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Abstract

The cosmological realization of the spontaneous breaking of B−L, the difference of baryon
and lepton number, can generate the initial conditions for the hot early universe. In particu-
lar, we show that entropy, dark matter and a matter-antimatter asymmetry can be produced
in accordance with current observations. If B−L is broken at the grand unification scale,
F-term hybrid inflation can be realized in the false vacuum of unbroken B−L. The phase
transition at the end of inflation, governed by tachyonic preheating, spontaneously breaks the
U(1)B−L symmetry and sets the initial conditions for the following perturbative reheating
phase. We provide a detailed, time-resolved picture of the reheating process. The competi-
tion of cosmic expansion and entropy production leads to an intermediate plateau of constant
temperature, which controls both the generated lepton asymmetry and the dark matter abun-
dance. This enables us to establish relations between the neutrino and superparticle mass
spectrum, rendering this mechanism testable. Moreover, we calculate the entire gravitational
wave spectrum for this setup. This yields a promising possibility to probe cosmological B−L
breaking with forthcoming gravitational wave detectors such as eLISA, advanced LIGO and
BBO/DECIGO. The largest contribution is obtained from cosmic strings which is, for typ-
ical parameter values, at least eight orders of magnitude higher then the contribution from
inflation. Finally, we study the possibility of realizing hybrid inflation in a superconformal
framework. We find that superconformal D-term inflation is an interesting possibility gener-
ically leading to a two-field inflation model, but in its simplest version disfavoured by the
recently published Planck data.



Zusammenfassung

Die kosmologische Realisierung der spontanen Brechung von B−L, der Differenz zwischen
Baryon- und Leptonzahl, kann die Anfangsbedingungen für das frühe, heiße Universum schaf-
fen. Insbesondere zeigen wir, dass Entropie, dunkle Materie und eine Materie-Antimaterie
Asymmetrie in Übereinklang mit aktuellen Beobachtungen erzeugt werden können. Falls B−L
an der Skala der großen Vereinheitlichung gebrochen wird, kann F-Term Hybrid-Inflation im
falschen Vakuum der ungebrochenen B−L Symmetrie stattfinden. Der Phasenübergang am
Ende von Inflation, getrieben durch tachyonisches Preheating, bricht die U(1)B−L Symmetrie
spontan und legt die Anfangsbedingungen für die folgende, störungstheoretisch behandelba-
re Reheatingphase fest. Wir geben eine detaillierte, zeitaufgelöste Beschreibung des Ablaufs
von Reheating. Das Wechselspiel von kosmischer Expansion und Entropieproduktion führt
zu einer zwischenzeitlich konstanten Temperatur, die sowohl die erzeugte Leptonasymme-
trie als auch die Menge der produzierten dunklen Materie kontrolliert. Somit können wir
Beziehungen zwischen dem Neutrino- und Superteilchen-Massenspektrum herstellen, was ein
Überprüfen dieses Mechanismus erlaubt. Darüber hinaus berechnen wir das vollständige Gra-
vitationswellenspektrum für dieses Modell. Dies eröffnet die vielversprechende Möglichkeit,
kosmologische B−L Brechung mit zukünftigen Gravitationswellendetektoren wie eLISA, ad-
vanced LIGO und BBO/DECIGO zu testen. Der größte Beitrag stammt dabei von kosmischen
Strings. Für typische Parameterwerte liegt dieser mindestens acht Größenordnungen über dem
Beitrag der Inflation. Schließlich untersuchen wir die Möglichkeit, Hybrid-Inflation in einer
superkonformen Theorie zu realisieren. Wir zeigen, dass superkonforme D-Term-Inflation eine
interessante Möglichkeit darstellt, die generisch zu einem Zwei-Feld-Inflationsmodel führt. In
seiner einfachsten Version ist superkonforme D-term-Inflation allerdings nicht sehr gut mit
den kürzlich veröffentlichten Planck Daten verträglich.
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Introduction

With the survey of the cosmic microwave background by the Planck satellite and with the
Large Hadron Collider (LHC) up and running, we have entered new testing grounds to probe
and distinguish different models, in cosmology as well as in particle physics. For example,
the Planck mission is providing valuable input for models of inflation [1]. By searching for
topological defects, which are relics of spontaneous symmetry breaking processes in the early
universe, it is moreover probing the possibility of cosmological phase transitions [2]. In a
totally complementary approach, the LHC is investigating spontaneous symmetry breaking
by studying the mechanism of electroweak symmetry breaking in the Standard Model. Further
exciting developments are expected from a new generation of upcoming gravitational wave
detectors. These are expected to reach, for the first time, the sensitivity needed to detect
gravitational waves from various astrophysical and cosmological sources [3]. This would open
up a fascinating window to the very early universe, enabling us to probe time and energy
scales far beyond the reach of cosmic microwave background observations.

In this situation, we study the consequences of a U(1) phase transition which is well
motivated from a particle physics point of view and at the same time addresses open questions
in cosmology: Extending the minimal supersymmetric Standard Model by a gauged U(1)
symmetry with charge B−L, i.e. the difference between baryon and lepton number, which
is spontaneously broken at the grand unification scale (GUT scale) can naturally explain
the smallness of neutrino masses. Studying the cosmological realization of spontaneous B−L
breaking yields the following intriguing picture [4]: F-term Hybrid inflation [5] can be realized
in a false vacuum which respects the B−L symmetry. The phase transition at the end of
inflation, governed by tachyonic preheating [6], spontaneously breaks B−L and generates the
initial conditions for the hot early universe, in particular a matter-antimatter asymmetry via
leptogenesis [7] as well as dark matter in accordance with current observations [8].

We study the B−L phase transition in the full supersymmetric Abelian Higgs model. For
the subsequent reheating process, we give a time-resolved description of all particle abun-
dances by employing Boltzmann equations. We find that a crucial player is the lightest of the
heavy right-handed neutrinos. Moreover, the competition of cosmic expansion and entropy
production leads to an intermediate period of constant reheating temperature, during which
a B−L asymmetry and a gravitino abundance are produced. Depending on the underlying



2 Introduction

superparticle mass spectrum, the latter can either directly explain the observed dark matter
abundance or can, in its decays, produce a nonthermal contribution to neutralino dark matter.
Requiring consistency of hybrid inflation, leptogenesis and dark matter, the key role of the
reheating temperature enables us to establish relations between the parameters of the neu-
trino sector and the superparticle mass spectrum. For gravitino dark matter, we find a lower
bound of 10 GeV on the gravitino mass, assuming a gluino mass of 1 TeV. For neutralino dark
matter, we find that, for instance, a mass of the lightest neutrino of 0.05 eV would require a
gravitino mass of at least 10 TeV and for a higgsino-like lightest supersymmetric particle a
mass below 900 GeV. A promising way of probing this model is by measuring the gravitational
wave background [9]. We thus calculate the complete gravitational wave spectrum for this
setup, i.e. from inflation, from preheating and from cosmic strings in the scaling regime. The
largest contribution is expected from cosmic strings, for which, using the Abelian Higgs model
of cosmic strings, we find a contribution of the same shape as the gravitational background
from inflation, but an amplitude many orders of magnitude larger. For comparison, we also
estimate the contribution from Nambu-Goto cosmic strings, in this way quantifying the large
theoretical uncertainties involved in modelling cosmic strings. Future gravitational wave de-
tectors such as eLISA [10], advanced LIGO [11] and BBO/DECIGO [12, 13] are expected to
reach the necessary sensitivity to detect the cosmic string contribution. Finally, we turn to an
interesting possibility of refining the inflationary sector of this model, based on a supercon-
formal symmetry [14]. This setup is conceptually promising, featuring an amazingly simple
structure in the Jordan frame based on symmetry principles while at the same exhibiting a
rich phenomenology: we find a two-field D-term inflation model with a scalar spectral index
which can be as low as ns ∼ 0.96 while the gauge coupling can take large values compatible
with grand unification. However, taking into account the recent Planck data, we find a signif-
icant tension when simultaneously considering the constraints on the spectral index and on
the cosmic string tension. These results are based on work partly published in Refs. [15–19].

This thesis is organized as follows. Chapter 1 sets the stage for this thesis, briefly reviewing
several concepts and open questions in both particle physics and cosmology which will be
addressed in the following chapters. In Chapters 2 and 3 we discuss the B−L phase transition
and the subsequent reheating process from a particle physics and from a cosmological point
of view, respectively. Chapter 4 investigates the resulting phenomenology, i.e. the amount of
baryon asymmetry and dark matter produced, the features in the gravitational wave spectrum
and the low-energy neutrino properties. In Chapter 5 we turn to superconformal D-term
inflation as an idea to improve the inflation model governing the early unbroken phase of
B−L. We review the conceptually interesting features of superconformal models and calculate
the predictions for the primordial power spectrum. Three appendices are dedicated to the
CP -violation in the 2 → 2 scattering processes, the calculation of the scalar spectral index in
the Jordan frame and the parameter dependence of the reheating process.



Chapter 1

The Pieces of the Puzzle

Over the last decades, there has been great progress in developing models which address
open questions in elementary particle physics and cosmology. However, we are still lacking
a complete and consistent elementary particle theory at high energies which incorporates all
we have learned about the different stages of early universe cosmology. This thesis aims
at taking a step towards filling this gap, discussing the cosmological implications of a well-
motivated particle physics model. In this chapter, we briefly review the current status and
recent developments in cosmology and particle physics which will be relevant in later chapters.

1.1 Symmetry as a guiding principle

A crucial step in understanding the laws of particle physics was the uncovering of the gauge
symmetry structure of the elementary particles, SU(3)C × SU(2)L × U(1)Y . This was a
milestone in the discovery of the Standard Model (SM) [20–22] and is an excellent example
of a simple and fundamental principle yielding a rich phenomenology in very good agreement
with observations. This success encourages us to employ symmetry principles when searching
for possible extensions of the SM.

Grand Unified Theories and U(1)B−L

Grand Unified Theories (GUTs) extend the SM gauge group by embedding it in a larger
simple Lie group. This group is then broken spontaneously down to the SM gauge group at
the GUT scale of about 1016 GeV. This process is related to one or more cosmological phase
transitions, which can have a significant impact on the evolution of the early universe. A
particularly appealing example is unification in SO(10) [23, 24]. In this case, after adding the
right-handed neutrino, one generation of SM fermions exactly fills one spinor representation of
the underlying Lie algebra. When breaking SO(10) down to the standard model gauge group
an extra U(1)X symmetry emerges. A linear combination of this and the SM hypercharge
U(1)Y can be identified as a local U(1) symmetry with the difference of baryon number B and
lepton number L as gauge charge, i.e. as U(1)B−L. This symmetry will play a key role in this
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thesis. The dynamical mechanism of breaking SO(10) down to the SM is still a question of
current research. Throughout this thesis, we assume that the first stage of this spontaneous
breaking occurred significantly before the end of inflation, so that we are effectively left with
the SM gauge group augmented by a local U(1)B−L symmetry.

Alternatively, even without specifying a complete GUT, considering U(1)B−L can be mo-
tivated by a bottom-up approach: the corresponding global symmetry is already a symmetry
of the SM Lagrangian. After adding three generations of right-handed neutrinos, it can be
promoted to a local anomaly-free symmetry. Spontaneously broken at the GUT scale, it can
naturally explain the observed small neutrino masses. In this sense it is a truly minimal
extension of the SM. Note that this procedure is not possible for B or L separately, since
the SM allows for vacuum-to-vacuum transitions which violate B+L while conserving B−L
[25, 26]. An example for such transitions are so-called sphaleron processes [27], which play an
important role in leptogenesis, cf. Sec. 1.2. As a consequence, the matter-antimatter asym-
metry observed today can be traced back to a B−L asymmetry in the early universe, making
U(1)B−L a promising starting point for explaining this asymmetry.

Topological defects

Cosmological phase transitions can leave traces detectable today in the form of topological
defects. These arise from a non-trivial topology of the vacuum manifold and, depending
on their spatial dimension, can be classified as monopoles, cosmic strings or domain walls.
Here, since we are considering the spontaneous breaking of a U(1) symmetry, we will focus
on cosmic strings [28]. The formation and evolution of the cosmic string network is a very
complicated process, requiring numerical simulations. Due to the enormous range of scales
involved, simplifying assumptions must be made. Two possibilities are the Abelian Higgs
model [29–31] and the Nambu-Goto model [32–35]. They both yield similar results for the
network of long strings, however, they differ quite significantly in their predictions for small
cosmic string loops. Which one of these two models is closer to reality is currently an open
question. At the same time, observations of the cosmic microwave background (CMB) [2]
as well as searches for gravitational waves [36, 37] are starting to seriously probe GUT-scale
cosmic strings, rendering the theoretical understanding of the cosmic string network and its
possible signals even more important.

In this thesis, we consider the consequences of cosmic strings formed in a U(1)B−L phase
transition in the early universe. In particular when calculating the expected gravitational
wave background, we consider both the Abelian Higgs as well as the Nambu-Goto model.
This direct comparison allows us to quantify the theoretical uncertainties arising from the
simulation method.

Supersymmetry and beyond

An alternative way to extend the symmetry group of the SM is to enlarge its space-time
symmetry, determined by the Poincaré group, by fermionic generators. This is the route
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chosen in supersymmetry [38]. Among other consequences, this introduces superpartners
for all SM particles, which can act as candidates for dark matter as well as for the scalar
field required for inflation, cf. Secs. 1.2 and 1.3. As a further step, supersymmetry can be
advanced to a gauge symmetry. This implies promoting the invariance under the global
space-time transformations of supersymmetry to an invariance under general local space-time
transformations, i.e. to the symmetry group of general relativity. The resulting symmetry is
thus called supergravity. This framework allows for an effective description of the influence of
gravity on particle physics below the Planck scale of about 1019 GeV, while at the same time
introducing a particle physics description of the gravitational interaction in form of a spin-2
particle, the graviton. The spin-3/2 superpartner of the graviton, the gravitino, is a further
promising candidate for dark matter.

Recently, a non-standard approach to supergravity has received a lot of interest. Starting
from a larger symmetry group, the superconformal group, the usual formulation of supergrav-
ity can be recovered by gauge-fixing the additional degrees of freedom [14]. Hence, it might
prove useful to employ this larger superconformal symmetry in (inflationary) model build-
ing. An example are the so-called canonical superconformal supergravity (CSS) models [39],
which are characterized by their simple structure in the Jordan frame. They generically
yield a non-minimal coupling of gravity to the scalar field driving inflation, a feature which
has independently received a lot of interest from a phenomenological point of view in Higgs
inflation [40–42].

Throughout this thesis, we work in a supersymmetric framework, with the gravitino and
the neutralinos playing crucial roles as dark matter candidates. Supergravity effects become
important at the high scales relevant for inflation. Here, Chapter 3 assumes a (nearly) canon-
ical Kähler potential whereas in Chapter 5, we present a model with a Kähler potential
motivated by a superconformal symmetry.

1.2 Cosmology at the very high energy frontier

In an expanding cooling universe, high energy scales correspond to early cosmological times.
In this sense, a step to higher energies is at the same time a glance back into the history of our
universe. With the LHC at CERN collider experiments have begun to probe the TeV energy
regime. In the context of cosmic history this is, however, only a tiny fraction of the energy
range our universe has experienced, corresponding to the dilution of radiation and matter
in an expanding universe and the decoupling of weakly coupled particle species. Exploiting
our knowledge of nuclear physics and of the weak interaction processes keeping neutrons and
protons in chemical equilibrium in the early universe, we can push our understanding of the
history of the universe a bit further: big bang nucleosynthesis (BBN) explains the generation
of light elements in the early universe and agrees very well with today’s measurements of
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their abundances. This brings us up to an energy scale of about a 1 MeV and back to about
one second after the ‘big bang’. But when it comes to this second, and in particular to the
first fractions of this second, corresponding to a vast range of energy scales, possibly up to
the Planck scale, a substantial number of fundamental questions remain unresolved.

Inflation

Inflation [43–45], by now a well established concept in early universe cosmology, addresses
the so-called horizon problem and the flatness problem. In short, the former is the question
of why the CMB is so extremely isotropic even though, according to standard cosmology, it
originated from many causally disconnected patches. The latter is the question of why the
universe we observe today is to very good approximation flat although, without fine-tuning,
standard cosmology would suggest a much larger curvature. Inflation solves these problems
by a phase of exponential expansion in the very early universe, implying that the universe
observable today was indeed in causal contact at some early point in time and at the same
time dynamically enforcing a very small spatial curvature. Moreover, inflation also dilutes
any monopoles formed in pre-inflationary phase transitions, which would otherwise come to
dominate the energy density of the universe. Finally, inflation predicts small fluctuations
in the spectrum of the CMB, a prediction which has spectacularly been confirmed by the
Cosmic Background Explorer (COBE) [46] and more recently, too high accuracy, by the
Wilkinson Microwave Anisotropy Probe (WMAP) [47] and the Planck satellite [1]. These
small fluctuations are thought to be the ‘seeds’ of structure formation, responsible for the
formation of galaxies and clusters in our universe.

In spite of this great success, there are still a number of open questions related to inflation.
In its simplest version, inflation is driven by a slowly rolling scalar field, the so-called inflaton.
However, it is neither known how this scalar field is accommodated in the particle spectrum
of a particle physics theory nor how an appropriate scalar potential is generated from a
fundamental theory. In this context, inflation is often referred to as ‘a paradigm in lack of a
model’.

A tempting explanation is to use the only scalar field of the SM, the Higgs field. Alas,
without further modifications the scalar potential of the Higgs is too steep to support infla-
tion in agreement with current data on the power spectrum of the scalar fluctuations [1]. A
possibility which has recently received a lot of interest is the introduction of a non-minimal
coupling of the Higgs field to gravity [40–42], which would allow for slow-roll inflation, how-
ever, at the price of introducing a dimensionless coupling of O(104). More possibilities arise
once supersymmetry is employed, which introduces additional scalar fields. In this context
an interesting idea is to exploit flat directions in the scalar potential of the minimal super-
symmetric standard model (MSSM) [48] or, omitting the concept of gauging B−L, to identify
the inflaton with a right-handed sneutrino, the superpartner of one of the heavy neutrinos
involved in the seesaw mechanism. The latter has been realized in chaotic [49, 50] as well
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as in hybrid inflation [51, 52]. However, as of today the situation remains inconclusive, with
current experiments unable to distinguish between these and further ideas. Indeed, the re-
cently published Planck data [1] severely constrains many models without nominating a clear
favourite, see e.g. [53] for a recent discussion.

In this thesis, the approach to embed inflation in a particle physics theory will be the
following: Extending the SM gauge group by a local U(1)B−L symmetry which is sponta-
neously broken at the GUT scale, the scalar fields responsible for the dynamical symmetry
breaking can simultaneously generate the dynamics of F-term hybrid inflation [5, 54, 55]. In
Chapter 5, we refine this idea and study a superconformal D-term inflation model [56, 57].
This leads to a non-minimal coupling of the inflaton field to gravity as is employed in Higgs
inflation, but without the drawback of a huge coupling constant.

Reheating

At the end of inflation, the universe is super-cooled with any initial thermal bath strongly
diluted during the exponential expansion process. In order to connect this picture to standard
cosmology, the universe must ‘reheat’, i.e. the vacuum energy present during inflation must
be transferred into a hot, thermal plasma. The latter then slowly cools down as the universe
expands until today’s CMB temperature of 2.7 Kelvin is reached.

The mechanism of this reheating process is a question under debate. Originally, it was
thought that the vacuum energy of inflation is transferred to coherent oscillations of the
inflaton field which then decay into lighter (SM) particles [58, 59]. However, it was then
discovered that in some inflation models this perturbative description was insufficient due
to a dominant fast nonperturbative process, referred to as ‘preheating’. The latter can be
realized in two different ways, as preheating via parametric resonance [60] or as tachyonic
preheating [6]. Both cases lead to an explosive particle production just after the end of
inflation. In the former case, this is due to oscillating mass terms induced by the oscillations
of the inflaton field. In the latter case a tachyonic mass term for one of the scalar fields
triggers an exponential growth of low momentum modes.

Hence, the question of how reheating proceeds has become a model-dependent question
with very important consequences for the evolution of our universe. What is the temperature
of the thermal bath produced in the reheating process, i.e. what is the highest temperature
ever reached in the universe? This affects the formation of very weakly coupled particles such
as gravitinos, which decouple from the thermal bath right after production. If the reheating
temperature is very high, i.e. (model-dependent) above roughly 1010 GeV, this leads to a large
gravitino abundance which can result in the so-called ‘gravitino problem’ [61–68]. A lower
bound on the reheating temperature of a few MeV is obtained from the abundance of light
elements [69–71]. This leaves a large range of possible reheating temperatures. A striking
observation is that the reheating temperature required to generate gravitino dark matter
in just the right abundance to explain the observed value, TRH ∼ 1010 GeV, matches the
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typical values for the mass of the lightest right-handed neutrino and hence the leptogenesis
temperature [72]. This might be pointing to a common origin for matter and dark matter,
i.e. a reheating temperature governed by the lifetime of the right-handed neutrino instead of
the inflaton lifetime. Pursuing this idea leads to a two-stage reheating process with many
phenomenologically interesting aspects [4, 73].

In this thesis, we address these questions by giving a detailed, time-resolved description
of all the processes relevant during preheating and reheating for the Abelian Higgs model
describing the B−L breaking phase transition. We numerically track the momentum distri-
butions of all particle species in a realistic model throughout the process based on a set of
coupled Boltzmann equations, with the initial conditions determined by tachyonic preheating.
This work is based on earlier studies [4, 73], extending these by taking into account the effect
of all supersymmetric degrees of freedom. Furthermore, we derive semi-analytical expressions
for all the relevant outputs of the reheating process, capturing the parameter dependencies
and allowing for future use of the results without a tedious numerical calculation. In particu-
lar, we discuss which aspects of the temperature evolution during the reheating process (and
hence which model parameters) can be probed by different types of observations.

Baryogenesis

In today’s universe, there is evidently a vast overabundance of matter compared to antimatter.
However, starting from a hot thermal plasma, we would expect the same amount of matter
and antimatter to have been produced, and to have mostly annihilated into photons. The
asymmetry measured today is thus conveniently expressed as [47]

ηB = (nB − nB̄)/nγ = (6.19± 0.15)× 10−10 , (1.1)

i.e. as the net number density of baryons normalized to the number density of photons today.
So how can we explain this tiny, but so crucial asymmetry? Baryogenesis is an answer to this
question, generating an asymmetry dynamically in the early universe provided that B−L,
C and CP are violated1 and that there is a departure from thermal equilibrium [74]. Like
inflation, this is a process which cannot be realized within the SM and calls for new physics.
A particularly interesting mechanism is leptogenesis [7], a realization of baryogenesis in the
lepton sector. Here typically the decay of right-handed neutrinos is the source of B−L, C- and
CP -violation. The departure from thermal equilibrium can be realized during the reheating
process and the asymmetry is transferred to the baryon sector through sphalerons. Due to the
high energy scales involved, leptogenesis is difficult to probe experimentally. However, probing
properties of the neutrino sector such as the light neutrino mass scale [1, 75] or neutrinoless
double-β decay [76] as well as linking leptogenesis to other stages of early universe cosmology
can help to constrain the possible parameter space.

1Here C(P ) denotes the charge(parity) operator.
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The work presented here is closely related to previous studies of thermal leptogenesis
[77, 78] and nonthermal leptogenesis via inflaton decay [79–82]. We consider nonthermal as
well as thermal contributions to the lepton asymmetry. On the one hand, after preheating, the
energy density of the universe is stored in B−L Higgs bosons, which decay into right-handed
neutrinos and sneutrinos, which in turn decay into particles of the thermal bath, thereby
generating a lepton asymmetry. On the other hand, right-handed neutrinos and sneutrinos
are also produced thermally, yielding a thermal contribution to the lepton asymmetry. We
explicitly track both contributions throughout the reheating process.

1.3 The invisible universe

There are a number of particle species which we have not observed yet, but for which we
have good reasons to believe they exist, either from indirect experimental evidence or from
theoretical considerations or both. Some of these play an important role when studying the
evolution of our universe, providing a further link between particle physics and cosmology.

Dark matter

Numerous observations on galactic to cosmological scales point to a non-baryonic component
of the matter energy density of the universe [83]. We know that this new particle species,
dubbed dark matter (DM), must interact at least gravitationally, but at most weakly. It must
be stable or at least have a lifetime comparable to the age of the universe. And it must be
‘cold’ or at most ‘warm’, i.e. non-relativistic at the onset of structure formation.

The SM contains no such particle, but extending it to the MSSM introduces the neutrali-
nos, formed from the superpartners of the neutral electroweak gauge bosons and of the Higgs
bosons. If one of these is the lightest supersymmetric particle (LSP) in the spectrum and if
R-parity is conserved, then this neutralino is a viable DM candidate [84, 85]. Charged under
SU(2)L, neutralinos are part of a larger class of candidates referred to as weakly interacting
massive particles (WIMPs). Any locally supersymmetric theory additionally introduces the
gravitino. In a gauge mediated supersymmetry breaking scenario, the gravitino is typically
the LSP and hence a viable DM candidate [86]. Another well-motivated candidate is the
QCD axion, originally introduced to solve the strong CP problem.

On the experimental side, the particle physics nature of dark matter is being probed by
direct and indirect detection methods. At the time of writing, there is no clear evidence of a
positive signal in any of these searches, though there have been some anomalies observed both
in direct and in indirect detection channels, see e.g. Ref. [87] for a recent overview. Moreover,
the LHC is probing the parameter space of WIMPs, and is in particular in the constrained
MSSM severely pushing the ‘WIMP miracle’ arising for thermally-produced neutralino-only
DM, see e.g. Ref. [88]. Hence, at the moment WIMPs respecting the current experimental
constraints, gravitinos, which are notoriously hard to detect due to their very weak coupling,
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as well as axions or axion-like particles (for bounds on the parameter space, see e.g. Ref. [89])
all remain viable, theoretically well-motivated candidates.

In the following, we will consider both the case of gravitino and of neutralino dark matter.
If the gravitino is the LSP, gravitino dark matter can be thermally produced at a reheating
temperature compatible with leptogenesis [72]. If the gravitino is the heaviest superparticle, as
realized in anomaly mediated supersymmetry breaking [90, 91], dark matter can be formed
as neutralino dark matter. This has been recently reconsidered in the case of wino [92],
higgsino [93] and bino [94] LSP, motivated by the discovery of a Higgs-like scalar boson with
a mass of about 126 GeV by the LHC experiments ATLAS and CMS [95, 96]. In this case,
it has been pointed out that a gravitino mass above 10 TeV is consistent with BBN and
leptogenesis [61, 97, 98]. In this thesis, we will discuss these two options in the context of the
U(1)B−L phase transition. In particular, we will focus on constraints on the model parameters
which can be derived by requiring the consistency of hybrid inflation, leptogenesis, BBN as
well as the correct DM abundance.

Gravitational waves

Gravitational waves (GWs) are produced as fluctuations of the metric in cosmological pro-
cesses as well as by astrophysical sources, for a review see e.g. Refs. [99, 100]. Since they only
interact gravitationally, i.e. extremely weakly, with all other components of the universe, they
decouple instantaneously and then travel freely ever since. A detection of a GW signal would
thus yield direct information about its source as well as, due to the red-shift the GW expe-
riences on its way to the detector, about the expansion history of our universe. This would
open up a window to probe cosmological models up to the scale of inflation. This is similar
to the way the CMB photons carry information on their last scattering surface, but due to
the much weaker interactions of GWs compared to photons, significantly earlier times can be
probed, when the universe was transparent for GWs but not for electromagnetic waves.

Many of the cosmological processes discussed above are expected to produce GWs. From
inflation, we expect an almost scale-invariant stochastic background over a wide range of
frequencies, with the amplitude depending mainly on the tensor-to-scalar ratio of the infla-
tionary model [101, 102]. This scale invariance is slightly distorted if degrees of freedom
decay, annihilate or decouple during the radiation-dominated era, which in principle allows
to probe for example the scale of supersymmetry breaking [103]. At a frequency controlled
by the reheating temperature, the scale-invariant behaviour ends and the amplitude becomes
strongly suppressed [104]. From preheating, we expect additional features in the spectrum at
high frequencies, both for preheating via parametric resonance [105] and for tachyonic pre-
heating [106]. For the latter case, the spectrum has been determined numerically for certain
parameter regimes of hybrid inflation [107, 108]. If the U(1) symmetry broken at preheating is
a gauge symmetry, there is an additional feature in the spectrum associated with the mass of
the gauge boson [109]. Finally, a very interesting source of GWs, which is, however, plagued
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with large theoretical uncertainties, is the cosmic string network [110]. In the B−L breaking
phase transition local cosmic strings are formed. The initial state of such a network can be
simulated numerically, and recently the amplitude of the scale-invariant spectrum of GWs
produced during the radiation-dominated epoch has been determined [111]. This analysis
was performed for the Abelian Higgs model of cosmic strings, where it is usually assumed
that strings lose their energy mostly via radiation of massive particles. On the contrary, in
the Nambu-Goto model cosmic strings lose their energy by radiating GWs. The resulting
spectrum was studied, for example, in Refs. [112–114].

On the experimental side, GWs can be probed directly by millisecond pulsar timing mea-
surements as well as by ground- and space-based interferometers. The most recent constraints
come from PPTA [115] and LIGO [116]. Future experiments such as eLISA [10], advanced
LIGO [11] and BBO/DECIGO [12, 13] will reach the sensitivity necessary to probe a GUT-
scale U(1) phase transition.

In this situation, it is crucial to understand the GW signal of different astrophysical
sources and cosmological models. To this end, we study the GW background expected from
a U(1)B−L breaking phase transition in the early universe. In particular, we do not restrict
ourselves to the signal generated at one particular step of the cosmological evolution, but
calculate the entire spectrum for a consistent particle cosmology model of the early universe.
Moreover, our discussion here can serve as a worked example of how to relate features in the
GW spectrum to model parameters.

Summarizing, a variety of experiments is currently probing aspects of SM extensions and
cosmological models. Indeed, well-motivated extensions of the SM more often than not have
important consequences for cosmology and, vice versa, tackling open questions in cosmology
very often involves extending the SM. Hence, it is crucial to combine our understanding of
particle physics and of the different stages of early universe cosmology. Following this spirit,
this thesis studies the cosmological implications of extending the MSSM by a gauged U(1)B−L
symmetry which is dynamically broken close to the GUT scale.
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Chapter 2

Spontaneous Breaking of B−L

The study presented here is based on promoting the global U(1)B−L symmetry present in the
SM to a gauge symmetry which is dynamically broken at a high energy scale. This chapter
is dedicated to introducing this framework in a supersymmetric setup. In Chapter 3 we will
then study the implications of this model for cosmology, identifying the B−L breaking phase
transition with the phase transition at the end of inflation. The inflationary phase is then
realized in the false vacuum of B−L and the creation and decay of particles at and after the
phase transition is responsible for the production of entropy, matter and dark matter. In
this context, a crucial role is played by the right-handed neutrino, which is a key player in
the reheating process and at the same time responsible for creating a matter asymmetry via
leptogenesis.

In this chapter, we focus on the realization of the spontaneous breaking of U(1)B−L in
a particle physics framework. In Sec. 2.1, we motivate and introduce the superpotential of
our model. In Sec. 2.2, we focus on a crucial ingredient of our model, the supersymmetric
Abelian Higgs mechanism. We derive the full Lagrangian for the spontaneous breaking of
a U(1) gauge symmetry, in particular during and after the phase transition. We discuss
some issues related to the choice of gauge and give the resulting Lagrangian before gauge
fixing as well as in unitary gauge, which will be the most useful gauge for our application.
With this, we then proceed to discuss the actual process of symmetry breaking in Sec. 2.3,
explaining the particle content before, during and after the phase transition. In Sec. 2.4 we
combine the results derived so far to calculate the decay rates and branching ratios needed
to quantify the outcome of the reheating process discussed in the next chapter. Finally, in
Sec. 2.5, we introduce the flavour model used in this thesis to parametrize the couplings in the
superpotential. This chapter is based on work partly published in Ref. [16], with a particular
focus on the role of the gauge choice and the interpretation of the degrees of freedom of the
Higgs and inflaton sector in the context of spontaneous symmetry breaking.
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2.1 A promising superpotential

Our studies here are based on Ref. [73], where a model was presented which features a
dynamically broken local U(1)B−L symmetry in a supersymmetric framework. Here, we give
a review of this model, concentrating on aspects which are especially relevant for this thesis
and introducing the notation we will use in the following.

Dynamical B−L breaking is achieved by introducing three additional chiral superfields
which spontaneously break the U(1)B−L by means of a supersymmetric version of the Abelian
Higgs mechanism and simultaneously allow for a phase of hybrid inflation. Additionally, three
generations of right-handed neutrino supermultiplets are added to the MSSM particle content,
which take care of anomaly cancellation in the gauged B−L symmetry while simultaneously
generating light neutrino masses via the seesaw mechanism. Their B−L violating mass term
is induced after the spontaneous symmetry breaking by the vacuum expectation value (vev)
the B−L breaking Higgs field. The superpotential is given by

W =

√
λ

2
Φ (v2

B−L − 2S1S2) +
1√
2
hni n

c
in
c
iS1 + hνij5

∗
in

c
jHu +WMSSM , (2.1)

where S1 and S2 are the chiral superfields containing the Higgs field responsible for breaking
B−L and the dynamics of the scalar component of Φ controls the transition from the B−L
conserving to the B−L breaking vacuum. In Sec. 3.1, we will identify these fields as the wa-
terfall and inflaton fields of hybrid inflation, respectively. nci denote the superfields containing
the charge conjugates of the right-handed neutrinos. In the following, we will refer to the
components of S1, S2 and Φ as the symmetry breaking sector, whereas the components of nci
form the neutrino sector. vB−L is the scale at which B−L is broken. The B−L charges are
qS := qS2 = −qS1 = 2, qΦ = 0 and qnc

i
= +1. h and λ denote coupling constants, which we

will restrict by imposing a flavour symmetry in Sec. 2.5, and WMSSM represents the MSSM
superpotential,

WMSSM = huij10i10jHu + hdij5
∗
i10jHd . (2.2)

All superfields have been arranged in SU(5) multiplets, 10 = (q, uc, ec) and 5∗ = (dc, l), and
i, j = 1, 2, 3 are flavour indices. We assume that the colour triplet partners of the electroweak
Higgs doublets Hu and Hd have been projected out. The vevs vu = 〈Hu〉 and vd = 〈Hd〉 break
the electroweak symmetry. In the following we will assume large tanβ = vu/vd, implying
vd � vu ' vEW = (v2

u + v2
d)

1/2. For notational convenience, we will refer to Hu as H in the
following.

The superpotential (2.1) is the simplest renormalizable superpotential meeting our re-
quirements. Note that the structure of the right-handed neutrino mass term1 is determined

1 Here, the term ‘right-handed’ also refers to the transformation behaviour under the SM gauge group
SU(2)L. In this sense, we will refer to these additional neutrinos as well as to their superpartners as ‘right-
handed’ to distinguishing them from the MSSM (s)neutrinos.
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by the symmetry structure and in particular the B−L charge assignments. A coupling of the
right-handed neutrinos to the other B−L Higgs field S2 is not possible, since the holomorphic
structure of the superpotential only allows the use of the left-chiral Weyl spinors associated
to the charge conjugates of the right-handed neutrinos, which carry the B−L charge qnc

i
= 1.

This is similar to the distinct roles the two MSSM Higgs fields Hu and Hd play after elec-
troweak symmetry breaking, giving mass to either up- or down-type fermions. However, the
symmetries introduced so far would allow for additional terms involving the gauge singlet
field Φ, i.e. a coupling to the MSSM Higgs fields ΦHuHd as well as Φ2 and Φ3 terms. In
the following, we will stay with the simple expression in Eq. (2.1) and avoid obscuring the
discussion with additional terms.2 In an explicit model, these can be forbidden by introduc-
ing additional symmetries (e.g. discrete symmetries and interpreting vB−L as the vev of an
additional field or a U(1)R symmetry).

Note also that here and in the following, we will not explicitly be concerned about the
mechanism of low energy supersymmetry breaking, and hence we omit a possible constant
term governed by the gravitino mass as well as a possible µHuHd term in Eq. (2.2), assuming
that this term is absent at the GUT-scale but arises at the electro-weak scale. During inflation,
supersymmetry is strongly broken and this plays a decisive role for the dynamics at this
time. On the contrary, the scale of low energy supersymmetry breaking in the visible sector
is expected to be much lower in order for supersymmetry to solve the hierarchy problem,
and hence any effects on early universe cosmology can be expected to be small3. We will
hence only come back to this topic in the context of identifying the LSP (and hence our DM
candidate), whose properties depend on the underlying supersymmetry breaking mechanism.
In the following we will assume exact, or nearly exact, R-parity conservation, rendering the
LSP stable on cosmological time scales.

In addition to the chiral superfields mentioned above, the model contains the usual MSSM
superfields as well as a vector supermultiplet V ensuring invariance under local B−L trans-
formations and the gravity supermultiplet, consisting of the graviton G and the gravitino G̃.

2.2 The supersymmetric Abelian Higgs model

2.2.1 A suitable gauge

The superpotential (2.1) features a local U(1)B−L symmetry. Supplemented by a canonical
Kähler potential,

K(Φ, V ) = Φ∗α e
pαV Φα , pα = 2gqα , (2.3)

2See however Ref. [117] for an interesting discussion on how the ΦHuHd-term can help circumvent bounds
arising from the non-observation of cosmic strings.

3For a discussion of possible effects of a constant term in the superpotential, see e.g. Refs. [118, 119].
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with Φα denoting the chiral superfields of the theory, qα their B−L charge, and g the B−L
gauge coupling, the resulting theory is invariant under the supersymmetric U(1) gauge trans-
formations

Φα 7→ Φα exp(2iqαΛ) , V 7→ V − i

g
(Λ− Λ∗) , (2.4)

with Λ a chiral superfield. In the following, we study the dynamics of the spontaneous
breaking of this symmetry. In the familiar non-supersymmetric Abelian Higgs mechanism,
the choice of gauge plays a decisive role. In an appropriate gauge, in this case the unitary
gauge, the unphysical Goldstone mode is gauged away, rendering the vector boson massive
and thus making the physical degrees of freedom of the theory manifest. In this section,
we derive an analogous procedure for a supersymmetric Abelian gauge theory, following the
notation of Ref. [38].

A common approach in supersymmetric Abelian gauge theories is to use the Wess-Zumino
gauge. This choice eliminates the real scalar C, the Weyl spinor χ and the auxiliary fields M
and N in the general expansion of the gauge multiplet V in superspace,

V = C + iθχ− iθ̄χ̄+
i

2
θθ (M + iN)− i

2
θ̄θ̄ (M − iN)− θσµθ̄Aµ

+ iθθθ̄

(
ξ̄ +

i

2
σ̄µ∂µχ

)
− iθ̄θ̄θ

(
ξ +

i

2
σµ∂µχ̄

)
+

1
2
θθθ̄θ̄

(
D +

1
2

�C

)
, (2.5)

yielding the following expression in the Wess-Zumino gauge,

VWZ = θσµθ̄Aµ + iθθθ̄ξ̄ − iθ̄θ̄θξ +
1
2
θθθ̄θ̄D . (2.6)

The remaining degrees of freedom are the massless vector boson Aµ, the massless gaugino Weyl
spinor ξ and the auxiliary field D. This corresponds to gauge fixing most of the original gauge
degrees of freedom, leaving only the non-supersymmetric U(1) gauge invariance manifest,

Aµ 7→ Aµ + ∂µλ , (2.7)

with λ(x) a real scalar. The remaining symmetry is then spontaneously broken by the usual
non-supersymmetric Higgs mechanism. Imposing the unitary gauge, this eliminates a further
degree of freedom, the would-be Goldstone boson.

However, when considering the spontaneous breaking of the U(1) symmetry (2.4), there is
a problem with this formalism. In the B−L breaking vacuum, the Wess-Zumino gauge, which
relies on an unbroken U(1) symmetry, can no longer be applied in this way. For example,
the Weyl spinor χ can no longer be set to zero, but must be gauged away in a way that
simultaneously renders the gaugino massive. A hint on how to solve this problem can be
found by counting the degrees of freedom involved in the mechanism above. We find that
in all, two real scalar degrees of freedom, one Weyl spinor and two real auxiliary degrees of
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freedom are eliminated by fixing the gauge - exactly the content of the chiral supermultiplet
appearing in the gauge transformations (2.4) and exactly the particle content of a ‘Goldstone
chiral supermultiplet’ which is necessary to render the entire gauge multiplet massive. With
this is mind, it becomes clear that we are looking for a formalism which treats all entries of
this supermultiplet on equal footing, i.e. a manifestly supersymmetric mechanism.

Recalling that the unitary gauge, which is so convenient for the non-supersymmetric
Higgs mechanism, is closely related to the U(1) symmetry of the problem, we shall here try a
unitary gauge based on the supersymmetric transformation (2.4). We thus perform a special
supersymmetric gauge transformation, which maps the two Higgs superfields S1 and S2 onto
the same field S′ in unitary gauge (thus reflecting the fact that one chiral supermultiplet is
‘eaten’ by the vector multiplet), while simultaneously mapping V 7→ Z as follows:

S1,2 =
1√
2
S′ exp(±2iqSΛ) , V = Z − i

g
(Λ− Λ∗) . (2.8)

In this manifestly supersymmetric gauge, we can now calculate the Lagrangian and demon-
strate that this yields a description in which the physical degrees of freedom involved in the
symmetry breaking process become manifest. In the following chapters, we will come back to
the mass terms as well as the decay and scattering processes resulting from the interactions
of this Lagrangian. A reader mainly interested in the phenomenological consequences of this
model may skip the derivation outlined in the following and directly turn to the final result
for the Lagrangian in unitary gauge, cf. Eqs. (2.32) to (2.37).

2.2.2 The Lagrangian before gauge-fixing

In principle, the Lagrangian can be calculated in the standard way [38],

L =
∫
d4θK(Φ, Z) +

∫
d2θ (W (Φ) + h.c.) +

1
4

∫
d2θ

(∑
a

WaW
a + h.c.

)
. (2.9)

with
∫
d4θ =

∫
d2θ d2θ̄ and

∫
d2θ projecting out the θθθ̄θ̄ and θθ terms and Wa denoting the

field strength chiral superfield.4 Here, we have in mind that the Φα are the chiral superfields
of Eq. (2.1) in unitary gauge, cf. Eq. (2.8), but the results obtained here hold beyond this. As
far as this subsection is concerned, we are considering an arbitrary superpotential invariant
under a U(1) gauge symmetry, supplemented by a canonical Kähler potential, cf. Eq. (2.3),
and without any gauge-fixing imposed. In particular, we explicitly keep all the degrees of
freedom of the gauge supermultiplet. This enables us to use this formalism in a vacuum
where the U(1) symmetry is spontaneously broken and the vector multiplet is massive.

4Here, we have explicitly written out the spinor indices a = {1, 2} in the last term, so as not to confuse the
field strength superfield with the superpotential, both commonly denoted as W . In the rest of this thesis, the
spinor indices are suppressed in spinor products, following the convention of e.g. Ref. [120].
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The D-term of the Kähler potential

We now pay the price for abandoning the Wess-Zumino gauge. Without gauge fixing, in
particular with C 6= 0 in Eq. (2.5), the calculation of the D-term of the Kähler potential is
significantly more complicated, since the Taylor expansion of exp(Z) is not truncated at any
finite power. The strategy is thus to proceed by calculating∫

d4θ Φ∗α Z
n Φα , n = 0, 1, 2, . . . (2.10)

using the expansion of the vector superfield, cf. Eq. (2.5), and of the chiral superfield,

Φα = zα + iθσµθ̄∂µzα +
1
4
θθθ̄θ̄ ∂µ∂µzα +

√
2 θψα −

i√
2
θθ ∂µψασ

µθ̄ + θθFα , (2.11)

and identifying all θθθ̄θ̄ terms. For any given n, there are only a finite number of such terms.
Summing over n yields the D-term of the Kähler potential,

K(Φ, Z)|D =
∑
α

∑
n

pnα
n!

∫
d4θ Φ∗α Z

n Φα . (2.12)

Using integration by parts and the identities for Weyl spinors,

(θψ)(θχ) = −1
2

(θθ)(ψχ) , (θ̄ψ̄)(θ̄χ̄) = −1
2

(θ̄θ̄)(ψ̄χ̄) ,

θσµθ̄ θσν θ̄ = −1
2
θθθ̄θ̄ηµν , χσµψ̄ = −ψ̄σ̄µχ ,

(2.13)

we find for the D-term of the Kähler potential∫
d4θ

∑
α

Φ∗α exp(pαZ) Φα =
∑
α

(
Lαcoupl + Lαkin + Lαaux ,

)
(2.14)

with

Lαcoupl = epαC

{
−1

4
p2
α z

∗
αzαAµA

µ − 1
2
pα ψασ

µψ̄αAµ −
1
4
p3
α z

∗
αzα χσ

µχ̄ Aµ

+
1
16
p4
α z

∗
αzα χχ χ̄χ̄+

1
2
p2
α ψαχ ψ̄αχ̄

+
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−1

2
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∗
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2
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i

2
√

2
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α zα χσ
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i

2
pαz

∗
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µ ∂µzα

+
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4
√

2
p3
α zα χχ χ̄ψ̄α +

i

4
p2
αz
∗
α χσ
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1

2
√

2
pα χσ

µψ̄α ∂µzα

)
+ h.c.

]}
, (2.15)
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Lαkin = epαC

{
1
4
pα z

∗
αzα ∂µ∂

µC − ∂µz
∗
α ∂

µzα − iψ̄ασ̄
µ∂µψα −

i

2
pα ψ̄ασ̄

µψα ∂µC

+
[(
−1

4
pαz

∗
α ∂µC ∂

µzα −
i

4
p2
α z

∗
αzα χ̄σ̄

µ∂µχ+
1

2
√

2
pαzα ψ̄ασ̄

µ∂µχ

+
1

2
√

2
pαz

∗
α ∂µψσ

µχ̄

)
+ h.c.

]}
, (2.16)

Lαaux = epαC

{
F ∗αFα +

1
4
p2
α z

∗
αzα (M + iN)(M − iN) +

1
2
pα z

∗
αzαD

+
[(
− i√

2
pαF

∗
α χψα +

1
4
p2
α F

∗
αzα χχ+

i

2
zαpαF

∗
α (M + iN)

− 1
2
√

2
p2
αzα (M + iN) ψ̄αχ̄ +

i

8
p3
αz
∗
αzα (M + iN) χ̄χ̄

)
+ h.c.

]}
. (2.17)

Note that here C and χ do not have the right mass dimension to be directly interpreted as
a scalar field and Weyl spinor, respectively. We will come back to the point of the correct
normalization of these fields later. The other parts of the Lagrangian, cf. Eq. (2.9), can be
calculated in the standard way, cf. Ref. [38],

L =
∫
d4θK(Φ, Z)− 1

4
FµνFµν−iξ̄σ̄µ∂µξ+

D2

2
+
(∑

α

WαFα−
∑
α,β

Wαβ

2
ψαψβ+h.c.

)
, (2.18)

with Wα = ∂W (z)/∂zα and Wαβ = ∂Wα/∂zβ. Here we have introduced the superpotential as
a function of the complex scalar fields instead of, as above, of the superfields. This allows for
a more compact notation and we will exploit it in the following for both the superpotential
and Kähler potential.

Eliminating the auxiliary fields

Having obtained an explicit expression for the Lagrangian, we now turn to eliminating the
auxiliary fields. For each chiral supermultiplet Φα the Lagrangian contains an auxiliary field
Fα, as well as the auxiliary fields M + iN and D from the U(1) gauge supermultiplet. The
Euler-Lagrange formalism yields equations of motion (eoms) for all of these fields. Solving
these and substituting the solution back into the Lagrangian eliminates the auxiliary fields.
For n charged chiral superfields, this is a coupled system of n+ 2 equations, involving quite
complicated expressions, see e.g. Eq. (2.17). Here we introduce a shortcut to eliminate these
auxiliary fields. The terms in the Lagrangian containing the auxiliary field D are

LD =
1
2
D2 +

1
2

∑
α

pα e
pαCz∗αzαD . (2.19)
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The eom ∂L/∂D = 0 is decoupled from the eoms for Fα and M+iN . Substituting its solution
into Eq. (2.19), we find

LD = −1
8

∑
αβ

pαpβ exp [(pα + pβ)C] z∗αzαz
∗
βzβ = −1

2
D2 =: −VD . (2.20)

The terms in the Lagrangian containing the auxiliary fields Fα can be rewritten as

LαF =
{
WαFα + epαC

[
F ∗α +

i pα√
2
ψ̄αχ̄−

i pα
2
z∗α(M − iN) +

p2
α

4
z∗α χ̄χ̄

]
Fα + h.c.

}
− epαCF ∗αFα

=
∂LαF
∂Fα

Fα +
∂LαF
∂F ∗α

F ∗α − epαCF ∗αFα = −epαCF ∗αFα , (2.21)

where in the last step we inserted the eom of Fα,

∂LαF /∂Fα = 0 . (2.22)

Writing Eq. (2.22) explicitly and solving for F ∗α yields

− F ∗α = e−pαCWα +
i

2
pα

(√
2 ψ̄αχ̄− z∗α(M − iN)

)
+

1
4
p2
αz
∗
α χ̄χ̄ . (2.23)

Substituting this back into Eq. (2.21), and comparing the result with Eqs. (2.15) to (2.17) we
find that lots of terms cancel. Taking into account that the term

−
∑
α

{
i

2
pαzαWα (M + iN) + h.c.

}
(2.24)

vanishes due to the gauge invariance of the superpotential,

0 = δW =
∑ ∂W

∂zα
δzα , δzα ∼ pαzα , (2.25)

we are finally left with

LαF = e−pαCW ∗
αWα︸ ︷︷ ︸

−VF

−
{
Wα

(
1
4
p2
αzα χχ−

i√
2
pα ψαχ

)
+ h.c.

}
(2.26)

and a reduced number of terms in Eqs. (2.15) to (2.17). In particular, all terms depending on
M and N in (2.17) cancel and we have hence succeeded in eliminating all the auxiliary fields
without explicitly solving the coupled system of eoms.
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Canonical normalization

As noted above, the fields C and χ have the ‘wrong’ mass dimensions. As long as the U(1)
symmetry is unbroken, C and χ can be gauged away and are not physical degrees of freedom
of the theory. However, once the symmetry is spontaneously broken, which corresponds to
some ‘Higgs’ field obtaining a vev, C and χ become physical and we need to take care of the
correct normalization. Defining a mass scale pv as

p2v2 :=
∑
α

p2
α 〈z∗αzα〉 , (2.27)

i.e. as the gauge invariant quantity which obtains a vev during spontaneous symmetry break-
ing, we see that we can obtain canonical normalized kinetic terms in Eq. (2.16) if we perform
the following field redefinitions:

C → pv√
2
C , χ→ pv√

2
χ . (2.28)

In the following, we will promote v to a time dependent function, representing the homoge-
neous B−L Higgs vev during and after the symmetry breaking process.

The resulting Lagrangian

Combining all the steps above we can now finally write down the full Lagrangian of a spon-
taneously broken U(1) gauge symmetry:

L = Lkin
WZ + Lgauge

WZ + Lferm
WZ − VF − VD + Lnon-WZ , (2.29)

with

Lkin
WZ = − 1

4
FµνF

µν − iξ̄σ̄µ∂µξ −
∑
α

exp

(
pα
√

2C
pv

)(
∂µz

∗
α ∂

µzα + iψ̄ασ̄
µ∂µψα

)
,

Lgauge
WZ =

∑
α

exp

(
pα
√

2C
pv

)[
pα
2
(
iz∗α∂

µzα − izα∂
µz∗α + ψ̄ασ̄

µψα
)
Aµ −

p2
α

4
z∗αzαAµA

µ

]
,

Lferm
WZ =

∑
α

exp

(
pα
√

2C
pv

)
ipα√

2
z∗α ψαξ −

1
2

∑
i,j

Wαβ ψαψβ + h.c. ,

VF =
∑
α

exp

(
−pα

√
2C

pv

)
W ∗
αWα ,

VD =
1
8

∑
αβ

pαpβ exp

(
(pα + pβ)

√
2C

pv

)
z∗αzαz

∗
βzβ , (2.30)
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and

Lnon-WZ =
∑
α

exp

(
pα
√

2C
pv

)[
pα

2
√

2
z∗αzα �

C

pv
− ip2

α

pv
z∗α χ̄σ̄

µ∂µ
zαχ

pv

+
ipα√

2

(
i

2
z∗α∂µzα +

i

2
zα∂µz

∗
α − ψ̄ασ̄µψα −

p2
α

(pv)2
z∗αzα χ̄σ̄µχ

)
∂µ

C

pv

+
{

p2
α√
2pv

z∗α χ̄σ̄
µψα ∂µ

C

pv
+
pα
pv
z∗α χ̄σ̄

µ∂µψα +
ip2
α

2pv
z∗α χ̄σ̄

µψαAµ + h.c.

}
+

p3
α

2(pv)2
z∗αzα χ̄σ̄

µχAµ +
p2
α√
2pv

z∗αzα
(
χξ + χ̄ξ̄

) ]
−
∑
α

{
Wα

(
p2
α

2(pv)2
zα χχ+

ipα
pv

ψαχ

)
+ h.c.

}
. (2.31)

Evaluating the exponential functions in Eq. (2.30) to leading order in pα
√

2C/(pv) yields
the familiar Lagrangian in Wess-Zumino gauge. The terms collected in Lnon-WZ represent
additional terms involving the gauge degrees of freedom C and χ.

2.2.3 The supersymmetric Abelian Higgs model in unitary gauge

We are now ready to apply the general result (2.29) to the specific case we are interested in,
the B−L symmetry breaking sector introduced in Sec. 2.1. In unitary gauge, cf. Eq. (2.8),
this involves the chiral fields S1,2 = S′/

√
2 and Φ, with B−L charges qS := qS2 = −qS1 = 2

and qΦ = 0. Denoting p := ps = 2gqS , S′ = (s, s̃), and Φ = (φ, φ̃), one now obtains5

Lkin
WZ = − 1

4
FµνF

µν − iξ̄σ̄µ∂µξ − ∂µφ
∗ ∂µφ− i

¯̃
φσ̄µ∂µφ̃

− cosh

(√
2C
v

)
(∂µs∗ ∂µs+ i¯̃sσ̄µ∂µs̃) , (2.32)

Lgauge
WZ = sinh

(√
2C
v

)[
ps
2

(is∗ ∂µs− is ∂µs∗ + ¯̃sσ̄µs̃)Aµ

]

− cosh

(√
2C
v

)
p2
s

4
s∗sAµA

µ , (2.33)

Lferm
WZ = sinh

(√
2C
v

)
ips√

2
s∗ s̃ξ +

1
2

√
λφ s̃s̃+

√
λ sφ̃s̃+ h.c. , (2.34)

VF =
λ

4

∣∣v2
B−L − s2

∣∣2 + cosh

(√
2C
v

)
λφ∗φ s∗s , (2.35)

VD =
1
8
p2
s sinh2

(√
2C
v

)
(s∗s)2 , (2.36)

5For notational convenience, we have omitted the prime on the complex scalar Higgs boson s.
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and

Lnon-WZ =sinh

(√
2C
v

)[
1

2
√

2
s∗s�

C

v
+

ps
2v2

s∗s χ̄σ̄µχAµ +
{

1
v
s∗ χ̄σ̄µ∂µs̃+ h.c.

}
+

i√
2

(
i

2
s∗ ∂µs+

i

2
s ∂µs

∗ − ¯̃sσ̄µs̃−
1
v2
s∗s χ̄σ̄µχ

)
∂µ
C

v

]
+ cosh

(√
2C
v

)[{
1√
2v
s∗ χ̄σ̄µs̃ ∂µ

C

v
+
ips
2v
s∗ χ̄σ̄µs̃ Aµ + h.c.

}
− i

v
s∗ χ̄σ̄µ∂µ

s χ

v

+
ps√
2v
s∗s
(
χξ + χ̄ξ̄

) ]
+
{√

λφs
1

2v2
s χχ+ h.c.

}
. (2.37)

The ground state of the theory corresponds to |s|2 = v2
B−L. Identifying the mass scale v with

the time-dependent vacuum expectation value of the B−L Higgs field in the broken phase,
which approaches vB−L at large times, the Lagrangian Lnon-WZ yields kinetic terms for C and
χ and a mass term for χ and ξ. The mass terms for Aµ and C are contained in Eqs. (2.33)
and (2.36), respectively. As expected, in unitary gauge the vector field Z describes a massive
vector multiplet. Shifting s around its expectation value, s → v(t) + 1√

2
(σ + iτ), one reads

off the masses for the particles of the gauge multiplet and the symmetry breaking sector.
The real degree of freedom σ can be identified with the Higgs boson of the Abelian Higgs
mechanism. The Goldstone boson, just like the other degrees of freedom of the ‘Goldstone
supermultiplet’, does not appear in Eqs. (2.32) to (2.37), it has already been gauged away by
choosing the unitary gauge. We have hence achieved our goal of formulating a Lagrangian
which can describe the dynamics of the symmetry breaking process and which manifestly
displays only the physical degrees of freedom.

Note that due to the time-dependence of v, the kinetic term for C in Eq. (2.37) yields a
contribution to the mass mC . In the following, we omit this term for two reasons. First, it is
much smaller than the contribution to mC obtained from Eq. (2.36) throughout the symmetry
breaking process. Second, as discussed in detail in Sec. 4.5 of Ref. [16], our final results prove
insensitive to the dynamics of the gauge sector and we can hence safely ignore this technically
rather complicated contribution.

2.3 Spontaneous symmetry breaking

Making use of the results obtained in the previous section, we are now ready to give a physical
interpretation of the processes involved in the B−L phase transition. Before the spontaneous
breaking of B−L, supersymmetry is broken by the vacuum energy density ρ0 = 1

4λv
4
B−L,

which drives inflation. During this time, the dynamics of the system is governed by the
slowly rolling scalar component φ of the inflaton multiplet Φ. The scalar components of
the Higgs superfields S1,2 are stabilized at zero. The right-handed sneutrinos and the scalar
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sector superfield component fields
bosonic fermionic

gauge (G) Z A vector boson (3)
C gauge scalar (1)

Ã = (χ, λ̄) gaugino (4)

Higgs +
inflaton (S)

S,Φ s = 1√
2
(σ + iτ),

Higgs boson (2)
φ inflaton (2)

ψ = (s̃, ¯̃φ) higgsino (4)

neutrino (N) Ni Ñi sneutrino (2) Ni = (ni, n̄i) neutrino (2)

MSSM
(r, B−L)

`i,H, ... ˜̀
i slepton (4)
H Higgs doublet (4)
g gluon (16)
...

`i lepton (4)
H̃ higgsino (4)
g̃ gluino (16)
...

gravity G graviton (2) G̃ gravitino (4)

produced through tachyonic preheating

fast process

slow process (Boltzmann equations)

Figure 2.1: Nomenclature, production and decay processes after B−L breaking. The Higgs field σ and particles
coupled to it are produced during tachyonic preheating, as marked by the red boxes, cf. Sec. 3.2.1. The gauge
degrees of freedom then decay nearly instantaneously (black, dashed arrows), whereas the decay and production
of the other degrees of freedom can be described by Boltzmann equations (blue, solid arrows), cf. Sec. 3.4. The
numbers in parentheses denote the respective internal degrees of freedom.

MSSM particles obtain their masses due to supergravity contributions. As the field value
of the inflaton decreases, so do the effective masses in the Higgs sector, until a tachyonic
direction develops in the effective scalar potential.

As shown in the previous section, the subsequent phase transition can best be treated in
unitary gauge (2.8), in which the physical degrees of freedom are manifest. The supermul-
tiplet associated with the B−L Higgs boson in unitary gauge, S′, contains two real scalar
degrees of freedom, s′ = 1√

2
(σ′ + iτ), where τ remains massive throughout the phase transi-

tion and σ′ is the actual symmetry-breaking Higgs field. It acquires a vacuum expectation
value proportional to v(t) = 1√

2
〈σ′2(t, ~x)〉1/2~x which approaches vB−L at large times. In the

Lagrangian, we account for symmetry breaking by making the replacement σ′ →
√

2v(t) + σ,
where σ denotes the fluctuations around the homogeneous Higgs background.

The fermionic component s̃ of the supermultiplet S′ pairs up with the fermionic component
φ̃ of the inflaton supermultiplet Φ to form a Dirac fermion ψ, the higgsino, which becomes



2.4 Decay rates and branching ratios 25

massive during the phase transition. Due to supersymmetry, the corresponding scalar fields
(σ, τ and inflaton φ) end up having the same mass as the higgsino in the supersymmetric
true vacuum. Likewise, the gauge supermultiplet Z (gauge boson A, real scalar C, Dirac
gaugino Ã) and the (s)neutrinos Ni (Ñi) acquire masses, cf. Sec. 2.2. Here N refers to the
physical Majorana particle N = (n, n̄)T built from the two Weyl spinors contained in the
superfields nc and n. Ñ denotes the complex scalar superpartner of the left-chiral fermion n.
For an overview of the particle spectrum, see Fig. 2.1.

At the end of the phase transition, supersymmetry is restored. From Eqs. (2.33) to (2.37),
we can read off the mass eigenvalues during the phase transition:

m2
σ =

1
2
λ (3v2(t)− v2

B−L) , m2
τ =

1
2
λ (v2

B−L + v2(t)) ,

m2
φ = λv2(t) , m2

ψ = λv2(t) ,

m2
G = 8g2v2(t) ,

M2
i = (hni )

2v2(t) ,

(2.38)

with mG and Mi denoting the common mass of the gauge and right-handed neutrino multi-
plets, respectively. Here we have ignored corrections which arise due to thermal effects and
due to supersymmetry breaking before the end of inflation in some hidden sector, leading to
a mass for the gravitino.

2.4 Decay rates and branching ratios

After the spontaneous breaking of B−L, we are left with the particle spectrum depicted in
Fig. 2.1 and the corresponding masses given by Eq. (2.38) with v(t) → vB−L. Most of these
particles are unstable, and their decay rates and branching ratios will play a crucial role when
discussing the cosmology of this model in Chapter 3. With the full Lagrangian, cf. Eqs. (2.32)
to (2.37), at hand, we thus use this section to list the total and partial vacuum decay rates
which we will need in this thesis.

The total vacuum decay rates for the particles of the symmetry breaking, gauge and
neutrino sectors are

Γ0
S := Γ0

σ,τ,φ,ψ =
1

32π
(hn1 )2mS

(
1− 4

M2
1

m2
S

)1/2

, (2.39)

Γ0
G := Γ0

A,Ã,C
=

1
16π

g2mG

∑
α

q2α

(
1− 4

m2
α

m2
G

)1/2

, (2.40)

Γ0
Ni,Ñi

=
1
4π

[(hν)†hν ]iiMi =
1
4π

m̃iM
2
i

v2
EW

, (2.41)

with m̃i = [(hν)†hν ]iiv2
EW/Mi and α labelling the superfields of the model carrying B−L
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charges qα. In Eq. (2.39) we have assumed that due to kinematic constraints, the particles of
the symmetry breaking sector can only decay into the first generation of heavy (s)neutrinos,
see also Sec. 2.5. The relevant partial decay rates at leading order are given by

Γ0
σ→Ñ1Ñ1

= 4
M2

1

m2
S

Γ0
S , Γ0

σ→N1N1
=
(

1− 4
M2

1

m2
S

)
Γ0
S ,

Γ0
τ→N1N1

= Γ0
φ→Ñ1Ñ1

= Γ0
ψ→Ñ∗

1N1
= Γ0

S ,

Γ0
A→zαzα

=
1
2

Γ0
A→ψαψα

=
1
3

Γ0
C→zαzα

=
1
3

Γ0
Ã→zαψα

=
q2α

(
1− 4m

2
α

m2
S

)1/2
Γ0
G

3
∑

α q
2
α

(
1− 4m

2
α

m2
S

)1/2
,

(2.42)

with zα and ψα denoting the scalar and fermionic components of a superfield Φα.

2.5 Froggatt-Nielsen flavour model

So far, we have discussed the field content, masses, and decay rates of the symmetry breaking,
the neutrino and the gauge sector during the B−L phase transition. Now, we want to turn
to the coupling constants appearing in Eq. (2.1). To this end, we will parametrize the flavour
structure of the model by a Froggatt-Nielsen flavour model based on a global U(1)FN group
and compatible with the SU(5) structure of Eqs. (2.1) and (2.2), following Refs. [121, 122].
According to this model, the couplings in the superpotential can be estimated up to O(1)
factors as powers of a common hierarchy parameter η, with the exponent given by the sum of
the flavour charges Qi of the fields involved in the respective operators in the superpotential.
Setting the charges of all Higgs fields to zero, this implies

hij ∼ ηQi+Qj ,
√
λ ∼ ηQΦ . (2.43)

The numerical value of the parameter η ' 1/
√

300 is deduced from the quark and lepton
mass hierarchies. This remarkably simple flavour model can reproduce the experimental data
on SM masses and mixings, while at the same time remaining flexible enough to incorporate
the phenomena beyond the SM mentioned above. Further details on the predictive power of
this model can be found in Ref. [15], where we performed a Monte-Carlo study to examine
the impact of the O(1) factors, cf. also Sec. 4.4 for a brief overview of the main results of this
study.

In the following, we will restrict our analysis to the case of a hierarchical heavy (s)neutrino
mass spectrum, M1 � M2,M3, where Mi = hni vB−L. Furthermore we assume the heavier
(s)neutrino masses to be of the same order of magnitude as the common mass mS of the
particles in the symmetry breaking sector, for definiteness we set M2 = M3 = mS . With this,
the Froggatt-Nielsen flavour charges are fixed as denoted in Tab. 2.1. Taking the B−L gauge
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ψi 103 102 101 5∗3 5∗2 5∗1 nc3 nc2 nc1 H S1,2 Φ
Qi 0 1 2 a a a+ 1 d− 1 d− 1 d 0 0 2(d− 1)

Table 2.1: Froggatt-Nielsen flavour charge assignments.

coupling to be g2 = g2
GUT ' 1/2, the model can now, up to O(1) factors, be parametrized

by the U(1)FN charges a and d. The B−L breaking scale vB−L, the mass of the lightest of
the heavy (s)neutrinos M1, and the effective light neutrino mass parameter m̃1 are related to
these by

vB−L ∼ η2a v
2
EW

mν
, M1 ∼ η2d vB−L , m̃1 =

(m†DmD)11
M1

∼ η2a v2
EW

vB−L
. (2.44)

Here, mν =
√
m2m3, the geometric mean of the two light neutrino mass eigenvalues m2 and

m3, characterizes the light neutrino mass scale, which, with the charge assignments above and
the experimentally measured neutrino mass squared differences, can be fixed to 3× 10−2 eV.
To obtain this result, we exploited the seesaw formulamν = −mDM

−1mT
D withmD = hνvEW.

Furthermore, it can be shown that m̃1 is bounded from below by the lightest neutrino mass
m1 [123].

In the following, we will study the model in terms of the more physical quantities vB−L
and M1 instead of the two U(1)FN charges. To partly account for the O(1) uncertainties in
the neutrino mass matrices, we will additionally independently vary m̃1. Apart from this,
we ignore any further uncertainties of the model and simply set the O(1) prefactors to one,
i.e. promote the approximate relations in Eq. (2.44) to exact relations. Furthermore, when
considering the production of dark matter in form of gravitinos or neutralinos, cf. Secs. 4.2.1
and 4.2.2 respectively, additional parameters from the superparticle mass spectrum enter the
description. In the former case, these are the gravitino (m eG) and the gluino (mg̃) mass, in
the latter case the gravitino mass and the mass of the lightest neutralino (mχ).

In this chapter, we have discussed the B−L phase transition from a particle physics point
of view, i.e. considering the degrees of freedom, the masses and the couplings before, during
and after the symmetry breaking. This sets the stage for the next chapter, in which we discuss
this phase transition from a cosmological point of view.



28 2. Spontaneous Breaking of B−L



Chapter 3

A Consistent Cosmological Picture

In Chapter 2 we studied the spontaneous breaking of a U(1)B−L symmetry. Now, we discuss
the cosmological realization of this phase transition. At first, in the unbroken phase of B−L,
the universe is governed by a large vacuum energy which drives inflation. We outline the
resulting F-term hybrid inflation model in Sec. 3.1. At the end of inflation, the U(1)B−L is
spontaneously broken. As explained in Sec. 3.2, this induces the nonperturbative processes of
tachyonic preheating and cosmic string formation. These in turn set the initial conditions for
the following perturbative processes which we turn to in Sec. 3.4. These govern the reheating
of the universe and can be treated using Boltzmann equations. Finally, in Sec. 3.5 we give a
time-resolved, quantitative description of the resulting reheating process for a representative
choice of parameters.

This chapter is based on work partly published in Ref. [16], with a particular focus on
the interpretation of the reheating process as a two-stage process, which will simplify the
discussion in the next chapter. Additionally, we here review the current status and open
questions related to cosmic strings, setting the stage for discussing the consequences of cosmic
string formation throughout this thesis.

3.1 F-term hybrid inflation

Inflation is a phase of exponential expansion in the early universe, governed by a large, basi-
cally constant energy density. In its simplest version, the dynamics of inflation is controlled
by a slowly rolling scalar field, the inflaton [124]. Calculating the predictions of inflation
thus implies solving the eom of the inflaton in its scalar potential. Moreover, the quantum
fluctuations of the inflaton field and the metric seed inhomogeneities in the CMB which can
be observed today.

The scalar potential

The superpotential given in Eq. (2.1) allows for a phase of hybrid inflation [5]. For |φ| � vB−L,
the B−L Higgs fields are fixed at vanishing field value, B−L is unbroken and the energy
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density of the universe is dominated by the false vacuum energy, ρ0 ' (λ/4) v4
B−L, generated

by the non-vanishing vev of the auxiliary field Fφ.
At these high energies, supergravity corrections1 to the Lagrangian calculated in Sec. 2.2

become important, resulting in a tree-level scalar F- and D-term potential given by

V F
SUGRA = eK/M

2
P

∑
αβ̄

Kαβ̄ DαW Dβ̄W ∗ − 3
|W |2

M2
P

 , (3.1)

V D
SUGRA =

1
2
g2

(∑
α

qαKα zα

)2

, (3.2)

where DαW = Wα +KαW/M
2
P , the subscript α, β, (ᾱ, β̄) denotes the derivative with respect

to the (complex conjugate of the) scalar component zα of the superfield Φα, Kαβ̄ is the
inverse Kähler metric and MP = 2.435 × 1018 GeV is the reduced Planck mass. Here, the
superpotential W and the Kähler potential K are understood as functions of the complex
scalar fields zα. For a canonical Kähler potential2,

K =
∑
α

|zα|2 , (3.3)

the D-term scalar potential reduces to the expression familiar from global supersymmetry, cf.
Eq. (2.19), but an important supergravity contribution arising from the F-term potential is

V F
SUGRA = · · ·+

∑
α

|zα|2
ρ0

M2
P

+ . . . . (3.4)

This yields large contributions to the masses of the scalar fields zα of the theory. For the
superpotential (2.1), this stabilizes the right-handed sneutrinos and the MSSM scalars at a
vanishing field value. The B−L Higgs boson masses also obtain supergravity contributions,
however, these are suppressed by factors of (vB−L/MP )2 or (φ/MP )2 compared to the global
supersymmetry contribution3. We can thus safely neglect them in the following, resorting to
the expressions of global supersymmetry for the mass eigenvalues of the scalars and fermions,
respectively:

(mS
±)2 =

λ

2
(ϕ2 ± v2) , (mS

f )2 =
λ

2
ϕ2 . (3.5)

Here we have introduced the radial component ϕ of φ, defined by φ = 1√
2
ϕeiα, which will

play the role of the inflaton. Note that in this subsection we keep the four scalar and four
fermionic degrees of freedom of the Higgs sector and do not employ the unitary gauge, since

1For a dedicated discussion of inflation in supergravity, see Chapter 5 of this thesis, in particular Sec. 5.1.1.
2Here we omit the gauge fields because for discussing inflation, we are merely interested in the scalar part

of the Lagrangian. The auxiliary component D of the vector superfield which is responsible for a contribution
to the scalar potential is kept explicitly in Eq. (3.2).

3 Moreover, they do not change the zero point ϕc of mS
−(ϕ), cf. Eq. (3.5).
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we are working in the unbroken phase of B−L.

Eq. (3.4) does not give a mass-term to the inflaton ϕ because after expanding eK/M
2
P in

Eq. (3.1), the term in question is cancelled by the corresponding term in DφWDφ̄W
∗. Hence,

we need to take the one-loop Coleman-Weinberg potential for the inflaton field into account,
obtained by integrating out the heavy B−L Higgs bosons,

V1l =
1

64π2
STr

[
M4

(
ln
(
M2

Q2

)
− 1

2

)]
'
λ2v4

B−L

64π2

[
ln

(
ϕ2

v2
B−L

)
+O

(
v2
B−L

ϕ2

)]
, (3.6)

Here STr denotes the supertrace running over all degrees of freedom of S1 and S2. M is the
corresponding mass matrix, cf. Eq. (3.5), and Q an appropriate renormalization scale, which
we have set to Q2 = λv2

B−L/2.

From the resulting scalar potential, V = V F+D
SUGRA + V1l, we find the following picture: For

ϕ > vB−L, the Higgs fields s1,2 are fixed at zero and the inflaton slowly rolls towards the
origin. At ϕ = vB−L, (mS

−)2 becomes negative, triggering a tachyonic instability. The Higgs
field acquires a vev and B−L is broken. Both the Higgs (which, now that B−L is broken, is
best parametrized in unitary gauge as σ′, cf. Sec. 2.2) and the inflaton field then quickly fall
into their true vacuum, ϕ→ 0 and σ′ →

√
2 vB−L, see also Eqs. (2.35) and (2.36), eliminating

the vacuum energy contribution of the scalar potential and ending inflation.

Slow-roll inflation

Today, traces of this early inflationary phase can be observed in the CMB. These are calculated
as follows. First we solve the slow-roll equation governing the evolution of the inflaton field
during inflation,

3Hϕ̇ = −V ′(ϕ) . (3.7)

where H denotes the Hubble parameter. Then we evaluate the scalar potential and its deriva-
tives at ϕ = ϕ∗, the value of ϕ atN∗ ≈ 50 e-folds before the end of inflation, when the reference
scale commonly used to describe the CMB fluctuations left the horizon. With ϕf denoting
the value of the inflaton at the end of inflation4, ϕ∗ is given by

ϕ2
∗ = ϕ2

f +
λ

4π2
M2
P N∗ (3.8)

Of particular interest in the following will be the predictions from F-term hybrid inflation
for the amplitude of the scalar fluctuations As, the spectral index ns and the tensor-to-scalar

4Here, ϕf is determined by either mS
−(ϕc) = 0, cf. Eq. (3.5), or by the violation of the slow-roll condition

|η(ϕη)| = 1, cf. Eq. (3.10), whatever occurs earlier: ϕf = max{vB−L,
√
λMP /(

√
8π)}.
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ratio r:

As =
H2

8π2εM2
P

∣∣∣∣
ϕ∗

≈ 1
3

(
vB−L
MP

)4

N∗ ,

ns = 1− 6ε+ 2η|ϕ∗ ≈ 1− 1
N∗

,

r =
At
As

= 16ε
∣∣∣∣
ϕ∗

≈ λ

2π2

1
N∗

,

(3.9)

where At = 2H2/(π2M2
P )|ϕ∗ denotes the amplitude of the tensor fluctuations and ε and η are

the so-called slow-roll parameters,

ε =
M2
P

2

(
V ′

V

)2

, η = M2
P

V ′′

V
. (3.10)

Moreover, in Eq. (3.9) we have employed the the approximation5 ϕ2
∗ � ϕ2

f .
Another quantity which is relevant in the following is the velocity of the inflaton field

when passing the critical point,

ϕ̇c = − λ3/2

16
√

3π2
(vB−LMP ) . (3.11)

In fact, this is an upper bound on |ϕ̇c|, obtained by assuming that inflation ends at ϕ = ϕc.
If instead inflation ends by violation of the slow-roll condition at ϕ = ϕη, then Eq. (3.11) is
modified because the term ϕ̈ in Eq. (3.7) cannot be neglected towards the end of inflation.

Outlook

The analysis sketched here can be refined by considering deviations from a canonical Kähler
potential and/or additional terms in the superpotential, see e.g. Ref.[118] for a recent analysis.
This allows for a tuning of the spectral index to match the observed value [1] and yields bounds
on the vB−L and λ range allowed by requiring the correct normalization of As. We will come
back to the resulting constraints on our parameter space in Sec. 3.2.2, after discussing further
constraints imposed by the non-observation of cosmic strings.

In supersymmetric hybrid inflation the so-called ‘η-problem’, which refers to dangerous
contribution to the inflaton mass induced by supergravity corrections as in Eq. (3.4), is solved
by ‘accidental’ cancellation of two terms in the tree-level scalar potential, cf. comment above
Eq. (3.6). This only works for a (nearly) canonical Kähler potential and it only works to
leading order in 1/M2

P . Tuning the coefficients of the Kähler potential, one can avoid the η-
problem while simultaneously reproducing the observed spectral index. But from a conceptual
point of view, this is somewhat unsatisfactory. It would be more attractive to determine the

5In fact, this in not a very good approximation for small values of λ. Nevertheless, Eq. (3.9) gives a good
impression of the predictions of supersymmetric F-term hybrid inflation. In the following, we will not use
Eqs. (3.9), but the results of the refined analysis in Ref. [118].
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form of the Kähler potential (and in particular the non-existence of terms which could cause
an η-problem) by a symmetry principle. We will come back to this point in Chapter 5, in
which we will discuss superconformal D-term inflation as an alternative scenario of hybrid
inflation.

3.2 A cosmological phase transition

As discussed in the last section, the end of hybrid inflation features a negative squared mass
term for the B−L Higgs field σ′. This triggers the U(1)B−L breaking phase transition dis-
cussed in Sec. 2.3. The cosmological realization of this phase transition is accompanied by
two important processes, tachyonic preheating and the formation of cosmic strings. To de-
scribe these, the notion of a complex U(1) Higgs field with the radial component describing
the physical Higgs field σ′ and the phase describing the corresponding Goldstone boson, is
crucial. Hence, for this section we explicitly reintroduce this notion, although absent in the
unitary gauge discussed in Sec. 2.2.3.

3.2.1 Tachyonic preheating

Qualitative picture

Tachyonic preheating is a fast and nonperturbative process triggered by the tachyonic in-
stability in the scalar potential in the direction of the Higgs field. As the inflaton field
passes the critical point ϕc, the Higgs field acquires a negative effective squared mass (m∗σ)

2,
with the linearized equation of motion for σ′ yielding |m∗σ| = (−λvB−Lϕ̇c)1/3. This causes
an exponential growth of the quantum fluctuations of the Higgs field σ′k with wave number
|~k| < k∗ = |m∗σ| [125], while the average value of the Higgs field remains zero. Once the
amplitude of these fluctuations reaches 〈|σ′|2〉1/2 = O(vB−L/

√
3), the effective squared mass

becomes positive and the usual oscillating behaviour of the modes is re-established [6]. A
direct consequence of the early phase of exponential growth are high occupation numbers in
the low-momentum Higgs modes and hence a semi-classical situation with a large abundance
of non-relativistic B−L Higgs bosons.

A further result of this nonperturbative and (apart from very early times) non-linear
process is the formation of ‘bubble’-like inhomogeneities which randomly feature different
phases of the complex Higgs field [126]. Their initial size is given by k−1

∗ , since this is the
smallest scale amplified during tachyonic preheating. These ‘bubbles’ expand at the speed of
light, thereby colliding with each other. This phase of the preheating process is an important
source of gravitational waves (GWs), cf. [106], a point to which we will return in Sec. 4.3.
After this very turbulent phase the true Higgs vev is reached in almost the entire volume,
with the regimes of false vacuum reduced to topologically stable cosmic strings, cf. Sec. 3.2.2,
separated by the characteristic length scale k−1

∗ [125].
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Secondary Particle production

The mode equations for the particles coupled to the B−L Higgs field, i.e. for the gauge,
Higgs, inflaton and neutrino supermultiplets, are governed by the time-dependent masses
proportional to v(t) given by Eq. (2.38). The growth of v2(t) ∝ 〈σ′2〉 during tachyonic
preheating induces a rapid change of their effective masses. According to Ref. [127], this
leads to particle production with the energy and number densities for bosons and fermions
after tachyonic preheating given by6

ρB/ρ0 ' 2× 10−3 gσ λ f(x1, 1.3) , nB(x1) ' 1× 10−3 gσm
3
S f(x1, 1.3)/x1 ,

ρF /ρ0 ' 1.5× 10−3 gσ λ f(x1, 0.8) , nF (x1) ' 3.6× 10−4 gσm
3
S f(x1, 0.8)/x1 ,

(3.12)

with f(x1, x2) = (x2
1+x2

2)
1/2−x2 and x1 = m/mS , where m denotes the mass of the respective

particle in the true vacuum and gσ counts its spin degrees of freedom. Just like the Higgs
bosons, these particles are produced with very low momentum, i.e. non-relativistically.

A deviation from this mechanism is found for the imaginary component τ of the complex
field s′, due to the constant contribution to its mass, cf. Eq. (2.38). Neglecting the expansion
of the universe, the linearized mode equation for τ reads

∂2
t τk + (k2 +m2

τ )τk = 0 . (3.13)

We can absorb the constant mass contribution in the momentum k. In the language of
Ref. [127], this is equivalent to a shift in the ‘asymptotic in frequency’ ω−(k). To excite a
given mode more energy is necessary, the production is thus less efficient.

Note that from Eq. (2.42) it is clear that the pseudoscalar τ decays exclusively into
fermionic neutrinos, similar to its scalar partner σ, whose branching ratio into scalar neutrinos
is suppressed by the mass ratio M1/mS . However, from Eqs. (3.12) and (3.13) we can see
that the production of τ particles during tachyonic preheating is negligible compared to the
production of σ particles. Hence we neglect the contribution from the pseudoscalar τ in the
following.

3.2.2 Cosmic strings

Due to the non-trivial topology of its vacuum manifold, the Abelian Higgs model underlying
the B−L phase transition gives rise to solitonic field configurations, so-called cosmic strings
(for a review, see e.g. [28, 129, 130]). These cosmic strings are formed during the process
of tachyonic preheating, cf. Sec. 3.2.1, and are topologically stable. The evolution of the
resulting network is governed by the intersection of the infinite strings, which leads to the
formation of closed loops separated from the infinite string, as well as by the energy loss due

6Note that particle production can be significantly enhanced by quantum effects [128], which require further
investigation.
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to the emission of GWs and massive radiation. After a relaxation time τstring the network
reaches the scaling regime, i.e. the typical length scale of the cosmic string network remains
constant relative to the size of the horizon. This implies that a constant fraction of the total
energy density is stored in cosmic strings throughout the further evolution of the universe
and that there is O(1) cosmic string per Hubble volume.

Observational prospects

So far, no experimental evidence for the existence of cosmic strings has been found. However,
current and upcoming experiments are starting to seriously probe the cosmologically interest-
ing regions of the parameter space. First, cosmic strings give rise to anisotropies in the CMB
temperature map. Cosmic strings distort the surface of last scattering of the CMB photons,
leaving an imprint on the spectrum observable today. Since the CMB photons observable
today stem from roughly 105 Hubble patches during recombination, these observations are
mainly sensitive to the effect of long (Hubble-sized) strings at recombination and not to small
cosmic string loops. In contrast to the perturbations due to inflation, these anisotropies
are not phase correlated across distant Hubble patches and hence the resulting multipole
spectrum does not show the oscillations characteristic to inflation. Moreover, whereas the
primordial power spectrum due to inflation is (nearly) scale-invariant, the anisotropies on
the last scattering surface due to cosmic strings are governed by a characteristic scale. The
resulting spectrum thus features a single broad peak associated with this scale. Due to the
re-scattering of a fraction of the CMB photons at reionisation, the CMB spectrum is, to a
lesser extent, also sensitive to the long cosmic strings present at reionisation. This leads to
a second, smaller peak in the spectrum, in particular visible in the power spectrum of the
B-mode polarization, see e.g. [131] for a recent analysis. The contribution from cosmic strings
to the CMB temperature anisotropies is typically measured at the multipole l = 10 and is
referred to as f10. Recent analyses show that f10 can at most be a few percent, see Sec. 3.3.

Second, the gravitational field of cosmic strings gives rise to weak and strong lensing effects
of (CMB) photons on their way from the surface of last scattering or from an astrophysical
source to us. The non-observation of such effects puts a bound on the string tension µ, cf.
Sec. 3.3. Again, this effect is mainly sensitive to long (Hubble-sized) strings.

Third, the energy emitted by cosmic strings in the scaling regime is at least partly emitted
in form of GWs. Due to their extremely weak coupling, these can then propagate freely
through the universe and are therefore in principle detectable today. We will come back
to the resulting GW background and the discovery potential of current and upcoming GW
experiments in detail in Sec. 4.3.

Finally, the Abelian Higgs cosmic string model (see below) entails the emission of massive
radiation from cosmic strings. If this mechanism is still active at late times it could yield
ultra high energetic cosmic rays and GeV-scale γ-rays, which have not been observed. This
too, can be translated into a (model-dependent) bound on µ [132–136].
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Currently the most stringent and model-independent bounds on the cosmic string tension
come from CMB observations, and we shall mainly employ these in the following, cf. Sec. 3.3.

Numerical simulations

Quantitatively understanding the formation of cosmic strings, the dynamics of the cosmic
string network and the energy loss mechanism during the scaling regime requires lattice
simulations. Performing these is extremely challenging due to the huge range of scales involved
in the problem [28]: the width of the string remains constant while the scales of the network
are blown up as the universe expands. Or, in comoving coordinates, the comoving width of the
string shrinks, until it becomes comparable with the lattice spacing and the simulation loses
its validity. There have been different approaches to tackle this problem. Simulations based on
solving the field theory equations for the Abelian Higgs (AH) model set the comoving width to
a finite constant before it comes too close to the lattice spacing [29–31]. Simulations based on
the Nambu-Goto (NG) string model assume cosmic strings to be infinitely thin, i.e. strictly
one-dimensional objects, throughout the simulation [32–35]. The outcome of simulations
based on these two models is dramatically different. The AH simulations show the formation
of large, Hubble sized structures which lose their energy predominantly by emitting massive
radiation, i.e. particles of the Higgs and gauge field forming the string configuration. The NG
simulations on the other hand display the formation of small loops, which lose their energy
into GWs. The size of these loops is thought to be controlled by gravitational backreaction,
but is as yet undetermined [28]. Concerning the network of long strings, both simulations,
however, yield a similar result [28]. Which of these two simulations methods is closer to reality
is currently an open question.

In the following, we will work under the following hypothesis: For early times, while the
comoving cosmic string width is large compared to the lattice spacing, the AH simulation
describes the U(1) phase transition very well. We will thus use the results from these simu-
lations when discussing the formation and early evolution of cosmic strings. For late times,
the AH simulations become questionable and the NG approximations of infinitely thin strings
becomes viable. Hence for late times, in particular when discussing possible GW signatures
from cosmic strings, cf. Sec. 4.3, we will discuss both the AH as well as the NG results.

Quantitative description

The cosmic string network in the AH model is characterized by the energy per unit length µ,
the characteristic length scale separating two strings ξ and the cosmic string width m−1

G . The
energy per unit length is given by [137]

µ = 2πB(β)v2
B−L , (3.14)

where β = (mσ/mG)2 = λ/(8g2) with mσ the mass of the Higgs boson in the true vacuum,
cf. Eq. (2.38), and B(β) is a slowly varying function parametrizing the deviation from the
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Bogomol’nyi bound,

B(β) '

{
1.04β0.195, if 10−2 < β � 1
2.4 (ln 2

β )−1, if β < 10−2
(3.15)

For the special case of β = 1 the Bogomol’nyi bound is saturated and B(1) = 1 analyti-
cally [138]. Finally, from Sec. 3.2.1, we know that the characteristic length separating two
strings at the time of their formation is

ξ = k−1
∗ = (−λvB−Lϕ̇c)−1/3 . (3.16)

This also determines the relaxation time of the cosmic string network, τstring ∼ ξ [31, 125].

3.3 Constraints on the parameter space

Experimental status

Measurements of the CMB put stringent bounds on the primordial perturbation spectrum
from inflation, cf. Eq. (3.9), as well as on the cosmic string parameters. The most recent CMB
data was obtained by the Planck satellite. In [1], the parameters of the primordial fluctuations
based on ‘standard cosmology’ and on the Planck, WMAP polarization and high-l data sets
are given as

A0
s = (2.198± 0.056)× 10−9 , dns/d ln k = −0.022± 0.010 ,

ns = 0.959± 0.007 , r < 0.26 ,
(3.17)

where for A0
s, ns and dns/dk the 68% confidence levels (CLs) and for r the 95% CL is denoted.

Here, ns is obtained assuming dns/dk = 0 and r = 0, however, it is not very sensitive to
including non-vanishing running and tensor contributions, cf. Ref. [1] for details. The values
for dns/dk and r quoted here were obtained allowing for r 6= 0 and dns/dk 6= 0, respectively.
The Planck collaboration also studied a possible contribution from cosmic strings [2]. For the
AH cosmic string model, they find

A0
s = 2.18+0.05

−0.06 × 10−9 , Gµ < 3.2× 10−7 ,

ns = 0.963± 0.008 , f10 < 2.8% ,
(3.18)

with the 68% (95%) CLs given for A0
s and ns (Gµ and f10) and G = 1/(8πM2

P ) denoting
Newton’s constant. Comparing Eq. (3.17) with Eq. (3.18) we note that the inclusion of
cosmic strings allows for a larger value of the spectral index. However, the effect on the
best-fit value is only ∆ns = 0.004, and is hence much less significant than it used to be based
on older data sets [139].

The upper bound on the string tension has a considerable theoretical uncertainty. For
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instance, the corresponding bounds on Gµ and f10 obtained from NG simulations are roughly
stricter by a factor of two, cf. Ref. [2]. Indeed, only the fact that the CMB is mainly sensitive to
long cosmic strings ensures that the bounds derived in the AH and NG model are of the same
order of magnitude. For GWs, which are also sensitive to the loop population, the uncertainty
will be even larger, see Sec. 4.3. Note also that all simulations have been carried out for a
bosonic AH model, whereas here we are considering a supersymmetric theory. Additional
fermionic decay channels may further relax the cosmic string bound by a factor of O(1). Last
but not least, one has to worry about initial conditions. Clearly, strings cannot form until the
causal horizon is larger than their characteristic width [140], and one should remember that
tachyonic preheating proceeds very fast. In fact, the expectation value 〈|σ′|2〉 of the waterfall
field grows with time faster than exponentially [141].

Constraints on the parameter space from hybrid inflation and cosmic strings

Applying the above results to our model we can determine bounds on the parameter space.
From Eqs. (3.14), (3.15) and (3.18) we obtain an upper bound on vB−L, which weakly depends
on λ,

vB−L . 7.3× 10−4

(
ln

16 g2

λ

)1/2

MP . (3.19)

In Ref. [118], the authors discuss hybrid inflation and cosmic string production in a setup very
similar to ours.7 Taking into account current experimental bounds inferred from the spectrum
of fluctuations in the CMB [47] and from the non-observation of cosmic strings [145], they
find viable inflation for

3× 1015 GeV . vB−L . 7× 1015 GeV ,

10−4 .
√
λ . 10−1 .

(3.20)

This significantly constrains the allowed parameter space. Indeed, taking into account the
recent Planck results (3.18), the upper bound on the B−L breaking scale even comes down to
about vB−L . 6× 1015, cf. Eq. (3.19). Thus, with the scale of B−L breaking basically fixed,
vB−L ≈ 5 × 1015 GeV, Eq. (2.44) implies a = 0 and a factor of proportionality of about 5.
This is still consistent with the Froggatt-Nielsen model, since three O(1) factors enter in the
calculation of vB−L. The bounds on λ restrict the second free U(1)FN charge, 1.4 . d . 2.6,
cf. Eq. (2.43), and therefore M1. In the following, we will consider the restricted parameter
space

vB−L = 5× 1015 GeV ,

109 GeV ≤M1 ≤ 3× 1012 GeV ,

10−5 eV ≤ m̃1 ≤ 1 eV .

(3.21)

7Cf. also the analyses in Refs. [119, 142–144].
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Here, the variation of m̃1 accounts for the uncertainties of the Froggatt-Nielsen model. The
chosen range easily covers the expected values for m̃1 in this setup, cf. Ref. [15] for a recent
analysis.

Initial cosmic string production

The energy density stored in strings just after the end of the phase transition can be estimated
as

ρstring '
µ

ξ2
. (3.22)

Using Eqs. (3.11), (3.14) and (3.16), we find that the fraction of energy stored in cosmic
strings directly after the phase transition increases strongly with the coupling parameter λ.
This is due to the higher energy density per cosmic string as well as the shorter average
distance between two strings. For instance, for vB−L = 5× 1015 GeV and λ = 10−2, we find
(Hξ)−1 ' 400 and ρstring/ρ0 ' 60 %. For λ = 10−5, this is reduced to (Hξ)−1 ' 40 and
ρstring/ρ0 ' 0.2 %. In principle, in particular for large values of λ, the production and decay
of cosmic strings can have a large influence on the state of the universe just after the phase
transition. However, as we will argue in the following, for our purposes it is not necessary
to treat these processes in detail, as long as we restrict ourselves to the parameter space in
Eq. (3.21).

For the maximal value of the coupling constant, λ = 10−2, not only is the fraction of
energy stored in the cosmic string network just after the phase transition particularly high,
but also the relaxation time is particularly short, τstring ' O(10−3)H−1. Hence, the major
component of this energy has been converted back into Higgs and gauge degrees of freedom
before the processes which we describe by means of Boltzmann equations, cf. Sec. 3.4, become
relevant. At the very most, cosmic strings will convert about half of the initial energy density
of the Higgs bosons into particles of the Higgs and gauge multiplets. Due to supersymmetry,
the extra higgsinos produced will decay into the same supermultiplets as the Higgs bosons
would have, thus inducing no significant change in the following discussion. The extra gauge
particles will decay predominantly into radiation, which is quickly diluted at this early stage
of the matter-dominated phase governed by the non-relativistic Higgs bosons. Thus, it can
be expected that our setup is insensitive to a modification of the initial conditions of the
reheating phase due to a contribution from cosmic strings. We confirmed this in a numerical
study. Considering the case of extremal string production, we shifted half of the energy
initially stored in the Higgs bosons at the end of preheating into the gauge degrees of freedom
and calculated the resulting entropy, baryon asymmetry and gravitino dark matter. We found
no deviations above the percent level from the results obtained for the final outcome of the
reheating process when neglecting this effect. We will thus omit the effect of cosmic strings
on the reheating process in the remainder of this thesis.
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3.4 Perturbative particle production and decay processes

Tachyonic preheating nonperturbatively generates a large abundance of non-relativistic B−L
Higgs bosons as well as, to a much lesser extent, non-relativistic abundances of the particles
coupled to the Higgs boson, cf. Sec. 3.2.1. Among these are the particles of the B−L gauge
supermultiplet, which decay quickly due to their strong gauge interactions, cf. Eq. (2.40). This
sets the initial conditions for the following slow, perturbative reheating process, depicted by
the solid blue arrows in Fig. 2.1.

Due to our choice of a hierarchical right-handed (s)neutrino mass spectrum, the decay
of particles from the symmetry breaking sector into the two heavier (s)neutrino generations
is kinematically forbidden. These particles can hence only decay into particles of the N1

supermultiplet. These (s)neutrinos, just as the (s)neutrinos produced through gauge particle
decays and thermally produced (s)neutrinos, decay into MSSM particles, thereby generating
the entropy of the thermal bath as well as a lepton asymmetry [146]. Note that these different
production mechanisms yield (s)neutrinos with different energies, which, due to relativistic
time-dilation, decay at different rates. Finally, the thermal bath produces a thermal gravitino
abundance, which will turn out to be in the right ball-park to yield the observed dark matter
abundance.

The main tool to obtain a time-resolved description of this reheating process are Boltz-
mann equations which describe the evolution of the phase space densities of the various parti-
cles species due to decay and scattering processes in an expanding universe. After introducing
the general formalism of Boltzmann equations in Sec. 3.4.1, we will turn to the implications
for the individual particle species in Sec. 3.4.2. This analysis is a supersymmetric extension
of the study performed in [73], exploiting the techniques explained there in more detail.

3.4.1 The formalism of Boltzmann equations

The evolution of the phase space density fX(t, p) of a particle species X is determined by

L̂fX(t, p) =
∑
i′j′..

∑
ij..

CX(Xi′j′..↔ ij..) , (3.23)

with i, j, i′, j′ labelling other particle species, t and p referring physical time and momentum,
L̂ denoting the Liouville operator describing the evolution of the phase space density in an
expanding universe and the CX containing the collision operators of all relevant processes
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involving the particle X:

L̂fX(t, p) =
d

dt
fX(t, p) ,

CX(Xi′j′..↔ ij..) =
1

2gXEX

∑
dof

∫
dΠ(X|i′, j′, ..; i, j, ..)(2π)4δ(4)(Pout − Pin)

× [fifj ..|M(ij..→ Xi′j′..)|2 − fXfi′fj′ ..|M(Xi′j′..→ ij..)|2] .

(3.24)

Here,
∑

dof denotes the sum over all internal degrees of freedom of the initial and final states,
gX and EX are the number of degrees of freedom and the energy of a particle X, Pout and
Pin refer to the total out- and ingoing momentum, M denotes the matrix element and the
momentum space element dΠ is given by

dΠ(X|i′, j′, ..; i, j, ..) = S(X, i′, j′, ..; i, j, ..) dp̃i′dp̃j′ ..dp̃idp̃j .. , dp̃ =
d3p

(2π)3 2E
. (3.25)

S(X, i′, j′, ..; i, j, ..) is a statistical factor to prevent double counting of identical particles. The
quantum statistical factors due to Bose enhancement and Pauli blocking have been omitted,
since they typically yield only minor corrections [147].

Some useful quantities

In the following, we will often work with integrated Boltzmann equations, which are obtained
by integrating Eq. (3.23) over gX d3pX/(2π)3. In a Friedmann-Robertson-Walker (FRW)
universe, the resulting equation can be simplified to

aH
d

da
NX = Γ̂XNX , (3.26)

with a denoting the scale factor, Γ̂X the effective production rate of X particles, and

NX(t) =
(
a(t)
GeV

)3

nX =
(
a(t)
GeV

)3 gX
(2π)3

∫
d3p fX(t, p) , (3.27)

the comoving number density, i.e. the number of X particles in a volume (a/GeV)3. A
rescaling of a in Eq. (3.26) leaves the physical number density nX invariant. For convenience,
we will thus set aPH ≡ 1 at the end of preheating. Another useful quantity is the energy
density ρX ,

ρX = gX

∫
d3p

(2π)3
EX(p) fX(t, p) . (3.28)

In the following, decay rates Γ, comoving number densities N and energy densities ρ will
sometimes appear with upper and lower indices. In this case, the lower index refers to the
particle species under consideration, while the upper index refers to its origin, e.g. its parent
particle or ‘PH’ for preheating.
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Evolution of the gravitational background

The time-dependence of the scale factor a(t) is governed by the Friedmann equation. For a
flat universe and a constant equation of state ω = ρ/p between some reference time t0 and
time t, the Friedmann equation yields

a(t) = a(t0)
[
1 +

3
2
(1 + ω)

(
ρtot(t0)
3M2

P

)1/2

(t− t0)
] 2

3(1+ω)

. (3.29)

After preheating the universe is dominated by non-relativistic Higgs bosons, i.e. ω = 0.
After the end of the reheating process the universe is radiation-dominated, ω = 1/3. In
the intermediate region the equation of state changes continuously. We approximate this
by implementing a piecewise constant effective equation of state with coefficients ωn in the
intervals (tn, tn+1] with aiRH ≤ a(tn) < a(tn+1) ≤ afRH, where aiRH and afRH denote the
beginning and the end of the reheating process, respectively. The ωn are determined iteratively
by requiring self-consistency of the Friedmann equation,

ρtot(tn)
ρtot(tn+1)

=
(
a(tn+1)
a(tn)

)3(1+ωn)

. (3.30)

In our numerical calculations we approximate the total energy density by its two dominant
components, the energy density of the Higgs bosons and the energy density of the neutrinos
produced in Higgs, higgsino and inflaton decays, ρtot ≈ ρσ + ρSN1

, for which we will obtain
analytical expressions below, cf. Eqs. (3.36) and (3.38). In the following we will calculate
the Hubble rate H = ȧ/a using Eq. (3.29). In Appendix B.2, we comment on how, in
certain regions of the parameter space, this procedure can be improved, leading to slightly
more precise numerical results and in particular clarifying the parameter dependence of the
evolution of a(t).

3.4.2 Boltzmann equations for individual particle species

Having introduced the general formalism of Boltzmann equations, we now apply this formal-
ism to the various particle species involved in the B−L phase transition. Consecutively, we
will discuss the Boltzmann equations for the massive particle species, for the MSSM particles
and for gravitinos. We will discuss analytical solutions wherever possible, before turning to
the the numerical solution of the remaining coupled system of equations in Sec. 3.5.

Massive degrees of freedom

The Boltzmann equations describing the massive degrees of freedom introduced above are

L̂fσ = −Cσ(σ → N1N1)− Cσ(σ → Ñ1Ñ1) , (3.31)

L̂fφ = −Cφ(φ→ Ñ1Ñ1) , L̂fψ = −Cψ(ψ → Ñ∗
1N1) , (3.32)
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L̂fN2,3 = −CN2,3(N2,3 → MSSM) , L̂fÑ2,3
= −CÑ2,3

(Ñ2,3 → MSSM) , (3.33)

L̂fN1 = 2CN1(σ → N1N1) + CN1(ψ → Ñ∗
1N1) + CN1(N1 ↔ MSSM) , (3.34)

L̂fÑ1
= 2CÑ1

(σ → Ñ1Ñ1) + 2CÑ1
(φ→ Ñ1Ñ1) + CÑ1

(ψ → Ñ∗
1N1)

+ CÑ1
(Ñ1 ↔ MSSM) . (3.35)

The particles of the symmetry breaking sector, σ, φ and ψ, are produced via tachyonic
preheating only, hence their initial number densities are given by Eq. (3.12). Their initial
phase space distributions are peaked at low momenta and can be taken to be proportional
to δ(p). The collision operators on the right-hand side of Eqs. (3.31) and (3.32) describe the
decay of these particles. The resulting ordinary differential equations are solved by

fX(t, p) =
2π2

gX
NX(tPH)

δ(ap)
(ap)2

exp[−Γ0
X (t− tPH)] , X = σ, φ, ψ , (3.36)

with tPH denoting the time at the end of preheating. We fix the origin of the time axis by
setting tPH = 0. Also the abundances of all heavy (s)neutrinos obtain contributions from
tachyonic preheating. The corresponding phase space distribution functions are of the same
form as fX in Eq. (3.36).

The collision operators for the lightest (s)neutrinos are more involved. As in Ref. [73],
they can be treated best by separating the phase space density into the contributions due
to thermal (th) and nonthermal (nt) (s)neutrinos. Introducing EX(E0; t, t′), the energy of a
particle X at time t which was produced with energy E0 at time t′,

EX(E0; t′, t) := E0
a(t′)
a(t)

{
1 +

[(
a(t)
a(t′)

)2

− 1

](
MX

E0

)2
}1/2

, (3.37)

we find for the comoving number densities of nonthermally produced (s)neutrinos governed
by the respective integrated Boltzmann equation (3.26):

Nnt
X (t) =NS

X(t) +NPH
X (t) +NG

X (t)

=
∫ t

tPH

dt′ a3(t′) γS,X(t′) exp

[
−
∫ t

t′
dt′′

M1 Γ0
N1

EX(mS/2; t′, t′′)

]

+NPH
X (tPH) e−Γ0

N1
(t−tPH) + NG

X (tG) exp

[
−
∫ t

tG

dt′
M1 Γ0

N1

EX(mG/2; tG, t′)

]
, (3.38)

with X = N1, Ñ1 and

γS,N1(t) := 2nσ(t) Γ0
σ→N1N1

+ nψ(t) Γ0
ψ ,

γS,Ñ1
(t) := 2nσ(t) Γ0

σ→Ñ1Ñ1
+ 2nφ(t) Γ0

φ + nψ(t) Γ0
ψ .

(3.39)
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Here NPH
X denotes the X abundance from nonperturbative particle production during tachy-

onic preheating, whereas NG
X refers to the X abundance from the decay of the gauge de-

grees of freedom. The time tG denotes the lifetime of the gauge particles after preheat-
ing, tG = tPH + 1/Γ0

G, cf. Eq. (2.40), and corresponds to the value aG of the scale factor,
aG = a (tG). Note that also the (s)neutrinos of the second and third generation are produced
in the decays of gauge particles. The corresponding comoving number densities of these
(s)neutrino species are of the same form as NG

X in Eq. (3.38).

Unlike the two heavier (s)neutrino generations, (s)neutrinos of the first generation are
also produced from the thermal bath. Assuming kinetic equilibrium, their comoving number
densities are determined by the integrated Boltzmann equation

aH
d

da
N th
X = −Γth

X (N th
X −N eq

X ) , X = N1, Ñ1 , (3.40)

with N eq
X denoting the comoving number density in thermal equilibrium and Γx

X→ij.. is the
vacuum decay width weighted with the average inverse time dilation factor,

N eq
N1

= N eq

Ñ1
=
( a

GeV

)3
gN1

M2
1 T

2π2
K2

(
M1

T

)
, (3.41)

Γx
N1→ij.. = Γx

Ñ1→ij..
= Γ0

N1→ij..
gN1

(2π)3 nxN1

∫
d3p

M1

EN1

fx
N1
. (3.42)

In Eq. (3.40) we are interested in the total decay width of the thermally produced neutrinos,
Γth
N1

. In this case Eq. (3.42) can be evaluated to Γth
N1

= Γ0
N1
K1(M1/T )/K2(M1/T ), where

Kn denotes the modified Bessel function of the second kind of order n. Note, however, that
Eq. (3.42) is not restricted to this case but also allows the calculation of, for example, the
effective decay width of the neutrinos produced by the decay of the Higgs bosons, ΓSNi

.

MSSM degrees of freedom

The Boltzmann equations governing the lepton number asymmetry and the abundance of
MSSM particles in the thermal bath are

L̂fL = C` + C˜̀− C`c − C˜̀c , (3.43)

L̂fr = κ (C` + C˜̀+ C`c + C˜̀c) , (3.44)

with C`,˜̀,.. denoting the collision operators responsible for the production, decay and scat-
tering of (anti)(s)leptons and κ describing the number of radiation quanta produced in the
respective processes.

A subtle but important point concerning the Boltzmann equation for the lepton asym-
metry is the correct treatment of 2 → 2 scattering processes with heavy (s)neutrinos in the
intermediate state. The collision operator for (s)neutrino decays and inverse decays takes care
of the on-shell contributions to these processes, so we need to add the off-shell contributions.
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The CP -conserving part of the off-shell contribution is negligible compared to the correspond-
ing on-shell contribution, so we shall concentrate on the CP -violating off-shell part. This can
be obtained by calculating the CP -violating contribution of the full 2 → 2 scattering pro-
cess and then subtracting the on-shell CP -violating contribution. Exploiting unitarity and
CPT invariance, we prove in Appendix A that the total CP -violating contribution of the
2 → 2 scattering process vanishes up to corrections of O((hν)4), so that we can replace the
CP -violating off-shell contribution by the negative of the CP -violating on-shell contribution.
With this, the integrated Boltzmann equation up to O((hν)2) obtained from Eq. (3.43) reads

aH
d

da
NL = Γ̂nt

LN
nt
L + Γ̂th

L N
th
L − Γ̂WNL , (3.45)

with the wash-out rate Γ̂W and the effective (non)thermal production rates for the lepton
asymmetry Γ̂th,nt

L given by

Γ̂W :=
N eq
N1

2N eq
`

Γth
N1
,

Γ̂nt
L :=

(
Nnt
L

)−1
3∑
i=1

∑
X=Ni,Ñi

εi
(
ΓPH
X NPH

X + ΓGXN
G
X + ΓSXN

S
X

)
,

Γ̂th
L :=

(
N th
L

)−1
ε1 Γth

N1
(N th

N1
+N th

Ñ1
− 2N eq

N1
) .

(3.46)

In Eq. (3.45) we have introduced Nnt
L and N th

L as the nonthermal and thermal contributions
to the total lepton asymmetry NL = Nnt

L +N th
L , respectively. The decay rate of the thermally

produced (s)neutrinos, Γth
N1

, as well as the decay rates ΓPH
X , ΓGX , and ΓSX for nonthermally

produced (s)neutrinos, are given by Eq. (3.42). Note that Eq. (3.46) relates decay rates Γ
and effective production rates Γ̂. The latter describe the relative increase of the respective
particle species due to a given production process and can directly be compared with the
Hubble rate H in order to determine the efficiency of the respective process. εi parametrizes
the CP asymmetry in the Ni and Ñi decays, which, in the Froggatt-Nielsen model, can be
estimated as [148, 149]

εi . 0.1
mνMi

v2
EW

. (3.47)

In the following, we will set εi to its maximal value, thus obtaining an upper bound for the
produced lepton asymmetry.

Analogously, this time neglecting terms of O(εi), Eq. (3.44) yields the integrated Boltz-
mann equation for the relativistic degrees of freedom of the thermal bath,

aH
d

da
Nr = Γ̂nt

r N
nt
r + Γ̂th

r N
th
r , (3.48)
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with Γ̂th,nt
r denoting the effective rates of (non)thermal radiation production,

Γ̂nt
r :=

(
Nnt
r

)−1
∑
i

∑
X=Ni,Ñi

(
κPH
X ΓPH

X NPH
X + κGXΓGXN

G
X + κSXΓSXN

S
X

)
,

Γ̂th
r :=

(
N th
r

)−1∑
i

κth
r Γth

Ni
(N th

Ni
+N th

Ñi
− 2N eq

Ni
) .

(3.49)

Here κx
X denotes the effective increase of radiation quanta in the thermal bath by adding a

particle X stemming from the production mechanism x with energy εxX ,

κx
X =

3 εxX
4 εr

. (3.50)

Another important quantity in this context is the total radiation production rate Γ̂r. It counts
the radiation quanta produced per unit time and is obtained by dividing the right-hand side
of the Boltzmann equation for radiation, Eq. (3.48), by Nr,

Γ̂r = aH
dNr

da
N−1
r =

ṅr
nr

+ 3H ' κx
r

Nx
Ni

Nr
Γx
Ni
. (3.51)

Here in the last expression Nx
Ni

denotes the number density of the dominant source for radi-
ation production at a given time.

Solving Eq. (3.48) finally yields the temperature T of the thermal bath,

T =
(

π2

g∗,n ζ(3)
Nr

a3

)1/3

, (3.52)

with g∗,n counting the effective relativistic degrees of freedom contributing to the number
density of the thermal bath nr. In the MSSM one finds g∗,n = 427/2.

Gravitinos

Gravitinos are predominantly8 produced through supersymmetric QCD scattering processes
in the thermal bath. The corresponding integrated Boltzmann equation is

aH
d

da
N eG = Γ̂ eGN eG . (3.53)

In QCD, at leading order in the strong gauge coupling gs, the effective production rate Γ̂ eG is
given by9 [150]

Γ̂ eG(T ) =
(a/GeV)3

N eG
(

1 +
m2
g̃(T )

3m2eG
)

54ζ(3)g2
s(T )

π2M2
P

T 6

[
ln

(
T 2

m2
g(T )

)
+ 0.8846

]
, (3.54)

8Note that due to the high temperatures reached in this setup, we do not expect a significant contribution
from nonthermal gravitino production [118].

9 Here, the theoretical uncertainty of Γ̂ eG is at least a factor of 2.
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with the energy dependent thermal gluino mass, gluon mass and strong coupling constant

mg̃(T ) =
g2
s(T )
g2
s(µ0)

mg̃(µ0) , mg(T ) =
√

3/2 gs(T ) T ,

gs(µ(T )) = gs(µ0)
[
1 +

3
8π2

g2
s(µ0) ln

µ(T )
µ0

]−1/2

.

(3.55)

The typical energy scale during reheating is estimated as the average energy per relativistic
particle in the thermal bath, µ(T ) ' εr ' 3T . The gravitino mass m eG and the gluino mass
at the electroweak scale mg̃ := mg̃(µ0) remain as free parameters.

3.5 Birth of the hot early universe:

an illustrative parameter example

Combining our initial conditions with the Boltzmann equations derived in the previous section
poses an initial-value problem. Its solution allows us to give a time-resolved description of
the reheating process, in particular of the generation of entropy, matter and dark matter. We
have numerically solved this problem for all values of the input parameters within the ranges
specified in Eq. (3.21). In this section we first illustrate our findings for a representative
choice of parameter values, to gain an understanding of the different processes involved in the
reheating of the universe. In Chapter 4 we will present the results for the entire parameter
space.

Compared to Refs. [4, 73], we take into account all particles involved in the reheating pro-
cess and consider a higher scale of B−L breaking, vB−L = 5× 1015 GeV, which is compatible
with hybrid inflation and cosmic strings, cf. Secs. 3.1 and 3.2.2. However, many of the tech-
niques employed when solving the Boltzmann equations are very similar to those discussed
in detail in Refs. [4, 73], and more details on the technical aspects of the procedure we use to
solve the Boltzmann equations can be found there. Furthermore, in this section we will focus
on the most relevant physical aspects of the reheating process, in particular those relevant
for the following chapter. A more detailed discussion of this reheating process is given in
Ref. [16].

The point in parameter space which we will focus on in this section is

M1 = 5.4× 1010 GeV , m̃1 = 4.0× 10−2 eV , m eG = 100GeV , mg̃ = 1TeV , (3.56)

which is a typical parameter point in the sense that qualitatively, the effects discussed in this
section are present in most of the parameter space. An overview of the resulting comoving
number and energy densities during the reheating process, obtained by numerically solving the
Boltzmann equations (cf. Sec. 3.4) with the initial conditions imposed by tachyonic preheating
(cf. Sec. 3.2.1) and the subsequent decay of the gauge degrees of freedom is shown in Fig. 3.1.



48 3. A Consistent Cosmological Picture

aRH
i aRH aRH

f

Σ+Ψ+Φ

N2,3+N
�

2,3

N1
nt+N

�
1
nt

N1
th+N

�
1
th

2N1
eq

R

B - L

G
�

100 101 102 103 104 105 106 107 108

1025

1030

1035

1040

1045

1050
10-1 100 101 102 103

Scale factor a

ab
s

N
Ha

L
Inverse temperature M1 � T

N

Scale factor a

ab
s
N

(a
)

Inverse temperature M1/T

r

σ+ψ+φ

Nnt
1 +Ñnt
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Figure 3.1: Comoving number densities (upper panel) and comoving energy densities (lower panel) for par-
ticles from the symmetry breaking sector (Higgs σ + higgsinos ψ + inflatons φ), (non)thermally produced
(s)neutrinos of the first generation (N th

1 +Ñ th
1 , Nnt

1 +Ñnt
1 ), thermal equilibrium abundance of (s)neutrinos of

the first generation for comparison (2Neq
1 ), (s)neutrinos of the second and third generation (N2,3+Ñ2,3), the

MSSM radiation (r), the lepton asymmetry (B−L) and gravitinos ( eG) as functions of the scale factor a. The
vertical lines labelled ai

RH, aN
RH and af

RH mark the beginning, the middle and the end of the reheating process,
cf. Sec. 3.5.2. The corresponding values for the input parameters are given in Eq. (3.56).
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ÑPH

1

NPH
1
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Figure 3.2: Breakdown of the comoving number densities shown in the upper panel of Fig. 3.1. The (s)neutrinos
of the first generation (Nnt

1 +Ñnt
1 , N th

1 +Ñ th
1 ) split into (s)neutrinos produced during preheating (NPH

1 , ÑPH
1 ),

in the decay of the gauge degrees of freedom (NG
1 , ÑG

1 ), in the decay of the particles from the symmetry
breaking sector (NS

1 , ÑS
1 ), and from the thermal bath (N th

1 , Ñ th
1 ).

Specific steps of the reheating process are resolved in more detail in Figs. 3.2 to 3.4. In
the following, we discuss the reheating process step by step, starting with the decay of the
massive particles, proceeding with a discussion of the thermal bath and in particular the
reheating temperature, before finally turning to the small departures from thermal equilibrium
responsible for the generation of matter and dark matter.

3.5.1 Decay of massive particles

Among all the particles present after the end of tachyonic preheating and after the decay of
the B−L gauge degrees of freedom, the heavy (s)neutrinos of the second and third generation
have the shortest lifetime. They decay into particles of the MSSM, thereby generating a
contribution to the thermal bath and causing a first stage of reheating, which we will refer to
as N2,3-reheating. This corresponds to the first rise of the thick red curve marking the MSSM
radiation in Figs. 3.1 and 3.2.

The remaining massive degrees of freedom are now the members of the N1 multiplet and
the symmetry breaking sector, with the Higgs boson as clearly dominant component. Due
to the kinematic constraints introduced in Sec. 2.5, the particles of the symmetry breaking
sector decay exclusively into neutrinos and sneutrinos of the first generation, with the decay
rate Γ0

S given in Eq. (2.39). Hereby, the decay into sneutrinos is suppressed compared to
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the decay into their fermionic superpartners, cf. Eq. (2.42). The first generation (s)neutrino
population thus consists of non-relativistic (s)neutrinos which are produced during preheating
(NPH

1 , ÑPH
1 ), relativistic (s)neutrinos from gauge boson decay (NG

1 , ÑG
1 ) and from the decay

of symmetry breaking sector (NS
1 , ÑS

1 ) as well as thermally produced (s)neutrinos (N th
1 ,

Ñ th
1 ). They all decay into MSSM particles, thereby producing the lion’s share of the hot

thermal bath during what we will refer to as (N1-) reheating. Their different kinetic energies
entail different relativistic time dilation factors and hence different decay rates, cf. Eq. (3.42).
The resulting evolution of their abundances is shown in Fig. 3.2. The N1-reheating phase is
responsible for the second rise visible in the thick red curve marking the MSSM radiation.

The dominant component of the first generation (s)neutrino population is formed by the
neutrinos NS

1 produced by the decay of the Higgs boson, and hence the time-scale governing
the neutrino decay is 1/ΓSN1

, cf. Eq. (3.42),

ΓSN1
(a) = γ−1(a) Γ0

N1
, γ−1(a) =

〈
M1

EN1

〉(S)

a

, (3.57)

evaluated at a = aNRH when the decay of these neutrinos starts to become effective, i.e.
ΓSN1

(aNRH) = H(aNRH). Here γ, accounting for the time-dilation in the decay of the relativis-
tic neutrinos, is numerically found to be large in the entire parameter space considered, e.g.
γ(aNRH) ' 85 for the parameter point (3.56), indicating that the NS

1 neutrinos remain ultra-
relativistic throughout their lifetime. In the following, we shall employ the short notation
ΓSN1

:= ΓSN1
(aNRH) when comparing characteristic decay rates. For the parameter exam-

ple (3.56) we find Γ0
S � ΓSN1

, hence 1/Γ0
S sets the overall time-scale of N1-reheating. As

we will see in Sec. 4.1, Γ0
S � ΓSN1

holds in most of the viable parameter space. If the situation
is reversed, then qualitatively we find a very similar picture, however with the roles of ΓSN1

and Γ0
S exchanged, see also the parameter example discussed in Ref. [73].

3.5.2 Reheating and the temperature of the thermal bath

The main part of the thermal bath is produced during N1-reheating, with N2,3-reheating and
the decay of the gauge particles adding only small contributions. Solving the Boltzmann
equation for radiation, Eq. (3.48), we obtain the temperature of the thermal bath throughout
the reheating process, cf. Eq. (3.52). The result is depicted by the solid thick red curve
in Fig. 3.3. A striking feature and one of the key results of this subsection is the basically
constant temperature during N1-reheating.

A temperature plateau

To quantify this result, note that both reheating phases are characterized by Γ̂r ≥ H, with Γ̂r
the total radiation production rate, cf. Eq. (3.51). For N1-reheating we use this to define aiRH

and afRH, the values of the scale factor marking the beginning and the end of the reheating
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N . The orange (black) markers denote the
respective values of TN

RH (Tσ
RH), the vertical lines mark the beginning and the end of the reheating process.

process, i.e. at which Γ̂r = H. As shown in Fig. 3.3, the temperature of the thermal bath
changes less than an order of magnitude between aiRH and afRH. The reason for this is the
continuous production of NS

1 neutrinos during reheating. As long as the N1 neutrinos are
produced much faster than they decay, their comoving number density grows linearly in time,
NS
N1
∝
∫ t
tPH

dt′, cf. Eq. (3.38). Taking into account that as long as Γ0
S < H the expansion of

the universe is driven by the energy stored in the Higgs bosons, i.e. non-relativistic matter,
this translates into NS

N1
∝ a3/2. The NS

1 number density in turn controls the scaling be-
haviour on the right-hand side of the Boltzmann equation for radiation during N1-reheating,
cf. Eq. (3.48). Using H ∝ a−3/2, we find

aiRH . a . afRH : aH
d

da
Nr ∝ NS

N1
∝ a3/2 , Nr ∝ a3 , T ≈ const. , (3.58)

Here, we used Γ0
S � ΓSN1

, as is the case for the parameter example (3.56). What happens in
the reverse case? For H(aiRH) > H(a) > Γ0

S , the situation is analogous as described above
Eq. (3.58), resulting in a nearly constant temperature. For Γ0

S > H(a) > ΓSN1
, the Hubble

rate on the left-hand side of the Boltzmann equation for radiation begins to drop faster, since
ultra-relativistic NS

1 neutrinos take over as the dominant component of the energy density.
At the same time, the growth of the comoving number density NS

N1
on the right-hand side of
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this equation begins to slow down as its source is depleted. In summary, even after H ∼ Γ0
S ,

the temperature remains approximately constant until at H ∼ ΓSN1
the neutrino abundance

rapidly decreases. For comparison, this is shown in Fig. 3.3 by the dashed red curve for
m̃1 = 10−5 eV and M1 = 5.4× 1010 GeV.

The reheating temperature(s)

In Fig. 3.3, we depict the evolution of the temperature throughout the reheating process. In
order to define a characteristic temperature for this process, the existence of a temperature
plateau during the reheating process is a great advantage. It implies that for any of the
possible definitions of the ‘reheating temperature’ introduced below, the resulting value of
the temperature will not vary by more than an order of magnitude. Beyond that, there are
two temperatures which will be of interest in the following. First, the temperature T σRH is the
temperature at which the Hubble rate is equal to the decay rate of the Higgs bosons,

T σRH = T
[
H(aσRH) = Γ0

σ

]
, (3.59)

marked by the black circles in Fig. 3.3. Second, the temperature TNRH is the temperature at
which the Hubble rate drops below the effective decay rate of the first generation neutrinos
produced in the decay of the Higgs bosons,

TNRH = T
[
H(aNRH) = ΓSN1

]
, (3.60)

marked by the orange circles in Fig. 3.3. These temperatures mark characteristic points in
the evolution of the temperature of the thermal bath during N1-reheating. The appearance
of two distinct temperatures is a characteristic feature of the two-stage reheating process
found in this model, with the energy budget during reheating successively dominated by two
different nonthermal species, namely non-relativistic Higgs bosons and relativistic neutrinos.
The physical interpretation of these temperatures depends on which of the decay rates Γ0

σ

and ΓSN1
is the larger one. Note that since this differs for the solid and the dashed curve in

Fig. 3.3, the order of aNRH and aσRH is reversed.

On the one hand, max{T σRH, T
N
RH}, corresponding to a scale factor of apl = min{aσRH, a

N
RH},

can be interpreted as typical value for the temperature on the plateau. Moreover, it picks
up an interesting physical feature. For aiRH < a < apl the temperature is constant to high
accuracy. At apl the decay of either the Higgs bosons or the neutrinos becomes effective,
leading in both cases to the decrease of one of the components in the supply chain of the
thermal bath. This results in a slight decrease of the temperature for apl < a < afRH, cf.
Fig. 3.3. On the other hand, min{T σRH, T

N
RH} marks a characteristic value of the temperature

at the end of the reheating process, when the abundance of NS
1 -neutrinos drops rapidly. This

marks the point in time when the energy density stored in MSSM radiation takes over as the
dominant component. Finally, independent of the hierarchy of Γ0

σ and ΓSN1
, T σRH can be to



3.5 Birth of the hot early universe: an illustrative parameter example 53

good approximation identified as the temperature when the expansion history of the universe
switches from H ∝ a−3/2 (non-relativistic matter) to H ∝ a−2 (radiation). For ΓSN1

> Γ0
S

the MSSM radiation takes over directly at this point, for ΓSN1
< Γ0

S , there is an intermediate
stage dominated by relativistic NS

1 neutrinos.

Which temperature one refers to as ‘the reheating temperature’ thus depends on what
physical feature is relevant for the question under consideration. In the analysis of the pa-
rameter space in the context of leptogenesis and DM production in Secs. 4.1 and 4.2, TNRH

will prove to be a convenient choice. When studying the expansion history of our universe
in the course of determining the gravitational wave spectrum in Sec. 4.3, T σRH will be a good
starting point. A more detailed discussion of the different temperatures, their interpretation
and their parameter dependencies is given in Appendix B.

3.5.3 Small departures from thermal equilibrium

In the last two subsections, we discussed the decay of the heavy particles of the neutrino and
symmetry breaking sector and the resulting formation of the thermal bath. As we shall see
in this subsection, these processes are accompanied by departures from thermal equilibrium
which are crucial for the generation of a matter asymmetry as well as for the production of
dark matter.

Leptogenesis

First, let us return to the first generation neutrino population. We can safely assume the ther-
mally produced (s)neutrinos to be in kinetic equilibrium. However, departures from thermal
equilibrium can occur throughout the reheating process. The comoving thermal equilibrium
abundance is depicted by the dashed blue curve in Fig. 3.4. After an initial increase it de-
creases due to Boltzmann suppression when the thermal (s)neutrinos become non-relativistic.
The onset of N1-reheating, accompanied by a basically constant temperature, leads to a sec-
ond increase of the comoving equilibrium number density until at the end of the reheating
phase a rapidly dropping temperature reinforces the Boltzmann suppression factor, leading
to an exponential decrease. The actual thermal (s)neutrino number density, depicted by the
solid blue curve in Fig. 3.4, is initially significantly lower than the equilibrium number density,
but is steadily driven towards the equilibrium curve. At the end of the reheating phase the
situation is reversed, and the actual thermal (s)neutrino abundance, driven by a continuous
production from the thermal bath, overshoots the equilibrium abundance. Although this
overshooting is too small to be visible in the double-logarithmic scaling of Fig. 3.4, we will
see in a moment that it is nonetheless very relevant for leptogenesis.

We are now ready to turn to the generation of the B−L asymmetry. Solving the integrated
Boltzmann equation (3.45) for the parameter point (3.56) yields the thermal and nonthermal
contribution to the asymmetry depicted in Fig. 3.4. The nonthermal lepton asymmetry
receives a first contribution from the decay of the heavy (s)neutrinos of the second and third
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N th
1 +Ñ th
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generation. To clearly distinguish this contribution from the main contribution arising during
N1-reheating, we have assigned opposite signs to ε2,3 and ε1 in Γ̂nt

L , cf. Eq. (3.46). This entails
the change of sign visible at a ' 4.6×103 in Fig. 3.4, when N1-reheating becomes efficient and
the main part of the nonthermal asymmetry is produced by the decay of the NS

1 -neutrinos.
Wash-out effects are negligibly small throughout this process and hence, once the production
of the nonthermal asymmetry becomes inefficient, Γ̂nt

L < H, the asymmetry freezes out.

The production of the thermal asymmetry is driven by the deviation of the thermal
(s)neutrino abundance from the equilibrium value, cf. Eq. (3.46). This leads to an initially
negative asymmetry with a rapidly increasing absolute value. This increase slows down as the
thermal (s)neutrino abundance approaches the equilibrium value. At around a ' 6.3 × 104

wash-out processes start to play a role, leading to a decrease of the asymmetry. The situ-
ation rapidly changes when the thermal (s)neutrino abundance overshoots the equilibrium
abundance at the end of N1-reheating. This generates an asymmetry with an opposite sign,
which overcompensates the asymmetry generated so far. Shortly after, both Γ̂W and Γth

L drop
significantly below the Hubble rate and the asymmetry freezes out.

The final values of Nnt
L and N th

L allow us to infer the present baryon asymmetry ηB as
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well as its composition in terms of a nonthermal (ηnt
B ) and a thermal (ηth

B ) contribution,

ηB =
n0
B

n0
γ

= ηnt
B + ηth

B , ηnt,th
B = Csph

g0
∗,s
gRH
∗,s

Nnt,th
L

Nγ

∣∣∣∣∣
af

. (3.61)

Here, Csph = 8/23 denotes the sphaleron conversion factor, gRH
∗,s = 915/4 and g0

∗,s = 43/11 are
the effective numbers of relativistic degrees of freedom in the MSSM that enter the entropy
density s of the thermal bath in the high- and low-temperature regime, respectively, and
Nγ = gγ/g∗,nNr is the comoving number density of photons. As final value for the scale
factor we use af ' 1.9 × 108 which is the maximal value depicted in Fig. 3.1. For our
parameter example we find

ηB ' 3.7× 10−9 , ηnt
B ' 3.7× 10−9 , ηth

B ' 1.9× 10−14 . (3.62)

Note that to obtain these values, we have set ε1 to the maximal value allowed by Eq. (3.47).
Hence ηB in Eq. (3.62) yields an upper bound on the baryon asymmetry produced in this
setup and is thus perfectly compatible with the observed value, ηobs

B ' 6.2×10−10 [47]. In fact,
the Froggatt-Nielsen model typically predicts a value for ε1 that is smaller than the maximal
possible value by roughly a factor of O(10), cf. Ref. [15], implying excellent agreement between
prediction and observation for this parameter example, ηB ' ηobs

B .

To summarize, let us highlight the points which are somewhat special in the leptogen-
esis mechanism presented here. First, we explicitly trace both the thermal as well as the
nonthermal contributions to the asymmetry. For the parameter example presented here the
nonthermal component is clearly dominant. This will indeed prove to be the case for most
of the parameter space, although the reversed situation is also possible, cf. Sec. 4.1.2. Note
that omitting the nonthermal production channel and resorting to standard thermal lepto-
genesis would yield ηst

B ∼ 10−10 for this parameter point, cf. [78], which is almost an order
of magnitude below the observed value. Second, our result for the final thermal asymmetry
is significantly lower than the result obtained from standard thermal leptogenesis. This is
mainly due to two effects. The decays of the nonthermal neutrinos entail a continuous pro-
duction of entropy, thus leading to a dilution of the produced asymmetry which does not
occur in standard thermal leptogenesis. Furthermore, in consequence of the specific reheating
mechanism at work the generation of the thermal asymmetry is delayed in time, so that it
takes place at a lower temperature than in the standard case. This implies a correspond-
ingly smaller abundance of thermal (s)neutrinos, rendering our thermal mechanism for the
generation of an asymmetry less efficient.

Gravitino production

Finally, let us consider the production of gravitinos, cf. the dark green curves in Fig. 3.1.
Gravitino production is efficient as long as Γ̂ eG > H, cf. Eq. (3.53). This leads to two produc-
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tion phases, one during N2,3-reheating and then a more important one during N1-reheating.
Due to their very weak interactions, gravitinos decouple from the thermal bath as soon as
they are produced, and hence their comoving abundance remains constant after the end of
N1-reheating. Note that the existence of a temperature plateau has an interesting effect on
the Boltzmann equation governing the gravitino production. From Eq. (3.54) it is evident
that for a constant temperature the effective gravitino production rate grows as the phys-
ical volume, Γ̂ eG ∝ a3, entailing a constant space-time density of gravitino production. In
other words, the production of radiation just compensates the expansion of the universe and
gravitinos are produced as in a static universe.

Assuming that the gravitino is the LSP, we can deduce today’s gravitino dark matter
abundance Ω eGh2 from the final value of N eG:

Ω eGh2 =
ρ0eG
ρc/h2

=
m eG n0

γ

ρc/h2

g0
∗,s
gRH
∗,s

N eG
Nγ

∣∣∣∣
af

, (3.63)

where ρc = 3H2/(8πG) = 1.052 × 10−5 h2 GeV cm−3 denotes the critical energy density of
the universe, h the Hubble rate in the units H = h × 100 km s−1 Mpc−1 and n0

γ = 410 cm−3

the number density of the CMB photons. For our parameter example we find Ω eGh2 ' 0.11 ,
matching the observed amount of dark matter Ωobs

DMh
2 ' 0.11 [47]10. Note that in the choice

of the parameter example, cf. Eq. (3.56), M1 = 5.4×1011 GeV was tuned to obtain this result.
This demonstrates that it is possible, within the setup discussed here, to obtain the correct
abundance of gravitino DM while simultaneously generating enough baryon asymmetry. We
will return to the question of how easily this can be achieved in other parts of the parameter
space in Sec. 4.2.1. An alternative to gravitino DM in this setup is to assume that the LSP is
a neutralino, which is then produced nonthermally from gravitino decays as well as through
thermal freeze-out. We will come back to this option in Sec. 4.2.2.

Robustness against theory uncertainties

After having discussed the reheating mechanism present in our model in some detail, an in-
teresting question is the robustness of this process against possible theory uncertainties. For
example, there are still considerable uncertainties connected to the production and decay of
cosmic strings, cf. Sec. 3.2.2. This could have a significant influence on the initial conditions
of the reheating process. A detailed study of this question can be found in Ref. [16]. The
bottom line is that the time-resolved evolution of the various number densities, cf. Fig. (3.1),
can vary significantly whereas the final outcome of the reheating process, i.e. the resulting
abundances of entropy and dark matter as well as the generated lepton asymmetry, is remark-
ably insensitive to even quite dramatic changes of the initial conditions as well as to omitting
entire particle species, e.g. the degrees of freedom of the gauge multiplet. This shows that

10The recently published Planck data yields a slightly larger value, Ωobs
DMh

2 = 0.12 [1]. The effect of this
change on the work presented here is marginal, and in the following we will stay with the value quoted above.
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the mechanism presented here is extremely robust against possible theory uncertainties.

In this chapter, we studied the cosmological processes accompanying the spontaneous
breaking of B−L in the early universe. In particular, we discussed the phase of hybrid infla-
tion in the false vacuum of B−L, the nonperturbative processes of tachyonic preheating and
cosmic string formation which accompany the actual phase transition as well as the subse-
quent perturbative reheating process governed by the Boltzmann equations. In particular the
last step, yielding a time-resolved picture of the reheating process, was discussed for a single
representative parameter point. In the following chapter, we will investigate the phenomenol-
ogy of this model, thereby extending the discussions of this chapter to the entire parameter
space.
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Chapter 4

Phenomenology

In Chapters 2 and 3 we discussed the process of spontaneous symmetry breaking in the Abelian
Higgs model and the processes accompanying the cosmological realization of this phase tran-
sition. In this chapter we turn to the resulting phenomenology. In Sec. 4.1 we present the
results of a parameter scan for the reheating temperature and the baryon asymmetry. In
particular, we give semi-analytical formulas for both quantities in terms of the neutrino pa-
rameters M1 and m̃1 and determine in which part of the parameter space leptogenesis and
entropy production can be realized in accordance with the experimental data. In Sec. 4.2 we
additionally require a dark matter abundance in agreement with observations. We consider
both the possibility of gravitino as well as neutralino dark matter, and in both cases find
relations between the neutrino parameters and superparticle masses. Another possibility to
search for signatures of a B−L phase transition in the early universe is the gravitational wave
spectrum. This is the topic of Sec. 4.3, where we discuss possible signatures of the cosmo-
logical process introduced in Chapter 3 in the gravitational wave background, in particular
of inflation, (p)reheating and cosmic strings. Finally in Sec. 4.4 we very briefly comment on
possible implications for low-energy neutrino physics. This chapter is based on work partly
published in Refs. [15–17, 19].

4.1 Reheating temperature and baryon asymmetry

In Sec. 3.5 we discussed the reheating process for a representative parameter example. We
now turn to the investigation of the entire parameter space. We will present our main results
for the reheating temperature and the baryon asymmetry, cf. Ref. [16] for a more detailed
discussion. The relevant model parameters for this section are the scale of B−L breaking
vB−L, the heavy neutrino mass M1 and the effective light neutrino mass m̃1, constrained by
Eq. (3.21).
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Figure 4.1: Contour plot of the ‘reheating temperatures’ TN
RH and Tσ

RH, cf. Sec. 3.5.2, as a function of the
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lower and the upper bound on M1, respectively, which arise from requiring consistency with F-term hybrid
inflation and the bound on the cosmic string tension, cf. Eq. (3.21). The small white circle marks the position
of the parameter point discussed in Sec. 3.5.

4.1.1 Reheating temperature

Figure 4.1 shows the result of the parameter scan in the (m̃1,M1) - plane for the two char-
acteristic temperatures TNRH and T σRH of the reheating process introduced in Sec. 3.5.2. The
black line denotes ΓSN1

= Γ0
S , with ΓSN1

> Γ0
S on the right-hand side, and the thick horizontal

grey lines limit the allowed values of M1 according to Eq. (3.21). The resulting values for the
reheating temperature range from about 107 GeV for small (m̃1,M1) to 1012 GeV for large
(m̃1,M1). As anticipated in Sec. 3.5.2, the two definitions of the reheating temperature differ
at most by about one order of magnitude.

The contour lines of TNRH and T σRH in Fig. 4.1 are very well described by

TNRH '


T
N (−)
RH = 9.4× 109 GeV

(
M1

1011 GeV

)1.25( m̃1

10−2 eV

)0.25

for x & 36

T
N (+)
RH = 2.9× 109 GeV

(
M1

1011 GeV

)1.2( m̃1

10−4 eV

)0.3

for x . 36
, (4.1)

T σRH '


T
σ (−)
RH = 5.6× 109 GeV

(
M1

1011 GeV

)1.5

for x & 300

T
σ (+)
RH = 3.1× 109 GeV

(
M1

1011 GeV

)1.3( m̃1

10−4 eV

)0.2

for x . 300
, (4.2)
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with

x =
Γ0
N1

Γ0
S

' 2200
(

m̃1

10−2 eV

)(
1011 GeV

M1

)
, (4.3)

serving as discriminator between the two regimes ΓSN1
� Γ0

S and ΓSN1
� Γ0

S , reflecting our
expectation of the different roles of TNRH and T σRH in the two regimes, cf. Sec. 3.5.2. The
semi-analytical formulas (4.1) and (4.2) can be understood from the Friedmann equation,

3H2M2
P = ρtot , ρtot = αρr =

απ2

30
g∗T

4 , (4.4)

after substituting H with the respective (effective) decay rate and taking into account that
only a fraction 1/α of the total energy density is stored in thermal radiation at aNRH or aσRH.
Here g∗ counts the degrees of freedom with g∗ = 915/4 for the MSSM at high energies. α and
if needed the relativistic time-dilation factor γ for the NS

1 neutrinos have to be determined
numerically by solving the Boltzmann equations. For example, T σ (−)

RH is directly obtained by
inserting H = Γ0

S and α(aσRH) = 0.3. Since in this case the B−L Higgs bosons decay quasi
directly into MSSM radiation, the process does not depend on the neutrino parameter m̃1.
On the other hand, for Γ0

S � ΓSN1
there is an intermediate state when relativistic neutrinos

dominate the energy density, leading to an m̃1 dependence of α(aσRH) and consequently of the
temperature T σ (+)

RH .

4.1.2 Baryon asymmetry

The parameters determining ηB are the neutrino parameters m̃1 and M1 and the temperature
of the thermal bath, which is itself a function of m̃1 and M1, cf. Eqs. (4.1) and (4.2). Fig. 4.2
shows the results of the parameter scan, thereby differentiating between regions in which the
nonthermal asymmetry alone is sufficient to explain the observed value (light green), regions
in which the thermal asymmetry alone is sufficient (grey green) and regions which must be
excluded because the produced asymmetry is too low (red). We observe that in most of the
parameter space the nonthermal production (i.e. via neutrinos from Higgs boson decays) is
significantly more important, as was the case for the parameter example discussed in Sec. 3.5.
Furthermore, note that in most of the parameter space where the nonthermal production is
dominant, the dependence on m̃1 is negligible. This directly corresponds to negligible wash-
out in this regime. However, wash-out is important in the regime where thermal production
is significant, entailing a strong m̃1 dependence for large (m̃1,M1).

Separating the weak wash-out regime from the strong wash-out regime, we can derive
semi-analytical estimates for the two components of the baryon asymmetry valid within the
respective regimes. On the one hand, in the weak wash-out regime, the nonthermal production
channel is dominant. Assuming that all NS

1 neutrinos decay instantaneously into radiation
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Eq. (3.21). The small white circle marks the position of the parameter point discussed in Sec. 3.5.

we can estimate the total asymmetry in this regime as

ηB ' ηnt
B ' 6.7× 10−9

(
M1

1011 GeV

)1.5

. (4.5)

On the other hand, in the regime where the total asymmetry is governed by the thermal
contribution, i.e. in the region above the blue curve in Fig. 4.2, wash-out is important. In
this case, the expectation from standard thermal leptogenesis reproduces our result well and
we find for the total asymmetry

ηB ' ηth
B ' 7.0× 10−10

(
0.1 eV
m̃1

)1.1( M1

1012 GeV

)
. (4.6)

In their respective regimes, Eq. (4.5) and Eq. (4.6) reproduce the results obtained by nu-
merically solving the Boltzmann equations up to a factor of two. The intermediate regime
interpolates between these two results. The requirement to generate a sufficient amount
of baryon asymmetry to explain the value observed today yields a lower bound on M1, cf.
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Fig. 4.2,

ηB ≥ ηobs
B ' 6.2× 10−10 −→ M1 & 1.7× 1010 GeV . (4.7)

4.2 Dark matter

Depending on the hierarchy of the superparticle mass spectrum, our model has different vi-
able DM candidates. If the gravitino is the LSP, as is typically the case if supersymmetry
breaking is gauge-mediated, the gravitino abundance produced during the reheating process,
cf. Sec. 3.5.3, can directly yield today’s DM abundance in form of gravitino DM. Alternatively,
if a neutralino is the LSP, as occurs in anomaly mediation, we find a WIMP DM scenario.
However, it differs from the vanilla WIMP thermal freeze-out scenario due to additional non-
thermal neutralino production from gravitino decays. We will discuss both options, gravitino
DM in Sec. 4.2.1 and neutralino DM in Sec. 4.2.2. In both cases imposing the constraint of
reproducing the correct DM abundance today will yield relations between the neutrino pa-
rameters and superparticle masses. This section is based on work partly published in Ref. [16]
and Ref. [17], respectively.

4.2.1 Gravitino dark matter

In this section we shall assume that the gravitino is the LSP, and hence we require the
gravitino abundance obtained at the end of the reheating process to directly translate to
today’s DM abundance. The final abundance of gravitinos Ω eGh2, governed by the Boltzmann
equation (3.53), depends on three parameters: the temperature of the thermal bath as well
as the two superparticle masses m eG and mg̃. Keeping the gluino mass fixed1 at 1 TeV and
taking into account that the temperature of the thermal bath is controlled by m̃1 and M1,
the gravitino abundance becomes a function of m̃1, M1 and m eG. Imposing the constraint

Ω eGh2 = 0.11 , (4.8)

allows us to eliminate one free parameter. The upper panel of Fig. 4.3 shows the value of
M1 in the (m̃1,m eG) - plane, obtained after imposing the constraint (4.8). With this, for
a given point in the (m̃1,m eG) - plane all parameters are fixed and we can calculate the
quantities we are interested in, e.g. ηB and the temperature of the thermal bath, by solving
the Boltzmann equations for this point in parameter space. This allows us to include the
ηB = ηobs

B contour line in the upper panel of Fig. 4.3, separating the region excluded due to
an insufficient production of baryon asymmetry (red) and the viable region (green). Due to

1The results presented in the following can easily be generalized to other gluino masses, cf. App. D of
Ref. [73]. Varying mg̃ can be compensated by rescaling m eG → m′eG(mg̃), so that the gravitino abundance
remains unchanged.
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the procedure described above, the green region now does not only account for a sufficient
baryon asymmetry but additionally yields the correct DM abundance.

The lower panel of Fig. 4.3 shows the resulting reheating temperature TNRH after imposing
the constraint (4.8). As in the upper panel, the regions excluded due to insufficient baryon
asymmetry are marked red. Given the values of M1 in the upper panel, we find x & O(1)
(cf. Eq. (4.3)) in the entire parameter space constrained by Eq. (3.21) and compatible with
gravitino dark matter. Moreover, we find x > 36 everywhere except for in the very top left
corner of the depicted (m̃1,m eG) - plane. Thus to very good approximation, the temperature
curves depicted in the lower panel of Fig. 4.3 are determined by TNRH ' T

N (−)
RH , cf. Eq. (4.1).

Furthermore, transferring the black line marking ΓSN1
/Γ0

S = 1 in Fig. 4.1 into the upper panel
of Fig. 4.3, we find Γ0

S < ΓSN1
for m̃1 & 10−4 eV and thus in most of the viable parameter

space TNRH corresponds to the plateau temperature, cf. Sec. 3.5.2.

With this, we can parametrize our results in the (m̃1,m eG) - plane semi-analytically, cf.
Ref. [16] for a more detailed derivation. For the final gravitino abundance Ω eGh2 we find

Ω eGh2 =
m eG η eG n0

γ

ρc/h2
' 0.26 ε

(
TNRH

1010 GeV

)[
0.13

( m eG
100 GeV

)
+
(100 GeV

m eG
)( mg̃

1 TeV

)2
]
. (4.9)

Neglecting the production of entropy and gravitinos after aNRH, η eG := n0eG/n0
γ can readily

be expressed in terms of Γ̂ eG and TNRH. The factor ε parametrizes the effect of entropy and
gravitino production after aNRH. Solving the Boltzmann equations numerically, we find that
it is mainly controlled by m̃1,

ε (m̃1) ' 1.2
(

10−3 eV
m̃1

)c
, with c =

−0.01 for m̃1 . 10−3 eV

0.21 for m̃1 & 10−3 eV
. (4.10)

Inserting TNRH ' T
N (−)
RH , cf. Eq. (4.1) and the discussion above Eq. (4.9), fixing the gluino

mass mg̃ = 1 TeV and solving for M1, Eq. (4.9) yields

M1 ' 7.2× 1010 GeV
(

m̃1

10−3 eV

)d [
0.13

( m eG
100 GeV

)
+
(100 GeV

m eG
)]−0.8

, (4.11)

with the exponent d = 0.8 c−0.2. This reproduces the contours in the upper panel of Fig. 4.3
to an accuracy of about 10%. Inserting the lower bound on M1 from Eq. (4.7), this yields a
lower bound on the gravitino mass m eG in terms of the effective light neutrino mass m̃1, cf.
Fig. 4.3,

m eG ≥ 16 GeV
(

m̃1

10−3 eV

)0.25−c
. (4.12)

Physically, this bound can be understood as follows. For gravitino masses below O (10) GeV,
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Figure 4.3: Contour plots of the heavy neutrino mass M1 (upper panel) and the reheating temperature TN
RH

(lower panel) as functions of the effective neutrino mass em1 and the gravitino mass m eG such that the relic
density of dark matter is accounted for by gravitinos, cf. Eq. (4.8). In the red region the lepton asymmetry
generated by leptogenesis is smaller than the observed one, providing a lower bound on the gravitino mass
dependent on em1. The colour code is the same as in Figs. 4.1 and 4.2, respectively. The small white circle
marks the position of the parameter point discussed in Sec. 3.5.
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a reheating temperature TNRH . O
(
108 − 109

)
GeV is required to avoid overproduction of

gravitinos. According to our reheating mechanism such low reheating temperatures are as-
sociated with relatively small values of the neutrino mass, M1 . O

(
1010

)
GeV. The low

temperature and low mass then entail a small abundance of (s)neutrinos at the time the
asymmetry is generated and a small CP parameter ε1. Both effects combine and result in an
insufficient lepton asymmetry, rendering dark matter made of gravitinos with a mass below
O (10) GeV inconsistent with leptogenesis.

In conclusion, we find that our scenario of reheating can be easily realized in a large
fraction of the parameter space. The two conditions of successful leptogenesis and gravitino
dark matter, linked by the reheating temperature, allow us to interconnect parameters of the
neutrino and supergravity sector. In particular, we are able to determine the right-handed
neutrino mass scale M1 and the temperature of the thermal bath as functions of the effective
light neutrino mass m̃1 and the gravitino mass m eG. Furthermore, the consistency of inflation,
cosmic strings, matter and dark matter generation imposes constraints on the parameter
space. In particular, we find M1 values around 1011 GeV and TNRH values around 3×109 GeV,
as well as a lower bound on the gravitino mass of roughly 10 GeV.

4.2.2 WIMP dark matter

We now turn to an alternative scenario, in which the LSP is not the gravitino but a neutralino,
labelled as χ in this section. This introduces the additional parameter mχ, the mass of the
lightest neutralino. Motivated by the recent discovery of a Higgs-like scalar boson at the LHC
with a mass of about 126 GeV [95, 96], we will focus on a hierarchical superparticle mass
spectrum,

mχ � msquark, slepton � m eG , (4.13)

as is found in anomaly mediation [92–94]. Due to this hierarchy the LSP is typically a
‘pure’ gaugino or higgsino [151]. Generically, the thermal abundance of a bino LSP is too
large. We therefore focus on the possibility of a wino or higgsino LSP. Since a pure neutral
wino or higgsino is almost mass degenerate with a chargino belonging to the same SU(2)
multiplet [151], the current lower bound on chargino masses [8] also applies to the LSP in
this case. There are two relevant production channels for the neutralino: thermal production,
accompanied by the standard thermal freeze-out mechanism for WIMPs, and nonthermal
production, as a decay product of the gravitinos produced during the reheating process.

Thermal and nonthermal production

The thermal abundance of a pure wino (w̃) or higgsino (h̃) LSP becomes significant only for
masses above 1 TeV where it is well approximated by [152]

Ωth
χ h

2 = cχ

( mχ

1 TeV

)2
, c ew = 0.014 , ceh = 0.10 , (4.14)
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for winos2 and higgsinos, respectively. The nonthermal abundance is governed by the abun-
dance of gravitinos produced during reheating. The decay of a heavy gravitino produces
approximately one LSP. Denoting the ‘would-be’ gravitino abundance today if the gravitino
were stable by Ω eGh2, the nonthermally produced DM abundance today is given by

Ω eG
χh

2 =
(
mχ

m eG
)

Ω eGh2 . (4.15)

For gravitino masses in the range from 10 TeV to 103 TeV as suggested by anomaly mediation,
we can neglect the second summand in Eq. (4.9), and thus Ω eG

χh
2 is given by

Ω eG
χh

2 ' 2.7× 10−2
( mχ

100 GeV

)(TNRH(M1, m̃1)
1010 GeV

)
, (4.16)

where for simplicity3, we have averaged over the weak m̃1 dependence of ε, cf. Eq. (4.10). As
in Sec. 4.2.1, we will impose the condition that the total DM abundance matches the observed
abundance today,

Ωχh
2 = Ω eG

χh
2 + Ωth

χ h
2 != 0.11 . (4.17)

Inserting Eqs. (4.14) and (4.16) into Eq. (4.17) we find that for higgsino (wino) LSP masses
below 0.6 TeV (1.6 TeV), the total DM abundance is governed by the contribution from
gravitino decay.

Gravitino problem and structure formation

The decay of the large abundance of gravitinos produced during reheating into lighter MSSM
particles induces an increase of the entropy of the thermal bath and thus a dilution of the
baryon asymmetry ηB, cf. Eq. (3.61). If this occurs after primordial nucleosynthesis (BBN),
ηB must have been much higher at BBN than now to compensate for this effect. This,
however, spoils the very successful predictions of BBN and is referred to as the gravitino
problem for unstable gravitinos, see e.g. [155]. The gravitino lifetime is given by

τ eG = Γ−1eG =

(
1

32π

(
nv +

nm
12

) m3eG
M2

P

)−1

= 24
(

10 TeV
m eG

)3

sec , (4.18)

where nv = 12 and nm = 49 are the number of vector and chiral matter multiplets, respec-
tively. Exploiting Eq. (4.4) with α = 1 well after the end of reheating, the temperature of

2Compared to Ref. [152] we have reduced the abundance by 30% to account for the Sommerfeld enhancement
effect [153, 154].

3 Keeping the em1 dependence would yield a weak em1 dependence for the upper bound for TN
RH marked by

the dark grey region in Fig. 4.4. However, this bound does not enter into the following discussion, in particular
it does not appear in Figs. 4.5 and 4.6. Hence, omitting the em1 dependence here has no effect on the final
results of this section.
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the thermal bath when the gravitinos decay is

T eG =

(
90 Γ2eGM2

P

π2 g∗(T eG)

)1/4

= 0.24
(

10.75
g∗(T eG)

)1/4 ( m eG
10 TeV

)3/2
MeV . (4.19)

For gravitino masses between 10 TeV and 103 TeV the decay temperature T eG varies between
0.2 MeV and 200 MeV, i.e. roughly between the temperatures of nucleosynthesis and the
QCD phase transition, thus avoiding the gravitino problem. Note that in this temperature
range the entropy increase due to gravitino decays and hence the corresponding dilution of
the baryon asymmetry are negligible, and the results obtained in Sec. 4.1.2 remain valid.

Another important point to check is the effect of the neutralinos from gravitino decay on
structure formation. Since they are produced relativistically, they form warm dark matter
which can affect structure formation on small scales. The decisive quantity here is the free-
streaming length, which roughly gives the scale below which primordial perturbations are
erased,

λFS =
∫ t0

τ eG
dt
vχ
a
'
(

3
4

)2/3 m eG
2mχ

(
τ eG teq)1/2( t0

teq

)2/3
(

ln
16 teqm2

χ

τ eGm2eG + 4

)
, (4.20)

where vχ = (p/mχ)(a(τ eG)/a(t)) refers to the velocity of the LSP and teq and t0 denote the
time of radiation-matter-equality and the age of the universe, respectively. For the gravitino
and LSP masses considered in this section, one finds λFS . 0.1 Mpc, which is below the scales
relevant for structure formation [156].

Investigating the parameter space

An important factor governing the nonthermal production is the reheating temperature. The
allowed temperature range is constrained by three effects, cf. Fig. 4.4. First, taking into
account that the neutralino mass is bounded from below by the chargino bound,mχ ≥ 94 GeV,
the DM abundance (governed by the nonthermal contribution for small neutralino masses)
exceeds the observed value for TNRH & 4.3 × 1010 GeV, cf. Eq. (4.16). This is depicted by
the dark grey region in Fig. 4.4. Second, the reheating temperature is bounded from below
by the lower bound on M1 from F-term hybrid inflation, cf. Fig. 4.1, with the value of this
bound depending on m̃1. This excludes the light grey regions in Fig. 4.4. In principle,
also the upper bound on M1 from successful hybrid inflation translates into an upper bound
on TNRH. However, the bound arising from the chargino bound is more restrictive. Third,
for gravitino masses below 40 TeV BBN provides stringent upper bounds on the reheating
temperature [157], marked by the medium grey region in Fig. 4.4.

Fixing the DM abundance to the value observed today yields a one-to-one correspondence
between the reheating temperature and the mass of the lightest neutralino mχ, as can be seen
by combining Eqs. (4.14), (4.16) and (4.17). Fig. 4.5 shows the result obtained by translating
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Figure 4.4: Upper and lower bounds on the reheating temperature as functions of the gravitino mass. The
horizontal dashed lines denote lower bounds imposed by successful leptogenesis for different values of the
effective neutrino mass em1, cf. Fig. 4.1 after imposing the bound in Eq. (4.7). The curves labelled 4He and
D denote upper bounds originating from the primordial helium-4 and deuterium abundances created during
BBN, which are taken from [157] (case 2, which gives the most conservative bounds). The vertical dashed lines
represent the absolute lower bounds on the gravitino mass for fixed effective neutrino mass em1 and minimal
reheating temperature. The shaded region marked Ωχ > Ωobs

DM is excluded as it corresponds to overproduction
of dark matter, taking into account that the neutralino mass is bounded from below, mχ ≥ 94 GeV.

the bounds on the reheating temperature shown in Fig. 4.4 into bounds on the LSP mass for
the higgsino (left panel) and the wino (right panel) case. In addition to the upper bounds on
the LSP mass imposed by the lower bound on TNRH (dashed horizontal lines), we also show
an absolute, TNRH- and hence m̃1-independent, upper bound on the LSP mass which indicates
the thermal overproduction of dark matter, Ωth

χ > Ωobs
DM (upper dark grey region).

As can be seen from Fig. 4.5, the absolute upper bound on the neutralino LSP mass (for
any m eG), as well as the absolute lower bound on m eG (for any mχ) depends on m̃1. In Fig. 4.5
this is indicated by the dashed lines denoting the respective bounds for three example values
of m̃1. In Fig. 4.6 we go beyond this and explicitly depict the m̃1 dependence of the absolute
upper bound for the higgsino and wino LSP masses (solid curves) as well as the absolute
lower bound for the gravitino mass (dashed curve).

Fig. 4.6 conveys two remarkable points. First, we find that also in the case of a neutralino
LSP, the spontaneous breaking of B−L in the early universe can successfully generate not
only a sufficient baryon asymmetry but also the correct abundance of dark matter, as long
as the bounds depicted in Fig. 4.6 are satisfied. Second, in the quest of identifying the viable
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Figure 4.5: Upper and lower bounds on the LSP mass in the higgsino and wino case, respectively, and lower
bounds on the gravitino mass. These bounds are in one-to-one correspondence to the bounds on the reheating
temperature and the gravitino mass in Fig. 4.4. The horizontal dashed lines denote the upper bounds on the
LSP mass imposed by successful leptogenesis for different values of the effective neutrino mass em1. The curves
labelled 4He and D denote lower bounds on the LSP as well as on the gravitino mass originating from the
primordial helium-4 and deuterium abundances created during BBN. The vertical dashed lines represent the
absolute lower bounds on the gravitino mass for fixed effective neutrino mass em1 and maximal LSP mass. The
dark shaded regions on the upper edge of the plots correspond to thermal overproduction of dark matter and
are hence excluded. We do not consider LSP masses below 94GeV due to the present lower bound on the
chargino mass.

parameter space, we find correlations between the neutrino physics parameter m̃1 on the one
hand and superparticle masses (m eG, mχ) on the other hand. The reason for this is the crucial
role the reheating temperature plays in the generation of the DM abundance in the setup
presented here, while at the same time, the dynamics of our reheating process ensure that
the reheating temperature itself is a function of the neutrino parameters.

Prospects for direct detection and collider experiments

For pure wino and higgsino LSPs, the exchange of the lightest Higgs boson yields for the
spin-independent elastic scattering cross section at tree level [158],

σ ew
SI ' 2× 10−43 cm2

(
125 GeV
mh0

)4(100 GeV
meh

)2(
sin 2β +

m ew
meh
)2

, (4.21)

σ
eh
SI ' 7× 10−44 cm2

(
125 GeV
mh0

)4(100 GeV
m ew

)2

, (4.22)

where mh0 is the mass of the lightest Higgs boson. For the hierarchical mass spectrum of
Eq. (4.13) one has r ew = m ew/meh � 1 for wino LSP and reh = meh/m ew � 1 for higgsino LSP,
respectively [151]. Hence, the spin-independent scattering cross sections in the viable mass
range, mχ ∼ 100 GeV−O(1) TeV, are significantly below the present experimental sensitivity
of currently about 10−45 − 10−44 cm2, see e.g. [159].

For the considered hierarchy of superparticle masses, gluinos and squarks are heavy.
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different values of em1. Wino masses larger than 2.8TeV and higgsino masses larger than 1.0 TeV result in
thermal overproduction of DM.

Hence, the characteristic missing energy signature of events with LSPs in the final state
may be absent and the discovery of winos or higgsinos therefore very challenging, for recent
discussions see e.g. [160–162]. In both cases the neutral LSP is almost mass degenerate with
a chargino, which increases the discovery potential. One may hope for macroscopic charged
tracks of the produced charginos. A generic prediction is also the occurrence of monojets
caused by the Drell-Yan production of higgsino/wino pairs associated by initial state gluon
radiation. In this case, the upper bound on the wino LSP mass implies a lower bound on the
respective cross section, cf. [162] for a recent analysis.

4.3 Gravitational wave spectrum

In this section, we turn to a complementary way of probing a B−L phase transition in the
early universe: by measuring the gravitational wave (GW) background. GWs are generated
whenever strong gravitational fields occur, decouple immediately and to very good approx-
imation propagate freely ever since. Hence, GWs can carry information on the very early
universe.

In Chapters 2 and 3, we derived a time-resolved, quantitative description of the symmetry
breaking process and the subsequent reheating phase. After introducing some basic notation



72 4. Phenomenology

and formulas in Sec. 4.3.1, we will in Sec. 4.3.2 quantify the expected GW signal from the
different phases of this process, i.e. from inflation, from preheating and from cosmic strings
in the scaling regime. As we will show in Sec. 4.3.3, the resulting spectrum indeed has very
interesting features which can be probed with future GW detectors. In Sec. 4.3.4 we explain
how detecting these features would turn the relations found in Secs. 4.1 and 4.2 into testable
predictions. This section is based on work partly published in Ref. [19].

4.3.1 Cosmic gravitational wave background

Gravitational waves are perturbations of the homogeneous background metric. In a flat FRW
background, these perturbations can be parametrized as [99]

ds2 = a2(τ) (ηµν + hµν)dxµdxν . (4.23)

Here ηµν = diag(−1, 1, 1, 1), a is the scale factor, and xµ are conformal coordinates with xi,
i = 1..3, denoting the comoving spacial coordinates and τ = x0 the conformal time. These are
related to the physical coordinates and the cosmic time as xphys = a(τ) x and dt = a(τ) dτ ,
respectively4. Introducing

h̄µν = hµν −
1
2
ηµν h

ρ
ρ , (4.24)

the linearized Einstein equation describing the generation and propagation of GWs reads

h̄′′µν(x, τ) + 2
a′

a
h̄′µν(x, τ)−∇2

x h̄µν(x, τ) = 16πGTµν(x, τ) , (4.25)

with a prime referring to the derivative with respect to conformal time and Tµν denoting the
anisotropic part of the stress energy tensor of the source. The total stress energy tensor is
the sum of Tµν and an isotropic part which determines the background metric. Outside the
source, we can choose the transverse traceless (TT) gauge for the GW, i.e. h0µ = 0, hii = 0,
∂jhij = 0, which implies h̄µν = hµν . The mode equation which describes the generation and
propagation of these degrees of freedom can be obtained by using an appropriate projection
operator [99] on the Fourier transform5 of Eq. (4.25),

h̃
′′
ij(k, τ) +

(
k2 − a

′′

a

)
h̃ij(k, τ) = 16πGaΠij(k, τ) , (4.26)

where h̃ij = ahij , Πij denotes the Fourier transform of the TT part of the anisotropic stress
tensor Tµν , k = |k|, and k is the comoving wavenumber, related to the physical wave number
through kphys = k/a.

4Here, bold letters indicate 3-vectors.
5Our convention for the Fourier transformation is hij(x, τ) =

R
d3k

(2π)3
hij(k, τ) exp(ikx).
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A useful plane wave expansion of GWs is given by

hij (x, τ) =
∑

P=+,×

∫ +∞

−∞

dk

2π

∫
d2k̂ hP (k) Tk(τ) ePij

(
k̂
)
e−ik(τ−k̂x) . (4.27)

Here, k̂ = k/k, P = +,× labels the two possible polarization states of a GW in the TT
gauge and e+,×ij are the two corresponding polarization tensors satisfying the normalization
condition ePije

ij Q = 2δPQ. hP (k) denote the coefficients of the expansion after factorizing out
the red-shift due to the expansion of the universe, with the latter captured in the so-called
transfer function Tk(τ).

An analytical expression for Tk can be obtained by studying the homogeneous, i.e. source-
free, version of Eq. (4.26). Using the Friedmann equations, we find a′′/a ∼ a2H2. The mode
equation describes two distinct regimes. On sub-horizon scales, k � aH, we can neglect the
a′′/a term. The solution is thus simply h̃ij ∼ cos(ωτ) and hence hij ∼ cos(ωτ)/a, i.e. the
amplitude decreases as 1/a inside the horizon. On the other hand, on super-horizon scales,
k � aH, we can neglect the k2 term. This yields 2a′h′ij + ah′′ij = 0, with the solution

hij(τ) = A+B

∫ τ dτ ′

a2(τ ′)
, (4.28)

with A and B constants of integration. This solution is a constant plus a decaying mode
which can be neglected. Hence, on super-horizon scales the amplitude of the mode remains
constant, the mode is ‘frozen’. Identifying the transfer function Tk capturing the effects due
to the expansion of the universe as

Tk(τ∗, τ) =
hEij(k, τ)

hEij(k, τ∗)
, (4.29)

with hEij(k, τ) denoting the envelope of the oscillating function hij(k, τ), we can employ the
approximation6 (see e.g. [163])

Tk(τ∗, τ0) ≈
a(τ∗)
a(τ0)

with τ∗ =

τi for sub-horizon sources

τk for super-horizon sources
. (4.30)

Here, τi marks the time when the GW was generated and τk denotes the time when a given
mode with wavenumber k entered the horizon,

k = a(τk)H(τk) . (4.31)

6In Chapter 3, we set aPH = 1. Another convention used frequently is a0 = 1, with a0 referring to the value
of the scale factor today. In this section, we explicitly keep a0 without specifying a convention. In the end, the
dependence on a0 must drop out of the observables, which must be independent of the choice of convention.
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In Eq. (4.30), we assume for super-horizon sources that the amplitude is constant until τ = τk

and then drops as 1/a immediately afterwards. The actual solution to the mode equation
yields corrections to both of these assumptions. However, as a numerical check reveals, the
effects roughly compensate each other so that Eq. (4.30) reproduces the full result very well.
For super-horizon sources we will use the more compact notation Tk(τ) = Tk(τk, τ) in the
following.

The GW background is a superposition of GWs propagating with all frequencies in all
directions. An important observable characterizing the GW background is the ensemble
average of the energy density [99], which is expected to be isotropic,

ρGW(τ) =
1

32πG

〈
ḣij (x, τ) ḣij (x, τ)

〉
=
∫ ∞

−∞
d ln k

∂ρGW(k, τ)
∂ ln k

, (4.32)

with the angular brackets denoting the ensemble average and the dot referring to the derivative
with respect to cosmic time. Alternatively, one uses the ratio of the differential energy density
to the critical density,

ΩGW(k, τ) =
1
ρc

∂ρGW(k, τ)
∂ ln k

. (4.33)

In the model considered in this thesis, the energy density has a part of quantum origin and
a part of classical origin,

ρGW(τ) = ρqu
GW(τ) + ρcl

GW(τ) . (4.34)

The former part is due to inflation and is therefore stochastic, whereas the latter part is
determined by the contributions to the stress energy tensor from cosmic strings and from
tachyonic preheating,

ρcl
GW(τ) = ρCS

GW + ρTP
GW(τ) . (4.35)

For a stochastic GW background the Fourier modes hA (k) are random variables and their
ensemble average is determined by a time-independent spectral density Sh(k) [99],

〈
hP (k)h∗Q

(
k′
)〉

= 2π δ
(
k − k′

) 1
4π

δ(2)
(
k̂ − k̂′

)
δPQ

1
2
Sh(k) . (4.36)

This relation reflects the fact that different modes are uncorrelated and that the background
is isotropic. On sub-horizon scales, k � aH, Eqs. (4.27), (4.30) and (4.36) yield

〈
hij (x, τ)hij (x, τ)

〉
=

1
π

∫ ∞

−∞
dk Sh(k)

a2(τ∗)
a2(τ)

, (4.37)

and 〈
ḣij (x, τ) ḣij (x, τ)

〉
=

1
πa2(τ)

∫ ∞

−∞
dk k2 Sh(k)

a2(τ∗)
a2(τ)

. (4.38)

Comparing this with Eq. (4.32) yields an expression for the differential energy density in
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terms of the spectral density,

∂ρGW (k, τ)
∂ ln k

=
a2(τ∗)

16π2Ga4(τ)
k3 Sh(k) . (4.39)

The classical contribution to the GW energy density is obtained by integrating Eq. (4.26)
from the initial time τi of GW production until today,

hij(k, τ) = 16πG
1

a(τ)

∫ τ

τi

dτ ′ a(τ ′)G(k, τ, τ ′) Πij(k, τ ′) , (4.40)

where G(k, τ, τ ′) is the retarded Green’s function of the differential operator on the left-hand
side of Eq. (4.26). For sub-horizon modes, i.e. kτ � 1, one has G(k, τ, τ ′) = sin(k(τ − τ ′))/k.
With this, one can evaluate the ensemble average 〈ḣ2〉 in terms of 〈Π2〉 by calculating the
derivative of Eq. (4.40) on sub-horizon scales. Assuming translation invariance and isotropy
of the source, 〈

Πij(k, τ)Πij(k′, τ ′)
〉

= (2π)3 Π2(k, τ, τ ′) δ(k + k′) , (4.41)

the resulting differential energy density simplifies to

∂ρGW (k, τ)
∂ ln k

=
2G
π

k3

a4(τ)

∫ τ

τi

dτ1

∫ τ

τi

dτ2 a(τ1) a(τ2) cos(k(τ1 − τ2))Π2(k, τ1, τ2) , (4.42)

Here, in order to perform the ensemble average, we have also averaged the integrand over a
period ∆τ = 2π/k, assuming ergodicity.

4.3.2 Gravitational waves from a B−L phase transition

The cosmological setup discussed in Chapter 3 contains several sources for gravitational waves.
In this section, we will in turn discuss the resulting GW background from inflation, from
tachyonic preheating and from cosmic strings in the scaling regime. An overview of the
resulting contributions is shown in Fig. 4.7. In the analysis of this section we will employ the
temperature T̂ σRH defined as the temperature at the time when half of the energy of the B−L
Higgs bosons has been shifted to relativistic degrees of freedom (relativistic neutrinos and/or
MSSM degrees of freedom),

ρtot(âσRH) = 2ρS(âσRH) = 2
[
ρr(âσRH) + ρN (âσRH) + ρÑ (âσRH)

]
, T̂ σRH = T (âσRH) . (4.43)

This temperature is naturally closely related to the Higgs decay temperature T σRH, which
marks the point in time when the Higgs boson abundance has decrease to a fraction 1/e of
its original abundance. Here aσRH, marking the time-scale over which the Higgs abundance is
significantly reduced, is characteristic for describing the Higgs boson decay in the context of
the time-resolved picture of the reheating process developed in Sec. 3.5. The quantity âσRH is
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slightly better adapted to answer the question which we will be interested in here, namely of
whether non-relativistic or relativistic particles are dominant, i.e. make up more than 50% of
the energy budget of the universe. This determines the evolution of the scale factor and hence,
cf. Eq. (4.30), the transfer function. Performing an analysis analogous to the one described
in Sec. 4.1.1, but for T̂ σRH instead of T σRH, we find that as expected, T σRH and T̂ σRH are very
similar, exhibiting the same parameter dependencies with T̂ σRH ' 0.86T σRH (T̂ σRH ' 0.97T σRH)
well inside the the ‘-’ (‘+’) regime of Eq. (4.2):

T̂ σRH '


T̂
σ (−)
RH = 4.8× 109 GeV

(
M1

1011 GeV

)1.5

for x & 170

T̂
σ (+)
RH = 3.0× 109 GeV

(
M1

1011 GeV

)1.3( m̃1

10−4 eV

)0.2

for x . 170

. (4.44)

In the remainder of this chapter we will thus work with the quantity T̂ σRH, denoting it as
TRH := T̂ σRH and all letters with the index ‘RH’ will refer to this quantity. Of course, using
instead T σRH would lead to the same final results, only the auxiliary quantities used to describe
the effects which quantify the discrepancies between the analytical approximations and the
full solution of the Boltzmann equations would have slightly different numerical values.

One goal of this section will be to pinpoint which model parameters are related to which
features in the GW spectrum, and might therefore be probed by a measurement of the GW
background. We will therefore in the remainder of this section keep both the neutrino and
B−L Higgs boson masses, M1 and mS , as independent parameters and will not employ the
relation M1 = η2mS , cf. Sec. 2.5, unless stated explicitly otherwise.

Gravitational waves from inflation

During inflation quantum fluctuations of the metric are stretched to ever larger physical
scales so that they eventually cross the Hubble horizon. Outside the horizon, the amplitudes
of these metric perturbations remain preserved and they only begin to evolve again once they
re-enter the Hubble horizon after the end of inflation. Inflation hence gives rise to a stochastic
background of gravitational waves with a spectrum which is directly related to the properties
of the primordial quantum metric fluctuations, and which is characterized by the spectral
density Sh(k). Expanding the tensor perturbations hij into Fourier modes yields

hij (x, τ) =
∑

P=+,×

∫
d3k

(2π)3
ϕPk (τ) ePij e

ikx . (4.45)

For each wavenumber k we thus have two modes ϕ+
k and ϕ×k . After rescaling these fields

in order to render them canonically normalized, the two-point function for the modes which
have not yet re-entered the horizon is given by the usual expression for free scalar fields in an
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Figure 4.7: Predicted GW spectrum due to inflation (grey), preheating (red) and AH cosmic strings (black)
for M1 = 5.4×1010 GeV, vB−L = 5×1015 GeV and mS = 3×1013 GeV, as in Eq. (3.56). f0, feq, fRH and fPH

denote the frequencies associated with a horizon sized wave today, at matter-radiation equality, at reheating
and at preheating, respectively. f

(s)
PH and f

(v)
PH denote the positions of the peaks in the GW spectrum associated

with the scalar and the vector boson present at preheating. The dashed segments indicate the uncertainties due
to the breakdown of the analytical approximations. The GW spectrum from inflation is based on an analytical
calculation, cf. Eq. (4.66), augmented by a numerical determination of the auxiliary transfer functions (4.69)
and and (4.70); the ‘steps’ in the plateau are determined by the change in the degrees of freedom at the QCD
scale and at a supersymmetry scale of 1 TeV. The GW spectrum from preheating is given by Eqs. (4.81) and
(4.82), with cPH = 0.05. The GW spectrum from AH cosmic strings is determined by Eqs. (4.88) and (4.89),
with F r = F r

FHU.

inflationary background [164],

φPk (τ) =
MP√

2 (2π)3/2
ϕPk (τ) ,

〈
φPk (τ)φQk′(τ)

〉
=
H2

inf

2k3
δPQ δ(3)

(
k + k′

)
, k � aH , (4.46)

with Hinf denoting the value of the Hubble parameter during inflation. The evolution of the
modes φPk after the end of inflation is accounted for by the transfer function Tk (cf. Eq. (4.29)).
This enables us to write down an expression for the two-point function valid for all k,

〈
φPk (τ)φQk′(τ)

〉
=
H2

inf

2k3
T 2
k (τ) δPQ δ(3)

(
k + k′

)
. (4.47)

The correlation function of the tensor perturbations hij is correspondingly given by

〈
hij (x, τ) hij (x, τ)

〉
=
∫ +∞

−∞
dk

H2
inf

π2kM2
P

T 2
k (τ) =

1
π

∫ +∞

−∞
dk Sh(k)T 2

k (τ) , (4.48)
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from which we can read off the spectral density Sh, cf. Eq. (4.37),

Sh(k) =
H2

inf

πkM2
P

. (4.49)

With Eqs. Eq. (4.33) and (4.39), we hence obtain for today’s spectrum of GWs from inflation

ΩGW(k, τ) =
k3

6a2
0H

2
0

H2
inf

π2kM2
P

T 2
k (τ) =

At
12

k2

a2
0H

2
0

T 2
k (τ) , (4.50)

where we have introduced the amplitude At of the tensor perturbations due to inflation, cf.
Eq. (3.9).

It is instructive to compute the transfer function Tk and thus the amplitude ΩGW of the
GW spectrum analytically for the three relevant intervals of k values,

k ∈ [k0, keq), [keq, kRH), [kRH, kPH) , kn = anH(an) , (4.51)

where the subscript n = 0, eq,RH,PH labels the boundaries of the three eras between pre-
heating and today.7 keq and kRH stand for the wavenumbers of the modes that re-enter the
Hubble horizon at the time of radiation-matter equality at a redshift of roughly 3300 and
close to the end of reheating, when half of the non-relativistic B−L Higgs bosons and its
superpartners have decayed, respectively. kPH is the wavenumber of the mode that has just
grown to the size of the Hubble horizon by the end of inflation and which begins to move
inside the horizon once the expansion of the universe becomes matter-dominated in the course
of preheating. Metric fluctuations with k > kPH are never stretched to horizon-size scales and
thus always remain at the quantum level.

keq,kRH and kPH: As a preparation for our computation of Tk, let us now determine keq,
kRH and kPH. After the end of reheating the reheating process, the comoving entropy density
of radiation is conserved, a3s = const., so that the Friedmann equation takes the following
form,

H(a(τ)) = H0

ΩΛ + Ωm

(
a0

a(τ)

)3

+
g∗(τ)
g0
∗

(
g0
∗,s

g∗,s(τ)

)4/3

Ωr

(
a0

a(τ)

)4
1/2

. (4.52)

Here, ΩΛ, Ωm and Ωr denote the ratios of the vacuum, matter and radiation energy densities
to the critical energy density today, respectively. The boundary wavenumber keq can now be

7As a consequence of the late-time acceleration of the universe, perturbation modes only re-enter the Hubble
horizon until akmin ' (Ωm/ (2ΩΛ))1/3 a0. At later times, the physical wavelengths of the modes grow faster
than the Hubble horizon, similarly as during inflation, so that they cross outside the Hubble horizon again.
The smallest wavenumber that ever crosses inside the Hubble horizon after inflation consequently corresponds
to kmin ' (3/2)1/2 (2ΩΛ)1/6 (Ωm)1/3k0 ' 0.86 k0. By comparison, the mode with wavenumber k0 re-enters the
Hubble horizon slightly earlier at a ' Ωma0.
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calculated by means of Eqs. (4.52) and (4.31). Taking into account the dominant contributions
at aeq, i.e. the second and third term in Eq. (4.52), yields

keq =
(
geq
∗,s
g0
∗,s

)2/3(2g0
∗

geq
∗

)1/2 Ωm

Ωr
1/2

k0 = 7.33× 10−2 a0 Ωmh
2 Mpc−1 , (4.53)

with geq
∗,s = g0

∗,s as introduced below Eq. (3.61) and g∗ referring to the effective number of
degrees of freedom in the radiation energy density. In particular, gRH

∗ = gRH
∗,s , geq

∗ = 3.36 and
the present value of g∗ is sensitive to the mass spectrum of the light SM neutrinos. If all
neutrinos are non-relativistic at present, we have g0

∗ = 2. However, if the lightest neutrino
has not yet turned non-relativistic, g0

∗ is slightly larger, g0
∗ = 2.45. Note that the numerical

value of keq is, however, not affected by this subtlety as it only depends on the ratio Ωr/g
0
∗,

which is directly obtained from the actually measured quantity T 0
γ , the temperature of the

CMB photons today:

Ωrh
2/g0

∗
1.237× 10−5

=

(
T 0
γ

2.725 K

)4

. (4.54)

Compared to keq, the computation of kRH is complicated by two effects. First, at TRH, the
energy density of the non-relativistic B−L Higgs bosons and its superpartners at a = aRH is
balanced by MSSM radiation and the heavy, relativistic but nonthermal (s)neutrinos together,
see Eq. (4.43). We shall quantify the contribution of the thermal bath to the total energy
density at a = aRH by the factor αRH = ρtot (aRH) /ρr (aRH) ≥ 2. Second, the comoving
radiation entropy density a3s is only conserved once all non-relativistic particles and heavy
(s)neutrinos have decayed, i.e. only for sufficiently late times after a = aRH. In order to
quantify the amount of entropy production after a = aRH, we introduce the dilution factor

∆ =

(
a3s
)
a�aRH

(a3s)a=aRH

≥ 1 . (4.55)

Based on ∆, we may also define two further useful quantities: the would-be reheating tem-
perature T̃RH and the would-be radiation energy density at reheating ρ̃RH

r ,

T̃RH = ∆1/3 TRH , ρ̃RH
r = ∆4/3 ρr (aRH) , (4.56)

which represent the temperature and the energy density the thermal bath would have had
at a = aRH if, extrapolating back in time from the present epoch, no entropy production
took place as long as a > aRH. Both αRH and ∆ need to be determined by solving the
Boltzmann equations introduced in Sec. 3.4.2 and depend on the parameters of our model, cf.
Appendix B. For now, we simply state that, taking both effects quantified by the two factors
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αRH and ∆ into account, one finds the following expression for kRH,

kRH =
(αRH

2

)1/2
∆−1/3

(
g0
∗,s
gRH
∗,s

)1/3(
2 gRH
∗
g0
∗

)1/2

Ωr
1/2 TRH

T 0
γ

k0 . (4.57)

The above relations imply

αRH

2
= R∆4/3 , with R =

ρS (aRH)
ρ̃RH
r

. (4.58)

The ratio R can be shown to take a constant value across the entire parameter space, R ' 0.41,
cf. Appendix B. Physically, 1/R corresponds to the increase of (a/aPH)4(ρr + ρN + ρÑ ) after
a = aRH due to the decay of the remaining B−L Higgs bosons. Because R is a constant,
it is possible to rewrite Eq. (4.57) in terms of the would-be reheating temperature T̃RH or,
equivalently, in terms of the effective temperature T∗ = R1/2 T̃RH ' 0.64 T̃RH,

kRH =R1/2

(
g0
∗,s
gRH
∗,s

)1/3(
2gRH
∗
g0
∗

)1/2

Ωr
1/2 T̃RH

T 0
γ

k0

=

(
g0
∗,s
gRH
∗,s

)1/3(
2gRH
∗
g0
∗

)1/2

Ωr
1/2 T∗

T 0
γ

k0 = 2.75× 1014 a0 Mpc−1

(
T∗

107 GeV

)
. (4.59)

Here, T∗ is defined such that it appears in our final expression for kRH in exactly the same
way as the actual reheating temperature TRH would appear in kRH if one were to perform a
more naive calculation, neglecting the two correction factors αRH and ∆. Put differently, if
one tried to deduce the reheating temperature from a measurement of kRH making use of the
standard formula for kRH, i.e. Eq. (4.57) with αRH = 2 and ∆ = 1, the temperature one obtain
would be the effective temperature T∗. As we will see shortly, the GW spectrum exhibits a
kink just at k = kRH. This is why we shall refer to T∗ as the ‘effective kink temperature’.
Finally, we emphasize that the distinction between TRH and T∗ is crucial since the reheating
temperature TRH turns is sensitive to the properties of the Higgs sector as well as of the
neutrino sector, cf. Eq. (4.44), while the effective kink temperature T∗ is solely determined by
the B−L Higgs decay rate Γ0

S and the vacuum energy during inflation ρ0, cf. Appendix B.

Next, we turn to kPH. The total energy density at the end of preheating is approximately
given by ρ0 = λv4

B−L/4, implying

kPH

kRH
= CRH

(
ρ0

ρRH
tot

)1/6

=
CRH

α
1/6
RH

(
30λ

4π2gRH
∗

)1/6(vB−L
TRH

)2/3

=
CRH

R1/6

(
15λ

4π2gRH
∗

)1/6(vB−L
T̃RH

)2/3

= CRHR
1/6

(
15λ

4π2gRH
∗

)1/6(vB−L
T∗

)2/3

. (4.60)
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Here, we have introduced CRH =
(
aPHH

2/3
PH

)
/
(
aRHH

2/3
RH

)
in order to account for the compli-

cated evolution of the Hubble parameter during reheating. Making the simplifying assumption
that the universe is strictly matter-dominated throughout the entire reheating process, one has
CRH = 1. Hence, the actual value of CRH ought to be larger than 1. In fact, as demonstrated
in Appendix B, CRH takes a constant value in the entire parameter space, CRH ' 1.13. All of
the four wavenumbers k0, keq, kRH and kPH can be translated into frequencies f = k/ (2πa0)
at which GW experiments could observe the corresponding modes,

f0 = 3.58× 10−19 Hz
(

h

0.70

)
, (4.61)

feq = 1.57× 10−17 Hz
(

Ωmh
2

0.14

)
, (4.62)

fRH = 4.25× 10−1 Hz
(

T∗
107 GeV

)
, (4.63)

fPH = 1.93× 104 Hz
(

λ

10−4

)1/6(10−15 vB−L
5 GeV

)2/3(
T∗

107 GeV

)1/3

, (4.64)

where in Eq. (4.64), we have set CRH = 1.13 and R = 0.41.

Transfer function: For modes with wavenumbers well inside one of the three intervals in
Eq. (4.51), the transfer function Tk can be computed analytically.

Tk ' Ωr
1/2

(
gk∗
g0
∗

)1/2
(
g0
∗,s
gk∗,s

)2/3
k0

k
×


1√
2
keq/k , k0 � k � keq

1 , keq � k � kRH
√

2R1/2C3
RH kRH/k , kRH � k � kPH

. (4.65)

To obtain this result, we have approximated Tk by the ratio a (τk) /a0, cf. Eq. (4.30), and
have made use of the Friedmann equation as well as the conservation of the comoving entropy
density for a � aRH. As long as a mode with wavenumber k re-enters the Hubble horizon
during radiation domination, gk∗ and gk∗,s denote the usual values of g∗(τ) and g∗,s(τ) at time
τk. On the other hand, during reheating and matter domination gk∗ and gk∗,s correspond to
gRH
∗ and gRH

∗,s as well as to geq
∗ and geq

∗,s, respectively. Inserting our result for Tk in Eq. (4.65)
into Eq. (4.50), we arrive at the following expression for the energy spectrum of the GWs
from inflation,

ΩGW(k) =
A2
t

12
Ωr

gk∗
g0
∗

(
g0
∗,s
gk∗,s

)4/3

×


1
2 (keq/k)

2 , k0 � k � keq

1 , keq � k � kRH

2RC6
RH (kRH/k)

2 , kRH � k � kPH

. (4.66)

Evidently, the energy spectrum ΩGW decreases like k−2 at its edges and features a plateau in
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its centre. In the context of cosmological B−L breaking, the height of the plateau is controlled
by the coupling λ, which determines the self-interaction of the B−L breaking Higgs field, as
well as by the B−L breaking scale, cf. Eq. (3.9),

Ωpl
GWh

2 =
λ

72π2

(
vB−L
MP

)4

Ωrh
2

(
gk∗
g0
∗

)(
g0
∗,s
gk∗,s

)4/3

= 3.28× 10−22

(
λ

10−4

)(
vB−L

5× 1015 GeV

)4( Ωr

8.5× 10−5

)
ḡk , (4.67)

where ḡk = (4gk∗/427)(427/(4gk∗,s))
4/3 is a ratio of energy and entropy degrees of freedom.

Note that a further effect modifying the GW spectrum to a similar extent as the change of
the degrees of freedom during radiation domination is a contribution to the stress energy
tensor due to freely streaming neutrinos, cf. Ref. [165]. Since this effect is only relevant for
frequencies below 10−10 Hz, i.e. outside the range accessible in near-future experiments, we
omit it in this thesis.

In order to describe the two kinks in the energy spectrum at wavenumbers around keq and
kRH more accurately, let us rewrite the transfer function in Eq. (4.65) as

Tk = Ωm

(
gk∗
geq
∗

)1/2(geq
∗,s
gk∗,s

)2/3(
k0

k

)2

T1 (k/keq) T2 (k/kRH) , (4.68)

where T1 and T2 denote two auxiliary transfer functions accounting for the transition from
matter to radiation domination and from radiation domination to reheating, respectively. We
have determined both functions numerically by solving the equation of motion for the Fourier
modes ϕPk in appropriate k ranges. Our numerical results are reasonably well described by
the two fit functions

T1(x) ' c
(0)
1

(
1 + c

(1)
1 x+ c

(2)
1 x2

)+1/2
, c

(0)
1 ' 0.73 , c(1)1 ' 1.64 , c(2)1 ' 3.87 , (4.69)

T2(x) '
(
1 + c

(1)
2 x+ c

(2)
2 x2

)−1/2
, c

(1)
2 ' −0.38 , c(2)2 ' 1.04 . (4.70)

The resulting spectrum for the parameter example discussed in Sec. 3.5 is depicted by the
grey curve in Fig. 4.7.

These results are consistent with earlier approaches in the literature8, see e.g. [104]. In
particular, the coefficients of T2 are very similar to the ones found in Ref. [104] for the case of
reheating through inflaton decay. This implies that the kink in the GW spectrum at k = kRH

turns out to have the same shape, regardless of whether reheating proceeds as in our case or

8Note that in the expression for Tk usually given in the literature (see e.g. Ref. [104]), gk
∗ and gk

∗,s are
divided by g0

∗ and g0
∗,s, while we find a division by geq

∗ and geq
∗,s in Eq. (4.68). Our result thus coincides with

the one in the literature in the case of massless neutrinos and is smaller than the standard result by a factor

of
`
g0
∗/g

eq
∗

´1/2 ' 0.85 in the case of three non-relativistic neutrino species in the present epoch.
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as in the standard scenario. The reason for this insensitivity can be easily understood: the
shape of the GW spectrum from inflation is solely controlled by the evolution of the scale
factor a(t), which in turn remains qualitatively unaffected when reheating via the decay of
non-relativistic inflaton particles into arbitrary relativistic degrees of freedom is traded for
reheating via the decay of non-relativistic B−L Higgs bosons into relativistic (s)neutrinos,
cf. Appendix B. As discussed below Eq. (4.59), it is rather the position of the kink and its
dependence on the reheating temperature that distinguishes between reheating via inflaton
decay and reheating after cosmological B−L breaking. In Appendix B we will explore the
connection between the position fRH of the kink and the model parameters in more detail.
The main result is that fRH is determined by Γ0

S and ρ0, and hence, in the the context of our
Froggatt-Nielsen flavour model, is directly related to the Higgs boson mass mS or equivalently
to the neutrino mass M1,

mS ' 2.1× 1013 GeV
(

fRH

100 Hz

)0.67

, M1 ' 7.1× 1010 GeV
(

fRH

100 Hz

)0.67

. (4.71)

Gravitational waves from tachyonic preheating

As discussed in Sec. 3.2.1, the phase transition at the end of hybrid inflation is accompanied
by tachyonic preheating. The process of tachyonic preheating forms a classical, sub-horizon
source for GWs which is active only for a short time. The resulting GW spectrum can be
obtained by calculating the solution to the mode equation, Eq. (4.40), and inserting it into
Eq. (4.32)9. The anisotropic stress tensor Πij entering Eq. (4.40) is determined by the dy-
namics of preheating and vanishes after the end of preheating, allowing the GWs to propagate
freely for τ � τPH. The remaining challenge is thus to calculate Πij during preheating. This
task can be performed numerically, see e.g. Ref. [107] for a detailed description of the method
and an application to preheating after chaotic inflation, as well as Ref. [108] for an applica-
tion to tachyonic preheating after hybrid inflation. The following discussion will be based on
analytical estimates supported by the results of these simulations [106–108, 166].

GWs from tachyonic preheating are expected to yield a spectrum which is strongly peaked
at a typical (physical) scale dPH associated with the preheating process. The corresponding
comoving wave number describing the position of this peak in today’s spectrum is readily
obtained by redshifting this scale,

kPH = aPH d
−1
PH =

aPH

aRH

aRH

a0
d−1

PH a0 =
aPH

aRH
∆−1/3

(
g0
∗,s
gRH
∗,s

)1/3
T 0
γ

TRH
d−1

PH a0 , (4.72)

with ∆ accounting for the deviation from an adiabatic expansion after a = aRH, see Eq. (4.55).
The corresponding amplitude of the GW spectrum can be estimated by using the picture of

9 Note that Eq. (4.41) cannot be employed here because translational invariance does not hold for the scales
we are interested in during the preheating phase governed by bubble collisions.
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bubble collisions, which implies that the fraction of energy converted into GWs at preheating
is given by ρGW/ρc ∼ (dPHHPH)2 [107]. This quantity corresponds to the integrated GW
wave spectrum (cf. Eq. (4.33)),∫ ∞

−∞
d ln k ΩGW(k, τ) =

ρGW(τ)
ρc(τ)

. (4.73)

Hence, for a strongly peaked spectrum we can estimate the amplitude of this peak at τ = τPH

as
ΩPH

GW(kPH) ' cPH (dPHHPH)2 . (4.74)

Here cPH is a model-dependent numerical factor, e.g. cPH = 0.05 for the model considered
in Ref. [106]. Analogous to the stochastic GW background from inflation, this result can be
redshifted to today, cf. Eqs. (4.50) and (4.65), yielding

ΩGW(kPH)h2 ' cPH (dPHHPH)2
aPH

aRH
Ωrh

2 g
RH
∗
g0
∗

(
g0
∗,s
gRH
∗,s

)4/3 (
2C3

RHR
)

' 1.5× 10−5 cPH (dPHHPH)2
aPH

aRH

(
Ωrh

2/g0
∗

1.237× 10−5

)
. (4.75)

Estimating HPH, dPH and aPH/aRH in the context of our model, Eqs. (4.72) and (4.75) enable
us to predict the characteristic features of the GW spectrum due to preheating.

Tachyonic preheating is a very rapid process, and we can therefore to very good approxi-
mation express HPH as the Hubble parameter at the end of inflation,

HPH ' Hinf =
(
λ

12

)1/2 v2
B−L
MP

. (4.76)

An estimate of dPH can be obtained by studying the preheating process. For tachyonic
preheating associated with the breaking of a local U(1) symmetry, there are two typical
scales, one associated with the dynamics of the scalar field, cf. Ref. [108], and the other
associated with the presence of the gauge field, cf. Ref. [109]. For the former, there are
two distinct possibilities, depending on what triggers the onset of tachyonic preheating: the
inflaton crossing the critical point with a significant velocity or quantum diffusion triggered
by the growth of quantum fluctuations around the critical point of the scalar potential [108].
For the range of model parameters of interest here, cf. Sec. 3.3, the inflaton velocity is the
parameter governing the onset of preheating and hence with Eq. (3.11) we find [108],(

d
(s)
PH

)−1
= (λ vB−L |ϕ̇c|)1/3 = 0.15λ5/6 v

2/3
B−LM

1/3
P . (4.77)

The typical scale associated with the gauge field is given by the mass mG of the gauge
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boson [109], (
d

(v)
PH

)−1
∼ mG = 2

√
2 g vB−L . (4.78)

We now exploit the equation of state of the universe during reheating, which implies

aPH

aRH
= CRH

(
HRH

HPH

)2/3

, (4.79)

with HPH given by Eq. (4.76), CRH as introduced below Eq. (4.60) and HRH ' 0.58 Γ0
S , cf.

Eq. (2.39) and Appendix B. For the parameter point (3.56), this implies aPH/aRH ' 10−6.
Using TRH ' T̂

σ (−)
RH , cf. Eq. (4.44), which holds in most of the parameter space of interest,

and reintroducing the explicit dependence on mS and vB−L,

T̂
σ (−)
RH = 4.8× 109 GeV

(
M1

1011 GeV

)(
5× 1015 GeV

vB−L

)(
mS

3× 1013 GeV

)1/2

, (4.80)

the positions and amplitudes of the peaks in the GW spectrum associated with preheating
are given by

f
(s)
PH ' 6.3× 106 Hz

(
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1011 GeV

)1/3(5×1015 GeV
vB−L

)2(
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(4.81)

where we have used CRH = 1.13 and R = 0.41, as well as set ∆ = 2, as obtained numerically
in this parameter region by solving the Boltzmann equations, cf. Appendix B. Note that f (s)

PH

and f
(v)
PH are related to microscopic quantities of the preheating process and are therefore

much larger than the highest frequency relevant for inflation, fPH (cf. Eq. (4.64)), which is
determined by the Hubble parameter at preheating.10

Fig. 4.7 shows the peaks of the GW spectrum due to preheating (in red) for cPH = 0.05
and the parameter point (3.56). The frequencies and corresponding amplitudes of the two
peaks are given in Eq. (4.81). The shape of the peaks in Fig. 4.7 is parametrized by

Ω(i)
GWh

2 = Ω(i,max)
GW ×

(
f

f
(i)
PH

)2

Exp
[
1−

(
f/f

(i)
PH

)2
]
, (4.82)

10Moreover, f
(v)
RH is associated with the width of the Abelian Higgs string at preheating and hence represents

the smallest scale (highest frequency) possible for GWs from this phase transition.
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with i = s, v; motivated by the results found in Ref. [106] for the scalar peak. We do stress,
however, that for the purpose of this thesis, we are mainly interested in the position and
amplitude of the peaks. A precise quantitative description of the shape of the spectrum at
these frequencies, in particular for the peak corresponding to the vector boson, requires a
more detailed study.

GWs from cosmic strings

So far, we have discussed the GW spectrum due to inflation and due to the turbulent processes
accompanying tachyonic preheating. We now discuss a third source, namely cosmic strings
in the scaling regime, cf. Sec. 3.2.2. In this section, we review the calculation of the resulting
GW background in the Abelian Higgs model following Ref. [111]. In Ref. [19], we additionally
discuss an alternative approach based on the Nambu-Goto model of cosmic strings. In this
thesis, we will merely give the final result of the latter calculation in order to quantify the
theoretical uncertainties involved.

Starting point of this discussion is Eq. (4.42), which, for a classical, sub-horizon source,
connects the GW spectrum to the unequal time correlator of the source. For a scaling network
of cosmic strings in the Abelian Higgs model, we can now proceed and evaluate this expression
by exploiting general properties of the unequal time correlator of a scaling source discussed
in Ref. [167]. Introducing the dimensionless variable x = kτ , one can express Π2(k, τ, τ ′) as

Π2(k, τ, τ ′) =
4v4
B−L√
ττ ′

CT (x, x′) , (4.83)

where CT (x, x′) is essentially local in time [167],

CT (x, x′) ∼ δ(x− x′) C̃(x) , (4.84)

with C̃ some function that falls off rapidly for x � 1, i.e. for modes well inside the horizon.
Inserting Eqs. (4.83) and (4.84) into Eq. (4.42) yields

ΩGW(k) =
k2

3π2H2
0a

2
0

(
vB−L
MPl

)4 ∫ x0

xi

dx
a2(x/k)
a2

0 x
C̃(x) . (4.85)

As a result of the rapid decrease of C̃(x) for x � 1, this integral is dominated by its lower
boundary and basically insensitive to the upper boundary for x0 � xi & 1,∫ x0

xi

dx
a2(x/k)
a2

0 x
C̃(x) '

∫ ∞

xi

dx
a2(x/k)
a2

0 x
C̃(x) . (4.86)

For scales which entered the Hubble horizon after the B−L phase transition, xi = k τk is an
O(1) constant. Hence, the k-dependence of Eq. (4.86) can be traced back to a(x/k). For
radiation domination, we have a(τ) '

√
ΩrH0τa

2
0, where we have neglected the change in the
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effective number of degrees of freedom. This yields∫ ∞

xi

dx
a2(x/k)
a2

0 x
C̃(x) ' ΩrH

2
0 a

2
0

2 k2
F r , (4.87)

where F r is a constant, and therefore a flat spectrum, ΩGW ∝ k0. For matter domination,
one has a(x/k) ∝ k−2, which yields ΩGW ∝ k−2.

For scales which entered the horizon at very early times before the cosmic string network
reached its scaling regime, the lower boundary in Eq. (4.86) refers to the onset of scaling
rather than horizon crossing, thus taking a larger value, xi > O(1). Note that xi is now
also k-dependent. The qualitative effect of this is a suppression of the spectrum at these
frequencies. However, in the model we are discussing here we expect scaling to set in well
before the end of reheating, and hence this effect only influences the spectrum at very large
frequencies which are currently experimentally inaccessible. We will thus omit it in the
following discussion.

In summary, we can express today’s spectrum of GWs from a scaling network of cosmic
strings as11

ΩGW(k) ' Ωpl
GW ×


(keq/k)2, k0 � k � keq

1, keq � k � kRH

(kRH/k)2, kRH � k � kPH

. (4.88)

Here, keq, kRH and kPH are given by Eqs. (4.53), (4.57) and (4.64), and the height of the
plateau Ωpl

GW can be estimated using the result of the numerical simulations in Ref. [111],

Ωpl
GWh

2 =
1

6π2
F r
(
vB−L
MPl

)4

Ωrh
2

= 4.0× 10−14 F r

F rFHU

(
vB−L

5× 1015GeV

)4( Ωrh
2

4.2× 10−5

)
, (4.89)

where F rFHU = 4.0× 103 is the numerical constant determined in Ref. [111] for global cosmic
strings. The corresponding constant for local strings is expected to have the same order of
magnitude [168].

Eq. (4.88) strikingly resembles the result found for the stochastic GW background from
inflation, cf. Eq. (4.66), up to an overall normalization factor, cf. Fig. 4.7. Note, however, that
the origin is quite different. On the one hand, in the case of inflation, the GWs can be traced
back to vacuum fluctuations of the metric which remain ‘frozen’ outside the horizon. After
horizon re-entry, they propagate according to the source-free wave equation in FRW space.

11Note that in Eq. (4.88), the normalization of the ‘1/k2-flanks’ was obtained by matching to the plateau
value for k = kRH and k = keq, respectively. However, since close to these points the dominant component
of the energy density is not much larger than the other components, a more detailed knowledge of eC(x) is
necessary to evaluate Eq. (4.86) at these points. This could lead to a slight shift in the normalization of the
‘flanks’, see also Eq. (4.66).
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Figure 4.8: Comparison of the GW spectra predicted by AH strings and NG strings for two values of α (which
governs the cosmic string loop size in the NG model). The AH curve is obtained as in Fig. 4.7, for the NG
curve see Ref. [19] with Gµ = 2× 10−7, as obtained e.g. by the parameter choice in Eq. (3.56).

The amplitude of the resulting stochastic GW background today is determined by the redshift
of these modes after entering the horizon. On the other hand, the GWs from cosmic strings
stem from a classical source, which is active until today. Only the nature of the unequal time
correlator, with its rapid decrease for x � 1, effectively removes the impact of the source
when the corresponding mode is well within the horizon. In more physical terms, this implies
that the dominant source for GWs from cosmic strings are Hubble-sized structures of the
cosmic string network. This explains why the wavenumbers associated with the horizon at
aRH and aeq play crucial roles in the GW spectrum from AH cosmic strings, although the GW
modes associated with cosmic strings never actually ‘cross’ the horizon. For cosmic strings the
height of the plateau is enhanced by a very large numerical factor F r. On the contrary, GWs
from inflation are suppressed by the small Yukawa coupling λ. This explains the enormous
difference in amplitude between GWs from inflation and cosmic strings.

Note that, contrary to inflation, the height of the plateau for the GW background from
cosmic strings does not directly translate to the tensor contribution of the CMB scalar power
spectrum. This can be traced back to the very different mechanism responsible for generating
GWs in inflation and from cosmic strings, in particular concerning correlation properties on
super-horizon scales. Determining the effect of GWs from cosmic strings on the CMB requires
a specific numerical simulation [2, 28].

The calculation presented here, resulting in Eq. (4.88), was based on the Abelian Higgs
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(AH) cosmic string model. For comparison, Fig. 4.8 shows the result obtained in the Nambu-
Goto (NG) model, cf. Ref. [19]. In both approaches the radiation-dominated epoch leads
to a plateau for intermediate frequencies. Compared to the AH result, the boundaries in
the NG case are shifted to higher frequencies by a factor 1/α, where α denotes the size at
which cosmic string loops are formed relative to the respective horizon size.12 This shift in
frequency is directly related to the maximal loop size which is determined by H−1 in the AH
case but by αH−1 in the NG case. Furthermore, the frequency dependence for small and
large frequencies differs, which is a consequence of the different mechanisms of gravitational
radiation: in the AH model the dominant contribution to the GW background comes from
Hubble-sized structures, in the NG model the dominant contribution is due to ‘cusps’ in small
cosmic string loops, which are formed when waves moving in opposite directions on the loop
collide. Most striking is the difference in normalization by five orders of magnitude. This
can be traced back to the different assumptions on how the string network loses energy and
stays in the scaling regime. While the energy loss of AH strings is mainly due to massive
radiation, NG strings deposit all their energy into GWs. Hence, these two cases provide
lower and upper bounds on the gravitational background produced by cosmic strings, and
it is conceivable that the true answer corresponds to some intermediate value. Assuming a
transition between the AH model at early times and the NG model at later times sometime
during radiation domination, a notable point is that, due to the shift of the GW spectrum of
NG strings to higher frequencies, the GWs generated at later times in the NG regime might
cover up the GWs generated at earlier times in the AH regime. To address this important
question of how to correctly describe the evolution of cosmic strings is clearly a theoretical
challenge.

4.3.3 Observational prospects

In Sec. 4.3.2, we discussed the GW background produced during the different stages of a B−L
phase transition in the early universe, namely during inflation, during tachyonic preheating
and from cosmic strings in the scaling regime. Fig. 4.9 summarizes the resulting GW spectrum
of all these different sources for the parameter point (3.56), and for α = 10−12. Additionally,
we show current bounds and the expected sensitivity of upcoming GW experiments, depicted
by the solid and dashed blue curves, respectively. These experiments can be grouped into
three categories, see e.g. Ref. [3] for a review: millisecond pulsar timing measurements (e.g.
EPTA [115], PPTA [37] and SKA [169, 170]) sensitive to GWs with a frequency of about
10−9 Hz, space-based interferometers (e.g. BBO/DECIGO [12, 13] and eLISA [10]) sensitive
at about 10−1 Hz and ground-based interferometers (e.g. (advanced) LIGO [11, 36], ET [171],
and KAGRA [172]) which are most sensitive at about 102 Hz. It should be noted that in

12Note that α cannot take arbitrarily small values. A lower bound is given by the requirement that, in the
area of application of the NG model, the loop size should be larger than the string width obtained in the AH
model (controlled by m−1

S ,m−1
G ) or at the very least larger than M−1

P .



90 4. Phenomenology

H7LH8L

H3L
H4L

H5L
H6L

H1LH2L
H9L

inflation

AH cosmic strings

NG cosmic strings

preheating

10-20 10-15 10-10 10-5 100 105 1010

10-25

10-20

10-15

10-10

10-5

100
10-5 100 105 1010 1015 10 20 10 25

f @HzD

W
G

W
h2

k@Mpc-1D
Ω

G
W
h

2

k [Mpc−1]

f [Hz]

AH cosmic strings

inflation
preheating

NG cosmic strings

Figure 4.9: Predicted GW spectrum and the (expected) sensitivity of current and upcoming experiments. The
GW spectrum due to inflation (grey), preheating (red) as well as AH and NG cosmic strings (black) is shown
for the same parameters an in Figs. 4.7 and 4.8 with α = 10−12. The corresponding effective kink temperature
is T∗ = 1.5× 109 Gev, which, for em1 = 0.04 eV, yields a reheating temperature of TRH = 1.9× 109 GeV. The
current bounds on the GW spectrum from (1) millisecond pulsar timing (taken from [163], with (2) marking
the update from EPTA [115]) and (3) LIGO [116] are marked by solid blue lines. The dashed blue lines
mark the expected sensitivity of some planned experiments: (4) KAGRA [175], (5) ET [171], (6) advanced
LIGO [11], (7) eLISA [10], (8) BBO/DECIGO [176] and (9) SKA [169].

particular for the ground-based detectors the sensitivity is typically given in terms of the
strain h̃f which is related to the amplitude ΩGW as [3]

ΩGWh
2 =

SNR
F

4π2f3

3(H0/h)2
h̃2
f , (4.90)

with the sensitivity factor F = 2/5 for the ground-based interferometers and in Fig. 4.9,
we have required a signal-to-noise ratio of SNR = 1. Moreover, constraints on the effective
number of relativistic degrees of freedom from BBN and from the CMB yield an upper bound
of ΩGWh

2 . 10−5 for k > keq, with a weak dependence on the origin of the GW background,
cf. Refs. [173, 174]. For further ideas of how to possibly probe the parameter space of Fig. 4.9
in the future, see Ref. [3] and references therein.

A clear message of Fig. 4.9 is that GWs from a GUT-scale U(1) phase transition will be
seriously probed by a number of upcoming experiments. Here, the dominant contribution
originates from cosmic strings in the scaling regime, depicted by the black curves in Fig. 4.9.
However, at the same time, this is the contribution with the largest theoretical uncertainty.
In spite of the quite dramatic differences between the AH and NG predictions, it is worth
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noting that in both cases upcoming experiments are expected to reach the sensitivity to probe
the ‘plateau value’ for GUT-scale cosmic strings. Moreover, in both cases it seems possible
to measure a very interesting feature of the spectrum. In the case of NG strings, the bend-
over marking the transition from radiation to matter domination is within reach of planned
satellite-based experiments, depending on the parameter α. In the case of AH strings, the
transition between an early matter-dominated reheating phase and radiation domination at
fRH has the right frequency to possibly be within reach of future ground-based GW detectors.
Assuming that the actual signal from cosmic strings lies somewhere between the AH and the
NG prediction (or maybe can even be obtained by interpolating between the AH model at
early times and the NG model at late times), it seems possible that future experiments will
be able to probe one, or maybe even both, of these features.

The GW background from inflation, depicted in grey in Fig. 4.9, is probably the best
understood cosmological source. However, as Fig. 4.9 shows, it is clearly subdominant com-
pared to the GW background from cosmic strings in hybrid inflation models, which typically
feature a very small tensor-to-scalar ratio, cf. Eq. (3.9). Nevertheless, a precise understanding
of the GW background from inflation is crucial for two reasons: First, although their origin is
very different, both the AH string and the inflationary GW spectrum are governed by the re-
spective Hubble-sized modes throughout the expansion history. Hence, the kink marking the
transition between an early matter-dominated reheating phase and radiation domination oc-
curs at the same frequency in both spectra. Thus, although the shape of this kink is modified
in the case of the signal from AH cosmic strings due to the precise shape of C̃, cf. Eq. (4.85)
and the footnote on page 87, any conclusion we can draw from measuring the position of
the kink in the inflationary spectrum holds also for the corresponding kink in the AH cosmic
string spectrum. In particular, measuring this kink would determine T∗, cf. Eq. (4.63), and
probe the model parameters M1 and mS , cf. Eq. (4.71). Second, the prediction for the GW
background from cosmic strings is plagued with large uncertainties. The discrepancy between
the AH and the NG prediction is one, but there are also other mechanisms which might re-
duce or even eliminate the cosmic string contribution. For example, a coupling between the
GUT and SM Higgs bosons can effectively reduce the string tension [117] or several e-folds of
inflation occurring after the U(1) phase transition could dilute the cosmic string loops in the
NG model, thereby reducing the GW background, see e.g. Refs. [177–181]. Further theoretical
uncertainties related to cosmic strings are mentioned below Eq. (3.18). It is thus crucial to
take into account the second largest contribution, and over a wide range of frequencies, this
is inflation.

Finally, the red curves in Fig. 4.9 depict the signals expected from tachyonic preheating.
These are clearly at too high frequencies to be detectable in the near future. Consulting
Eq. (4.81) it becomes clear that this is generically true for GUT-scale parameters. However,
these signals show a distinctly different behaviour compared to the contributions from inflation
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and cosmic strings. It would thus be very interesting to probe such frequencies, since it would
enable us to break parameter degeneracies and distinguish different models describing the
preheating and reheating phase.

4.3.4 Combining observations

The possibility of measuring fRH, the position of the kink associated with reheating in the
GW spectrum from inflation and from AH cosmic strings, is a fascinating prospect. Measuring
this feature of the GW spectrum would provide a unique possibility to probe the reheating
process and in particular the reheating temperature, cf. Eq. (4.63), a quantity so far barely
constrained by observations. In the context of our Froggatt-Nielsen model, a measurement
of fRH would determine the neutrino mass M1, cf. Eq. (4.71). Now, we want to combine this
with our results obtained in Secs. 4.1 and 4.2 to determine how a possible future measurement
of fRH would effect the parameter space of cosmological B−L breaking.

Considering the generated baryon asymmetry, Eq. (4.5) demonstrates that ηB does not
depend on m̃1 in the weak-washout regime, cf. Fig. 4.2. Now reading off the allowed M1

values from the upper panel of Fig. 4.3, we find that ηB does not depend on m̃1 in the entire
part of the considered parameter space which is consistent with gravitino dark matter. Hence
in this setup, measuring fRH would fix the maximally possible baryon asymmetry, obtained
by assuming the maximal value for ε1, cf. Eq. (3.47),

ηB ' 4.0× 10−9

(
fRH

100 Hz

)
. (4.91)

Moreover, in the case of gravitino dark matter, fixing M1 in Eq. (4.11) implies direct
relations between m̃1 and m eG along the contour lines of the upper panel of Fig. 4.3. For
example, for M1 = 1011 GeV and a gluino mass of mg̃ = 1 TeV, a light neutrino mass scale
of m̃1 = 2 × 10−4 would predict m eG = 130 GeV or m eG = 660 GeV for the gravitino mass.
For large values of m̃1, m eG becomes approximately independent of m̃1. This can also be seen
from Eq. (4.11) with the exponent of m̃1, d ' −0.03 for m̃1 > 10−3, determined by Eq. (4.10).
Hence assuming m̃1 & 10−2, a measurement of fRH would determine the gravitino mass as a
function of the gluino mass,[

0.13
( m eG

100 GeV

)
+
(

100 GeV
m eG

)( mg̃

1 TeV

)2
]−0.8

' 0.99
(

fRH

100 Hz

)0.67

, (4.92)

up to a choice of the lower or upper branch in Fig. 4.3.

Turning to the case of neutralino dark matter, fixing M1 by measuring fRH yields mχ as
a function of m̃1 and vice versa, cf. Eqs. (4.14), (4.16) and (4.17). In particular for x & 36,
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cf. Eqs (4.2) and (4.3), we find

0.17
( mχ

1 TeV

)( fRH

100 Hz

)0.83( m̃1

10−2 eV

)0.25

+ cχ

( mχ

1 TeV

)2
= 0.11 . (4.93)

For example, a measurement of fRH = 100 Hz would imply for the wino LSP case that for
m̃1 = 10−2 eV the wino mass must be m ew ' 600 GeV in order to produce the correct DM
abundance.

Summarizing, in the major part of the parameter space, a measurement of the kink in the
GW spectrum associated with reheating would turn the relations found in Secs. 4.1 and 4.2
into interesting and testable predictions. However, two comments are in order. First, note
that throughout this subsection we have assumed the Froggatt-Nielsen relation M1 = η2mS .
Dropping this assumption introduces an additional parameter into the game, which qual-
itatively will not change the reheating process discussed in Sec. 3.5 much, but which will
introduce an additional adjustable parameter into Eqs. (4.91) to (4.93). Second, a measure-
ment of fRH is a very challenging task. Not only is the kink in the GW spectrum from
AH cosmic strings probably out of reach of current and planned GW detectors for the high
reheating temperatures expected in our model, but there is also a conceptual issue related
to the uncertainties involved in the description of cosmic strings, cf. comment at the end
of section 4.3.2. Even if the AH cosmic string model gives an accurate description of the
strings during the reheating process, a transition to NG strings sometime during radiation
domination would lead to the emittance of GWs in a frequency range around fRH. Due to the
much larger amplitude expected from the GW background from NG strings, this would make
a detection of the AH feature at fRH nearly impossible. Again, this stresses the importance
of a better theoretical understanding of the evolution of the cosmic string network.

As a final remark, note that if we could indeed one day measure the peaks in the GW
spectrum due to preheating, this would yield independent measurements of M1, mS and m̃1,
permitting to test the model presented here even after dropping the assumption M1 = η2mS .

4.4 Low-energy neutrino phenomenology

In Sec. 2.5, we introduced the Froggatt-Nielsen model as an effective way to parametrize
the flavour structure of our model. It can naturally reconcile the large quark and charged
lepton mass hierarchies and the small quark mixing angles with the observed small neutrino
mass hierarchy and their large mixing angles. Moreover, it is flexible enough to incorporate
the new physics of spontaneous B−L breaking. And finally, as we show in Ref. [15], this
flavour structure, together with the measured neutrino mass squared differences and mixing
angles, strongly constrains yet undetermined parameters of the neutrino sector. Treating
the unknown O(1) factors of the model as random variables, we obtain surprisingly accurate
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predictions for the smallest mixing angle θ13, the smallest neutrino massm1 and one Majorana
phase α21:

sin2 2θ13 = 0.07+0.11
−0.05 ,

m1 = 2.2+1.7
−1.4 eV ,

α21/π = 1.0+0.2
−0.2 ,

(4.94)

with a confidence level of 68%. The prediction for θ13 is remarkable, in particular in view of the
recent measurements of the smallest mixing angle by different collaborations, for example,
sin2 2θ13 = 0.089 ± 0.010(stat) ± 0.005(syst) by Daya Bay [182]. In this sense, low-energy
neutrino phenomenology can be used to probe the flavour structure of the model presented
here.

In this chapter, we discussed various phenomenological aspects of a B−L phase transition
in the early universe. We found that in a substantial part of the parameter space, spontaneous
B−L breaking can generate lepton asymmetry, entropy and dark matter in accordance with
observations. Moreover, we found no unique ‘smoking-gun’ signal, but instead many comple-
mentary channels of searching for traces of such a phase transition. Combining these different
phenomenological aspects will help to probe this idea experimentally in the near future. In
particular, we discussed connections between the neutrino parameters and the superparticle
mass spectrum, induced by the key role of the reheating temperature. Furthermore, we found
interesting features in the GW spectrum which might be detected by upcoming GW detec-
tors. Finally, we pointed out how low-energy neutrino phenomenology is capable of probing
the high-energy flavour structure.



Chapter 5

Superconformal D-term Inflation

In Chapter 3, we sketched an inflation model based on F-term hybrid inflation with a (nearly)
canonical Kähler potential. We demonstrated that this fits very well with the concept of a
B−L breaking phase transition in the early universe. However, it also has several short-
comings. Obtaining a spectral index in accordance with current experimental data requires
some degree of fine-tuning in the coefficients of the Kähler potential. Moreover, the choice of
a canonical Kähler potential has no fundamental theoretical motivation. This is in particular
critical in the context of D-term hybrid inflation, which typically implies values for the inflaton
field of O(MP ), rendering higher-dimensional Planck-suppressed operators important. In
summary, this leads us to the following question: Can we write down a supergravity inflation
model which features a U(1) phase transition, which is conceptually better motivated and
which simultaneously is compatible with the experimental data on the CMB fluctuations?

To address this question, we will start by reviewing a class of models referred to as
canonical superconformal supergravity models [39] in Sec. 5.1. These, pursuing the principle
of using symmetries as a guideline for particle physics model building, are based on exploiting
the underlying superconformal symmetry of supergravity. In Sec. 5.2 we will discuss two
examples in this context, F-term and D-term hybrid inflation. The latter is particularly
promising, and we will spend the remainder of the chapter working out the predictions for
the primordial power spectrum in this case. At first, in Sec 5.3, we focus on the special case
of single-field inflation and derive analytical expressions for the predictions. Then in Sec. 5.4
we extend the discussion to the general two-field case and present the results of our numerical
studies.

This chapter is based on work partly published in Ref. [18]. Additionally we show here
that the equivalence of the calculation in the Einstein and in the Jordan frame. We also
comment on the impact of the recently published Planck data [1, 2].
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5.1 Superconformal models of inflation

In this section, based on Ref. [39], we review an interesting class of supergravity inflation
models based on a superconformal symmetry. These models feature an amazingly simple
structure, with many expressions very similar to the familiar expressions in global super-
symmetry, however only when treated in a suitable ‘frame’. To understand this, we first
recall the formulation of supergravity in the Einstein and in the Jordan frame in Sec. 5.1.1.
In Sec. 5.1.2, we then introduce superconformal symmetry, focussing on the local conformal
symmetry relevant for discussing inflation. Using a simple toy model, we demonstrate some of
the key features of a special class of superconformal supergravity models which are discussed
in full in Sec. 5.1.3. Finally, in Sec. 5.1.4 we discuss different mechanisms of superconformal
symmetry breaking.

5.1.1 Supergravity in the Einstein and the Jordan frame

At scales well below the Planck scale, the supergravity corrections to global supersymmetry
are suppressed by the weak gravitational interaction and hence negligible. During inflation
however, when the vacuum energy density comes within a few orders of magnitude of the
Planck scale and very large values for the scalar fields are possible, gravity must be taken
into account.

In Sec. 3.1 we already came across a ‘minimal’ version of a supergravity embedding. We
used a canonical Kähler potential, which leaves the kinetic terms and the D-term scalar po-
tential unaffected, cf. Eq. (3.2), and hence all supergravity effects were contained in the scalar
F-term potential (3.1). Here, we want to dig a bit deeper into the structure of supergravity.
To this end, this section is dedicated to giving a brief review of the relevant formulas and
relations which we will need in the remainder of this chapter. For inflation, the relevant
parts of the Lagrangian are the scalar and gravity terms, and we will focus on these here. In
particular, we will study these terms in two different frames, in the Einstein frame as well as
in the Jordan frame. Switching between these two frames and exploiting the advantages of
both frames will allow us to identify an interesting class of models in Sec. 5.1.3.

Einstein frame

The Einstein frame is the most common frame to study supergravity, see e.g. Refs. [38, 120]
for an introduction. The Lagrangian contains an Einstein-Hilbert term for gravity,

Lgrav
E =

√
−gE

1
2
R(gE)M2

P , (5.1)

and no direct coupling between the Ricci scalar R and the scalars of the matter supermul-
tiplets. Here

√
−gE =

√
−det(gE µν), with gE µν denoting the metric in the Einstein frame.

This is the frame we implicitly used in Sec. 3.1, taking gE µν to be the FRW metric, and which
is in particular used when deriving the expressions (3.9) for the inflationary observables.
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The scalar part of LE consists of the kinetic terms for the scalars and the scalar potential,

Lscal
E =

√
−gE

[
gµνE Kαβ̄(∂µz

α)(∂ν z̄β̄)− (V F
E + V D

E )
]
. (5.2)

Here the zα denote the complex scalar fields of the theory, z̄ᾱ their complex conjugates, and
Kαβ̄ = ∂α∂β̄K(z, z̄), with ∂α = ∂/∂zα, is the Kähler metric of the field space. In this chapter,
we will need a compact notation to deal with a series of lengthy supergravity expressions.
Hence contrary to Chapter 2, we will make use of the Einstein summation convention in
field space. This implies the implicit summation over all indices which appear in pairs of
sub- and superscripts, and raising and lowering the indices implies a multiplication with the
corresponding metric. Moreover, we shall denote all complex conjugate quantities with over-
bars. In general, the space-time derivatives ∂µ in Eq. (5.2) should be understood as the gauge
covariant derivatives ∂µ−igABµ TB when considering a gauge field theory with the gauge fields
ABµ . However, since for inflation we are only interested in the pure scalar-gravity part of the
Lagrangian, we will omit these contributions here. V F

E and V D
E are the F- and D-term scalar

potential, respectively:

V F
E = eK/M

2
P

[
Kαβ̄DαWDβ̄W − 3

|W |2

M2
P

]
,

V D
E =

1
2

(
1

Re(f)

)AB
DADB ,

(5.3)

with the Kähler covariant derivatives D defined as below Eq. (3.2). DA denotes the auxiliary
component of the vector super-field. As in global supersymmetry, cf. Eq. (2.6), they can be
eliminated by exploiting their equation of motion, here

DA = g (∂αK)(TA z)α , (5.4)

with TA denoting the generators of the gauge group. Finally, f is the so-called gauge kinetic
function. Note that V F

E is just the scalar potential we employed in Sec. 3.1 and for a minimal
gauge kinetic function, fAB = δAB, and a canonical Kähler potential, V D

E reduces to the
expression found in global supersymmetry, cf. Eq. (2.20).

In the Einstein frame, the theory is thus fully defined by the superpotential W , the Kähler
potential K and the gauge kinetic function fAB. Eqs. (5.2) and (5.3) determine the dynamics
of the scalar field and inflationary predictions can be calculated as outlined in Sec. 3.1.

Jordan frame

The Jordan frame has recently received a lot interest in the context of Higgs inflation [40–42],
where introducing a non-minimal coupling of the Higgs field to gravity, i.e. more precisely
to the Ricci scalar, can render the Higgs potential flat enough to achieve slow-roll inflation.
Contrary to the Einstein frame, the gravitational part of the Jordan frame Lagrangian in
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general contains couplings between the Ricci scalar and the scalar fields,

Lgrav
J = −

√
−gJ

1
6

Φ(z, z̄)R(gJ) . (5.5)

The real, field-dependent coefficient function Φ(z, z̄) of the Ricci scalar is called frame function
and defines the Jordan frame. Note that there is only one single Einstein frame description
for a given theory, but many possible Jordan frames, given by different choices of Φ. The
transformation from the Einstein frame to a Jordan frame is achieved by rescaling the metric,

gJ µν = −
3M2

P

Φ(z, z̄)
gE µν . (5.6)

With this, the scalar part of the Jordan frame Lagrangian is given by1

Lscal
J =

√
−gJ

[
−ΦA2

µ(z, z̄) + iAµ
(
(∂ᾱΦ)∂µz̄ᾱ − (∂αΦ)∂µzα

)
+
(

ΦKαβ̄

3M2
P

−
(∂αΦ)(∂β̄Φ)

Φ

)
gµνJ (∂µzα)(∂ν z̄β̄)− VJ

]
(5.7)

=
√
−gJ

[
ΦA2

µ(z, z̄) +
(

ΦKαβ̄

3M2
P

−
(∂αΦ)(∂β̄Φ)

Φ

)
gµνJ (∂µzα)(∂ν z̄β̄)− VJ

]
, (5.8)

with

VJ =
Φ2

9M4
P

(V F
E + V D

E ) , (5.9)

and Aµ denoting the purely bosonic part of the auxiliary field of the supergravity Weyl
multiplet, which, just like the auxiliary fields appearing in global supersymmetry, can be
replaced by its on-shell solution,

Aµ = − i

2Φ
[(∂µzα)∂αΦ− (∂µz̄)∂ᾱΦ] . (5.10)

Exploiting this solution, we can rewrite Eq. (5.7) as Eq. (5.8).

To define a theory in a Jordan frame, one thus needs to specify W , K and f (as in
the Einstein frame) as well as the frame function Φ. Comparing Eq. (5.8) with Eq. (5.2),
switching to the Jordan frame looks like a significant complication, the benefit of which is not
yet obvious. However, as we will see in a moment, enforcing superconformal symmetry (cf.
Sec. 5.1.2), will allow us to identify a class of models (cf. Sec. 5.1.3) whose description in the
Jordan frame is amazingly simple, while indeed the description in the Einstein frame is the
more complicated one.

1Lscal
J can in principle be obtained by acting with Eq. (5.6) on the full Einstein frame Lagrangian and

then extracting the scalar part. A more elegant derivation of the Jordan frame Lagrangian by exploiting the
underlying superconformal symmetry of supergravity is given in Ref. [41].
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5.1.2 Superconformal symmetry

Extending the Poincaré symmetry by fermionic generators yields supersymmetry, which as
a local symmetry leads to supergravity. A further extension of the Poincaré symmetry is
possible for scale-free field theories. We can then require conformal invariance, which imposes
in particular the invariance under the simultaneous rescaling of the metric and the fields.
Allowing this rescaling factor to vary locally, then leads to a local conformal symmetry. Im-
posing all of these symmetry requirements together leads to an action with a local SU(2, 1|1)
superconformal symmetry. This encompasses invariance under local dilatation, special con-
formal symmetry, special supersymmetry and local U(1) R symmetry, as well as invariance
under supergravity transformations. Among all of these, the local conformal transformations

gµν 7→ g′µν = e−2α(x)gµν , z 7→ z′ = eα(x)z , z̄ 7→ z̄′ = eα(x)z̄ , (5.11)

are of particular importance for the scalar-gravity part of the Lagrangian which we are inter-
ested in in the context of inflation.

Starting from a fully superconformal action, the authors of Ref. [41] arrive at the super-
gravity Lagrangian in an arbitrary Jordan frame by gauge-fixing all the additional degrees
of freedom present in the superconformal theory.2 In particular, the so-called compensator
field z0 is fixed to the Planck scale, introducing the scale MP into the formerly scale-free
theory.

A toy model

With this in mind, one might try to preserve as much of the larger superconformal symmetry
as possible. Let us first demonstrate this idea with a toy model, cf. Ref [39]. Consider the
non-supersymmetric, conformally invariant Lagrangian

Ltoy√
−g

=
1
2
gµν(∂µφ)(∂νφ) +

1
12
φ2R(g)− 1

2
gµν(∂µh)(∂νh)−

1
12
h2R(g)− λ

4
h2 , (5.12)

for the real scalars h and φ. The Lagrangian exhibits a conformal coupling of the scalars to
the Ricci scalar R(g) and is invariant under the transformation (5.11). This can be checked
explicitly exploiting the transformation behavior of R [183],

R 7→ e2α(x)

(
R− 6 eα(x) 1√

−g
∂µ

[
gµν
√
−g ∂νe−α(x)

])
. (5.13)

The kinetic term of φ has the wrong sign. This does, however, not matter since φ is identified
with the compensator field which is not associated with any physical degrees of freedom.

2This for itself interesting observation does neither answer the question of the role of the superconformal
symmetry in an underlying quantum gravity theory nor if/how it might be dynamically broken in a way that
yields models of the type introduced in Sec. 5.1.3 as an effective field theory. Addressing this challenging
question is beyond the scope of this thesis.
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Gauge-fixing φ =
√

6MP , we obtain

Lφ=
√

6MP
toy =

√
−g

M2
P

2
R(g)−

√
−g
[
1
2
gµν(∂µh)(∂νh) +

1
12
h2R(g) +

λ

4
h2

]
, (5.14)

i.e. an Einstein Hilbert term
√
−gM

2
P

2 R(g), which is not conformally invariant, and the con-
formally invariant theory for the scalar field h, coupled non-minimally to gravity. Note that
the conformal coupling of the scalar fields to gravity automatically leads us to a Jordan frame.
Of course, we could now convert the Lagrangian (5.14) into the Einstein frame. However,
we then lose the simple structure of the matter part of the Lagrangian, and the conformal
symmetry present in the matter sector of the theory becomes well hidden.

5.1.3 A special class of models

In a next step, let us now generalize the toy model (5.12) to a supergravity model with n

physical scalar fields. Introducing the SU(1, n) invariant coefficient function of the Ricci
scalar

Ξ = −|z0|2 + |z|2 , (5.15)

with |z|2 = δαβ̄z
αz̄β̄ and α, β̄ = {1..n}, reproduces the structure found in the kinetic terms

and frame function of Eq. (5.12). Gauge-fixing the complex compensator field z0 =
√

3MP

in order to reproduce the Einstein Hilbert term yields

Ξ|z0→√3MP
= Φ(z, z̄) = −3M2

P + |z|2 . (5.16)

In the toy model above, we started with a scale-free scalar potential for h. Similarly, we will
restrict ourselves here to renormalizable superpotentials which are trilinear, i.e. which do not
introduce an explicit mass scale. Furthermore, Eq. (5.14) exhibits canonical kinetic terms for
the scalar fields in the Jordan frame. We can achieve the same feature in the more general
case presented here by employing a Kähler potential constructed from the frame function Φ,

K = −3M2
P ln

(
− 1

3M2
P

Φ(z, z̄)
)
. (5.17)

Inserting this into Eq. (5.8) yields 1
3M2

P
ΦKαβ̄ − (∂αΦ)(∂β̄Φ)/Φ = −∂α∂β̄Φ. Together with the

frame function (5.16), this implies canonical kinetic terms for the scalar fields up to Planck-
suppressed corrections from the Aµ term.3 Furthermore, we shall restrict ourselves to the
situation where the gauge kinetic function is given by fAB = δAB. This leads us to the
so-called canonical superconformal supergravity (CSS) models, cf. Ref [39].

Before proceeding, let us summarize the interesting features of this class of models. In

3Note that Aµ = 0 on inflationary trajectories along the purely real or imaginary part of z, cf. Eq. (5.10).
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the Jordan frame, the Lagrangian can be split into two parts: A pure supergravity part and
an explicitly superconformal matter sector,

1√
−gJ

LJ =
1
2
M2
P

(
R(gJ) + 6A2

µ

)
︸ ︷︷ ︸

pure supergravity

− 1
6
R(gJ)|z|2 − δαβ̄ g

µν
J (∇̃µz

α)(∇̃ν z̄
β̄)− VJ︸ ︷︷ ︸

superconformal matter

, (5.18)

with ∇̃µz
α = ∂µz

α − iAµzα. For vanishing Aµ, the kinetic terms of the scalars are canonical
with respect to the Jordan frame metric. The scalar potential can be calculated from Eqs. (5.3)
and (5.9). From Eqs. (5.17) and for a frame function satisfying ∂α∂β̄Φ = δαβ̄ one obtains the
Kähler metric

Kαβ̄ = −
3M2

P

Φ

(
δαβ̄ −

1
Φ

(∂αΦ)(∂β̄Φ)
)
. (5.19)

One easily verifies that the inverse Kähler metric is given by

Kαβ̄ = − Φ
3M2

P

(
δαβ̄ +

1
∆K

δαγ̄(∂γ̄Φ) δγβ̄(∂γΦ)
)
, (5.20)

where

∆K = Φ− δαβ̄(∂αΦ)(∂β̄Φ) . (5.21)

Inserting Eq. (5.20) into the expression (5.2), we find the following compact expression for
the F-term scalar potential in the Jordan frame4

V F
J =

(
δαβ̄WαW β̄ +

1
∆K

|δαβ̄Wα∂β̄Φ− 3W |2
)
, (5.22)

with Wα = ∂αW . For the frame function (5.16) and a trilinear superpotential, this implies
that the scalar F-term potential V F

J in Eq. (5.18) is actually the globally supersymmetric
scalar potential, cf. Sec. 2,

V F
J = δαβ̄WαW β̄ . (5.23)

Next, consider the D-term potential, which is readily calculated from Eqs. (5.3), (5.4) and
(5.9). For the Kähler potential (5.17), the solution to the D-term equation of motion (5.4)
simplifies to

DA = g

(
−

3M2
P

Φ

)
Φα(TA z)α , (5.24)

yielding the D-term scalar potential in the Jordan frame

V D
J =

1
2
g2 (Φα(TA z)α)2 . (5.25)

4The same expression was derived independently in Ref. [184].
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For the frame function (5.16) and fAB = δAB, this yields the D-term potential

V D
J =

1
2
g2
(
z̄ᾱTAᾱβz

β
)2

, (5.26)

which again, is just the familiar expression from global supersymmetry!

Hence in the Jordan frame, the structure of these models is remarkably simple. To embed
a globally supersymmetric model into supergravity in this framework, the Lagrangian in the
Jordan frame is constructed by simply adding the pure supergravity part and the supercon-
formal matter part. For vanishing Aµ, the superconformal matter part is given by canonical
kinetic terms, a conformal coupling to the Ricci scalar and the globally supersymmetric scalar
potential.

In the Einstein frame, the model is defined by the superpotential and the Kähler po-
tential (5.17). Exploiting Eqs. (5.19), (5.3) and (5.23), the Einstein frame Lagrangian (5.2)
is readily calculated. The scalar potential is the globally supersymmetric potential up to a
rescaling Φ2/(9M4

P ). The kinetic terms are no longer canonical, but are determined by the
Kähler metric (5.19). Performing a field redefinition to achieve canonical kinetic terms in-
duces modifications of the scalar potential, leading in general to quite unpleasant expressions.
The simple structure found in a particular Jordan frame is well hidden in the Einstein frame.

5.1.4 Breaking the superconformal symmetry

In Sec. 5.1.3 we discussed a class of models in which the superconformal symmetry was broken
only by the pure supergravity part of the action after gauge-fixing the conformal compensator,
as well as by the superconformal anomaly5. We now extend the discussion to allow for other
mechanisms which ‘mildly’ break the the superconformal invariance, i.e. mechanisms in which
the effects of this symmetry breaking are suppressed at low energies. In particular, our goal
is to preserve the appealing features of the models discussed above. To this end, we study
a modification of the frame function as suggested in [41] as well as the introduction of an
Fayet-Iliopoulos term.

A modification of the frame function

As suggested in [39, 41], given the gauge-invariant expression χαβzαzβ with χαβ dimensionless,
superconformal symmetry can be explicitly broken by using instead of (5.15) the real function

Ξ(z0, z̄0; z, z̄) = −|z0|2 + |z|2 +
(
χαβ

zαzβ z̄0

z0
+ h.c.

)
. (5.27)

5 The conformal anomaly is due to the non-vanishing vev of the trace of the energy momentum tensor, see
e.g. Ref. [185] for an introduction.
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After gauge fixing the compensator field as above, one obtains the modified frame function

Φ(z, z̄) = −3M2
P + |z|2 + J(z) + J̄(z̄) , J(z) = χαβ z

αzβ . (5.28)

In the following analysis the symmetry breaking term J(z) will play an important role. As we
shall see, it will turn the single-field D-term inflation model into a two-field inflation model.

Returning to the interesting features observed in Sec. 5.1.3, we note that both the canonical
kinetic terms for vanishing Aµ and the structure of the Jordan frame potential displayed in
Eq. (5.22) only require the frame function to fulfil ∂α∂β̄Φ = δαβ̄, and hence remain valid
for the modified frame function (5.28). Furthermore, from Eq. (5.22), we can directly read
off the effect this modification of the frame function on the Jordan frame F-term potential:
Assuming a trilinear superpotential, the second term in Eq. (5.22) vanishes for J(z) = 0
yielding the globally supersymmetric potential (5.23). However, for non-vanishing J(z) there
is an additional term |δαβ̄Wα∂β̄ J̄(z̄)|2/∆K in the Jordan frame F-term potential. With ∆K

as defined in Eq. (5.21) containing a contribution (−3M2
P ), we see that for field values smaller

than the Planck scale, the corrections due the breaking of the superconformal symmetry in
Eq. (5.28) are suppressed. Similarly, the D-term scalar potential obtains corrections due to
an additional term ∂αJ(z) arising from ∂αΦ in Eq. (5.24).

In the Einstein frame, after inserting the modified frame function (5.28) into the Kähler
potential (5.17), terms proportional to χαβ appear in the scalar potential as well as in the
kinetic terms.

Fayet-Iliopoulos term

In the context of D-term inflation, we are particularly interested in adding a Fayet-Iliopoulos
(FI) - term for a U(1) gauge symmetry to the Lagrangian (5.18). The standard procedure is
the following [38]: Since the D-term of a U(1) vector supermultiplet is gauge invariant (up
to total derivatives), we can add a term proportional to gξD to the Lagrangian, with

√
ξ

denoting a mass scale. This can be implemented by the substitution D 7→ D + gξ. Starting
from the superconformal D-term scalar potential (5.25) for a U(1) symmetry,

V D
J =

1
2
g2 [(∂αΦ)Qzα]2 =:

1
2
D′2 (5.29)

where Q is the charge generator and D′ = D × Φ/(−3M2
P ), one might naively attempt to

introduce an FI-term in the Jordan frame by substituting D′ 7→ D′+gξ. This, however, would
introduce another explicit breaking of the superconformal symmetry, since ξ is a constant of
mass dimension two and moreover, this does not reproduce the familiar procedure D 7→ D+gξ
in the Einstein frame.

In the Jordan frame Lagrangian (5.18) as well as in the modified frame function (5.28),
superconformal symmetry breaking only arises from Ξ(z0, z̄0; z, z̄) after gauge fixing. This
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suggests to add to Eq. (5.18) a term with dimensionless constant ξ̂ = ξ/(−3M2
P ),

∆LξJ√
−gJ

= gξ̂D′Ξ(z0, z̄0; z, z̄)
∣∣
z0=

√
3MP

= −g
(

Φ
3M2

P

)
ξD′ , (5.30)

Note that this implies a field-dependent FI-term in the Jordan frame. Eliminating the auxil-
iary field D by solving the resulting modified eom and using Eq. (5.9), one then immediately
obtains for the D-term scalar potential in the Einstein frame,

V D
E = −g

2

2

((
−3M2

P

Φ

)
(∂αΦ)Qzα + ξ

)2

=
g2

2
((∂αK)Qzα + ξ)2 , (5.31)

which is the standard supergravity expression [38].

Note that the first expression in Eq. (5.30) can be interpreted as a quartic contribution
to the scalar potential of the Jordan frame, i.e. of the type present in the toy model (5.12).
So in this sense, the conformal symmetry breaking in the FI-term can be traced back to
familiar symmetry breaking mechanisms, i.e. the gauge fixing of the compensator field and
the modification of the frame function.

Finally, note that there are, of course, other possibilities to break the superconformal
symmetry apart from those listed above. For example, one could drop the requirement of
a trilinear superpotential. We will return to this possibility briefly in Sec. 5.2.1, where we
discuss F-term hybrid inflation in this framework. Or, one could further modify the frame
function and/or the Kähler potential, dropping the requirement of canonical kinetic terms
in the Jordan frame. However, one then loses just those features, which made this class of
models interesting in the first place. We will therefore in the following stay with the symmetry
breaking terms listed above.

5.2 Hybrid inflation

In this section, we shall apply the framework introduced above to two examples, F-term and
D-term hybrid inflation. In both cases, we will take the Einstein frame metric to be the FRW
metric, and we will introduce a non-minimal coupling of the inflaton field φ to gravity while
the waterfall fields S± remain minimally coupled, i.e. J(z) = χ

2 φ
2. The frame function is

thus given by
Φ = −3M2

P + |φ|2 + |S+|2 + |S−|2 +
χ

2
(φ2 + φ̄2) , (5.32)

with χ chosen to be real, implying the transformation between Jordan and Einstein frame
metric

gJµν = Ω2gµν , with Ω2 = −
3M2

P

Φ
. (5.33)
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We will calculate the resulting scalar potentials in the Einstein frame. In Appendix C, using
the example of D-term hybrid inflation, we demonstrate that a calculation in the Jordan
frame leads to the same results.

5.2.1 F-term inflation

The expression (5.22) holds for all superpotentials and it is instructive to apply it to the
superpotential of F-term hybrid inflation [8, 54, 55, 118],

W = λφ
(
S+S− − v2

)
. (5.34)

Here v is a mass parameter and the coupling λ is chosen to be real.

F-term hybrid inflation typically yields a scalar spectral index which is too large compared
to observations, see Eq. (3.9). One may hope to improve the situation by a suitable choice
of the χ-parameter of the frame function (5.32). From Eq. (5.22) one obtains for the scalar
potential in the Einstein frame

V F
E = Ω4λ2

(
|φ|2

(
|S+|2 + |S−|2

)
+ |S+S− − v2|2 −

∣∣2 v2φ+ χ (S+S− − v2) φ̄
∣∣2

3M2
P + χ

2 (φ2 + φ̄2) + χ2|φ|2

)
. (5.35)

Along the expected inflationary trajectory, i.e. for S± = 0, one has

V F
E = Ω4λ2v4 −

Ω4λ2v4
∣∣2φ− χφ̄

∣∣2
3M2

P + χ
2 (φ2 + φ̄2) + χ2|φ|2

. (5.36)

Unfortunately, this potential exhibits a large tachyonic mass for φ and is therefore not phe-
nomenologically viable. This holds for the not canonically normalized parameter φ describing
the inflationary trajectory as well as for the canonically normalized inflaton φ̂, since for
φ � MP , φ̂ ≈ φ. This result can be anticipated from Eq. (5.22), where the second term
cancels for a scale-invariant, trilinear superpotential but not for a superpotential containing
a term linear in the superfields as Eq. (5.34). A notable exception are superpotentials which
vanish along the inflationary trajectory.6 Note that the large tachyonic mass for φ could be
remedied by adding an |φ|4 term to the frame function [41, 187]. However, this introduces an
additional breaking of the superconformal symmetry and we will not pursue this option here.

5.2.2 D-term inflation

Let us now consider D-term hybrid inflation. It has the attractive feature that in string
compactifications an FI-term of GUT-scale size naturally arises, which is welcome for hybrid

6In this context, it would be interesting to consider a superconformal version of ‘tribrid’-inflation [52, 186],
a variant of supersymmetric F-term hybrid inflation which features W = 0 along the inflationary trajectory.
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inflation. The superpotential reads

W = λφS+S− , (5.37)

and for the frame function we again use Eq. (5.32). The corresponding F-term scalar potential
in the Einstein frame reads

V F
E = Ω4λ2

(
|φ|2(|S+|2 + |S−|2) + |S+S−|2 −

χ2|S+|2|S−|2|φ|2

3M2
P + 1

2χ(φ2 + φ̄2) + χ2|φ|2

)
. (5.38)

This expression agrees with the potential (5.35) in the case v = 0. For field values below the
Planck mass the potential (5.38) is well behaved. It vanishes identically for S± = 0, which
corresponds to the inflationary trajectory.

The potential (5.38) is supplemented by a D-term scalar potential of a U(1) symmetry
under which the chiral superfields φ and S± have charge ρ0 and ±q, respectively.

V D
E =

g2

2
(
qΩ2 (|S+|2 − |S−|2)− ξ

)2
, (5.39)

where g is the gauge coupling. For S± = 0, the FI-term provides the vacuum energy density
ρ0 = g2ξ2/2 which drives inflation.

The slope of the inflaton potential is generated by quantum corrections, cf. Eq. (3.6).
Along the inflationary trajectory the Weyl rescaling factor reads

Ω0 = Ω
∣∣
S±=0

=
(

1− 1
3M2

P

(
|φ|2 +

χ

2
(φ2 + φ̄2)

))−1/2

. (5.40)

From Eqs. (5.9), (5.23), (5.25) and (5.19) one then obtains for the part of the Lagrangian
quadratic in S±,

Lquadr
S±

= Ω2
0 ∂µS

∗
±∂

µS± −
(
Ω4

0 λ
2 |φ|2 ∓ Ω2

0 qg
2ξ
)
|S±|2 , (5.41)

from which one reads off the scalar masses

m2
± = Ω2

0 λ
2 |φ|2 ∓ qg2ξ . (5.42)

For |φ| larger than a critical value φc, both S+ and S− have positive mass terms and are
stabilized at zero, thus allowing inflation to proceed in the φ direction. At |φ| = φc, m2

+

turns negative, triggering a phase transition which gives an expectation value to S+ and ends
inflation. The critical value φc is determined by the relation

Ω2(φc) φ2
c =

qg2ξ

λ2
. (5.43)
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According to the mass sum rule, the Dirac fermion associated with S± has mass

m2
f = λ2 Ω2

0 |φ|2 . (5.44)

Inserting Eqs. (5.42) and (5.44) into the expression for the one-loop potential (3.6) and setting
the renormalization scale to Q2 = g2qξ, one obtains for the one-loop potential,

V 1l
E =

g4q2ξ2

32π2

(
(x− 1)2 ln(x− 1) + (x+ 1)2 ln(x+ 1)− 2x2 lnx− 1

)
=
g4q2ξ2

16π2

(
1 + lnx+O

(
1
x

))
, (5.45)

where

x =
λ2 Ω2

0 |φ|2

qg2ξ
=

Ω2
0(φ) |φ|2

Ω2
0(φc)φ2

c

. (5.46)

The total potential for the inflaton field φ along the inflationary trajectory is given by,
cf. Eqs. (5.38) and (5.45),

VE = (V F
E + V D

E + V 1l
E )
∣∣
φ±=0

=
g2

2
ξ2
(

1 +
g2q2

8π2

[
1 + lnx+O

(
1
x

)])
. (5.47)

Note that on the inflationary trajectory one has |φ| > φc and x > 1. Contrary to the scalar
potential found for F-term hybrid inflation in Sec. 5.2.1, the potential (5.47) for D-term
hybrid inflation looks promising for realizing slow-roll inflation, and we shall thus focus on
this scenario in the following.

In this section, we calculated the one-loop correction to the scalar potential in the Einstein
frame for the Minkowski metric, gµν = ηµν . A calculation in the Jordan frame would have
led to the same result, as is demonstrated in Appendix C.

5.3 Single-field inflation

Having determined the scalar potentials of F- and D-term hybrid inflation in CSS models, this
section is dedicated to calculating the predictions of superconformal D-term hybrid inflation.
Since these predictions are most commonly expressed in terms of the slow-roll parameters
in the Einstein frame, cf. Eqs. (3.9) and (3.10), we will stay in the Einstein frame for the
remainder of this chapter. The corresponding calculation in the Jordan frame (for the single-
field case) is given in Appendix C.
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5.3.1 Slow-roll equation of motion

We are now ready to tackle the slow-roll equation of motion for the field φ. In the Einstein
frame the inflaton field φ is not canonically normalized, leading to a modification of the
standard slow-roll equations. Expressing the Lagrangian for the field φ in terms of real and
imaginary components, φ = (ϕ+ iκ)/

√
2,

1√
−g
L =

1
2
Kφφ̄(ϕ, κ) (∂µϕ∂µϕ+ ∂µκ ∂

µκ)− V (ϕ, κ) , (5.48)

one obtains the slow-roll equations for the homogeneous fields ϕ and κ,

3Kφφ̄Hϕ̇ = − dV1l

dϕ
, 3Kφφ̄Hκ̇ = − dV1l

dκ
, (5.49)

where now we have set MP = 1 for convenience. These equations can be written as the
standard slow-roll equations, cf. Eq. (3.7), for an effective potential defined by

dVeff

dϕ
=

1
Kφφ̄

dV1l

dϕ
,

dVeff

dκ
=

1
Kφφ̄

dV1l

dκ
. (5.50)

Calculating the second derivatives of the potential Veff with respect to ϕ and κ, one finds
that for χ < 0, the trajectory ϕ 6= 0, κ = 0 yields a viable inflationary trajectory along which
d2Veff/dκ

2 is positive. Hence this trajectory is an attractor for a sufficiently long phase of
inflation before the onset of the final 50 e-folds. For χ > 0, the situation is reversed and an
equivalent inflationary trajectory corresponds to ϕ = 0, κ 6= 0. For χ = 0, the Lagrangian is
independent of the phase of φ and the inflaton can be identified as the absolute value of φ.
In the following we choose χ ≤ 0.

In this section we will restrict ourselves to the standard case of ‘one-field’ inflation along
the φ-axis as described above, postponing the discussion of possible two-field inflation to
Sec. 5.4. Inserting the Kähler metric

Kφφ̄

∣∣
φ±,κ=0

=
1

1− 1
6(1 + χ)ϕ2

(
1 +

(1 + χ)2ϕ2

6
[
1− 1

6(1 + χ)ϕ2
]) , (5.51)

and the one-loop potential (5.45) into the slow-roll equation (5.49), one obtains after inte-
grating from ϕ∗ to ϕf ,

3 ln

(
1− 1

6(1 + χ)ϕ2
∗

1− 1
6(1 + χ)ϕ2

f

)
− χ

2
(
−ϕ2

∗ + ϕ2
f

)
' −g

2q2

4π2
N∗ . (5.52)

Here ϕf denotes the value of ϕ at the end of inflation and ϕ∗ is the value of ϕ N∗ e-folds earlier.
Inflation ends when either m2

+ turns negative (ϕf = ϕc) or when the slow-roll conditions are
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violated (ϕf = ϕη). From Eq. (5.43) and Eq. (5.57) with |η| = 1, one finds

ϕ2
c =

6g2qξ

3λ2 + (1 + χ)g2qξ
, ϕ2

η ≈
g2q2

4π2
. (5.53)

For small field values, satisfying |1 + χ|ϕ2
∗/6 � 1, Eq. (5.52) can be solved analytically,

leading to

ϕ2
∗ ' ϕ2

f +
g2q2

2π2
N∗ . (5.54)

However, for most of the parameter space this is not a particularly good approximation, and
one has to solve Eq. (5.52) numerically.

5.3.2 Slow-roll parameters

In order to calculate the spectral index and other observables, we need to evaluate the slow-
roll parameters (3.10) obtained from the derivatives of the scalar potential with respect to
the canonically normalized inflaton ϕ̂. The latter is determined by (cf. Eq. (5.48))

dϕ

dϕ̂
=

1√
Kφφ̄

. (5.55)

On the inflationary trajectory the derivatives of the scalar potential with respect to ϕ̂ can be
written as

V ′(ϕ̂) =
dV1l

dϕ̂
=
dV1l

dϕ

dϕ

dϕ̂
,

V ′′(ϕ̂) =
d2V1l

dϕ̂2
=
dϕ

dϕ̂

d

dϕ

(
dV1l

dϕ̂

)
,

(5.56)

from which one obtains the slow-roll parameters

ε ' 2
(
g2q2

8π2

)2 1
ϕ2

1
1 + 1

6χ(1 + χ)ϕ2
,

η ' −g
2q2

4π2

1
ϕ2

[
1− 1

6(1 + χ)ϕ2
] [

1 + 1
3χ(1 + χ)ϕ2

][
1 + 1

6χ(1 + χ)ϕ2
]2 .

(5.57)

Note that for χ = −1, one obtains the results for D-term inflation in global supersymmetry.

5.3.3 Results and discussion

Normalization of the scalar power spectrum and cosmic strings

The normalization condition for the amplitude of the primordial power spectrum and the
cosmic string bound represent observational constraints which have to be fulfilled by a viable
model, cf. Sec. 3.3. Using Eq. (5.45) the amplitude of the primordial scalar contribution to the
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Figure 5.1: Normalization condition and cosmic string bound for χ = −15, q = 2, g2 = 1/2 and N∗ = 50. The
blue line shows the relationship between ξ and λ imposed by the correct normalization of the amplitude of
the primordial fluctuations. The vertical black lines denote a cosmic string tension of 107Gµ = 2, 3.2 and 7,
respectively; the darker shaded regions to the left are in agreement with the respective constraint. The dashed
lines show contours of constant scalar spectral index. The white region to the bottom right must be excluded
since there is no positive solution to m2

+(ϕ2
c) = 0.

power spectrum of the temperature anisotropies in the CMB, cf. Eq. (3.9), can be expressed
as

As '
2π2

3
ξ2ϕ2

∗
g2q4

[
1 +

1
6
χ(1 + χ)ϕ2

∗

]
. (5.58)

Comparing this to the observed value A0
s, cf. Eq. (3.18), one obtains a relation between ξ

and λ for given values of χ, q and g. As an example, we choose q = 2 and g = 1/
√

2 in the
following, which is motivated by identifying the spontaneously broken U(1) symmetry with
U(1)B−L, cf. Chapter 2. For χ = −15, the resulting relation between ξ and λ is depicted by
the blue line in Fig. 5.1.

Concerning the cosmic string bound (3.9), we find

Gµ = 5.3× 10−7

(
2
q

ξ

(5× 1015 GeV)2

)
. (5.59)

where we have inserted the vacuum expectation value of the waterfall field, 〈S+〉 = (ξ/q)1/2,
as well as m2

G = m2
ϕ = 2g2qξ into Eq. (3.14). The solid black lines in Fig. 5.1 correspond to

the string tensions Gµ = (2, 3.2, 7)× 10−7. The brighter region to the right of a given line is
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Figure 5.2: Spectral index and amplitude of the scalar power spectrum for
√
ξ = 4.0×1015 GeV, λ = 3.8×10−3,

q = 2, g2 = 1/2, N∗ = 50. The solid lines show the numerical results, the dashed lines the analytical ones. The
values of ξ and λ are chosen such as to be compatible with the cosmic string bound as well as the normalization
constraint, cf. (3.18), for χ = −15 (cf. Fig. 5.1).

excluded, whereas the darker region to the left is in agreement with the respective bound. In
particular, Gµ = 3.2× 10−7 corresponds to the maximal string tension allowed by the Planck
data at 95% CL, cf. Eq. (3.18). Note however that the upper bounds on the string tension
come with a considerable theoretical uncertainty, cf. Sec. 3.2.2.

Spectral index

With the slow-roll parameters from Eqs. (5.57) and the value of ϕ evaluated N∗ e-folds before
the end of inflation, cf. Eq. (5.52), at hand, we can now easily calculate the spectral index, cf.
Eq. (3.9). Fig. 5.2(a) shows the resulting χ dependence for a (ξ, λ) pair compatible with the
cosmic string bound and the normalization condition (3.18) at χ = −15 (cf. Fig. 5.1). For
reference, Fig. 5.2(b) shows the corresponding χ-dependence of the amplitude of scalar power
spectrum. Both curves are shown over the entire range of allowed χ-values for this choice of
ξ and λ, which is bounded from below by the condition that ϕ2

c in Eq. (5.53) is positive.

The dashed lines show the results obtained by using the analytical formulas (3.9) and
(5.57) with ϕ∗ determined by Eq. (5.52), the solid lines show the full numerical results. The
deviation visible in Fig. 5.2(a) is due to the approximation of the one-loop potential, which
enters in the derivation of Eq. (5.52) and in the expressions for the slow-roll parameters ε and
η. To obtain the numerical result, we do not use this approximation, but proceed with the
full expression given in the first line of Eq. (5.45). Note, however, that these corrections only
influence the result for the spectral index at the per mille level, proving that the analytical
expressions derived above do indeed give a good description of the full numerical results.

Throughout the parameter region compatible with the normalization condition and the
cosmic string bound, the spectral index is rather high, ns ' 0.99 − 1.0, compared to the
recently published results from the Planck collaboration, cf. Eq. (3.18). A spectral index of
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ns = 1 is compatible with the Planck data within the 5σ range, however, there is clearly a
significant tension building up here. For comparison, note that based on data sets available
before the publication of the Planck data, a spectral index of ns = 1 was compatible with the
data at 2.4σ when allowing for a cosmic string contribution [188].

Discussion

The qualitative behaviour of the relation between the coupling λ and the inflationary energy
scale

√
ξ, displayed in Fig. 5.1, can be easily understood. In the case of small coupling,

λ . 0.01, one has ϕ2
∗ ' ϕ2

c (cf. Eq.(5.53)). The correct fluctuation amplitude is then obtained
for small values of

√
ξ and the cosmic string bound can be satisfied. However, the field value

ϕ∗ is large, and one therefore obtains a large spectral index, ns ' 1. On the other hand, for
large couplings λ, one has ϕ2

f � 1. For large values of (−χ), Eq. (5.52) then implies for the
field value ϕ∗ at N∗ e-folds,

ϕ2
∗ ' −

g2q2N∗
2π2χ

. (5.60)

Interestingly, the amplitude of scalar fluctuations is then only determined by the energy
density during inflation, ρ0 = g2ξ2/2 (cf. Eq. (5.58)),

As '
ρ0

18π2
N2
∗ . (5.61)

For the spectral index one finds7

ns ' (1− 2η)
∣∣
ϕ∗
' 1− 2

N∗
' 0.96 . (5.62)

Contrary to the amplitude of scalar fluctuations, the string tension additionally depends
on the coupling strength gq (cf. Eq. (5.59)),

Gµ = 5.3× 10−7

(
2
√

2
gq

ρ
1/2
0

(5× 1015 GeV)2

)
. (5.63)

Hence, for large values of (−χ) and λ, it is always possible to satisfy the cosmic string bound
by increasing gq while at the same time keeping ns small. This is in contrast to the case
where |1 +χ|ϕ2

∗/6 � 1 and ϕ2
c � ϕ2

∗, with ϕ∗ given by Eq. (5.54). In this case the amplitude
is given by As ' 2εN∗/(3g2q2) and thus also fixes the string tension. However, increasing gq
by too much one moves to a regime of strong coupling and the theoretical consistency of the
model becomes questionable. In this thesis, we will not pursue this option.

For the other CMB observables, i.e., the tilt of the spectral index dns/d ln k and the
tensor-to-scalar ratio r, we find small values, well within the experimental bounds [1]. For

7Note the difference to D-term inflation in global supersymmetry, where one has ns ' 1 − 1
N∗

' 0.98, see
Ref. [189].
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instance, for the parameter point discussed above,
√
ξ = 4.0 × 1015 GeV, λ = 3.8 × 10−3,

q = 2, g2 = 1/2, χ = −15 and N∗ = 50, one obtains

dns/d ln k = 16 ε η − 24 ε2 − 2
V ′V ′′′

V 2

∣∣
ϕ=ϕ∗

= −1.7× 10−4 ,

r = 16ε
∣∣
ϕ=ϕ∗

= 8.9× 10−6 .

(5.64)

In conclusion, Fig. 5.1 shows that there is a considerable region in parameter space which
is compatible with the normalization condition as well as the cosmic string bound. However,
for generic gauge coupling strengths gq, this implies a rather large value for the spectral
index. Vice versa, in the region of parameter space which yields a spectral index close to the
best-fit value ns ' 0.963, we find a cosmic string tension exceeding the cosmic string bound.
In the intermediate region of parameter space in between these two limiting cases, we thus
find a high contribution of cosmic strings close to the current bounds as well as a value for the
spectral index which is slightly larger than the measured value, both within the 3-sigma error
bands of the respective best-fit values. Clearly, upcoming experiments will provide further
stringent tests of superconformal D-term hybrid inflation.

It is worth stressing that the discussed parameter region allows for large values of the gauge
coupling constant g, compatible with grand unification. In this respect, the model presented
here differs significantly from D-term inflation with canonical Kähler potential. In the latter
case, the masses entering the one-loop potential carry exp(|φ|2) factors, leading to problems
for the super-Planckian values of |φ| typically obtained in D-term inflation. Avoiding this
forces the gauge coupling g to be small, g . 2× 10−2, as found e.g. in Ref. [190].

5.4 Two-field inflation

5.4.1 Two-field versus single-field inflation

In the previous section, we focused on the situation where one of the two real degrees of
freedom of the complex scalar field φ plays the role of the inflaton, whereas the value of
the other degree of freedom is fixed at zero. This is the case if either the second degree of
freedom has a mass of order of the Hubble scale or if inflation before the onset of the final
50 e-folds lasted sufficiently long, so that the inflationary trajectory in the direction of the
smallest curvature has become an attractor. However, with the mass difference between ϕ

and κ governed by the symmetry breaking parameter χ, typically both masses are below
the Hubble scale, resulting in a two-field inflation model. This section is hence dedicated to
investigating alternative possible trajectories in (ϕ, κ) field space.

In single-field hybrid inflation, inflation ends at the critical value of the inflaton field,
ϕf , determined by the zero point of the mass of the waterfall field, m+(ϕf ) = 0.8 The

8Here and in the following, we assume that the slow-roll conditions hold until the inflaton field reaches its
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Figure 5.3: Inflationary trajectories in (ϕ, κ) field space for χ = −15, λ = 3.8 × 10−3,
√
ξ = 4.0 × 1015 GeV,

g2 = 1/2 and q = 2. Contour lines of the scalar potential are denoted by dashed lines. The dashed blue line
marks the m+ = 0 condition, the green solid lines show several examples of inflationary trajectories. The blue
lines show contours of the number of e-folds N , from N = 0 to N = N∗ = 50. The single field case discussed
in Sec. 5.3 corresponds to the trajectory coinciding with the ϕ-axis.

starting point ϕ∗ of the inflationary trajectory is determined by solving the slow-roll equa-
tion. In two-field inflation, the condition m+(ϕf , κf ) = 0 defines a line in (ϕ, κ) field
space. From each point on this line (ϕf , κf (ϕf )), a classical inflationary trajectory can
be uniquely determined by solving the set of slow-roll equations (5.49). The resulting tra-
jectory ends at (ϕ∗(ϕf ), κ∗(ϕf )). The single-field case discussed in Sec. 5.3 is reproduced
for (ϕf , κf ) = (ϕ0

f , 0), where ϕ0
f is given by Eq. (5.53). Hence in two-field inflation, as op-

posed to single-field inflation, the inflationary predictions are not uniquely determined by
the parameters of the Lagrangian, but depend on an additional parameter which labels the
various possible trajectories. In the notation above, this additional parameter is ϕf . This is
illustrated in Fig. 5.3.

A generalization of the usual single-field formulas for the amplitude of the scalar fluctu-
ations and the spectral index to the case of multi-field inflation with a non-trivial metric in
field space can be found in Ref. [191]. Starting from the action

S =
∫
d4x

√
−g
[
1
2
hab g

µν∂µφ
a∂νφ

b − V (φ)
]
, (5.65)

with gµν denoting the spacetime metric, hab the metric on the real scalar field space and φa

the real scalar fields of the theory, the slow-roll conditions read

(∂aV )(∂aV ) � V 2 and
√

(∇b∂aV )(∇b∂aV ) � V . (5.66)

critical value.
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Figure 5.4: Spectral index and amplitude of the scalar fluctuations resulting from different inflationary
trajectories for the same values of model parameters as in the single-field case depicted in Fig. 5.2, i.e.√
ξ = 4.0× 1015 GeV, λ = 3.8× 10−3, q = 2, g2 = 1/2 and N∗ = 50.

Here the usual partial and covariant derivatives in scalar field space are denoted by ∂a = ∂/∂φa

and ∇aX
b = ∂aX

b+ΓbcaX
c, with the Christoffel symbols Γabc = 1

2h
ad(∂chdb+ ∂bhdc− ∂dhbc)

As usual, the metric hab can be used to raise or lower indices. For inflationary trajectories
satisfying these conditions, the authors of Ref. [191] obtain the following expressions for the
amplitude of the primordial power spectrum and the spectral index:

As =
(
H2

2π

)2

hab(∂aN)(∂bN) ,

ns − 1 =

[
2∇b∂

a lnV +
(

2
3R

a
cbd − habhcd

)
(∂c lnV )(∂d lnV )

]
(∂aN)(∂bN)

(∂eN)(∂eN)
,

(5.67)

with N denoting the number of e-folds, hab the inverse metric, hab = δab and Rabcd the scalar
field space curvature tensor, Rabcd = ∂cΓabd − ∂dΓabc + ΓaceΓ

e
db − ΓadeΓ

e
cb.

The number of e-folds N as a function of the scalar fields φa is determined by integrating
along all possible classical trajectories. Each point in field space lies on exactly one classical
trajectory. Integrating along this trajectory yields the value of N at this point in field space,
which is illustrated by the solid blue contour lines in Fig. 5.3.

5.4.2 Two-field results

Fig. 5.4 shows the spectral index and the amplitude of the scalar power spectrum corre-
sponding to different inflationary trajectories. The solid lines represent the results for the
trajectory along the ϕ-axis, i.e. for ϕf = ϕ0

f , hence reproducing the single-field results depicted
in Fig. 5.2. The dotted lines correspond to the other extremal case in which the inflationary
trajectory runs along the κ-axis, i.e. in which ϕf = 0. Finally, the dashed lines show the
results for an intermediate trajectory with non-trivial evolution in both ϕ- and κ-direction.
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As illustrated in Fig. 5.4(b), the amplitude of the scalar power spectrum becomes smaller
the more the inflationary trajectory deviates from the ϕ-axis. This can be understood by
consulting the single-field expression for As in Eq. (5.58). Interpreting V ′ appearing in this
expression as the derivative of the scalar potential along the respective inflationary trajectory,
the single-field expression for As may serve as a lowest-order approximation of the full multi-
field expression in Eq. (5.67). From Eq. (5.58) it is then apparent that a steeper potential,
i.e. a larger V ′, entails a smaller amplitude. Since for negative χ the scalar potential indeed
becomes steeper the further one moves along the N = N∗ contour towards the κ-axis, cf.
Fig. 5.3, this explains our observation in Fig. 5.4(b).

Concerning ns, we find that the minimal value of ns as a function of χ is typically enhanced
when considering trajectories involving a motion in the κ-direction. In the limit χ → 0, the
three curves for the scalar spectral index as well as the amplitude in Fig. 5.4 respectively
converge to common values. This reflects the fact that for χ = 0 the phase of the complex
inflaton field φ becomes unphysical, rendering all possible trajectories equivalent to each other.

For fixed values of the parameters ξ and λ, the normalization condition, cf. Eq. (3.18),
can be used to eliminate the parameter ϕf , which we introduced to distinguish between the
different inflationary trajectories. According to Fig. 5.4, with

√
ξ = 4.0 × 1015 GeV and

λ = 3.8 × 10−3, it is for instance possible to find for each χ value below χ ' −15.4 one
particular ϕf , i.e. one inflationary trajectory such that As = A0

s. It is important to note
that it is only these sets of parameter values, which are compatible with the normalization
condition, that we are allowed to consider when asking for the range of viable ns values
predicted by our model.

In order to determine this range of admissible ns values, we perform a numerical scan of
the parameter space and record ns for all values of the parameters ξ, λ, χ and ϕf that yield
an amplitude As within the 3-sigma range of the best-fit value A0

s, cf. Eq. (3.18). Fig. 5.5
presents the results of this analysis for three representative values of the coupling constant,
λ = (5, 10, 20) × 10−3, while keeping g2 = 1/2 and q = 2. For each λ value, we vary χ

between −30 and 0 and ϕf between 0 and ϕ0
f , where ϕ0

f is a function of χ, cf. Eq. (5.53).
Furthermore, for each λ value, we vary ξ within a small interval, so that we cover the entire
region in parameter space where the amplitude comes out within 3 sigma of the best-fit value
A0
s. The lower boundaries of these intervals roughly coincide with the respective ξ values one

would need in the case of single-field inflation to obtain the correct amplitude, i.e. they lie
on the solid blue curve in the equivalent of Fig. 5.1 for χ = −30. This is due to the decrease
in the amplitude with decreasing |χ| as well as with decreasing ϕf/ϕ

0
f , cf. Fig. 5.4(b). In

order to compensate for this decrease one has to employ ξ values in the two-field case that
are a bit larger than in the single-field case. The resulting range of ns values obtained for
a given value of λ is marked by the shaded regions bounded by curves with a given stroke
style in Fig. 5.5. Additionally, the solid-dashed curve marks the (pre-)Planck bound on the
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Figure 5.5: Possible values of the spectral index ns as a function of χ. The shaded region bounded by a curve
with a given stroke style shows the range of possible ns values achieved by varying the inflationary trajectory
for a given value of λ, while constraining the corresponding values of the amplitude to the 3-sigma range of
the observed value A0

s. For λ = 0.005, the region to the top left, bounded by the grey solid-dashed curve,
is in accordance with the cosmic string bound Gµ < 3.2 × 10−7 ([2], left) and Gµ < 4.2 × 10−7 ([188], right),
respectively.

cosmic string tension Gµ = 3.2 (4.2) × 10−7 for λ = 5 × 10−3, with the region to the left
of this curve in agreement with the bound. We clearly see the effect of the new Planck
data on the model: whereas combining pre-Planck data sets [188], a significant region of the
λ = 5 × 10−3 parameter space shown was still viable, the new bounds [2] restrict the viable
region to χ < −27. Of course, χ values smaller than shown in Fig. 5.5 are also still possible.
For the two larger values of λ, the cosmic string bound is violated in the entire depicted
χ-range.

The general trend in Fig. 5.5 is the same as in the case of single-field inflation, cf. Fig. 5.1:
small λ values yield a large spectral index, while larger λ values give smaller ns values. For
instance, for λ = 2 × 10−2, we are able to reach ns values below 0.98 for nearly the entire
range of χ values. This illustrates that our model is in principle capable of generating a
spectral index of the right magnitude, while simultaneously providing the correct amplitude
of the scalar power spectrum. An obvious problem, however, is that in order to reproduce the
observed amplitude A0

s, we require quite large ξ values, such that the cosmic string tension
becomes unpleasantly large. Considering trajectories different from the ϕ-axis, i.e. different
from the trajectory studied in Sec. 5.3, increases the tension imposed by the cosmic string
bound, since the decrease in the amplitude due to the motion in the κ-direction forces us
to go to even larger values of ξ and hence larger values of Gµ. Moreover, we note that
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among the viable values for ns for a given value of λ and χ, the spectral index comes out
smaller for inflationary trajectories closer to the ϕ-axis. In a universe undergoing a sufficiently
long period of inflation, it may, however, not require much fine-tuning to end up with an
inflationary trajectory running close to the ϕ-axis during the last N∗ e-folds of inflation, cf.
the comment below Eq. (5.50).

In this chapter, we derived an alternative scenario of hybrid inflation to the one employed
in Chapter 3. Starting from a class of models which feature a conformal symmetry of the
matter sector and an amazingly simple structure in the Jordan frame, we worked out the
predictions for the simplest realization of D-term inflation in this setup. An interesting
next step would be to extend the model described here to a more complete setup containing
additional fields, possibly identifying the phase transition at the end of inflation with the
B−L phase transition as in Chapter 3. This might also alleviate the current tension of the
minimal model presented here with the recent Planck data [2].
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The cosmological realization of spontaneous U(1)B−L breaking can account for inflation as
well as for the production of matter and dark matter in accordance with all experimental
bounds. In particular, the false vacuum of B−L drives F-term hybrid inflation, ending in a
B−L breaking phase transition governed by tachyonic preheating. At the end of this non-
perturbative process, the universe is dominated by non-relativistic B−L Higgs bosons and
cosmic strings. This sets the initial conditions for the following perturbative reheating phase.
Here, the most important process is the decay of the B−L Higgs bosons into relativistic,
nonthermal right-handed neutrinos, which in turn decay into the MSSM degrees of freedom
forming the thermal bath. Consequently, the parameters governing this process are the ef-
fective neutrino and Higgs decay rates. Remarkably, this reheating process does not only
generate the entropy of the thermal bath but simultaneously generates a lepton asymmetry
via the decay of thermally and nonthermally produced right-handed neutrinos and moreover,
generates a gravitino abundance which can account for the dark matter abundance observed
today. In summary, we find that spontaneous B−L breaking can account for the origin of
the hot early universe, with all cosmological processes determined by the parameters of a
fundamental Lagrangian, i.e. the masses and couplings of elementary particles.

This is particularly true for the reheating temperature, which, in our model, is no longer an
input parameter, but is determined by the parameters of the neutrino and B−L Higgs sector.
A characteristic feature is an epoch of approximately constant temperature, during which the
expansion of the universe is just balanced by entropy production. During this epoch, the main
part of the lepton asymmetry and the gravitino abundance is produced. This explains why
the reheating temperature establishes a connection between the resulting matter-antimatter
asymmetry and dark matter abundance, thus enabling us to derive relations between the
neutrino parameters and the superparticle mass spectrum. Moreover, the existence of a
plateau in the temperature evolution simplifies the analytical description of the process and
allowed us to derive semi-analytical formulas for the output of the reheating process. In
view of the prospect of possibly probing the reheating temperature by a measurement of
the gravitational wave background, these semi-analytical expressions are particularly useful
to determine which fundamental parameters of the theory could be constrained by such a
measurement.
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Considering the generation of matter and dark matter, our model features a rich phe-
nomenology. The matter asymmetry is produced via leptogenesis with a thermal and a
nonthermal contribution. The former is generated by right-handed neutrinos and sneutrinos
originating from the thermal bath, whereas the latter is predominantly due to nonthermal
neutrinos produced in B−L Higgs boson decays. We tracked both contributions explicitly
throughout the reheating process, identifying the regions in parameter space where they are
important, respectively. For dark matter we considered two possibilities, depending on the
hierarchy of the superparticle mass spectrum. If the gravitino is the LSP, then gravitino dark
matter can be thermally produced during the reheating process in just the right amount to
explain today’s dark matter abundance. This places constraints on the parameter space. For
example, for a gluino mass of 1 TeV, we found a lower bound on the gravitino mass of about
10 GeV. The order of magnitude of M1, the mass of the lightest of the heavy neutrinos, is
1011 GeV. For a wide range of light neutrino masses this results in a reheating temperature
of order 109 − 1010 GeV. If, on the contrary, the gravitino is the heaviest particle of the
spectrum and the LSP is a neutralino, then the latter is produced nonthermally in the decay
of gravitinos generated during reheating, as well as thermally, invoking the usual freeze-out
mechanism. Also in this case we found relations between the parameters of the neutrino
sector and the superparticle mass spectrum. For instance, if the LSP is a higgsino, a mass of
the lightest neutrino of 0.05 eV would require a higgsino mass below 900 GeV and a gravitino
mass of at least 10 TeV.

Turning to inflation, supersymmetric F-term hybrid inflation can naturally be accommo-
dated in the superpotential describing the B−L phase transition. The inflaton field is part of
a gauge singlet supermultiplet governing the dynamical transition from the B−L conserving
phase to the true vacuum, where B−L is broken. The B−L Higgs fields can be identified as
the waterfall fields of hybrid inflation. Requiring the correct normalization of the primordial
power spectrum and consistency with bounds on the cosmic string tension, the scale of B−L
breaking is fixed to roughly vB−L ' 5 × 1015 GeV. Supersymmetric F-term hybrid inflation
generically yields a value for the scalar spectral index ns which is somewhat larger than the
observed value. This can be remedied by adding additional higher-dimensional terms to the
Kähler potential and tuning their coefficients to reproduce ns ∼ 0.96.

In the attempt of avoiding such a tuning in the coefficients of the Kähler potential, we
investigated a second inflation model, dubbed superconformal D-term inflation. This is an ex-
ample of a larger class of models referred to as canonical superconformal supergravity models
in [39]. These exhibit an amazingly simple structure in the Jordan frame. For example, the
matter sector respects the superconformal symmetry and features canonical kinetic terms as
well as a scalar potential which closely resembles the scalar potential of global supersymme-
try. We find that in such a setup, supersymmetric F-term hybrid inflation cannot be realized,
but implementing D-term hybrid inflation leads to an interesting and predictive model. We



Conclusion and Outlook 121

generically find a two-field D-term inflation model with the trajectory along the real part of
the inflaton field as an attractor. For this attractor, we analytically calculated the predic-
tions for the primordial power spectrum, both in the Einstein and in the Jordan frame, thus
demonstrating that both methods lead to the same result. This might prove useful for future
work in this field, since the calculation in the Jordan frame, although less familiar, turns out
to be significantly simpler. For the general two-field situation, we determined the outcome of
inflation numerically. We find that large values of the U(1) gauge coupling g, compatible with
grand unification, are possible, and that a spectral index as low as ns ∼ 0.96 can be achieved.
However, simultaneously requiring a small spectral index and a low cosmic string tension in
accordance with the recent findings of the Planck satellite [2] disfavours this simplest model of
superconformal D-term inflation at about 3σ. Nevertheless, this model can serve as a promis-
ing starting point for future work. A number of questions remain to be addressed. Can the
U(1) symmetry broken at the end of D-term inflation be related to U(1)B−L? Moreover, the
MSSM field content needs to be included into the model, with particular focus on possible
flat directions during inflation. In both the F- and D-term model considered, it would be
interesting to investigate a possible embedding into an (orbifold) GUT setup.

A promising possibility of testing early universe models is by a measurement of the grav-
itational wave background. We therefore calculated the entire GW spectrum associated with
the B−L phase transition. The contribution from Abelian Higgs cosmic strings has a very
similar shape to the spectrum stemming from inflation but with an amplitude which is roughly
eight orders of magnitude larger for typical parameter values. This opens up the possibility
to probe the reheating temperature with future gravitational wave detectors such as BBO
or DECIGO, even for models in which the GW background from inflation is suppressed by
a small tensor-to-scalar ratio. Combining this with the results obtained from requiring the
correct dark matter abundance and a sufficient baryon asymmetry, we found testable relations
between fRH, the frequency associated with a kink in the GW spectrum due to reheating,
and parameters of the neutrino and superparticle mass spectrum. However, the prediction
for the GW spectrum from cosmic strings is plagued with large theoretical uncertainties due
to the technical problem of performing simulations over vast ranges of scales and to the phys-
ical question of how cosmic strings primarily lose energy. As a result, the predictions of
the Abelian Higgs and the Nambu-Goto model differ not only in the shape of the spectrum,
but also the normalization in the NG model is found to be five orders of magnitude larger
than in the AH model. Consequently, in this case the resulting GW spectrum could already
by discovered with eLISA or advanced LIGO. Clearly, these theoretical uncertainties require
further study. In particular, including the effect of gravitational backreaction into the NG
simulations (which is thought to determine the size of the cosmic string loops, an otherwise
free parameter) and increasing the simulation length of AH simulations might shed light on
the question of if, when and how these models converge [28]. Another challenging task is
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the measurement of the GW background in the high frequency range relevant for preheating.
These frequencies are currently out of reach for existing and planned GW detectors. How-
ever, there are some (rather speculative) ideas on how to tackle this task in the future, see
Ref. [3] and references therein. In the context of our model, such a measurement would yield
independent determinations of the model parameters M1, mS and m̃1, allowing to test our
predictions.

Throughout this thesis, we assumed a B−L breaking scale of vB−L = 1015 GeV, motivated
by the analysis in Ref. [118], requiring consistency between F-term hybrid inflation and bounds
on the cosmic string tension. However, as was recently pointed out in Ref. [119], this might
also be achieved for smaller values of vB−L ' (0.7 − 1.6) × 1015 GeV. Significantly reducing
the scale of B−L breaking would open up a parameter region in which the nonthermal right-
handed neutrinos produced in Higgs boson decays live long enough to become non-relativistic,
cf. Appendix C of Ref. [73]. The energy density of the universe during reheating would hence
successively be governed by nonthermal non-relativistic Higgs bosons, nonthermal relativistic
neutrinos, nonthermal non-relativistic neutrinos and thermal relativistic MSSM degrees of
freedom. If this additional epoch governed by non-relativistic neutrinos is long enough, it
could lead to an additional feature in the GW spectrum, clearly distinguishing such a scenario
from the standard reheating process driven by inflaton decay. The precise predictions for the
GW spectrum for this case remain to be investigated.

Finally, assembling the pieces of the puzzle, we find that key features of our model can
be tested in upcoming experiments. First, consider the concept of a local B−L symmetry,
spontaneously broken at the GUT scale. This is the starting point of our model, beautifully
linking GUTs, leptogenesis, the observed small neutrino masses and hybrid inflation. A clear
prediction of this concept is the formation of cosmic strings, with a string tension governed by
the GUT scale. Already, the cosmic string bound deduced from the scalar power spectrum of
the CMB fluctuations measured by the Planck satellite is approaching this regime [2]. With
further data and analyses from the Planck mission expected next year, and ongoing searches
for other cosmic string signals such as massive radiation and gravitational waves, probing this
prediction is within reach.

A second important building block of our model is local supersymmetry, leading to the
gravitino and the neutralinos as dark matter candidates, with their abundance governed by
the reheating temperature of the early universe. Here, supersymmetry searches at colliders
as well as dark matter searches might soon probe this idea. For example, if dark matter
searches found WIMP dark matter with an annihilation cross section compatible with the
pure thermal freeze-out model or axion dark matter in a sufficient amount to explain the
observed dark matter abundance, this would rule out the model presented here. On the
contrary, if dark matter searches discovered WIMPs with an annihilation cross-section too
large to explain the observed abundance by thermal freeze-out only, this would support our



Conclusion and Outlook 123

setup since the nonthermal WIMP contribution could explain the difference between a too
small thermal abundance and the observed value. Alternatively, if the LHC found hints for
supersymmetry with a gravitino LSP (cf. e.g. Ref. [192]), this would support our gravitino
dark matter model. Note that in the model presented here, it is not possible to tune the
produced gravitino abundance to arbitrary small values and to thus render the corresponding
dark matter component (gravitinos or nonthermally produced neutralinos) subdominant to
an arbitrary different dark matter component. The reason is that the gravitino abundance
and the produced lepton asymmetry are linked by the reheating temperature, and reducing
the former by more than about one order of magnitude would render leptogenesis incapable
of explaining the observed baryon asymmetry.

Third, a measurement of the gravitational wave spectrum would yield direct information
about early universe cosmology, probing inflation, preheating and the existence and energy
loss mechanism of cosmic strings. Such a measurement could rule out or yield direct evidence
for our model. And although a precise measurement of the entire spectrum is still a dream
of the future, upcoming gravitational wave detectors such as eLISA, advanced LIGO and
BBO/DECIGO might well yield the first detection of the gravitational wave background in
frequency bands which are of great interest for probing our model.
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Appendix A

CP Violation in 2 → 2 Scattering

Processes

To calculate the lepton asymmetry consistently to first order in the CP violation parameter ε,
2 → 2 scattering processes involving an (anti-)(s)lepton in the initial and final state must
be considered. Scatterings with an on-shell neutrino in the intermediate state are already
included in decay and inverse decay processes. We are hence left with the task to calculate the
off-shell contribution of these processes. For the non-supersymmetric case, this was discussed
in Refs. [149] and [193]. Here we explain the supersymmetric case. We first study the CP -
violating contribution of the full 2 → 2 scattering processes and will see that this vanishes to
O((hν)4). Hence to this order in the Yukawa coupling, the CP -violating off-shell contributions
can be added by subtracting the corresponding on-shell contributions.

The right-hand side of the integrated Boltzmann equation is given by the interaction
density γ = gX(2π)−3

∫
d3pCX , cf. Eqs (3.23) and (3.26). For distinct final and initial states,

this is related to the corresponding S-matrix elements∑
i,f

γ(i→ f) =
∑
I,F

|SFI |2fI , (A.1)

where the summation over the lower case letters on the left-hand side runs over different parti-
cle species and the summation over capital letters on the right-hand side additionally includes
the summation over all internal degrees of freedom as well as the phase space integrals for all
initial and final state particles. For the case of 2 → 2 scatterings in the Boltzmann equation
for the lepton asymmetry, the initial and final states of interest are {i, f} ∈ {`H, ˜̀H̃, ˜̀H, `H̃}.
The internal degrees of freedom are helicity, weak isospin and flavour. fI denotes the phase
space distribution function of the particle species i.

Using this notation, we now consider the CP -violating contributions of the full 2 → 2
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scattering processes,∑
i,f

[
γ(i→ f̄)− γ(̄i→ f)

]
=
∑
I,F

[
|SF̄ I |2fI − |SF Ī |2fĪ

]
=
∑
I,F

[
|SF̄ I |2 + |SFI |2 − |SF Ī |2 − |SF̄ Ī |2

]
fI

=
∑
I

[1− 1] fI +O((hν)4) = O((hν)4) .

(A.2)

The bar indicates CP conjugation and fI = fĪ are the phase space distributions of the light
MSSM (anti-)particles in thermal equilibrium. Here in the second line of Eq. (A.2), we ex-
tended the summation over the final states to include the lepton number conserving processes.
These can be grouped in pairs of CPT conjugates and hence, due to CPT invariance, yield
a vanishing contribution in total. In the third line, we exploit the unitarity of the S matrix,
i.e. that the summation over all possible final states yields 1. Since, however, in Eq. (A.2)
the sum runs only over all possible two-particle final states, we obtain corrections caused by
neglecting multi-particle final states. For off-shell intermediate states these corrections are of
O((hν)8) [193], however close to the resonance pole they are enhanced to O((hν)4) [78, 148].

Concluding, we find that the CP -violating contributions of the 2 → 2 scattering processes
involved in the production of the lepton asymmetry vanish, with corrections of O((hν)4).
Hence the on- and off-shell contributions cancel each other and we can use the usual ‘recipe’
of replacing the CP -violating contributions of the off-shell (s)neutrino decays by the negative
of the respective on-shell contributions, i.e.∑

f

∑
α

γ(Noff
α → f) = −

∑
f

∑
α

γ(Non
α → f) +O((hν)4) , (A.3)

where α is a flavour index. Note that looking at this line of argument closely, this argument
holds separately for neutrinos and sneutrinos because of distinct sets of initial and final states,
but the summation over flavour and lepton/slepton is unavoidable.



Appendix B

Parameter Dependence of the

Reheating Process

In view of the different ‘reheating temperatures’ which turned out to be relevant in different
parts of this thesis, this appendix addresses the parameter dependence of the reheating pro-
cess and in particular of the different characteristic temperatures. An important aspect will
the parameter dependence of the kink in the GW spectrum at fRH associated with reheating.
Here, the influence of reheating on the GW spectrum has so far been discussed for the stan-
dard scenario of reheating via inflaton decay, see e.g. Refs. [104, 194], but not for a two-stage
reheating process involving two different nonthermal particle species (here the B−L Higgs
boson σ and the right-handed neutrino N1). We will thus discuss how this effects the predic-
tions for the position and shape of kink compared to the standard situation. We expect that
our results hold beyond the specific setup of our model for any two-stage reheating process.

This appendix is organized as follows. Sec. B.1 recalls the different characteristic tem-
peratures employed to describe the reheating process, explaining their physical meaning and
the parameter dependencies. Sec. B.2 deals with the evolution of the scale factor during
reheating, a crucial ingredient in understanding the parameter dependencies of the reheating
process and in particular the differences and similarities of one- and two-stage reheating. Fi-
nally, in Sec. B.3 we summarize by pinpointing which parameters can be constrained from
measurements of the GW background. For simplicity, we shall employ the Froggatt-Nielsen
relation mS = η−2M1, cf. Sec. 2.5, throughout the discussion. For more details, see also [19].

B.1 Characteristic temperatures of the reheating process

The reheating process exhibits several characteristic temperatures. With a time-resolved
description of the process at hand, obtained by numerically solving the respective Boltzmann
equations, cf. Sec. 3.5, we can directly read off the temperature of the thermal bath at the
different times of interest. The resulting temperatures, together with the evolution of the
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dominant components of the energy density are visualized in Fig. B.1 for three different
points in parameter space, m̃1 = 10−5, 10−3 and 10−1 eV, corresponding to different values
of the ratio ΓSN/Γ

0
S .

The neutrino and Higgs decay temperatures

The two-stage reheating process described in Sec. 3.5 is governed by the interplay of the
two decay (effective) widths Γ0

S and ΓSN1
, which determine the time-scale of the decay of the

B−L Higgs bosons and neutrinos, respectively. The corresponding decay temperatures were
introduced in Eqs. (3.59) and (3.60) as

T σRH = T
[
H(aσRH) = Γ0

σ

]
, TNRH = T

[
H(aNRH) = ΓSN1

]
.

After solving the Boltzmann equations governing the reheating process numerically, we were
able to give semi-analytical formulas for these quantities, cf. Eqs. (4.1) and (4.2).

Transition from non-relativistic to relativistic degrees of freedom

In Sec. 4.3 we introduced the T̂ σRH which marks the transition from a universe dominated
by non-relativistic particles (B−L Higgs bosons) to an universe dominated by relativistic
particles (N1 neutrinos and/or MSSM particles),

T̂ σRH = T

[
ρS(âσRH) =

1
2
ρtot(âσRH)

]
.

This temperature characterizes the point in time when the evolution of the Hubble parameter
switches from H2 ∝ a−3 to H2 ∝ a−4. Consequently, this temperature is directly linked to
the kink in the GW spectrum marking the change in the equation of state after reheating,
and we refer to it as TRH in Sec. 4.3. It is per definition closely related to the Higgs decay
temperature and hence its parameter dependencies, given in Eq. (4.44), are identical to those
of T σRH.

Transition from nonthermal to thermal degrees of freedom

In our two-stage reheating scenario the transition from non-relativistic to relativistic particles
dominating the energy density does not necessarily coincide with the transition from nonther-
mal to thermal degrees of freedom. The reason is that the right-handed neutrinos produced
in the Higgs boson decay are relativistic (and remain so until they decay) but nonthermal.
Hence another interesting temperature is the ‘radiation domination temperature’ TR, marking
the point in time when the thermal degrees of freedom, i.e. the MSSM particles, take over as
the dominant contribution of the energy density,

TR = T

[
ρr(aR) =

1
2
ρtot

]
. (B.1)
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Figure B.1: Evolution of the temperature (upper panel) as well as of the B−L Higgs (S), (s)neutrino (Nnt
1 )

and radiation (r) energy densities (lower panel) as functions of the scale factor a for different values of em1,
while keeping M1 = mS/300 = 1011 GeV and vB−L = 5 × 1015 GeV fixed. The ratio ΓS

N1/Γ
0
S consequently is

ΓS
N1/Γ

0
S � 1, ΓS

N1/Γ
0
S = O(1), ΓS

N1/Γ
0
S � 1 for em1 = 10−5, 10−3, 10−1 eV, respectively. The coloured markers

respectively indicate the values of the various benchmark temperatures as labelled in the upper panel.
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The effective kink temperature

In Sec. 4.3, we further introduced the would-be temperature T̃RH and the effective kink tem-
perature T∗. The continuing decay of the B−L Higgs bosons and heavy neutrinos after âσRH

results in the production of further entropy, modifying the naive assumption of an adiabatic
expansion. T̃RH denotes the temperature of the thermal bath would have had at a = âσRH if,
extrapolating back in time from the present epoch, no entropy production took place as long
as a ≥ âσRH,

T̃RH = ∆1/3 T̂ σRH , (B.2)

with ∆ quantifying the actual entropy production after a = âσRH, cf. Eq. (5.21). Explicitly
solving the Boltzmann equations yields

∆ '


2.0 x > 180

8.5
(

M1

1011 GeV

)0.65( m̃1

10−4 eV

)−0.65

x < 180
, (B.3)

with x defined in Eq. (4.3). Combining this with the expression for T̂ σRH in Eq. (4.44), the
would-be temperature T̃RH turns out to be independent of m̃1. This can also be understood
analytically: In the upper panel of Fig. B.1, T̃RH is obtained geometrically as the intersection
of the extension of the asymptotic behaviour of T (a) at late times (dashed thick red line)
and vertical thin black dashed line marking âσRH. From Fig. B.1 we see that both quantities
(and hence also T̃RH) do not depend on m̃1. The reason for this is that they are both directly
determined by the initial energy density ρ0 and the evolution of the scale factor, which will
turn out to be insensitive to m̃1, cf. Sec. B.2.

Finally, above Eq. (4.59), we introduced the effective kink temperature,

T∗ = R1/2 T̃RH , (B.4)

as the temperature into which the correction factors ∆ and αRH have been absorbed and
which directly determines the position of the kink in the GW spectrum, cf. Eq. (4.59). Here,
the factor R as introduced in Eq. (4.58) can be geometrically constructed from the lower
panel of Fig. B.1. The latter shows the various energy densities, rescaled by a factor a4,
which compensates the expansion at late times. R is then given as the difference between
the asymptotic value of energy density in the thermal bath at late times (thick dashed red
line) and the energy density in B−L Higgs bosons at âσRH (intersection of thick black curve
and thin dashed black vertical line). Transferring this value to the upper panel enables us to
identify T∗. From the lower panel of Fig. B.1 we can see that R, and hence T∗, is independent
of m̃1. This can be traced back to the fact that ρS , the asymptotic value of ρr and the
evolution of the scale factor do not depend on m̃1, a point we will prove in the next section.
Indeed, R is furthermore also independent of M1, cf. Sec. B.2. Taking all of this together, we
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find

T∗ ' 3.9× 109 GeV
(

M1

1011 GeV

)1.5

. (B.5)

B.2 The scale factor during reheating

In Sec. 3.4.1 we described our method of numerically determining the scale factor during
reheating. The basic idea was to analytically solve the Boltzmann equations for the dominant
contributions to the energy density, ρS and ρSN1

, treating the scale factor a(t) as variable.
Inserting the solutions for ρS and ρSN1

, cf. Eqs. (3.36) and (3.38), into the Friedmann equation
yields an equation for a(t), which can be solved numerically by requiring self-consistency.
Now, we add the following observation: In the procedure described above, we introduce an
imprecision by ignoring the contribution to the energy density due to the MSSM degrees of
freedom produced in the decays of the neutrinos NS

1 . But since both the nonthermal neutrinos
NS

1 as well as the thermal MSSM particles are relativistic degrees of freedom, the Friedmann
equation is actually insensitive to the transformation of one to the other.1 Hence, for the
determination of the scale factor, it is sufficient to only differentiate between non-relativistic
and relativistic degrees of freedom. The former are described by Eq. (3.36), as in Sec. 3.4.1
and the latter are described by Eq. (3.38) after omitting the term responsible for the decay
into MSSM particles. This implies for the energy densities:

ρS(t) =mS nS(t) , nS(t) = nS (tPH)
(
aPH

a(t)

)3

e−Γ0
S(t−tPH) , (B.6)

ρrel(t) =mS Γ0
S

∫ t

tPH

dt′
(
a(t′)
a(t)

)4

nS(t′) . (B.7)

Inserting these into the Friedmann equation,(
ȧ

a

)2

=
1

3M2
P

(ρS + ρrel) , (B.8)

and solving for a(t) as described above yields the evolution of the equation of state coefficient
ω during reheating, cf. Eq. (3.29), as shown in Fig. B.2. Note that the parameter m̃1 does
not appear in Eqs. (B.6) to (B.8), and hence the resulting quantities ρS(t), ρrel(t), a(t) and
ω(a) cannot depend on m̃1. The same holds for the asymptotic value of ρr, ρr(t � tRH) =
ρrel(t � tRH). Moreover, Fig. B.2 demonstrates that the shape of ω(a) is insensitive to M1,
i.e. the three depicted curves differ only by shifts along the horizontal axis.

This has a number of remarkable consequences. First, since the shape of the GW spectrum

1 This statement holds throughout the parameter space investigated in this paper, cf. Eq. (3.21), since explic-
itly solving the Boltzmann equations of Sec. 3.4.2 yields that the NS

1 neutrinos remain relativistic throughout
their lifetime. However, for smaller values of Γ0

N/Γ
0
S , achieved e.g. by lowering the scale of B−L breaking, the

neutrinos can live long enough to become non-relativistic, cf. Ref. [73].
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Figure B.2: Evolution of the equation of state coefficient ω as function of the scale factor a for three different
values of M1 = η2mS . The vertical dashed lines indicate the respective values of âσ

RH, i.e. the times when half
of the non-relativistic B−L Higgs particles have decayed.

from inflation is entirely determined by the evolution of the scale factor, the fact that the
shape of a(t) is independent of the model parameters directly implies that the coefficients
c
(1)
2 and c

(2)
2 of the transfer function T2 must be constant across the entire parameter space.

In other words, the shape of the kink in the GW spectrum at k = kRH is insensitive to the
details of the reheating process and in particular insensitive to the discrimination between
one- and two-stage reheating.

Second, numerically evaluating a(t) as described above, we find2

âσRH

aPH
∝M−1.3

1 , H(âσRH) ∝M 3
1 . (B.9)

Exploiting that in our Froggatt-Nielsen model HPH ∝
√
λ = (M1/vB−L), cf. Eq. (4.76),

this implies that also the factor CRH = (aPHH
2/3
PH )/(aH2/3)|âσ

RH
introduced in Eq. (4.60) to

account for the change in the equation of state between aPH and âσRH is independent of all
model parameters. An explicit calculation yields CRH ' 1.13.

Third, rewriting the factor R introduced in Eq. (4.58) as

R =

(
a4ρrel

)
a=âσ

RH

(a4ρrel)a�âσ
RH

=
IR (t = tRH)
IR (t� tRH)

, IR(t) =
∫ t

tPH

dt′
a(t′)
aPH

e−Γ0
S(t′−tPH) , (B.10)

2In our Froggatt-Nielsen flavour framework, the B−L Higgs decay rate Γ0
S also scales as M 3

1 , rendering in
directly proportional to H(âσ

RH). An explicit calculation yields H(âσ
RH) ' 0.58Γ0

S .
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and inserting the solution for the scale factor, we find

IR (t = tRH) ∝M−4.3
1 , IR (t� tRH) ∝M−4.3

1 , → R = const. . (B.11)

An explicit calculation then yields the value of R used in Sec. 4.3, R ' 0.41.

Finally, note that the crucial feature of the two-stage reheating process described in
Sec. 3.5 was the interplay of the two decay rates ΓSN1

and Γ0
S . The insensitivity of the quan-

tities calculated in this section to the two-stage nature of the reheating process, can directly
be traced back to the fact that for the evolution of the scale factor, governed by Eqs. (B.6)
to (B.8), only one of the two decay rates, namely Γ0

S , plays a role. The decay rate ΓSN1
drops

out, because the Friedmann equation does not differentiate between relativistic neutrinos and
MSSM radiation. With Γ0

S controlled by M1 (and mS), but ΓSN1
additionally depending on

m̃1, the appearance of light neutrino mass scale m̃1 turns out to be a good indicator for the
importance of the two-stage nature of the reheating process for the various outputs.

B.3 Probing the model parameters with gravitational waves

The kink in the GW spectrum marking the change in the equations of state of the universe
after reheating is located at fRH, which is per definition directly related to T∗, cf. Eq. (4.63).
T∗ is related to T̃RH by the constant factor R, cf. Eqs. (B.4) and (B.11). As described below
Eq. (B.3), T̃RH is determined by âσRH and the asymptotic value of (a(t)/aPH)4ρrel for late
times, both of which are determined by Eqs. (B.6) to (B.8). Exploiting nS(tPH) ' ρ0/mS ,
with ρ0 the vacuum energy density of inflation, one can easily see that both quantities can
only depend on the model parameters Γ0

S and ρ0. In the context of our Froggatt-Nielsen
model and with vB−L fixed by observations, this implies that a measurement of fRH would
determine the B−L Higgs mass mS and the (s)neutrino mass M1,

mS ' 2.1× 1013 GeV
(

fRH

100 Hz

)0.67

, M1 ' 7.1× 1010 GeV
(

fRH

100 Hz

)0.67

. (B.12)

Assuming that the coefficient c(2)2 of the transfer function T2, cf. Eq. (4.70), is roughly unity3,
fRH might in practice be determined by measuring the amplitude of the GW spectrum at two
frequencies f− � fRH and f+ � fRH :

fRH '
[
ΩGW(f+)
ΩGW(f−)

]1/2

f+ . (B.13)

Although T∗ and hence fRH turn out to be insensitive to m̃1, this is not the case for

3For the GW spectrum from inflation, we found c
(2)
2 ' 1.04, cf. Eq. (4.70). Considering the GW spectrum

from AH cosmic strings, this value is expected to be slightly modified, depending on the precise shape of C̃,
cf. Eq. (4.85) and the footnote on page 87.
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the evolution of the temperature during the reheating process in general, as can be seen,
for example, from the m̃1 dependence of TNRH and T

σ (+)
RH . Consequently, a determination of

fRH would not suffice to determine the characteristics of the reheating process, and it would
in particular still be possible to tune m̃1 to modify these. This is an important feature of
our two-stage reheating scenario, distinguishing it from the usual scenario of reheating via
inflaton decay.



Appendix C

Calculating the Spectral Index in

the Jordan Frame

In Sec. 5.3 we calculated the predictions for single-field superconformal D-term inflation in
the Einstein frame. Considering the simple structure of the CSS models in the Jordan frame,
an obvious question is whether (and how) this calculation can be performed in the Jordan
frame. We will address this question in this appendix. Starting from the transformation laws
between the Jordan and the Einstein frame, cf. Sec. 5.1.1, we will determine the effective
1-loop scalar potential in the Jordan frame in Sec. C.1. Then, in Sec. C.2, we calculate the
observables in the Jordan frame, following Ref. [195].

C.1 One-loop scalar potential in the Jordan frame

In Sec. 5.2.2, we saw that the Coleman-Weinberg 1-loop potential, cf. Eq. (3.6), played a
crucial role for the dynamics of the inflaton in the Einstein frame. Let us hence determine
the corresponding quantity in the Jordan frame. Since the 1-loop potential is calculated from
the tree-level mass matrix of the superfields S±, our first task is to determine these masses in
the Jordan frame. These can be explicitly calculated from Eqs. (5.18), (5.23), (5.25), (5.30)
and (5.37). The background metric in the Jordan frame is gJµν = Ω2

0 ηµν , cf. Eqs. (5.33)
and (5.40), with ηµν the Minkowski metric employed in the corresponding Einstein frame
calculation. With this, one easily verifies that the scalar masses mJ

± are identical with the
masses given in Eq. (5.42),

mJ
± = mE

± (C.1)

According to the sum rule, the same then holds for the fermion mass mf , cf. Eq. (5.44). This
leads to the one-loop correction for the scalar potential

√
−gJ V 1l

J =
√
−gE V 1l

E , i.e.

V 1l
J = Ω−4

0 V 1l
E . (C.2)
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Transforming back to the Einstein frame, one obtains V 1l as one-loop correction to the scalar
potential, in agreement with the calculation performed directly in the Einstein frame.

At this point it is interesting to understand what mechanism is at work here to ensure
that the masses in the Einstein and Jordan frame are equal. To demonstrate this, let us
consider a toy CSS model, consisting of a single field S with a kinetic term and a mass term.
In the Einstein frame, the Lagrangian is

−LE =
√
−gE

[
KSS̄ g

µν
E (∂µS)(∂ν S̄) + VE

]
=
√
−gEKSS̄

[
gµνE (∂µS)(∂ν S̄) +m2

E |S|2
]
. (C.3)

Rewriting the Lagrangian in the Jordan frame, cf. Secs. 5.1.1 yields

− LJ =
√
−gJ

[
gµνJ (∂µS)(∂ν S̄) + VJ

]
= Ω2√−gE

[
gµνE (∂µS)(∂ν S̄) +m2

J |S|2
]
, (C.4)

where we have exploited the feature of conical kinetic terms characteristic for the CSS models,
cf. Sec. 5.1.3, and have used

√
−gJ = Ω4√−gE and gµνJ = Ω−2gµνE . From the requirement

LE = LJ , we can directly read off KSS̄m
2
E = Ω2m2

J . Returning to our model of supercon-
formal D-term inflation, cf. Secs. 5.2 and 5.3, we immediately see that on the inflationary
trajectory

KS+S̄+

∣∣
S±=0

= KS−S̄−

∣∣
S±=0

= Ω2
0 , (C.5)

and hence m2
J = m2

E . As an explicit calculation shows, this does not only work for the
toy model above, but indeed for all the contributions to the S± mass matrix, including the
FI-term contributions.

C.2 Slow-roll parameters and observables

With the 1-loop scalar potential in the Jordan frame at hand, we can now proceed and
calculate the observables, in particular the spectral index. Note that we cannot use Eqs. (3.9)
with (3.10), since this is only valid in the Einstein frame. Instead, this section is based on
Ref. [195], where the authors derive slow-roll parameters and their relation to the spectral
index for a scalar field which is non-minimally coupled to gravity.

According to Ref. [195], the Einstein frame slow-roll parameters ε and η entering into

ns = 1− 6ε+ 2η ,

are instead, in terms of Jordan frame quantities, given by

ε =
1

2 Ω2
0 f

(
V ′eff
V 0
J

)2

, η =
1

Ω5
0 f

1/2 V 0
J

d

dϕ

(
V ′eff Ω3

0

f1/2

)
, (C.6)
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with

V ′eff := Ω−4
0

d

dϕ
(Ω4

0 V
1l
J ) , f := 1 +

3
2

Ω2
0

[
d

dϕ
(Ω−2

0 )
]2

. (C.7)

Here the notation is as in Sec. 5.3, i.e. V 0
J = Ω−4g2ξ2/2, Ω0 is given in Eq. (5.40) and ϕ is

the inflaton. Note that V ′eff as defined in (C.7) vanishes for VJ ∝ Ω−4
0 , i.e. for constant VE .

Applying Eqs. (C.6) and (C.7) to our model, we find

ε ' 2
(
g2q2

8π2

)2 1
ϕ2

1
1 + 1

6χ(1 + χ)ϕ2
,

η ' −g
2q2

4π2

1
ϕ2

[
1− 1

6(1 + χ)ϕ2
] [

1 + 1
3χ(1 + χ)ϕ2

][
1 + 1

6χ(1 + χ)ϕ2
]2 ,

i.e. just the result found in the Einstein frame, cf. Eq. (5.57). This shows, that the inflationary
predictions can be equivalently calculated in both the Einstein and the Jordan frame. In
Secs. 5.3 and 5.4 we stick to the Einstein frame, since most readers will be more familiar with
Eq. (3.10) than with Eq. (C.6). This is in particular true for the two-field case, when we
exploit the extension of Eq. (3.10) to the multi-field case as in [191].1

1If one wanted to perform a multi-field calculation in the Jordan frame, Ref [196] which extends the analysis
of Ref. [195], would probably be a good starting point. For this thesis, this appendix shall however suffice to
illustrate the connections between the Einstein and Jordan frame when calculating the observables of slow-roll
inflation.
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