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We study the effect of QCD corrections to the gg ! H ! WþW� signal-background interference at

the LHC for a heavy Higgs boson. We construct a soft-collinear approximation to the next-to-leading

order (NLO) and next-to-next-to-leading order (NNLO) corrections for the background process, which is

exactly known only at leading order (LO). We estimate its accuracy by constructing and comparing the

same approximation to the exact result for the signal process, which is known up to NNLO, and we

conclude that we can describe the signal-background interference to better than Oð10%Þ accuracy. We

show that our result implies that, in practice, a fairly good approximation to higher order QCD corrections

to the interference may also be obtained by rescaling the known LO result by a K factor computed using

the signal process.
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I. INTRODUCTION

Search for the Higgs boson at the LHC has been a
remarkable success so far. Indeed, both the ATLAS
and CMS collaborations have announced the discovery
of a new boson, whose properties are compatible with
that of the Standard Model Higgs particle, with mass
mh � 125 GeV. Both collaborations also excluded addi-
tional Higgs-like bosons in a large mass range mh &
600 GeV [1,2]. The interpretation of the excesses observed
in various production and decay channels, as originating
from a single spin-zero particle, was made possible by
detailed theoretical predictions for the Higgs boson pro-
duction and decay rates; see Ref. [3] for an overview.

However, these experimental results do not imply that
there are no additional Higgs-like bosons with masses
600 GeV & mh & 1 TeV. In fact, the search for such par-
ticles is well underway [4]. In the Standard Model, as the
Higgs boson becomes heavier, its total decay width grows
rapidly �h �m3

h thanks to contributions of the longitudinal

electroweak bosons: for mh � 600 GeV, the width is close
to 120 GeV. Since the finite-width effects change the
distribution of the invariant masses of the decay products
of the Higgs boson, their understanding is important for
developing experimental search strategies.

There are two finite width effects that influence the
Higgs boson line shape. First, the Higgs propagator must
assume the Breit-Wigner form in the resonant regime
1=ðs�m2

hÞ ! 1=ðs�m2
h þ imh�hÞ. While this modifica-

tion is literally correct for a light (and therefore narrow)
Higgs boson, for a heavy Higgs, it must be modified; the
proper way to do this was subject to a significant discussion
in recent literature; see Refs. [5,6] and references therein.
The second effect is the interference with the background.
Note that, in principle, the two effects are not completely
independent of each other since modifications of the

Breit-Wigner form for the propagator change the very
definition of the ‘‘background’’ in the resonance region,
but discussion of these subtleties is beyond the scope of
this paper.
Our goal is to consider the interference of the signal

process gg ! H ! WþW� and the background process
gg ! WþW� for a heavy Higgs boson.1 This interference
was first computed at leading order in Refs. [7,9]. Although
the gg ! WþW� amplitude appears at one loop, it is
enhanced at the LHC by the large gluon flux, making the
interference effects non-negligible. An obvious shortcom-
ing of Refs. [7,9] is that their analysis of the interference is
performed at leading order in perturbative QCD as far as the
Higgs boson signal is concerned. This is unfortunate since,
for the Higgs boson signal, higher order QCD corrections
are extremely important, as they enhance the total rate by
more than a factor two [10–12]. It is therefore interesting to
explore their impact on the signal-background interference.
Such an endeavor, however, is highly nontrivial. Indeed,

a full next-to-leading order (NLO) and next-to-next-to-
leading order (NNLO) QCD calculation of background
amplitudes requires evaluation of two- and three-loop
2 ! 2 Feynman diagrams which is beyond the reach of
the current computational technology. On the other hand, it
is well known [13] that for the Higgs boson signal a large
fraction of radiative corrections is captured by the soft-
collinear approximation. Since this approximation should
be particularly suitable for the description of a heavyHiggs
boson, we construct a soft-collinear approximation for the
entire gg ! WþW� amplitude that includes both the sig-
nal and the background and study the impact of these
corrections on the interference.

1For the light mh ¼ 125 GeV Higgs boson the interference is
negligible if proper signal-selection criteria are applied [7,8].
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This paper is organized as follows. In Sec. II we sketch the
construction of the soft-collinear approximation. In Sec. III
we present numerical results. We conclude in Sec. IV.

II. SETUP

We begin by describing the setup of our computation.
We are interested in higher order QCD corrections to the
interference between the signal process gg ! H !
WþW� and the pure QCD background gg ! WþW�.
We compute these corrections in the soft gluon approxi-
mation, which is known to describe the full NLO and
NNLO Higgs cross section to very good accuracy. We
will numerically assess the accuracy of our approximation
in Sec. III by comparing it with known NLO and NNLO
results for the signal process.

The cross section for the production of a WþW� pair
with invariant mass Q2, fully differential in the kinematics
variables of the two W’s, is given by

d�ð�; y; f�ig; Q2Þ ¼
Z

dx1dx2dzfgðx1; �FÞfgðx2; �FÞ
� �ð�� x1x2zÞ

� d�̂

�
z; ŷ; f�̂ig; �s;

Q2

�2
R

;
Q2

�2
F

�
; (1)

where fg is the gluon distribution, and d�̂ is the differential

partonic cross section for the process

gðp1Þ þ gðp2Þ ! WþðpWþÞ þW�ðpW�Þ þ X; (2)

with ðpWþ þ pW�Þ2 ¼ Q2;�F and�R are the factorization
and the renormalization scales, �s ¼ �sð�RÞ is the strong
coupling constant at the scale�R, � � Q2=s. We denote by
y the rapidity of the W pair, and by f�ig a generic set of
variables describing the kinematics of the decay products
of the WþW� system in the hadronic center-of-mass
frame; they are related to the corresponding variables

ŷ; f�̂ig in the partonic center-of-mass frames by a boost

with rapidity ycm ¼ 1
2 ln

x1
x2
, and thus the �̂i are functions of

f�ig, x1, x2 and z.
In the soft (z ! 1) limit, the rapidity distribution of the

WþW� pair is entirely determined by the inclusive cross
section [14–16], up to corrections suppressed by powers of
(1� z), and the partonic cross section in Eq. (1) takes the
form

d�̂

�
z; ŷ; f�̂ig; �s;

Q2

�2
R

;
Q2

�2
F

�

¼ d�̂ð0Þðf�̂ig; �sÞzG
�
z; �s;

Q2

�2
R

;
Q2

�2
F

�
; (3)

where d�̂ð0Þðf�̂ig; �sÞ�ð1� zÞ is the leading order partonic
cross section, and Gðz; �s;Q

2=�2
R; Q

2=�2
FÞ is the inclusive

coefficient function computed in the soft limit, i.e. (up to
the explicit z factor) the inclusive partonic cross section

normalized to the leading order in such a way that
Gðz; �sÞ ¼ �ð1� zÞ þOð�sÞ.
In the same limit, the momenta of the W bosons in the

partonic center-of-mass frame are given by

p̂W� ¼
ffiffiffiffiffiffi
Q2

p
2

ð1;�� sin �̂; 0;�� cos �̂Þ (4)

with �̂ theW boson scattering angle in the partonic center-

of-mass frame, and� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

W=Q
2

q
(for simplicity, we

have assumed that the W bosons are on shell, but we will
not make this assumption in the sequel). The kinematics of
the process in the soft limit is therefore the same as the
leading order kinematics, except that the total energy
squared is rescaled by a factor z.
The boost that relates the partonic and hadronic

center-of-mass frames is fixed by taking for the momenta
of the colliding gluons either p1 ¼ zx1P1, p2 ¼ x2P2 or
p1 ¼ x1P1, p2 ¼ zx2P2, where P1;2 are four-momenta of

the colliding protons [15]. Alternatively, one may also take
as momenta of the colliding gluons p1 ¼ ffiffiffi

z
p

x1P1, p2 ¼ffiffiffi
z

p
x2P2 [14]. These two choices coincide in the soft limit

up to terms suppressed by two powers of (1� z) [16] and,
in fact, give very similar results for observables considered
in this paper. We will make the first choice at NLO, where
it is actually exact, while at NNLOwewill take the average
of the results obtained with either choice cases.
We now turn to the explicit form of the coefficient

function Gðz; �s; Q
2=�2

R; Q
2=�2

FÞ, which contains the
core of our soft-collinear approximation. We first sketch
the important features of the soft gluon approximation and
its modifications by focusing on the next-to-leading order.
Further details on this, including required modifications at
NNLO, can be found in Refs. [17,18].
Working to NLO accuracy and in the soft limit and

neglecting all nonsingular terms, we write the function G
as (we suppress explicit scale dependence for simplicity)

Gðz; �sÞ ¼ �ð1� zÞ þ �s

2�

�
8CAD1ðzÞ

þ
�
2�2

3
CA þ c1

�
�ð1� zÞ

�
; (5)

whereDiðzÞ ¼ ½ln ið1� zÞ=ð1� zÞ�þ and c1 is the ratio of
the infrared regulated higher order virtual contributions to
the cross section and the leading order cross section for
gg ! WþW�; see [17] for its proper definition.2 For our
purposes, the important feature of this formula is that
nonuniversal NLO corrections for the process gg ! WW
only enter through the coefficient c1. This is because only
emissions from external gluon lines in each diagram

2Because we consider here the 2 ! 2 scattering process, c1
does depend on the scattering angle. We assume that this
dependence is mild and systematically ignore it in this paper.
Partial justification for this assumption is given below.
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contribute to the amplitude in the soft limit. For the signal-
only process gg ! H ! WW, c1 is known both in the
infinite mt [19,20] approximation and for finite mt [21].
The determination of c1 for the interference would require
the evaluation of complicated gg ! WþW� amplitudes
which is beyond existing technical capabilities.

However, we note that the value of c1 can be obtained
without any computation in the kinematic limit 4m2

W �
Q2 � 4m2

t , mb �mt. In this limit, the interference is
dominated by the contribution of longitudinally polarized
W bosons, which can be obtained from QCD corrections to
the production of two neutral scalars gg ! HH in the
heavy top mass limit [22]. Since both the box contribution
for gg ! HH and the triangle contribution for gg ! H are
described by the same effective Lagrangian, the virtual
QCD corrections should be identical in the two cases.
Although the assumptions Q2 � 4m2

t , mt �mb are not
really justified, we take the value for c1 that is obtained
in that limit as a reference value, and estimate the sensi-
tivity of the final result to its variations.

The soft approximation of Eq. (5) is of course only
defined up to subleading terms. An optimal choice of
subleading terms can be found [18] by using a combination
of analiticity arguments in Mellin space, and information
on universal subleading terms in the z ! 1 limit, arising
partly from the exact soft-gluon kinematics [16] and partly
from universal collinear splitting kernels [13,23]. A dis-
cussion of this optimal soft approximation is beyond the
scope of this paper, and we refer to Ref. [18] for a full
discussion. Here, we note that the best approximation
proposed in [18] (called soft2 there) effectively amounts
to performing in Eq. (5) the replacement

DiðzÞ ! DiðzÞ þ �DiðzÞ;

�DiðzÞ ¼ ð2� 3zþ 2z2Þ
ln i 1�zffiffi

z
p

1� z
� ln ið1� zÞ

1� z
; (6)

where �DiðzÞ is an ordinary function (not a distribution).
In what follows, we will call the approximation based on
Eq. (5) with such replacement a ‘‘soft-collinear’’ approxi-
mation. We will quantify the impact of subleading effects
by comparing this improved soft-collinear approximation
to a purely soft result.

At higher orders the soft approximation Eq. (5) is also
known: see e.g. Eq. (79) in [17]. We improve it analogously
to Eq. (6); see Ref. [18] for details. This soft-collinear
approximation is the basis for the NLO and NNLO nu-
merical results for the signal and the interference that we
discuss in the next section.

III. NUMERICAL RESULTS

We consider the process gg ! Wþðeþ	ÞW�ðe� �	Þ at
the LHC for two values of the center-of-mass energy:ffiffiffi
s

p ¼ 8 TeV and
ffiffiffi
s

p ¼ 13 TeV. We take the Higgs mass
to be mh ¼ 600 GeV, and its total decay width to be

�h ¼ 122:5 GeV [24]. All numerical results presented
below are obtained with a fixed-width Breit-Wigner func-
tion. We have checked that use of the running width in the
Breit-Wigner propagator [25] leads to results for the
signal and interferences that differ by an amount that is
below our accuracy goal, and we expect that the same is
likely to be the case for a full treatment of finite-width
effects [5,6]. Moreover, we have found that the QCD
radiative corrections are insensitive to the propagator, to
the accuracy we work to. We let both the W bosons decay
leptonically and reconstruct all kinematic variables from
the charged lepton and neutrino momenta. We take the W
total width to be �W ¼ 2:11 GeV and heavy quark masses
mt ¼ 172:5 GeV and mb ¼ 4:4 GeV.
We use the NNPDF2.3 parton distribution functions

(PDF) set [26] at NLO and NNLO, with �sðmZÞ ¼
0:118. Throughout this paper, we set the renormalization
and factorization scales equal to the Higgs boson mass
�R ¼ �F ¼ mh. In constructing our soft-collinear ap-
proximation, we retain the exact mt and mb dependence
where available. For example, we use the exact value of c1,
Eq. (5), for the signal process, while for the analogous
Oð�2

sÞ coefficient c2 we use the value computed in the
infinite mt (pointlike) approximation. Note that
with this choice, all logarithmic terms at NNLO have the
exact mt and mb dependence, while the coefficient of the
�ð1� zÞ term is only approximate. As mentioned in
Sec. II, for the interference we take the result in them2

W �
Q2 � m2

t , mb �mt limit as our reference value.
To assess the quality of the soft-collinear approximation,

we first test it against the signal-only gg ! H process at
NLO and NNLO. Results are shown in Table I for two
values of the collider energy. The K factors computed
(without including the Higgs decay) using the exact
theory3 are compared to those obtained with our soft-
collinear approximation, or with the so-called N-soft ap-
proximation, defined in Ref. [18]. The latter amounts to
approximating the partonic cross section with the inverse
Mellin transform of a pure N-space soft approximation, in
which only powers of lnN and constant terms are kept.
Both approximations reproduce the exact result to

Oð3%Þ or better in all configurations. At
ffiffiffi
s

p ¼ 8 TeV,
where the soft-collinear terms are expected to dominate
[28], our soft-collinear approximation reproduces the
exact result to better than Oð2%Þ, while at higher energy,ffiffiffi
s

p ¼ 13 TeV, the agreement deteriorates slightly, because

3At NNLO, an exact result valid for large Higgs masses is not
currently available. For our result, we use the exact result at NLO
[19] plus the pointlike result at Oð�2

sÞ, improving it with those
mt, mb dependent terms which are fully determined by lower
orders (which include all soft-collinear terms). We have checked
that the result obtained in this way is stable upon variation of
small-z terms up to the accuracy shown in Table I, which is a
consequence of the dominance of soft-collinear terms for a
heavy Higgs boson at the LHC [28].
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nonsoft terms become relatively more important. However,
whereas at NNLO the soft-collinear approximation is more
accurate than the N-soft approximation, at NLO the oppo-
site happens. This occurs because numerically the N-soft
approximation happens to be closer to the exact result than
our improved soft-collinear one in the small-N limit. Since
the small-N limit is beyond the region of applicability for
both of these approximations, we consider this feature to
be accidental but note that one can improve both of these
approximations by matching them to the correct small-N
limit [29]. In what follows we use the soft-collinear
approximation as the default and take the spread of values
between the soft-collinear and the N-soft approximations
as an estimate of the uncertainty due to deficiencies of
these approximations in the small-N region.

We have also checked the reliability of our approxima-
tion for differential distributions when decays are included.
Indeed, at NLO accuracy, we find that our approximate
results for the lepton pt and rapidity distributions and for
the lepton invariant mass mll distribution are in good
agreement with the full result obtained from MCFM [30].

Having assessed the accuracy of our approximation, we
can now apply it to study higher order corrections to the
signal-background interference. As explained in the pre-
vious section, we need the exact leading order prediction
for the interference. We extract it from Ref. [7], as imple-
mented in MCFM. For the Higgs boson signal, we use the
exact expression obtained as discussed above. For the
background, we include the contributions of all the three
quark generations; see [7] for details. We also need the
infrared-regulated virtual cross section c1, and the analo-
gous NNLO coefficient c2. As already mentioned, we take
the signal values for these coefficients �c1;2 as a reference,

and study the impact of virtual corrections on the interfer-
ence by varying c1;2 in the range �5�c1;2 < c1;2 < 5�c1;2.

We first discuss the impact of QCD corrections on
the inclusive cross section. Following Ref. [7], we compare
the signal-only cross section �H with the background-
subtracted cross section �Hi��gg!WW��gg!WW jbgonly,
which includes interference effects. We report our
results for the signal only cross section �H and the signal

+interference cross section �Hi for c1;2 ¼ �c1;2 in Table II.

To facilitate the comparison with the results of Ref. [7], LO
results are computed using NLO PDFs. For the signal, the
quoted error is obtained by comparing our soft-collinear
approximation to the N-soft approximation. For the back-
ground, we also consider the additional uncertainty coming
from independently varying the c1;2 coefficients for the

first two and the third generation in the �5�c1;2 < c1;2 <
5�c1;2 range. This leads to an uncertainty of about 6% on the

interference predictions which, combined with the uncer-
tainty of the soft approximation, gives an overall uncer-
tainty of about 8%–9% at NNLO; see Table II. This
uncertainty is of same order of magnitude as the current
uncertainties in the Higgs production rate �NNLO related to
higher order QCD radiative corrections, PDF and �s un-
certainties etc.; see [3]. We conclude that our approach to
estimate higher order corrections to the signal-background
interference in the Higgs production offers a robust frame-
work and adequate phenomenological precision.
We turn to a discussion of the impact of the interference

in a more realistic setup, by imposing selection cuts on
leptons and neutrinos. Apart from the standard acceptance
cuts on the lepton rapidity
l, lepton transverse momentum
pt, and missing energy 6Et,

j
lj< 2:5; pt > 25 GeV; 6Et > 20 GeV; (7)

we impose additional signal-enhancement cuts, linearly
extrapolating numerical values given in Ref. [31]. To this
end, we require at least one lepton with pt > 130 GeV, and

TABLE II. Results (in fb) for the Higgs-only cross section
�H and the signalþ interference cross section �Hi, with mh ¼
600 GeV. No cuts on the final state applied. The errors represent
the uncertainty on the soft-collinear approximation and on the
unknown background coefficients, estimated as explained in the
text.

ffiffiffi
s

p ¼ 8 TeV
ffiffiffi
s

p ¼ 13 TeV

LO NLO NNLO LO NLO NNLO

�H 0.909 1.99(5) 2.6(1) 3.77 8.1(2) 10.3(5)

�Hi 1.188 2.6(1) 3.4(3) 4.56 9.7(4) 12.5(9)

�H=�
LO
H 2.19(5) 2.8(1) 2.14(5) 2.7(1)

�Hi=�
LO
Hi 2.2(1) 2.9(2) 2.13(9) 2.8(2)

TABLE I. K factors for the inclusive Higgs-only cross section
in the narrow width approximation, with mh ¼ 600 GeV, com-
puted using the exact theory, our best soft-collinear approxima-
tion, and an unimproved soft approximation (see text for details).
The (N)NLO result is computed using (N)NLO PDFs, while the
reference LO cross section is always computed with NLO PDFs.
Numerical results are obtained using the code found in [27].

ffiffiffi
s

p ¼ 8 TeV
ffiffiffi
s

p ¼ 13 TeV

NLO NNLO NLO NNLO

exact 2.150 2.78 2.074 2.67

soft collinear 2.187 2.820 2.127 2.730

N soft 2.135 2.700 2.073 2.607

TABLE III. Same as Table II, but with Higgs-based cuts on the
final state. See text for details.

ffiffiffi
s

p ¼ 8 TeV
ffiffiffi
s

p ¼ 13 TeV

LO NLO NNLO LO NLO NNLO

�H 0.379 0.83(2) 1.07(5) 1.55 3.29(8) 4.2(2)

�Hi 0.427 0.93(3) 1.20(7) 1.66 3.5(1) 4.5(2)

�H=�
LO
H 2.19(5) 2.8(1) 2.13(5) 2.7(1)

�Hi=�
LO
Hi 2.19(7) 2.8(2) 2.12(6) 2.7(1)
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impose the following cuts on the lepton invariant massmll,
azimuthal separation ��ll of the two leptons and
transverse mass of the WþW� pair m?:

mll < 500 GeV; ��ll < 3:05; 120 GeV<m?<mh:

(8)

We note that we have validated the soft-collinear
approximation at NLO QCD against MCFM for the
differential distributions, so that we believe that our
results are reliable even when cuts on the final state are
imposed. We report our results in Table III. We see that
the impact of the interference is mildly (but notably)
reduced when the Higgs-selection cuts are applied to
the final state particles. Note also that radiative correc-
tions to the interference are rather similar to corrections to
the signal cross section.

We conclude this section by showing the effect of
the interference on selected kinematic distributions at the
13 TeV LHC. In Fig. 1 we plot the difference of the
azimuthal angle ��ll of the two charged leptons with
(right panel) and without (left panel) Higgs-selection
cuts. In Fig. 2 we do the same for the invariant mass
of the charged leptons mll. We plot the NNLO QCD
results obtained with our soft-collinear approximation as
described in Sec. II, using c1;2 ¼ �c1;2 for the interference

case. We see that the Higgs-selection cuts reduce the
importance of the interference, as already seen in the
total rate.
An interesting feature of our results is that our approxi-

mation reproduces, to a good accuracy, all the kinematic
distributions as obtained with MCFM. In particular, all the
distributions can be perfectly reproduced by rescaling the
MCFM leading order distributions by the inclusive NNLO
K factor. For the signal, we also compare our NNLO
approximation against the known NLO distributions, re-
scaled by the NNLO/NLO inclusive K factor (also shown
in the plots). Also in this case, the agreement is excellent;
the only exception is the azimuthal angle distribution
where differences are seen at large relative angles. This
is due to the fact that our soft-collinear approximation does
not reproduce the effects of a hard emission, which modify
the angular distribution. Note, however, that the azimuthal
angle cut plays an insignificant role in separating the heavy
Higgs boson from the background so that the impact of this
mismatch on corrections to the interference is minor.

IV. CONCLUSIONS

We have estimated the impact of QCD radiative
corrections on the signal-background interference in a
gg ! H ! WþW� process for a heavy Higgs boson. We
constructed a soft-collinear approximation to higher order

FIG. 1 (color online). Lepton azimuthal distance ��ll distribution in the fully inclusive case (left panel) and with experimental cuts
(right panel) computed with the NNLO QCD soft-collinear approximation described in the text. Dots show the rescaled MCFM result
for the signal d�MCFM

NLO � KNNLO=KNLO, where KðNÞNLO is the inclusive K factor.

FIG. 2 (color online). Same as Fig. 1, but for the lepton invariant mass mll distribution.
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QCD corrections and verified its validity by comparing it
to exact results for gg ! H, including kinematic distribu-
tions of the Higgs decay products. We find that QCD
radiative corrections enhance the signal-background inter-
ference by a significant amount which, however, is very
similar to the perturbative QCD enhancement of the signal
cross section.
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