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Abstract We provide a minimal model for a structure-

based simulation of excitation energy transfer in pigment–

protein complexes (PPCs). In our treatment, the PPC is

assembled from its building blocks. The latter are defined

such that electron exchange occurs only within, but not

between these units. The variational principle is applied to

investigate how the Coulomb interaction between building

blocks changes the character of the electronic states of the

PPC. In this way, the standard exciton Hamiltonian is

obtained from first principles and a hierarchy of calculation

schemes for the parameters of this Hamiltonian arises.

Possible extensions of this approach are discussed con-

cerning (i) the inclusion of dispersive site energy shifts and

(ii) the inclusion of electron exchange between pigments.

First results on electron exchange within the special pair of

photosystem II of cyanobacteria and higher plants are

presented and compared with earlier results on purple

bacteria. In the last part of this mini-review, the coupling of

electronic and nuclear degrees of freedom is considered.

First, the standard exciton–vibrational Hamiltonian is

parameterized with the help of a normal mode analysis of

the PPC. Second, dynamical theories are discussed that

exploit this Hamiltonian in the study of dissipative exciton

motion.

Keywords Pigment–protein complex � Light-

harvesting � Förster theory � Redfield theory �

Modified Redfield theory � Generalized Förster theory �
Site energies � Excitonic coupling � Spectral density

Abbreviations

BChl Bacteriochlorophyll

Chl Chlorophyll

CDC Charge density coupling

ESP Electrostatic potential

FMO Fenna–Matthews–Olson

LH1 Core light-harvesting complex of purple

bacteria

LH2 Peripheral light-harvesting complex of purple

bacteria

LHCII Light-harvesting complex of photosystem II

NMA Normal mode analysis

PES Potential energy surface

PPC Pigment-protein complex

PSI Photosystem I

PSII Photosystem II

QC Quantum chemical

RC Reaction center

bRC Reaction center of purple bacteria

TDC Transition density cube

TDDFT Time-dependent density functional theory

TrEsp Transition charge from electrostatic potentials

Introduction

There are many reasons to study light-harvesting in pho-

tosynthesis. First of all, one touches the basis of life on

earth. In cyanobacteria and higher plants, two photosys-

tems work in series to convert the energy of solar photons

into storable chemical energy. The first step of this
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complicated catalysis is the splitting of water in the oxygen

evolving center that is connected to the reaction center of

photosystem II (PSII). The electrons extracted from the

water are transferred along a chain of cofactors through the

photosynthetic membrane and are ultimately shuttled to

photosystem I (PSI), where they are finally stored as

chemical energy of the reductant NADPH. Electron

transport between PSI and PSII is coupled to proton motion

into the thylakoid lumen by the Q cycle. These protons are

used together with those released from the water to drive

the synthesis of ATP. A comprehensive review of the

different aspects of primary reactions in photosynthesis

was given, e.g., by G.Renger (2008).

In order to increase the absorption cross-section of the

photosynthetic reaction centers (RCs), where the photo-

chemistry starts, light-harvesting pigment–protein com-

plexes (PPCs) are grouped around the RCs. They absorb

photons and transfer the excitation energy to the RC.

Whereas all known RCs possess a very similar structure [as

discussed, e.g., by Renger (2012)], a large variety of light-

harvesting complexes exists. There seems to be a unique

strategy to transfer electrons through a photosynthetic

membrane, but different strategies exist to efficiently

transfer excitation energy (excitons) to the RC (van

Grondelle et al. 1994; van Grondelle and Novoderezhkin

2006; Novoderezhkin and van Grondelle 2010).

A striking example of these variations is the difference

between core light-harvesting complex LH1 surrounding

the type II RC in purple bacteria (bRC) and the core light-

harvesting complex of PSII in cyanobacteria and higher

plants (Fig. 1). Whereas the cofactors of both RCs are

practically arranged in an identical way, except for a slight

tilt between two central pigments [Renger and Schlodder

(2010), lower part of Fig. 2], known as the special pair, the

light-harvesting complexes are organized in a completely

different way. In LH1 we find a ring of 32 strongly inter-

acting bacteriochlorophyll a (BChla) pigments (Roszak

et al. 2003), whereas the pigments in the CP43 and CP47

core antennae of PSII are much less symmetrically placed

and exhibit a larger average nearest neighbor distance

(Umena et al. 2011). This difference in the organization of

the antennae raises questions about the existence of dif-

ferent strategies for light-harvesting and about the evolu-

tionary pressure that has led to such a significant change.

Concerning the first question, the light-harvesting appara-

tus of purple bacteria may be seen as an excitation energy

funnel, created by the pigment–pigment interaction. The

excitonic coupling between the 32 BChla pigments in LH1

results in exciton delocalization and a shift of the energy

levels such that the low-energy exciton states are somewhat

lower in energy than those of the peripheral LH2 complex.

In this way, a funnel is created that guides the excitons

from the periphery toward the RC. Interestingly, only one

excited state of the RC is low enough in energy to accept

excitation energy from the low-energy exciton states in

LH1. The origin of the large redshift of this state is the

exchange interaction between the two special pair pigments

(Warshel and Parson 1987). Recent calculations (Madjet

et al. 2009) suggest that 80 % of the excitonic coupling in

the special pair is due to electron exchange. The latter also

leads to a coupling between exciton states and charge

transfer states resulting in an additional red shift of the low-

energy state of the special pair (Fig. 2). Hence, by

exchanging electrons in addition to excitons, the special

pair, a BChla dimer, is able to reach the same low exci-

tation energies as the LH1 ring, a 30-mer. Comprehensive

reviews on light-harvesting and trapping in the photosyn-

thetic unit of purple bacteria were given, e.g., by Sun-

dström et al. (1986, 1999), Law and Cogdell (2008).

In marked contrast to the bRC, in PSII-RCs no red-

shifted low-energy state is found, but all states are within

an energy range of two (Raszewski et al. 2005) to three
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Fig. 1 Upper part Reaction center and core antenna complex LH1 of

the purple bacterium Rhodopseudomonas palustris (Roszak et al.

2003). Transmembrane helices (red and yellow cylinders) are

depicted together with the macrocycles of bacteriochlorophyll

a pigments (green). The energy levels of excited states of LH1 and

RC and the transfer times between them, as obtained from an analysis

of time-resolved spectra by Katiliene et al. (2003) are shown below

the structure. kT denotes the thermal energy at room temperature.

Lower part Reaction center and core antenna complexes CP43 and

CP47 of photosystem II of the cyanobacterium Thermosynechococcus

vulcanus (Umena et al. 2011). Transmembrane helices (purple,

yellow and red cylinders) are depicted together with the macrocycles

of chlorophyll a (and pheophytin a) pigments (green). The energy

levels of excited states of CP43, RC, and CP47 and the transfer times

CP43 $ RC and CP47 $ RC, as calculated by Raszewski and

Renger (2008), are shown below the structure. kT denotes the thermal

energy at room temperature
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(Novoderezhkin et al. 2007) times the thermal energy at

room temperature (Fig. 1, bottom right part). Inspection of

the two special pairs reveals a tilt in mutual orientation of

the two pigments in PSII-RC with respect to bRC (Fig. 2),

as noted above. Whereas there is perfect overlap of p-

electron wavefunctions in the latter, in the former this

overlap is weakened by the change in mutual orientation of

the two special pair chlorophylls. As a consequence, the

excitation energies in the special pair of photosystem II are

much less influenced by short-range effects as that of

purple bacteria.

The weakening of p-electron overlap in the special pair

of photosystem II, which effectively switched off electron

exchange, might have been an important event in evolu-

tion, since it raised the HOMO levels of the special pair

pigments and thereby the oxidation potential. This likely

contributes to the ability of cyanobacteria and higher plants

to use water as an electron source. [A review of the optical

properties of PSII-RCs, including a comparison to the bRC,

is given, e.g., by Renger and Schlodder (2010)]. Although,

we are not aware of a direct evidence for the above

hypothesis, it is an interesting possibility that could also

explain the different structure of core antennae in purple

bacteria and cyanobacteria/higher plants: in cyanobacteria

and higher plants, electron exchange could not be used

anymore to create an excitation energy sink in the RC,

since the low-energy excited states in a LH1 type antenna

with chlorophyll would have been much too low in energy

for efficient transfer to the RC. Therefore, the whole

antenna system was restructured and a different strategy

had to be developed for creating pathways for efficient

transfer of excitation energy.

Another type of excitation energy funnel is realized in the

rod-shaped outer antenna of cyanobacteria, the phycobili-

somes. Phycobilisomes contain different forms of open

tetrapyrrole pigments, the bilins, which are bound cova-

lently to the protein (MacColl 1998). Three different types of

biliproteins occur: those with high energy (phycoerythrins

or phycoerythrocyanin), intermediate energy (phycocya-

nin), and low energy (allophycocyanin). These three types of

proteins are assembled in a rod-like fashion, such that high-

energy bilins are situated furthest from the core complex of

photosystem II. Upon high-energy excitation the excitation

energy is transferred along the rod toward the RC.

A similar type of excitation energy funnel may be cre-

ated, using just a single type of pigment, by exploiting the

pigment–protein interaction in such a way that the local

optical transition energies get lower for those pigments that

are closer to the RC. The prototype of such a site energy

funnel (Louwe et al. 1997; Wendling et al. 2002; Adolphs

and Renger 2006; Müh et al. 2007; Schmidt am Busch

et al. 2011) is the FMO protein of green sulfur bacteria

(Fenna and Matthews 1975; Tronrud et al. 2009) that will

be discussed further below.

There is another important function of the protein in

excitation energy transfer. The excess energy of excitons

has to be dissipated when they relax toward lower energies.

The protein dissipates this energy by dynamically modu-

lating the site energies and excitonic couplings. This

modulation is described by the spectral density of the
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Fig. 2 Upper part Macrocycles of the two special pair bacteriochlo-

rophylls of the reaction center from the purple bacterium Rb.

sphaeroides (Stowell et al. 1997). Below the structure, the optical

transition energies �
ð0Þ
i obtained from quantum chemical calculations

on the isolated monomers are related to those (E- and E?) obtained

for the dimer. The ki
(SR) and ki

(LR) denote short- and long-range site

energy shifts, respectively, obtained by using an effective two-state

Hamiltonian (Madjet et al. 2009) as explained in the text.

Lower part Same as in the upper part but for the chlorophyll special

pair of photosystem II of the cyanobacterium Thermosynechococcus

vulcanus (Umena et al. 2011). The structure of the special pair of

photosystem II (green) is overlaid by that of purple bacteria

(transparent blue) in such a way that the two special pair pigments

in the left half of the dimers overlap as much as possible. The details

of the calculations are given in the text. The grey areas reflect

uncertainties due to limitations of the quantum chemical method and

the effective two-state Hamiltonian used in the analysis
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pigment–protein coupling, which is the coupling-weighted

density of vibrational states of the protein (Renger and

Marcus 2002; Renger et al. 2012; Kell et al. 2013).

When modeling optical spectra and excitation energy

transfer in PPCs, one faces two challenges:

(i) The calculation of site energies, excitonic couplings

and spectral densities based on the crystal structure of these

complexes. (ii) The development of dynamical theories

that can take into account the excitonic (pigment–pigment)

as well as the exciton–vibrational (pigment–protein) cou-

pling on an equal footing.

Concerning (i) different strategies have been developed

in the literature. For recent reviews from different per-

spectives see, e.g., Curutchet et al. (2007), König and

Neugebauer (2012), Renger and Müh (2013). So far,

quantum chemical (QC)/electrostatic two step approaches

have obtained the best agreement with experimental data.

In these approaches, one first determines the charge density

of the electronic ground- and first-excited state and the

transition density between the two by QC calculations on

the pigments in vacuo. The resulting electrostatic potentials

(ESP) of these quantities are then used to derive atomic

partial charges, which are fitted such as to reproduce the

ab initio ESP as close as possible. In a second step, these

partial charges are applied in all-atom electrostatics cal-

culations including the whole PPC.

Concerning (ii), the problem is to find a small parameter

that can be used for perturbation theory. Both, the excitonic

and the exciton–vibrational coupling are of similar

strength. In this case, the standard Redfield (1957) and

Förster (1948) theories, which are valid in the limit of

strong and weak excitonic couplings, respectively, do not

give the full answer. In recent years, numerically exact

calculation schemes have been developed that are based on

the hierarchical equation of motion approach (Ishizaki and

Fleming 2009; Kreisbeck and Kramer 2012), density

matrix renormalization/polynomial transformation (Chin

et al. 2010) and path integral techniques (Nalbach et al.

2011). However, at present, these approaches are only

applicable to small systems due to the enormous compu-

tational costs. Therefore, for large PPCs like those in

Fig. 1, one still has to rely on approaches that are not fully

non-perturbative like generalized Förster theory (Mukai

et al. 1999; Jang et al. 2004) and modified Redfield theory

(Zhang et al. 1998; Yang and Fleming 2002; Renger and

Marcus 2003). Whereas the former can be applied to

describe exciton transfer between aggregates of pigments

with weak interaggregate excitonic couplings, the latter

provides an improved description of exciton relaxation in

aggregates of strongly coupled pigments.

Using a combination of these theories, the effective

transfer times between the CP43 and CP47 core antennae

and the PSII-RC, shown in the lower part of Fig. 1, were

obtained (Raszewski and Renger 2008). The forward

transfer from the antennae to the RC is slower by about a

factor of two as compared to the back transfer from the RC.

The larger number of pigments in the antennae provides an

entropic factor in the free energy difference that determines

this behavior. Experimental evidence for this concept was

provided by Pawlowicz et al. (2007) using femtosecond

mid-infrared spectroscopy. For open RCs (i.e., when no

charge separation has occurred), the primary charge

transfer occurs in less than one ps and, hence, every

excitation that reaches the RC gets trapped by charge

transfer. However, for closed RCs, the primary charge

transfer slows down by a factor of up to 60 (Raszewski and

Renger 2008) and the excitation energy has a high proba-

bility to escape from the RC into the antenna, where it can

be quenched. The exact location and the molecular mech-

anism of the quenching is another interesting open ques-

tion. By virtue of the exciton-back transfer, the entropic

factor is used for photoprotection, because multiple exci-

tations of the RC could lead to formation of triplet states,

which could react with triplet oxygen to form singlet

oxygen, a poison for the cell.

Interestingly, approximately the same transfer times as in

PSII are found between the LH1 core antenna and the RC in

purple bacteria (upper part of Fig. 1, Bergström et al.

(1989); Visscher et al. (1989); Sundström et al. (1999);

Katiliene et al. (2003)) despite the different organization of

the antenna. A common property of both photosystems,

which is responsible for this behavior, is the relatively large

distance between the pigments in the RC and those in the

antennae. In this way, an unwanted oxidation of antenna

pigments by RC pigments is kinetically avoided.

In the remaining parts of this review, we will focus on

structure-based microscopic models of light-harvesting in

PPCs. We start by investigating how the Coulomb coupling

between certain building blocks changes the electronic

structure of excited states, using the variational principle.

In this way, microscopic calculation schemes for the site

energies and excitonic couplings are obtained. Afterwards,

the dependence of these quantities on displacements of

nuclei from their equilibrium positions is investigated by

using a normal mode analysis (NMA), revealing the exci-

ton–vibrational coupling Hamiltonian. Finally, in the spirit

of the Born–Oppenheimer approximation, potential energy

surfaces of localized and delocalized electronic states are

introduced and standard theories of excitation energy

transfer and extensions are discussed in this framework.

The exciton Hamiltonian from a variational principle

We divide the PPC into building blocks representing the

pigments and the protein parts. The building blocks are

370 Photosynth Res (2013) 116:367–388
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defined such that electron exchange between different units

can be neglected. In good approximation, every pigment is

a separate building block. Concerning the protein, the

division into building blocks is not so straightforward. A

strict treatment would require to include an entire poly-

peptide chain of the protein into one building block. As we

will see below, the actual building block identity of the

protein is not so important. The only requirement that we

will be left with, in the simple model derived here, is that

we know the electrostatic potential of the electronic ground

state of the protein. The latter can be well described by that

of atomic partial charges as contained in standard molec-

ular mechanics force fields.

First, we assume that the ground and excited state

wavefunctions jnai ¼ uðaÞna ðr1; . . .rNa
Þ; ðna ¼ 0; 1; 2; 3; . . .Þ

of the isolated building blocks a ¼ 1; 2; 3; . . .N containing

Na electrons with coordinates r1; . . .rNa
are known from the

solution of the stationary Schrödinger equations Hajnai ¼
E
ðaÞ
na jnai: The full Hamiltonian of the PPC

H ¼
X

a

Ha þ
1

2

X

a;b

V̂ab ¼ H0 þ V̂ ð1Þ

contains, in addition to Ha, the intermolecular Coulomb

coupling V̂ab between the building blocks. The latter

V̂ab ¼
X

i;j

e2

jri � r0jj
�
X

i;J

e2ZJ

jri � R0J j
�
X

I;j

e2ZI

jRI � r0jj

þ
X

I;J

e2ZIZJ

jRI � R0J j

ð2Þ

contains the Coulomb coupling between the ith electron at

position ri of building block a with the jth electron (at r0j)

and the Jth nuclei (charge number ZJ, position R0J) of

building block b and the coupling between the Ith nuclei

(charge number ZI, position RI) of a with the jth electron

and the Jth nuclei of b.

The eigenfunctions of H0 =
P

a Ha are product wave-

functions of the building blocks. Hence, we have

H0jni ¼ Enjni ð3Þ

where jni ¼ jn1n2n3. . .nNi ¼
QN

a¼1 uðaÞna ðr1; . . .rNa
Þ and

En ¼
P

a E
ðaÞ
na :

In the following, we want to investigate the influence of

the Coulomb coupling V̂ ¼ 1
2

P
a;b V̂ab between building

blocks on the eigenstates jwMi of the Hamiltonian H (Eq.

1). We expand jwMi in terms of the eigenfunctions of H0

jwMi ¼
X

n1...nN

cðMÞn1...nN
jn1. . .nNi ¼

X

n

cðMÞn jni ð4Þ

and determine the coefficients cn
(M) from a variational

principle. The latter requires the expectation value

hwM jHjwMi to become minimal for the true wavefunction

of H. If, in addition, we require jwMi to be normalized, that

is hwMjwMi ¼ 1 ¼
P

kðc
ðMÞ
k Þ

2; we minimize the expression

K ¼ hwM jHjwMi � kM

X

k

ðcðMÞk Þ
2 � 1

( )
; ð5Þ

with the Lagrangian multipliers kM, which will become the

eigenenergies of the states jwMi later. Please note that we

consider the stationary wavefunctions jni and jwMi to be real

quantities throughout this paper, i.e., for example, it holds

that hnjHjmi ¼ hmjHjni and the coefficients cn
(M) are real.

As a condition for the minimum of K we have

o=oc
ðMÞ
n K ¼ 0; resulting in the following expression, using

Eq. (4),

o

oc
ðMÞ
n

X

k;m

c
ðMÞ
k cðMÞm hkjHjmi � kM

X

k

ðcðMÞk Þ
2 � 1

( ) !

¼ 2
X

k

c
ðMÞ
k hnjHjki � 2kMcðMÞn ¼ 0:

ð6Þ

Hence, the following eigenvalue problem needs to be

solved

cðMÞn hnjHjni � kMð Þ þ
Xk 6¼n

k

c
ðMÞ
k hnjHjki ¼ 0 ð7Þ

where the diagonal matrix elements read

hnjHjni ¼ hnj
X

a

Ha þ
1

2

X

a;b

V̂abjni

¼
X

a

EðaÞna
þ 1

2

X

a;b

V ðabÞ
nanb;nanb

ð8Þ

and the off-diagonal matrix elements read

hnjHjki ¼ 1

2

X

a;b

V
ðabÞ
nanb;kakb

; ðk 6¼ nÞ: ð9Þ

The matrix element of the interbuilding block Coulomb

coupling V ðabÞ
nanb;mamb

is obtained from the following integral

over the electronic coordinates ri of building block a and r0j
of b

V ðabÞ
nanb;mamb

¼
Z

dr1. . .drNa

Z
dr01. . .dr0Nb

� uðaÞna
ðr1; . . .rNa

ÞuðbÞnb
ðr01; . . .r0Nb

Þ

� V̂abu
ðaÞ
ma
ðr1; . . .rNa

ÞuðbÞmb
ðr01; . . .r0Nb

Þ

ð10Þ

and contains the Coulomb coupling operator V̂ab given

above in Eq. (2).
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By using Pauli’s principle for the exchange of electrons

and renaming integration variables, the above matrix ele-

ment can be simplified to (Madjet et al. 2006)

V ðabÞ
nanb;mamb

¼
Z

dr

Z
dr0

qðaÞma;naðrÞq
ðbÞ
mb;nbðr0Þ

jr� r0j

� dnb;mb

X

J

Z
dr

eZJq
ðaÞ
ma;naðrÞ

jr� R0J j

� dna;ma

X

I

Z
dr

eZIq
ðaÞ
mb;nbðr0Þ

jr0 � RI j

þ dna;ma
dnb;mb

X

I;J

e2ZIZJ

jRI � R0J j
;

ð11Þ

where the one-particle densities qðaÞma;naðrÞ and qðbÞmb;nbðr0Þ of

the electrons in building block a and b, respectively, were

introduced according to

qm;nðrÞ ¼ e

Z
dr2. . .drNumðr; r2; . . .; rNÞunðr; r2; . . .; rNÞ

ð12Þ

which for m = n is the charge density of the mth molecular

state and for m = n is the transition density of the tran-

sition between the mth and the nth electronic state.

Examining the eigenvalue problem in Eq. (7), it is seen

that the off-diagonal matrix element hnjHjki couples dif-

ferent electronic states jni and jki: A considerable mixing

of these states only occurs if the absolute magnitude of the

difference in respective diagonal elements jhnjHjni �
hkjHjkij is not much larger than this coupling. With this

relation in mind and assuming that any Coulomb matrix

element V ðabÞ
nanb;mamb

is small compared to the difference

between the first excited state of a building block and its

ground state, E1
(a) - E0

(a), we may well neglect any mixing

of the ground state of the PPC with any excited state, by

setting hnjHj0i ¼ 0 for n = 0. Therefore, the ground state

of the aggregate reads

jw0i ¼ j0; . . .; 0i ð13Þ

with energy

E0 ¼
X

a

E
ðaÞ
0 þ

1

2

X

a;b

V
ðabÞ
00;00: ð14Þ

The states next higher in energy are those, in which one

pigment is in its first excited state, whereas all the

remaining building blocks of the PPC are in their

electronic ground state. Since the protein starts to absorb

at much higher energies than the pigments, no mixing of

the one-exciton states of the PPC involving an excited

pigment with those involving an excited protein building

block needs to be considered. Thus, we obtain the

following eigenvalue problem for the one-exciton states

jmi ¼ uðmÞ1

Qa6¼m
a uðaÞ0 in which all building blocks are in

their electronic ground state, except for pigment m, which

is in its first excited state

cðMÞm E
ðmÞ
1 þ

Xa 6¼m

a

E
ðaÞ
0 þ V

ðm;aÞ
10;10

� �(

þ 1

2

Xa 6¼m;b 6¼m

a;b

V
ða;bÞ
00;00 � kM

)
þ
Xk 6¼m

k

c
ðMÞ
k V

ðk;mÞ
10;01 ¼ 0

ð15Þ

Three types of matrix elements need to be considered: the

Coulomb coupling V10,10
(m,a) between the charge density of the

excited state of pigment m and the ground-state charge

density of the remaining building blocks of the PPC

(including pigments and the protein), the ground state charge

density coupling V00,00
(a,b) between the remaining building

blocks of the PPC, and the Coulomb coupling V10,01
(k,m) between

the ground-to-excited state transition densities of the pig-

ments. Note that k in Eq. 15 runs over all pigments, whereas

a includes also the building blocks of the protein.

If we are interested in the transition energies between

the ground state jw0i and the one-exciton states jwMi; we

may subtract from the diagonal elements of the above

matrix the energy E0 of the ground state (Eq. 14) resulting

in

cðMÞm Em � EMf g þ
Xðk 6¼mÞ

k

c
ðMÞ
k Vkm ¼ 0; ð16Þ

with the site energy

Em ¼ E
ðmÞ
1 � E

ðmÞ
0 þ

X

a

V
ðm;aÞ
10;10 � V

ðm;aÞ
00;00

� �
ð17Þ

that is, the transition energy, at which pigment m would

absorb light, if it was not coupled excitonically to the other

pigments, the transition energy

EM ¼ kM ð18Þ

between the ground state jw0i and the one-exciton state

jwMi; and the Coulomb coupling

Vkm ¼ V
ðk;mÞ
10;01 ð19Þ

between the transition densities of the pigments. The latter

type of coupling is termed excitonic coupling. Hence, the

singly excited states of the PPC may be seen as eigenstates

of the following exciton Hamiltonian

Hex ¼
X

m

Emjmihmj þ
Xm6¼k

m;k

Vkmjmihkj ð20Þ

which contains as diagonal matrix elements the site ener-

gies Em (Eq. 17) and in the off-diagonal the excitonic

couplings Vkm (Eq. 19).
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Moreover, our derivation of the exciton Hamiltonian

provides us with a minimal model for the calculation of its

parameters. As Eq. (17) suggests, the site energy Em of

pigment m is obtained from the transition energy E
ðmÞ
1 � E

ðmÞ
0

of this pigment in vacuum and the difference in charge

density coupling between the excited and the ground state of

the pigment with the remaining building blocks of the PPC

(including other pigments and the protein parts). The exci-

tonic couplings Vkm (Eq. 19) are obtained from the Coulomb

interaction between transition densities of the pigments. In

the following, we discuss methods that make use of these

expressions.

Calculation of site energies and excitonic couplings

Evaluation of Coulomb integrals

In the methods discussed below, Coulomb integrals of the

type in Eq. (11) need to be evaluated. An efficient calcu-

lation of these integrals is obtained by the use of atomic

partial charges qI(m, n) of the building blocks that are

determined from the fit of the electrostatic potential (ESP)

of the respective molecular charge (m = n) or transition

(m = n) densities (Madjet et al. 2006). The matrix ele-

ment V ðabÞ
nanb;mamb

(Eq. 11) is obtained from the Coulomb

interaction between the partial charges qI
(a)(ma, na) of

molecule (building block) a and qJ
(b)(mb, nb) of molecule

b that are placed at the positions RI of atom I of a and R0J of

atom J of b

V ðabÞ
nanb;mamb

¼
X

I;J

q
ðaÞ
I ðma; naÞqðbÞJ ðmb; nbÞ

jRI � R0J j
: ð21Þ

In the following, these matrix elements are used to obtain

site energies and excitonic couplings.

Calculation of site energies

The charge density coupling (CDC) method

In the CDC method the site energy Em (Eq. 17) of pigment

m is obtained by using Eq. (21) as (Adolphs et al. 2008)

Em ¼ E0 þ
1

�eff

X

a;I;J

q
ðmÞ
I ð1; 1Þ � q

ðmÞ
I ð0; 0Þ

� �
q
ðaÞ
J ð0; 0Þ

jRI � R0J j

ð22Þ

where the vacuum transition energy E0 ¼ E
ðmÞ
1 � E

ðmÞ
0 is

assumed to be the same for all chemically identical pig-

ments and �eff serves to take into account screening and

local field effects of the Coulomb interaction caused by the

polarizability of the PPC in an effective way. In practical

applications, �eff is used also to compensate for systematic

deviations in the quantum chemical calculations used to

derive the partial charges. Hence, E0 and to a certain degree

�eff are adjustable parameters which need to be determined

by comparison with experimental optical spectra. Whereas

a variation of E0 just displaces the whole spectrum along

the energy axis, �eff has an influence on the width of the

spectrum because it scales the energy differences between

site energies of the pigments by a constant factor. A dif-

ficulty when applying Eq. (22) is that the charge density of

those building blocks a, which represent titratable amino

acid residues, may vary due to protonation/deprotonation

reactions. Therefore, it is necessary to determine the most

likely protonation state of the titratable groups, before the

site energies can be calculated.

Calculation of the protonation pattern of the protein

Electrostatic methods have been developed to calculate the

protonation probabilities of the titratable residues in the

protein (Ullmann and Knapp 1999). In these methods, the

polarizability of the protein, membrane and solvent envi-

ronments are described by that of three homogeneous

dielectrics with different dielectric constants. A Poisson-

Boltzmann equation is solved for the ESP of the titratable

groups in their deprotonated and protonated states, taking

into account also the ionic strength of the solvent. In

addition, the potentials of the two states of suitable model

compounds, representing the titratable residues in an

aqueous solvent, are computed and a thermodynamic cycle

is constructed revealing the electrostatic free energy dif-

ference between the protonated and deprotonated residue in

the protein. To close this cycle, the experimental pKa value

of the model compound in the aqueous solvent is applied.

A detailed review on the calculation of the protonation

pattern of the protein in the framework of site energy

calculations was given recently (Renger and Müh 2013).

The calculation of protonation states in combination with

CDC calculations of site energies were successfully

applied to the calculation of optical spectra of PSI

(Adolphs et al. 2010) and the FMO protein (Adolphs et al.

2008; Schmidt am Busch et al. 2011). The latter calcula-

tions will be discussed in more detail below.

Approximations and comparison with other methods

Besides the charge density couplings considered above, the

site energies of the pigments are also influenced by dis-

persive and inductive interactions. In the present derivation

of the exciton Hamiltonian, the inductive couplings are

contained in Coulomb matrix elements of the type V
ðabÞ
ma0;makb
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where the charge density of the ground (ma = 0) or excited

(ma = 1) state of pigment a interacts with the transition

density between the ground state j0i and any excited state

jkbi of building block b. Dispersive site energy shifts arise

from a correlated fluctuation of electrons of different

building blocks. The respective interactions are contained

in transition density couplings V
ðabÞ
mamb;kakb

where the transi-

tion density between the ground (ma = 0) or excited

(ma = 1) pigment state and any other electronic state jkai
couples with the transition density between the ground

state j0i and any excited state jkbi of building block

b. These interactions, in principle, can be described by

perturbation theory, as reviewed recently (Renger and Müh

2013). An application of such a perturbation theory to site

energy shifts of BChla in nonpolar solvents will be dis-

cussed below.

A method that is related in spirit to CDC is the Poisson-

Boltzmann/Quantum Chemical method (PBQC) (Müh

et al. 2007; Adolphs et al. 2008) in which the polarization

of the PPC is taken into account more realistically. In

PBQC, as in the calculation of the protonation pattern of

the protein discussed above, the polarization of the protein,

membrane and solvent environments is described by that of

three homogeneous continuous dielectrics and a Poisson-

Boltzmann equation is solved for the ESP of the ground

and excited states of the pigments (which are represented

by atomic partial charges as introduced above) and the

solvation energies for these two states (resulting from

inductive interactions between the charge density of the

pigment and the transition density of the remaining build-

ing blocks of the PPC and Coulomb couplings between the

building blocks) calculated. The latter contain the screen-

ing and local field effects that were approximated by the

effective dielectric constant in the CDC method. PBQC has

been successfully applied to identify energy sinks and to

explain optical spectra of the FMO protein (Müh et al.

2007), the major light-harvesting complex of higher plants

LHCII (Müh et al. 2010; Müh and Renger 2012), and the

CP43 core antenna of PSII (Müh et al. 2012).

A critical approximation of CDC (and PBQC) is the

neglect of a direct influence of the conformation of the

pigments on their local transition energies, by assuming a

constant E0 value for chemically identical pigments in

Eq. (22). In principle, the conformations of the pigments

could be taken into account by performing QC calculations

on these conformations and taking into account not only

the charge density but also the QC transition energy

obtained. In such an approach, one has to face the fact, that

the crystallographic data are not optimized in a QC sense.

QC calculations of transition energies are very sensitive to

slight distortions of equilibrium geometries. It is our

experience that even a constrained geometry optimization

(allowing only the bond lengths and bond angles to be

varied) often is not enough to obtain realistic wavefunc-

tions of ground and excited states (as judged from differ-

ence dipole moments between excited and ground state and

comparison with data from Stark spectroscopy). One way

to extract the essential information from the crystal struc-

tures might be to project the conformations of the pigments

on their low-frequency intramolecular normal modes

(Shelnutt et al. 1998). Zucchelli et al. (2012) combined this

normal mode decomposition method with a semi-empirical

approach to estimate site energy shifts in the major light-

harvesting complex of higher plants, LHCII. A combina-

tion of this approach with CDC or PBQC, in order to

include the electrostatic pigment–protein interaction, might

be worthwhile.

Other approximations of the CDC and PBQC methods

concern the neglect of dispersive and inductive site energy

shifts, discussed already above. Of course, these interac-

tions are contained in a full QC treatment of the protein

environment of the pigments. Besides the geometry dis-

tortion problem, such a treatment faces the problem to

restrict the size of the environment that is treated by QC to

keep the numerical effort manageable as well as the

problem that the Schrödinger equation for a many electron

wavefunction can only be solved approximately and the

energies obtained might have too large uncertainties. An

excellent overview of QC developments in the framework

of site energy calculations of photosynthetic pigments was

given recently by König and Neugebauer (2012).

Finally, we would like to point out that the CDC and

PBQC approaches are two-step approaches, where the QC

calculations are performed on geometry optimized pig-

ments in vacuo and the resulting charge densities are then

applied in all atom electrostatic calculations of the PPC in

the second step. In this way, any influence of the protein

environment on the wavefunction and the resulting charge-

(and transition-) densities of the pigments are neglected.

One way to treat these effects is by including the external

charge density by classical point charges and the external

polarization by that of a homogeneous dielectric in the

solution of the Schrödinger equation. Such a treatment

neglects, however, Pauli repulsion between the electrons of

the pigments and those of the environment. This approxi-

mation can lead to an artificial distortion of the electronic

wavefunction of the pigment, an effect known as electron

leakage problem (Neugebauer 2009; Schmidt am Busch

and Knapp 2005; Senn and Thiel 2007). Obviously, the

simplest solution of this problem is to use a two-step

procedure, as described above. A quantitative evaluation of

the effects neglected in such a treatment, is a rewarding

task for future approaches that use a quantum mechanical

description of the environment.
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Dispersive transition energy shifts of pigments in nonpolar

solvents

A first step toward an inclusion of dispersive site energy

shifts in PPCs was taken in a model of dispersive shifts in

nonpolar solvents (Renger et al. 2008). Second-order per-

turbation theory in the solute–solvent interaction and a

subsequent dipole and continuum approximation of the

solvent were used to express the shift of the transition

energy between the ground state and the mth excited state

of the pigments as

DEm0 ¼ jm0

Wu

d2
u

ð23Þ

where Wu is the solvation energy of an extended unit dipole

(du = 1 D) that is placed in a molecule-shaped cavity with

dielectric constant � ¼ 1 (vacuum) inside, that is sur-

rounded by a dielectric continuum with optical dielectric

constant of the solvent � ¼ n2 outside. Here, n is the

refractive index of the solvent. Solvation energies of

transition densities of all strong electronic transitions that

start from the electronic ground state, obtained with atomic

transition charges, were compared to that of an extended

dipole resembling the dipole strength of the respective

transition. In this way, the extent of the dipole was deter-

mined to 8.7 Å.

The factor jm0 in Eq. (23) is given as

jm0 ¼
Xk 6¼0;k 6¼m

k

d2
mk � d2

0k

� �
¼ hmjd̂2jmi � h0jd̂2j0i ð24Þ

which is the difference in the variance of the dipole

moment between the excited and the ground state. Note

that the transition dipole element d2
m0 ¼ d2

0m does not

contribute to jm0. From the correlation between the

experimental transition energy Em0 and the factor Wu=d2
u

in Eq. 23, the vacuum transition energy E0
(m) and the factor

jm0 may be obtained via a linear regression

Em0 ¼ E
ðmÞ
0 þ jm0

Wu

d2
u

: ð25Þ

For the 0! 1 transition of BChla, E0
(1) = 13,818 cm-1

and j10 = 117 D2 were obtained by analyzing the

experimental data of Limantara et al. (1997) (left part of

Fig. 3). Interestingly, using instead of the molecule-shaped

cavity a spherical cavity and replacing the extended unit

dipole by a unit point dipole, where Wu=d2
u is obtained

analytically (Böttcher 1973) as

Wu

d2
u

¼ � 1

R3

n2 � 1

2n2 þ 1
ð26Þ

also results in a good correlation with the same experi-

mental data (right part of Fig. 3). From the slope (j10/R)3

of the correlation plot, using the j10 from the calculation

with the molecule-shaped cavity, a cavity radius of 5.8 Å

was inferred. Obviously, for this radius, the error com-

pensation between using a point dipole instead of an

extended dipole and a spherical instead of a molecule-

shaped cavity is complete. Practically, the same vacuum

transition energy E0
(1) = 13,800 cm-1 is obtained in the

simple model. We will find a similar error compensation at

work in calculations of screening/local field correction

factors of excitonic couplings below.

We note that the vacuum transition energy values

extracted from the linear regressions in Fig. 3 are consid-

erably larger than the E0 = 12,570 cm-1 inferred from

CDC calculations (Schmidt am Busch et al. 2011) of site

energies of BChla pigments in the FMO protein and

comparison of the resulting optical spectra with experi-

mental data (see below). A considerable part of the dif-

ference should be due to dispersive interactions, which

were only implicitly taken into account in the CDC cal-

culations by assuming them to be site-independent, as

would be expected for a homogeneous dielectric. Indeed,

the transition energy of BChla in n-dodecane, which has an

optical dielectric constant n2 = 2 that equals the average

optical dielectric constant of PPCs (see below), amounts to

12,920 cm-1. The remaining 350 cm-1 difference to the

E0 value from CDC calculations still needs to be explained.

This difference could result from other higher-order terms

in the perturbation theory of the pigment–protein coupling

and/or from the heterogeneity of the dispersive interaction

resulting from differences in local polarizabilities of pro-

tein residues.

Finally we note that Renge and Mauring (2013),

excluding those nonpolar solvents with highly polarizable

atoms, and using a similar analysis as the point-dipole in a

sphere model discussed above, arrived at a different vac-

uum transition energy of 13,340 cm-1. Hence, it might

well be that the influence of dispersive interactions is

smaller than it appeared from the large E0
(1) values esti-

mated above. On the other hand, the good linear correlation

found between the calculated solvation energies and

experimental transition energies from Limantara et al.

(1997) in Fig. 3 including the highly polarizable solvents

seems to rule out artifacts by the latter.

Calculation of excitonic couplings

The transition density cube (TDC) method

The excitonic coupling between the 0! 1 transitions of

the pigments is obtained from Eq. 11 as

Vab ¼ V
ðabÞ
01;10 ¼

Z
dr

Z
dr0

qðaÞ01 ðrÞq
ðbÞ
10 ðr0Þ

jr� r0j : ð27Þ
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In the transition density cube method (TDC) (Krueger et al.

1998), the above 6d integral is evaluated numerically. A

method of equal accuracy, but less numerical cost, is the

transition charge from electrostatic potentials (TrEsp)

method (Madjet et al. 2006), described next.

The transition charge from electrostatic potentials (TrEsp)

method

In the TrEsp method (Madjet et al. 2006), the ESP of the

transition density is fitted by that of atomic partial charges,

and the excitonic coupling is obtained from Eq. (21) as

Vab ¼ V
ðabÞ
01;10 ¼ f

X

I;J

q
ðaÞ
I ð1; 0Þq

ðbÞ
J ð0; 1Þ

jRI � R0J j
: ð28Þ

where, in addition, a scaling factor f was introduced to

describe screening and local field effects due to the

polarizability of the protein environment in an implicit,

approximate way. Two uncertainties arise when calculating

excitonic couplings with TDC or TrEsp. First, different QC

methods result in different transition densities (and,

therefore partial charges). It seems, however, the shape

of the transition densities is similar, whereas the absolute

magnitude is different. Hence, there is an unknown scaling

factor that needs to be determined by comparison with

experimental data. The vacuum transition dipole moment

of the pigments can be extrapolated from an analysis of the

oscillator strength of the considered optical band of a

pigment measured in different solvents. Knox and Spring

(2003) performed such an analysis for chlorophyll

a (Chla), Chlb, BChla, and BChlc. The scaling factor for

the transition density and the partial charges can then be

obtained from the ratio of the experimental vacuum

transition dipole moment d10
exp and the transition dipole

moment d10 resulting from the QC transition density or the

transition charges

d10 ¼
Z

drq10ðrÞ ¼
X

I

qIð1; 0ÞRI ð29Þ

Hence, scaled transition partial charges

~qIð1; 0Þ ¼
jdexp

10 j
jd10j

qIð1; 0Þ ð30Þ

are defined, the ESP of which resembles that of the 0! 1

electronic transition of the pigments in vacuo most closely.

A second uncertainty concerns the influence of the

polarizability of the dielectric environment, which is

described by a simple scaling factor f in the TrEsp method

(Eq. 28). To investigate the latter approximation and to

determine f, the Poisson–TrEsp method was developed,

which is the topic of the next subsection.

The Poisson–TrEsp method

Here, the polarizability of the PPC is described by that of a

homogeneous dielectric with optical dielectric constant

�opt ¼ n2; where n is the refractive index. Note that, during
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Fig. 3 Left part Correlation

between experimental transition

energy of BChla in solvent with

refractive index n and the

solvation energy of an extended

unit dipole in a molecule-shaped

cavity (upper part) with

dielectric constant � ¼ n2

outside the cavity and � ¼ 1

inside. The solid line describes a

linear regression of the data

according to Eq. 25.

Right part Correlation between

experimental transition energy

in solvent with refractive index

n and factor -(n2 - 1)/

(2n2 ? 1) resulting from the

solvation energy of a point

dipole in a spherical cavity

(Eq. 26). The solid line

describes a linear regression.

The experimental data were

taken from Limantara et al.

(1997) and the calculations were

performed in Renger et al.

(2008)
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the electronic transitions, involved in excitation energy

transfer, the nuclei of the PPC have no time to react and,

therefore, only the optical polarizability has an influence on

the excitonic couplings. The mean refractive index of a

PPC can be estimated (Renger et al. 2009) from compari-

son of the integral oscillator strength of PPC-bound and

solvent-extracted pigments (Müh and Zouni 2005) as well

as from microscopic simulations (Simonson and Perahia

1995). Both estimates resulted in a value �opt ¼ n2 � 2: In

order to take into account screening and local field effects

by the optical polarization, molecule-shaped cavities rep-

resenting the pigments are created with dielectric constants

� ¼ 1 inside and � ¼ �opt ¼ 2 outside the cavities. A Pois-

son equation is solved for the potential /m(r) of the tran-

sition charges of pigment m (Adolphs and Renger 2006;

Adolphs et al. 2008)

r �ðrÞr/mðrÞð Þ ¼ �4p
X

I

~q
ðmÞ
I ð0; 1Þdðr� R

ðmÞ
I Þ ð31Þ

where the dielectric constant �ðrÞ ¼ 1; if r points inside a

pigment cavity, and �ðrÞ ¼ n2 otherwise and RI
(m) denotes

the position of the Ith nucleus of this pigment. The

excitonic coupling of pigment m with pigment n is then

obtained as

Vmn ¼
X

J

/mðR
ðnÞ
J Þ~q

ðnÞ
J ð0; 1Þ; ð32Þ

where RJ
(n) is the position of the Jth nucleus of pigment

n with transition partial charge ~q
ðnÞ
J ð0; 1Þ: The transition

charges ~q
ðm=nÞ
I=J
ð0; 1Þ of the pigments contain a correction, as

described above (Eq. 30). Finally, we note that the present

classical electrostatics approach can be justified by quan-

tum mechanical perturbation theory (Hsu et al. 2001;

Renger and Müh 2012).

Critical approximations of Poisson–TrEsp and comparison

with other methods

The approximation of the optical polarization of the protein

by that of a homogeneous dielectric has been investigated

recently by Curutchet et al. (2011) in the framework of a

polarizable force field model that assigns atomic polariz-

abilities and, in this way, takes into account the heteroge-

neous polarizability of the PPC. An enhancement of energy

transfer rates by as much as a factor of 4 resulted when the

calculations were compared with that employing a homo-

geneous dielectric. Interestingly, an average optical

dielectric constant of 2 was obtained, which agrees with the

estimates given above.

Another approximation of Poisson–TrEsp concerns the

neglect of the polarization of the pigments, by assigning a

dielectric constant of one to the interior of the cavities. This

approximation is in part justified by the fact that the 0! 1

transition due to its low excitation energy is a major con-

tributor to the polarization of the pigments and the inter-

action between 0! 1 transitions of the pigments is

explicitly taken into account as excitonic coupling in the

calculation of optical spectra and energy transfer. A

promising tool to include also the residual polarization

originating from higher excited pigment states is the den-

sity–fragment interaction (DFI) approach proposed by

Fujimoto and Yang (2008). This method (referred to as

transition density fragment interaction (TDFI) method) has

recently been applied to calculate excitonic couplings

either excluding (Fujimoto and Hayashi 2009; Fujimoto

2010) or including (Fujimoto 2012) interpigment electron

exchange. What is still missing is the effect of the polari-

zation of the protein environment. A combination of TDFI

with Poisson–TrEsp might be possible.

How far can one simplify the calculations of excitonic

couplings?

The simplest possible approximation is the point-dipole

approximation

Vmn ¼ f
dð10Þ

m � dð10Þ
n

R3
mn

� 3
ðdð10Þ

m � RmnÞðdð10Þ
n � RmnÞ

R5
mn

� �
ð33Þ

where the transition dipole moment dm
(10) is the first

moment of the transition density q10
(m)(r),

dð10Þ
m ¼

Z
drqðmÞ10 ðrÞr: ð34Þ

The direction of the transition dipole moment of the S0 !
S1 transition of chlorin type pigments is known from

experiments (Kleima et al. 2000; Georgakopoulou et al.

2002; Linke et al. 2008) and from quantum chemical cal-

culations (e.g., Madjet et al. (2006)) to be oriented in good

approximation along the NB - ND axis of the pigments.

Whereas quantum chemical calculations predict an angle

b = 0� between this axis and the transition dipole moment

(Madjet et al. 2006), the experimental estimates range from

b = 4.5� ± 2� to b = - 12� ± 3�, estimated from an

analysis of time-resolved anisotropy measurements on the

peridinin-Chla complex and from femtosecond polarization

resolved visible pump-infrared probe spectroscopy on

Chla in a d8-toluene solution (Linke et al. 2008), respec-

tively. Note that, a positive value of b refers to rotation

toward the 131 keto group of Chla. A value of b = 7� was

reported for BChla from simulations of circular dichroism

spectra of the LH2 complex of purple bacteria (Georgak-

opoulou et al. 2002). The magnitude of the vacuum tran-

sition dipole moment can be extrapolated from an analysis

of the dependence of the integral oscillator strength of this
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transition on the refractive index of the solvent (Knox and

Spring 2003), as discussed above.

Before we discuss the validity of the point dipole

approximation, we will study a simple model for obtaining

the screening/local field correction factor f in Eq. 33. For

this purpose, we describe the optical transition of the pig-

ment by a point-dipole d that is centered in a spherical

cavity with dielectric constant � ¼ 1 inside the cavity and

� ¼ �opt ¼ n2 outside. The electrostatic potential /(r) of

the point-dipole outside the sphere is obtained as (Böttcher,

1973)

/ðrÞ ¼ 3

2n2 þ 1

d � r
r3

ð35Þ

Hence, it equals the electrostatic potential of a point-dipole

in a homogeneous dielectric (i.e., without the sphere) with

an effective dipole moment

deff ¼ d
3n2

2n2 þ 1
: ð36Þ

In this way, local field effects arising from the presence of

the cavity can be effectively described. Knox and Spring

(2003) used this empty cavity model (besides two others)

to analyze the dipole strength of the S0 ! S1 transition of

chlorophyll and bacteriochlorophyll in different solvents

and, in this way, inferred the vacuum transition dipole

strength.

By considering, in addition to the local field effects, the

screening of the Coulomb coupling by the factor 1/n2, the

overall screening/local field correction factor in Eq. (33)

follows as

f ¼ 1

n2

3n2

2n2 þ 1

� �2

¼ 9n2

ð2n2 þ 1Þ2
; ð37Þ

which for the present n2 = 2 gives

f ¼ 0:72: ð38Þ

Three critical approximations of this estimate are: (i) the

transition density is approximated by a point dipole, (ii) a

spherical cavity is used for the (rather planar) pigment, and

(iii) in the solution of the Poisson equation for the potential

/(r) the presence of a second cavity next to the original

cavity was neglected.

These approximations can be tested by comparison of

the resulting f factor to values obtained with the Poisson–

TrEsp method introduced above. Interestingly, comparison

of couplings calculated with Poisson–TrEsp for � ¼ 2 with

those obtained for � ¼ 1 shows that on average f indeed

varies between 0.6 (Müh et al. 2012) and 0.8 (Adolphs and

Renger 2006) for the different complexes investigated

(Adolphs and Renger 2006; Adolphs et al. 2010; Müh et al.

2012; Müh and Renger 2012).

If, on the other hand, vacuum couplings obtained with

TrEsp are compared with point-dipole values, large devi-

ations are obtained in the case of photosystem I, and in

some cases for LHCII (Müh et al. 2010) and CP43 (Müh

et al. 2012). Since, in these cases, despite the failure of the

point-dipole approximation, a correct average screening-

local field correction factor f is predicted by the point-

dipole-in-a-spherical-cavity model, we have to conclude

that Eq. (37) relies on error compensation between the

point-dipole and spherical-cavity approximation. Never-

theless, it seems to work well. Note that, a similar error

compensation was found in the calculation of dispersive

line shifts in nonpolar solvents discussed above.

The dipolar shape of the transition density (Madjet et al.

2006) suggests a considerable improvement of the point-

dipole approximation by an extended dipole approxima-

tion. In the latter, the transition density is approximated by

just two partial charges of opposite sign that are placed

along the direction of the transition dipole moment, at a

distance of about 9 Å (Madjet et al. 2006; Renger et al.

2008). Note that this distance is consistent with the esti-

mate resulting from solvation energies discussed above and

in Renger et al. (2008). The excitonic coupling then results

from a sum over four Coulomb interactions between two

pigments. Indeed, often the failure of the point-dipole

approximation can be removed by using an extended dipole

approximation (Madjet et al. 2006; Müh et al. 2012). A

notable exception is photosystem I (Adolphs et al. 2010),

where a description in terms of atomic transition partial

charges is indispensable and for some pigments also

additional contributions from electron exchange (Madjet

et al. 2009) can be expected. In summary, we may con-

clude that a minimal scheme for the calculation of exci-

tonic couplings in PPCs is the extended dipole

approximation (with a dipole extend of about 9 Å for Chls

and BChls and the absolute amount of the transition charge

chosen such that the experimental vacuum transition dipole

moment results) and Eq. (37) for the screening/local field

correction factor, resulting in f & 0.7.

The site energy funnel in the FMO protein

As an example for a successful application of the above

calculation schemes of excitonic couplings and site ener-

gies, we discuss light-harvesting in the FMO protein. The

FMO protein connects the outer antenna system, the

chlorosomes, with the reaction center complex in green

sulfur bacteria (Fig. 4). Despite its relatively simple

structure, as compared to, e.g., the core antennae of PSII

(lower part of Fig. 1), it took more than 20 years after its

crystal structure was published (Fenna and Matthews 1975)

until a site energy set was found that allowed for a quan-

titative simulation of its linear absorbance as well as linear
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and circular dichroism spectra (Louwe et al. 1997). The

key was the assumption of a much lower effective dipole

strength of the pigments, than used before, for the calcu-

lation of excitonic couplings, by Aartsma and coworkers

(Louwe et al. 1997; Wendling et al. 2002).

The proof of the validity of the point dipole approxi-

mation used for the calculations of the couplings and a

microscopic explanation of the low effective dipole

strength was provided by Poisson–TrEsp calculations

(Adolphs and Renger 2006), using the vacuum dipole

strength of BChla inferred by Knox and Spring (2003).

This finding and the confirmation of the site energies of

Aartsma and coworkers by a fit of optical spectra using an

improved line shape theory and a genetic algorithm led to

the prediction of the relative orientation of the FMO pro-

tein relative to the RC complex (Adolphs and Renger

2006). The proposed orientation was experimentally veri-

fied 3 years later by using a combination of chemical

labeling and mass spectrometry by Blankenship and co-

workers (Wen et al. 2009).

A first successful verification of the fitted site energies

by independent structure-based calculations was achieved

by PBQC calculations (Müh et al. 2007) which uncovered

the molecular mechanisms of the site energy shifts. It was

found that the electric field of the backbone of two alpha

helices has a large contribution to the creation of an energy

sink at BChl 3.

An eighths pigment was (re)discovered to be bound at

the periphery towards the outer chlorosomes in every

monomeric subunit of the trimeric FMO protein (Tronrud

et al. 2009). The position of this additional pigment, which

most likely is lost in standard biochemical preparation

techniques of isolated FMO complexes, led Blankenship

and co-workers to suggest that this pigment is the linker for

energy transfer from the chlorosomes through the inter-

mediate baseplate (Fig. 4, upper part). Full support for this

suggestion was obtained from CDC calculations (Schmidt

am Busch et al. 2011), which found that BChl 8 is the most

blue-shifted pigment in the FMO protein and thereby

completes the excitation energy funnel created by the

pigment–protein coupling in this PPC. The origin of the

large blue shift of BChl 8 was found to be the interaction of

this pigment with charged amino acid residues located at

the surface of the FMO protein. It was found also that

changing the dielectric environment from that of water (in

isolated FMO proteins) to that of a neighboring protein,

corresponding to in vivo dielectric conditions, only chan-

ges the protonation states of the protein so slightly that

BChl 8 remains the most blue-shifted pigment.

By taking into account the optical properties of the

baseplate and assuming that the baseplate pigments couple

predominantly to BChl 8, the transfer from the baseplate

through the FMO protein was simulated (Schmidt am

Busch et al. 2011). Generalized Förster theory was used to

describe the transfer from the baseplate to the FMO protein

and modified Redfield theory for exciton relaxation in the

FMO protein. Exciton relaxation was found to occur along

a sub 500 fs fast pathway involving pigments 8, 1, 4-7 and

8

2

3 4

7

1 6

5

Fig. 4 Upper part Illustration of the FMO protein and its location

between the baseplate/chlorosome and the reaction center complex in

green sulfur bacteria. The macrocycles of the bacteriochlorophyll

a pigments of one monomeric subunit are shown separately as well

and are colored according to their site energy shift, where blue and

red mean blue and red shifts, respectively. Lower part Illustration of

exciton relaxation through the FMO protein, where the initial

excitation is assumed to arrive from the baseplate. The macrocycles

of the pigments are colored according to the population of their

excited state at a given time
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along a slower 2.5 ps pathway with pigments 1–3 (Fig. 4,

lower part). By exciting the FMO protein with ultrafast

laser pulses, excitonic/vibronic wavepackets may be cre-

ated. Excitonic wavepackets have first been detected

(Savhikin et al. 1997) and simulated (Renger and May

1998) in the anisotropy of pump-probe spectra. Coherent

exciton motion got into the focus of intense research after

2D spectroscopy also revealed these quantum beats (Engel

et al. 2007). A fundamental discussion has started about

the physiological relevance of these coherences and about

the active role the protein might play in protecting these

coherences, e.g., by a correlated modulation of site ener-

gies. To investigate these correlations in site energy fluc-

tuations, QM/MM approaches were applied (Olbrich et al.

2011a; Jing et al. 2011) but did not find any. It was argued,

however, that longer simulation times might be needed to

resolve them. Indeed, a normal mode analysis (NMA)

revealed that these correlations are particularly strong at

very low frequencies (Renger et al. 2012). An inclusion of

these correlations in the calculation of exciton relaxation,

however, did practically give the same result as a simula-

tion without including them. Hence, we may conclude that

these correlations are physiologically not significant.

However, the interpretation of 2D spectra critically

depends on such correlations (Christensson et al. 2012;

Caycedo-Soler et al. 2012). Further below, we will discuss

how the spectral density of the pigment–protein coupling

can be obtained from a NMA.

Short-range contributions to site energy shifts

and excitonic couplings

If there is considerable wavefunction overlap between

neighboring pigments, the building block partition used so

far has to be modified. For electron exchange in pigment

dimers, quantum chemical calculations on whole dimers

and those on the isolated monomers can be related by an

effective two-state Hamiltonian (Madjet et al. 2009)

~H2 ¼
�
ð0Þ
1 þ kðLRÞ

1 � kðSRÞ
1 VLR þ VSR

VLR þ VSR �
ð0Þ
2 þ kðLRÞ

2 � kðSRÞ
2

 !
; ð39Þ

that contains in the diagonal the local transition energy �
ð0Þ
i

obtained from quantum chemical calculations on the

isolated monomers i = 1,2 that is shifted in the dimer by

ki
(LR) due to long-range electrostatic coupling and by

-ki
(SR) due to electron exchange. (Note that the minus sign

on the latter was introduced because the short-range effects

are expected to lead to redshifts of the transition energies of

the monomers.) The off-diagonal contains long- (VLR) and

short-range (VSR) contributions to the excitonic coupling

between the monomers. The long-range contributions VLR

and ki
(LR) are obtained from TrEsp and CDC calculations,

respectively, introduced above. In order to decipher the

short-range contributions, it is necessary to exploit the

quantum chemical results on the two lowest excitation

energies E? and E- of the dimer and the corresponding

transition dipole moments for the transitions from the

ground state, l0�: The result for the short-range

contributions reads (Madjet et al. 2009)

kðSRÞ
1;2 ¼ �

ð0Þ
1;2 þ kðLRÞ

1;2 �
1

2
ðEþ þ E�Þ �

1

2
ðEþ � E�Þ

Y2 � 1

Y2 þ 1
;

ð40Þ

and

VSR ¼ ðEþ � E�Þ
Y

1þ Y2
� VLR: ð41Þ

The quantity Y is obtained from the transition dipole

moments of the monomers l0i; ði ¼ 1; 2Þ (obtained from

respective quantum chemical calculations) and that of the

dimer, l0� as

Y ¼ �h
g1ðl0�Þ
g1ðl0þÞ

¼ Ya: ð42Þ

A second relation for Y is obtained as:

Y ¼ h
g2ðl0þÞ
g2ðl0�Þ

¼ Yb: ð43Þ

The functions g1 and g2 are given as

g1ðlÞ ¼ ðl � l01Þl2
02 � ðl � l02Þðl01 � l02Þ; ð44Þ

g2ðlÞ ¼ ðl � l02Þl2
01 � ðl � l01Þðl01 � l02Þ; ð45Þ

and

h ¼ 1 if g1ðl0þÞg2ðl0�Þ[ 0; and h ¼ �1

otherwise:
ð46Þ

The equality of Ya (Eq. 42) and Yb (Eq. 43) can be used as a

consistency check of the method. This consistency check

became possible by including the transition dipole

moments in the analysis, extending an earlier method by

Scholes et al. (1999), where only excitation energies were

considered.

So far, this method has been applied to the reaction

center of purple bacteria (bRC) and PSI (Madjet et al.

2009), revealing that about 3/4 of the excitonic coupling in

these special pairs is due to electron exchange and that an

additional red shift of the excitation energies of the special

pairs due to site energy shifts, also dominated by short-

range effects, results. Here, we report first results on the

special pair of PSII that are based on recent crystal struc-

ture data (Umena et al. 2011). A constraint geometry

optimization was performed, where the torsional angles

were kept fixed as in the crystal structure, using density
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functional theory (DFT) with the B3LYP exchange-corre-

lation (XC) functional and a 6-31G* basis set. Based on

this structure, excitation energies and transition dipole

moments were calculated for the dimer and the isolated

monomers using the different hybrid XC-functionals

described in Madjet et al. (2009). The smallest deviation

between Ya and Yb was obtained for the B3LYP XC-

functional, resulting in short-range site energy shifts

-k1
(SR)(Ya) = - 298 cm-1 and -k1

(SR)(Yb) = - 177 cm-1

for monomer 1 and -k2
(SR)(Ya) = - 325 cm-1 and

-k2
(SR)(Yb) = - 150 cm-1 for monomer 2. The short-range

coupling was obtained as VSR(Ya) = 146 cm-1 and

VSR(Yb) = 65 cm-1. The respective long-range site energy

shifts are k1
(LR) = 206 cm-1 and k2

(LR) = 51 cm-1, and the

long-range excitonic couplings, rescaled such as to reflect an

effective dipole strength of 4.38 D (Madjet et al. 2009) is

VLR
(eff) = - 26 cm-1. An illustration of these results is given

in Fig. 2. Interestingly, the short- and long-range site energy

shifts in PSII have opposite sign, whereas in bRC they have

the same sign. In addition, the absolute magnitude is much

smaller in PSII, and there is a sign flip between the long- and

short-range excitonic couplings, indicating an inversion of the

redistribution of oscillator strength. The different signs of

short- and long-range site energy shifts and the overall

smaller magnitude of short-range effects in PSII as compared

to bRC explain the much shallower energy trap formed in the

special pair of the former (Fig. 2). Finally, we note that the

inverted redistribution of oscillator strength in the special pair

of PSII is an interesting result that needs to be studied in more

detail in the calculation of optical properties. We note,

however, that the relative large deviation between Ya and Yb

(and the resulting short-range site energy shifts and excitonic

couplings) does not allow to draw final conclusions yet. This

deviation could have at least two reasons: (i) limitations of the

quantum chemical method and (ii) limitations of the effective

two-state model used to analyze the quantum chemical

results.

The exciton–vibrational Hamiltonian and the spectral

density derived from a normal mode analysis

The exciton Hamiltonian Hex has been derived by assum-

ing that the nuclear degrees of freedom of the PPC are fixed

at their equilibrium positions in the electronic ground state.

The displacements of nuclei from these positions result in a

change of the transition energies and excitonic couplings

that is described by the exciton–vibrational Hamiltonian

Hex–vib. Hence, we may write

Hex þ Hex�vib ¼
X

m;n

HmnðRÞjmihnj ð47Þ

where the nuclear degrees of freedom are abbreviated by

R and where for the equilibrium positions R(0) the exciton

matrix

Hð0Þmn ¼ HmnðRð0ÞÞ ¼ dmnEm þ ð1� dmnÞVmn ð48Þ

contains in the diagonal the site energies Em (Eq. 17) and in

the off-diagonal the excitonic couplings Vmn (Eqs. 11,

19)derived above.

We will in the following consider changes of these

quantities that occur for small displacements of nuclei from

their equilibrium positions. By using a Taylor expansion of

the exciton matrix Hmn(R) we have

HmnðRÞ � Hð0Þmn þ
X

J

ðrJHmn j0Þ � ðRJ � R
ð0Þ
J Þ; ð49Þ

where ðrJHmn j0Þ is the gradient of Hmn taken with respect

to the three Cartesian coordinates of atom J at the equi-

librium position of nuclei in the electronic ground state of

the PPC.

In the case of small displacements of nuclei, a normal

mode analysis may be used to describe the nuclear

dynamics in the electronic ground state of the PPC. Mass

weighted dimensionless normal coordinates Qn are intro-

duced via

RJ � R
ð0Þ
J ¼

�h

ð2MJÞ1=2

X

n

A
ðnÞ
J

Qn

x1=2

n

ð50Þ

where MJ is the mass of atom J and AJ
(n) contains the

contributions of this atom to the eigenvector of normal

mode n.

By using the CDC expression (Eq. 22) for the coordinate

dependence of the site energies and the TrEsp expression (Eq.

28) for that of the excitonic couplings, the gradientrJHmn in

Eq. (49) can be calculated and the exciton–vibrational cou-

pling Hamiltonian is obtained as (Renger et al. 2012)

Hex�vib ¼
X

n

X

mn

�hxngnðm; nÞQnjmihnj; ð51Þ

where the dimensionless coupling constant gn(m, n) was

introduced as

x3=2

n ð2�hÞ1=2
gnðm; nÞ

¼ dmn

�eff

X

I;J;a

q
ðaÞ
J q

ðmÞ
I ð1; 1Þ � q

ðmÞ
I ð0; 0Þ

� �

jRð0ÞJ;a � R
ð0Þ
I;mj

3

� R
ð0Þ
J;a � R

ð0Þ
I;m

� �
� M

�1=2
I A

ðnÞ
I �M

�1=2
J A

ðnÞ
J

� �

þ ð1� dmnÞf
X

I;J

q
ðmÞ
I ð0; 1Þq

ðnÞ
J ð0; 1Þ

jRð0ÞI;m � R
ð0Þ
J;nj

3

� R
ð0Þ
I;m � R

ð0Þ
J;n

� �
� M

�1=2
J A

ðnÞ
J �M

�1=2
I A

ðnÞ
I

� �
:

ð52Þ
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From the above coupling constants and the density of

vibrational states, both obtained from the NMA, the

spectral density of the exciton–vibrational coupling

JmnklðxÞ ¼
X

n

gnðm; nÞgnðk; lÞdðx� xnÞ ð53Þ

can be calculated, which is a key quantity in the calculation

of optical spectra and excitation energy transfer [see, e.g., a

recent review by (Renger and Müh 2013)]. It describes the

fluctuation of site energies (m = n = k = l) the fluctuation

of excitonic couplings (m = k, n = l, m = n), the corre-

lations in fluctuations of site energies (m = n, k = l,

m = k), and also correlations between fluctuations of site

energies and excitonic couplings and between fluctuations

of excitonic couplings.

This method has been applied to the monomeric subunit

of the FMO protein (Renger et al. 2012). The main results

of this analysis are: (i) the fluctuation of site energies

(Fig. 5) are an order of magnitude stronger than the fluc-

tuations in excitonic couplings. (ii) Although the correla-

tions in site energy fluctuations (Fig. 6) are of similar

magnitude as the site energy fluctuations, the former are

particularly large at low frequencies and, as noted before,

these correlations have practically no influence on exciton

relaxation or the decay of coherences between different

exciton states. They might, however, be important for the

interpretation of 2D spectra. The comparison of the dif-

ferent Jmmmm(x) characterizing the site energy fluctuations

of pigments m ¼ 1. . .7 with experimental quantities

resulting from fluorescence line narrowing spectroscopy

shows that the NMA spectral densities seem to be larger

than the experimental quantities at low frequencies and

smaller at higher frequencies. This systematic deviation

might have its origin in the neglect of anharmonicities of

the force field (in particular the non-bonding interaction) in

the NMA. We are currently performing molecular

dynamics simulations to investigate this effect.

Finally, we note that earlier QM/MM approaches

(Damjanovic et al. 2002; Olbrich et al. 2011b; Shim et al.

2012), where QC calculations of pigment transition ener-

gies were performed along the classical trajectories of

nuclei obtained from MD simulations, did not obtain

agreement with experimental spectral densities. Most likely

the reason is the mismatch between nuclear geometries

resulting from a classical force field and from QC calcu-

lations, taking into account that QC excitation energies are

very sensitive to slight geometry distortions.

The quantum dynamics of excitons

In order to describe energy transfer and lineshape functions

measured in optical experiments, it is necessary to include

nuclear dynamics into the theory. In the spirit of the Born–

Oppenheimer approximation, suitable potential energy

surfaces (PES) for the motion of nuclei are introduced,

where the choice of the PES depends on the relative

strength of excitonic and exciton–vibrational coupling. If

relaxation of nuclei within these PES is fast as compared to

the transfer between different PES, perturbation theory in

the inter-PES coupling can be used to derive expressions

for rate constants.

To construct such PES, we consider the Hamiltonian

parameterized above

H ¼ Hex þ Hex�vib þ Hvib ð54Þ

with the exciton Hamiltonian Hex (Eq. 20), the exciton–

vibrational coupling Hamiltonian Hex–vib (Eq. 51) and the

vibrational Hamiltonian

Hvib ¼
X

n

�hxn

4
ðP2

n þ Q2
nÞ

X

m

jmihmj þ j0ih0j
 !

ð55Þ

where we used the completeness relation 1 ¼P
m jmihmj þ j0ih0j to introduce a unity operator on the

r.h.s. of Eq. (55) (restricting the electronic Hilbert space to

the ground state j0i and first excited states jm=ni of the

PPC) and introduced dimensionless normal coordinates Qn

and momenta Pn. The frequencies of the normal modes are

xn. Hence, the full PPC Hamiltonian may be written as

H ¼
X

m;n

dm;n Em þ
X

n

�hxn

4
Q2

n

 !(

þ
X

n

�hxngnðm; nÞQn þ ð1� dm;nÞVmngjmihnj

þ
X

n

�hxn

4
Q2

nj0ih0j þ Tnucl

ð56Þ

where Tnucl ¼
P

n
�hxn

4
P2

n is the kinetic energy of nuclei.

This Hamiltonian is used in the following to consider some

limiting cases, in which expressions for rate constants of

energy transfer can be derived.

Supported by the NMA-derived spectral density dis-

cussed above, we assume, that the fluctuation of excitonic

couplings is much smaller than the fluctuation of site ener-

gies and, therefore, the former can be neglected. The Ham-

iltonian of single excited electronic states then becomes

H1 ¼
X

m

Em þ
X

n

�hxn

4
Q2

n þ �hxngnðm;mÞQn

� � !

� jmihmj þ
Xm 6¼n

m;n

Vmnjmihnj þ Tnucl ð57Þ

In the spirit of the Born–Oppenheimer approximation, we

have to diagonalize the electronic Hamiltonian in order to

obtain the PES for the motion of nuclei. If the difference in
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diagonal elements of the above matrix are much larger than

the excitonic couplings in the off-diagonal, the resulting

eigenstates may be well approximated by the localized

excited states and the nuclei, therefore effectively move in

the PES Um, resulting from the above diagonal elements as

Um ¼ Uð0Þm þ
X

n

�hxn

4
ðQn þ 2gnðm;mÞÞ2 ð58Þ

where the minimum in energy of this PES is at

Uð0Þm ¼ Em �
X

n

�hxngnðm;mÞ2 ð59Þ

In this case, localized excited states are created in the

PPC, the nuclei relax fast in the above PES and a second

order perturbation theory in the small inter-PES coupling

Vmn results in the Förster rate constant of excitation energy

transfer between states jmi and jni; if, in addition,

correlations in site energy fluctuations are neglected. A

detailed derivation of this rate constant was given, e.g., in a

recent review by Renger and Müh (2013).

In the case of stronger excitonic coupling, the PES will

change. For illustrative purposes we will consider a

molecular dimer first and take into account just one

vibrational coordinate Q with vibrational frequency x. In

this case, the Hamiltonian can be diagonalized resulting in

the PES UM(Q) of adiabatic states (eigenstates)

UMðQÞ ¼
1

2
E1 þ E2 þ 2�hx�gQþ �hx

2
Q2

� 	

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDE þ �hxDgQÞ½ �2þ4V2

12

q ð60Þ
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Fig. 5 Spectral density Jmmmm(x) containing the site energy fluctu-

ations of pigments m ¼ 1. . .7 of the monomeric subunit of the FMO

protein, shown as red bars, obtained from a normal mode analysis

(Renger et al. 2012). The red numbers are the resulting Huang–Rhys

factors Sm =
P

n gn(m,m)2. The black solid line denotes the spectral

density of the B777 complex, extracted (Renger and Marcus 2002)

from fluorescence line narrowing spectra (Creemers et al. 1999) (the

Huang–Rhys factor has been varied from S = 1.3 for B777 to

S = 0.42 for FMO in order to describe the temperature dependence of

absorbance spectra of the FMO protein). In the right lower corner the

average spectral density of the seven sites (blue bars) is compared to

the experimental quantity of the B777 complex and the spectral

density obtained from fluorescence line narrowing spectra of the FMO

protein (Wendling et al. 2000)
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Fig. 6 Spectral density Jmmnn(x) containing the correlation in site

energy fluctuations between pigments m and n of the monomeric

subunit of the FMO protein, shown as blue bars, obtained from a

normal mode analysis. The numbers are generalized Huang–Rhys

factors Smmnn =
P

n |gn(m, m)gn(n, n)|. The correlations of those

pigment pairs with the largest correlation in site energy fluctuations

(i.e., the largest generalized Huang–Rhys factors) are shown
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where DE ¼ E1 � E2;Dg ¼ gð1; 1Þ � gð2; 2Þ; and

�g ¼ ðgð1; 1Þ þ gð2; 2ÞÞ=2: ð61Þ

For small differences in exciton–vibrational coupling, i.e.,

for �hxDg\V12; a Taylor expansion may be used to

approximate the above PES by

UMðQÞ �
1

2
E1 þ E2 þ 2�hx�gQþ �hx

2
Q2

� 	

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE2 þ 4V2

12

q
þ DEDgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DE2 þ 4V2
12

p �hxQ

 !
:

ð62Þ

Neglecting the last term, which is justified for small Dg

or small DE; then results in PES UMðQÞ ¼ U�ðQÞ which

are mutually unshifted along the coordinate axis (Müh and

Renger 2013)

U�ðQÞ � U
ð0Þ
� þ

�hx
4
ðQþ 2�gÞ2 ð63Þ

where the minima in energy are at

U
ð0Þ
� ¼

1

2
E1 þ E2 � 2�g2�hx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE2 þ 4V2

12

q� 	
ð64Þ

and the shift with respect to the PES of the electronic

ground state is determined by �g for both PES. In this case

one can assume that after optical excitation, the nuclei

relax in the initial PES and no further reorganization of

nuclei occurs upon exciton transfer, as in Redfield theory

discussed below.

For larger Dg and DE 6¼ 0; the last term in Eq. (62)

needs to be taken into account and the PES

U�ðQÞ � ~U
ð0Þ
� þ

�hx
4
ðQþ 2ð�gþ g�ÞÞ2 ð65Þ

of the exciton states get displaced with respect to each

other due to

g� ¼ �
DEDg

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE2 þ 4V2

12

p ð66Þ

and we have

~U
ð0Þ
� ¼ U

ð0Þ
� � �hxð2�gþ g�Þg�: ð67Þ

Now, after nuclear relaxation in the PES of the initially

excited PES, exciton transfer occurs between displaced PES

and, hence, a nuclear reorganization needs to be taken into

account as in Modified Redfield theory discussed below.

We return now to the case of many pigments and many

vibrational normal modes of the PPC coupling to the

optical transitions of the pigments. Exciton states

jMi ¼
X

m

cðMÞm jmi ð68Þ

are introduced as eigenstates of H1 (Eq. 57) for the equi-

librium position of nuclei in the electronic ground state,

i.e., for Q = 0. Hence, the exciton matrix Hmn
(0) (Eq. 48) is

diagonalized.

Transforming the Hamiltonian (Eq. 56) into the new

basis results in

H ¼
X

M

EM þ
X

n

�hxn

4
Q2

n

 !
jMihMj

þ
X

M;N

X

n

�hxngnðM;NÞQnjMihNj

þ
X

n

�hxn

4
Q2

nj0ih0j þ Tnucl

ð69Þ

where the exciton–vibrational coupling constants in the

new basis read

gnðM;NÞ ¼
X

mn

cðMÞm cðNÞn gnðm; nÞ: ð70Þ

The off-diagonal elements �hxngnðM;NÞQnjMihNj ðM 6¼
NÞ couple different exciton states. A second-order pertur-

bation theory in this coupling is used in Redfield and

Modified Redfield theory to derive expressions for rate

constants of exciton transfer. The diagonal part

�hxngnðM;MÞQnjMihMj of the exciton–vibrational cou-

pling in H describes the shift along the coordinate axes of

the PES of different exciton states with respect to the PES

of the ground state. In Redfield theory, the resulting mutual

shifts of the PES of different exciton states are neglected,

whereas in Modified Redfield theory, these shifts are taken

into account in the derivation of a rate constant for exciton

transfer. For a recent review on this topic, see, e.g., Renger

and Müh (2013).

In both theories, it is assumed that after optical excita-

tion there is first relaxation within the excitonic PES,

before exciton relaxation occurs to a different exciton state.

Such an assumption requires the diagonal parts of the

exciton–vibrational coupling to be large as compared to the

off-diagonal parts. There is indeed support for this

assumption from a recent normal mode analysis of the

coupling constants of the FMO protein (Renger et al.

2012).

In principle, both, the electronic and the electron-

vibrational coupling can be treated non-perturbatively

(Ishizaki and Fleming 2009; Chin et al. 2010; Nalbach

et al. 2011; Kreisbeck and Kramer 2012). However, the

numerical effort is considerable and, therefore, these

methods so far can only be applied to small systems con-

taining a few pigments. An alternative, but numerically

also very costly approach includes selected vibrational

coordinates explicitly in the system dynamics and uses

perturbation theory for the coupling of these coordinates to
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the remaining coordinates which form a heat bath (Kühn

et al. 1996; Novoderezhkin et al. 2004).

Conclusions and challenges for future work

We have given an overview of structure-based modelling

of light-harvesting in photosynthesis. We believe that the

dominant contribution to site energy shifts, excitonic cou-

plings, and spectral densities comes from the charge- and

transition-density Coulomb couplings between the building

blocks of the PPC.1 Our QC/electrostatic two-step proce-

dure, originally developed for the FMO protein, has been

successfully applied to larger complexes like LHCII, CP43

and photosystem I, as reviewed recently (Renger and Müh

2013). A challenge for future work will be to quantify the

contributions that have so far been neglected, like disper-

sive site energy shifts (Heinz et al. 2001; Renger et al.

2008; Ikabata and Nakai 2012), the effect of different

conformations of the pigments on the site energies (Zuc-

chelli et al. 2012), the effect of the residual polarization of

the pigments on the excitonic interaction (Fujimoto and

Yang 2008), and the effect of anharmonic nuclear motion

on the spectral density of the pigment–protein coupling

(Rivera et al. 2013). A challenge for the development of

dynamical theory is the application of non-perturbative

approaches (Ishizaki and Fleming 2009; Chin et al. 2010;

Nalbach et al. 2011; Kreisbeck and Kramer 2012) to large

systems, in order to describe a dynamic localization of

exciton states and the formation of exciton domains. It will

be interesting to see the limitations of modified Redfield

and generalized Förster theory in this context. Concerning

the description of short-range contributions to excitonic

couplings and site energy shifts, a challenge is to improve

the quantum chemical description of exciton states and

their coupling to charge transfer (CT) states (Stein et al.

2009). The next challenge will be to include the protein

environment in these calculations in order to obtain more

realistic energies, in particular of the CT states. In this

context, it will be interesting to look for low-lying CT

states in the reaction center of photosystem II inferred by

Krausz and co-workers based on experiments, where

charge separation at low temperatures was initiated with

long-wavelength excitation (Krausz et al. 2005; Hughes

et al. 2006).

Finally, we have to note that the physiological function

of many PPCs includes photoprotection that most likely is

connected with conformational transitions of the protein.

Hence, static crystal structure data can only serve as a

starting point for modelling these processes, which ulti-

mately need to be understood at the same level of molec-

ular detail as we understand the optical properties and

energy transfer of small PPCs, like the FMO protein, now.
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van Grondelle R, van Amerongen H (2002) The quantitative

relationship between structure and polarized spectroscopy in the

FMO complex of Prosthechochloris aestuarii: refining experi-

ments and simulations. Photosynth Res 71:99–123

Yang M, Fleming GR (2002) Influence of phonons on exciton transfer

dynamics: comparison of the Redfield, Förster, and modified

Redfield equations. Chem Phys 275:355–372

Zhang WM, Meier T, Chernyak V, Mukamel S (1998) Exciton-

migration and three–pulse femtosecond optical spectroscopies of

photosynthetic antenna complexes. J Chem Phys 108:7763–7774

Zucchelli G, Santabarbara S, Jennings RC (2012) The Qy absorption

spectrum of the light-harvesting complex II as determined by

structure-based analysis of chlorophyll macrocycle deforma-

tions. Biochemistry 51:2717–2736

388 Photosynth Res (2013) 116:367–388

123


	Structure-based modeling of energy transfer in photosynthesis
	Abstract
	Introduction
	The exciton Hamiltonian from a variational principle
	Calculation of site energies and excitonic couplings
	Evaluation of Coulomb integrals
	Calculation of site energies
	The charge density coupling (CDC) method
	Calculation of the protonation pattern of the protein
	Approximations and comparison with other methods
	Dispersive transition energy shifts of pigments in nonpolar solvents

	Calculation of excitonic couplings
	The transition density cube (TDC) method
	The transition charge from electrostatic potentials (TrEsp) method
	The Poisson--TrEsp method
	Critical approximations of Poisson--TrEsp and comparison with other methods
	How far can one simplify the calculations of excitonic couplings?

	The site energy funnel in the FMO protein

	Short-range contributions to site energy shifts and excitonic couplings
	The exciton--vibrational Hamiltonian and the spectral density derived from a normal mode analysis
	The quantum dynamics of excitons
	Conclusions and challenges for future work
	Acknowledgments
	References


