standard medium were trypsinized, resuspended

in a fibrinogen solution (Tissuecol; Baxter, Italia) to a final

concentration of 62.5� 106 cells/ml and loaded onto highly

porous ceramic scaffolds (100% hydroxyapatite cubes,

3� 3� 3 mm3; FinCeramica, Faenza, Italy); an appropriate

volume of 20 ll of Thrombin was added to ignite the enzy-

matic cleavage that originates a fibrin clot around and within

the ceramic, entrapping the cells. After 4 weeks the samples

were harvested, washed in Phosphate Buffered Saline (PBS)

three times and fixed in paraformahaldehyde (4% in PBS)

for 2–3 h at 4 �C. Additional washes in PBS removed the re-

sidual fixative. Than the sample was dehydrated in ethanol at

increasing concentration, embedded in methylmetacrilate

and transversally cut using a diamond saw (Gillings- Hamco,

Hamco Machines, Inc., Rochester, N.Y., U.S.A) in serial

sections (�100 lm thick) for the X-ray measurements.

The X-ray micro-diffraction measurements on the thin

sections of the bone tissue, extracted after 4 weeks, were car-

ried out at the ID13 beamline of the European Synchrotron

Radiation Facility (ESRF) in Grenoble. The double-crystal

monochromator and a Kirkpatrick-Baez mirror system sup-

ply a beam size of 1� 1 lm with a wavelength of 0.976 Å.

The y-z scanning micro-diffraction setup used a piezo-

scanning stage with an accuracy of 0.1 lm. The scanning

step used in both y and z direction was 5 lm. Diffraction pat-

terns were recorded in transmission by a MARCCD detector

with a typical acquisition time of 5 s. 2D diffraction patterns

have been radially integrated to provide 1D profiles of inten-

sity vs. transfer moment, q.

Several samples of different scaffolds were implanted in

different animals for 4 weeks. Figure 1 shows the section of

one of the analyzed samples. Close to the scaffold (white

region) we have the newly formed bone, while the soft tissue

(black region) fills the pores. Since the bone starts growing

to the scaffold interface and proceeds towards the pore cen-

ter, different distances from the scaffold correspond to differ-

ent mineralization stages.13 The origin and development of

B and ST tissues have been studied by lXRD, scanning the

sample from the center of pore towards the scaffold, cover-

ing a quite large momentum transfer, q¼ 4psin(h)/k from

1.0 nm�1 to 36 nm�1. The resulting profiles, recorded at the

different positions (y,z), and characterizing the different tis-

sues, namely SC, HA, and ST, are shown in the right panel

of Figure 1. The SC tissue shows XRD patterns with sharp

peaks, due to micrometric size of HA crystallites. In bone tis-

sue, B, the peaks become broadened, as typically occurs in

nanocrystal, because of the crystallization of the HA nano-

particles in collagen interstitial space. Finally, the soft tissue,

ST, filling the pore, is due to the vascularization providing

osteoblasts cells releasing the organic collagenous and

non-collagenous connective matrix.

The first classification for mapping these three basic tis-

sues has been carried out using neural networks. Our data

sets consisted of N x M XRD patterns as input vectors, while

for each type tissue, T, we considered a specific two-element

target vectors, composed by 1 and 0. The value 1 means the

X-ray pattern corresponding to the correct tissue, while 0 is

associated to the other type tissues. Then, we used a pattern

recognition feed-forward back-propagation network22 with

tan-sigmoid transfer functions in both the hidden layer and

the output layer. We used 20 neurons in the hidden layer and

one neuron in the output layer. The pattern recognition net-

work used the default Scaled Conjugate Gradient Back-

propagation algorithm23 for training. The training applica-

tion was performed on inputs profiles constituting about the

1% of the total M�N profiles; these selected input profiles

were randomly divided into three sets: 70% are used for

training, 15% are used to validate that the network was gen-

eralizing and to stop training before overfitting, while the

last 15% were used as a completely independent test of net-

work generalization. The training stopped when the valida-

tion error increased for six iterations. The network outputs

resulted to be extremely good in all three type of tissues,

achieving always correct responses larger than the 95% both

in the validation and in the testing. Scheme of neural net-

work response analysis is shown in Figure 2. After the train-

ing, the network was simulated on all the M�N diffraction

patterns. For each tissue type these M�N inputs profiles

give an output matrix of M�N real-values comprised

FIG. 1. Section of a measured sample; the dashed rectangle represents the

area on which the microdiffraction measurements have been done, using a

beam size of 1� 1 lm and a scanning step of 5 lm along y and z directions.

The unit bar corresponds to 100 microns. The different diffraction signals,

corresponding to the SC, B, and ST tissue type are reported on the right panel.
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between 0 and 1. We considered correct responses, matrix

elements higher than 0.5. As results, each XRD pattern was

classified accordingly with its tissue typology, allowing us to

define a mask MT for each tissue type, T: MSC for Scaffold,

MB for Bone, and MST for Soft Tissue.

In each region corresponding to the defined tissue, the

diffracted intensity allowed us to appreciate the different

phases, corresponding to different q-ranges. In particular the

following phases (P) have been evidenced: (i) HA nanocrys-

tals formed at early and later stage, monitored both in the

SAXS range as HA nanoparticle formation and in the

WAXS range as crystallization of the same HA nanopar-

ticles;24 (ii) the collagen, C, corresponding to the peak at

q¼ 5.6 nm�1,13,25,26 (iii) the ACP individuated by the broad

peaks at q¼ 21.1 nm�1 as found in the synthetic counter-

part.27 In order to build kinetic maps of these phases in the

different tissues, T, (namely SC, B, and ST) the contribute of

each phases, P, (namely HA, C, and ACP) has been quanti-

fied as

ITðPÞ ¼
ðqðPf inÞ

q Pinð Þ

½IEXPðqÞ � IBKGðqÞ�dq �MT ; (1)

calculated for each specific q-range. The C and ACP peaks

have been modeled as Gaussians around q values of

5.6 nm�1 and 21.1 nm�1, respectively, with a power law

background IBKG. The HA nanocrystals have been modeled

by a Rietveld crystallographic structure with cell parameters

a¼ 9.4162, b¼ 9.4162, and c¼ 6.8791 Å. We used the least

square method in order to estimate the peaks amplitude and

width, and the background, IBKG, as illustrated in Figure 3.

At this point the I(P) in (1) can be calculated for each type

tissue, obtaining the kinetic maps of bone tissue regenera-

tion, as shown in Figure 4. In Fig. 4(a), the intensity I(HA)

corresponding to the newly formed bone tissue is illustrated

demonstrating to be originated by the formation of HA nano-

crystals nucleating at the B/ST interface and growing

towards the SC. In Figs. 4(b) and 4(c) we show the distribu-

tion of collagen, C, and ACP, respectively, in the ST and B

tissues. We observed how the C and ACP distribution is

FIG. 2. Layout of neural networks algorithm used to classify the different

tissue type, SC, ST, and B. The inputs consisted of M�N vectors of 294

elements, with M¼ 121and N¼ 61. Each input vector was extracted from

the whole diffraction profile in the WAXS q-region (18< q< 28 nm�1),

where differences between the various tissues, are easily identifiable (see

Fig. 1).

FIG. 3. Fits of X ray patterns in specific q-range corresponding to (a) HA

nanocrystals, (b) collagen, C, and (c) ACP. In (d), (e), and (f) we show the

area of signals in (a), (b), (c) with IBKG subtraction, and corresponding to the

I(HA), I(C) and I(ACP) quantities calculated by (1).

FIG. 4. Spatial distribution of the in-

tensity I(HA), I(C), and I(ACP) in the

B and ST tissues. The scaffold (black

region) has been masked.
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quite correlated in the ST tissue, while it becomes anticorre-

lated at the B/ST interface where the ACP takes to decrease,

transforming in crystalline bone tissue. On the contrary, at

the same interface the collagen goes thickening. In Figure 5,

we show the intensities I(HA), I(C), I(ACP) along a typical

vertical profile crossing the B/ST interface in the y direction.

The described behavior is clearly visible in the B/ST inter-

face, about 30 lm thick, indicated by the dashed rectangle:

we can visualize the ACP-Bone tissue transformation

assisted by the enhancement of collagen packing, at the

organic-inorganic interface. Further analysis, involving

fibres collagen orientation mapping and signal modelling on

the whole q-range will be needed to get deeper insight on the

biomineralization process, here visualized.

In summary, structural heterogeneity in biological tis-

sues can be mapped, thanks to highly spatially resolved

probes. Scanning micro X-ray diffraction allows getting ba-

sic structural information joining large momentum transfer

in reciprocal space onto small areas in real space.

Combining neural-network methods for classifying the type

tissue with least square fitting methods for characterizing the

various structural phases in each tissue, we achieved the

doubled handled result (i) to compose clear spatial maps of

structural phases involved in the tissue regeneration and (ii)

to get additional insights on its underlying complex mecha-

nism. We hope that this study could contribute to set means

of imaging heterogeneous biological tissues as well as moni-

toring tissue structure evolution during various medical

treatments.
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