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Abstract

In the present work exclusive φ meson leptoproduction at HERMES experiment in DESY was

studied using the data collected at HERA accelerator in the period from 1998 till 2000 and

from 2006 till 2007 years. In the analysis unpolarized and longitudinally polarized hydrogen

and deuteron trargets were used, the beam consisted of longitudinally polarized leptons. Via

measurement of the angular and momentum distribution of the φ meson decay products 23

spin density matrix elements (SDMEs) for the φ meson were obtained. The number of SDMEs

was defined by the experiment conditions, e.g. by the beam and target polarization directions.

For the mentioned time period φ meson SDMEs were defined at HERMES for the first time.

The quantities U1, U2 and U3 which can be used to check presence of unnatural parity exchange

(UPE) mechanism in phi meson production were calculated from SDMEs. All the results were

obtained in 3 kinematic bins of Q2, 4 kinematic bins of t′ and for the integrated kinematics.

No statistically significant difference between the results for hydrogen and deuteron targets was

observed. The UPE quantities were found to be zero within 2 σ for the intergated kinematics,

indicating negligible contribution of UPE for the φ meson production which is in agreement

with theory predictions. The test of s-channel helicity conservation hypothesis via comparison

of corresponding SDME values showed helicity conservation for the φ meson production.
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Zusammenfassung

In der vorliegenden Dissertation wurde exklusive φ-Meson Leptoproduktion am HERMES Ex-

periment am DESY studiert. Dafür wurden die Daten, die im Laufe des Betriebs des Elektro-

nenbeschleuniger von 1998 bis 2000 und von 2006 bis 2007 gesammelt worden waren, verwendet.

Als Targetmaterial waren unpolarisierter und longitudinal polarisierter Wasserstoff und Deu-

terium im Einsatz, der Strahl bestand entweder aus longitudinal polarisierten Elektronen oder

Positronen. Durch die Messung der Winkelverteilung der φ-Meson-Zerfallsprodukte wurden

dreiundzwanzig Spindichtematrixelemente bestimmt. Die Anzahl der Elemente wurde von den

experimentellen Bedingungen, nämlich der Polarization des Targetmaterials und des Strahls,

bestimmt. Für die entsprechenden Daten wurden die Elemente zum ersten Mal bei HERMES

gemessen. Aus den Elementen der Spindichtematrix wurden die Werten U1, U2 and U3 er-

mittelt, mit denen die Mitwirkung von unnatürlichem Parittsaustausch getestet werden kann.

Alle Ergebnisse wurden f̈r 3 kinematische Bereiche in Q2 und 4 kinematischen Bereichen in t′,

sowie für den kinematischen Gesamtbereich bestimmt. Die Ergebnisse für die Spindichtematrix-

elemente f̈r Wasserstoff und Deuterium haben keinen statistisch aussagekräftigen Unterschied

aufgezeigt. Die Werten U1, U2 and U3 sind für alle kinematischen Bereiche innerhalb zwei Sigma

mit Null verträglich. Dies bedeutet, dass der Beitrag vom UPE-Mechanismus zur Formation des

φ-Mesons nebenschlich ist. Das ist im Einklang mit den theoretischen Prognosen. Der Test der

s-Kanal-Helizitätsbewahrung, der durch die Gleichstellungen bestimmter Elemente durchgefhrt

wurde, zeigte, dass die Helizität im Prozess erhalten bleibt.
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Chapter 1

Introduction

Studying the structure of matter during the last two centuries brought physicist to the conclu-

sion, that the matter is composed from the small invisible discrete parts. The present under-

standing of the matter composition is expressed in the Standard Model. According to it, the

three types of interaction exist: strong, electromagnetic and weak (gravitation is not included

in the Standard Model). The interactions are described via exchange of bosons which are par-

ticle with an integer spin.1 The strong interaction is mediated by the gluons and described in

Quantum Chromodynamic (QCD), electromagnetic interactions are carried by photons, weak

interactions are distributed by W and Z bosons. In terms of the Standard Model, the matter

is build from the three generations of fermions which are, in contrast to bosons, particles with

a half-integer spin. Each generation includes a lepton, 2 quarks and one neutrino. Each of the

12 particles mentioned above has a corresponding antiparticle. Hadrons are composite particles

built from different combinations of quarks. It was confirmed for the first time in 1955 [1] via

the reaction of elastic ep scattering. The scattering pattern was different from the theoretically

predicted model of a point-like nucleon. The possible explanation was provided by the model,

describing a nucleon as a conglomeration of a few scattering centers. Apart from these cen-

ters, identified later as valence quarks, the nucleon contains gluons (so called “sea”) which can

produce quark-antiquark pairs, e.g. sea quarks.

The experiments of a type ep → eX, e.g. deep-inelastic scattering (DIS) experiments,

e.g. where the proton breaks up, have become the main tool to investigate the inner nucleon

structure. The latter becomes visible only when the de Brogile wave-length λ = h/p of the

photon, mediating electromagnetic interactions, is comparable to the nucleon size, in other

words when the lepton momenta p is large enough. Therefore the more is the energy - the less

is the wave length, that is why it is important to achieve high energies of the beam particles

(electrons), colliding with target particles (nucleons). If no final product of the reaction, except

from the scattered lepton, e.g. no X is detected – then the process is called inclusive DIS. If one

of the products and the lepton are registered, than the process is referred to as semi-inclusive

1Spin is in units of ~. In this work ~ = 1 and the light speed c = 1.

1
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DIS. In case when the whole signature of the reaction is known, the reaction is an exclusive

one.

In early DIS experiments the quark spin was found to be 1/2. Since nucleon contains three

quarks, its spin can then be naturally represented as a sum of the two quarks aligned in one

direction and the third quark spin anti-aligned to it. Later the EMC experiment ([2]) discovered

that the quark contribution to the nucleon spin does not exceed 30%. This situation is called

the spin crisis. The way out of the situation was to assume that not only the quark spin is

responsible for the nucleon spin, but also orbital angular momenta of quarks and gluons and

gluon spin contribute to the nucleon spin:

S =
1

2
=

1

2
∆Σ + ∆G + Lq + Lg, (1.1)

where ∆Σ is the contribution of the quark spins, ∆G is that of gluon spin, Lq and Lg are the

orbital angular momenta of quarks and gluons correspondingly. The recently developed gen-

eralized parton distributions (GPDs) formalism provides 3-dimensional nucleon structure by

unification of the two previously developed concepts of probability density functions, describ-

ing deep-inelastic scattering, and the form factors, describing the elastic scattering processes.

GPDs can not be measured directly, but are accessible in exclusive reactions, where all the

reaction products are detected. One of such reactions is a reaction of an exclusive φ meson

leptoproduction which is a subject of this work.

In chapter 2 the theoretical framework and the physical motivation of the analysis are given.

Then the relevant details of the experiment HERMES are presented in chapter 3. The analysis

is described in chapter 4, where the chain of event selection (Section 4.1), SDME extraction

(Section 4.2) and systematic studies (Section 4.3) are discussed. The results and conclusions

are subject of chapters 5 and 6.



Chapter 2

Exclusive φ meson production

Exclusive leptoproduction of vector mesons from deep-inelastic scattering gives a possibility

to study the structure of both vector meson (V) and the nucleon (N) via measurements of

angular and momentum distributions of the vector meson decay products. The corresponding

kinematic variables of the exclusive vector meson production are presented in Section 2.1. The

deep-inelastic scattering (DIS) reaction phenomenology and the concise introduction to the

functions, describing the inner nucleon structure, is given in Section 2.2. Exclusive φ meson

production can be explained in terms of the Vector Meson Dominance (VMD) model, described

in Section 2.6. In this model, the virtual photon fluctuates into a vector meson whose interaction

with the nucleon can be represented using Regge phenomenology, given in Section 2.7. On the

other hand, exclusive meson production at large values of Q2 and W can be described in terms

of perturbative QCD, which involves non-perturbative QCD objects, namely generalized parton

distributions (GPDs), whose definition and properties are presented in Section 2.5.

The φ meson is a vector meson formed from a strange quark and a strange antiquark. It

has a mass of 1019.445± 0.020MeV , total angular momentum J = 1, odd parity JPC = 1−−,

G-parity IG = 0−, strange flavour (strangeness) S = 0, charm flavour C = 0, bottom flavour

B = 0. It is short living particle, after the formation reaction it decays into two oppositely

charged kaons in 49.1± 0.8% ([54]) of the case.

2.1 Kinematics

The exclusive vector meson production from deep-inelastic lepton scattering is described by the

equation

e(k) + P (p) → e′(k′) + P ′(p′) + V (v) (2.1)

where e(k), e′(k′) are initial and scattered leptons with four-momenta k and k′; P (p), P ′(p′)

are initial and scattered nucleons with their four-momenta p and p′; V (v) is the vector meson

produced with the four-momentum v. The schematic view of the process is shown in Figure 2.1,

3



Exclusive φ meson production 4

Figure 2.1: The reaction of exclusive φ meson production.

the particle’s four-momenta are given in parentheses. The electromagnetic interaction prevails

at HERMES level of energies over the weak one, therefore Z and W boson exchanges are

neglected and only photon is considered as an interaction mediator. Multi-photon exchange is

suppressed by the factor of electromagnetic fine structure constant αem = 1/137.

An exchanged photon lives for a time ∆t ≥ h/2∆E and is therefore termed a virtual photon

with a virtuality given by the formula

Q2 = −q2 = −(k − k′)2 lab
= 4EE ′ sin2 θ

2
, (2.2)

where q is the four-momentum of the virtual photon γ∗, E and E ′ are energies of the incoming

and outgoing leptons correspondingly, θ is the scattering angle of the lepton in the laboratory

frame. The Bjorken scaling variable is defined as

xB =
Q2

2p · q
lab
=

Q2

2Mν
, (2.3)

where M is the nucleon mass, ν is the energy transferred from the initial lepton to the virtual

photon in the laboratory frame:

ν =
p · q
M

lab
= E − E ′. (2.4)

The lepton-nucleon system center-of-mass energy s is given by s = (k+p)2, the photon-nucleon

system center-of-mass energy squared W 2 is specified by

W 2 = (q + p)2 lab
= M2 + 2Mν −Q2 = M2 + Q2 1− xB

xB

. (2.5)
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If xB = 1, then W = M , which corresponds to the case of elastic scattering. The squared

four-momentum transfer from the initial to the final nucleon, or in other words from the virtual

photon to the φ meson produced is

t = (q − v)2 = (p− p′)2. (2.6)

The smallest kinematically allowed value of −t at the fixed ν and Q is denoted as t0. The

variable t′ = t−t0 is equal to zero if in the photon-nucleon center-of-mass system the momentum

of the produced φ meson is collinear to that of the γ∗. The variable ε, representing the ratio of

fluxes of longitudinal and transverse virtual photons, reads as

ε =
1− y − y2 Q2

4ν2

1− y + 1
4
y2(Q2

ν2 + 2)
, (2.7)

where y = p · q
p · k

lab
= ν

E
- the energy transfer from the initial lepton to the nucleon, 0 < y < 1.

2.2 Deep-inelastic scattering

Figure 2.2: The deep-inelastic scattering process.

The leading-order Feynman diagram of the deep-inelastic scattering (DIS) process of a

lepton on a nucleon is depicted in Figure 2.2. DIS may be represented as a consequence of two

processes - emission of a virtual photon by a lepton and absorption of the photon by a nucleon.

The corresponding cross section can be expressed as the contraction of a leptonic tensor Lµν

with a hadronic tensor WDIS
µν ([3], [4]):

dσ ∝ LµνWDIS
µν , (2.8)
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The leptonic tensor describes the lepton transition from the initial to the final state via emission

of the virtual photon and is calculable in quantum electrodynamic (QED):

Lµν = 2[k′µkν + kµk′ν + (m2
e − k · k′)gµν ]− 2imeε

µναβqαsβ, (2.9)

where me is the electron mass and sβ is the lepton-spin four-vector, gµν is the metric tensor,

εµναβ is the totally anti-symmetric Levi-Civita tensor and ε0123 = 1. The first part is symmetric

with the respect to the indexes µ, and ν, while the second term is anti-symmetric and describes

the initial lepton spin sβ. The hadronic tensor describes the absorption of the exchanged virtual

photon by the nucleon and the transition of the nucleon to the final hadronic state X:

WDIS
µν (q, p, S) =

1

4πM

∑
n

∫
d3P ′

n

(2π)32P ′0
n

× (2π)4δ4

(
p + q −

∑
n

P ′
n

)
Hµν(p, S, P ′

X), (2.10)

where Hµν(p, S, PX) = 〈p, S|Jµ(0)|X〉〈X|Jν(0)|P, S〉, Jµ represents the electromagnetic proton

transition-current four-vector, S, p and M the proton spin, momentum and mass correspond-

ingly. The sum in Equation 2.10 is over all particles X in the final state, having four momenta

pX = (EX , PX). The δ4 guarantees 4-momentum conservation. The hadronic tensor cannot

be calculated from first principles and has to be parametrized. As a result of the symmetry

properties parity, time reversal and transition invariance, current conservation, the number of

terms in the parametrization is restricted. The resulting parametrization is:

WDIS
µν = W S

µν(q, p) + WA
µν(q, p, S), (2.11)

where the first term parametrizes the symmetric spin-independent hadronic tensor part ( [4]):

W (S)
µν (q, p) =

(
−gµν −

qµqν

Q2

)
W1(p · q, q2) +

W2(p · q, q2)

M2

(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)
(2.12)

and the second part parametrizes the antisymmetric spin-associated part ( [4]):

WA
µν(q, p, S) = iεµναβqα

(
MSβG1 +

[
(p · q)Sβ − (S · q)pβ

] G2

M

)
. (2.13)

Each of the terms is either a function of the two spin-averaged structure functions W1, W2, or

the two spin-dependent structure functions G1, G2. In the Bjorken limit, or DIS regime, when

large Q2 implies large ν: −q2 → ∞, ν = E − E ′ → ∞, the structure functions depend on

x = Q2

2p · q = Q2

2Mν
.

In the Bjorken limit the structure functions scale approximately:

lim
Q2→∞
x fixed

MW1(Q
2, x) ≡ F1(x), lim

Q2→∞
x fixed

νW2(Q
2, x) ≡ F2(x), (2.14)
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lim
Q2→∞
x fixed

νM2G1(Q
2, x) ≡ g1(x), lim

Q2→∞
x fixed

ν2MG2(Q
2, x) ≡ g2(x). (2.15)

Independence of Fi on Q2 was explained by Feynman in the parton model. The main idea

was that scattering occurs from a point-like object (parton) in a proton. However, for relatively

low values of x scaling violations are observed, which can be explained by partonic interactions,

leading to the logarithmic dependence of the structure functions on Q2. The structure functions

describe the internal structure of the target nucleon. Taking into account Equations 2.14 - 2.15

and 2.8, an expression for the unpolarized DIS cross section can be written:

d2σ

dxdQ2
=

4πα2

Q4

[
F1(x, Q2)y2 +

F2(x, Q2)

x

(
1− y − Mxy

2E

)]
(2.16)

in terms of the structure functions F1 and F2, which need to be determined experimentally.

2.3 Parton distribution function

In terms of the parton model the nucleon consists of partons (quarks and gluons) of flavour

f and electric charge ef , each having a spin s which can be parallel to that of the nucleon

(s = S) or antiparallel to it (s = −S). The DIS structure functions can be expressed via quark

distribution functions qf and quark helicity distribution functions ∆qf [4]:

F1(x) =
1

2

∑
f

e2
fqf (x), F2(x) =

∑
f

e2
fxqf (x), (2.17)

g1(x) =
1

2

∑
f

e2
f∆qf (x), g2(x) = 0, (2.18)

The unpolarized quark distribution function qf = q+
f + q−f and the polarized quark distribution

function ∆qf = q+
f − q−f represent the probability to find a quark in the nucleon with momen-

tum fraction x and spin parallel (q+
f ) or anti-parallel (q−f ) to the longitudinal nucleon spin. In

the infinite momentum frame, where the nucleon moves fast in the z-direction, the unpolarized

(polarized) structure function F1(g1) is proportional to the sum of the unpolarized (polarized)

quark density functions weighted by the squared quark charge. Under an assumption that the

partons inside the protons are quarks (gluons are therefore neglected), e.g. spin-1/2 parti-

cles, the following relation between Equations 2.17 is fulfilled: 2xF1(x) = F2(x) and is called

Gallan-Gross relation. The unpolarized distribution q(x) of quarks in the proton is accessible

experimentally via measurements of the structure functions F1 and F2. The polarized structure
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function g1 gives information about the distribution of quarks with certain helicities.

2.4 Form factors

Nucleon form factors F f (Q2) are measured in the elastic process lN → l′N ′ and contain the

information on the nucleon structure at a given four-momentum transfer Q2. Helicity conserving

process corresponds to Dirac form factor F f
1p(n), while the spin-flip process is described by the

Pauli, F f
2p(n), form factor for proton (neutron), correspondingly. They have following values in

the limit Q2 → 0:

F f
1p(0) = 1, F f

2p(0) = κp, F f
1n(0) = 0, F f

2n(0) = κn, (2.19)

where κp = µp−1 (µp - magnetic moment of the proton) and κn = µn−1 (µn - magnetic moment

of the neutron) are the anomalous magnetic moment of the proton and neutron, respectively.

The measured quantities, constructed from the form factors, are electric GE ≡ F f
1p(n)

Q2

4M2 and

magnetic GM ≡ F f
1p(n) + F f

2p(n), form factors. For very low momentum transfer, GE and GM

may be represented as Fourier transforms of the transverse charge and magnetization current

densities inside the nucleon [14].

2.5 Generalized parton distributions

Both the form factors and PDFs, mentioned above, provide only one dimensional images of the

nucleon structure, describing the transverse distance from the center of a fast moving nucleon

and - the probability to find a quark with the certain momentum fraction and spin direction,

respectively. The “unification” of these quantities leads to the generalized parton distribution

(GPD) formalism, which was developed in the last decades. The GPDs include form factors

and PDFs, being their boundary conditions, and therefore providing a 3-dimensional image of

partons inside hadrons. Figure 2.3 shows the comparison of information about inner parton

structure provided by the form factors, GPDs and parton density functions, respectively.

Various contributions to the DIS process in the infinite momentum frame can be scaled

according to the order of 1/Q in the hadronic tensor expansion ([18]). This order is called twist.

The terms of the expansion has a form (1/Q)τ−2. The leading twist, e.g. the lowest order of

suppression is then twist-two.

At leading twist for parton helicity non-flip configurations the nucleon structure information

can be parametrized in terms of four GPDs for each type of partons, named H, H̃, E, Ẽ.

Parton helicity flip processes provide four more GPDs, but the amplitudes of the corresponding

processes show ([16]) suppression factor for the gluonic suppress to be −t/Q2 and for quark one
√
−t/Q. From the four helicity-conserving GPDs for unpolarized targets the most important

one is the GPD H; the three other either contribute less (H̃, Ẽ) or can be neglected (E).
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Figure 2.3: Probabilistic interpretation of form factors, GPDs and parton densities in
the infinite momentum frame [14]

For transversely polarized targets also GPD E provides not a negligible contribution. Apart

from parton helicity information, GPDs also provide information on helicity transitions of the

hadron. The GPDs H, H̃ are devoted to hadron helicity non-flip process, while E, Ẽ are referred

to hadron helicity flip one. The GPDs depend on three variables: the average longitudinal

momentum fraction x of the parton in the initial and final states, a skewness parameter ξ

representing the difference between these two momenta, and on the four-momentum transfer t

to the nucleon. The average longitudinal momentum fraction x is given by k
+

= xP
+
, where k

+

and P
+

are the longitudinal light-cone components1 of k and P correspondingly. The average

nucleon momentum is P = (P +P ′)/2. The skewness parameter ξ is defined via ∆+ = −2ξP+,

where ∆+ is the longitudinal light-cone component of ∆2 = t. In a kinematic situation in

which the invariant mass of the photon-nucleon system W and the photon virtuality are large,

Bjorken’s variable xBj = Q2

W 2+Q2−M2 is therefore small [12]. Under such kinematic conditions

the skewness parameter is given by

ξ ≈ xBj

2− xBj

(1 + M2
V /Q2). (2.20)

The GPDs can describe various exclusive processes of the shape ep → eNY , with Y being

a detected, e.g. observed state, in particular hard exclusive vector meson production. It was

shown in [12], [13] that the amplitude of the process γ∗p → V p can in the Bjorken limit (which

in practice means large, but limit Q2 value) be factorized in the framework of QCD into hard

parton-level subprocesses and a non-perturbative proton matrix element representing the GPD.

Factorization was proved for the longitudinal transition only, other transitions can be calculated

1In the light cone coordinates the momentum p can be written as P = (P+, P−, PT , where P
+

= 1√
2
(P

0
+

P
Z
).
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in a model-dependent way. The hard part was shown[12] to be represented for the vector meson

production as an interaction of qq̄ pair, originating from dissociation of the exchange photon,

with a nucleon and is calculable in terms of pQCD or Regge phenomenology (Section 2.7).

After the interaction qq̄ pair forms the observed vector meson. The interaction with a nucleon

can either be mediated via two-gluon (Figure 2.4, a)) or quark exchange (Figure 2.4, b)).

Figure 2.4: The mechanism of an exclusive φ meson production: a) two-gluon b)
quark-antiquark exchanges.

The production of vector mesons at small xBj < 10−2 is controlled by gluonic GPDs, while

the quark GPDs play only a minor role. However, at intermediate energies, for ρ meson produc-

tion both two-gluon exchange and quark-exchange are important. For φ even at intermediate

beam energy gluon exchange is dominating, since the φ meson, aside from the valence ss pair,

contains only a small admixture of quark-antiquark pairs with other flavours. The admixture of

ss pair in the nucleon is also small at the xBj range studied at HERMES experiment. Exchanges

with the u and d quarks demand additional gluon emission and are suppressed according to

OZI rule that forbides energetically uneconomical exchanges. Therefore for φ meson the two-

(or more) gluon exchange is dominating the quark one.

According to [17] the process γ∗p → V p is dominated by transitions from longitudinally

polarized photons to longitudinally polarized vector mesons (γ∗Lp → VLp) at large Q2; the

amplitudes for other photon-meson transitions are suppressed at the leading twist by inverse

powers of Q. Besides the longitudinal amplitude, dominating the process, mainly a transverse

one (γ∗T p → VT p) is to be considered, since it is the most important one of the suppressed

amplitudes at small −t.

The contribution from GPD H to the exclusive vector meson production amplitude reads

(i = g, q, xg = 0, xq = −1) ([17])

MNi
µ+,µ+(V ) =

e

2

∑
a

eaC
a
V

∫ 1

xi

dx
∑

λ

HVi
µλ,µλ(x, ξ, Q2, t = 0)H i(x, ξ, t), (2.21)

The sum runs over the quark flavours a, and ea denote the quark charges in units of the positron

charge e. Ca
V is a numerical flavour weight factor, µ and λ are helicities of γ and vector meson

correspondingly, HVi
µλ,µλ(x, ξ, Q2, t = 0) is the subprocess amplitude. Index i denotes quark or
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gluon, giving Hq or Hg contribution to the amplitude.

The full amplitude is given by a superposition of the gluon and quark contributions as was

mentioned above:

MN = MNg + MNq . (2.22)

Both of them are important for ρ meson and only the first one – for φ meson. The amplitude

MN is normalized such that the partial cross-section for the process pγL(T ) → p′VL(T ) is given

by [17]

dσL(T )

dt
=

1

16π(W 2 −M2)
√

Λ(W 2,−Q2, M2)
|MN

0(+)+,0(+)+|2, (2.23)

where Λ is the Mandelstam function. The full (non-separated) cross section consists of trans-

verse and longitudinal parts: σ = σT + εσL, where ε is the ratio of longitudinal to transverse

photon fluxes.

Connection between GPDs and form factors.

Integrating the GPDs over the variable x gives:∫ +1

−1

dxH(x, ξ, t) = F1(t),

∫ +1

−1

dxE(x, ξ, t) = F2(t), (2.24)

∫ +1

−1

dxH̃(x, ξ, t) = GA(t),

∫ +1

−1

dxẼ(x, ξ, t) = GP (t), (2.25)

where F1 and F2 are the Dirac and Pauli form factors, GA and GP are the axial form factor

and the pseudoscalar form factor respectively. The relations are valid for the defined quark

flavour, e.g. H, E, H̃, Ẽ are defined for each quark flavour separately, while the form factors

are summed over them.

Connection between GPDs and PDFs.

In the forward limit (ξ → 0, t → 0), nucleon helicity conserving GPDs H and H̃ are equal

to PDFs:

x > 0 Hq(x, 0, 0) = q(x), H̃q(x, 0, 0) = ∆q(x). (2.26)

In case of negative x one obtains the anti-quark distributions:

x < 0 Hq(x, 0, 0) = q(−x), H̃q(x, 0, 0) = ∆q(−x), (2.27)
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and for gluon GPDs in the region of x > 0:

Hg(x, 0, 0) = xg(x), H̃g(x, 0, 0) = x∆g(x) (2.28)

The nucleon-helicity non-conserving GPDs E and Ẽ have a multiplicative factor ∆ (∆2 = t)

and therefore vanish in the forward limit.

It was shown in [13] that the total angular momentum of quarks (gluons) Jq(g) is related to

the second x moment of the GPDs Hq(g), Eq(g):

Jq =
1

2
lim
t→ 0

∫ 1

−1

x(Hq(x, ξ, t) + Eq(x, ξ, t))dx, (2.29)

Jg =
1

2
lim
t→ 0

∫ 1

0

(Hg(x, ξ, t) + Eg(x, ξ, t))dx (2.30)

This relation is known as Ji’s sum rule and gives nowadays the only known way to access

experimentally the total angular momentum carried by quarks and gluons in the nucleon.

2.6 Vector meson dominance model

Vector meson dominance model (VMD) was developed in the 1960s by J. J. Sakurai in order to

describe interactions between photons and hadrons. In QCD the photon is a massless, neutral

gauge boson, which couples to charged particles and mediates the electromagnetic interaction.

At first photon was introduced as a structureless particle, but later it was found out that

photon can fluctuate into an electron-positron pair: γ → e+e−, which was one of the first

indications that photon can have a more complicated internal structure. Photon interactions

show some similarities to hadron interactions, such as same shapes of the momentum transfer

t distributions, resembling behavior of the total cross sections, nearly identical photon and

hadron cross sections on neutrons and protons. This can be explained by the fact that the

photon is a superposition of a bare photon, responsible for electromagnetic interactions, and

hadronic component, which takes part in hadronic interactions

|γ〉 =
√

Z3|γB〉+
√

α|γh〉, (2.31)

where Z3 is the normalization factor of |γB〉, α = 1/137 [6]. At high energies bare photon

|γB〉 is several orders of magnitude smaller than hadronic part and therefore can be neglected.

Conservation laws dictate that |γh〉 has the same quantum numbers as the photon, i.e. JPC =

1−−, Q = B = S = 0. Moreover the relatively large cross section for production of the light spin-

1 vector mesons ρ0, ω, and φ from photon-hadron interactions suggests that they provide the

dominant contribution to the hadronic photon component γh. VMD is based on the assumption
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that these three vector mesons are the only hadronic constituents of the photon.

In the approach given above the internal photon structure is worked out independently from

the target, and then the various components are permitted to interact with the target. For

this picture to be valid, the virtual hadrons must be presented for a time long enough for the

interaction to occur with an ordinary ”real” hadron. The physical photon is always making

transitions back and forth between a bare photon and hadronic states. For theses interactions

to satisfy the separability conditions it is necessary that the fluctuations lasts a typical time,

called the formation time, which is relatively long compared to the interaction time with the

target. The fluctuation or formation time of a photon into a qq̄ or virtual vector meson state

in the laboratory system is given by [6]

tf ≈
2ν

Q2 + M2
v

, (2.32)

where Mv is a virtual vector meson mass. For fixed Q2 and Mv, tf is directly proportional to the

photon’s energy. The formation time is to be long enough for the virtual meson to travel over a

distance much larger than the nucleon radius of about 1 fm, because photon-to-virtual-meson

fluctuations occurs long before the last one hits the target. According to [6], the hadron-related

part of the equation 2.31 can be defined as

√
α|γh〉 =

∑
V

e

fV

M2
V

M2
V + Q2

|V 〉, (2.33)

where |V 〉 is a vector meson state, e
fV

is a normalization constant, MV is a vector meson mass.

The factor e =
√

4παem, fV is γ ↔ V coupling constant. Equation 2.33 gives the Q2 dependence

of the vector meson production cross section as a propagator of single vector meson states. Then

an expression for the transverse and longitudinal cross section in ep inelastic scattering in terms

of VMD can be written:

σγ∗p
T (Q2, W ) =

∑
V

e2

f 2
V

(
M2

V

M2
V + Q2

)2

σV p
T (W ), (2.34)

σγ∗p
L (Q2, W ) =

∑
V

e2

f 2
V

(
M2

V

M2
V + Q2

)2

ξ2
V

Q2

M2
V

σV p
T (W ), (2.35)

where σV p
T is the total V p cross section for the transversely polarized vector meson, the param-

eter ξ is defined by

ξ2
V = σV p

L /σV p
T . (2.36)

VMD model predicts the factor ξ2
V to be of the order of unity, but the experimental results on
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Figure 2.5: Chew-Frautschi plot for Regge trajectories [11]. The full line shows a fit
of mesons with Equation 2.38. The dashed line is an approximation of the fit for t < 0.
The dotted line is a Pomeron trajectory.

ρ0 indicate lower value ([9],[10]). The longitudinal-to-transverse cross section ratio reads

R =
σγ∗p

L (Q2, W )

σγ∗p
T (Q2, Wu)

= ξ2
V

Q2

M2
V

(2.37)

The ratio is predicted ([7]) to vary as q2 at fixed ν/q2 (as long as ξ is slowly varying).

2.7 Regge theory

As described above, the virtual photon, emitted by the beam lepton, can in terms of VMD be

represented as a vector meson. The futher interaction of a target nucleon with a vector meson

can be explained by Regge theory, which describes hadron-hadron interaction. The basic idea

of Regge is that the angular momenta can be represented as a complex value and the scattering

amplitude can be extrapolated on the complex angular momentum plane. For a given spin l at

an energy t the singularities of a scattering amplitude appear as poles, called Regge poles. The

poles can be either bound stated or resonances and are located at values defined by a relation

l = Re(α(t)) is called Regge trajectory. In Figure 2.5 the angular momentum is plotted versus

the particle mass squared t = M2. In such a coordinate system Regge trajectories become
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straight lines with slope α′ and intercept α(0):

α(t) = α(0) + α′(t) (2.38)

The experimental results of diffractive scattering processes with negative momentum transfer

t align along straight lines for all the known trajectories. The scattering reactions are mediated

by exchange of resonances in the t-channel whose interpolation is given by a Regge trajectory.

The scattering amplitude is given by the equation

A(s, t) ∝ sα(t) (2.39)

The total cross-section is connected with the imaginary part of the scattering amplitude as

σtot =
1

s
Im(At=0) (2.40)

Equations 2.39 and 2.40 give the energy dependence of the cross–section

σtot = sα(t=0)−1 (2.41)

This means that the intercept of the trajectory determines the cross section dependence on

the energy s. All trajectories associated with mesonic resonances have intercepts around 0.5.

The cross section is than to behave as σtots
−1/2. This is true up to a few GeV center of mass

energy, after that the cross section dependence has a plato. Such a behavior can be explained in

terms of Regge theory via introduction of a trajectory with an interception at 1 and quantum

numbers of the vacuum. Such a trajectory was called Pomeron trajectory.

2.8 The vector meson spin density matrix in Wolf-Schilling

notation

The differential cross section for vector meson production reads:

dσep→epV

dE ′dΩdΦdt
=

1

(2π)5

E ′

E

M2

4
√

(ν2 + Q2)

1

4

∑
spins

|M |2, (2.42)

where E, E ′ are energies of initial and final lepton, dΩ is the volume element of the scattered

lepton, Φ is the angle between the normals to the lepton scattering plane and the hadron

production plane (see Figure 2.6) and M is the matrix element describing the scattering process.

It was shown in [19] that 1
4

∑
spins |M |2 = 1

4

∑
spins LµνT

µν , so that the cross section form is
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Figure 2.6: Definition of production and decay angles for vector meson production.

similar to that of DIS (see 2.8). The leptonic tensor Lµν is given by

Lµν =
∑
spins

m2〈e′|jµ|e〉 · 〈e′|jν |e〉, (2.43)

where j is electromagnetic current operator, e and e′ are the spinors of the initial and final

leptons. Therefore, the leptonic tensor, describing the emission of the virtual photon, represents

photon spin density matrix Lµν ∝ %(γ)λλ′ . The latter can be decomposed into an orthogonal

set of nine independent hermitian matrices Σα:

%(γ) =
1

2

8∑
α=0

∏̃
α

Σα, (2.44)

where
∏̃

α is a known normalization vector. The four matrices %(γ) for α = 0, 1, 2, 3 de-

scribe vector meson production by transverse virtual photons: unpolarized, linearly polarized

in two orthogonal directions, and circularly polarized vector meson, respectively. Vector meson

production by longitudinal virtual photons corresponds to α = 4 and α = 5, 6, 7, 8 provide

transverse-longitudinal interference terms. Unlike DIS, the hadronic tensor for vector meson

leptoproduction can not be parametrized by structure functions. Instead, the vector meson
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production is described in terms of a vector meson spin density matrix:

dσγp→V p

dtdΦ
=

1

32π2
√

(ν2 + Q2)
Tr(Fρ(γ)F+). (2.45)

The vector meson density matrix is then given by

ρ(V ) =
1

2
Tρ(γ)T+

/∫
dΦ

2π
Tr

(
1

2
Fρ(γ)F+

)
, (2.46)

where an averaging over Φ and a summation over nucleon helicities is being done and T is a

production amplitude. The same as the photon one, the vector meson spin density matrix can

be decomposed into a set of hermitian matrices:

ρ(V ) =
8∑

α=0

∏
α

ρα, (2.47)

where
∏

α is a known normalization vector, and the matrix element of the matrix ρ(V ) can be

written as

ρα
λV λ′V

=
1

2Nα

∑
λN′ ,λN ,λγ ,λ′γ

FλV ,λN′ ,λγ ,λN
Σα

λγλ′γ
F ∗

λ′V ,λN′ ,λ′γ ,λN
. (2.48)

Here Nα are normalization constants and FλV ,λN′ ,λγ ,λN
are helicity amplitudes

FλV ,λN′ ,λγ ,λN
= 〈λV λN ′|jλγ |λN〉, (2.49)

defined in the center-of-mass system of virtual photon and target nucleon and describing a

transition from the initial nucleon state |λN〉 to the final φ meson and scattered nucleon state

〈λV λN ′|. The spin states of the virtual photon, φ meson, initial (outcoming) nucleon are denoted

by λγ, λV , λN(N ′) correspondingly.

2.9 Definition of the scattering angles in vector meson pro-

duction

Both the two vector mesons, presented in this thesis, namely ρ and φ, decay after the formation

into two oppositely charged particles: kaons in case of φ meson (φ → K+K−), pions in case

of ρ meson (ρ → π+π−). In Figure 2.6 angles are denoted, that are used for the description of

vector meson production. In the center-of-mass system of virtual photon and target nucleon

Z-axis is directed along the virtual-photon three-momentum, and the Y-axis is parallel to the
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vector product of virtual-photon and vector meson three-vectors:

Z =
q

|q|
, Y =

q×v

|q×v|
, X = Y ×Z (2.50)

In the “hadronic” center of mass system of virtual photon and target nucleon the angle between

the vector meson production plane and the lepton-scattering plane is specified by

cos Φ =
(q×v) · (k×k′)

|q×v| · |k×k′|
, sin Φ =

[(q×v)× (k×k′)] ·q
|q×v| · |k×k′| · |q|

. (2.51)

The polar and azimuthal angles ϕ and Θ of the positively charged decay particle are defined

in the vector meson rest frame where the z-axis is aligned opposite to the outgoing nucleon

momentum P′ and the y-axis parallel to Y and directed along P′×q:

z =
−P′

|P|
, y = Y, x = y× z. (2.52)

The angle ϕ between vector meson production plane and φ meson decay plane is defined by

cos ϕ =
(q×v) · (v×pK+)

|q×v| · |v×pK+ |
, sin ϕ =

[(q×v)×v] · (pK+ ×v)

|(q×v)×v|pK+ ×v|
, (2.53)

where pK+ is the three-momentum of the positive decay particle, kaon in case of φ meson, pion

in case of ρ meson.

The angle Θ is given by

cos Θ =
−P′×pK+

|P′| · |pK+ |
. (2.54)

The angle definition given above are according to [20] and are used in the Wolf-Schilling for-

malism. The relations of these definitions to ”Trento convention” [22] and Ref. [21] read:

Φ = −φh,Trento, φ = ϕ [21], Θ = θ [21] (2.55)
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2.10 The decay angular distribution of vector meson produc-

tion in Wolf-Schilling formalism

Taking into account Expressions 2.45 and 2.48 the differential cross section in terms of helicity

amplitudes can be written as ([19])

dσfull(W , Q2)

dΩdΦdt
=

1

(64π2)

∑
λγλ′γλV λ′V λNλ′N

FλV λ′N ;λγλN
× %λγλ′γ (ε, Φ)F ∗

λV λ′N ;λγλN
Y1λV

(ϕ, cos Θ)×Y1λV
(ϕ, cos Θ)∗,

(2.56)

where %λγλ′γ is the virtual photon spin density matrix, the helicity amplitudes FλV λ′N ;λγλN
are

describing the transition of the virtual photon with helicity λγ to the vector meson with helicity

λV , and Y1λV
(ϕ, cos Θ)×Y1λV

(ϕ, cos Θ) - the angular distribution of the vector meson decay

products. The total cross section can be obtained after integration over the angles Φ, ϕ, cos Θ:

dσfull

dt
=

dσT

dt
+ ε

dσL

dt
, (2.57)

and can be accessed experimentally via the measured quantity, as will be shown below. The

decay angular distribution W of the vector meson decay products can be decomposed for

different beam and target polarization cases

W = WUU + PLWLU (2.58)

where L denotes longitudinal polarization of the beam, U means unpolarized beam or target.

The unpolarized-beam part of the angular distribution is a function of matrix elements with

α = 0, 1, 2, 4, 5, 6. The polarized-beam part of the angular distribution contains matrix elements

with α = 3, 7, 8 for longitudinal beam polarization. Measurements with a transversely polarized

beam gives elements with α = 7, 8 and therefore provide no new information compared to

the case of longitudinal beam polarization. In case of longitudinally polarized beam and an

unpolarized target the total number of independent matrix elements in the equation above

is 26. At a fixed beam energy no separation between σL and σT is possible; the number of

independent unpolarized matrix elements is reduced from 18 to 15 because the elements with

α = 4 and α = 0 can not be disentangled and are combined by the following relation, which

merely can be measured:

r04
λλ′ =

ρ0
λλ′ + εRρ4

λλ′

1 + εR
. (2.59)
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The measurable matrix elements for the other α values can also be expressed in terms of ρα
λλ′ :

rα
λλ′ =


ρα

λλ′
1+εR

α = 1, 2, 3
ρα

λλ′
√

R

1+εR
α = 5, 6, 7, 8.

(2.60)

The decay angular distribution of the vector meson can now be expressed via the angles de-

scribed above (Φ, ϕ, cos Θ) and quantities rα
λλ′ , called spin density matrix elements (SDMEs).

The beam-polarization independent part is given by the equation:

WUU(Φ, ϕ, cosθ) =
3

4π

[
1

2
(1− r04

00) +
1

2
(3r04

00 − 1) cos2 θ −
√

2<e {r04
10} sin 2θ cos ϕ

− r04
1−1 sin2 θ cos 2ϕ− ε cos 2Φ

(
r1
11 sin2 θ + r1

00 cos2 θ

−
√

2<e {r1
10} sin 2θ cos ϕ− r1

1−1 sin2 θ cos 2ϕ

)

− ε sin 2Φ

(
√

2=m{r2
10} sin 2θ sin ϕ + =m{r2

1−1} sin2 θ sin 2ϕ

)

+
√

2ε(1 + ε) cos Φ

(
r5
11 sin2 θ + r5

00 cos2 θ −
√

2<e {r5
10} sin 2θ cos ϕ

− r5
1−1 sin2 θ cos 2ϕ

)
+
√

2ε(1 + ε) sin Φ

(
√

2=m{r6
10} sin 2θ sin ϕ

+ =m{r6
1−1} sin2 θ sin 2ϕ

)]
. (2.61)

It is parametrized by 15 independent unpolarized SDMEs. The part involving longitudinally

polarized beam contains 8 polarized SDMEs:

WLL(Φ, ϕ, cosθ) =
3

4π
P

[
√

1− ε2

(
√

2=m{r3
10} sin 2θ sin ϕ + =m{r3

1−1} sin2 θ sin 2ϕ

)

+
√

2ε(1− ε) cos Φ

(
√

2=m{r7
10} sin 2θ sin ϕ + =m{r7

1−1} sin2 θ sin 2ϕ

)

+
√

2ε(1− ε) sin Φ

(
r8
11 sin2 θ + r8

00 cos2 θ −
√

2<e {r8
10} sin 2θ cos ϕ

− r8
1−1 sin2 θ cos 2ϕ

)]
. (2.62)

These 15+8 quantities for vector meson production at HERMES are presented in this thesis.
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The angular distribution is normalized (according to [21])∫
dΦ

2π

∫
d cos θdϕW (θ, ϕ, Φ) = 1. (2.63)

2.11 The spin density matrix elements of the vector meson

production in Markus-Diehl formalism

Helicity amplitudes T νσ
µλ for the process γ∗(µ) + p(λ) → V M(ν) + p(σ) were introduced by

Markus Diehl with definite helicities µ, λ, ν, σ. The helicity amplitudes depend on Q2, xB, t.

In terms of the amplitudes the spin density matrix can be written as

ρνν′

µµ′,λλ′ = (NT + εNL)−1
∑

σ

T νσ
µλ (T ν′σ

µ′λ′)
∗, (2.64)

where NT and NL are the normalization factors and are proportional to the differential trans-

verse and longitudinal cross sections correspondingly. The SDMEs for unpolarized target are

denoted as uνν′

µµ′ and obtained as

uνν′

µµ′ =
1

2
(ρνν′

µµ′,++ + ρνν′

µµ′,−−), (2.65)

where the target polarization is designated as just + or – instead of +1/2, -1/2. Therefore

from comparison of Equation 2.48 to 2.65 one can see that the lower indices of the matrix

element ρ in Wolf-Schilling notation correspond to the upper indices of the matrix element u

in Markus-Diehl notation.

2.12 The decay angular distribution of the vector meson pro-

duction in Markus-Diehl formalism

For the beam polarization X and the target polarization Y the angular distribution can be

written using the angles definition from Trento convention [22] and Ref. [21] as

WXY (φh, ϕ, θ) =
3

4π

[
cos2 θWLL

XY (φh) +
√

2 cos θ sin θWLT
XY (φh, ϕ) + sin2 θWTT

XY (φh, ϕ)

]
.

(2.66)

The upper indices denote longitudinal LL, transverse TT vector meson production and their

interference LT . For the unpolarized target and beam the angular distribution is parametrized
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by unpolarized SDMEs uµµ′

νν′ :

WLL
UU(φh) = (u00

++ + εu00
00)− 2 cos φh

√
ε(1 + ε)<e {u00

0+} − cos(2φh)εu
00
−+, (2.67)

WLT
UU(φh, ϕ) = cos(φh + ϕ)

√
ε(1 + ε)<e {u0+

0+ − u−0
0+} − cos ϕ<e {u0+

++ − u−0
++ + 2εu0+

00 }

+ cos(2φh + ϕ)ε<e {u0+
−+} − cos(φh − ϕ)

√
ε(1 + ε)<e {u0−

0+ − u+0
0+}

+ cos(2φh − ϕ)ε<e {u+0
−+}, (2.68)

WTT
UU (φh, ϕ) =

1

2
(u++

++ + u−−++ + 2εu++
00 ) +

1

2
cos(2φh + 2ϕ)− cos(φh)

√
ε(1 + ε)<e {u++

0+ + u−−0+ }

+ cos(φh + 2ϕ)
√

ε(1 + ε)<e {u−+
0+ } − cos(2φh)<e {u−+

0+ + εu−+
00 }

− cos(2φh)ε<e {u++
−+}+ cos(φh − 2ϕ)

√
ε(1 + ε)<e {u+−

0+ }+
1

2
cos(2φh − 2ϕ)εu+−

−+.

(2.69)

The terms independent of ϕ and φh in W TT
UU and WLL

UU are related as

u++
++ + u−−++ + 2εu++

00 = 1− (u00
++ + εu00

00). (2.70)

The angular distribution for unpolarized target and polarized beam is given by the equation:

WLU
LL (φh) = −2 sin φh

√
ε(1−+ε)=m{u00

0++}, (2.71)

WLU
LT (φh, ϕ) = sin(φh + ϕ)

√
ε(1− ε)=m{u0+

++ − u−0
0+} − sin ϕ

√
1− ε2)=m{u0+

++ − u−0
++}

− sin(φh − ϕ)
√

ε(1− ε)=m{u0−
0+ − u+0

0+}, (2.72)

WLU
TT (φh, ϕ) =− sin φh

√
ε(1− ε)=m{u++

0+ − u−−0+ }+ sin(φh + 2ϕ)
√

1− ε2)=m{u−+
0+ }

− sin(2ϕ)
√

1− ε2=m{u−+
++}+ sin(φh − 2ϕ)

√
ε(1− ε)=m{u+−

0+ }. (2.73)

2.13 s-channel helicity conservation

From the measurement of SDMEs, s channel helicity conservation (SCHC) hypothesis can be

tested. SCHC implies that the vector meson produced conserves the helicity of the virtual

photon, e.g., λγ = λV in the process γ∗λγ
→ φλV

. In terms of Wolf-Schilling helicity amplitudes

it means that

FλV λN′λγλN
= FλV λN′λγλN

δλV λN′λγλN
(2.74)
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Then all the helicity-flip transitions (λγ 6= λV ) vanish and the corresponding amplitudes become

zero:

F01 = F10 = F0−1 = F−10 = F1−1 = F−11 = 0 (2.75)

Only three amplitudes remain non-zero – F00, F11, F−1−1. Using relations between the am-

plitudes and SDMEs (see [19]), the non-vanishing SDMEs can be obtained: r04
00, r1

1−1, =mr2
1−1,

<e r5
10, =mr6

10, =mr7
10, <e r8

10. If SCHC holds, also the following relations are to be fulfilled:

r1
1−1 = −=mr2

1−1, <e r5
10 = =mr6

10, <e r8
10 = =mr7

10 .

From the non-vanishing SDMEs the phase difference δ (see Equation 2.74) between F00

and F11 amplitudes is among the quantities, which can be accessed experimentally and then

compared with theory (GPDs) calculations. The decay angular distribution in case of SCHC

can be written as a function of cos Θ and the angle Ψ = ϕ−Φ between the vector meson decay

plane and the lepton scattering plane

W (cos Θ, Ψ) =
3

4π

[
1

2
(1− r04

00) +
1

2
(3r04

00 − 1) cos2 Θ + εr1
1−1 sin2 Θ cos 2Ψ

−2
√

ε(1 + ε)<e r5
10 sin 2Θ cos Ψ + 2P

√
ε(1 + ε) sin 2Θ sin Ψ=mr7

10

]
(2.76)

The presently existing data show s-channel helicity violation for ρ: ZEUS in [23], H1 in

[25], where the SDME r5
00 was pronouncedly non-zero. The SDME is proportional to <eF01F

∗
00,

which contains the largest amplitude at high energy F00 and the largest spin-flip amplitude

F01, therefore this matrix element provides the cleanest SCHC-violating (SCHCV) signal. At

HERMES level of energy both amplitudes are comparable. This explains why HERMES mea-

sured stronger SCHCV signal [26] than ZEUS [23] and H1 [25]. No SCHCV was found for φ at

ZEUS [27], H1 [28] and CLAS [29].

2.14 Natural and unnatural parity exchange

As was described in Section 2.7, the diffractive production of vector mesons can be represented

as an exchange of a particle via t-channel. The exchanged particle can have either natural

parity P = (−1)J or unnatural parity P = −(−1)J . In the first case the reaction is called

natural parity exchange (NPE), in the second - unnatural (NPE). A Wolf-Schilling helicity

amplitude can be decomposed into NPE (N) and UPE (U) amplitudes:

FαV ,αN′ ,αγ ,αN
= NαV ,αN′ ,αγ ,αN

+ UαV ,αN′ ,αγ ,αN
. (2.77)

A measurement of the corresponding SDMEs, related to NPE and UPE amplitudes, allows

to separate both contributions and to determine the natural and unnatural parity exchange
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fractions of the transverse and longitudinal cross section. If NPE dominates, the quantities

defined as:

U1 = 1− r04
00 + 2r04

1−1 − 2r1
1−1 − 2r1

11, (2.78)

U2 = r5
1−1 + r5

11, (2.79)

U3 = r8
1−1 + r8

11 (2.80)

are equal to zero or small. The amplitude hierarchy can be both built experimentally and

calculated theoretically. The SDMEs-to-amplitudes connection is presented in Appendix B.

For NPE amplitudes diagonal transitions in nucleon spin are dominant (λ′N = λ′N), while

for unnatural ones it is not proven. NPE prevails over UPE, since the latter is suppressed by a

factor of ∝ (M/W )2, while a natural one by a factor of ∝ (M/W ). If both SCHC and NPE are

assumed, the decay angular distribution depends only on the longitudinal-to-transverse cross

section ratio R and the phase difference δ between the only two non-zero amplitudes N00 and

N11:

W (cos Θ, Ψ) =
1

1 + εR

3

8π

[
sin2 Θ(1 + ε cos 2Ψ) + 2εR cos2 Θ

−
√

2ε(1 + ε)R cos δ sin 2Θ cos Ψ +
√

2ε(1− ε)RPl sin δ sin 2Θ sin Ψ

]
. (2.81)

In terms of Markus Diehl notation, SDME can be represented via NPE N νσ
µλ and UPE U νσ

µλ

amplitudes:

uνν′

µµ′ = (NT + εNL)−1
∑

σ

[
N νσ

µ+(N ν′σ
µ′+)∗ + U νσ

µ+(U ν′σ
µ′+)∗

]
(2.82)

The matrix elements u involve a product of two NPE amplitudes plus a product of two UPE

amplitudes.

For ρ meson statistically significant UPE contribution was observed in HERMES ([26]) and

other experiments (H1[25], ZEUS [23]), while for φ meson the contribution is negligible (H1[28],

ZEUS [27]).

2.15 Radiative corrections

Figure 2.1 describes DIS on the Born level, not including next to leading order contributions.

However, emission of a real photon by the lepton changes the reaction kinematics significantly.
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Figure 2.7: Feynman diagrams of processes contributing to the Born and the next
order cross sections.

In Figure 2.7 Feynman diagrams for leptonic radiation are presented. The corresponding con-

tributions to the vector meson production cross section are taken into account via radiative

corrections and in the diffractive region (−t < 0.3) can reach 20% ([30]). For the majority of

the matrix elements which are to be 0 if SCHC holds, relative radiative corrections estimated

as δr = robs−rBorn

robs
do not exceed 1%, according to [31]. However, for two of them, namely <e r04

10

and r5
00, the correction may reach 20% ([31]). Therefore, non-zero values of these SDMEs might

be explained not only by SCHC-violation, but also by large radiative corrections.



Chapter 3

The HERMES experiment

3.1 The HERA ring

HERMES (HERA MEasurement of Spin) is one of the four HERA experiments and oper-

ated from 1995 till 2007 at the DESY (Deutsche Elektronen Synchrotron) research center using

HERA (Hadron Elektron Ring Anlage) storage ring in Hamburg, Germany. The DESY research

center was established in 1959 with the goal of multiple studies in particle physics, among them

are investigations of the fundamental properties of matter, development and construction of

accelerator facilities, use of synchrotron radiation in material science, chemistry, molecular bi-

ology and biophysics. The HERA accelerator ring has a length of 6.3 Km with four straight

parts and four bending ones between them. It operated with two beams of particles, mov-

ing in the opposite directions: protons mostly with an energy of 920 GeV and leptons mostly

with an energy of 27.6 GeV. Both beams were pre-accelerated before injection into HERA in

two linear accelerators and synchrotron accelerator (DORIS) and PETRA ring. The historical

development, the objectives and the results achieved are described in [33] There are four un-

derground experimental halls in the ring, two of them belonging to the collider experiments -

H1 and ZEUS, and two belonging to fixed-target experiments - HERA-B and HERMES. H1

and ZEUS, located in the North and South halls, respectively, employed both the accelerated

beams to obtain electron-proton collisions. HERA-B was located in the West hall, used the

proton beam for colliding with atomic nuclei. The initial aim of HERMES was the study of the

spin structure of the nucleons and of sheding light on the ”spin crisis” situation (see Equation

1.1). Among the specialties of HERMES experiment the measurement possibility with various

beam and target polarizations and reliable particle identification system should be mentioned.

The schematic view of HERA and the four experiments is shown in Figure 3.1.

26
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Figure 3.1: The schematic view of the HERA accelerator ring of 1995-2007 years.

3.2 Beam

HERMES used only the lepton beam, the proton one passed in the detector intact. The injected

lepton beam had a current of 50mA and consisted of approximately 190 bunches, emitted

with the time interval of 96ns. Both H1 and ZEUS needed effectively unpolarized beam, while

HERMES needed the longitudinal one at the interaction point. After injection the lepton beam,

which was a subject of interests of HERMES, was transversely self-polarized in the arcs because

of the Sokolov-Ternov effect [32]: in a storage ring electrons can become polarized antiparallel

to the guide field by the emission of synchrotron radiation. Therefore, two beam-spin rotators

were installed downstream and upstream of the HERMES apparatus, which turned vertical

spin into longitudinal direction without changing the degree of the beam polarization. It was

achieved by using a certain combination of horizontal and vertical dipole magnets, which rotated

the polarization by 90◦ within 60m. The depolarization effects due to magnet misalignment

and orbit errors were taken into account by permanent measurement of the polarization by

the transverse polarimeter (TPOL [36]) and the longitudinal one (LPOL [35]). Both of the

polarization monitors were based on Compton scattering of circularly polarized photons from an

intense pulsed laser beam. A fractional systematic uncertainty of the polarization measurement
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was 1.6%. The polarization developed in time according to [35]

P (t) = P∞(1− e−t/τ ) (3.1)

where the asymptotic polarization P∞ and the time constant τ are characteristics of the ring

conditions. If the reasons for the depolarization processes, mentioned above, were not present,

then the maximum theoretically achievable polarization was Pth = 92%. The build-up time for

the beam polarization, which depends on the bending radius of the storage ring and the beam

energy, was τ =37min. The practically obtained value of the polarization was 50-60% in the

years 1996-2000 and 40-50% in 2003-2007. The behaviour of the beam polarization is shown in

Figure 3.2.

Figure 3.2: The beam polarization measured by transverse and longitudinal polarime-
ters.

3.3 Target

The HERMES target ([34]) had to keep the beam in a condition that allowed its futher usage

by the neighbors in the ring - ZEUS and H1. Due to this reason, the target material was chosen

to be a gas, whose density is lower than liquid or solid and therefore does not affect the beam

intensity too much. The advantage of such a target was that it was pure and high polariza-

tion values can be achieved. It was operated with longitudinally polarized 3He, hydrogen and

deuterium, transversely polarized hydrogen, unpolarized hydrogen and deuterium, unpolarized
4He, N, Kr, Ne,Xe gases. The storage cell, e.g, the place of interactions of the gas with the

beam, was internal to the beam pipe. A schematic view of the HERMES target is presented

in Figure 3.3. There the main target elements are shown: the atomic beam source (ABS), the

storage cell, the target gas analyzer (TGA), the Breit-Rabi polarimeter (BRP) and the target
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magnet.

ABS pumping system injected a spin-polarized gas beam in the center part of storage cell,

so that the gas density distribution had a triangle shape with the center coincident with the

cell center. The injection speed was about 6.5× 1016 atom/s with the polarization above 90%

and a degree of molecules-to-atoms dissociation up to 80%. The dissociation was obtained by

a radio-frequency electric discharge. The dissociated gas diffused into the vacuum chamber,

where a sextupole magnet system focused atoms with electron spin +1/2 into the storage cell

and deflected those with -1/2 spin. The storage cell was made of thin pure aluminum sheets.

The thickness of the cell sides together with their low temperature (100 K) were essential for

reducing recombination and the scattering of the particles on the sides. The length of the

cell was 400 mm, after the recoil detector was installed the target cell was shifted and made

shorter, it was open on both ends and had an elliptical cross section. Two collimators installed

upstream protected the cell from synchrotron radiation of the beam. The gas densities of about

1-2× 1014 nucleons/cm2 were achieved, which is a few orders of magnitude more than those

obtained with a gas jet target. From the storage cell gas diffused from the middle of the cell

into BRP, which measured the atomic polarization or into TGA, which measured the relative

atomic and molecular content of the gas. Together they used approximately 5% of the gas. The

molecular and atomic gas fractions had different polarizations, therefore the TGA measurement

were essential. TGA was connected to the center part of the storage cell on the opposite site rel-

ative to the ABS injection tube. From the BRP measurements and the known target magnetic

field strength the absolute atomic polarization could be calculated. The actual polarization

value was different from that of the injected gas because of the recombination processes and

spin relaxation mentioned above.

A superconducting solenoid magnet for longitudinal polarization (1996-2000 years) and a con-

ventional dipole magnet for the transverse one (2002-2005 years) provided a field defining the

polarization of the nucleons. Moreover, they prevented spin relaxation by nucleon interactions

with the target cell and decoupling of electrons and nucleons. For the longitudinally polarized

target the magnet field had a strength of about 350 mT and was directed parallel to the HERA

beam direction. For the transversely polarized target the magnetic field had a strength of

about 300 mT and was directed parallel to the negative y direction of the HERMES coordinate

system. The spin state of the nucleons was flipped every 1-3 min in order to provide data in

both spin states and to reduce systematics.

3.4 Spectrometer

The HERMES spectrometer was a forward-angle spectrometer, consisting of two identical

halves, designed for measurements of inclusive and semi-inclusive scattering. The halves sur-

rounded the beam pipe and were set behind the target cell to catch the outgoing particles.



The HERMES experiment 30

Figure 3.3: The HERMES target setup.

The detector was mounted on a movable platform, so that the detector could be moved out of

the beam area. It was located 25 meter below the ground and covered with the concrete wall

to protect the outside from the radiation. The schematic view of the detector is presented on

Figure 3.4.

Figure 3.4: The sideview of the HERMES spectrometer in the years 1998-2000. The
tracking detectors are in red, the particle identification detectors are in green. The
later changes of the experimental setup (for example, recoil detector installed in 2006)
do not affect the measurement of an exclusive φ meson production.

The coordinate system used by HERMES has the z-axis along the beam axis, y-axis vertical
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upwards and the x-axis horizontal, pointing towards the HERA proton ring. The point (0,0)

is situated in the center of the target cell. The HERMES coordinate system is shown on

Figure 3.4. After interactions in the target cell the particles pass through pre-magnet tracking

detectors, which were presented by the silicon detector, drift vertex chambers (DVC) and the

front chambers (FC), where the scattering angles and the trajectories of the charged particles

are recorded. Then the charged particles are bent horizontally according to their momenta by

the magnetic field with a deflecting power of
∫

Bdl = 1.3Tm, created by the dipole magnet. To

shield the lepton and proton beams from the magnetic field, an 11cm thick iron septum plate

was installed between the two detector halves. The lower vertical acceptance of the HERMES

detector, limited by the plate, is ± 40mrad. The upper acceptance limit is defined by the

magnet size and amounts horizontally: ± 170mrad, and in the vertical direction ± 140mrad.

In the magnet area additional set of the magnet chambers (MC) was installed. After the

magnet the particles passed through the set of back chambers (BC) and particle identification

detectors (PID detectors), namely a ring-imaging Cherenkov (RICH) detector, a transition-

radiation detector (TRD), a preshower detector and the electromagnetic calorimeter. Around

the pipe close to the calorimeter luminosity monitors were situated, permanently measuring

the current luminosity.

3.4.1 The tracking system

The main aim of the HERMES tracking system was the determination of the charged particles

scattering angles, the vertex positions of the interactions, and particle momentum. The silicon

detector (Lambda wheels, [38]) was installed in order to broaden geometrical acceptance for

Λ-baryons, which has a long decay length. The next tracking detectors, DVC provided option-

ally used information. The majority of the information about the particle projections came

from the FCs [39] and BC[40], which were drift chambers of a standard design with alternating

anode-cathode wire geometry. The FC were filled with Ar/CF4/CO2 gas mixture. Each cham-

ber consisted of six wire planes, the two middle were vertical, while first and last pairs were

tilted ± 30◦ from the vertical. The efficiency per plane was more than 97%. The BCs consist

of two pairs of large planar 6-plane drift chambers, which were organized in the same way as

the FCs, filled with the same gas mixture and having the similar efficiency.

The magnet chambers were conventional proportional wire chambers and were used to track

low-momentum particles, strongly deflected in the magnetic field and not reaching the BC.

Through all the HERMES runing years, the tracking algorithm based on matching of the hits

in the FCs and BCs was used. After the transverse magnet installation in 2002, the HERMES

reconstruction code (HRC) was supplemented with the two transverse magnet corrections al-

gorithms (TMC1 and TMC2, see [43]). HRC does not track particles via magnetic field. To

take into account track distortion, energy loss and the effects of residual magnetic fields out-

side the spectometer, another tracking algorithm named HTC (HERMES Tracking Code) was
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created relatively recently. HTC re-tracks the given number of tracks, found by HRC, based

on material passed and possible magnetic field correction. The HTC algorithm determines a

common vertex, taking into account the beam position and ascribing each track the probability

to originate from the vertex found. The common vertex itself also has a probability to be

the true vertex of the possible event. For the present thesis topic, φ meson production, no

difference was found between the two tracking methods, HTC and HRC because of cleanliness

of the reaction channel and primordial sharpness of φ meson invariant mass peak [44]. The

momentum resolution of the HERMES tracking system was finer than 2%, the angular one 1.8

mrad.

3.4.2 Particle identification

The RICH detector [41] was installed in 1998, replacing a threshold Cherenkov detector that

was used in 1995-1997. Its aim was unambiguous determination of pions, kaons, and protons in

a wide range of energy. To achieve this, the phenomenon of Cherenkov radiation was employed,

which reads that a particle traversing through a radiator material with a velocity larger than the

light velocity in the material will emit electromagnetic radiation. The particles with the same

momentum but different masses will emit radiation with different opening angles, therefore via

measurement of the the angles one can distinguish the particles. The detector consisted of two

radiators, one made of aerogel, second one with C4F10. The radiators refracts light differently,

which provided additional information on the particle passed. The produced Cherenkov light

was reflected by an array of mirrors, which directed the light onto photoelement array. The

obtained picture was a slice of the cone, e.g. an ellipse. To associate the ellipse with the pattern

of a certain particle, two reconstruction methods were used. The direct ray tracing (DRT) com-

pared the obtained patterns to simulations of the several particle hypotheses, ascribing them

probabilities. For few-track events the event level tracking (EVT) combined all expected DRT

patterns for the tracks in onedetector half with overlapping Cherenkov rings.

The RICH provided a reliable separation of the hadrons with momenta from 2 to 15 GeV. The

resulting efficiencies were: 95% for pions, 86% for protons, 63% for kaons ([41]). In Figure 3.5

the angles as a function of momenta are shown.

The TRD contributed to the lepton-hadron separation. It consisted of six modules above and

below the beam, each of them contains a radiator and a proportional chamber. Its working

principle is based on the fact that relativistic charged particles emit transition radiation in

the forward direction while crossing a boundary between two materials with different dielectric

constants. Under HERMES kinematic conditions, leptons have higher possibility to emit tran-

sition radiation while crossing multiple boundaries of fibers in the chambers. Both hadrons and

leptons loose energy in the TRD due to ionization of the chamber gas, but the lepton energy

deposit is much larger because of the additional emitted transition radiation. The maximum

achieved lepton identification efficiency is about 95% [37].



The HERMES experiment 33

Figure 3.5: The Cherenkov angle θ versus hadron momentum [41].

Another part of information on the particle identification came from Pb-scintillator preshower

counter (H2), which consists of 1.1cm thick lead sheet situated in front of the scintillator. Such

a wall thickness corresponds to approximately two radiation lengths. While passing through it,

leptons lose a few times more energy than hadrons by initialization of electromagnetic showers,

producing a signal of a corresponding strength in the scintillator.

The working principle of the calorimeter ([42]) is the same as that of the preshower detector.

The total length of the lead-glass blocks is 50cm (equal to about 18 radiation lengths), which

ensures the loss of 99% of the initial energy by most of the leptons. Besides the energy deposit

from leptons and hadrons, it also measure that of photons.

Information from each particle identification detector number i was summarized in PIDi num-

ber, which was calculated as a ratio of probabilities for the detected particle to be a positron

to probability to be a hadron:

PIDi =
P (Se, p)

P (Sh, p)
, (3.2)

where p is a momentum, S is a detector responce. The final PID value, used in the analysis for

lepton-hadron separation, contain information from all the particle identification detectors:

PID2 = PIDCALO + PIDPre

PID3 = PIDCALO + PIDPre + PIDRICH

PID5 = PIDTRD

Usually in the analysis either PID2 + PID5 or PID3 + PID5 were used for particle identifi-

cation. According to Figure 3.6, the reliable identification of leptons started from PID values

more than 2; for hadrons - less than -1.
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Figure 3.6: The PID distribution of measured particles. The shift of the distribution
minimum from 0 is caused by a lower lepton flux.

3.4.3 Trigger system

The trigger system was employed to select useful events and reject background. The coincident

signal from the triggers initiate readout of detector signals. The HERMES trigger system used

signals from three hodoscopes H0, H1, H2, the calorimeter, BC and the HERA bunch-crossing

clock. Charged particles deposit energy in all the mentioned detectors, while photons produced

electromagnetic showers only in H2 and the calorimeter. A typical DIS event, the one most

often used in analysis, is characterized by presence of a scattered lepton, which was to leave

traces in the hodoscopes and energy deposition in the calorimeter. This step in DIS event

selection involved the threshold of 3.5 GeV in the energy deposition in the calorimeter and the

coincidence of signals from all the hodoscopes and the calorimeter. The threshold of 3.5 GeV

separates leptons from hadrons, which leave lower energy deposition with the minimum value

of 1.4 GeV.

3.5 Data structure

The data acquisition system (DAQ) recorded the detector information in case the triggers

had accepted the event. Each event needed time to be considered by the triggers and to be

recorded by the DAQ. This time loss is called the DAQ dead time and usually did not exceed

10% percent of the total working time. The DAQ digitalized the information obtained from

the detectors and stored it in the experimental physics input output (EPIO) format. This raw

data was stored in runs, defined as a data amount of 450MB. The runs were subdivided into

bursts, which were characterized by the same experimental conditions automatically recorded

every 10 seconds (like luminosity, beam and target polarizations, beam current, state of the

detectors etc.). Then the raw data was converted into physical values in analysable format by
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the HERMES decoder software (HDC) and stored in ADAMO (Aleph DAta MOdel) tables.

The HERMES reconstruction code (HRC) built actual tracks from this decoded information.

The recently created HTC code used the hit positions from HRC and provided the particle

tracks, taking into account magnet fields and energy loss due to passage through material.

This result of the data processing chain was synchronized with the detector conditions (so-

called slow-control data) and written to µDST (micro Data Summary Tape). The µDST data

productions for each year were updated in terms of up-to-date knowledges about the detector

working abilities in different time periodes and detector callibrations. The µDST files contain

three data levels: runs, bursts and events. The latter two are described above. The event

level consists of the values used in the analysis: momenta, angles, PIDs, vertex positions in the

HERMES coordinate system etc of all tracks associated with one interaction (physics event).



Chapter 4

Analysis

4.1 The data and Monte Carlo event selection

In this section the criteria that were applied to obtain the data set used in the analysis from

the volume of information registered by the HERMES spectrometer are presented. The two

data sets measured with slightly different experimental conditions (see Section 3) are included

in this analysis. The first one is the 1998-2000 data from HERA-I, excluding the earlier data

due to the absence of RICH detector (see Section 3), which was installed in 1998. The second

one is the 2006-2007 data from HERA-II. The 2002-2005 years data set was excluded, since it

was taken with a transversely polarized target which causes the distortion of the acceptance

for charged particles due to the magnetic field of the transverse-target holding field.

4.1.1 Data quality

To obtain reliable results, the data used in any analysis has to be of a good quality, and

should be affected by the measurement conditions as less as possible. The selection criteria are

individual for each analysis, however, the basic requirements to the data are common for all

studies. The data quality information should be available, all the detector components have to

operate stable, the beam and target should be in a good state. After the offline study of all

the data recorded, all the experiment condition information was encoded for each burst (see

Section 3.5 for the definition) in a 32-bit number pattern. Each of the bits was responsible for

a single selection criteria. These patterns were stored in so-called burstlists, which are unique

for each data production. The description of each bit for each data production used can be

found on the HERMES Data Quality webpage [53].

As already mentioned, if any part of the data quality information was missing or if the slow

control data (see Section 3.5 for the definition) was not synchronized with the event data, then

that part of the data was discarded. Also, detector calibration runs and data for detector and

apparatus studies were not used. Only the bursts of reasonable length and with reasonable

dead time of the DAQ system were accepted. The first burst of each run was rejected, since

36
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it was written incorrectly in many cases. Good performance of the subdetectors used in the

analysis was also required. Bursts during which one of the PID detectors did not operate or

PID information is not available were discarded, the same as for bursts that had high voltage

trips in the FCs, BCs, or TRD. If at least one calorimeter block was not responding or no

calorimeter threshold was recorded then the burst was skipped.

The beam and target performance also affects the results and therefore was checked. Only

the bursts that, according to the parameter information, had stable direction of target po-

larization with respect to the beam, were accepted. This implies that the runs during which

the direction of target polarization was switched were discarded. Selection criteria on target

polarization performance were applied mostly for historical reasons. The measured polariza-

tion direction was also compared with the expected one and the data which has disagreement

between the two values were rejected. Not only qualitative but also quantitative constrains

were implied to the target polarization: the upper limit removed the bursts with nonphysically

high polarization, the lower one - the bursts where the polarization had not raised up to its

maximum value.

For the beam polarization value only an upper limit was imposed to exclude data with

beam polarization values that technically could not be achieved. The low-beam-polarization

data could contribute to the unpolarized SDMEs and therefore was accepted. Only the data

with true up-to-date beam polarization value was selected, e.g., with the polarization measured

less than 5 minutes ago. Also the constrain on the beam current was implemented in order to

exclude data which was referred either to the very beginning of the fill or to its end, since they

were often unreliable. All the quantities, on which these requirements were applied, are listed

in Table 4.1

4.1.2 Geometrical restrictions

All physical events used in the analysis should occur from beam interaction with the target cell

gas and not with the detector material. To ensure that all the tracks originate from the target

cell, certain geometrical restrictions were applied. Moreover, all the tracks were required to

be registered by the pre-magnet and after-magnet detectors to exclude tracks that pass only

through the septum plate or one of the field clamps of the detector. Therefore all the tracks

composed of front and back parts were connected into full tracks in contrast to “short ones”,

which consist only of front tracks. Also the HERMES acceptance implies additional constraints

on the tracks passing through various detector components. These constraints, called “fiducial

volume cuts”, ensure that only appropriate tracks are accepted by checking the hit coordinates

in the front and rear field-clamp plates of the spectrometer magnet and at the septum plate

enclosing the beam pipe. A box-like fiducial volume cut is defined for the calorimeter cell,

removing tracks from the edges where the measurement efficiency decreases because of shower
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Quantity Constraint

Life time 50% < t < 100%

Burst length 0 s < L <11 s

Beam current 2 mA< I <50 mA

First burst in a run discarded

Bad µDST record discarded

No PID available discarded

Not analyzable according to logbook discarded

No DQ information discarded

Dead blocks in calo discarded

Dead blocks in H2 discarded

TRD not operated discarded

High voltage trips in FCs, BCs discarded

RICH problems discarded

Beam polarization measured more than 5 minutes ago discarded

Table 4.1: Data quality criteria for the analysis

Position Constrain

Front field clamp (zlab=172 cm) |x| <31 cm

Septum plate (zlab=181 cm) |y| >7 cm

Rear field clamp (front track) (zlab=383 cm) |y| <54 cm

Rear field clamp (long track) (zlab=383 cm) |x| <100 cm, |y| <54 cm

Calorimeter (zlab=783 cm) |x| <175 cm, 30< |y| <108 cm

Vertex position 1998-2005 -18 cm< Zvertex <18 cm

Vertex position 2006-2007 0 cm< Zvertex <25 cm

Table 4.2: Geometrical constraints for the analysis

leakage. Leptons deposited almost all their energy in the calorimeter blocks, while hadrons lost

the energy only partially. All the geometrical constrains are listed in Table 4.2. In 2006, to

make space for the recoil detector in the HERMES apparatus, the target cell was shifted and

made shorter, therefore the boundary value on the vertex-in-target position are different before

and after 2006 year. In the present analysis no information from the recoil detector is used, the

information on target nucleon after the interaction was obtained from the reconstructed tracks

of the other particles via momentum and energy conservation principles.
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4.1.3 Selection of exclusive events

As already mentioned in Chapter 2, both φ and ρ mesons are short-living particles, which decay

into two oppositely charged hadrons – kaons in case of φ mesons (the branching ratio of such a

decay is 49.1± 0.8% [54] and pions in case of ρ meson. The decay occurs inside the target cell.

The two produced hadrons together with the scattered lepton provide a signature of an exclusive

φ (ρ) meson production event candidate. The basic restriction to select exclusive vector meson

events is consequently the presence of three charged-particle tracks in the forward direction. For

each of the tracks the geometrical constraints described in Section 4.1.2 are applied. Moreover,

tracking probability provided by HTC tracking method for each track, e.g. the probability for

the track to satisfy the found vertex, was demanded to be more than 0. The probability of the

found vertex to be the point of interaction was also required to be more than 0 (see Section 3.4.1

for the details of HTC tracking method, track and vertex probabilities). Then the scattered

lepton is identified by PID type, a charge that is to be the same as the beam charge, and a

minimum momentum (3.5 GeV). To select deeply inelastic scattered leptons, photon virtuality

Q2 was required to be larger than 1 GeV2. Radiative effects discussed in Section 2.15 here were

decreased to negligible level by imposing the maximum value on the relative lepton energy loss

(y < 0.85). The squared invariant mass of the γ∗p system, W was demanded to be larger than

2 GeV to move away from the nucleon resonances region.

The kaons (pions) are first identified as oppositely charged hadrons with momenta from 2

to 15 GeV. Then a restriction on the kaon PID type is applied. Despite of the fact that the

RICH efficiency for kaon identification is 80% only, such a requirement is obligatory to select

the events of interest reliably. Figure 4.1 illustrates the effectiveness of the RICH kaon type

cut, showing significant decrease of the background (from black to green histogram) in the

exclusive region (∆E < 0.6 GeV), compared to the sample selected without RICH information.

For pions, however, another strategy might be used: most of the detected hadrons are pions

and can be accepted as such without a strict RICH-type constraint implementation.

Another possible algorithm is to use the constraint on φ meson momenta Pφ > 7.5 GeV

instead of RICH kaon type, since most of the low-energetic φ mesons, shown in Figure 4.1 as

the blue histogram, correspond to three track combinations that are not related to exclusive

production. As can be concluded from Figure 4.1, the requirement on φ meson momentum is

efficient in case of absence of RICH kaon type constraint; if using the latter, then the momentum

restriction is redundant (only small background decrease from green to magenta histogram in

Figure 4.1). To discard the tails of the invariant mass distribution (See Figure 4.6), the mass

window 1.012 GeV < MK+K− < 1.028 GeV was used.

After implementation of all the requirements described above, one obtains the pronounced

invariant mass MK+K− (Mπ+π−) peak. However, the selected sample would still contain back-

ground contribution, namely the non-exclusive events, in which some other particle were pro-

duced in addition to 2 kaons (pions) but not detected due to the limited HERMES detector



Analysis 40

Figure 4.1: The missing energy distribution for φ meson production. Black histogram
shows sample selected without constraint on RICH kaon type but with restriction on
φ meson momentum. Green histogram was built with requirement on RICH kaon type
and without constraint on φ meson momentum. Blue histogram represents events with
Pφ < 7.5 GeV, which are mostly background. Red histogram denotes events without
constraint on RICH kaon type and without restriction on φ meson momentum. Magenta
histogram represents the sample with constraint on RICH kaon type and with constraint
on the φ meson momentum.

acceptance. To select only exclusive vector meson events, the requirements described below

were applied.

The recoiling nucleon was reconstructed from the information of all the remaining tracks of

the event:

p′X = p + k − k′ − pV M , (4.1)

where all the variables are 4-vectors of the corresponding particle kinematics (see Section 2.1

for the details). The mass of this unobserved state, MX , is to be equal to the target nucleon

mass in case of exclusive reaction and is called the missing mass. Therefore, the missing-energy

of the reaction, calculated as

∆E =
M2

X −M2

2M
, (4.2)

is to be zero for the exclusive production (M is the known target nucleon mass). However,
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due to the HERMES detector resolution the ∆E distribution is smeared and forms a Gaussian

around zero. Non-exclusive events have ∆E > 0 and the recoiling particle mass different

from the target nucleon mass. To cut away this background, a restriction on ∆E has to be

implemented. Too strict constraints would result in loss of exclusive event, while too wide ones

would increase the statistics but leave too much of the background. The optimal constraint on

the missing-energy was determined using Monte Carlo simulation, e.g., Monte Carlo simulated

background was used to estimate the relation between the background and the signal from the

real data. In Figure 4.2 a comparison of the missing-energy distribution for the real data to

that of Monte Carlo together with the Monte Carlo generated background in all the kinematic

bins is presented.

PYTHIA generator was not tuned for φ meson production, that is why the yield of the

Monte Carlo signal (e.g only the exclusive process 91 is selected) is much less for PYTHIA

than for data. The worst situation is for the large Q2 and t′ bins, where the disagreement

between the data and PYTHIA in the signal region is up to two times. However, tuning this

would require quite some time and is not obligatory, since this PYTHIA set was used only

for semi-inclusive background estimation. SIDIS background simulation (magenta dashed lines

in Figure 4.2) is in satisfactory agreement with the data and was used in the study described

below. The noticeable disagreement of the background from the real data and from Monte

Carlo was taken into account via assigning of systematic uncertainty due to the background

subtraction.

As a first guess on the optimal constraint on the missing energy, the minimum total relative

uncertainty of the resulting exclusive sample was calculated for the overall kinematics. The

total uncertainty was obtained as the square root from the sum of systematic and statistical

uncertainties squared, statistical and systematic uncertainties are:

(Relative statistical uncertainty)i =

√
NData

i + N background
i√

NData
i −N background

i

, (4.3)

(Systematic uncertainty)i = ε ∗ N background
i

NData
i

, (4.4)

where NData
i and N background

i are data and Monte Carlo background yields for each iteration

of ∆E cut from 0.1 to 2 GeV with the step 0.1 GeV, ε is a parameter indicating how well

Monte Carlo generated background describes the data one. To estimate the goodness of the

description, a ratio of the data NData (black histogram in Figure 4.1) and Monte Carlo generated

background NBackground (magenta histogram in Figure 4.2 in the region 2 GeV < ∆E < 6 GeV

was calculated and was found to be 0.92.

Resulting statistical, systematic and total uncertainty are plotted in Figure 4.3, left side.
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Figure 4.2: The missing energy of the reaction of exclusive φ meson production for
the data (black line), PYTHIA Monte Carlo set with only the φ meson production
process selected (red dotted line), PYTHIA Monte Carlo set with thebackground pro-
cess selected (magenta dashed line). All the kinematic bins, used in the analysis, are
presented. The overall kinematic case is shown in the bottom right box. The plots are
done with absolute normalization.

From Figure 4.3 (right side) a minimum of the curve is around 1, but since the traditional value

for the constrain was 0.6 GeV, it was chosen for the consistency with previous analysis. The

background in the exclusive region is negligible: for hydrogen it is 2.5%, for deuteron 3.4%.

Another requirement on the reaction exclusivity is connected to the four-momentum transfer

from the initial to the final nucleons t = (p− p′)2, where p′ is obtained from Equation 4.1. The

minimal kinematically allowed value of t, t0 can be calculated in the center-of-mass system of
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Figure 4.3: Left plot: Total relative uncertainty of the number of exclusive φ meson
events are denoted by magenta circles; systematic uncertainty is shown by red squares;
statistical uncertainty is represented by black triangles. Right plot: Total relative
uncertainty zoomed.

the virtual photon and nucleon as

t0 = (Eγ − EV M)2 − (|q| − |v|)2, (4.5)

where

Eγ =
W 2 −Q2 −M2

2W
, EV M =

W 2 + M2
V M −M2

X

2W
(4.6)

|q| =
√

E2
γ + Q2, |v| =

√
E2

V M −M2
V M . (4.7)

In the photon-nucleon center-of-mass frame the condition t = t0 corresponds to the case where

the momentum of the produced vector meson is collinear with that of the photon.

Since the target nucleon remains intact, the difference t between the initial and the final

nucleon momentum is small, as well as t0. Therefore the quantity t′ = t − t0 is to be small in

the exclusive region. The restriction used in the present analysis was t′ > −0.4 GeV2. In

Figure 4.4 the correlation of the missing energy and the t′ value is presented, showing the

pronounced peak at low ∆E and low −t′, which corresponds to the reaction of exclusive φ

meson production under HERMES kinematic conditions.

4.1.4 Separation of coherent and incoherent parts for deuteron data

A contribution of coherent scattering, when the incoming lepton interacts with the whole

deuteron nucleus, e.g., when the interaction might occur either on proton or on neutron, is

expected to affect the results for deuteron data. Indeed, the SDME formalism described in

Sections 2.8 and 2.11 is valid for spin 1/2 targets only. For hydrogen only incoherent scattering
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Figure 4.4: The (t′,∆E) distribution of φ meson production on hydrogen target of
1998-2000, 2006-2007 periods.

exists. To exclude the coherent contribution, an additional requirement on t′ was implemented

for the deuteron data. The cross section dependence on t′ has an exponential form, e.g.,
dσ

d|t′| ∝ exp−b|t′| [11], with b being a slope parameter. For the sum of coherent and incoherent

contributions one can write

dσ

d|t′|
∝ p1 exp(−bincoh|t′|) + p2 exp(−bcoh|t′|). (4.8)

Each of coherent and incoherent part related parameters was fitted to the data, e.g. the

distribution was fit by the sum of two exponents. Figure 4.5 shows the fit of the t′ distributions

in each of Q2 bins and overall kinematics.

The cut position was defined as the crossing point of the two exponents and was found to be

about -0.035. The fraction of the coherent events in the rest sample (t′ > −0.35 GeV2) is 10%.

Since the fitting parameter value is close to the first t′ bin boundary (-0.04), this boundary was

chosen to be the constraint position.
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Figure 4.5: The fit of t′ distribution for all the Q2 bins in the logarithmic scale. The
two areas of the exponential fit with different slopes represent coherent (0 < −t′ <
0.035 GeV2) and incoherent (0.035 GeV2 < −t′ < 0.5 GeV2) parts of the distribution.

4.1.5 φ meson invariant mass distribution

In Figure 4.6 the two-kaon invariant mass is depicted, with the constraints on t′ and ∆E de-

scribed above. The two-kaon invariant mass calculated via formula MK+K− =
√

(pK+ + pK−)2,

with pK+ , pK− being 4-vectors of positively and negatively charged kaons. The narrow clean

peak at the expected mass can be seen, corresponding to exclusive φ meson production. The

peak is fitted by the Breit-Wigner function. The relativistic Breit-Wigner distribution describ-

ing a spin-1 object decaying into two spin-0 objects, or, in other words, describing the mass of

φ meson decaying into two kaons, is given by the formula

dN

dMK+K−
= BW (MK+K−) =

2

π

MK+K−MφΓ(MK+K−)

(M2
φ −M2

K+K−)2 + M2
φΓ2(MK+K−)

, (4.9)

where MK+K− is two kaon mass, M2
φ and Γ(MK+K−) are the mass and the width of the φ meson

resonance. The χ2 of the fit reflects the fact that a relativistic Breit-Wigner function does

not describe the skewing of the φ peak to lower mass values.
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 / ndf 2χ  70.76 / 21
constant  0.146± 8.845 
sigma     0.000142± 0.006359 
mean      0.000± 1.019 
skewness  2.40± -38.57 
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Figure 4.6: Two-kaons invariant mass distribution in the exclusive region for hydrogen
data sample (red points). The line represents a fit of a Breit-Wigner function.

Runs NDIS Nφ

Year Hydrogen Deuteron Hydrogen Deuteron Hydrogen Deuteron

1998 617 7647 482740 1924447 24 93

1999 0 11615 0 854994 0 78

2000 1511 19613 6022023 5352782 286 308

2006 34406 8254 28301671 5253267 1568 306

2007 29786 9382 20858417 4793406 1210 294

Table 4.3: Numbers of runs, DIS events and exclusive φ meson events for hydrogen
and deuteron targets for 1998-2000 and 2006-2007 periods.

4.1.6 Final data sample used in the analysis

The collected statistics for each year of the united data taking period of 1998-2000 and 2006-

2007 periods is presented in Table 4.3.

The constraints described above resulted in the numbers of events, presented in Table 4.4

for each of the kinematic Q2 and t′ bins for hydrogen and deuteron targets.
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Target Hydrogen Deuteron

Kinematic bin Number of events

1 GeV2 < Q2 < 1.4 GeV2 955 370

1.4 GeV2 < Q2 < 2 GeV2 1021 338

2 GeV2 < Q2 < 7 GeV2 1112 371

0 GeV2 < −t′ < 0.04 GeV2 661 (332)

0.04 GeV2 < −t′ < 0.1 GeV2 709 313

0.1 GeV2 < −t′ < 0.2 GeV2 821 392

0.2 GeV2 < −t′ < 0.4 GeV2 896 374

overall 3088 1079

Table 4.4: Numbers of events used in the analysis for hydrogen and deuteron targets
for 1998-2000 and 2006-2007 periods. Q2 and t′ binings are independent from each
other, e.g. 1D bining is done for each variable separately. For deuteron data in the Q2

bins an additional constrain t′ > 0.04 GeV2 is implemented, e.g. the first t′ bin data is
excluded from all the Q2 bins and the overall data set.

4.1.7 Monte Carlo event selection

The two Monte Carlo event generators, PYTHIA ([45]) and RhoMC ([46]) are used in this

analysis for systematic studies, background determination and for the SDME extraction. In

this section a short description of the two generators is presented together with the analysis

goals they were used for. The main features of the two generators, important for this analysis,

are the following: PYTHIA is able to generate various types of processes, in particular hard

interactions in e+e−, pp, and ep colliders, while RhoMC can produce only exclusive vector

meson processes. PYTHIA is capable to generate sets with unpolarized beam and target only,

in contrast to RhoMC, where beam polarization can be implemented. Another difference is

that SDMEs can be implemented in RhoMC-produced decay angular distribution of a vector

meson, which is not possible for PYTHIA (only the first SDME can be implemented, See

Equation 4.18).

The event generation scheme for both PYTHIA and RhoMC generators is shown in Fig-

ure 4.7. After physical event generation and detector simulation the same tracking method as

for the real data, HTC (see Section 3.4.1) was employed. Then reconstructed and generated

tracks were stored in µDSTs(see Section 3.5). Monte Carlo µDSTs have the same structure as

data ones, but contain additional information like generated tracks, born-level tracks etc.

PYTHIA generator

The PYTHIA generator can be used to produce high-energy-physics events, e.g sets of outgoing

particles originating from the interaction between two incoming particles. The generation
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Figure 4.7: The scheme of event generation chain using PYTHIA.

is done according to the relative cross section, using the ”accept-reject” method. For some

processes cross sections were tuned to HERMES kinematics, for example exclusive ρ meson

production, but not φ production.

The scattered lepton kinematics (Q2, ν) are generated according to the relative cross sections

of the corresponding processes (DIS, QCD-Compton and boson-gluon fusion processes). The

momentum of the scattered lepton can be modified by initial- and final-state radiation, which

is taken into account by an external program RADGEN ([47]). RADGEN recalculated the

generated Born level kinematics to true ones. As was mentioned in Section 2, the ep collision

can be represented as γ∗p process. The development of the last one in PYTHIA follows one

of the next scenarios, depending on the value of transverse momentum k⊥ of the quarks with

respect to the virtual-photon direction. If the process virtuality is large,, e.g. if k⊥ is larger than

cutoff parameter of the order of 0.5 GeV, then the process is described via pQCD involving

formation of hadron from qq pair, e.g fragmentation (hadronization), which is done by an

additional code JETSET([48]). If the virtuality is low and k⊥ is small, pQCD is not applicable

and VMD (see Section 2.6) model is used. HERMES detector effects, e.g. its geometrical

acceptance, efficiency and smearing was simulated by GEANT package ([50]).

Two types of PYTHIA productions were used in this analysis: the one containing various

diffractive processes was used for normalization in Maximum Likelihood Method (MLH)(see

Section 4.2) and another one, containing also semi-inclusive processes, was used for background

estimation. Each of the Monte Carlo sets used in the analysis consists of two subsets from the

two detector-composition geometries, mixed in the same ratio as the corresponding geometries

are presented in the real data. The subsets were generated for the two target types (proton and

neutron) and two beam types (electron and positron). The proton and neutron subsets were

mixed in final sets in such a proportion that their absolute luminosities are equal. The lumi-

nosity of a Monte Carlo set is calculated via the total cross-section of the generated processes

– extraweight, the number of attempts to generate acceptable events – ievgen, and number

of generated runs N. These numbers are stored in the files produced during generation of the

Monte Carlo set. The total luminosity reads

LMC =

∑N
i=1 ievgeni∑N

i=1 extraweighti/N
. (4.10)
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RhoMC generator

RhoMC generator was designed especially for exclusive vector meson production generation

and in contrast to PYTHIA, which generates the whole stochastic spectrum of the final states,

produces these according to the VMD model.RhoMC generates flat distributions in a kinematic

box for most of the kinematic variables and then weights each event with the corresponding

cross section. While in PYTHIA event weights are equal to 1, RhoMC weights are hence

different from 1. The RhoMC kinematic distributions are physical only after weighting each

generated event with the corresponding event weight.

RhoMC generated sets were used for the systematic uncertainties estimation, e.g so-called

”all-in-one” procedure (Section 4.3.1) and uncertainty due to the different Monte Carlo models

(Section 4.3.2). All-in-one procedure is used for estimation of the systematic uncertainties of

SDME extraction method, limited statistics, detector smearing and misalignment. RhoMC sets

were used as pseudo-data in the procedure, e.g. known implemented SDMEs were extracted

from RhoMC set instead of the real data set.

RhoMC sets with vanishing SDME values, e.g with uniform decay angular distributions,

distorted by HERMES acceptance only, were used as normalization samples in Maximum Like-

lihood Method (MLH) for estimation of the systematic uncertainty due to the different Monte

Carlo models.

4.1.8 Data to Monte Carlo comparison

In Figure 4.2 data-to-PYTHIA comparison for the missing energy distribution in different

kinematic Q2 and t′ bins, used in the analysis, is presented. Event selection was done with

the same constraints as for data, the Monte Carlo signal (red dotted histogram in Figure 4.2)

consists of the events with a process type number, corresponding to the exclusive φ meson

production. For the background sample (magenta dashed histogram in Figure 4.2) events

which pass all the exclusive cuts (except from the missing energy cut) but are of background

types, were selected.

In Appendix C kinematic distributions in different Q2 and t′ bins for data, PYTHIA and

RhoMC without implemented SDMEs are presented.

4.2 SDME extraction

In this chapter the procedure of SDME extraction from the decay angular distribution in

Wolf-Schilling and Markus Diehl notations using the unbinned maximum likelihood method is

described. The decay angular distribution W (Equations 2.61 - 2.62 - in Wolf-Schilling form,

Equation 2.66 - in Markus Diehl form) of the vector meson contains the measured decay angles

and unknown SDMEs, which are the object of interest. The angular distribution is, therefore,
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affected by the HERMES apparatus (acceptance, measured efficiency, tracking etc.) and by

SDMEs. To extract the latter ones, the instrumental effects were to be excluded from the

decay angular distribution. The acceptance description was provided by the Monte Carlo set,

which was tuned for the HERMES geometrical and kinematic acceptance and whose angular

distributions do not contain SDMEs, except from the first SDME r04
00 (see Equation 4.18).

Unbinned MLH was chosen for SDME extraction due to its higher reliability compared to the

binned MLH in case when the limited statistics.

4.2.1 Maximum-likelihood method

The first step in MLH method implementation is to build the probability density function p.

d. f. The probability dp for a single event to be detected is given by the formula ( [57])

dp =
(LσEW )wD

NwMC
, (4.11)

where L denoted the integrated luminosity determined by counting DIS events, E ≡ E(Φ, ϕ, cos θ)

is the detector efficiency, W ≡ W (Φ, ϕ, cos θ, Pb, λ) is the theoretically predicted decay angular

distribution of the vector meson in Wolf-Schilling or Marcus Diehl representation, Pb is the

beam polarization, λ denotes a vector of 23 SDMEs, wD is the event weight (if any) for real

data, wMC is that of Monte Carlo. The denominator of this function is the normalization of

the p. d. f. and is responsible for the acceptance of the HERMES spectrometer. The normal-

ization factor N is to be such, that the total probability to detect final particles for all angles

dΩ = dΦdϕd cos θ is equal to unity:∫
dp =

∫
W (Φ, ϕ, cos θ, Pb, λ)dΩ = 1. (4.12)

For the total set of N events the likelihood function L is defined:

L(λ) =
∏

i

W (φi, θi, Φi, Pi, λ)wi

N(λ)
, (4.13)

where the detector efficiency is omitted since it does not depend on λ parameters. The product

in the denominator is independent of λ parameters and can be ignored in the likelihood fit, if

the whole data set has no net beam polarization (See [58]):
∫

PdP = 0. To achieve this, the

data set has to be either unpolarized or beam-polarization balanced. The balanced sample,

e.g. the sample consisting of the two sup-samples with opposite beam polarization signs and

equal luminosities, can be obtained either by skipping of a part of the data with the prevailing

polarization sign or by assigning a beam-balancing weight. The weight for the data with a

certain beam polarization sign was calculated from the definition of the beam-balanced sample:

|
∑

Lumi+P+| = |
∑

Lumi−P−|, where Lumi is the luminosity of the data set with the cor-
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responding polarization sign, P is the beam polarization value. The luminosity was calculated

via DIS sample: w+/− =
PN−/+DIS

i P
−/+DIS
iPN+/−DIS

j P
+/−DIS
j

. The weight was always implemented to the larger

set, therefore it was always less than 1. The weight wD used in formula 4.11 can represent

beam balancing weight. The parameters are defined by maximization of the logarithm of the

likelihood (LH) function, or alternatively by minimization of − ln L(λ):

d ln L(λ)

dλ

∣∣∣∣
λ=λtrue

= 0, (4.14)

The ln L(λ) is given by the formula

− ln L(λ) = −

[∑
i

(
wi ln(WU+L(Φi, φi, cosθi, P, λ))

)
−Nev ln

{∑
j

(
wj(W

U(Φj, φj, cosθj))
)}]

,

(4.15)

where sum on index i implies sum of data events, sum on j - sum of Monte Carlo events, N ev

is number of events in data, wi(w(j)) is weight of data or Monte Carlo event correspondingly.

The second sum, referred to Monte Carlo events, does not depend on the beam polarization

and therefore does not contain the part of angular distribution involving longitudinal beam

polarization. The logarithm of the likelihood function is to be given to the minimization

program. For this analysis MINUIT package was used. SDMEs were treated as free parameters

during the fitting. The result of the minimization program are SDME values with fitting

uncertainties. The uncertainties are root squares of the diagonal elements of the covariance

matrix V with the dimensions k×n, k = n, which can be determined from the matrix of the

second derivative ln L via

(V̂ −1)kn =
∂ ln L

∂λk∂λn

∣∣∣∣
λ

. (4.16)

In Figure 4.9 angular distributions are shown for hydrogen data sample for the real data,

isotropic Monte Carlo sample used for MLH normalization, and Monte Carlo set reweighted

with the obtained SDME values. The reweighted distributions are in agreement with the data.

Unbinned MLH: implementation without beam balancing weights

As an additional cross-check of the beam-balancing procedure and the whole MLH method im-

plementation an alternative representation of the LH function without beam-balancing weights

was used. In such a representation of a MLH function the normalization factor depends of the

polarization even in the case of the polarization balance. In Formula 4.17 the sum over Monte

Carlo events runs inside the sum over data ones. This means that instead of calculation of the

normalization integral on each fit iteration as it was done in Formula 4.15, the intergal was
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Figure 4.8: The angular distribution for hydrogen data of the periods 1998-2000,
2006-2007 (black points), the uniform Monte Carlo generated angular distribution used
for p.d.f normalization in the fitting procedure (black dotted lines), Monte Carlo dis-
tributions reweighted with the corresponding SDME values (red dashed lines) for Q2

bins and overall kinematics. All the distributions are normalized to unity.
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Figure 4.9: The angular distribution for hydrogen data of the periods 1998-2000,
2006-2007 (black points), the uniform Monte Carlo generated angular distribution used
for p.d.f normalization in the fitting procedure (black dotted lines), Monte Carlo distri-
butions reweighted with the corresponding SDME values (red dashed lines) for t′ bins
and overall kinematics. All the distributions are normalized to unity.
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calculated for each particular data event individually using the beam polarization value for this

event.

ln L(λ) =
∑

i

[
wi ln

(
WU+L(Φi, φi, cosθi, Pi, λ)

)
−Nev ln

(∑
j

(
wj(W

U+L(Φj, φj, cosθj, Pi))
))]

(4.17)

Figure 4.10 shows an agreement within half σ between the two methods for the hydrogen

and deuteron data sets taken in the period 1998-2000, 2006-2007 years. In the present analysis

the MLH with the beam-balancing weights was used.

4.2.2 Monte Carlo studies of the MLH fit stability

To check that the chosen method is correct and that the PYTHIA-generated Monte Carlo set

used for p. d. f. normalization does not produce any bias in SDME measurement, the so

called ”zero–test“ was performed. In this test instead of the data set, the parameters were

extracted from a Monte Carlo set with uniform angular distribution, e.g. without angular

dependences. To obtain such a distribution, all SDMEs have to be set on 0 except from the

first one. According to Equation 4.18, if r04
00 = 1

3
, then all the dependences are excluded from

the angular distribution and
∫

WdΩ = 1, e.g. the distribution is normalized.

WUU(cos θ, ϕ, Φ) =
3

4π

(
cos2 θ r04

00 +
1

2
sin2 θ(1− r04

00))

)
=

1

4π

1

3
= cos2 θ

1

3
+

1

2
sin2 θ

(
1− 1

3

)
1

3
=

1

3

(
cos2 θ + sin2 θ

)
(4.18)

On Figure 4.11 the extracted Wolf-Schilling SDMEs from pseudo-data corresponding to the

data taking period 1998-2000, 2006-2007 years are presented. All SDMEs except from the first

one are equal to zero within 1-2 σ, showing no bias in the method of extraction and no artificial

effects produced by the Monte Carlo sets.

A more precise test using a RhoMC-generated Monte Carlo set with non-zero SDMEs im-

plemented in it as a pseudo-data, was also performed. The statistics for both pseudo-data and

normalization sets was also large enough to check the fit procedure reliability without limited

statistics effects. On Figure 4.12 the extracted Wolf-Schilling SDMEs from pseudo-data for hy-

drogen and deuteron targets are presented. The extracted values agree with the implemented

ones within 1-2 σ, except from the SDME value of r5
00, which is unstable in all the systematics

checks, listed in Section 4.3. Such an instability can be explained via radiative effects, whose
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Figure 4.12: SDMEs extracted from hydrogen and deuteron Monte Carlo sets corre-
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ues extracted from deuteron data set. The statistical uncertainties of the extracted
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influence on SDME r5
00 is stronger than on all the others (Section 2.15). The agreement be-

tween the other implemented and extracted SDME values shows the ability of the MLH fitting

method to provide reliable SDMEs.

4.2.3 Cross-checks of the results

All the steps of the analysis, e.g. the event selection, SDME extraction, U1,U2,U3 quantities

calculation were cross checked, as required by the HERMES collaboration rules. For the cross

check of the fitting procedure three independent programs were used. All of them provided

almost identical results (differences are lower than 0.1%) in case of using the same input data,

e.g. same event lists. For the cross check of the whole analysis, e.g. starting from the event

selection, two independent implementations were used. The discrepancy of the event numbers

was up to 2%, resulting in approximatelly 5% differences in the final SDME values. This can

be explained by the low statistcs for the φ meson, which makes the fit very sensible even to
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the differences in the event lists of the order of a few percents. The U1,U2,U3 quantities also

showed differences up to 5%.

4.2.4 Extracted SDMEs and U1, U2, U3 values.

The measured SDMEs in Wolf-Schilling notation for 1998 – 2000 and 2006 – 2007 unified data

sets, for hydrogen and deuteron targets are presented in Figure 4.13. The extraction was done

in 3 Q2 and 4 t′ bins described above (Table 4.4), the same as for the overall kinematic range.

SDMEs are divided into 5 classes according to the helicity transition type.The vertical dashed

line denotes SCHC. The same results in Markus Diehl notation are presented in Figure 4.14.

They are divided into three main classes, which represent spin conserving transitions, spin-flip

transitions and double flip transitions correspondingly.

Only statistical uncertainties are plotted. SDMEs involving the beam polarization are shown

in shadowed areas. The statistical uncertainties of polarized SDMEs are larger, since they

have an additional multiplication factor (see Formulas 2.62, 2.71, 2.72, 2.73) in the angular

distribution, e.g. the beam polarization, which has an average value 0.35.

As was mentioned above (see Section 2), SDMEs from Wolf-Schiling and Markus Diehl

notations are connected via relations listed in Appendix A. In Figure 4.15 Markus Diehl SDMEs

for hydrogen and deuteron targets for overall kinematics extracted using MLH method are

compared to SDMEs recalculated from Wolf-Schilling ones. The equality of SDMEs obtained

via two different ways excludes the possibility that MLH fit got stuck to a local minimum in

only one of the two cases.

4.2.5 Compatibility of hydrogen and deuteron results.

Vector meson SDMEs are expected to be similar for hydrogen and deuteron data, since after

exclusion of coherent deuteron data both hydrogen and deuteron targets are 3-quark systems

from the point of view of gluon, mediating the exchange between γ and nucleon. For both

deuteron and hydrogen targets at HERMES level of energies the process is dominated by

gluonic GPDs. To check if the results are compatible, a χ2 test for the two independent sets of

results (e.g. different targets) was fulfilled in each kinematic bin. The obtained χ2 values are

shown in Table 4.5; all of them (except from the first two Q2 bins) are less than one, indicating

an agreements betwen the SDMEs for the two targets.

As an additional statistical check, the deviations between proton and incoherent deuteron

results were calculated as

di =
SDMEi

1 − SDMEi
2√

σ2
1,i + σ2

2,i

(4.19)

for each SDME in each kinematic bin. From figures 4.21 - 4.25, where the deviations areplotted,
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Figure 4.13: SDMEs in Wolf-Schilling representation extracted from hydrogen (left
side figures) and deuteron (right side figures) data sets of 1998 – 2000, 2006 – 2007
years in Q2 (top figures) and t′ (bottom figures) kinematic bins.
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Figure 4.14: SDMEs in Markus Diehl representation extracted from hydrogen (left
side figures) and deuteron (right side figures) data sets of 1998 – 2000, 2006 – 2007
years in Q2 (top figures) and t′ (bottom figures) kinematic bins.
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Figure 4.15: SDMEs in Markus Diehl representation extracted from hydrogen
(squares) and deuteron (circles) data are shown as solid symbols. Those calculated
(open symbols) from SDMEs in Wolf-Schilling representation are represented as open
symbols. The results are obtained for the data set with overall kinematics.

one can conclude that 10 deviation values out of 161 (4 bins in t′ ∗ 23 SDMEs + 3 bins in

Q2 ∗ 23 SDMEs=161 points) are larger than 2 σ. The 10 points correspond to 6.2% from the

total amount of 161 points and are statistically allowed percentage of the difference, prooving

compatibility of SDMEs for hydrogen and deuteron targets.
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Kinematic bin χ2

1 GeV2 < Q2 < 1.4 GeV2 2.39

1.4 GeV2 < Q2 < 2 GeV2 2.1

2 GeV2 < Q2 < 7 GeV2 0.58

0 < GeV2 − t′ < 0.04 GeV2 0.40

0.04 GeV2 < −t′ < 0.1 GeV2 1.16

0.1 GeV2 < −t′ < 0.2 GeV2 0.17

0.2 GeV2 < −t′ < 0.4 GeV2 0.50

overall 0.05

Table 4.5: Values of χ2 characterizing compatibility of the hydrogen and deuteron
data sets in each kinematic bin. The first t′ bin is added in the comparison for the
completeness, although it is excluded from deuteron Q2 bins.
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Figure 4.16: The proton to deuteron deviations of φ SDMEs from class A on Q2.

4.3 Systematics

Each of the sources of systematic uncertainty can create a bias in the measurement. The

systematic uncertainty sources, relevant to this analysis, are imperfect calibration or operation

of measurement instruments (in the context of this analysis these are uncertainties due to the

beam misalignment and smearing of the detector measurements), changes in the environment

which interfere with the measured process (n terms of this analysis - background contamination)

and imperfect methods of calculation (in terms of this analysis - uncertainty of unbinned MLH

and the model of Monte Carlo generator producing the p. d. f. normalization sample). The

uncertainties due to the beam misalignment, detector smearing and uncertainty of the unbinned

MLH method are estimated via so-called “all-in-one procedure”, described in Section 4.3.1.

The SDME systematic error due to the imperfectness of the physical model used for event

generation of the Monte Carlo set is described in Section 4.3.2 and was evaluated by using

the two different generators described above (Section 4.1.7). The uncertainty due to the semi-
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inclusive background subtraction is described in Section 4.3.3.

4.3.1 All-in-one procedure

As was mentioned above (Section 4.2.2), the method of SDME extraction can be checked

by using so-called pseudo-data instead of the real data. Pseudo-data is a RhoMC generated

Monte Carlo set, whose angular distributions contain known SDMEs, implemented via event

weights. The pseudo-data set included the smearing effects of the detector and the misaligned

beam position, therefore the extracted SDMEs allow one to check the effect of these systematic

sources together with the uncertainty coming from the method of extraction.

As a first check, SDMEs were extracted from the set with the huge statistics to verify only

the method itself without possible influence from statistical fluctuations (see Section 4.2.2).

However, the limited statistics, being the case for the φ meson, can affect the results strongly.

In order to check this, the pseudo-data set for each of the kinematic bins was divided into 50

sets with the statistics, comparable to that of the real data. The resulting uncertainty for each

SDME in each kinematic bin was obtained as a maximum of two values: the first one is the

squared average difference between extracted and implemented values, e.g.:

∆2 =
(s1 − s)2 + (s2 − s)2 + ... + (sN − s)2

N
(4.20)

where s is an implemented SDME value, s1 is the extracted value in a certain kinematic bin

in one of 50 test sets, N is the number of test sets. The second one is the squared average

statistical uncertainty, calculated as

δ2 =
δ2
s1

+ δ2
s2

+ ... + δ2
s50

N
. (4.21)

For the most part of SDMEs in the kinematic bins the value calculated via the deviations

from the true value turned out to be larger than the one calculated via systematic uncertainty,

therefore the final SDME uncertainty was calculated according to the Equation 4.20. Differences

between implemented and extracted values for each SDME in each kinematic bin for the first 20

test samples are plotted in [59] for Wolf-Schilling SDMEs and in [60] for Markus Diehl SDMEs.

For the uncertainty calculation of U1, U2, U3 quantities was used the same way as for SDME

ones. In Figures 4.26 - 4.28 the averaged squared deviations of U1, U2, U3 quantities for the

first 20 test sets in each kinematic bin are shown. They are typically larger than the systematic

uncertainties of the corresponding values. The value of the resulting systematic uncertainty for

SDMEs is of the order of 10−3.
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Figure 4.17: The proton to deuteron deviations of φ SDMEs from class B on Q2.
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Figure 4.18: The proton to deuteron deviations of φ SDMEs from class C on Q2.
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Figure 4.19: The proton to deuteron deviations of φ SDMEs from class D on Q2.
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Figure 4.20: The proton to deuteron deviations of φ SDMEs from class E on Q2.
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Figure 4.21: The proton to deuteron deviations of φ SDMEs from class A on −t′.
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Figure 4.22: The proton to deuteron deviations of φ SDMEs from class B on −t′.
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Figure 4.23: The proton to deuteron deviations of φ SDMEs from class C on −t′.
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Figure 4.24: The proton to deuteron deviations of φ SDMEs from class D on −t′.
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Figure 4.25: The proton to deuteron deviations of φ SDMEs from class E on −t′.
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Figure 4.26: The differences between implemented and extracted U1, U2, for hydrogen
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Figure 4.27: The differences between implemented and extracted U3 for hydrogen and
U1 for deuteron
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4.3.2 Different Monte Carlo models

Monte Carlo set used for p.d.f normalization might affect the results. As was mentioned in

Section 4.1.7, the two generators suitable for φ meson production contain different cross section

models, different ways of implementing the Q2 and t′ cross section dependencies. As the HER-

MES spectrometer acceptance depends on Q2, different cross section Q2-dependence models

result in slightly different reconstructed angular distributions and consequently differences in

SDME values. The uncertainty due to the Monte Carlo model was estimated as the difference

between SDMEs obtained using PYTHIA generated set and RhoMC generated set for the p.d.f

normalization, e.g. the difference between each two sets of the same symbols in Figure 4.29,

where the results for overall kinematics are presented. For all the kinematic bins the results can

be found in Appendix E. The uncertainty varies from 10−3 up to 10−1, the largest uncertainties

are observed for the 1st Q2 bin of the deuteron data.

As was mentioned in Section 4.1.7, RhoMC does not include radiative corrections for the

kinematics, therefore the difference between SDMEs extracted using Pythia and using RhoMC

reflects also radiative effects, which are negligible for most SDMEs according to [61].

4.3.3 Background subtraction

A sample of semi-inclusive events generated by PYTHIA Monte Carlo was used to subtract

the semi-inclusive background from the exclusive channel. The procedure of extraction implies

that first the background sample is used as pseudo data, e.g. the parameters, which represent

SDMEs for the background but have no physical meaning, are extracted from it. Then the MLH

function is modified to extract the data SDMEs λ using the known values of the background

parameters α and the probability of each event to be an exclusive one
Nφ

Ntotal
or a background

one NBKG

Ntotal
:

ln(L(λ)) = ΣN
i=1 ln

[
Nφ

Ntot

∗ W (φi, θi, Φi, Pi, λ)

N(λ)
+

NBKG

Ntot

∗ W (φi, θi, Φi, Pi, α)

N(α)

]
(4.22)

For both normalization parts in the formula above the exclusive PYTHIA sample is used, the

first fraction contains unknown background-subtracted data SDMEs, the second one contains

known background parameters.

The Table 4.6 shows the background fractions in different kinematic bins. They were ob-

tained as ratios of the missing energy distributions for the data to those of PYTHIA-simulated

background in each Q2 and t′ kinematic bin, e.g. ratios of the yields of the magenta histograms

to that of black histograms on Figure 4.2. The ratios were calculated in the exclusive region:

∆E < 0.6 GeV.

The systematic uncertainty due to the subtraction procedure was estimated as the difference
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Figure 4.28: The differences between implemented and extracted U2 and U3 for
deuteron
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Figure 4.29: Wolf Schilling SDMEs (left figure) and Markus Diehl SDMEs (right
figure) extracted using Pythia (open symbols), RhoMC (solid symbols) for the p.d.f.
normalization for overall kinematics.

Kinematic bin Background fraction

1 GeV2 < Q2 < 1.4 GeV2 2.99%

1.4 GeV2 < Q2 < 2 GeV2 2.78%

2 GeV2 < Q2 < 7 GeV2 2.38%

0 GeV2 < −t′ < 0.04 GeV2 0.38%

0.04 GeV2 < −t′ < 0.1 GeV2 3.01%

0.1 GeV2 < −t′ < 0.2 GeV2 2.54%

0.2 GeV2 < −t′ < 0.4 GeV2 2.90%

1 GeV2 < Q2 < 1.4 GeV2, 0.04 GeV2 < −t′ < 0.4 GeV2 3.14%

1.4 GeV2 < Q2 < 2 GeV2,0.04 GeV2 < −t′ < 0.4 GeV2 3.04%

2 GeV2 < Q2 < 7 GeV2, 0.04 GeV2 < −t′ < 0.4 GeV2 2.63%

Table 4.6: The background fraction in each bin

between SDMEs obtained with and without background subtraction, e.g. the difference between

each two sets of the same shape symbols in Figure 4.30, where results for the overall kinematics
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Figure 4.30: Background subtracted (solid symbols) and not-subtracted (open sym-
bols) SDMEs in Wolf-Schilling notation (left figure) and Markus Diehl notation (right
figure) for overall kinematics.

are shown. The results for each of the kinematic bins can be found in Appendix D. The resulting

uncertainty due to the background subtraction is of the order of 10−3.

4.3.4 Contribution of each source of the uncertainty to the total system-

atic uncertainty.

In Figures 4.31 - 4.40 the contribution of each systematic source is shown for each SDME in

bars for overall kinematics. Uncertainties are shown as blocks, put on each other, e.g. they

do not overlay. As can be concluded from the plots, the smallest contribution comes from

the uncertainty due to the background subtraction procedure, since the SIDIS background in

the exclusive region does not exceed 3.2%. For some SDMEs, namely Im r7
1−1 in the bins of

Q2 for hydrogen data, SDMEs r1
00 and Im r6

10 in the 1st Q2 bin for hydrogen and deuteron

data, the uncertainty due to the all-in-one-procedure prevails over all the other sources. For

most of SDMEs, however, the uncertainty due to the different Monte Carlo model of p. d. f.

normalization set gives the largest contribution.
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Figure 4.31: Contribution to the systematic uncertainties of the class A SDMEs in
the various Q2 bins for both hydrogen and deuteron.
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Figure 4.32: As in Figure 4.31, but for class B SDMEs.
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Figure 4.33: As in Figure 4.31, but for class C SDMEs.
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Figure 4.34: As in Figure 4.31, but for class D SDMEs.
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Figure 4.35: As in Figure 4.31, but for class E SDMEs.

-t' bin

)
0004

 (
r

isy
s

δ

0

0.02

0.04

0.06
All-in-one procedure, hydrogen

All-in-one procedure, deuteron

Monte Carlo models, hydrogen

Monte Carlo models, deuteron

Background subtraction

st1 nd2 rd3 th4

All-in-one procedure, hydrogen

All-in-one procedure, deuteron

Monte Carlo models, hydrogen

Monte Carlo models, deuteron

Background subtraction

st1 nd2 rd3 th4

All-in-one procedure, hydrogen

All-in-one procedure, deuteron

Monte Carlo models, hydrogen

Monte Carlo models, deuteron

Background subtraction

st1 nd2 rd3 th4

All-in-one procedure, hydrogen

All-in-one procedure, deuteron

Monte Carlo models, hydrogen

Monte Carlo models, deuteron

Background subtraction

st1 nd2 rd3 th4 -t' bin

)
1-

1
1

 (
r

isy
s

δ

0

0.02

0.04

0.06
All-in-one procedure, hydrogen

All-in-one procedure, deuteron

Monte Carlo models, hydrogen

Monte Carlo models, deuteron

Background subtraction

st1 nd2 rd3 th4

All-in-one procedure, hydrogen

All-in-one procedure, deuteron

Monte Carlo models, hydrogen

Monte Carlo models, deuteron

Background subtraction

st1 nd2 rd3 th4

All-in-one procedure, hydrogen

All-in-one procedure, deuteron

Monte Carlo models, hydrogen

Monte Carlo models, deuteron

Background subtraction

st1 nd2 rd3 th4

All-in-one procedure, hydrogen

All-in-one procedure, deuteron

Monte Carlo models, hydrogen

Monte Carlo models, deuteron

Background subtraction

st1 nd2 rd3 th4 -t' bin

)}
1-

1
2

 (
Im

{r
isy

s
δ

0

0.05

All-in-one procedure, hydrogen

All-in-one procedure, deuteron

Monte Carlo models, hydrogen

Monte Carlo models, deuteron

Background subtraction

st1 nd2 rd3 th4

All-in-one procedure, hydrogen

All-in-one procedure, deuteron

Monte Carlo models, hydrogen

Monte Carlo models, deuteron

Background subtraction

st1 nd2 rd3 th4

All-in-one procedure, hydrogen

All-in-one procedure, deuteron

Monte Carlo models, hydrogen

Monte Carlo models, deuteron

Background subtraction

st1 nd2 rd3 th4

All-in-one procedure, hydrogen

All-in-one procedure, deuteron

Monte Carlo models, hydrogen

Monte Carlo models, deuteron

Background subtraction

st1 nd2 rd3 th4

Figure 4.36:
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Figure 4.37: As in Figure 4.31, but in bins of t′.
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Figure 4.38: As in Figure 4.33, but in bins of t′.
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Figure 4.39: As in Figure 4.34, but in bins of t′.
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Figure 4.40: As in Figure 4.35, but in bins of t′.



Analysis 77

4.3.5 Total systematic uncertainty

The total systematic uncertainty was obtained as the square root of the sum of individual

squared systematic uncertainties. In Figures 4.41 - 4.50 the ratio of systematic to statistical

uncertainty for Wolf-Schilling SDMEs is shown. Since polarized SDMEs have larger statistical

uncertainties (the reason is given in Section 4.2.4), the ratio is around 0.1-0.3 for the most of

them. For unpolarized SDMEs the ratio varies from 0.6-0.8 up to 1.2-1.5, e.g. statistical and

systematic uncertainties have comparable values. The largest ratios (around 2) are observed

for SDMEs r5
11, Re r1

10, r5
00, whose values varied strongly in all the systematic studies, listed

above.
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Figure 4.41: The ratios of systematic to statistical uncertainties for hydrogen (blue)
and deuteron (red) of φ SDMEs from class A, Q2 dependence.
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Figure 4.42: As in Figure 4.41 but for class B.
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Figure 4.43: As in Figure 4.41 but for class C.
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Figure 4.44: As in Figure 4.41 but for class D.
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Figure 4.45: As in Figure 4.41 but for class E.
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Figure 4.46: As in Figure 4.41 but for −t′ dependence.



Analysis 80

-t' bin

)}
105

 (
R

e{
r

st
at

δ/
sy

st
δ 0

1

2

3

4
Hydrogen
Deuteron

st1 nd2 rd3 th4

-t' bin

)}
106

 (
Im

{r
st

at
δ/

sy
st

δ 0

1

2

3

4
Hydrogen
Deuteron

st1 nd2 rd3 th4

-t' bin

)}
107

 (
Im

{r
st

at
δ/

sy
st

δ 0

1

2

3

4
Hydrogen
Deuteron

st1 nd2 rd3 th4

-t' bin
)}

108
 (

R
e{

r
st

at
δ/

sy
st

δ 0

1

2

3

4
Hydrogen
Deuteron

st1 nd2 rd3 th4

Figure 4.47: As in Figure 4.47 but for −t′ dependence.
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Figure 4.48: As in Figure 4.43 but for −t′ dependence.
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Figure 4.49: As in Figure 4.44 but for −t′ dependence.
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Figure 4.50: As in Figure 4.45 but for −t′ dependence.



Chapter 5

Results

In this section the SDMEs in Wolf-Schilling (Equations 2.61, 2.62) and Markus Diehl (Equa-

tions 2.66- 2.73) notations are presented. They were extracted from the unified data sets

of 1998–2000 years and 2006-2007 years for hydrogen and deuteron targets separately. The

data were obtained on unpolarized targets with the longitudinally polarized beam, therefore

(see Section 2.10 for the explanation) 15 unpolarized SDMEs and 8 SDMEs which include the

beam-polarization dependence were obtained. The extraction was performed using unbinned

MLH (See Section 4.2.1) method for the data divided into three kinematic bins in Q2 or four

kinematic bins in t′ value. Binning was independent, e.g. by each variable one–dimensional

binning was done. The first t′ bin, e.g. the data, referred to as coherent scattering (see Sec-

tion 4.1.4) is excluded from each Q2 bin of deuteron data. For the t′ dependence it is still shown

for completeness.

5.1 Kinematic dependencies of Wolf-Schilling SDMEs

In the Figures 5.1 – 5.10 the Q2 and t′ dependencies for SDMEs are presented, extracted

from hydrogen and incoherent deuteron sets (see Table 4.4 for the bin boundary values). The

SDMEs are divided into the classes A–E, related to certain transition types. Each plot presents

either Q2 – in Figures 5.1 – 5.5 or t′ – Figures 5.6 – 5.10 dependence of certain SDME. For

the comparison also the ρ meson SDMEs, obtained by HERMES ([26]) in the years 1996-2005,

are shown in the figures. The invisible uncertainties for most of ρ meson SDMEs are explained

by the large statistics (∼ 10 times larger than for the φ meson). SDMEs for ρ meson for of

hydrogen and deuteron target are in most cases very close to each other. φ meson SDMEs show

larger spread, however it the deviations do not exceed 2σ in most of the cases (see Section 4.2.5).

The values of Wolf-Schilling φ meson SDMEs together with the statistical and systematic

uncertainties in all the kinematic bins and for integrated kinematics are given in Appendix F.

Class A: dominant transitions γ∗
L → φL and γ∗

T → φT . (Figures 5.1, 5.6).

Class A includes SDMEs, related to the dominant helicity-conserving transitions. The

82



Results 83

amplitudes, responsible for such reaction types, are T11 and T00 (see Appendix B for SDMEs-

to-amplitudes relations). All the kinematic dependencies were fitted by the linear function.

The first SDME, namely r04
00, exhibit Q2 dependence for both hydrogen and deuteron target,

e.g. the slope in the fit function is different from zero by more than 2σs. SDMEs r1
1−1 and

=m(r2
1−1) of φ meson show Q2 dependencies for deuteron target, which is stronger than that of

ρ meson SDMEs. Neither for φ nor for ρ meson t′ dependencies of A-Class SDMEs is observed.

Theory expectations are that only the first SDME, namely r04
00 must have Q2 dependence,

all the other SDMEs have to be Q2 and t′ independent.

Class B: interference of γ∗
L → φL and γ∗

T → φT transitions. (Figures 5.2, 5.7).

Class B consists of SDMEs describing the interference of the dominant transitions. The in-

terference is reflected as a product of the corresponding amplitudes T11 and T00. Polarized

(unpolarized) SDMEs are related to the real (imaginary) part of the product. No pronounced

Q2 (Figure 5.2) or t′ (Figure 5.7) dependence for SDMEs of B class was found, neither for ρ

meson nor for φ.

Class C: helicity flip transition γ∗
T → φL. (Figures 5.3, 5.8).

Class C comprises SDMEs containing a product of the helicity non-conserving amplitude T01

and one of the amplitudes T00, T11, T01. If SCHC is hold, all the SDMEs of classes C - E have

to be zero. The SDME significantly violating the hypotheses for both φ and ρ mesons is r5
00.

For ρ meson this is theoretically expected and experimentally observed at HERA by ZEUS

([24]) and H1 ([25]). For the φ meson the non-zero value is less pronounced, but theoretically

unexpected. The r5
00 value obtained by H1 ([28]) was zero within 2σ in all the kinematic bins.

The possible explanation to the observation of HERMES a non zero value is the effect from the

radiative corrections and was provided in Section 2.15. The remaining SDMEs of the C class

are statistically consistent with zero.

No clear Q2 dependence was found for the ρ meson SDMEs of class C. Several φ meson SDMEs

of deuteron exhibit Q2 (=m(r2
10), r8

00) or t′ (r8
00) dependencies.

Class D: helicity flip transition γ∗
L → φT . (Figure 5.4, 5.9).

Class D contains SDMEs that are a product of the small helicity-flip amplitude T10 with the

complex conjugate of T11. Unpolarized (polarized) SDMEs represent the real (imaginary) part of

this product. The ρ meson SDMEs show i at all weak kinematic dependencies and are consistent

with zero ([26]) apart from r5
11. For φ meson r8

1−1 for hydrogen is weakly Q2 dependent, =m(r7
1−1)

and r8
11 for deuteron are t′ dependent.

Class E: helicity flip transition γ∗
−T → φT . (Figure 5.5, 5.10).

Class E consists of SDMEs, which are a product of the double spin-flip amplitude T1−1 with the

complex conjugate of the helicity-conserving amplitude T11. Unpolarized (polarized) SDMEs

represent the real (imaginary) part of this product. Neither ρ nor φ meson SDMEs show

significant kinematic dependencies.
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Figure 5.1: The Q2 dependence of Wolf-Schilling SDMEs from class A for proton
(blue squares) and deuteron (red circles) targets for φ meson (solid symbols) and ρ
meson (open symbols). The inner error bars represent the statistical uncertainties,
while the outer ones, if visible, indicate the statistical and systematic uncertainties
added in quadrature.
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Figure 5.2: As Figure 5.1 but for class B SDMEs.
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Figure 5.3: As Figure 5.1 but for class C SDMEs.
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Figure 5.4: As Figure 5.1 but for class D SDMEs.
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Figure 5.5: As Figure 5.1 but for class E SDMEs.
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Figure 5.6: As Figure 5.1 but for t′ dependence of SDMEs.
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Figure 5.7: As Figure 5.2 but for t′ dependence of SDMEs.
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Figure 5.8: As Figure 5.3 but for t′ dependence of SDMEs.
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Figure 5.9: As Figure 5.4 but for t′ dependence of SDMEs.
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Figure 5.10: As Figure 5.5 but for t′ dependence of SDMEs.

5.2 Test of SCHC hypotheses

SDMEs of class B together with the second and third SDMEs of the class A, provide a possibility

to test SCHC hypotheses. In Figures 5.11 and 5.12 the pairs of SDMEs (see Equations 2.13)

whose absolute values are to be equal in case of SCHC are plotted together. In Figure 5.13

the differences between SDMEs of each of the pairs are presented. There are two deviations

of the differences from zero for more than 2σ, in other words in two pairs the absolute SDME

values deviate from each other. These are =m(r7
10)−<e (r8

10) in 1st Q2 bin of deuteron data and

=m(r7
10)− <e (r8

10) in 2nd t′ bin of hydrogen data. For SDMEs =m(r7
10) and <e (r8

10), formulas

in Appendix B show that the largest SCHC amplitude T00 is multiplied by the smallest T1−1

amplitude in the terms that violate SCHC. The 2 deviations make 5.5% from the total number

of SDME differences, most of the remaining values (77.8%) are lying within 1σ from zero. This

indicates that SCHC holds for φ meson and is in agreement with theory expectations.

5.3 Kinematic dependencies of Markus-Diehl SDMEs

In Figures 5.14 - 5.18 Q2 dependencies of Markus Diehl SDMEs are presented. In Figures 5.19

- 5.23 those for t′ dependencies are shown. The same as for SDMEs in Wolf-Schilling notation,

these in Markus notation are divided into 3 classes according to helicity transition type.

Note that the values of the first SDMEs in Wolf-Schilling and Markus Diehl notations are

equal (formulas connecting the two notations can be found in Appendix A) which one can see

in comparison of first plots in Figures 5.1 and 5.14, 5.6 and 5.19.

In Figures 5.14, 5.19 the kinematic dependencies of SDMEs related to s-channel helicity con-

serving transition are shown. These SDMEs are significantly different from 0. In Figures 5.15,

5.20, 5.16, 5.21, 5.17, 5.22 the SDMEs describing the helicity-flip transitions γ∗T → φL,

γ∗L → φT and γ∗−T → φT are presented. The are mostly compatible with zero for hydrogen

and larger in some kinematic bins for deuteron. Some of them, e.g. <e {u0+
++ − u−0

++ + 2εu−0
0+}

and u00
−+, exhibit clear t′ dependence. Figures 5.18, 5.23 show SDMEs which represent double
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Figure 5.11: Each of the plots is related to the couple of hydrogen SDMEs whose
absolute values are to be equal in case of SCHC.

]2[GeV2Q
1 2 3

0.2

0.4

), deuteron
1-1
2  -Im(r1-1

1  r

]2[GeV2Q
1 2 3

0.15

0.2

0.25

), deuteron 
10
6)   -Im(r

10
5 Re(r

]2[GeV2Q
1 2 3

0

0.5

), deuteron
10

8)   -Re(r
10

7 Im(r

]2-t'[GeV
0 0.2

-0.1

0

), deuteron
1-1
2  -Im(r1-1

1  r

]2-t'[GeV
0 0.2

-0.1

0

), deuteron
10

6)   -Im(r
10

5  Re(r

]2-t'[GeV
0 0.2

-0.2

0

0.2
), deuteron 

10

8)   -Re(r
10
7   Im(r

Figure 5.12: As in Figure 5.11 but for deuteron.
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Figure 5.13: The differences of the SDME pairs, which are to be zero in case of SCHC,
are presented. Results for hydrogen target are presented as blue squares, for deuteron
as red circles. Both statistical (inner) and systematic (outer, if visible) uncertainties
were calculated with consideration of the statistical correlations between SDMEs, e.g.
using the covariance matrix.

spin flip transitions. For hydrogen SDMEs of that class are close to zero while for deuteron

significant deviations from zero in some kinematic bins are observed. The form of t′ dependence

of unpolarized SDMEs was predicted theoretically in Diehl notation ([21]) as uνν′

µµ′ ∼ a∗(t′)pmin/2.

The dependence form holds for t′ → 0 and in the forward scattering limit, e.g. when the scat-

tering angle of the vector meson is small. In Figures 5.19- 5.23 the t′ dependencies are fitted

using theory-predicted ([21]) pmin values and then treating p as a free parameter. The notation

defines only the minimum values of the parameter p, its actual value can be larger. The p

values together with corresponding χ2

n.d.f
are given in Table 5.3. Taking into account the fit

uncertainty, p values obtained as free fit parameters are larger than the theory-provided values.
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Figure 5.14: The Q2 dependence of Markus Diehl SDMEs related to helicity-
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Figure 5.15: As in Figure 5.14, but for SDMEs related to the helicity flip transition
γ∗T → φL.
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Figure 5.16: As in Figure 5.14, but for SDMEs related to the helicity flip transition
γ∗L → φT .
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Figure 5.17: As in Figure 5.14, but for SDMEs related to the helicity flip transition
γ∗−T → φT .
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Figure 5.18: As in Figure 5.14, but for SDMEs related to the helicity double-flip
transitions.
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Figure 5.19: As in Figure 5.14, but for t′ dependence. In the upper (middle) raw

hydrogen (deuteron) SDMEs are fitted with the function a ∗ (−t′)p/2 using theory-
predicted values of pmin (solid line) and treating p as free parameters (dashed line).
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Figure 5.20: As in Figure 5.15, but for t′ dependence.
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Figure 5.21: As in Figure 5.16, but for t′ dependence.
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Figure 5.22: As in Figure 5.17, but for t′ dependence.
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Figure 5.23: As in Figure 5.18, but for t′ dependence.



Results 99

Target Hydrogen Deuteron

SDME pmin
χ2

theory

n.d.f
pfit± err χ2

n.d.f

χ2
theory

n.d.f
pfit± err χ2

n.d.f

u00
++ + εu00

00 0 4.212 -0.007 ± 0.176 4.211 1.896 0.001 ± 0.143 1.896

Re(u0+
0+ − u−0

0+) 0 4.728 -0.182 ± 0.0916 2.774 0.899 -0.0768 ± 0.075 0.382

u−+
−+ 0 1.860 -0.195 ± 0.197 1.375 2.954 -0.294 ± 0.125 0.258

Reu00
0+ 1 2.480 -2.140 ± 1.886 1.411 0.597 -0.523 ± 1.613 0.150

Re(u0+
++ − u−0

++ + 2εu−0
0+) 1 0.806 8.663 ± 11.140 0.188 3.646 4.857 ± 2.744 1.244

Re(u0+
−+) 1 0.626 55.530 ± 127.927 0.183 2.241 31.981 ± 24.209 2.596

Re(u++
0+ − u−−0+ ) 1 1.561 61.728 ± 244.056 1.503 1.817 1.658 ± 1.645 1.720

Re(u−+
0+ ) 1 0.141 -0.914 ± 11.387 0.112 2.268 5.492 ± 6.598 1.779

Re(u0−
0+ − u+0

0+) 2 2.365 0.230 ± 2.385 1.862 0.696 5.136 ± 9.162 0.523

Re(u−+
++ − εu−+

00 ) 2 1.659 49.701 ± 157.498 1.520 1.519 34.925 ± 120.724 1.567

Re(u++
−+) 2 4.660 12.754 ± 15.504 4.273 1.467 20.609 ± 130.422 1.419

u00
−+ 2 1.410 42.416 ± 161.493 1.049 2.423 30.514 ± 35.208 1.341

Re(u+0
−+) 3 0.327 65.232 ± 622.117 0.338 1.417 33.134 ± 45.738 1.385

Re(u+−
0+ ) 3 0.322 -0.722 ± 6.226 0.0297 0.272 -0.648 ± 3.937 0.011

u+−
−+ 4 1.570 29.705 ± 142.589 0.358 1.570 18.018 ± 21.836 1.677

Table 5.1: Comparison of the theory-predicted slopes of a t′-dependence for unpolar-
ized Markus-Diehl SDMEs with those found via fit. In the first column SDME is given.

The theory-predicted slope values (p) are shown in the second column. The
χ2

th

n.d.f
values

corresponding to these parameter values are presented in the third (sixth) column for
hydrogen (deuteron) SDMEs. Slope parameter values obtained via fit are given in the

fourth (seventh) column with corresponding χ2

n.d.f
values in fifth (eighth) column for

hydrogen (deuteron).

5.4 UPE quantities

To check the presence of UPE exchange for φ meson (see Section 2.14 for the details), the

U1, U2 and U3 quantities were calculated via Formulas 2.78– 2.80 in each kinematic bin. The

corresponding results are presented in Figure 5.24. The overall values shown as open symbols are

zero within 1σ, which indicates that UPE contribution for the φ meson production mechanism

is negligible. A non-zero signal of UPE would be evidence for the existence of quark-anti-quark

exchange, which is observed for exclusive ρ production ([24], [25], [26]). A negligible contribution

of UPE amplitudes to the production of the φ meson as indicated by U1 and U3 values in some

kinematic bins is consistent with the small content of strangeness in the nucleon and also of

light qq pairs in the φ meson.

The values of U1, U2 and U3 quantities with their statistical and systematic uncertainties

are given in Appendix F in Tables F.9 for hydrogen and F.10 for deuteron.



Results 100

1 1.5 2 2.5
-0.5

0

0.5 1Uhydrogen

deuteron
1Uhydrogen

deuteron

1 1.5 2 2.5

-0.1

0

2U
2U

]2[GeV2Q
1 1.5 2 2.5

-0.5

0

0.5 3U
3U

0 0.05 0.1 0.15 0.2 0.25
-0.5

0

0.5
1U

1U

0 0.05 0.1 0.15 0.2 0.25

-0.1

0

2U

2U

]2-t'[GeV
0 0.05 0.1 0.15 0.2 0.25

-0.5

0

0.5 3U
3U

Figure 5.24: Kinematic dependencies of quantities U1, U2 and U3 for the data set of
1998-2000 and 2006-2007 years are presented. Open symbols denote overall values, blue
squares represent hydrogen, red circles represent deuteron. The Q2 (t′) dependence is
shown in the left (right) panel. The inner error bars represent the statistical uncer-
tainties, the outer ones indicate the statistical and systematic uncertainties added in
quadrature. For the calculation of the uncertainties the correlations between SDMEs
are taken into account. The first t′ bin is excluded from each Q2 bin of deuteron data,
in t′ dependence it is still shown for completeness.

5.5 Cross section ratio

In the left panel of Figure 5.25 the ratio R of longitudinal-to-transverse φ meson leptoproduction

cross-section is presented as a function of Q2. The ratio was calculated using the first SDME

r04
00 according to the equation R04 = 1

ε

r04
00

1−r04
00

, which is valid only under the SCHC assumption.

The values of R with the statistical and systematic uncertainties can be found in Appendix F

in Table F for the various Q2 bins. Note that the values for hydrogen and deuteron targets are

same taking into account uncertainties. In the right panel of Figure 5.25 the comparison with

the world data, namely results from experiments H1 [28] and ZEUS [27] is presented. From H1

and ZEUS data one can conclude that at Q2 > 2 GeV2 the longitudinal cross section prevails

over the transverse one, which might be the case for deuteron data of this analysis but not for

hydrogen one. The reason for the difference is W dependence of the cross section ratio. The

average W value in 3rd Q2 bin which is the closest one to the ZEUS Q2 range is 4.8 GeV.

The ratio points obtained in this analysis and world data are fitted with a VMD model
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Parameter c0 c1 χ2/n.d.f

ZEUS and H1 (high W ) 0.49 ± 0.11 0.92 ± 0.17 0.359

This analysis (low W ) 0.39 ± 0.03 0.80 ± 0.14 1.59

Table 5.2: Parameters of the linear fit of the cross section ratio for low-W results (this
analysis) and high-W (world data).

suggested function

R04 = c0(
Q2

M2
V

)c1 , (5.1)

where c0 and c1 are free parameters and MV is the φ meson mass. The fit parameter values

and χ2 values for the fits are given in Table 5.5. The small χ2/n.d.f indicate that the fits are

dominated by uncertainties.
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Figure 5.25: Cross section ratio for hydrogen (blue squares) and deuteron (red circles)
fitted with a linear function. Black line represents unified fit for hydrogen and deuteron,
the fit parameters are shown on the plot. Open symbols denote overall values. The inner
error bars represent the statistical uncertainties, the outer ones indicate the statistical
and systematic uncertainties added in quadrature. For deuteron data the t′ range is
0.04 Gev < −t′ < 0.4 Gev, for hydrogen one 0. Gev < −t′ < 0.4 Gev.
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Figure 5.26: Linear fit of the cross section ratio obtained in this analysis (dashed line)
in comparison with a linear fit of results from H1 and ZEUS (full line).



Chapter 6

Conclusions

In this thesis the exclusive φ meson production from a deep-inelastic scattering of a 27.6 GeV

unpolarized lepton beam on an unpolarized hydrogen and an unpolarized or longitudinally

polarized deuteron gas targets was studied. The data used in the analysis were recorded at

experiment HERMES in in the two time periods from 1998 to 2000 and from 2006 to 2007

years. The results were obtained in the kinematic region of the photon virtuality between

1 GeV2 < Q2 < 7 GeV2 and the center-of-mass energy from W > 2 GeV in three bins of Q2

and four bins of t′. Measurements of angular and momentum distributions of the scattered

lepton and vector meson decay products, namely two oppositely charged kaons, give an access

to the nucleon structure in terms of GPDs and to the production mechanism. The final spin

states of the vector meson are described by elements of spin density matrix, which depend on

amplitudes for the spin transition processes between the virtual photon and the vector meson.

By performing a maximum likelihood fit, fifteen unpolarized SDMEs and eight beam po-

larization involving SDMEs were defined in the notations of Wolf-Schilling and Markus Diehl.

From the extracted SDMEs in Wolf-Schilling representation the quantities U1, U2 and U3 which

indicate presence of unnatural parity exchange in φ meson production mechanism. The quan-

tities are statistically zero for the integrated kinematics, which is in agreement with theory

expectations of natural parity exchange dominance for the φ meson production. Another im-

portant property of the φ meson production is s-channel helicity conservation, which can be

tested using values of certain SDMEs. No s-channel helicity conservation violation was found

for the φ meson production.

The longitudinal-to-transverse cross section ratio R was determined as a function of Q2.

Comparison with the world data indicated W dependence of the ratio.
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Appendix A

The relations between the SDME notation

of Wolf-Schilling and that of Markus Diehl

The SDMEs in Wolf-Schilling (ρα
ik, see Sections 2.8, 2.10) and Diehl (uνν′

µ′µ, see Sections 2.11,

2.12) notations are connected via the next relations:

u00
++ + εu00

00 = r04
00 =m{u0+

0+ − u−0
0+} =

√
2(=m r7

10 + <e r8
10)

<e {u0+
0+ − u−0

0+} =
√

2(=m r6
10 −<e r5

10) =m {u00
0+} = r8

00/
√

2

u++
++ + u−−++ + 2εu++

00 = 1− r04
00 =m {u0+

++ − u−0
++} = −2Imr3

10

u−+
−+ = r1

1−1 −=mr2
1−1 =m{u0−

0+ − u+0
0+} =

√
2(=m r7

10 −<e r8
10)

<e {u00
0+} = −r5

00/
√

2 =m {u−+
++} = −=m r3

1−1

<e {u0+
++ − u−0

++ + 2εu0+
00 } = 2<e r04

10 =m(u++
0+ + u−−0+ ) =

√
2r8

11

<e {u0+
−+} = <e r1

10 −=m r2
10 =m {u−+
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1−1 + <e r8

1−1)/
√

2

<e {u0−
0+ − u+0
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√

2(=m r6
10 + <e r5

10) =m {u+−
0+ } = −(=m r7

1−1 −<e r8
1−1)/

√
2

<e {u−+
++ − εu−+
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1−1

<e {u++
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√
2r5

11

<e {u−+
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2

<e {u00
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00

<e {u+0
−+} = <e r1
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√
2
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1−1 + =m r2
1−1
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Appendix B

The relations between the SDMEs in the

Wolf-Schilling notation and amplitudes

Relations between SDMEs in Wolf-Schilling notation (ρα
ik, see Sections 2.8, 2.10) and helicity

amplitudes are presented below. For convenience, the abbreviation Σ̃ ≡ 1
2
Σλ′NλN

is introduced

for the summation over the final nucleon helicity indices and averaging over the initial spin

states ofthe nucleon. If TλV λγ apperars without the symbol Σ̃, all nucleon helicity indices are

equal to 1/2.

A: γ∗L → φL and γ∗T → φT

r04
00 =

∑̃
(ε|T00|2 + |T01|2 + |U01|2) /σtot,

r1
1−1 = 1

2

∑̃
(|T11|2 + |T1−1|2 − |U11|2 − |U1−1|2) /σtot,

=m r2
1−1 = 1

2

∑̃
(−|T11|2 + |T1−1|2 + |U11|2 − |U1−1|2) /σtot,

B: interference of γ∗L → φL and γ∗T → φT

<e r5
10 = 1√

8

∑̃
<e (2T10T

∗
01 + (T11 − T1−1)T

∗
00) /σtot,

=m r6
10 = 1√
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<e (2U10U

∗
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∗
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∗
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C: γ∗T → φL
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2
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2
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D: γ∗L → φT
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Appendix C

Comparison of data to Monte Carlo

(PYTHIA and RhoMC generators)

In Figures C.5 -C.7 kinematic distributions for different Q2 and t′ bins of the 1998-2000 and

the 2006-2007 years for hydrogen data, PYTHIA and RhoMC for proton target without im-

plemented SDMEs (except from the first one) are presented. In Figures C.1 - C.3 the same

kinematic distributions, but for deuteron data are presented. Neither PYTHIA nor RhoMC can

produce data for deuteron target, so the MonteCarlo sets used in conjunction with deuteron

data were obtained as a mixture of neuteron and proton sets. The proportion of the mixture

was chosen in such a way that the luminosities of the mixed sets were equal.

All the distributions were normalized to unity.
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Figure C.1: The comparison of two first Q2 bins of the full deuteron data set (black
line) with Monte Carlo sets, produced by PYTHIA generator (green dashed line) and
RhoMC generator (red dotted line) on unpolarized neutron target. PYTHIA and
RhoMC does not contain SDMEs (apart from the first one), the angular distributions
are affected by HERMES acceptance only. These sets was used for p.d.f normalization.
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Figure C.2: As in Figure C.1, but for the 3rd Q2 bin and overall kinematics.
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Figure C.3: As in Figure C.1, but for the first two t′ bins.
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Figure C.4: As in Figure C.1, but for the 3rd and 4th t′ bins.
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Figure C.5: As in Figure C.1, but for proton data and Monte Carlo sets, generated
for hydrogen target.
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Figure C.6: As in Figure C.2, but for proton data and Monte Carlo sets, generated
for hydrogen target.
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Figure C.7: As in Figure C.3, but for proton data and Monte Carlo sets, generated
for hydrogen target.
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Figure C.8: As in Figure C.4, but for proton data and Monte Carlo sets, generated
for hydrogen target.



Appendix D

SDMEs extracted with and without

semi-inclusive background subtraction

In Figures D.1 - D.4 Wolf-Schilling SDMEs extracted from 1998-2000, 2006-2007 data set for

hydrogen and deuteron targets with and without background subtraction are presented for

each Q2 and t′ bin. In Figures D.6 - D.8 are the same results for the SDMEs in Markus Diehl

notation.
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Figure D.1: Wolf-Schilling SDMEs with (solid symbols) and without (open symbols)
background subtraction for the 1st (left panel) and the 2nd (right palnel) Q2 bins.
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Figure D.2: As in Figure D.1 but for the 3rd Q2 bin.
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Figure D.3: As in Figure D.1 but for the 1st (left panel) and 2nd (right palnel)t′ bins.

SDMEs
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

)
1-1

3Im(r

11
1r

1-1
04r

1-1
8r

11
8r

)
1-1
7Im(r

)
1-1

6Im(r

1-1
5r

11
5r

00
8r

)
10

3Im(r

00
1r

00
5r

)
10
2Im(r

)
10
1Re(r

)
10

04Re(r

)
10

8Re(r

)
10

7Im(r

)
10

6Im(r

)
10

5Re(r

)
1-1

2Im(r
1-1
1r

00
04r

A:

B: Interference

C:

D:

E:

With BKG subtraction, hydrogen

With BKG subtraction, deuteron

Without BKG subtraction, hydrogen

Without BKG subtraction, deuteron

L
φ → 

L
*γ

T
φ → 

T
*γ

T
φ → 

T
*γ & 

L
φ → 

L
*γ

L
φ → 

T
*γ

T
φ → 

L
*γ

T
φ → 

-T
*γ

SDMEs
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

)
1-1

3Im(r

11
1r

1-1
04r

1-1
8r

11
8r

)
1-1
7Im(r

)
1-1

6Im(r

1-1
5r

11
5r

00
8r

)
10

3Im(r

00
1r

00
5r

)
10
2Im(r

)
10
1Re(r

)
10

04Re(r

)
10

8Re(r

)
10

7Im(r

)
10

6Im(r

)
10

5Re(r

)
1-1

2Im(r
1-1
1r

00
04r

A:

B: Interference

C:

D:

E:

With BKG subtraction, hydrogen

With BKG subtraction, deuteron

Without BKG subtraction, hydrogen

Without BKG subtraction, deuteron

L
φ → 

L
*γ

T
φ → 

T
*γ

T
φ → 

T
*γ & 

L
φ → 

L
*γ

L
φ → 

T
*γ

T
φ → 

L
*γ

T
φ → 

-T
*γ

Figure D.4: As in Figure D.1 but for the 3rd (left panel) and 4th (right palnel)t′ bins.
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Figure D.5: As in Figure D.1 but for SDMEs in Markus Diehl notation.
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Figure D.6: As in Figure D.2 but for SDMEs in Markus Diehl notation.
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Figure D.7: As in Figure D.3 but for SDMEs in Markus Diehl notation.
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Figure D.8: As in Figure D.4 but for SDMEs in Markus Diehl notation.



Appendix E

SDMEs extracted using for the p. d. f.

normalization PYTHIA and RhoMC

generated sets.

In Figures E.1 - E.4 Wolf-Schilling SDMEs extracted from 1998-2000, 2006-2007 data set for

hydrogen and neuteron targets using RhoMC and PYTHIA generated sets for the p. d. f.

normalization are presented for each of the Q2 and t′ bin. Figures E.6 - E.6 are the same results

for SDMEs in Markus Diehl notation. For th final results extraction PYTHIA-generated sets

were used.
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Figure E.1: Wolf-Schilling SDMEs extracted using RhoMC for the p. d. f. normal-
ization (solid symbols) and using PYTHIA (open symbols) for the 1st (left panel) and
the 2nd (right palnel) Q2 bins.
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Figure E.3: As in Figure E.1 but for the 1st (left panel) and 2nd (right palnel)t′ bins.
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Figure E.4: As in Figure E.1 but for the 3rd (left panel) and 4th (right palnel)t′ bins.
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Figure E.5: As in Figure E.1 but for SDMEs in Markus Diehl notation.
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Figure E.6: As in Figure E.2 but for SDMEs in Markus Diehl notation.
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Figure E.7: As in Figure E.3 but for SDMEs in Markus Diehl notation.
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Figure E.8: As in Figure E.4 but for SDMEs in Markus Diehl notation.



Appendix F

Tables of results

In Tables F.1 - F.8 are presented SDMEs in Wolf-Schilling notation for hydrogen and deuteron

targets extracted from 3 Q2 and 4 t′ bins and for overall kinematics. Those in Markus Diehl

notation are given in Tables F.12 - F.19. The U1, U2, U3 quantities for hydrogen and deuteron

targets are shown in Tables F.9 and F.10 correspondingly.
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Q2 Bin Hydrogen Deuterium

1.0 GeV2 < Q2 < 1.4 GeV2 0.426± 0.038± 0.000 0.499± 0.079± 0.001

1.4 GeV2 < Q2 < 2.0 GeV2 0.621± 0.054± 0.000 0.509± 0.083± 0.000

2.0 GeV2 < Q2 < 7.0 GeV2 0.844± 0.071± 0.004 1.249± 0.157± 0.025

1.0 GeV2 < Q2 < 7.0 GeV2 0.617± 0.032± 0.000 0.754± 0.062± 0.008

Table F.11: Values and uncertainties of the longitudinal-to-transverse cross-section
ratio R are presented. Values ± statistical ± systematic uncertainties for hydrogen
(deuterium) data are given in the second (third) column for Q2 bins. Results for
integrated over all kinematics are shown in the last line.
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[47] I. Akushevich, H. Böttcher, and D. Ryckbosch, Monte Carlo Generator for Radiative

Events in DIS on Polarized and Unpolarized Targets, [arXiv:hep-ph/9906408].



Bibliography 149

[48] B. Anderson et al., Parton Fragmentation and String dynamics, Phys. Rept. 97, 31 (1983).

[49] G.A. Schuler and T. Sjöstrand, Phys. Lett. B300, 169, (1993).

[50] GEANT manual Detector description and simulation tool,

wwwinfo.cern.ch/asdoc/pdfdir/geant.pdf, (1993)

[51] https://hermes-wiki.desy.de/HTC Hermes web-page on trackings, last availability on

26.11.2013.

[52] G. Wolf, Review of High Energy Diffraction in Real and virtual Photon Proton scattering

at HERA, Rept. Prog. Phys. 73:116202, (2010), [arXiv:0907.1217/hep-ex].

[53] http://www-hermes.desy.de/groups/daqlgrp/OFFLINE DQ/uDST/index.html#docu

HERMES data quality web page, last availability on 26.11.2013.

[54] Particle Data Group, C. Caso et al., Eur. Phys. J. C3 (1998)

[55] http://www-hermes.desy.de/groups/daqlgrp/OFFLINE DQ/uDST/general/docu/DISstats.

html#lumiconstant HERMES luminosity page, last availability on 26.11.2013.

[56] B. Povh and J. Hufner, Geometric interpretation of hadron-proton total cross section and

a determination of hadronic radii, Phys. Rev. Lett. 58 (1987) 1612.

[57] S. Manaenkov, private communication.

[58] C. A. Miller, http://www-hermes.desy.de/groups/mgmtgrp/COLLABMEETINGS/TRANS

VERSITY JUNE06/MaxLike.pdf, Maximum likelihood method, last availability on

26.11.2013.

[59] http://www-hermes.desy.de/groups/vmgrp/mayya/14.01.2013/PEPSI/, last availability

on 26.11.2013.

[60] http://www-hermes.desy.de/groups/vmgrp/mayya/14.01.2013/PEPSI/MD/, last avail-

ability on 26.11.2013.

[61] http://www-hermes.desy.de/reports/0407/SDME-phi/, last availability on 26.11.2013.


