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Abstract

In the present work exclusive ¢ meson leptoproduction at HERMES experiment in DESY was
studied using the data collected at HERA accelerator in the period from 1998 till 2000 and
from 2006 till 2007 years. In the analysis unpolarized and longitudinally polarized hydrogen
and deuteron trargets were used, the beam consisted of longitudinally polarized leptons. Via
measurement of the angular and momentum distribution of the ¢ meson decay products 23
spin density matrix elements (SDMEs) for the ¢ meson were obtained. The number of SDMEs
was defined by the experiment conditions, e.g. by the beam and target polarization directions.
For the mentioned time period ¢ meson SDMEs were defined at HERMES for the first time.
The quantities Uy, U and Us which can be used to check presence of unnatural parity exchange
(UPE) mechanism in phi meson production were calculated from SDMEs. All the results were
obtained in 3 kinematic bins of )%, 4 kinematic bins of ¢ and for the integrated kinematics.
No statistically significant difference between the results for hydrogen and deuteron targets was
observed. The UPE quantities were found to be zero within 2 ¢ for the intergated kinematics,
indicating negligible contribution of UPE for the ¢ meson production which is in agreement
with theory predictions. The test of s-channel helicity conservation hypothesis via comparison

of corresponding SDME values showed helicity conservation for the ¢ meson production.
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Zusammenfassung

In der vorliegenden Dissertation wurde exklusive ¢-Meson Leptoproduktion am HERMES Ex-
periment am DESY studiert. Dafiir wurden die Daten, die im Laufe des Betriebs des Elektro-
nenbeschleuniger von 1998 bis 2000 und von 2006 bis 2007 gesammelt worden waren, verwendet.
Als Targetmaterial waren unpolarisierter und longitudinal polarisierter Wasserstoff und Deu-
terium im Einsatz, der Strahl bestand entweder aus longitudinal polarisierten Elektronen oder
Positronen. Durch die Messung der Winkelverteilung der ¢-Meson-Zerfallsprodukte wurden
dreiundzwanzig Spindichtematrixelemente bestimmt. Die Anzahl der Elemente wurde von den
experimentellen Bedingungen, namlich der Polarization des Targetmaterials und des Strahls,
bestimmt. Fiir die entsprechenden Daten wurden die Elemente zum ersten Mal bei HERMES
gemessen. Aus den Elementen der Spindichtematrix wurden die Werten U;, Uy and Ujs er-
mittelt, mit denen die Mitwirkung von unnatiirlichem Parittsaustausch getestet werden kann.
Alle Ergebnisse wurden fi 3 kinematische Bereiche in @2 und 4 kinematischen Bereichen in #/,
sowie fiir den kinematischen Gesamtbereich bestimmt. Die Ergebnisse fiir die Spindichtematrix-
elemente fi Wasserstoff und Deuterium haben keinen statistisch aussagekraftigen Unterschied
aufgezeigt. Die Werten Uy, Uy and Us sind fiir alle kinematischen Bereiche innerhalb zwei Sigma
mit Null vertraglich. Dies bedeutet, dass der Beitrag vom UPE-Mechanismus zur Formation des
¢-Mesons nebenschlich ist. Das ist im Einklang mit den theoretischen Prognosen. Der Test der
s-Kanal-Helizitatsbewahrung, der durch die Gleichstellungen bestimmter Elemente durchgefhrt

wurde, zeigte, dass die Helizitat im Prozess erhalten bleibt.
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Chapter 1
Introduction

Studying the structure of matter during the last two centuries brought physicist to the conclu-
sion, that the matter is composed from the small invisible discrete parts. The present under-
standing of the matter composition is expressed in the Standard Model. According to it, the
three types of interaction exist: strong, electromagnetic and weak (gravitation is not included
in the Standard Model). The interactions are described via exchange of bosons which are par-
ticle with an integer spin.! The strong interaction is mediated by the gluons and described in
Quantum Chromodynamic (QCD), electromagnetic interactions are carried by photons, weak
interactions are distributed by W and Z bosons. In terms of the Standard Model, the matter
is build from the three generations of fermions which are, in contrast to bosons, particles with
a half-integer spin. Each generation includes a lepton, 2 quarks and one neutrino. Each of the
12 particles mentioned above has a corresponding antiparticle. Hadrons are composite particles
built from different combinations of quarks. It was confirmed for the first time in 1955 [1] via
the reaction of elastic ep scattering. The scattering pattern was different from the theoretically
predicted model of a point-like nucleon. The possible explanation was provided by the model,
describing a nucleon as a conglomeration of a few scattering centers. Apart from these cen-
ters, identified later as valence quarks, the nucleon contains gluons (so called “sea”) which can
produce quark-antiquark pairs, e.g. sea quarks.

The experiments of a type ep — eX, e.g. deep-inelastic scattering (DIS) experiments,
e.g. where the proton breaks up, have become the main tool to investigate the inner nucleon
structure. The latter becomes visible only when the de Brogile wave-length A = h/p of the
photon, mediating electromagnetic interactions, is comparable to the nucleon size, in other
words when the lepton momenta p is large enough. Therefore the more is the energy - the less
is the wave length, that is why it is important to achieve high energies of the beam particles
(electrons), colliding with target particles (nucleons). If no final product of the reaction, except
from the scattered lepton, e.g. no X is detected — then the process is called inclusive DIS. If one

of the products and the lepton are registered, than the process is referred to as semi-inclusive

1Spin is in units of 4. In this work 2 = 1 and the light speed ¢ = 1.
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DIS. In case when the whole signature of the reaction is known, the reaction is an exclusive
one.

In early DIS experiments the quark spin was found to be 1/2. Since nucleon contains three
quarks, its spin can then be naturally represented as a sum of the two quarks aligned in one
direction and the third quark spin anti-aligned to it. Later the EMC experiment (2]) discovered
that the quark contribution to the nucleon spin does not exceed 30%. This situation is called
the spin crisis. The way out of the situation was to assume that not only the quark spin is
responsible for the nucleon spin, but also orbital angular momenta of quarks and gluons and

gluon spin contribute to the nucleon spin:
1 1
S:§:§AE+AG+LQ—I—L9, (1.1)

where AY is the contribution of the quark spins, AG is that of gluon spin, L, and L, are the
orbital angular momenta of quarks and gluons correspondingly. The recently developed gen-
eralized parton distributions (GPDs) formalism provides 3-dimensional nucleon structure by
unification of the two previously developed concepts of probability density functions, describ-
ing deep-inelastic scattering, and the form factors, describing the elastic scattering processes.
GPDs can not be measured directly, but are accessible in exclusive reactions, where all the
reaction products are detected. One of such reactions is a reaction of an exclusive ¢ meson
leptoproduction which is a subject of this work.

In chapter 2 the theoretical framework and the physical motivation of the analysis are given.
Then the relevant details of the experiment HERMES are presented in chapter 3. The analysis
is described in chapter 4, where the chain of event selection (Section 4.1), SDME extraction
(Section 4.2) and systematic studies (Section 4.3) are discussed. The results and conclusions

are subject of chapters 5 and 6.



Chapter 2
Exclusive ¢ meson production

Exclusive leptoproduction of vector mesons from deep-inelastic scattering gives a possibility
to study the structure of both vector meson (V) and the nucleon (N) via measurements of
angular and momentum distributions of the vector meson decay products. The corresponding
kinematic variables of the exclusive vector meson production are presented in Section 2.1. The
deep-inelastic scattering (DIS) reaction phenomenology and the concise introduction to the
functions, describing the inner nucleon structure, is given in Section 2.2. Exclusive ¢ meson
production can be explained in terms of the Vector Meson Dominance (VMD) model, described
in Section 2.6. In this model, the virtual photon fluctuates into a vector meson whose interaction
with the nucleon can be represented using Regge phenomenology, given in Section 2.7. On the
other hand, exclusive meson production at large values of Q? and W can be described in terms
of perturbative QCD, which involves non-perturbative QCD objects, namely generalized parton
distributions (GPDs), whose definition and properties are presented in Section 2.5.

The ¢ meson is a vector meson formed from a strange quark and a strange antiquark. It
has a mass of 1019.445 £ 0.020M eV, total angular momentum J = 1, odd parity J©¢ = 17,
G-parity I¢ = 07, strange flavour (strangeness) S = 0, charm flavour C' = 0, bottom flavour
B = 0. It is short living particle, after the formation reaction it decays into two oppositely

charged kaons in 49.1 £ 0.8% ([54]) of the case.

2.1 Kinematics

The exclusive vector meson production from deep-inelastic lepton scattering is described by the

equation
e(k) + P(p) — €K+ P'(p) + V(v) (2.1)

where e(k), ¢/(k") are initial and scattered leptons with four-momenta k and £’; P(p), P'(p’)
are initial and scattered nucleons with their four-momenta p and p’; V(v) is the vector meson

produced with the four-momentum v. The schematic view of the process is shown in Figure 2.1,
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P(p) t P'(p)

Figure 2.1: The reaction of exclusive ¢ meson production.

the particle’s four-momenta are given in parentheses. The electromagnetic interaction prevails
at HERMES level of energies over the weak one, therefore Z and W boson exchanges are
neglected and only photon is considered as an interaction mediator. Multi-photon exchange is
suppressed by the factor of electromagnetic fine structure constant e, = 1/137.

An exchanged photon lives for a time At > h/2AF and is therefore termed a virtual photon

with a virtuality given by the formula
a 0
Q*=—¢® = —(k—K)*'L 4EE sin? 5 (2.2)

where ¢ is the four-momentum of the virtual photon v*, E' and E’ are energies of the incoming
and outgoing leptons correspondingly, 6 is the scattering angle of the lepton in the laboratory

frame. The Bjorken scaling variable is defined as

Q2 léb Q2
2p-q 2Mv’

rp =

(2.3)

where M is the nucleon mass, v is the energy transferred from the initial lepton to the virtual

photon in the laboratory frame:

P-q lab /
=—=F—-F. 2.4
o 2.4)

The lepton-nucleon system center-of-mass energy s is given by s = (k+p)?, the photon-nucleon
system center-of-mass energy squared W? is specified by
1—=2x B

W2 = (q+p)° % M*+2Mv — Q" = M* + Q*—=. (2.5)
B
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If xg = 1, then W = M, which corresponds to the case of elastic scattering. The squared
four-momentum transfer from the initial to the final nucleon, or in other words from the virtual

photon to the ¢ meson produced is

t=(q—v)?*=@p-1) (2.6)

The smallest kinematically allowed value of —t at the fixed v and @ is denoted as ty,. The
variable t' = t—tg is equal to zero if in the photon-nucleon center-of-mass system the momentum
of the produced ¢ meson is collinear to that of the v*. The variable ¢, representing the ratio of

fluxes of longitudinal and transverse virtual photons, reads as

QQ
Sty (2.7)
- 2 ) °

1—y+iy2(% +2)

Y % - the energy transfer from the initial lepton to the nucleon, 0 <y < 1.

Figure 2.2: The deep-inelastic scattering process.

The leading-order Feynman diagram of the deep-inelastic scattering (DIS) process of a
lepton on a nucleon is depicted in Figure 2.2. DIS may be represented as a consequence of two
processes - emission of a virtual photon by a lepton and absorption of the photon by a nucleon.
The corresponding cross section can be expressed as the contraction of a leptonic tensor L*”
with a hadronic tensor W% (3], [4]):

do o< L"W2!I, (2.8)
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The leptonic tensor describes the lepton transition from the initial to the final state via emission

of the virtual photon and is calculable in quantum electrodynamic (QED):
L = 20"k + K"K 4 (m? — k- k) g"] — 2imee"*P g5, (2.9)

where m, is the electron mass and sg is the lepton-spin four-vector, g"” is the metric tensor,

0123 — 1. The first part is symmetric

"B is the totally anti-symmetric Levi-Civita tensor and e
with the respect to the indexes p, and v, while the second term is anti-symmetric and describes
the initial lepton spin sg. The hadronic tensor describes the absorption of the exchanged virtual

photon by the nucleon and the transition of the nucleon to the final hadronic state X:

&P
W (ap,9) = - MZ/ SIS x (2)%5 <p+q—ZP’> w0, S, PY),  (2.10)

where H,,(p, S, Px) = (p, S|J,.(0)|X)(X|J,(0)| P, S), J, represents the electromagnetic proton
transition-current four-vector, S, p and M the proton spin, momentum and mass correspond-
ingly. The sum in Equation 2.10 is over all particles X in the final state, having four momenta
px = (Fx, Px). The §* guarantees 4-momentum conservation. The hadronic tensor cannot
be calculated from first principles and has to be parametrized. As a result of the symmetry
properties parity, time reversal and transition invariance, current conservation, the number of

terms in the parametrization is restricted. The resulting parametrization is:
DIS s A
W =W la,p) + Wi la,p,5), (2.11)

where the first term parametrizes the symmetric spin-independent hadronic tensor part ( [4]):

Qo o Walp-q,q%) P-q pq
W( )(q p) = <_9,W—é> W1(p-q,q)+T pu—?qu py—7qy (2.12)

and the second part parametrizes the antisymmetric spin-associated part ([4]):

Wi (000 5) = tant” (MGt (-0~ (5-00) ) (2.13)

Each of the terms is either a function of the two spin-averaged structure functions Wy, Wy, or
the two spin-dependent structure functions G, Gs. In the Bjorken limit, or DIS regime, when

large % implies large v: —q¢*> — oo, v = E — E' — o0, the structure functions depend on
_Q* _ e
r = 2p+q ~ 2Mv’

In the Bjorken limit the structure functions scale approximately:

lim MW, (Q? x) = Fi(z), lim vWo(Q?, ) = Fy(x), (2.14)
Q%—o0 Q%—o0
x fixed x fixed
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Q121m vM?G1(Q? 2) = g1(w), leim VPMGo(Q?, ) = go(x). (2.15)
x fixed x fixed

Independence of F; on Q* was explained by Feynman in the parton model. The main idea
was that scattering occurs from a point-like object (parton) in a proton. However, for relatively
low values of x scaling violations are observed, which can be explained by partonic interactions,
leading to the logarithmic dependence of the structure functions on Q2. The structure functions
describe the internal structure of the target nucleon. Taking into account Equations 2.14 - 2.15

and 2.8, an expression for the unpolarized DIS cross section can be written:

£ Ara? Fy(z, Q° M
pin = (e s PED (] e

in terms of the structure functions F; and F5, which need to be determined experimentally.

2.3 Parton distribution function

In terms of the parton model the nucleon consists of partons (quarks and gluons) of flavour
f and electric charge ef, each having a spin s which can be parallel to that of the nucleon
(s = .5) or antiparallel to it (s = —S5). The DIS structure functions can be expressed via quark

distribution functions ¢ and quark helicity distribution functions Agy [4]:

Fi(x) = %Ze?qf(x), Fye) =3 e3ugy(a), (2.17)
f f

)= 330G, gl) =0, (2.18)
!

The unpolarized quark distribution function ¢; = qu +¢; and the polarized quark distribution
function Agy = q;f — ¢y represent the probability to find a quark in the nucleon with momen-
tum fraction x and spin parallel (q;{) or anti-parallel (g;) to the longitudinal nucleon spin. In
the infinite momentum frame, where the nucleon moves fast in the z-direction, the unpolarized
(polarized) structure function Fj(g;) is proportional to the sum of the unpolarized (polarized)
quark density functions weighted by the squared quark charge. Under an assumption that the
partons inside the protons are quarks (gluons are therefore neglected), e.g. spin-1/2 parti-
cles, the following relation between Equations 2.17 is fulfilled: 2zF;(z) = Fp(x) and is called
Gallan-Gross relation. The unpolarized distribution ¢(z) of quarks in the proton is accessible

experimentally via measurements of the structure functions F; and Fy. The polarized structure
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function ¢g; gives information about the distribution of quarks with certain helicities.

2.4 Form factors

Nucleon form factors F7/(Q?) are measured in the elastic process IN — I’N’ and contain the
information on the nucleon structure at a given four-momentum transfer Q2. Helicity conserving
process corresponds to Dirac form factor Flj; (n)’ while the spin-flip process is described by the
Pauli, F

2p(n)’
the limit Q% — 0:

form factor for proton (neutron), correspondingly. They have following values in

FL(0) =1, FJ(0) = £, Fi(0) =0, Fl (0) = k,, (2.19)

where k, = p,—1 (1, - magnetic moment of the proton) and x,, = ,,—1 (u,, - magnetic moment
of the neutron) are the anomalous magnetic moment of the proton and neutron, respectively.
The measured quantities, constructed from the form factors, are electric Gg = Ff; (n)% and
magnetic Gy = FIJ; (n)
may be represented as Fourier transforms of the transverse charge and magnetization current

+ FQJ; (n)’ form factors. For very low momentum transfer, Gg and G,

densities inside the nucleon [14].

2.5 Generalized parton distributions

Both the form factors and PDFs, mentioned above, provide only one dimensional images of the
nucleon structure, describing the transverse distance from the center of a fast moving nucleon
and - the probability to find a quark with the certain momentum fraction and spin direction,
respectively. The “unification” of these quantities leads to the generalized parton distribution
(GPD) formalism, which was developed in the last decades. The GPDs include form factors
and PDFs, being their boundary conditions, and therefore providing a 3-dimensional image of
partons inside hadrons. Figure 2.3 shows the comparison of information about inner parton
structure provided by the form factors, GPDs and parton density functions, respectively.

Various contributions to the DIS process in the infinite momentum frame can be scaled
according to the order of 1/@) in the hadronic tensor expansion ([18]). This order is called twist.
The terms of the expansion has a form (1/Q)7"2. The leading twist, e.g. the lowest order of
suppression is then twist-two.

At leading twist for parton helicity non-flip configurations the nucleon structure information
can be parametrized in terms of four GPDs for each type of partons, named H, H , F, E.
Parton helicity flip processes provide four more GPDs, but the amplitudes of the corresponding
processes show ([16]) suppression factor for the gluonic suppress to be —t/Q? and for quark one
V—t/Q. From the four helicity-conserving GPDs for unpolarized targets the most important
one is the GPD H; the three other either contribute less (H, E) or can be neglected (E).
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+ Form factor « Parton density + Generalized parton
distribution at n=0

p(b,) Fx)

Figure 2.3: Probabilistic interpretation of form factors, GPDs and parton densities in
the infinite momentum frame [14]

For transversely polarized targets also GPD E provides not a negligible contribution. Apart
from parton helicity information, GPDs also provide information on helicity transitions of the
hadron. The GPDs H, H are devoted to hadron helicity non-flip process, while F, E are referred
to hadron helicity flip one. The GPDs depend on three variables: the average longitudinal
momentum fraction = of the parton in the initial and final states, a skewness parameter &
representing the difference between these two momenta, and on the four-momentum transfer ¢
to the nucleon. The average longitudinal momentum fraction ¥ is given by k= T?Jr, where k
and P are the longitudinal light-cone components® of k and P correspondingly. The average
nucleon momentum is P = (P + P’)/2. The skewness parameter ¢ is defined via AT = —2¢ P,
where A7 is the longitudinal light-cone component of A? = ¢. In a kinematic situation in
which the invariant mass of the photon-nucleon system W and the photon virtuality are large,

Bjorken’s variable xp; = — is therefore small [12]. Under such kinematic conditions

Q2
W2+Q2-M?
the skewness parameter is given by

€~ 2f—B;Bj(1 + M2/Q2). (2.20)

The GPDs can describe various exclusive processes of the shape ep — eNY, with Y being

a detected, e.g. observed state, in particular hard exclusive vector meson production. It was
shown in [12], [13] that the amplitude of the process v*p — Vp can in the Bjorken limit (which
in practice means large, but limit Q* value) be factorized in the framework of QCD into hard
parton-level subprocesses and a non-perturbative proton matrix element representing the GPD.

Factorization was proved for the longitudinal transition only, other transitions can be calculated

In the light cone coordinates the momentum p can be written as P = (P*, P~, PT, where =2

7).

P +

S

2
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in a model-dependent way. The hard part was shown[12] to be represented for the vector meson
production as an interaction of ¢g pair, originating from dissociation of the exchange photon,
with a nucleon and is calculable in terms of pQCD or Regge phenomenology (Section 2.7).
After the interaction ¢g pair forms the observed vector meson. The interaction with a nucleon

can either be mediated via two-gluon (Figure 2.4, a)) or quark exchange (Figure 2.4, b)).

H3

Y ¢

P 2) P

Figure 2.4: The mechanism of an exclusive ¢ meson production: a) two-gluon b)
quark-antiquark exchanges.

The production of vector mesons at small zz; < 1072 is controlled by gluonic GPDs, while
the quark GPDs play only a minor role. However, at intermediate energies, for p meson produc-
tion both two-gluon exchange and quark-exchange are important. For ¢ even at intermediate
beam energy gluon exchange is dominating, since the ¢ meson, aside from the valence ss pair,
contains only a small admixture of quark-antiquark pairs with other flavours. The admixture of
55 pair in the nucleon is also small at the x; range studied at HERMES experiment. Exchanges
with the v and d quarks demand additional gluon emission and are suppressed according to
OZI rule that forbides energetically uneconomical exchanges. Therefore for ¢ meson the two-
(or more) gluon exchange is dominating the quark one.

According to [17] the process v*p — Vp is dominated by transitions from longitudinally
polarized photons to longitudinally polarized vector mesons (yip — Vip) at large Q?; the
amplitudes for other photon-meson transitions are suppressed at the leading twist by inverse
powers of (). Besides the longitudinal amplitude, dominating the process, mainly a transverse
one (y5p — Vrp) is to be considered, since it is the most important one of the suppressed
amplitudes at small —t.

The contribution from GPD H to the exclusive vector meson production amplitude reads
(i=g¢,q1,=0,2,=—1) (17])

1
N; € a — Vi — i (=
mqu,,qu(v) - 52%0‘//deﬁM#)\(ZL‘,f,QQ,t = O)H ($,§7t), (221>
a Ti A
The sum runs over the quark flavours a, and e, denote the quark charges in units of the positron
charge e. C7; is a numerical flavour weight factor, ;1 and A are helicities of v and vector meson

correspondingly, ﬁl‘f/\ M(E, £,Q? t = 0) is the subprocess amplitude. Index i denotes quark or
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gluon, giving HY or HY contribution to the amplitude.
The full amplitude is given by a superposition of the gluon and quark contributions as was

mentioned above:
MY = MmN + M. (2.22)

Both of them are important for p meson and only the first one — for ¢ meson. The amplitude

MY is normalized such that the partial cross-section for the process pyLery — P'Vier) is given
by [17]

dorr) _ 1 my :
dt 167(W?2 — ]\/[2)\//\<W2’ —Q2, M?) 0(+)+,0(+)+1 >

(2.23)

where A is the Mandelstam function. The full (non-separated) cross section consists of trans-
verse and longitudinal parts: ¢ = op + €0y, where € is the ratio of longitudinal to transverse
photon fluxes.

Connection between GPDs and form factors.

Integrating the GPDs over the variable  gives:

" mHE.C 1) = Fy(t), /_ " mEE.E.t) = By(1), (2.24)

-1 1

" deH (w6 1) = Galh), / " dwB(m.6.0) = Golt). (2.25)
—1 —1
where F; and F5, are the Dirac and Pauli form factors, G4 and Gp are the axial form factor
and the pseudoscalar form factor respectively. The relations are valid for the defined quark
flavour, e.g. H, F, H, E are defined for each quark flavour separately, while the form factors
are summed over them.

Connection between GPDs and PDF's.

In the forward limit (£ — 0, ¢ — 0), nucleon helicity conserving GPDs H and H are equal
to PDFs:

>0  HYT,0,0)=q(@), HYZ,0,0)=Aq@). (2.26)

In case of negative T one obtains the anti-quark distributions:

T<0  HYz,0,0)=g(-7), HYT,0,0) = Ag(-7), (2.27)
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and for gluon GPDs in the region of 7 > 0:

H9(z,0,0) = 7g(T), H9(7,0,0) = TAg(T) (2.28)

The nucleon-helicity non-conserving GPDs E and E have a multiplicative factor A (A% = ¢)
and therefore vanish in the forward limit.

It was shown in [13] that the total angular momentum of quarks (gluons) J99) is related to
the second T moment of the GPDs H19) [Ea(9).

1 1
JU= 3l [ FH(F,E 1) + B¢ 1))dT, (2.29)
—YJ-1
1 1
Jo =S lim [ (HO(T,8 ) + B(T, €, 1))d7 (2.30)
—vJo

This relation is known as Ji's sum rule and gives nowadays the only known way to access

experimentally the total angular momentum carried by quarks and gluons in the nucleon.

2.6 Vector meson dominance model

Vector meson dominance model (VMD) was developed in the 1960s by J. J. Sakurai in order to
describe interactions between photons and hadrons. In QCD the photon is a massless, neutral
gauge boson, which couples to charged particles and mediates the electromagnetic interaction.
At first photon was introduced as a structureless particle, but later it was found out that

Te~, which was one of the first

photon can fluctuate into an electron-positron pair: v — e
indications that photon can have a more complicated internal structure. Photon interactions
show some similarities to hadron interactions, such as same shapes of the momentum transfer
t distributions, resembling behavior of the total cross sections, nearly identical photon and
hadron cross sections on neutrons and protons. This can be explained by the fact that the
photon is a superposition of a bare photon, responsible for electromagnetic interactions, and

hadronic component, which takes part in hadronic interactions

7Y = V/Zslvs) + Valm), (2.31)

where Z3 is the normalization factor of |yg), @ = 1/137 [6]. At high energies bare photon
|vg) is several orders of magnitude smaller than hadronic part and therefore can be neglected.
Conservation laws dictate that |y;,) has the same quantum numbers as the photon, i.e. J'¢ =
177,Q = B = 5 = 0. Moreover the relatively large cross section for production of the light spin-
1 vector mesons p°, w, and ¢ from photon-hadron interactions suggests that they provide the

dominant contribution to the hadronic photon component v,. VMD is based on the assumption
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that these three vector mesons are the only hadronic constituents of the photon.

In the approach given above the internal photon structure is worked out independently from
the target, and then the various components are permitted to interact with the target. For
this picture to be valid, the virtual hadrons must be presented for a time long enough for the
interaction to occur with an ordinary ”real” hadron. The physical photon is always making
transitions back and forth between a bare photon and hadronic states. For theses interactions
to satisfy the separability conditions it is necessary that the fluctuations lasts a typical time,
called the formation time, which is relatively long compared to the interaction time with the
target. The fluctuation or formation time of a photon into a gg or virtual vector meson state

in the laboratory system is given by [6]

2v

by =~ oz M2’ (2.32)

where M, is a virtual vector meson mass. For fixed Q? and M,, ¢, is directly proportional to the
photon’s energy. The formation time is to be long enough for the virtual meson to travel over a
distance much larger than the nucleon radius of about 1 fm, because photon-to-virtual-meson
fluctuations occurs long before the last one hits the target. According to [6], the hadron-related
part of the equation 2.31 can be defined as

Vatn =3 eyl (2.33)

where |V) is a vector meson state, iv is a normalization constant, My is a vector meson mass.
The factor e = /4Ty, f is vy < V coupling constant. Equation 2.33 gives the Q? dependence
of the vector meson production cross section as a propagator of single vector meson states. Then
an expression for the transverse and longitudinal cross section in ep inelastic scattering in terms
of VMD can be written:

CLCRIORS pay (S TS 234
T e ) T -
* 2 M2
ol "(Q*, W) = ; ;—‘2/ (m) 5\2/52 Vp(W), (2.35)

where O’¥p is the total Vp cross section for the transversely polarized vector meson, the param-
eter ¢ is defined by

& = ULp/UVp (2.36)

VMD model predicts the factor & to be of the order of unity, but the experimental results on
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Figure 2.5: Chew-Frautschi plot for Regge trajectories [11]. The full line shows a fit
of mesons with Equation 2.38. The dashed line is an approximation of the fit for ¢t < 0.
The dotted line is a Pomeron trajectory.

p° indicate lower value ([9][10]). The longitudinal-to-transverse cross section ratio reads

po QW)
o1 " (Q% W)

5
VM‘%

(2.37)

The ratio is predicted ([7]) to vary as ¢* at fixed v/q? (as long as ¢ is slowly varying).

2.7 Regge theory

As described above, the virtual photon, emitted by the beam lepton, can in terms of VMD be
represented as a vector meson. The futher interaction of a target nucleon with a vector meson
can be explained by Regge theory, which describes hadron-hadron interaction. The basic idea
of Regge is that the angular momenta can be represented as a complex value and the scattering
amplitude can be extrapolated on the complex angular momentum plane. For a given spin [ at
an energy t the singularities of a scattering amplitude appear as poles, called Regge poles. The
poles can be either bound stated or resonances and are located at values defined by a relation
[ = Re(a(t)) is called Regge trajectory. In Figure 2.5 the angular momentum is plotted versus

the particle mass squared ¢t = M?. In such a coordinate system Regge trajectories become
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straight lines with slope o/ and intercept a(0):
a(t) = a(0) + d/(t) (2.38)

The experimental results of diffractive scattering processes with negative momentum transfer
t align along straight lines for all the known trajectories. The scattering reactions are mediated
by exchange of resonances in the t-channel whose interpolation is given by a Regge trajectory.

The scattering amplitude is given by the equation
A(s, t) oc s°® (2.39)

The total cross-section is connected with the imaginary part of the scattering amplitude as

1
Otot — gIl’Il(At:()) (240)

Equations 2.39 and 2.40 give the energy dependence of the cross—section
Oor = s*=01 (2.41)

This means that the intercept of the trajectory determines the cross section dependence on
the energy s. All trajectories associated with mesonic resonances have intercepts around 0.5.
The cross section is than to behave as oips~ /2. This is true up to a few GeV center of mass
energy, after that the cross section dependence has a plato. Such a behavior can be explained in
terms of Regge theory via introduction of a trajectory with an interception at 1 and quantum

numbers of the vacuum. Such a trajectory was called Pomeron trajectory.

2.8 The vector meson spin density matrix in Wolf-Schilling

notation

The differential cross section for vector meson production reads:

dO'ep—>epV 1 M2 1 2
/ __LE LS~ g, (2.42)
dE'dQdedt — (2m)° E 4,/ 1 Q%) 4 &,

where I/, E' are energies of initial and final lepton, df) is the volume element of the scattered
lepton, ® is the angle between the normals to the lepton scattering plane and the hadron
production plane (see Figure 2.6) and M is the matrix element describing the scattering process.
It was shown in [19] that > |M|? = izspins L, T*, so that the cross section form is

spins



Exclusive ¢ meson production 16

lepton
scattering—plane

Figure 2.6: Definition of production and decay angles for vector meson production.

similar to that of DIS (see 2.8). The leptonic tensor L,, is given by

L = Y m*(¢ljule) - (¢'ljule), (2.43)

spins

where j is electromagnetic current operator, ¢ and ¢’ are the spinors of the initial and final
leptons. Therefore, the leptonic tensor, describing the emission of the virtual photon, represents
photon spin density matrix L, o o(7)xy. The latter can be decomposed into an orthogonal

set of nine independent hermitian matrices »¢:

o(v) = % S (2.44)

a=0 «

where l:[a is a known normalization vector. The four matrices o(y) for o = 0,1,2,3 de-
scribe vector meson production by transverse virtual photons: unpolarized, linearly polarized
in two orthogonal directions, and circularly polarized vector meson, respectively. Vector meson
production by longitudinal virtual photons corresponds to @« = 4 and o = 5,6,7,8 provide
transverse-longitudinal interference terms. Unlike DIS, the hadronic tensor for vector meson

leptoproduction can not be parametrized by structure functions. Instead, the vector meson
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production is described in terms of a vector meson spin density matrix:

dosp—vp _ 1

dtdd 3972 (V2+Q2)TT(FP(7)F+). (2.45)

The vector meson density matrix is then given by

o(V) = STo()T* / / Py Gmww) | (2.46)

where an averaging over ® and a summation over nucleon helicities is being done and 7" is a
production amplitude. The same as the photon one, the vector meson spin density matrix can

be decomposed into a set of hermitian matrices:

p(V)=>"1]r" (2.47)

a=0 «

where [ [, is a known normalization vector, and the matrix element of the matrix p(V') can be

written as

1
(0% _ (07 *
Pxv N, = IN E : FAV,AN/,MANZAW,\;FA",,ANW\;,AN- (2-48)

L ANTAN AN

Here N, are normalization constants and F), i,y are helicity amplitudes

F)‘V7/\N’7)W’)‘N = <)\V)\N/‘j)w’)\]\[>, (249)

defined in the center-of-mass system of virtual photon and target nucleon and describing a
transition from the initial nucleon state |[Ay) to the final ¢ meson and scattered nucleon state
(AvAn|. The spin states of the virtual photon, ¢ meson, initial (outcoming) nucleon are denoted

by Ay, Av, An(nry correspondingly.

2.9 Definition of the scattering angles in vector meson pro-

duction

Both the two vector mesons, presented in this thesis, namely p and ¢, decay after the formation
into two oppositely charged particles: kaons in case of ¢ meson (¢ — KTK~), pions in case
of p meson (p — w"7~). In Figure 2.6 angles are denoted, that are used for the description of
vector meson production. In the center-of-mass system of virtual photon and target nucleon

Z-axis is directed along the virtual-photon three-momentum, and the Y-axis is parallel to the
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vector product of virtual-photon and vector meson three-vectors:

7=94 y_9XV  x_yxz (2.50)
q la x V|

In the “hadronic” center of mass system of virtual photon and target nucleon the angle between

the vector meson production plane and the lepton-scattering plane is specified by

(axv): (kxK)
lg x v|- |k x K|

[(axv)x(kxk)]-q
lax v|-[kxKk|-|q

(2.51)

cosd = , sin® =

The polar and azimuthal angles ¢ and © of the positively charged decay particle are defined
in the vector meson rest frame where the z-axis is aligned opposite to the outgoing nucleon

momentum P’ and the y-axis parallel to Y and directed along P’ x q:
z=— y=Y, r=yXz. (2.52)

The angle ¢ between vector meson production plane and ¢ meson decay plane is defined by

(@ x V) x V] (px+ X V)
(@ X V) X v|pg+ X V|

(qx V) (v Xpk+)

, 2.53
[ V|-V x prcr] (2:53)

CoS p = sin =
where pk+ is the three-momentum of the positive decay particle, kaon in case of ¢ meson, pion
in case of p meson.

The angle © is given by

—P’' % PK+

. 2.54
P Ipxc:| (2:34)

cos© =

The angle definition given above are according to [20] and are used in the Wolf-Schilling for-

malism. The relations of these definitions to ”Trento convention” [22] and Ref. [21] read:

¢ = _¢h,T7"ent07 ¢ =@ [21] y 0=40 [21] (255)
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2.10 The decay angular distribution of vector meson produc-

tion in Wolf-Schilling formalism

Taking into account Expressions 2.45 and 2.48 the differential cross section in terms of helicity

amplitudes can be written as ([19])
do (W, Q%)
dQdddt

1 * *
(6172 E Expxginaan X 0nx, (6, R)EX vy ay Yiay (9,008 ©) X Vi, (9, cos ©)7,
A AL Ay N A Ay

(2.56)

where 0y, Xw is the virtual photon spin density matrix, the helicity amplitudes F},, NyiAy Ay are
describing the transition of the virtual photon with helicity A, to the vector meson with helicity
Av, and Yy, (@, cos ©) x Y1y, (¢, cos ©) - the angular distribution of the vector meson decay
products. The total cross section can be obtained after integration over the angles ®, ¢, cos ©:

do full do T do L

i@ ar S

(2.57)

and can be accessed experimentally via the measured quantity, as will be shown below. The
decay angular distribution W of the vector meson decay products can be decomposed for

different beam and target polarization cases
W = WUU + PLWLU (258)

where L denotes longitudinal polarization of the beam, U means unpolarized beam or target.
The unpolarized-beam part of the angular distribution is a function of matrix elements with
a=0,1,2,4,5,6. The polarized-beam part of the angular distribution contains matrix elements
with o = 3,7, 8 for longitudinal beam polarization. Measurements with a transversely polarized
beam gives elements with o = 7,8 and therefore provide no new information compared to
the case of longitudinal beam polarization. In case of longitudinally polarized beam and an
unpolarized target the total number of independent matrix elements in the equation above
is 26. At a fixed beam energy no separation between o; and op is possible; the number of
independent unpolarized matrix elements is reduced from 18 to 15 because the elements with
a =4 and o = 0 can not be disentangled and are combined by the following relation, which

merely can be measured:

04 _ Pg)« + 6RP%\,\'_

, = 2.
LYY 11 eR ( 59)
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The measurable matrix elements for the other o values can also be expressed in terms of pg,:

P =1,2,3
= | T (200)
w0 =5,6,7,8.

The decay angular distribution of the vector meson can now be expressed via the angles de-
scribed above (@, p, cos ©) and quantities 7¢,,, called spin density matrix elements (SDMEs).

The beam-polarization independent part is given by the equation:
UU 3|1 04y o Lin 0 2 V2 047
WZH(D, @, cosh) = yy 5(1 —Too) T 5(37“00 —1)cos® 0 — V2 Re {r];}sin20 cos ¢
— 7%, sin® 0 cos 2 — € cos 20 (7'%1 sin? @ + rg, cos® 6
— V2Re {rl,}sin 20 cos ¢ — r1_, sin? 6 cos 290)
— esin 2 (\@ Sm{ri,}sin 20 sin ¢ + Sm{r;_,} sin® f sin 2@)
+1/2€¢(1 +€) cos P (ri’l sin? @ + 19, cos? 0 — V2 Re {2} sin 26 cos
— 7}, sin®@ cos 2@) + /2€6(1 +¢€)sin® (\/5 Sm{r%,} sin 20 sin ¢

+ Sm{r)_,}sin® fsin 2¢>] : (2.61)

It is parametrized by 15 independent unpolarized SDMEs. The part involving longitudinally
polarized beam contains 8 polarized SDMEs:

3
WEE (D, o, cosl)) = —P
4m

V1—e (\/§ Sm{r?,} sin 20 sin ¢ + Im{r?_,}sin?#fsin 2g0)
+ /2€¢(1 —€) cos ® (\/5 Sm{r?,} sin 20 sin ¢ + Sm{r?_,}sin® @ sin 290)
+ v/2€¢(1 —€)sin® (r?l sin? 0 + 15, cos? 0 — V2 Re {5} sin 20 cos

— ¥ sin? 6 cos 2@)] . (2.62)

These 1548 quantities for vector meson production at HERMES are presented in this thesis.
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The angular distribution is normalized (according to [21])

)
/;Z—/dcos@dngW(Q,go,CD) =1 (2.63)
m

2.11 The spin density matrix elements of the vector meson

production in Markus-Diehl formalism

Helicity amplitudes T7/¥ for the process v*(u) + p(A\) — VM(v) + p(o) were introduced by
Markus Diehl with definite helicities p, A, v, o. The helicity amplitudes depend on Q?, z, t.

In terms of the amplitudes the spin density matrix can be written as

PZZ//,,\,\' = (Np+€eNp)™ ZTW TV/; : (2.64)

where Ny and Nj, are the normalization factors and are proportional to the differential trans-
verse and longitudinal cross sections correspondingly. The SDMEs for unpolarized target are

denoted as uw, and obtained as

v/

1 vv! vv!
UMM/ = §<puul’++ ‘I‘ pMM’,——>’ (265)

where the target polarization is designated as just + or — instead of +1/2, -1/2. Therefore
from comparison of Equation 2.48 to 2.65 one can see that the lower indices of the matrix
element p in Wolf-Schilling notation correspond to the upper indices of the matrix element

in Markus-Diehl notation.

2.12 The decay angular distribution of the vector meson pro-

duction in Markus-Diehl formalism
For the beam polarization X and the target polarization Y the angular distribution can be
written using the angles definition from Trento convention [22] and Ref. [21] as
3 :
Wiy (00, ,0) = 1 | cos OWEE (60) + V2 cos 05in OWEY (9, ) + sin? OWET (n, ) |.

(2.66)

The upper indices denote longitudinal LL, transverse T'T" vector meson production and their

interference LT. For the unpolarized target and beam the angular distribution is parametrized
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by unpolarized SDMEs uw,,

G (on) = (U + eudy) — 2cos gp/e(1+ €) Re {uf)} — cos(26n)eu®, (2.67)

W (6, 0) = cos(dn + @)V e(1 + €) Re {ugt — ug} — cosp Re {udt, — ull + 2eudy
+ cos(2¢n + @)e Re {u’t } — cos(gn — )V e(1 + €) Re {u); — u?
+ cos(2¢n — ¢)e Re {ul}, (2.68)

1
L (b, ) zé(uii +ull + 2eudy) + = cos(2¢h + 2p) — cos(¢n) v e(1 + €) Re {ug;” + ugy }
+ cos(én + 2¢)\/e(1 +¢€) §Re {ugi™} — cos(2¢n)Re {ug; + eugy" }
1
— cos(2¢n)eRe {ul T} + cos(dn — 2¢0)Ve(l +€) Re {ufs } + 5 cos(2¢y, — 2¢)eu’ 7.

(2.69)
The terms independent of ¢ and ¢y, in WXL and Wk are related as
ult +ull 4 2eudy” =1 — (U + eugg). (2.70)

The angular distribution for unpolarized target and polarized beam is given by the equation:

Wi (én) = —2sin gpv/e(1 — +¢) Sm{ug), }, (2.71)

ijq(¢h7 30) - Sin(¢h + 90) V 6(1 - 6) %m{u(—):i- - UE—E} sin ¥ \/ \sm{u++ - U.H.
— sin(gn — ) Ve(l — €) Sm{ug; — ugl}, (2.72)

Wi (¢, o) = — singnv/e(1 — €) Sm{udy™ — ug s} + sin(on + 2¢)v/1 — €2) Sm{ug; }
—sin(2¢)V1 — € Sm{uil} + sin(gn — 2¢)Ve(1 — €) Sm{ud; }. (2.73)

2.13 s-channel helicity conservation

From the measurement of SDMEs, s channel helicity conservation (SCHC) hypothesis can be
tested. SCHC implies that the vector meson produced conserves the helicity of the virtual
photon, e.g., Ay = Ay in the process Vi, = - In terms of Wolf-Schilling helicity amplitudes

it means that

Fxoapaan = Frxuagasan Oay Ap A Ax (2.74)
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Then all the helicity-flip transitions (A, # Ay) vanish and the corresponding amplitudes become

ZEeTOo:
Fo=Fo=F1=F i w=F_1=F11=0 (2.75)

Only three amplitudes remain non-zero — Fyg, Fi1, F_1_1. Using relations between the am-
plitudes and SDMEs (see[19]), the non-vanishing SDMEs can be obtained: 73, ri_;, Smr?_,,
Reryy, Smrfy, Smrl,, Rerf,. If SCHC holds, also the following relations are to be fulfilled:
ri_, = =Smr? |, Rerdy = Smrd,, Rerf, = Smr, .

From the non-vanishing SDMEs the phase difference 6 (see Equation 2.74) between Fy
and Fi; amplitudes is among the quantities, which can be accessed experimentally and then
compared with theory (GPDs) calculations. The decay angular distribution in case of SCHC
can be written as a function of cos © and the angle ¥ = ¢ — ® between the vector meson decay

plane and the lepton scattering plane

3|1 1
Wi(cos©,V¥) = o 5(1 — 7o) + 5(37"83 — 1) cos? © + er{_, sin® © cos 20
m

—2v/€(1 + €)Re 73, sin 20 cos U + 2P/e(1 + €) sin 20 sin U3mr ], (2.76)

The presently existing data show s-channel helicity violation for p: ZEUS in [23], H1 in
25], where the SDME 7§, was pronouncedly non-zero. The SDME is proportional to Re Fy; Fj,
which contains the largest amplitude at high energy Fj, and the largest spin-flip amplitude
Fy, therefore this matrix element provides the cleanest SCHC-violating (SCHCV) signal. At
HERMES level of energy both amplitudes are comparable. This explains why HERMES mea-
sured stronger SCHCV signal [26] than ZEUS [23] and H1 [25]. No SCHCV was found for ¢ at
ZEUS[27], H1[28] and CLAS[29].

2.14 Natural and unnatural parity exchange

As was described in Section 2.7, the diffractive production of vector mesons can be represented
as an exchange of a particle via t-channel. The exchanged particle can have either natural
parity P = (—1)7 or unnatural parity P = —(—1)7.
natural parity exchange (NPE), in the second - unnatural (NPE). A Wolf-Schilling helicity

amplitude can be decomposed into NPE (N) and UPE (U) amplitudes:

In the first case the reaction is called

Fav,aNuamaN = Nav,aN/,amaN + UCYVvaN/,Oé'wCYN' (2-77)

A measurement of the corresponding SDMEs, related to NPE and UPE amplitudes, allows

to separate both contributions and to determine the natural and unnatural parity exchange
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fractions of the transverse and longitudinal cross section. If NPE dominates, the quantities
defined as:

Uy =1—r+2r¥* —2r1 | —2rl, (2.78)
Us =15 | +78 (2.80)

are equal to zero or small. The amplitude hierarchy can be both built experimentally and
calculated theoretically. The SDMEs-to-amplitudes connection is presented in Appendix B.
For NPE amplitudes diagonal transitions in nucleon spin are dominant (\y = Ny ), while
for unnatural ones it is not proven. NPE prevails over UPE, since the latter is suppressed by a
factor of oc (M/W)?, while a natural one by a factor of oc (M/W). If both SCHC and NPE are
assumed, the decay angular distribution depends only on the longitudinal-to-transverse cross

section ratio R and the phase difference § between the only two non-zero amplitudes Nyy and
N11:

1
1+6R§

W(cos©,¥) = sin? ©(1 + e cos 2W) + 2R cos* ©

—/2¢(1 + €)Rcos dsin 20 cos U + 1/2¢(1 — €) RP, sin § sin 20 sin ¥

. (2.81)

In terms of Markus Diehl notation, SDME can be represented via NPE N/{ and UPE U}Y

amplitudes:

utty = (Np+eNp)™ > [N;g(N;;,’i)* +U(ULS) (2.82)

g

The matrix elements u involve a product of two NPE amplitudes plus a product of two UPE
amplitudes.

For p meson statistically significant UPE contribution was observed in HERMES ([26]) and
other experiments (H1[25], ZEUS [23]), while for ¢ meson the contribution is negligible (H1[28],
ZEUS [27]).

2.15 Radiative corrections

Figure 2.1 describes DIS on the Born level, not including next to leading order contributions.

However, emission of a real photon by the lepton changes the reaction kinematics significantly.
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Figure 2.7: Feynman diagrams of processes contributing to the Born and the next
order cross sections.

In Figure 2.7 Feynman diagrams for leptonic radiation are presented. The corresponding con-
tributions to the vector meson production cross section are taken into account via radiative
corrections and in the diffractive region (—t < 0.3) can reach 20% (30]). For the majority of
the matrix elements which are to be 0 if SCHC holds, relative radiative corrections estimated
as §r = reba=rBemn do not exceed 1%, according to[31]. However, for two of them, namely Re s

and 75, the correction may reach 20% ([31]). Therefore, non-zero values of these SDMEs might

be explained not only by SCHC-violation, but also by large radiative corrections.



Chapter 3

The HERMES experiment

3.1 The HERA ring

HERMES (HERA MEasurement of Spin) is one of the four HERA experiments and oper-
ated from 1995 till 2007 at the DESY (Deutsche Elektronen Synchrotron) research center using
HERA (Hadron Elektron Ring Anlage) storage ring in Hamburg, Germany. The DESY research
center was established in 1959 with the goal of multiple studies in particle physics, among them
are investigations of the fundamental properties of matter, development and construction of
accelerator facilities, use of synchrotron radiation in material science, chemistry, molecular bi-
ology and biophysics. The HERA accelerator ring has a length of 6.3 Km with four straight
parts and four bending ones between them. It operated with two beams of particles, mov-
ing in the opposite directions: protons mostly with an energy of 920 GeV and leptons mostly
with an energy of 27.6 GeV. Both beams were pre-accelerated before injection into HERA in
two linear accelerators and synchrotron accelerator (DORIS) and PETRA ring. The historical
development, the objectives and the results achieved are described in [33] There are four un-
derground experimental halls in the ring, two of them belonging to the collider experiments -
H1 and ZEUS, and two belonging to fixed-target experiments - HERA-B and HERMES. H1
and ZEUS, located in the North and South halls, respectively, employed both the accelerated
beams to obtain electron-proton collisions. HERA-B was located in the West hall, used the
proton beam for colliding with atomic nuclei. The initial aim of HERMES was the study of the
spin structure of the nucleons and of sheding light on the ”spin crisis” situation (see Equation
1.1). Among the specialties of HERMES experiment the measurement possibility with various
beam and target polarizations and reliable particle identification system should be mentioned.

The schematic view of HERA and the four experiments is shown in Figure 3.1.
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Figure 3.1: The schematic view of the HERA accelerator ring of 1995-2007 years.

3.2 Beam

HERMES used only the lepton beam, the proton one passed in the detector intact. The injected
lepton beam had a current of 50mA and consisted of approximately 190 bunches, emitted
with the time interval of 96ns. Both H1 and ZEUS needed effectively unpolarized beam, while
HERMES needed the longitudinal one at the interaction point. After injection the lepton beam,
which was a subject of interests of HERMES, was transversely self-polarized in the arcs because
of the Sokolov-Ternov effect [32]: in a storage ring electrons can become polarized antiparallel
to the guide field by the emission of synchrotron radiation. Therefore, two beam-spin rotators
were installed downstream and upstream of the HERMES apparatus, which turned vertical
spin into longitudinal direction without changing the degree of the beam polarization. It was
achieved by using a certain combination of horizontal and vertical dipole magnets, which rotated
the polarization by 90° within 60m. The depolarization effects due to magnet misalignment
and orbit errors were taken into account by permanent measurement of the polarization by
the transverse polarimeter (TPOL [36]) and the longitudinal one (LPOL [35]). Both of the
polarization monitors were based on Compton scattering of circularly polarized photons from an

intense pulsed laser beam. A fractional systematic uncertainty of the polarization measurement
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was 1.6%. The polarization developed in time according to [35]
P(t) = Py(1 —e7t/7) (3.1)

where the asymptotic polarization P, and the time constant 7 are characteristics of the ring
conditions. If the reasons for the depolarization processes, mentioned above, were not present,
then the maximum theoretically achievable polarization was Py, = 92%. The build-up time for
the beam polarization, which depends on the bending radius of the storage ring and the beam
energy, was 7 =37min. The practically obtained value of the polarization was 50-60% in the
years 1996-2000 and 40-50% in 2003-2007. The behaviour of the beam polarization is shown in
Figure 3.2.

=)
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+ Longitudinal Polarimeter
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Figure 3.2: The beam polarization measured by transverse and longitudinal polarime-
ters.

3.3 Target

The HERMES target (34]) had to keep the beam in a condition that allowed its futher usage
by the neighbors in the ring - ZEUS and H1. Due to this reason, the target material was chosen
to be a gas, whose density is lower than liquid or solid and therefore does not affect the beam
intensity too much. The advantage of such a target was that it was pure and high polariza-
tion values can be achieved. It was operated with longitudinally polarized 3 He, hydrogen and
deuterium, transversely polarized hydrogen, unpolarized hydrogen and deuterium, unpolarized
‘He, N, Kr, Ne,Xe gases. The storage cell, e.g, the place of interactions of the gas with the
beam, was internal to the beam pipe. A schematic view of the HERMES target is presented
in Figure 3.3. There the main target elements are shown: the atomic beam source (ABS), the

storage cell, the target gas analyzer (TGA), the Breit-Rabi polarimeter (BRP) and the target
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magnet.

ABS pumping system injected a spin-polarized gas beam in the center part of storage cell,
so that the gas density distribution had a triangle shape with the center coincident with the
cell center. The injection speed was about 6.5 x 106 atom/s with the polarization above 90%
and a degree of molecules-to-atoms dissociation up to 80%. The dissociation was obtained by
a radio-frequency electric discharge. The dissociated gas diffused into the vacuum chamber,
where a sextupole magnet system focused atoms with electron spin +1/2 into the storage cell
and deflected those with -1/2 spin. The storage cell was made of thin pure aluminum sheets.
The thickness of the cell sides together with their low temperature (100 K) were essential for
reducing recombination and the scattering of the particles on the sides. The length of the
cell was 400 mm, after the recoil detector was installed the target cell was shifted and made
shorter, it was open on both ends and had an elliptical cross section. Two collimators installed
upstream protected the cell from synchrotron radiation of the beam. The gas densities of about
1-2 x 10" nucleons/cm” were achieved, which is a few orders of magnitude more than those
obtained with a gas jet target. From the storage cell gas diffused from the middle of the cell
into BRP, which measured the atomic polarization or into TGA, which measured the relative
atomic and molecular content of the gas. Together they used approximately 5% of the gas. The
molecular and atomic gas fractions had different polarizations, therefore the TGA measurement
were essential. TGA was connected to the center part of the storage cell on the opposite site rel-
ative to the ABS injection tube. From the BRP measurements and the known target magnetic
field strength the absolute atomic polarization could be calculated. The actual polarization
value was different from that of the injected gas because of the recombination processes and
spin relaxation mentioned above.

A superconducting solenoid magnet for longitudinal polarization (1996-2000 years) and a con-
ventional dipole magnet for the transverse one (2002-2005 years) provided a field defining the
polarization of the nucleons. Moreover, they prevented spin relaxation by nucleon interactions
with the target cell and decoupling of electrons and nucleons. For the longitudinally polarized
target the magnet field had a strength of about 350 mT and was directed parallel to the HERA
beam direction. For the transversely polarized target the magnetic field had a strength of
about 300 mT and was directed parallel to the negative y direction of the HERMES coordinate
system. The spin state of the nucleons was flipped every 1-3 min in order to provide data in

both spin states and to reduce systematics.

3.4 Spectrometer

The HERMES spectrometer was a forward-angle spectrometer, consisting of two identical
halves, designed for measurements of inclusive and semi-inclusive scattering. The halves sur-

rounded the beam pipe and were set behind the target cell to catch the outgoing particles.
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Figure 3.3: The HERMES target setup.

The detector was mounted on a movable platform, so that the detector could be moved out of

the beam area. It was located 25 meter below the ground and covered with the concrete wall

to protect the outside from the radiation. The schematic view of the detector is presented on

Figure 3.4.
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Figure 3.4: The sideview of the HERMES spectrometer in the years 1998-2000. The
tracking detectors are in red, the particle identification detectors are in green. The
later changes of the experimental setup (for example, recoil detector installed in 2006)
do not affect the measurement of an exclusive ¢ meson production.

The coordinate system used by HERMES has the z-axis along the beam axis, y-axis vertical
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upwards and the x-axis horizontal, pointing towards the HERA proton ring. The point (0,0)
is situated in the center of the target cell. The HERMES coordinate system is shown on
Figure 3.4. After interactions in the target cell the particles pass through pre-magnet tracking
detectors, which were presented by the silicon detector, drift vertex chambers (DVC) and the
front chambers (FC), where the scattering angles and the trajectories of the charged particles
are recorded. Then the charged particles are bent horizontally according to their momenta by
the magnetic field with a deflecting power of [ Bdl = 1.3Tm, created by the dipole magnet. To
shield the lepton and proton beams from the magnetic field, an 11cm thick iron septum plate
was installed between the two detector halves. The lower vertical acceptance of the HERMES
detector, limited by the plate, is +40mrad. The upper acceptance limit is defined by the
magnet size and amounts horizontally: + 170mrad, and in the vertical direction + 140mrad.
In the magnet area additional set of the magnet chambers (MC) was installed. After the
magnet the particles passed through the set of back chambers (BC) and particle identification
detectors (PID detectors), namely a ring-imaging Cherenkov (RICH) detector, a transition-
radiation detector (TRD), a preshower detector and the electromagnetic calorimeter. Around
the pipe close to the calorimeter luminosity monitors were situated, permanently measuring

the current luminosity.

3.4.1 The tracking system

The main aim of the HERMES tracking system was the determination of the charged particles
scattering angles, the vertex positions of the interactions, and particle momentum. The silicon
detector (Lambda wheels, [38]) was installed in order to broaden geometrical acceptance for
A-baryons, which has a long decay length. The next tracking detectors, DVC provided option-
ally used information. The majority of the information about the particle projections came
from the FCs[39] and BC [40], which were drift chambers of a standard design with alternating
anode-cathode wire geometry. The FC were filled with Ar/CF,/CO, gas mixture. Each cham-
ber consisted of six wire planes, the two middle were vertical, while first and last pairs were
tilted #£30° from the vertical. The efficiency per plane was more than 97%. The BCs consist
of two pairs of large planar 6-plane drift chambers, which were organized in the same way as
the FCs, filled with the same gas mixture and having the similar efficiency.

The magnet chambers were conventional proportional wire chambers and were used to track
low-momentum particles, strongly deflected in the magnetic field and not reaching the BC.
Through all the HERMES runing years, the tracking algorithm based on matching of the hits
in the FCs and BCs was used. After the transverse magnet installation in 2002, the HERMES
reconstruction code (HRC) was supplemented with the two transverse magnet corrections al-
gorithms (TMC1 and TMC2, see [43]). HRC does not track particles via magnetic field. To
take into account track distortion, energy loss and the effects of residual magnetic fields out-
side the spectometer, another tracking algorithm named HTC (HERMES Tracking Code) was
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created relatively recently. HTC re-tracks the given number of tracks, found by HRC, based
on material passed and possible magnetic field correction. The HTC algorithm determines a
common vertex, taking into account the beam position and ascribing each track the probability
to originate from the vertex found. The common vertex itself also has a probability to be
the true vertex of the possible event. For the present thesis topic, ¢ meson production, no
difference was found between the two tracking methods, HTC and HRC because of cleanliness
of the reaction channel and primordial sharpness of ¢ meson invariant mass peak [44]. The
momentum resolution of the HERMES tracking system was finer than 2%, the angular one 1.8

mrad.

3.4.2 Particle identification

The RICH detector [41] was installed in 1998, replacing a threshold Cherenkov detector that
was used in 1995-1997. Its aim was unambiguous determination of pions, kaons, and protons in
a wide range of energy. To achieve this, the phenomenon of Cherenkov radiation was employed,
which reads that a particle traversing through a radiator material with a velocity larger than the
light velocity in the material will emit electromagnetic radiation. The particles with the same
momentum but different masses will emit radiation with different opening angles, therefore via
measurement of the the angles one can distinguish the particles. The detector consisted of two
radiators, one made of aerogel, second one with C4Fjy. The radiators refracts light differently,
which provided additional information on the particle passed. The produced Cherenkov light
was reflected by an array of mirrors, which directed the light onto photoelement array. The
obtained picture was a slice of the cone, e.g. an ellipse. To associate the ellipse with the pattern
of a certain particle, two reconstruction methods were used. The direct ray tracing (DRT) com-
pared the obtained patterns to simulations of the several particle hypotheses, ascribing them
probabilities. For few-track events the event level tracking (EVT) combined all expected DRT
patterns for the tracks in onedetector half with overlapping Cherenkov rings.

The RICH provided a reliable separation of the hadrons with momenta from 2 to 15 GeV. The
resulting efficiencies were: 95% for pions, 86% for protons, 63% for kaons (41]). In Figure 3.5
the angles as a function of momenta are shown.

The TRD contributed to the lepton-hadron separation. It consisted of six modules above and
below the beam, each of them contains a radiator and a proportional chamber. Its working
principle is based on the fact that relativistic charged particles emit transition radiation in
the forward direction while crossing a boundary between two materials with different dielectric
constants. Under HERMES kinematic conditions, leptons have higher possibility to emit tran-
sition radiation while crossing multiple boundaries of fibers in the chambers. Both hadrons and
leptons loose energy in the TRD due to ionization of the chamber gas, but the lepton energy
deposit is much larger because of the additional emitted transition radiation. The maximum

achieved lepton identification efficiency is about 95% [37].
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Figure 3.5: The Cherenkov angle 6 versus hadron momentum [41].

Another part of information on the particle identification came from Pb-scintillator preshower
counter (H2), which consists of 1.1cm thick lead sheet situated in front of the scintillator. Such
a wall thickness corresponds to approximately two radiation lengths. While passing through it,
leptons lose a few times more energy than hadrons by initialization of electromagnetic showers,
producing a signal of a corresponding strength in the scintillator.

The working principle of the calorimeter ([42]) is the same as that of the preshower detector.
The total length of the lead-glass blocks is 50cm (equal to about 18 radiation lengths), which
ensures the loss of 99% of the initial energy by most of the leptons. Besides the energy deposit
from leptons and hadrons, it also measure that of photons.

Information from each particle identification detector number i was summarized in PID; num-
ber, which was calculated as a ratio of probabilities for the detected particle to be a positron

to probability to be a hadron:

P(Se,p)

PID, = —\2eP)
P(wap)

(3.2)

where p is a momentum, S is a detector responce. The final PID value, used in the analysis for

lepton-hadron separation, contain information from all the particle identification detectors:

PIDy = PIDcaro + PIDpy.
PID3 = PIDcaro + PIDpy. + PIDRricr
PIDs = PIDppp

Usually in the analysis either PI Dy + PIDs5 or PID3 + PIDs5 were used for particle identifi-
cation. According to Figure 3.6, the reliable identification of leptons started from PID values

more than 2; for hadrons - less than -1.
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Figure 3.6: The PID distribution of measured particles. The shift of the distribution
minimum from 0 is caused by a lower lepton flux.

3.4.3 Trigger system

The trigger system was employed to select useful events and reject background. The coincident
signal from the triggers initiate readout of detector signals. The HERMES trigger system used
signals from three hodoscopes HO, H1, H2, the calorimeter, BC and the HERA bunch-crossing
clock. Charged particles deposit energy in all the mentioned detectors, while photons produced
electromagnetic showers only in H2 and the calorimeter. A typical DIS event, the one most
often used in analysis, is characterized by presence of a scattered lepton, which was to leave
traces in the hodoscopes and energy deposition in the calorimeter. This step in DIS event
selection involved the threshold of 3.5 GeV in the energy deposition in the calorimeter and the
coincidence of signals from all the hodoscopes and the calorimeter. The threshold of 3.5 GeV
separates leptons from hadrons, which leave lower energy deposition with the minimum value
of 1.4 GeV.

3.5 Data structure

The data acquisition system (DAQ) recorded the detector information in case the triggers
had accepted the event. Each event needed time to be considered by the triggers and to be
recorded by the DAQ. This time loss is called the DAQ dead time and usually did not exceed
10% percent of the total working time. The DAQ digitalized the information obtained from
the detectors and stored it in the experimental physics input output (EPIO) format. This raw
data was stored in runs, defined as a data amount of 450MB. The runs were subdivided into
bursts, which were characterized by the same experimental conditions automatically recorded
every 10 seconds (like luminosity, beam and target polarizations, beam current, state of the

detectors etc.). Then the raw data was converted into physical values in analysable format by
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the HERMES decoder software (HDC) and stored in ADAMO (Aleph DAta MOdel) tables.
The HERMES reconstruction code (HRC) built actual tracks from this decoded information.
The recently created HTC code used the hit positions from HRC and provided the particle
tracks, taking into account magnet fields and energy loss due to passage through material.
This result of the data processing chain was synchronized with the detector conditions (so-
called slow-control data) and written to uDST (micro Data Summary Tape). The uDST data
productions for each year were updated in terms of up-to-date knowledges about the detector
working abilities in different time periodes and detector callibrations. The uDST files contain
three data levels: runs, bursts and events. The latter two are described above. The event
level consists of the values used in the analysis: momenta, angles, PIDs, vertex positions in the

HERMES coordinate system etc of all tracks associated with one interaction (physics event).
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Analysis

4.1 The data and Monte Carlo event selection

In this section the criteria that were applied to obtain the data set used in the analysis from
the volume of information registered by the HERMES spectrometer are presented. The two
data sets measured with slightly different experimental conditions (see Section 3) are included
in this analysis. The first one is the 1998-2000 data from HERA-I, excluding the earlier data
due to the absence of RICH detector (see Section 3), which was installed in 1998. The second
one is the 2006-2007 data from HERA-II. The 2002-2005 years data set was excluded, since it
was taken with a transversely polarized target which causes the distortion of the acceptance

for charged particles due to the magnetic field of the transverse-target holding field.

4.1.1 Data quality

To obtain reliable results, the data used in any analysis has to be of a good quality, and
should be affected by the measurement conditions as less as possible. The selection criteria are
individual for each analysis, however, the basic requirements to the data are common for all
studies. The data quality information should be available, all the detector components have to
operate stable, the beam and target should be in a good state. After the offline study of all
the data recorded, all the experiment condition information was encoded for each burst (see
Section 3.5 for the definition) in a 32-bit number pattern. Each of the bits was responsible for
a single selection criteria. These patterns were stored in so-called burstlists, which are unique
for each data production. The description of each bit for each data production used can be
found on the HERMES Data Quality webpage [53].

As already mentioned, if any part of the data quality information was missing or if the slow
control data (see Section 3.5 for the definition) was not synchronized with the event data, then
that part of the data was discarded. Also, detector calibration runs and data for detector and
apparatus studies were not used. Only the bursts of reasonable length and with reasonable

dead time of the DAQ system were accepted. The first burst of each run was rejected, since
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it was written incorrectly in many cases. Good performance of the subdetectors used in the
analysis was also required. Bursts during which one of the PID detectors did not operate or
PID information is not available were discarded, the same as for bursts that had high voltage
trips in the FCs, BCs, or TRD. If at least one calorimeter block was not responding or no
calorimeter threshold was recorded then the burst was skipped.

The beam and target performance also affects the results and therefore was checked. Only
the bursts that, according to the parameter information, had stable direction of target po-
larization with respect to the beam, were accepted. This implies that the runs during which
the direction of target polarization was switched were discarded. Selection criteria on target
polarization performance were applied mostly for historical reasons. The measured polariza-
tion direction was also compared with the expected one and the data which has disagreement
between the two values were rejected. Not only qualitative but also quantitative constrains
were implied to the target polarization: the upper limit removed the bursts with nonphysically
high polarization, the lower one - the bursts where the polarization had not raised up to its
maximum value.

For the beam polarization value only an upper limit was imposed to exclude data with
beam polarization values that technically could not be achieved. The low-beam-polarization
data could contribute to the unpolarized SDMEs and therefore was accepted. Only the data
with true up-to-date beam polarization value was selected, e.g., with the polarization measured
less than 5 minutes ago. Also the constrain on the beam current was implemented in order to
exclude data which was referred either to the very beginning of the fill or to its end, since they
were often unreliable. All the quantities, on which these requirements were applied, are listed
in Table 4.1

4.1.2 Geometrical restrictions

All physical events used in the analysis should occur from beam interaction with the target cell
gas and not with the detector material. To ensure that all the tracks originate from the target
cell, certain geometrical restrictions were applied. Moreover, all the tracks were required to
be registered by the pre-magnet and after-magnet detectors to exclude tracks that pass only
through the septum plate or one of the field clamps of the detector. Therefore all the tracks
composed of front and back parts were connected into full tracks in contrast to “short ones”,
which consist only of front tracks. Also the HERMES acceptance implies additional constraints
on the tracks passing through various detector components. These constraints, called “fiducial
volume cuts”, ensure that only appropriate tracks are accepted by checking the hit coordinates
in the front and rear field-clamp plates of the spectrometer magnet and at the septum plate
enclosing the beam pipe. A box-like fiducial volume cut is defined for the calorimeter cell,

removing tracks from the edges where the measurement efficiency decreases because of shower
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Quantity Constraint

Life time 50% < t < 100%

Burst length 0s< L<l1ls

Beam current 2 mA< I <50 mA
First burst in a run discarded
Bad uDST record discarded
No PID available discarded
Not analyzable according to loghook discarded
No DQ information discarded
Dead blocks in calo discarded
Dead blocks in H2 discarded
TRD not operated discarded
High voltage trips in FCs, BCs discarded
RICH problems discarded
Beam polarization measured more than 5 minutes ago discarded

Table 4.1: Data quality criteria for the analysis

Position Constrain
Front field clamp (z,,,=172 cm) |z| <31 cm
Septum plate (2;,5=181 cm) ly| >7 cm
Rear field clamp (front track) (z,,=383 cm) ly] <54 cm
Rear field clamp (long track) (z;,,=383 cm) |z| <100 cm, |y| <54 cm
Calorimeter (z;,,=783 cm) |z| <175 cm, 30< |y| <108 cm
Vertex position 1998-2005 -18 cm< Zperer <18 cm
Vertex position 2006-2007 0 cm< Zperter <25 cm

Table 4.2: Geometrical constraints for the analysis

leakage. Leptons deposited almost all their energy in the calorimeter blocks, while hadrons lost
the energy only partially. All the geometrical constrains are listed in Table 4.2. In 2006, to
make space for the recoil detector in the HERMES apparatus, the target cell was shifted and
made shorter, therefore the boundary value on the vertex-in-target position are different before
and after 2006 year. In the present analysis no information from the recoil detector is used, the
information on target nucleon after the interaction was obtained from the reconstructed tracks

of the other particles via momentum and energy conservation principles.
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4.1.3 Selection of exclusive events

As already mentioned in Chapter 2, both ¢ and p mesons are short-living particles, which decay
into two oppositely charged hadrons — kaons in case of ¢ mesons (the branching ratio of such a
decay is 49.1 + 0.8% [54] and pions in case of p meson. The decay occurs inside the target cell.
The two produced hadrons together with the scattered lepton provide a signature of an exclusive
¢ (p) meson production event candidate. The basic restriction to select exclusive vector meson
events is consequently the presence of three charged-particle tracks in the forward direction. For
each of the tracks the geometrical constraints described in Section 4.1.2 are applied. Moreover,
tracking probability provided by HTC tracking method for each track, e.g. the probability for
the track to satisfy the found vertex, was demanded to be more than 0. The probability of the
found vertex to be the point of interaction was also required to be more than 0 (see Section 3.4.1
for the details of HTC tracking method, track and vertex probabilities). Then the scattered
lepton is identified by PID type, a charge that is to be the same as the beam charge, and a
minimum momentum (3.5 GeV). To select deeply inelastic scattered leptons, photon virtuality
Q? was required to be larger than 1 GeV?. Radiative effects discussed in Section 2.15 here were
decreased to negligible level by imposing the maximum value on the relative lepton energy loss
(y < 0.85). The squared invariant mass of the v*p system, W was demanded to be larger than
2 GeV to move away from the nucleon resonances region.

The kaons (pions) are first identified as oppositely charged hadrons with momenta from 2
to 15 GeV. Then a restriction on the kaon PID type is applied. Despite of the fact that the
RICH efficiency for kaon identification is 80% only, such a requirement is obligatory to select
the events of interest reliably. Figure 4.1 illustrates the effectiveness of the RICH kaon type
cut, showing significant decrease of the background (from black to green histogram) in the
exclusive region (AE < 0.6 GeV), compared to the sample selected without RICH information.
For pions, however, another strategy might be used: most of the detected hadrons are pions
and can be accepted as such without a strict RICH-type constraint implementation.

Another possible algorithm is to use the constraint on ¢ meson momenta Py > 7.5 GeV
instead of RICH kaon type, since most of the low-energetic ¢ mesons, shown in Figure 4.1 as
the blue histogram, correspond to three track combinations that are not related to exclusive
production. As can be concluded from Figure 4.1, the requirement on ¢ meson momentum is
efficient in case of absence of RICH kaon type constraint; if using the latter, then the momentum
restriction is redundant (only small background decrease from green to magenta histogram in
Figure 4.1). To discard the tails of the invariant mass distribution (See Figure 4.6), the mass
window 1.012 GeV < Mg+ < 1.028 GeV was used.

After implementation of all the requirements described above, one obtains the pronounced
invariant mass M+ x- (M+,-) peak. However, the selected sample would still contain back-
ground contribution, namely the non-exclusive events, in which some other particle were pro-
duced in addition to 2 kaons (pions) but not detected due to the limited HERMES detector
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Figure 4.1: The missing energy distribution for ¢ meson production. Black histogram
shows sample selected without constraint on RICH kaon type but with restriction on
¢ meson momentum. Green histogram was built with requirement on RICH kaon type
and without constraint on ¢ meson momentum. Blue histogram represents events with
Py < 7.5 GeV, which are mostly background. Red histogram denotes events without
constraint on RICH kaon type and without restriction on ¢ meson momentum. Magenta
histogram represents the sample with constraint on RICH kaon type and with constraint
on the ¢ meson momentum.

acceptance. To select only exclusive vector meson events, the requirements described below
were applied.
The recoiling nucleon was reconstructed from the information of all the remaining tracks of

the event:
Px =p+k—FK —pyu, (4.1)

where all the variables are 4-vectors of the corresponding particle kinematics (see Section 2.1
for the details). The mass of this unobserved state, M, is to be equal to the target nucleon
mass in case of exclusive reaction and is called the missing mass. Therefore, the missing-energy

of the reaction, calculated as

M2 — M2

AFE =
2M

(4.2)

is to be zero for the exclusive production (M is the known target nucleon mass). However,
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due to the HERMES detector resolution the AFE distribution is smeared and forms a Gaussian
around zero. Non-exclusive events have AE > 0 and the recoiling particle mass different
from the target nucleon mass. To cut away this background, a restriction on AE has to be
implemented. Too strict constraints would result in loss of exclusive event, while too wide ones
would increase the statistics but leave too much of the background. The optimal constraint on
the missing-energy was determined using Monte Carlo simulation, e.g., Monte Carlo simulated
background was used to estimate the relation between the background and the signal from the
real data. In Figure 4.2 a comparison of the missing-energy distribution for the real data to
that of Monte Carlo together with the Monte Carlo generated background in all the kinematic
bins is presented.

PYTHIA generator was not tuned for ¢ meson production, that is why the yield of the
Monte Carlo signal (e.g only the exclusive process 91 is selected) is much less for PYTHIA
than for data. The worst situation is for the large Q? and ¢ bins, where the disagreement
between the data and PYTHIA in the signal region is up to two times. However, tuning this
would require quite some time and is not obligatory, since this PYTHIA set was used only
for semi-inclusive background estimation. SIDIS background simulation (magenta dashed lines
in Figure 4.2) is in satisfactory agreement with the data and was used in the study described
below. The noticeable disagreement of the background from the real data and from Monte
Carlo was taken into account via assigning of systematic uncertainty due to the background
subtraction.

As a first guess on the optimal constraint on the missing energy, the minimum total relative
uncertainty of the resulting exclusive sample was calculated for the overall kinematics. The
total uncertainty was obtained as the square root from the sum of systematic and statistical

uncertainties squared, statistical and systematic uncertainties are:

Data background
\/NPeta 4 N

(Relative statistical uncertainty); = , (4.3)
\/N,Data . N‘backgr‘ound
background
(Systematicuncertainty); = € * ZNW, (4.4)

where NPo and N7 are data and Monte Carlo background yields for each iteration
of AE cut from 0.1 to 2 GeV with the step 0.1 GeV, € is a parameter indicating how well
Monte Carlo generated background describes the data one. To estimate the goodness of the
description, a ratio of the data NP4 (black histogram in Figure 4.1) and Monte Carlo generated
background NBaeckground (magenta histogram in Figure 4.2 in the region 2 GeV < AE < 6 GeV
was calculated and was found to be 0.92.

Resulting statistical, systematic and total uncertainty are plotted in Figure 4.3, left side.



Analysis 42

© ©
. o 0.2 | 1.00 Gev®<Q*<1.40 GeV? ° 0.9k 1.40 GeV2<Q?<2.00 GeV?
98-00 + 06-07 period > | -0.40 GevZ<t'<0.00 GeV? > -0.40 GeV<t'<0.00 GeV?
— hydrogen data 3 ; 3
. . N N
------ Pythia, exclusive process = =
— - Pythia, background processes g g
o o
Pz Pz
Al 0 o
10 15 0 5 10 15
A E [GeV] A E [GeV]
© © ©
© 2.00 GeV?<Q%<7.00 GeV? © 1.00 GeV?<Q’<7.00 GeV? © .154 ] 100 GeV?<Q%<7.00 GeV?
> 0.2} || -0.40 Gevi<t'<0.00 Gev? > Y 0,04 GeVA<t'<0.00 GeV? > | -0.10 Gev?<t'<-0.04 GeV?
ko] ko] o © [
Q o 0.1 Q B
N N & N g
= = = O
E |} E | £
o 0.1 o & o :
- 005 i
= b < < 0.05f )
0 5 10 15 0 10 15 0% "5 10 15
A E [GeV] A E [GeV] A E [GeV]
% 1.00 GeV?<Q?<7.00 GeV? % 0.2r 1.00 GeV?<Q?<7.00 GeV? % 0.6k 1.00 GeV?<Q?<7.00 GeV?
_;‘ 0.15F || -0.20 Gevi<t'<-0.10 Gev? _;‘ -0.40 GeV<t'<-0.20 GeV? _;‘ ' -0.40 GeV2<t'<0.00 GeV?2
@ @ @
N N N
= | < © 0.4_
e 04 E odf| £
s |t s i s It
0.05F] 1} 02|,
,E‘r"r:"..:.,_m L - o :wA gL fi i 2o ,"I- T L ) T
0 5 10 15 O 5 10 15 0 5 10 15
A E [GeV] A E [GeV] A E[GeV]

Figure 4.2: The missing energy of the reaction of exclusive ¢ meson production for
the data (black line), PYTHIA Monte Carlo set with only the ¢ meson production
process selected (red dotted line), PYTHIA Monte Carlo set with thebackground pro-
cess selected (magenta dashed line). All the kinematic bins, used in the analysis, are
presented. The overall kinematic case is shown in the bottom right box. The plots are
done with absolute normalization.

From Figure 4.3 (right side) a minimum of the curve is around 1, but since the traditional value
for the constrain was 0.6 GeV, it was chosen for the consistency with previous analysis. The
background in the exclusive region is negligible: for hydrogen it is 2.5%, for deuteron 3.4%.
Another requirement on the reaction exclusivity is connected to the four-momentum transfer
from the initial to the final nucleons t = (p — p')?, where p’ is obtained from Equation 4.1. The

minimal kinematically allowed value of ¢, t; can be calculated in the center-of-mass system of
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Figure 4.3: Left plot: Total relative uncertainty of the number of exclusive ¢ meson
events are denoted by magenta circles; systematic uncertainty is shown by red squares;
statistical uncertainty is represented by black triangles. Right plot: Total relative
uncertainty zoomed.

the virtual photon and nucleon as

to = (B, — Bvm)® — (la| — v])?, (4.5)
where
W2 — Q2 — M2 W24 M2, — M2
by = ST ,  Bvu = ST (4.6)

lq| = /B2 + Q7 V| =\/EZy — M2y, (4.7)

In the photon-nucleon center-of-mass frame the condition ¢t = ¢y corresponds to the case where
the momentum of the produced vector meson is collinear with that of the photon.

Since the target nucleon remains intact, the difference ¢ between the initial and the final
nucleon momentum is small, as well as t5. Therefore the quantity ¢ =t — ty is to be small in
the exclusive region. The restriction used in the present analysis was t' > —0.4 GeVZ. In
Figure 4.4 the correlation of the missing energy and the ¢’ value is presented, showing the
pronounced peak at low AE and low —t', which corresponds to the reaction of exclusive ¢

meson production under HERMES kinematic conditions.

4.1.4 Separation of coherent and incoherent parts for deuteron data

A contribution of coherent scattering, when the incoming lepton interacts with the whole
deuteron nucleus, e.g., when the interaction might occur either on proton or on neutron, is
expected to affect the results for deuteron data. Indeed, the SDME formalism described in
Sections 2.8 and 2.11 is valid for spin 1/2 targets only. For hydrogen only incoherent scattering
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Figure 4.4: The (¢,AFE) distribution of ¢ meson production on hydrogen target of
1998-2000, 2006-2007 periods.

exists. To exclude the coherent contribution, an additional requirement on ¢ was implemented

for the deuteron data. The cross section dependence on t’ has an exponential form, e.g.,

dcf;f' x exp [11], with b being a slope parameter. For the sum of coherent and incoherent

contributions one can write

do
-7 X D1 eXp(_bincoh|t/D + D2 eXp<_bcoh‘t/|)- (48)

||
Each of coherent and incoherent part related parameters was fitted to the data, e.g. the
distribution was fit by the sum of two exponents. Figure 4.5 shows the fit of the ¢ distributions
in each of ? bins and overall kinematics.
The cut position was defined as the crossing point of the two exponents and was found to be
about -0.035. The fraction of the coherent events in the rest sample (¢ > —0.35 GeV?) is 10%.
Since the fitting parameter value is close to the first ¢ bin boundary (-0.04), this boundary was

chosen to be the constraint position.
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Figure 4.5: The fit of ¢ distribution for all the ) bins in the logarithmic scale. The
two areas of the exponential fit with different slopes represent coherent (0 < —t' <
0.035 GeV?) and incoherent (0.035 GeV? < —t' < 0.5 GeV?) parts of the distribution.

4.1.5 ¢ meson invariant mass distribution

In Figure 4.6 the two-kaon invariant mass is depicted, with the constraints on ¢’ and AFE de-
scribed above. The two-kaon invariant mass calculated via formula Mg+ - = \/m ,
with pg+, pg- being 4-vectors of positively and negatively charged kaons. The narrow clean
peak at the expected mass can be seen, corresponding to exclusive ¢ meson production. The
peak is fitted by the Breit-Wigner function. The relativistic Breit-Wigner distribution describ-
ing a spin-1 object decaying into two spin-0 objects, or, in other words, describing the mass of

¢ meson decaying into two kaons, is given by the formula

AN 2 Mics - My (Mt i)
= BW(Mgig) ==
dM+ - (Micr-) = 2 (M2 — M3y oo )? + M2 (Micr i)

(4.9)

where Mg+ - is two kaon mass, ]\/[g and I'( M+ i~ ) are the mass and the width of the ¢ meson
resonance.  The x? of the fit reflects the fact that a relativistic Breit-Wigner function does

not describe the skewing of the ¢ peak to lower mass values.
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Figure 4.6: Two-kaons invariant mass distribution in the exclusive region for hydrogen
data sample (red points). The line represents a fit of a Breit-Wigner function.

Runs Npirs Ny
Year | Hydrogen | Deuteron | Hydrogen | Deuteron | Hydrogen | Deuteron
1998 617 7647 482740 1924447 24 93
1999 0 11615 0 854994 0 78
2000 1511 19613 6022023 | 5352782 286 308
2006 34406 8254 28301671 | 5253267 1568 306
2007 29786 9382 20858417 | 4793406 1210 294

Table 4.3: Numbers of runs, DIS events and exclusive ¢ meson events for hydrogen
and deuteron targets for 1998-2000 and 2006-2007 periods.

4.1.6 Final data sample used in the analysis

The collected statistics for each year of the united data taking period of 1998-2000 and 2006-
2007 periods is presented in Table 4.3.

The constraints described above resulted in the numbers of events, presented in Table 4.4

for each of the kinematic Q? and ¢’ bins for hydrogen and deuteron targets.
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Target Hydrogen | Deuteron

Kinematic bin Number of events

1 GeV? < Q? < 1.4 GeV? 955 370
1.4 GeV? < Q% < 2 GeV? 1021 338
2 GeV? < Q? < 7 GeV? 1112 371

0 GeV? < —t' < 0.04 GeV? 661 (332)
0.04 GeV? < —t' < 0.1 GeV? 709 313
0.1 GeV? < —t' < 0.2 GeV? 821 392
0.2 GeV? < —t' < 0.4 GeV? 896 374
overall 3088 1079

Table 4.4: Numbers of events used in the analysis for hydrogen and deuteron targets
for 1998-2000 and 2006-2007 periods. @Q? and t' binings are independent from each
other, e.g. 1D bining is done for each variable separately. For deuteron data in the Q?
bins an additional constrain ¢ > 0.04 GeV? is implemented, e.g. the first ¢’ bin data is
excluded from all the Q? bins and the overall data set.

4.1.7 Monte Carlo event selection

The two Monte Carlo event generators, PYTHIA (45]) and RhoMC ([46]) are used in this
analysis for systematic studies, background determination and for the SDME extraction. In
this section a short description of the two generators is presented together with the analysis
goals they were used for. The main features of the two generators, important for this analysis,
are the following: PYTHIA is able to generate various types of processes, in particular hard
interactions in ete™, pp, and ep colliders, while RhoMC can produce only exclusive vector
meson processes. PYTHIA is capable to generate sets with unpolarized beam and target only,
in contrast to RhoMC, where beam polarization can be implemented. Another difference is
that SDMEs can be implemented in RhoMC-produced decay angular distribution of a vector
meson, which is not possible for PYTHIA (only the first SDME can be implemented, See
Equation 4.18).

The event generation scheme for both PYTHIA and RhoMC generators is shown in Fig-
ure 4.7. After physical event generation and detector simulation the same tracking method as
for the real data, HTC (see Section 3.4.1) was employed. Then reconstructed and generated
tracks were stored in uDSTs(see Section 3.5). Monte Carlo uDSTs have the same structure as

data ones, but contain additional information like generated tracks, born-level tracks etc.

PYTHIA generator

The PYTHIA generator can be used to produce high-energy-physics events, e.g sets of outgoing

particles originating from the interaction between two incoming particles. The generation
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The generator GEANT HTC/HRC nDST
Passing through the detector Tracking

Figure 4.7: The scheme of event generation chain using PYTHIA.

is done according to the relative cross section, using the "accept-reject” method. For some
processes cross sections were tuned to HERMES kinematics, for example exclusive p meson
production, but not ¢ production.

The scattered lepton kinematics (Q?, v) are generated according to the relative cross sections
of the corresponding processes (DIS, QCD-Compton and boson-gluon fusion processes). The
momentum of the scattered lepton can be modified by initial- and final-state radiation, which
is taken into account by an external program RADGEN ((47]). RADGEN recalculated the
generated Born level kinematics to true ones. As was mentioned in Section 2, the ep collision
can be represented as v*p process. The development of the last one in PYTHIA follows one
of the next scenarios, depending on the value of transverse momentum k&, of the quarks with
respect to the virtual-photon direction. If the process virtuality is large,, e.g. if k, is larger than
cutoff parameter of the order of 0.5 GeV, then the process is described via pQCD involving
formation of hadron from ¢g pair, e.g fragmentation (hadronization), which is done by an
additional code JETSET([48]). If the virtuality is low and %, is small, pQCD is not applicable
and VMD (see Section 2.6) model is used. HERMES detector effects, e.g. its geometrical
acceptance, efficiency and smearing was simulated by GEANT package ([50]).

Two types of PYTHIA productions were used in this analysis: the one containing various
diffractive processes was used for normalization in Maximum Likelihood Method (MLH)(see
Section 4.2) and another one, containing also semi-inclusive processes, was used for background
estimation. Each of the Monte Carlo sets used in the analysis consists of two subsets from the
two detector-composition geometries, mixed in the same ratio as the corresponding geometries
are presented in the real data. The subsets were generated for the two target types (proton and
neutron) and two beam types (electron and positron). The proton and neutron subsets were
mixed in final sets in such a proportion that their absolute luminosities are equal. The lumi-
nosity of a Monte Carlo set is calculated via the total cross-section of the generated processes
— extraweight, the number of attempts to generate acceptable events — tevgen, and number
of generated runs N. These numbers are stored in the files produced during generation of the

Monte Carlo set. The total luminosity reads

SN ievgen;
SN extraweight; /N

Ly = (4.10)
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RhoMC generator

RhoMC generator was designed especially for exclusive vector meson production generation
and in contrast to PYTHIA, which generates the whole stochastic spectrum of the final states,
produces these according to the VMD model. RhoMC generates flat distributions in a kinematic
box for most of the kinematic variables and then weights each event with the corresponding
cross section. While in PYTHIA event weights are equal to 1, RhoMC weights are hence
different from 1. The RhoMC kinematic distributions are physical only after weighting each
generated event with the corresponding event weight.

RhoMC generated sets were used for the systematic uncertainties estimation, e.g so-called
7all-in-one” procedure (Section 4.3.1) and uncertainty due to the different Monte Carlo models
(Section 4.3.2). All-in-one procedure is used for estimation of the systematic uncertainties of
SDME extraction method, limited statistics, detector smearing and misalignment. RhoMC sets
were used as pseudo-data in the procedure, e.g. known implemented SDMEs were extracted
from RhoMC set instead of the real data set.

RhoMC sets with vanishing SDME values, e.g with uniform decay angular distributions,
distorted by HERMES acceptance only, were used as normalization samples in Maximum Like-
lihood Method (MLH) for estimation of the systematic uncertainty due to the different Monte

Carlo models.

4.1.8 Data to Monte Carlo comparison

In Figure 4.2 data-to-PYTHIA comparison for the missing energy distribution in different
kinematic Q% and ¢ bins, used in the analysis, is presented. Event selection was done with
the same constraints as for data, the Monte Carlo signal (red dotted histogram in Figure 4.2)
consists of the events with a process type number, corresponding to the exclusive ¢ meson
production. For the background sample (magenta dashed histogram in Figure 4.2) events
which pass all the exclusive cuts (except from the missing energy cut) but are of background
types, were selected.

In Appendix C kinematic distributions in different Q? and ¢’ bins for data, PYTHIA and
RhoMC without implemented SDMEs are presented.

4.2 SDME extraction

In this chapter the procedure of SDME extraction from the decay angular distribution in
Wolf-Schilling and Markus Diehl notations using the unbinned maximum likelihood method is
described. The decay angular distribution W (Equations 2.61 - 2.62 - in Wolf-Schilling form,
Equation 2.66 - in Markus Diehl form) of the vector meson contains the measured decay angles

and unknown SDMEs, which are the object of interest. The angular distribution is, therefore,
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affected by the HERMES apparatus (acceptance, measured efficiency, tracking etc.) and by
SDMEs. To extract the latter ones, the instrumental effects were to be excluded from the
decay angular distribution. The acceptance description was provided by the Monte Carlo set,
which was tuned for the HERMES geometrical and kinematic acceptance and whose angular
distributions do not contain SDMEs, except from the first SDME r{3 (see Equation 4.18).
Unbinned MLH was chosen for SDME extraction due to its higher reliability compared to the

binned MLH in case when the limited statistics.

4.2.1 Maximum-likelihood method

The first step in MLH method implementation is to build the probability density function p.
d. f. The probability dp for a single event to be detected is given by the formula ([57])
(Lo EW)wp

dp = —grone (4.11)

where £ denoted the integrated luminosity determined by counting DIS events, E = E(®, ¢, cos )
is the detector efficiency, W = W(®, ¢, cos @, Py, \) is the theoretically predicted decay angular
distribution of the vector meson in Wolf-Schilling or Marcus Diehl representation, P, is the
beam polarization, A denotes a vector of 23 SDMEs, wp is the event weight (if any) for real
data, wy;c is that of Monte Carlo. The denominator of this function is the normalization of
the p. d. f. and is responsible for the acceptance of the HERMES spectrometer. The normal-
ization factor 9 is to be such, that the total probability to detect final particles for all angles

dS) = d®dpd cos 0 is equal to unity:
/dp: /W(®,<p,cos9,Pb,X)dQ =1. (4.12)
For the total set of N events the likelihood function L is defined:

R e 413)

where the detector efficiency is omitted since it does not depend on X parameters. The product
in the denominator is independent of A parameters and can be ignored in the likelihood fit, if
the whole data set has no net beam polarization (See [58]): [ PdP = 0. To achieve this, the
data set has to be either unpolarized or beam-polarization balanced. The balanced sample,
e.g. the sample consisting of the two sup-samples with opposite beam polarization signs and
equal luminosities, can be obtained either by skipping of a part of the data with the prevailing
polarization sign or by assigning a beam-balancing weight. The weight for the data with a
certain beam polarization sign was calculated from the definition of the beam-balanced sample:
| > Lumi  PT| = | > Lumi_P~|, where Lumi is the luminosity of the data set with the cor-
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responding polarization sign, P is the beam polarization value. The luminosity was calculated
ZN7/+DIS p—/+DIS

via DIS sample: wt/~ = The weight was always implemented to the larger

N+/—DIS P‘J,-/—DIS'
J J

set, therefore it was always less than 1. The weight wp used in formula 4.11 can represent

beam balancing weight. The parameters are defined by maximization of the logarithm of the

likelihood (LH) function, or alternatively by minimization of —In L(\):

dln L(\)

= 4.14
- 0 (414)

The In L()) is given by the formula

~InL(\) = — Z (w; In(WYHH(D;, ¢, cosb;, P, X)) — Nep In {Z (w; (WY (@}, ¢;, cosb;))) }]

(4.15)

where sum on index ¢ implies sum of data events, sum on j - sum of Monte Carlo events, N,
is number of events in data, w;(w(j)) is weight of data or Monte Carlo event correspondingly.
The second sum, referred to Monte Carlo events, does not depend on the beam polarization
and therefore does not contain the part of angular distribution involving longitudinal beam
polarization. The logarithm of the likelihood function is to be given to the minimization
program. For this analysis MINUIT package was used. SDMEs were treated as free parameters
during the fitting. The result of the minimization program are SDME values with fitting
uncertainties. The uncertainties are root squares of the diagonal elements of the covariance
matrix V' with the dimensions k x n, k = n, which can be determined from the matrix of the

second derivative In L via

_ 0lnL
OO |5

(V") (4.16)
In Figure 4.9 angular distributions are shown for hydrogen data sample for the real data,
isotropic Monte Carlo sample used for MLH normalization, and Monte Carlo set reweighted

with the obtained SDME values. The reweighted distributions are in agreement with the data.

Unbinned MLH: implementation without beam balancing weights

As an additional cross-check of the beam-balancing procedure and the whole MLH method im-
plementation an alternative representation of the LH function without beam-balancing weights
was used. In such a representation of a MLH function the normalization factor depends of the
polarization even in the case of the polarization balance. In Formula 4.17 the sum over Monte
Carlo events runs inside the sum over data ones. This means that instead of calculation of the

normalization integral on each fit iteration as it was done in Formula 4.15, the intergal was
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Figure 4.8: The angular distribution for hydrogen data of the periods 1998-2000,
2006-2007 (black points), the uniform Monte Carlo generated angular distribution used
for p.d.f normalization in the fitting procedure (black dotted lines), Monte Carlo dis-
tributions reweighted with the corresponding SDME values (red dashed lines) for Q?
bins and overall kinematics. All the distributions are normalized to unity.
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Figure 4.9: The angular distribution for hydrogen data of the periods 1998-2000,
2006-2007 (black points), the uniform Monte Carlo generated angular distribution used
for p.d.f normalization in the fitting procedure (black dotted lines), Monte Carlo distri-
butions reweighted with the corresponding SDME values (red dashed lines) for ¢’ bins
and overall kinematics. All the distributions are normalized to unity.
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calculated for each particular data event individually using the beam polarization value for this

event.

InL()\) = Z [wi In (WYH(®;, ¢4, cosb;, P;, N))

7

—~N,, In (Z (w;(WYHE(D;, ¢, cost;, B)))) (4.17)

J

Figure 4.10 shows an agreement within half o between the two methods for the hydrogen
and deuteron data sets taken in the period 1998-2000, 2006-2007 years. In the present analysis
the MLH with the beam-balancing weights was used.

4.2.2 Monte Carlo studies of the MLH fit stability

To check that the chosen method is correct and that the PYTHIA-generated Monte Carlo set
used for p. d. f. normalization does not produce any bias in SDME measurement, the so
called "zero—test* was performed. In this test instead of the data set, the parameters were
extracted from a Monte Carlo set with uniform angular distribution, e.g. without angular
dependences. To obtain such a distribution, all SDMEs have to be set on 0 except from the
first one. According to Equation 4.18, if 73 = %, then all the dependences are excluded from

the angular distribution and [ WdQ2 =1, e.g. the distribution is normalized.

1 1
Wi (cost, ) = - (co 08 + Ssn0(1 —185) ) =

T T 4r
1 1 1 1
520082(9§+§Sin29<1—§)

1
- = 3 (00329+sin2 9)

(4.18)

On Figure 4.11 the extracted Wolf-Schilling SDMEs from pseudo-data corresponding to the
data taking period 1998-2000, 2006-2007 years are presented. All SDMEs except from the first
one are equal to zero within 1-2 ¢, showing no bias in the method of extraction and no artificial
effects produced by the Monte Carlo sets.

A more precise test using a RhoMC-generated Monte Carlo set with non-zero SDMEs im-
plemented in it as a pseudo-data, was also performed. The statistics for both pseudo-data and
normalization sets was also large enough to check the fit procedure reliability without limited
statistics effects. On Figure 4.12 the extracted Wolf-Schilling SDMEs from pseudo-data for hy-
drogen and deuteron targets are presented. The extracted values agree with the implemented
ones within 1-2 o, except from the SDME value of rj,, which is unstable in all the systematics

checks, listed in Section 4.3. Such an instability can be explained via radiative effects, whose
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ues extracted from deuteron data set. The statistical uncertainties of the extracted
values are almost invisible because of the large statistics used.

influence on SDME 1, is stronger than on all the others (Section 2.15). The agreement be-
tween the other implemented and extracted SDME values shows the ability of the MLH fitting
method to provide reliable SDMEs.

4.2.3 Cross-checks of the results

All the steps of the analysis, e.g. the event selection, SDME extraction, U;,U,,Us quantities
calculation were cross checked, as required by the HERMES collaboration rules. For the cross
check of the fitting procedure three independent programs were used. All of them provided
almost identical results (differences are lower than 0.1%) in case of using the same input data,
e.g. same event lists. For the cross check of the whole analysis, e.g. starting from the event
selection, two independent implementations were used. The discrepancy of the event numbers
was up to 2%, resulting in approximatelly 5% differences in the final SDME values. This can

be explained by the low statistcs for the ¢ meson, which makes the fit very sensible even to
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the differences in the event lists of the order of a few percents. The U;,Us,Us quantities also

showed differences up to 5%.

4.2.4 Extracted SDMEs and U,, U,, U; values.

The measured SDMEs in Wolf-Schilling notation for 1998 — 2000 and 2006 — 2007 unified data
sets, for hydrogen and deuteron targets are presented in Figure 4.13. The extraction was done
in 3 Q2 and 4 t’ bins described above (Table 4.4), the same as for the overall kinematic range.
SDMESs are divided into 5 classes according to the helicity transition type.The vertical dashed
line denotes SCHC. The same results in Markus Diehl notation are presented in Figure 4.14.
They are divided into three main classes, which represent spin conserving transitions, spin-flip
transitions and double flip transitions correspondingly.

Only statistical uncertainties are plotted. SDMEs involving the beam polarization are shown
in shadowed areas. The statistical uncertainties of polarized SDMEs are larger, since they
have an additional multiplication factor (see Formulas 2.62, 2.71, 2.72, 2.73) in the angular
distribution, e.g. the beam polarization, which has an average value 0.35.

As was mentioned above (see Section 2), SDMEs from Wolf-Schiling and Markus Diehl
notations are connected via relations listed in Appendix A. In Figure 4.15 Markus Diehl SDMEs
for hydrogen and deuteron targets for overall kinematics extracted using MLH method are
compared to SDMEs recalculated from Wolf-Schilling ones. The equality of SDMEs obtained
via two different ways excludes the possibility that MLH fit got stuck to a local minimum in

only one of the two cases.

4.2.5 Compatibility of hydrogen and deuteron results.

Vector meson SDMEs are expected to be similar for hydrogen and deuteron data, since after
exclusion of coherent deuteron data both hydrogen and deuteron targets are 3-quark systems
from the point of view of gluon, mediating the exchange between + and nucleon. For both
deuteron and hydrogen targets at HERMES level of energies the process is dominated by
gluonic GPDs. To check if the results are compatible, a x? test for the two independent sets of
results (e.g. different targets) was fulfilled in each kinematic bin. The obtained y? values are
shown in Table 4.5; all of them (except from the first two Q% bins) are less than one, indicating

an agreements betwen the SDMEs for the two targets.

As an additional statistical check, the deviations between proton and incoherent deuteron

results were calculated as

. _ SDME| - SDME
\/ Uii + 03

for each SDME in each kinematic bin. From figures 4.21 - 4.25, where the deviations areplotted,

(4.19)
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Figure 4.14: SDMEs in Markus Diehl representation extracted from hydrogen (left
side figures) and deuteron (right side figures) data sets of 1998 — 2000, 2006 — 2007
years in Q? (top figures) and ¢’ (bottom figures) kinematic bins.
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one can conclude that 10 deviation values out of 161 (4 bins in ¢ % 23 SDMEs + 3 bins in
Q? * 23 SDMEs=161 points) are larger than 2 o. The 10 points correspond to 6.2% from the

total amount of 161 points and are statistically allowed percentage of the difference, prooving

compatibility of SDMEs for hydrogen

and deuteron targets.
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Kinematic bin 2

1 GeV? < Q%< 1.4GeV? |239
1.4 GeV? < Q? <2 GeV? | 21
2 GeV? < Q? < 7 GeV? 0.58
0< GeVZ—t <0.04 GeV? | 0.40
0.04 GeV? < —t/ < 0.1 GeV? | 1.16
0.1 GeV? < —t' < 0.2 GeV? | 0.17
0.2 GeV? < —t' < 0.4 GeV? | 0.50
overall 0.05

Table 4.5: Values of x? characterizing compatibility of the hydrogen and deuteron
data sets in each kinematic bin. The first ¢ bin is added in the comparison for the
completeness, although it is excluded from deuteron ? bins.

N i =e
s 2 =2 ™ L2
1 1 E 1
O-e ® . 0 . T 0 e —
-1 -1 -1
-2 -2 -2
37 2 3 37 2 3 3] 2 3
Q[GeV? Q[GeV? Q’[GeV?]

Figure 4.16: The proton to deuteron deviations of ¢ SDMEs from class A on (.

4.3 Systematics

Each of the sources of systematic uncertainty can create a bias in the measurement. The
systematic uncertainty sources, relevant to this analysis, are imperfect calibration or operation
of measurement instruments (in the context of this analysis these are uncertainties due to the
beam misalignment and smearing of the detector measurements), changes in the environment
which interfere with the measured process (n terms of this analysis - background contamination)
and imperfect methods of calculation (in terms of this analysis - uncertainty of unbinned MLH
and the model of Monte Carlo generator producing the p. d. f. normalization sample). The
uncertainties due to the beam misalignment, detector smearing and uncertainty of the unbinned
MLH method are estimated via so-called “all-in-one procedure”, described in Section 4.3.1.
The SDME systematic error due to the imperfectness of the physical model used for event
generation of the Monte Carlo set is described in Section 4.3.2 and was evaluated by using

the two different generators described above (Section 4.1.7). The uncertainty due to the semi-
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inclusive background subtraction is described in Section 4.3.3.

4.3.1 All-in-one procedure

As was mentioned above (Section 4.2.2), the method of SDME extraction can be checked
by using so-called pseudo-data instead of the real data. Pseudo-data is a RhoMC generated
Monte Carlo set, whose angular distributions contain known SDMEs, implemented via event
weights. The pseudo-data set included the smearing effects of the detector and the misaligned
beam position, therefore the extracted SDMEs allow one to check the effect of these systematic
sources together with the uncertainty coming from the method of extraction.

As a first check, SDMEs were extracted from the set with the huge statistics to verify only
the method itself without possible influence from statistical fluctuations (see Section 4.2.2).
However, the limited statistics, being the case for the ¢ meson, can affect the results strongly.
In order to check this, the pseudo-data set for each of the kinematic bins was divided into 50
sets with the statistics, comparable to that of the real data. The resulting uncertainty for each
SDME in each kinematic bin was obtained as a maximum of two values: the first one is the

squared average difference between extracted and implemented values, e.g.:

(s1 —8)%+ (82— 8)2 + ... + (sn5 — 8)?
N

A? = (4.20)
where s is an implemented SDME value, s; is the extracted value in a certain kinematic bin
in one of 50 test sets, NV is the number of test sets. The second one is the squared average
statistical uncertainty, calculated as

02 +62 + ...+ 62
=5 5 550 4.21
N (4.21)

52

For the most part of SDMEs in the kinematic bins the value calculated via the deviations
from the true value turned out to be larger than the one calculated via systematic uncertainty,
therefore the final SDME uncertainty was calculated according to the Equation 4.20. Differences
between implemented and extracted values for each SDME in each kinematic bin for the first 20
test samples are plotted in [59] for Wolf-Schilling SDMEs and in [60] for Markus Diehl SDMEs.

For the uncertainty calculation of Uy, Us, Us quantities was used the same way as for SDME
ones. In Figures 4.26 - 4.28 the averaged squared deviations of Uy, Us, Us quantities for the
first 20 test sets in each kinematic bin are shown. They are typically larger than the systematic
uncertainties of the corresponding values. The value of the resulting systematic uncertainty for
SDMEs is of the order of 1073,
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Figure 4.17: The proton to deuteron deviations of ¢ SDMEs from class B on Q2.
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Figure 4.26: The differences between implemented and extracted Uy, Us, for hydrogen
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Figure 4.27: The differences between implemented and extracted Us for hydrogen and
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4.3.2 Different Monte Carlo models

Monte Carlo set used for p.d.f normalization might affect the results. As was mentioned in
Section 4.1.7, the two generators suitable for ¢ meson production contain different cross section
models, different ways of implementing the ? and t' cross section dependencies. As the HER-
MES spectrometer acceptance depends on (Q?, different cross section Q*-dependence models
result in slightly different reconstructed angular distributions and consequently differences in
SDME values. The uncertainty due to the Monte Carlo model was estimated as the difference
between SDMEs obtained using PYTHIA generated set and RhoMC generated set for the p.d.f
normalization, e.g. the difference between each two sets of the same symbols in Figure 4.29,
where the results for overall kinematics are presented. For all the kinematic bins the results can
be found in Appendix E. The uncertainty varies from 1073 up to 107}, the largest uncertainties
are observed for the 15 % bin of the deuteron data.

As was mentioned in Section 4.1.7, RhoMC does not include radiative corrections for the
kinematics, therefore the difference between SDMEs extracted using Pythia and using RhoMC

reflects also radiative effects, which are negligible for most SDMEs according to [61].

4.3.3 Background subtraction

A sample of semi-inclusive events generated by PYTHIA Monte Carlo was used to subtract
the semi-inclusive background from the exclusive channel. The procedure of extraction implies
that first the background sample is used as pseudo data, e.g. the parameters, which represent
SDME:s for the background but have no physical meaning, are extracted from it. Then the MLH
function is modified to extract the data SDMEs X\ using the known values of the background

parameters @ and the probability of each event to be an exclusive one N f - or a background
ota
one NBEG.
Niotai

N¢ W(¢Z,017¢Z,R,X) + NBKG % W(gbhela@’wpha)

Neot NOY N N(@) (4.22)

For both normalization parts in the formula above the exclusive PYTHIA sample is used, the
first fraction contains unknown background-subtracted data SDMEs, the second one contains
known background parameters.

The Table 4.6 shows the background fractions in different kinematic bins. They were ob-
tained as ratios of the missing energy distributions for the data to those of PYTHIA-simulated
background in each Q2 and t' kinematic bin, e.g. ratios of the yields of the magenta histograms
to that of black histograms on Figure 4.2. The ratios were calculated in the exclusive region:
AFE < 0.6 GeV.

The systematic uncertainty due to the subtraction procedure was estimated as the difference
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Figure 4.28: The differences between implemented and extracted U, and Ujs for

deuteron
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Figure 4.29: Wolf Schilling SDMEs (left figure) and Markus Diehl SDMEs (right
figure) extracted using Pythia (open symbols), RhoMC (solid symbols) for the p.d.f.
normalization for overall kinematics.

Kinematic bin Background fraction

1 GeV? < Q? < 1.4 GeV? 2.99%

1.4 GeV? < Q? < 2 GeV? 2.78%

2 GeV? < Q2 < 7 GeV? 2.38%

0 GeV? < —t' < 0.04 GeV? 0.38%

0.04 GeV? < —t' < 0.1 GeV? 3.01%

0.1 GeV? < —t' < 0.2 GeV? 2.54%

0.2 GeV? < —t' < 0.4 GeV? 2.90%

1 GeV? < Q% < 1.4 GeV?, 0.04 GeV? < —t' < 0.4 GeV? 3.14%
1.4 GeV? < Q% < 2 GeV2,0.04 GeV? < —t/ < 0.4 GeV? 3.04%
2 GeV? < Q? < 7 GeV?, 0.04 GeV? < —t' < 0.4 GeV? 2.63%

Table 4.6: The background fraction in each bin

between SDMEs obtained with and without background subtraction, e.g. the difference between

each two sets of the same shape symbols in Figure 4.30, where results for the overall kinematics



Analysis

73

04 * o< 00 00 Lo o2
foo| oY~ 9 - Ui+ Oug | No spinflip -
1 ) = 0+ o 2
M1 V-9 < Re(u -ug) 7Y*L - ¢
2 - " o
Im(r? ) <2 u Y -0 =3
1-7 - -+ T 1
Re(® )| B: Interference g m@-u) | | TR
0’| ® H 0+ O+ furs
6 * * > . . o
Ime )| vo-esv -e g Re uy| Single spinflip § e wmmon nooon
Iy ) 0+ | oy v ol Vit BKG sub
Im(rw) e Re(u)-uf +20ud)| Y°_ - (PL & o nmere
R r8 bt F.:D-. R on [ T .15)_ [ Without BKG subtraction, hydrogen
&( 10) Fi - e(u-+) g O Without BKG subiraction, deuteron
04 o i _—
Re(r)) & Im u®® —
Re(rl ) rc: y*T - Q © m With BKG subtraction, hydrogen m (U0+-u'0) Fi ot
Y BT
;D ~ d‘ @ With BKG subtraction, deuteror : i+ et —'-'-L\': ———————————————————————————
Im(rm) % O Without BKG subtraction, hydrogen Re(u0+-u0+) y* — (pT s.
- I L g
5 O Without BKG subtraction, deuteron *
3o B g t v Re(um) B E
1 O +4+ - —:—O—
I'oo | _.g Im (u0++u0+) I i_..._
3 Ot -+ o
Im(rm) = Im ug, e
8 — 0-_ 40 %
"o B Re(Uy, o 7V*T - @ i
5 [ -+ + - o
5 , Re(u++ Ouge) s
Dy - 2 o a
3. | Lo ) Re(u”) B 3
6 g 0 _t0 e
Im(rl_l) B g Im (uO+ ug, —e
7 e I g
Im(? ) = Im u;, -
8 i 00 .
o T U’| Double spinflip i‘
B —_—— +0y [
rta e Re(u”) §
04 N
r K] Re(u”) §
1-1 ] 0+
[E:v_-~o <, I <+
1 - +:
il T T < el -
T o
Im(r3 =2 Im u* i
(1-1)lH‘\H‘H\‘H'Ff’?\\‘H\lH\‘H\‘H\ e s
-08 -06 -04 -02 O 02 04 06 08 1 -1 -0.5 0 0.5 1

SDMEs

SDMEs

Figure 4.30: Background subtracted (solid symbols) and not-subtracted (open sym-
bols) SDMEs in Wolf-Schilling notation (left figure) and Markus Diehl notation (right
figure) for overall kinematics.

are shown. The results for each of the kinematic bins can be found in Appendix D. The resulting

uncertainty due to the background subtraction is of the order of 1073,

4.3.4 Contribution of each source of the uncertainty to the total system-

atic uncertainty.

In Figures 4.31 - 4.40 the contribution of each systematic source is shown for each SDME in
bars for overall kinematics. Uncertainties are shown as blocks, put on each other, e.g. they
do not overlay. As can be concluded from the plots, the smallest contribution comes from
the uncertainty due to the background subtraction procedure, since the SIDIS background in
the exclusive region does not exceed 3.2%. For some SDMEs, namely Jmr]_, in the bins of
Q? for hydrogen data, SDMEs r}, and Jm7%; in the 1** Q? bin for hydrogen and deuteron
data, the uncertainty due to the all-in-one-procedure prevails over all the other sources. For
most of SDMEs, however, the uncertainty due to the different Monte Carlo model of p. d. f.

normalization set gives the largest contribution.
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Figure 4.34: As in Figure 4.31, but for class D SDMEs.
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Figure 4.39: As in Figure 4.34, but in bins of ¢'.
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4.3.5 Total systematic uncertainty

The total systematic uncertainty was obtained as the square root of the sum of individual
squared systematic uncertainties. In Figures 4.41 - 4.50 the ratio of systematic to statistical
uncertainty for Wolf-Schilling SDMEs is shown. Since polarized SDMEs have larger statistical
uncertainties (the reason is given in Section 4.2.4), the ratio is around 0.1-0.3 for the most of
them. For unpolarized SDMEs the ratio varies from 0.6-0.8 up to 1.2-1.5, e.g. statistical and
systematic uncertainties have comparable values. The largest ratios (around 2) are observed
for SDMEs 77, Reriy, 15, whose values varied strongly in all the systematic studies, listed

above.
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Figure 4.41: The ratios of systematic to statistical uncertainties for hydrogen (blue)
and deuteron (red) of ¢ SDMEs from class A, Q? dependence.
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Figure 4.42: As in Figure 4.41 but for class B.
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Chapter 5
Results

In this section the SDMEs in Wolf-Schilling (Equations 2.61, 2.62) and Markus Diehl (Equa-
tions 2.66- 2.73) notations are presented. They were extracted from the unified data sets
of 1998-2000 years and 2006-2007 years for hydrogen and deuteron targets separately. The
data were obtained on unpolarized targets with the longitudinally polarized beam, therefore
(see Section 2.10 for the explanation) 15 unpolarized SDMEs and 8 SDMEs which include the
beam-polarization dependence were obtained. The extraction was performed using unbinned
MLH (See Section 4.2.1) method for the data divided into three kinematic bins in Q? or four
kinematic bins in ¢’ value. Binning was independent, e.g. by each variable one-dimensional
binning was done. The first ¢ bin, e.g. the data, referred to as coherent scattering (see Sec-
tion 4.1.4) is excluded from each Q? bin of deuteron data. For the ¢’ dependence it is still shown

for completeness.

5.1 Kinematic dependencies of Wolf-Schilling SDMEs

In the Figures 5.1 — 5.10 the Q? and ¢ dependencies for SDMEs are presented, extracted
from hydrogen and incoherent deuteron sets (see Table 4.4 for the bin boundary values). The
SDME:s are divided into the classes A-E, related to certain transition types. Each plot presents
either Q? — in Figures 5.1 — 5.5 or ¢ — Figures 5.6 — 5.10 dependence of certain SDME. For
the comparison also the p meson SDMEs, obtained by HERMES ([26]) in the years 1996-2005,
are shown in the figures. The invisible uncertainties for most of p meson SDMEs are explained
by the large statistics (~ 10 times larger than for the ¢ meson). SDMEs for p meson for of
hydrogen and deuteron target are in most cases very close to each other. ¢ meson SDMEs show
larger spread, however it the deviations do not exceed 20 in most of the cases (see Section 4.2.5).
The values of Wolf-Schilling ¢ meson SDMEs together with the statistical and systematic
uncertainties in all the kinematic bins and for integrated kinematics are given in Appendix F.
Class A: dominant transitions v; — ¢, and v} — ¢,. (Figures 5.1, 5.6).

Class A includes SDMEs, related to the dominant helicity-conserving transitions. The
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amplitudes, responsible for such reaction types, are Tj; and Ty (see Appendix B for SDMEs-
to-amplitudes relations). All the kinematic dependencies were fitted by the linear function.
The first SDME, namely ri, exhibit Q? dependence for both hydrogen and deuteron target,
e.g. the slope in the fit function is different from zero by more than 20s. SDMEs r}_; and
Sm(r?_;) of ¢ meson show Q? dependencies for deuteron target, which is stronger than that of
p meson SDMEs. Neither for ¢ nor for p meson ¢’ dependencies of A-Class SDMEs is observed.

Theory expectations are that only the first SDME, namely 75 must have Q? dependence,
all the other SDMEs have to be Q% and t' independent.

Class B: interference of v; — ¢, and ~}, — ¢ transitions. (Figures 5.2, 5.7).
Class B consists of SDMEs describing the interference of the dominant transitions. The in-
terference is reflected as a product of the corresponding amplitudes 77; and Tyy. Polarized
(unpolarized) SDMEs are related to the real (imaginary) part of the product. No pronounced
Q? (Figure 5.2) or ¢’ (Figure 5.7) dependence for SDMEs of B class was found, neither for p
meson nor for ¢.

Class C: helicity flip transition v} — ¢,. (Figures 5.3, 5.8).

Class C comprises SDMEs containing a product of the helicity non-conserving amplitude Ty,
and one of the amplitudes Ty, 111, Tp;. If SCHC is hold, all the SDMESs of classes C - E have
to be zero. The SDME significantly violating the hypotheses for both ¢ and p mesons is rf,.
For p meson this is theoretically expected and experimentally observed at HERA by ZEUS
(24]) and H1 (25]). For the ¢ meson the non-zero value is less pronounced, but theoretically
unexpected. The rg, value obtained by H1 (28]) was zero within 20 in all the kinematic bins.
The possible explanation to the observation of HERMES a non zero value is the effect from the
radiative corrections and was provided in Section 2.15. The remaining SDMEs of the C class
are statistically consistent with zero.

No clear Q* dependence was found for the p meson SDMEs of class C. Several ¢ meson SDMEs
of deuteron exhibit Q* (Im(r%,), r5,) or t' (r§,) dependencies.

Class D: helicity flip transition v; — ¢g. (Figure 5.4, 5.9).

Class D contains SDMEs that are a product of the small helicity-flip amplitude 7}y with the
complex conjugate of Tj;. Unpolarized (polarized) SDMEs represent the real (imaginary) part of
this product. The p meson SDMEs show i at all weak kinematic dependencies and are consistent
with zero ([26]) apart from ;. For ¢ meson r§_; for hydrogen is weakly Q? dependent, Sm(r]_;)
and r¥, for deuteron are ¢ dependent.

Class E: helicity flip transition v* . — ¢,. (Figure 5.5, 5.10).

Class E consists of SDMEs, which are a product of the double spin-flip amplitude 7}_; with the
complex conjugate of the helicity-conserving amplitude T7;. Unpolarized (polarized) SDMEs
represent the real (imaginary) part of this product. Neither p nor ¢ meson SDMEs show

significant kinematic dependencies.
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5.2 Test of SCHC hypotheses

SDMESs of class B together with the second and third SDMEs of the class A, provide a possibility
to test SCHC hypotheses. In Figures 5.11 and 5.12 the pairs of SDMEs (see Equations 2.13)
whose absolute values are to be equal in case of SCHC are plotted together. In Figure 5.13
the differences between SDMEs of each of the pairs are presented. There are two deviations
of the differences from zero for more than 20, in other words in two pairs the absolute SDME
values deviate from each other. These are Im(r7,) — Re (rf,) in 15 Q? bin of deuteron data and
Sm(r],) — RNe (rf,) in 2"¢ ¢’ bin of hydrogen data. For SDMEs Sm(r7,) and Re (r$,), formulas
in Appendix B show that the largest SCHC amplitude Ty, is multiplied by the smallest 771
amplitude in the terms that violate SCHC. The 2 deviations make 5.5% from the total number
of SDME differences, most of the remaining values (77.8%) are lying within 1o from zero. This

indicates that SCHC holds for ¢ meson and is in agreement with theory expectations.

5.3 Kinematic dependencies of Markus-Diehl SDMEs

In Figures 5.14 - 5.18 Q% dependencies of Markus Diehl SDMEs are presented. In Figures 5.19
- 5.23 those for ' dependencies are shown. The same as for SDMEs in Wolf-Schilling notation,
these in Markus notation are divided into 3 classes according to helicity transition type.

Note that the values of the first SDMEs in Wolf-Schilling and Markus Diehl notations are
equal (formulas connecting the two notations can be found in Appendix A) which one can see
in comparison of first plots in Figures 5.1 and 5.14, 5.6 and 5.19.

In Figures 5.14, 5.19 the kinematic dependencies of SDMEs related to s-channel helicity con-
serving transition are shown. These SDMEs are significantly different from 0. In Figures 5.15,
5.20, 5.16, 5.21, 5.17, 5.22 the SDMEs describing the helicity-flip transitions ;. — ¢y,
v; — ¢r and v, — ¢ are presented. The are mostly compatible with zero for hydrogen
and larger in some kinematic bins for deuteron. Some of them, e.g. Re {ulf, — ul% + 2eug;
and u?, , exhibit clear ¢ dependence. Figures 5.18, 5.23 show SDMEs which represent double
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using the covariance matrix.

spin flip transitions. For hydrogen SDMEs of that class are close to zero while for deuteron
significant deviations from zero in some kinematic bins are observed. The form of ¢’ dependence
of unpolarized SDMEs was predicted theoretically in Diehl notation (21]) as UZZ/’ ~ ax (t')Pmin/2,
The dependence form holds for t — 0 and in the forward scattering limit, e.g. when the scat-
tering angle of the vector meson is small. In Figures 5.19- 5.23 the ¢’ dependencies are fitted
using theory-predicted ((21]) pmin values and then treating p as a free parameter. The notation
defines only the minimum values of the parameter p, its actual value can be larger. The p
values together with corresponding % are given in Table 5.3. Taking into account the fit

uncertainty, p values obtained as free fit parameters are larger than the theory-provided values.
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Target Hydrogen Deuteron

SDME DPmin % prie £err n?if f%f}?’ prie err n?if
uf, + eugy 0 | 4212 | -0.007 + 0.176 | 4.211 | 1.896 | 0.001 + 0.143 | 1.896
Re(ugt — ug?) 0 | 4.728 | -0.182 4 0.0916 | 2.774 | 0.899 | -0.0768 + 0.075 | 0.382
uZ} 0 || 1.860 | -0.195 + 0.197 | 1.375 || 2.954 | -0.294 + 0.125 | 0.258
Reudd, 1 | 2480 | -2.140 & 1.886 | 1.411 | 0.597 | -0.523 4 1.613 | 0.150
Re(ult, —ui +2eug?) | 1 | 0.806 | 8.663 £ 11.140 | 0.188 || 3.646 | 4.857 £ 2.744 | 1.244
Re(u’t) 1 | 0.626 | 55.530 4+ 127.927 | 0.183 | 2.241 | 31.981 + 24.209 | 2.596
Re(udi™ —ugy) 1 | 1.561 | 61.728 4+ 244.056 | 1.503 | 1.817 | 1.658 + 1.645 | 1.720
Re(ug;") 1 | 0.141 | -0.914 + 11.387 | 0.112 | 2.268 | 5.492 + 6.598 | 1.779
Re(u); — ud?) 2 || 2365 | 0.230 £ 2.385 | 1.862 || 0.696 | 5.136 &+ 9.162 | 0.523
Re(ulT — eugyh) 2 | 1.659 | 49.701 4+ 157.498 | 1.520 | 1.519 | 34.925 4+ 120.724 | 1.567
Re(u®?) 2 || 4.660 | 12.754 £ 15.504 | 4.273 || 1.467 | 20.609 + 130.422 | 1.419
u®, 2 || 1.410 | 42.416 + 161.493 | 1.049 || 2.423 | 30.514 + 35.208 | 1.341
Re(u?) 3 || 0.327 | 65.232 £ 622.117 | 0.338 || 1.417 | 33.134 + 45.738 | 1.385
Re(ugy) 3 ][ 0322 | -0.722 + 6.226 | 0.0297 || 0.272 | -0.648 + 3.937 | 0.011
uty 4 || 1.570 | 29.705 + 142.589 | 0.358 || 1.570 | 18.018 4 21.836 | 1.677

Table 5.1: Comparison of the theory-predicted slopes of a t’-dependence for unpolar-
ized Markus-Diehl SDMEs with those found via fit. In the first column SDME is given.

The theory-predicted slope values (p) are shown in the second column. The

2
Xth

o values

corresponding to these parameter values are presented in the third (sixth) column for
hydrogen (deuteron) SDMEs. Slope parameter values obtained via fit are given in the

fourth (seventh) column with corresponding n?%f values in fifth (eighth) column for
hydrogen (deuteron).

5.4 UPE quantities

To check the presence of UPE exchange for ¢ meson (see Section 2.14 for the details), the

Uy, Uy and Uz quantities were calculated via Formulas 2.78— 2.80 in each kinematic bin. The

corresponding results are presented in Figure 5.24. The overall values shown as open symbols are

zero within 1o, which indicates that UPE contribution for the ¢ meson production mechanism

is negligible. A non-zero signal of UPE would be evidence for the existence of quark-anti-quark

exchange, which is observed for exclusive p production (24],[25],[26]). A negligible contribution

of UPE amplitudes to the production of the ¢ meson as indicated by U; and Us values in some

kinematic bins is consistent with the small content of strangeness in the nucleon and also of

light ¢q pairs in the ¢ meson.

The values of Uy, Uy and Us quantities with their statistical and systematic uncertainties

are given in Appendix F in Tables F.9 for hydrogen and F.10 for deuteron.
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Figure 5.24: Kinematic dependencies of quantities Uy, Uy and Us for the data set of
1998-2000 and 2006-2007 years are presented. Open symbols denote overall values, blue
squares represent hydrogen, red circles represent deuteron. The Q? (¢') dependence is
shown in the left (right) panel. The inner error bars represent the statistical uncer-
tainties, the outer ones indicate the statistical and systematic uncertainties added in
quadrature. For the calculation of the uncertainties the correlations between SDMEs
are taken into account. The first ¢ bin is excluded from each () bin of deuteron data,
in ¢’ dependence it is still shown for completeness.

5.5 Cross section ratio

In the left panel of Figure 5.25 the ratio R of longitudinal-to-transverse ¢ meson leptoproduction
cross-section is presented as a function of Q?. The ratio was calculated using the first SDME
rds according to the equation R% = %%, which is valid only under the SCHC assumption.
The values of R with the statistical and systematic uncertainties can be found in Appendix F
in Table F for the various Q% bins. Note that the values for hydrogen and deuteron targets are
same taking into account uncertainties. In the right panel of Figure 5.25 the comparison with
the world data, namely results from experiments H1 [28] and ZEUS [27] is presented. From H1
and ZEUS data one can conclude that at Q% > 2 GeV? the longitudinal cross section prevails
over the transverse one, which might be the case for deuteron data of this analysis but not for
hydrogen one. The reason for the difference is W dependence of the cross section ratio. The
average W value in 3" Q? bin which is the closest one to the ZEUS @Q? range is 4.8 GeV.

The ratio points obtained in this analysis and world data are fitted with a VMD model
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Parameter co c X2 /n.d.f
ZEUS and H1 (high W) | 0.49 + 0.11 | 0.92 £+ 0.17 0.359
This analysis (low W) | 0.39 £ 0.03 | 0.80 £+ 0.14 1.59

Table 5.2: Parameters of the linear fit of the cross section ratio for low-W results (this
analysis) and high-W (world data).

suggested function
R™ = ¢y(=55), (5.1)

where ¢y and ¢; are free parameters and My is the ¢ meson mass. The fit parameter values
and y? values for the fits are given in Table 5.5. The small x?/n.d.f indicate that the fits are

dominated by uncertainties.



Results 102

©15 ¢}

—
|t|3 B this analysis hydrogen
S @ this analysis deuteron
o

05,4

1 2 3
Q’[GeV?]

Figure 5.25: Cross section ratio for hydrogen (blue squares) and deuteron (red circles)
fitted with a linear function. Black line represents unified fit for hydrogen and deuteron,
the fit parameters are shown on the plot. Open symbols denote overall values. The inner
error bars represent the statistical uncertainties, the outer ones indicate the statistical
and systematic uncertainties added in quadrature. For deuteron data the ¢’ range is
0.04 Gev < —t’' < 0.4 Gev, for hydrogen one 0. Gev < —t' < 0.4 Gev.
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Figure 5.26: Linear fit of the cross section ratio obtained in this analysis (dashed line)
in comparison with a linear fit of results from H1 and ZEUS (full line).



Chapter 6
Conclusions

In this thesis the exclusive ¢ meson production from a deep-inelastic scattering of a 27.6 GeV
unpolarized lepton beam on an unpolarized hydrogen and an unpolarized or longitudinally
polarized deuteron gas targets was studied. The data used in the analysis were recorded at
experiment HERMES in in the two time periods from 1998 to 2000 and from 2006 to 2007
years. The results were obtained in the kinematic region of the photon virtuality between
1 GeV? < Q2 < 7 GeV? and the center-of-mass energy from W > 2 GeV in three bins of (Q?
and four bins of #. Measurements of angular and momentum distributions of the scattered
lepton and vector meson decay products, namely two oppositely charged kaons, give an access
to the nucleon structure in terms of GPDs and to the production mechanism. The final spin
states of the vector meson are described by elements of spin density matrix, which depend on
amplitudes for the spin transition processes between the virtual photon and the vector meson.

By performing a maximum likelihood fit, fifteen unpolarized SDMEs and eight beam po-
larization involving SDMEs were defined in the notations of Wolf-Schilling and Markus Diehl.
From the extracted SDMEs in Wolf-Schilling representation the quantities Uy, Uy and Us which
indicate presence of unnatural parity exchange in ¢ meson production mechanism. The quan-
tities are statistically zero for the integrated kinematics, which is in agreement with theory
expectations of natural parity exchange dominance for the ¢ meson production. Another im-
portant property of the ¢ meson production is s-channel helicity conservation, which can be
tested using values of certain SDMEs. No s-channel helicity conservation violation was found
for the ¢ meson production.

The longitudinal-to-transverse cross section ratio R was determined as a function of Q2.

Comparison with the world data indicated W dependence of the ratio.
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Appendix A

The relations between the SDME notation
of Wolf-Schilling and that of Markus Diehl

The SDMEs in Wolf-Schilling (p$, see Sections 2.8, 2.10) and Diehl (uZ’/lL, see Sections 2.11,

2.12) notations are connected via the next relations:

u®, +eud) =1y Smiudt —ugly = V2(Smrly + Re )
Re {ugt —upl} = V2(Smrfy — Re rfy)  Sm {ugy} = oo/ V2
ult a4 2eudy =110y Sm{ul —ull} = —2Imr,
ul=ry —Smrf Smiugy —ugl} = V2(Smrly — Re 1)
Re {Ugg} = _7’80/\/§ Sm{uii} =-3m o

Re {ult. —ull + 2eudd } = 2Re vy Sm(udy +ugy) = Vor$,
Re {uh 1 =Rerfy — Smry,  Sm{ug,} = (Smr]_, +Rerf ))/V2

Re {ug, — gy} = = V2(Smrfy + Re rfy)  Sm {ugs } = —(Smr{; — Re r_)/V2
Re {ul] — euge'} =i,
Re {ull} =ry
Re {ugy +upr } = —v2ry,
Re {ug} = —(Smry_; — RNe ri)/V2
Re {u”,} = r
Re {ut)} = Re ri, + Smry,
Re {ugy } = —(Smry_; + Re ri_)/V2

+—- _ 1 o 2
ul, =Ty FSmryy
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Appendix B

The relations between the SDMEs in the
Wolf-Schilling notation and amplitudes

Relations between SDMEs in Wolf-Schilling notation (pg., see Sections 2.8, 2.10) and helicity
amplitudes are presented below. For convenience, the abbreviation Y = %Z MyAy 18 Introduced
for the summation over the final nucleon helicity indices and averaging over the initial spin
states ofthe nucleon. If T), apperars without the symbol i, all nucleon helicity indices are
equal to 1/2.

A: ’YZ: ¢r and vp — or
00 = ZE|T00|2 + [ To1)* + [Uo1|?) /otot,

=30 (|AT’}1|2 + T2 = [Unn]? = [Ur-1?) [ Otot
Smri_ =35 (=|Tul + |Tioa|? + |Un|? = [Ui21?) /oter,

B: interference of 7; — ¢ and v — ¢r

Re 15y = L3 Re (270075 + (Tia — Tr1)T5,) /oo
Smry = L5 Re 2U10Ug; — (T2 + Th1)T5y) /rors
Smrfy = 23 Sm (201003, — (T + Ti-1)T5,) /oo
Re 15y = =3-Sm (=273 T3 + (111 — Ti)T3p) /O,

C:r — o1

Je T% = ;%2 (ETloTo*o + %Tm(Tn —Ti )+ %U01(U11 - Ulfl)*) /Ctot,
Re riy = Z@e (=To1(Ti1 — Thi1)* + Uor(Unn + Ui-1)") /010t

Smri, Z/%VZ%Q (Tor(Thy +T1-1)* + Uot(Urs + Ur1)*) [ Otar,

7’(5)0 = \/52%9 (T01T50) /Otot

o0 = V22 Re (=[Tonl* + [Uol?) /oot

Smrf, :N_%ng (Tor (T +Th21)* + Ut (U — Ur21)*) /o,
o = V22 Sm (T Tgp) /0ot
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The relations between the SDMEs in the Wolf-Schilling notation and amplitude36

D: v} — or

7’?1 = \%i%e (Tho(Thy — Tha)* + Uro(Unn — Ui-1)*) /0ot

oy = \%fi%e (=To(Th1 = T11)* + Uio(Un1 — Ur-1)") /Oor,
Smrd | = \%iﬁ}?e (Tho(Tuy +Tho1)* — Uro(Uny + U1-1)") /0t
Smr{_; = \%fi%m (Tho(Th1 + Tho1)" — Uro(Unn + Ur-1)*) / 0tor
rh = —\/Lgfi%m (Tho(Th1 — Thva)* + Uro(Unn = Ui1)*) /0ot
i = \%i%m (Tho(Ty — Th1)* — Uro(Unr — U1-1)*) /0ot

E:ivr — éor

ity =2 Re (—e[Tol* + €| Usol* + T11 T3y — Ui1Ufh) /O,
i =) Re (E—lTl*l + UiaUfy) /oo,

Smri_, = =Y Sm (D115 + Ui-1U3) [ Otor,



Appendix C

Comparison of data to Monte Carlo
(PYTHIA and RhoMC generators)

In Figures C.5 -C.7 kinematic distributions for different Q% and ' bins of the 1998-2000 and
the 2006-2007 years for hydrogen data, PYTHIA and RhoMC for proton target without im-
plemented SDMEs (except from the first one) are presented. In Figures C.1 - C.3 the same
kinematic distributions, but for deuteron data are presented. Neither PYTHIA nor RhoMC can
produce data for deuteron target, so the MonteCarlo sets used in conjunction with deuteron
data were obtained as a mixture of neuteron and proton sets. The proportion of the mixture
was chosen in such a way that the luminosities of the mixed sets were equal.

All the distributions were normalized to unity.
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Figure C.1: The comparison of two first Q* bins of the full deuteron data set (black
line) with Monte Carlo sets, produced by PYTHIA generator (green dashed line) and
RhoMC generator (red dotted line) on unpolarized neutron target. PYTHIA and
RhoMC does not contain SDMEs (apart from the first one), the angular distributions
are affected by HERMES acceptance only. These sets was used for p.d.f normalization.
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Figure C.2: As in Figure C.1, but for the 3" )2 bin and overall kinematics.
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Figure C.3: As in Figure C.1, but for the first two t’ bins.
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Figure C.1, but for the 3"¢ and 4 ¢’ bins.
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Figure C.5: As in Figure C.1, but for proton data and Monte Carlo sets, generated
for hydrogen target.
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Figure C.6: As in Figure C.2, but for proton data and Monte Carlo sets, generated
for hydrogen target.
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Figure C.7: As in Figure C.3, but for proton data and Monte Carlo sets, generated
for hydrogen target.
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Figure C.8: As in Figure C.4, but for proton data and Monte Carlo sets, generated
for hydrogen target.



Appendix D

SDMEs extracted with and without

semi-inclusive background subtraction

In Figures D.1 - D.4 Wolf-Schilling SDMEs extracted from 1998-2000, 2006-2007 data set for
hydrogen and deuteron targets with and without background subtraction are presented for
each Q? and ¢’ bin. In Figures D.6 - D.8 are the same results for the SDMEs in Markus Diehl

notation.
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Appendix E

SDMEs extracted using for the p. d. f.
normalization PYTHIA and RhoMC

generated sets.

In Figures E.1 - E.4 Wolf-Schilling SDMEs extracted from 1998-2000, 2006-2007 data set for
hydrogen and neuteron targets using RhoMC and PYTHIA generated sets for the p. d. f.
normalization are presented for each of the Q? and ¢’ bin. Figures E.6 - E.6 are the same results
for SDMEs in Markus Diehl notation. For th final results extraction PYTHIA-generated sets

were used.
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SDMEs extracted using for the p. d. f.

generated sets.

normalization PYTHIA and RhoMC
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SDMEs extracted using for the p. d. f. normalization PYTHIA and RhoMC
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Figure E.3: As in Figure E.1 but for the 1% (left panel) and 2" (right palnel)t’ bins.
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Figure E.4: As in Figure E.1 but for the 3™ (left panel) and 4 (right palnel)#’ bins.
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Figure E.5: As in Figure E.1 but for SDMEs in Markus Diehl notation.
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Figure E.6: As in Figure E.2 but for SDMEs in Markus Diehl notation.
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Figure E.7: As in Figure E.3 but for SDMEs in Markus Diehl notation.
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Figure E.8: As in Figure E.4 but for SDMEs in Markus Diehl notation.



Appendix F
Tables of results

In Tables F.1 - F.8 are presented SDMEs in Wolf-Schilling notation for hydrogen and deuteron
targets extracted from 3 Q% and 4 ' bins and for overall kinematics. Those in Markus Diehl
notation are given in Tables F.12 - F.19. The Uy, Us,, U3 quantities for hydrogen and deuteron
targets are shown in Tables F.9 and F.10 correspondingly.
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Q? Bin

Hydrogen

Deuterium

1.0GeV? < Q? < 1.4 GeV?
1.4GeV? < Q? < 2.0 GeV?
2.0GeV? < Q%2 < 7.0GeV?

0.426 4= 0.038 = 0.000
0.621 £ 0.054 = 0.000
0.844£0.071 £ 0.004

0.499 £ 0.079 = 0.001
0.509 = 0.083 = 0.000
1.2494+0.157 £ 0.025

1.0GeV? < Q? < 7.0 GeV?

0.617£0.032 £ 0.000

0.754 £0.062 = 0.008

Table F.11: Values and uncertainties of the longitudinal-to-transverse cross-section
ratio R are presented. Values + statistical £ systematic uncertainties for hydrogen
(deuterium) data are given in the second (third) column for Q* bins. Results for
integrated over all kinematics are shown in the last line.
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