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Abstract: We present a spectral phase unwrapping approach for
grating-based differential phase-contrast data where the unwrapped inter-
ferometer phase shift is estimated from energy discriminated measurements
using maximum likelihood principles. We demonstrate the method on
tomographic data sets of a test specimen taken at different x-ray energies
using synchrotron radiation. The proposed unwrapping technique was
demonstrated to successfully correct the data set for phase wrapping.
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1. Introduction

For a wide range of imaging techniques, such as magnetic resonance imaging (MRI), synthetic
aperture radar (SAR) or phase-contrast imaging (PCI) the phase of a measured periodic signal
is the quantity of interest. However, the intrinsic periodic nature of the phase quantity leads to
signal wrapping when measuring and converting the physical quantity of interest, if the original
signal exceeds 2π . Correcting for this effect is known as phase unwrapping, and is a very active
research area in digital imaging. Depending on the situation, unwrapping can become challeng-
ing, for example, because of noise. Various unwrapping solutions have been proposed for a
wide range of applications, such as region growing algorithms, statistical models and Bayesian
approaches among others [1–4].

In grating-based differential phase imaging (gbDPI) phase wrapping occurs when the beam
deflection, due to a strong refraction by the sample, exceeds the ratio of the analyzer grating
period to its distance from the point of deflection [5, 6]. Hence, to reduce or avoid phase wrap-
ping, either the refraction angle or the sensitivity of the interferometer needs to be reduced. But
in many cases a high sensitivity of the interferometer is needed to resolve small signal differ-
ences, e.g. in biological soft-tissues, and phase wrapping occurs at higher deflecting regions
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Fig. 1. Sketch of the Talbot-Lau interferometer. It consists of the source grating G0 with
period p0, the phase grating G1 with period p1 and the analyzer grating G2 with period p2.
In this case, the G1 grating was used for the stepping process. The doted black curve and
the continuous red curve illustrate the interference pattern without and with a sample in the
x-ray beam, respectively.

of the sample. For example the presence of bone or air cavities in soft tissue leads to strong
phase wrapping which strongly corrupts the 3-D tomographic reconstruction [7, 8]. Existing
approaches to correct or reduce phase wrapping errors in differential phase data make use of
the attenuation contrast, which is simultaneously obtained [9, 10]. Those approaches are very
promising, for example in non-destructive testing, but as they rely on a good attenuation con-
trast, they might fail in biomedical imaging where the attenuation contrast is weak.

Here we show that, for gbDPI, the phase unwrapping problem can be solved efficiently,
exploiting the energy dependency (1/E2) of the phase shift using measurements at different
energies followed by a maximum likelihood estimation [11–13]. The spectral x-ray image data
can be either obtained with specially designed x-ray imaging detectors, which are currently in
use or under development [14–19], or by using tunable monochromatic x-ray sources. In this
study we used the latter alternative, and performed the experiments using multiple selected and
highly monochromatic (ΔE/E ∼ 10-1) x-rays from a synchrotron source.

2. Principles

The spatial derivative of the phase shift Φ, which an x-ray wavefront experiences when it passes
through an object, can be measured using an x-ray interferometer [20–22]. In Fig. 1 the three
grating Talbot-Lau interferometer is illustrated, which uses the first attenuation grating G0 with
period p0 to match the spatial coherence of the low brilliance x-ray source [23]. The phase grat-
ing G1 placed at a distance D with period p1 produces an interference pattern with a period p2

further downstream. When a sample is introduced into the beam path, the interference pattern is
shifted, due to refraction caused by the varying phase [24]. Measuring this interference pattern
phase shift ϕ allows to extract the spatial derivative of the phase shift introduced by the sample
(i.e. ∂Φ

∂x ). However, the period of the interference pattern and its phase shift is typically too
small to be directly spatially resolved with a common x-ray detector. For this reason the second
attenuation grating G2, which has the same period p2 as the interference pattern, is placed at a
distance l from G1. The interference pattern is then sampled by stepping one of the gratings (in
our case G1) laterally in x-direction while the intensity I is measured at each grating position
xg. As a result, the intensity I as a function of xg contains the information about the interference
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pattern phase shift ϕ as well as the absorption signal 〈I〉 which contains the information about
the absorption of the x-rays and the signal A1 which contains the information about the small
angle scattering of the x-rays within the specimen. Assuming a sinosoidal variation of the sig-
nal, those parameters can finally be obtained from the first components f0 and f1 of the Fourier
transform of I [25]:

f0 =
1
N

N−1

∑
s=0

Is = 〈I〉, (1a)

f1 =
1
N

N−1

∑
s=0

Ise
− 2πi

N s =
1
2

A1eiϕ . (1b)

Here N is the total number of regularly spaced stepping points (i.e. total number of xg positions)
and Is is the measured intensity in the relevant pixel at step s. From 〈I〉 and A1 we can obtain
the conventional attenuation contrast and respectively the so called dark-field contrast which
arises from the small angle scattering. The interference pattern phase shift ϕ , relative to an
undisturbed interference pattern without the object in the beam, is proportional to the spatial
derivative of the object phase shift Φ introduced by the sample [27, 28]:

ϕ(x,y) =
lλ
p2

∂Φ
∂x

(2a)

=
l
p2

reλ 2 ∂
∂x

∫

Sample

ρ(x,y,z)dz (2b)

= λ 2M. (2c)

Here l denotes the distance between the analyzer grating G2 and the phase grating G1, λ is
the x-ray wavelength, re the classical electron radius and ρ the electron density of the sample.
In Eq. (2c) we combined the energy-independent parameters into M = l

p2
re

∂
∂x

∫
ρ(x,y,z)dz. In

the current context, phase wrapping occurs when the interference pattern phase shift ϕ exceeds
its scope of 0 to 2π leading to an observed phase shift of

ϕ = Ψ modulo 2π, (3)

where Ψ is the unwrapped interference pattern phase shift we are looking for.
In an imaging experiment, we are only interested in the unknown sample parameters which

we included into the energy-independent term M, and more specifically the electron density of
the material therein, of Eq. (2c). Consequently, the invariance of M with respect to the x-ray
energy allows to obtain multiple values of M when ϕ is measured at different x-ray energies.
Hence, if k different energy bins Ej with j = 1, ...,k are used we obtain k values for M which
we can assume to be Gaussian distributed due to the different counting statistic, which is a
consequence of the x-ray source statistic. Because the measurements are statistically indepen-
dent, we evaluate the maximum likelihood estimator (ML) for M by minimizing the following
likelihood function L

L(ϕ j,M) ∝ ∏
j

exp

(
− 1

(2σ2
j )

∣∣∣∣ f1 j − 1
2

A1 j e
iλ 2

j M
∣∣∣∣
2
)

(4a)

∝ ∏
j

exp

(
−

A2
1 j

8〈I〉 j

∣∣∣eiϕ j − eiλ 2
j M

∣∣∣2
)
, (4b)
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Fig. 2. The top row shows a sketch of the plastic (PTFE) cube test specimen at rotation
angle α . The x-ray propagation direction is illustrated by the dashed arrows. The middle
and bottom rows show the measured projections of the interference pattern phase shift
ϕ and the corresponding line plots along the dashed lines, respectively. The projections
where taken at an x-ray energy of 24keV. Since phase wrapping is present in c) and d),
the measured interference pattern phase shift is not anymore proportional to the actual
differential phase shift of the object as expressed by Eq. (3).

where we have assumed the counting statistics to be the main source of noise. This assumption
holds for all photon counting detectors, so that σ2

j = 〈I〉 j. From (4b) we obtain the estimated
M by minimizing the following negative log-likelihood function �

�=− log(L) ∝ ∑
j

A2
1 j

〈I〉 j

(
1− cos(ϕ j −λ 2

j M)
)
+βR2. (5)

Experimental conditions are always such that smaller values of M are more probable. This as-
sumption is enforced by the Tikhonov regularization βR2 with a suitable factor β [29].

The evaluation of the ML estimator from measurements at different energies brings several
advantages:

First, the ML estimator can still be retrieved correctly even if ϕ wraps in each individual
measurement. Second, we effectively increase the signal-to-noise ratio, incorporating an ex-
plicit gbDPI noise model into the ML estimator. Further, relying on more than one measurement
makes this approach robust against low counting statistics and the capability is only limited to
the effective signal-to-noise ratio of all measurements. Finally, in contrast to most existing
2-D phase unwrapping techniques our method does not rely on the information of neighbour-
ing pixels. Instead, each pixel is processed individually and errors possibly arising during the
unwrapping process, even though they are quite unlikely with state of the art unwrapping algo-
rithms, do not propagate through the image. In general, the reliability of this approach and its
robustness against noise improves with the number of distinct energies, which ideally should
cover a wide range of the x-ray source spectrum.

3. Experimental results

To test our method experimentally, we performed tomographic measurements of a plastic
(PTFE) cube test sample at different x-ray energies at the beamline HARWI II, operated by
the Helmholtz-Zentrum Geesthacht, at the synchrotron DESY in Hamburg. Because of its flat
edges, a cube object is difficult to reconstruct from differential phase-contrast projections since
strong phase wrapping occurs when the angle between its facets and the incoming x-rays be-
comes small. To measure the interference pattern phase shift we used the Talbot-Lau interfer-
ometer installed at the beamline [30]. The inter-grating distances were D = 3.0m between the
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Fig. 3. a) The interference pattern phase shifts ϕ for λ1 = 0.52Å (thick black), λ2 = 0.42Å
(thick green) and λ3 = 0.26Å (thick blue) together with the estimated interference pattern
phase shift Mλ 2 (thin lines) for all x-ray wavelength from a single pixel over a 90◦ rotation
of the cube. b) Zoom into the area where phase wrapping, indicated by arrows, occurs.

source and the phase grating and l = 0.32m between the phase and the analyzer grating. The
periods of the gratings were 22.3 μm, 4.33 μm and 2.4 μm for the source, phase and analyzer
grating, respectively.

The interferometer showed good performance (i.e. high visibility) at energies of 24keV,
30keV and 48keV which were therefore chosen for the measurements. For each tomography
scan we took 301 projections, equally spaced over 360◦, while each projection was taken with
4 phase steps and an exposure time of 2s per step. To record the images a 580 μm thick CdWO4

scintillator lens-coupled to a CCD camera with an effective pixel size of 10 μm was used.
Figure 2 (second and third row) depicts the interference pattern phase shift ϕ of the cube at

an x-ray energy of 24keV for different rotation angles α . From a cube, only the regions indi-
cated with white and black triangles lead to a positive and negative interference pattern phase
shift respectively. In the gray region the phase shift Φ induced by the object is constant and no
interference pattern phase shift occurs as it derives from Eq. (2a). Due to the increasing gradient
of the facets the interference pattern phase shift ϕ increases as the cube is rotated. Phase wrap-
ping could be observed at rotation angles smaller than α < 8◦ as shown in Fig. 2(c) and Fig.
2(d). At those angles the measured interference pattern phase shift is not anymore proportional
to the actual differential phase shift of the object as expressed by Eq. (3).

The attempt of a tomographic reconstruction with filtered back projection of a data set con-
taining such phase wraps is corrupted by strong streak artifacts. To correct for those artifacts
we used all measured interference pattern phase shifts at 24keV, 30keV and 48keV to estimate
the unwrapped interference pattern phase shift Mλ 2 by minimizing the cost function [Eq. (5)].
In order to find the global minimum, we evaluated Eq. (5) for a large number of discrete values
of M, with constant spacing and selected the M which lead to a minimal �. The precision in
the evaluation of M is therefore dependent on the chosen spacing, and the processing time on
the total number of values of M which are evaluated. There is no doubt that more advanced
algorithms can be used to improve accuracy and to reduce processing time. The regularization
was defined as R = M

Mmax
where Mmax is the maximum value of M which we tested to find the

global minimum and a Tikhonov factor β = 4 was used.
The result for a single pixel is depicted in Fig. 3, where the measured interference pattern

phase shift ϕ for all x-ray energies as well as the corresponding estimated values Mλ 2 for a
rotation of the cube from 0◦ to 90◦ is shown. The angles where phase wrapping occurs are
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Fig. 4. Measured (dashed) and estimated (solid) interference pattern phase shift ϕ and Mλ 2

respectively at an x-ray energy of 24keV for 4 different rotation angles of the cube. The
arrows in d) indicate the artifacts which derive from the total external reflection of the
x-rays at the surface of the cube.

indicated by arrows. The strength of the interference pattern phase shift ϕ depends further on
the x-ray energy as given in Eq. (2). Since ϕ decreases with increasing energy phase wrapping
tends to occur at smaller angles for higher energies. At an rotation angle of 1.6◦ the signal has
wrapped at even the highest energy, but a correct estimation of M was still obtained.

Figure 4 shows the profile of the measured interference pattern phase shift ϕ together with
the estimated interference pattern phase shift Mλ 2 at 4 different rotation angles for an x-ray
energy of 24keV. As can be seen, the method is able to estimate the interference pattern phase
shift also at angles where the deflection angle exceeds multiple times the direct detectable value
of p2/l. A comparison of the reconstructed electron densities from the measured and estimated
interference pattern phase shifts in Fig. 5(a) and Fig. 5(b) demonstrates the quantitative im-
provement. Within the region marked with the dashed square we extracted mean electron den-
sities of ρm = (4.79±0.93)×1029m-3 and ρe = (5.59±0.61)×1029m-3 from the measured and
estimated reconstruction respectively. Compared to the value in literature ρlit = 6.24×1029m-3

the error could be reduced by a factor of 2.23 [31]. The line plot through the uncorrected slice
(continuous curve in Fig. 5(c)) shows that the square profile of the cube is strongly blurred,
due to the phase wrapping artifacts. On the other hand, the line plot through the corrected slice
(dashed curve in Fig. 5(c)) exhibits nearly the expected square profile of the cube. The deriva-
tion from a perfect square profile and the reason for the too low electron density are mainly
caused by the remaining streak artifacts which have their origin in distinct effects. First, this
unwrapping approach comes to its limits at points where the phase gradient shows singularities.
In addition, total external reflection of the x-rays occurred at small glancing angles. This effect
can also be seen in Fig. 4(d) where the sharp spikes (indicated by arrows) are a result of those
reflections which cause streak artifacts in the 3D reconstruction.
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Fig. 5. Slices through the reconstructed electron density from a) the measured interference
pattern phase shift at 24keV and b) from the estimated energy independent interference
pattern phase shift M. The dashed squares indicate the area from which we extracted the
mean electron densities of ρm = (4.79±0.93)×1029m-3 and ρe = (5.59±0.61)×1029m-3

from the measured and estimated interference pattern phase shift, respectively. c) Line plots
along the horizontal lines of a) (continuous) and b) (dashed).

4. Discussion and conclusion

In conclusion we could demonstrate a method to estimate the unwrapped interference pattern
phase shift ϕ from a set of gbDPI measurements performed at various energies. For that we
proposed to evaluate the maximum likelihood estimator by minimizing a suitable likelihood
function and were able to show its efficiency in a proof of principle experiment. In contrast to
the presented experiment, the measurement of the interference pattern phase shift at different
energies can simultaneously be performed using a polychromatic x-ray source in combination
with an energy-sensitive detector. This is in particular of interest for experiments where the total
radiation dose applied to the specimen might be an issue. The efficiency of this method depends
on the properties of the sample, such as the amount of attenuation, phase shift and scattering of
the x-rays. Further, the x-ray source spectrum, the number and the range of selected energies,
the changing interferometer performance at different energies, as well as the regularization will
have an impact on its success. A detailed analysis of the mentioned influences and a quantitative
evaluation of the final signal-to-noise ratio and thus, the relative improvement of the method
with respect to existing methods will be subject of following studies. We believe that this study
will be of particular interest to the biomedical imaging community, which pushes for the imple-
mentation of spectral x-ray imaging detection schemes right now, and the x-ray phase-contrast
modality in the near future.
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