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Abstract: We present a general formalism for the calculation of finite-width contributions

to the differential production cross sections of unstable particles at hadron colliders. In this

formalism, which employs an effective-theory description of unstable-particle production

and decay, the matrix element computation is organized as a gauge-invariant expansion in

powers of ΓX/mX , with ΓX and mX the width and mass of the unstable particle. This

framework allows for a systematic inclusion of off-shell and non-factorizable effects whilst

at the same time keeping the computational effort minimal compared to a full calculation

in the complex-mass scheme. As a proof-of-concept example, we give results for an NLO

calculation of top-antitop production in the qq̄ partonic channel. As already found in a

similar calculation of single-top production, the finite-width effects are small for the total

cross section, as expected from the näıve counting ∼ Γt/mt ∼ 1%. However, they can

be sizeable, in excess of 10%, close to edges of certain kinematical distributions. The

dependence of the results on the mass renormalization scheme, and its implication for a

precise extraction of the top-quark mass, is also discussed.
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1 Introduction

The performance of the Large Hadron Collider (LHC) so far has been extremely success-

ful, with about 5fb−1 of integrated luminosity collected in the 2011 run and more than

20 fb−1 in 2012. This has led to an unprecedented accuracy in the measurements of many

Standard Model (SM) cross sections and distributions, both in the electroweak and strong

sectors, and also to the discovery of a new particle consistent with a SM Higgs boson. With

the high-energy run which will follow the 2013 shutdown, experimental errors are bound

to reduce even further, leading to higher-precision measurements and to the possible ob-

servation of new-physics effects beyond the SM. This high experimental precision clearly

motivates similarly accurate theoretical predictions for cross sections and kinematical dis-

tributions, so that on the one hand the clean extraction of signals from the data is possible

and, on the other hand, contributions to the backgrounds to processes of interest can be

accurately constrained.
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Most of the phenomenologically interesting processes at the LHC, such as W and Z

boson production, top-quark production and Higgs production, not to mention beyond-

the-Standard-Model (BSM) processes, like supersymmetric (SUSY) particle production,

involve massive unstable particles. These particles are not asymptotic states and show

up in detectors as energetic jets and leptons, often being accompanied by large transverse

missing energy /ET . The necessity of precise theoretical predictions therefore raises the

question of how to correctly treat the decay of the intermediate unstable particle to the

physical final states. For observables which are inclusive in the final states originating from

the unstable-particle decay, it is often sufficient to treat the massive particles as stable,

ignoring their decay. The error associated with this approximation is formally of order

ΓX/mX , where ΓX and mX are the width and mass of the unstable particle. For the afore-

mentioned processes this corresponds to less than a few percent, i.e. typically smaller than

the experimental errors. Clearly, while the stable approximation is appropriate for the total

cross section, it cannot be used to predict arbitrary kinematical observables. Moreover, the

error associated with this approximation could actually be numerically sizeable for new,

yet undiscovered wide resonances, for example strongly-decaying SUSY particles.

A step forward towards a realistic description of production and decay of an unstable

particle X is the narrow-width approximation (NWA) which is a framework commonly used

in the context of high-energy calculations for hadron colliders. In the NWA the particle

is produced and allowed to decay to the physical final states while remaining on shell. At

next-to-leading order (NLO), radiative corrections are given by factorizable virtual and real

contributions to the on-shell production and decay subprocesses. While technically only

slightly more involved than the stable-top approximation, the NWA preserves spin correla-

tions between the production and decay subprocesses, and allows for realistic kinematical

cuts on the momenta of the physical final states (i.e. leptons and jets).

The NWA includes neither off-shell effects related to the virtuality of the intermedi-

ate unstable-particle propagator, nor non-factorizable corrections linking the production

and decay subprocesses. Sub-resonant or non-resonant contributions, which correspond to

diagrams with the correct physical final state but which involve fewer or no intermediate

unstable-particle propagators, are also neglected. As in the stable approximation, these

finite-width effects are expected to be small, of order ΓX/mX , for inclusive-enough ob-

servables. This follows from the suppression of the non-resonant contributions and from

large cancellations between virtual and real non-factorizable corrections, with the width

acting as a natural infrared regulator whose dependence largely cancels in infrared safe

quantities [1]. However, for arbitrary kinematical distributions and in particular, close to

certain kinematical thresholds where the cancellations mentioned above are less effective,

finite-width effects can be large.

Strikingly, in refs. [2–4] it was pointed out that the näıve expectation of the error asso-

ciated with the NWA can be underestimated by an order of magnitude for BSM processes

where the mass of daughter particles approaches the mass of the parent particle X. This is

relevant for searches of SUSY in decay cascades, where one often observes some degree of

mass degeneracy between particles in different steps of the cascade. Recently, non-negligible

off-shell effects (∼ 10%) were observed even in light Higgs production and decay to massive
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vector bosons [5, 6], and shown to arise from Higgs-continuum interference at large values of

the boson-pair invariant mass. While these off-shell effects can be suppressed by means of

suitable experimental cuts, and are therefore not relevant to present Higgs measurements at

the LHC, they nonetheless show that the error associated with the NWA can be significantly

larger than its näıve estimate. Thus, it is clear that an approach that goes beyond the NWA

and which includes at least the dominant finite-width effects is desirable. Note that for a

heavy Higgs the interference of resonant and non-resonant terms is large due to the large

value of the ratio ΓH/mH . In this case the NWA is expected to be a poor approximation.

A possible solution to the issue of finite-width effects is clearly the calculation of the

full, gauge-invariant set of diagrams corresponding to a given physical final state. This

approach includes the coherent sum of resonant and non-resonant contributions, treats

the intermediate resonant particles as fully off-shell and contains both factorizable and

non-factorizable corrections at NLO. Self-energy contributions can be resummed in the

unstable-particle propagator in a consistent gauge-invariant way using, for example, the

complex-mass scheme [7, 8]. Examples applying the complex-mass scheme to production of

unstable particles at NLO include the calculations of four-fermion production at an e+e−

collider [7], Higgs decay to vector-boson pairs [9] and two recent independent calculations

of off-shell effects in tt̄ production [10–12]. While the complex-mass scheme approach

is completely general and very flexible, allowing the calculation of arbitrary kinematical

distributions, the full NLO computation is technically challenging, requiring both the cal-

culation of a much larger set of diagrams than for the corresponding on-shell process and

special techniques to handle 5- or 6-point functions with complex masses.

An alternative approach to the full NLO calculation was presented in ref. [13] and

applied to processes of t-channel and s-channel single-top production [13, 14]. The ap-

proach of ref. [13] is the generalization of the effective field theory (EFT) description of

resonant-particle production of ref. [15], which was employed in the calculation of inclusive

W -pair production at an e+e− collider [16, 17]. The EFT calculation results in a system-

atic, gauge-invariant expansion of the matrix elements in powers of ΓX/mX , in a way which

can be considered a generalization of the pole approximation [18, 19]. Compared to the

full NLO calculation in the complex-mass scheme, the effective-theory approach has the

advantage of identifying the terms that are relevant to achieving a given target accuracy

prior to the actual calculation. This greatly reduces the complexity of the computation

while at the same time allows for the inclusion of the leading off-shell and non-factorizable

effects in a completely differential manner. For single-top production finite-width effects

were found to be small for inclusive-enough observables, although they can be large close

to the kinematical edges of some distributions. This general picture is consistent with the

results found by the full NLO calculations of top-pair production [20].

In this paper we give a second example of the application of the EFT formalism

of ref. [13] and calculate the cross section for the pair-production process qq̄ → tt̄ →
W+W−bb̄. The top-pair production process has been studied extensively over the years in

the stable-top and narrow-width approximations and, more recently, using the complex-

mass scheme (a detailed list of references is given in section 3). It thus represents a perfect

proof-of-concept calculation by which to test the validity of the EFT formalism, extend

– 3 –



J
H
E
P
0
5
(
2
0
1
3
)
1
5
6

it to more than one unstable particle and to compare it to different available approaches.

The paper is organized as follows: in section 2 we review the effective-theory formalism

and introduce a treatment of real corrections which differs slightly from the one used in

ref. [13]. The calculation of the LO and NLO relevant amplitudes for the specific example

of tt̄ production is described in section 3. In section 4 we present results for several

distributions and assess the effect of finite-width contributions by comparing the effective-

theory predictions with results obtained in the NWA. In that same section we also discuss

the effects of using different mass-renormalization schemes (more precisely the pole and PS

schemes) on the cross section and distributions, and their possible implications for a precise

extraction of the top-quark mass from data. Finally, our conclusions are given in section 5.

2 Effective-theory description of unstable-particle production

The effective-theory framework for the description of unstable-particle production used in

this work was first formulated for the total cross section in ref. [15] and applied to the case

of inclusive W+W− production at an e+e− collider in refs. [16, 17]. The formalism was

later extended to the more general case of differential cross sections and applied to single-

top production at hadron colliders [13, 14]. In this section we review the main features of

this approach, referring the reader to the aforementioned references for further details.

Unstable-particle effective theory is built upon the hierarchy of two scales, namely,

the typical virtuality of the resonant unstable particle X, which is set by its decay width,

p2
X − m2

X ∼ mXΓX , and the particle mass mX . This hierarchy is encoded in the ratio

ΓX/mX � 1. The latter is treated as a small parameter, δ, in line with the strong and

electroweak coupling constants αs, and αew and allows for a systematic expansion of the full

matrix elements. These different expansion parameters are related by the counting scheme1

ΓX
mX

∼ α2
s ∼ αew . (2.1)

In the following we will generically refer to any of the above parameters as δ. The expansion

in δ is implemented at the Lagrangian level, replacing the (B)SM fields and interactions

with effective fields and vertices. The effective fields are associated with different mo-

mentum regions defined according to the scaling of their momenta with respect to the

parameter δ and encode the physics at the two very different scales that characterize the

production and decay process.2 For the problem at hand these momentum regions are

a hard region (q0 ∼ |~q| ∼ mX), a soft region (q0 ∼ |~q| ∼ mXδ) and collinear regions

(ni · q ∼ mXδ, n̄i · q ∼ mX , q⊥ ∼ mX

√
δ). Here ni, n̄i are light-like vectors associated with

the momenta of the external massless particles, ni = (1, ~pi/|~pi|), n̄i = (1,−~pi/|~pi|), and q⊥
is the remaining, perpendicular component of the momentum q.

In the effective theory only low-virtuality modes with p2 . m2
Xδ are kept as dynamical

degrees of freedom, and are described by effective fields in the Lagrangian. These include,

1Note that in (2.1) we assume that the unstable-particle decay proceeds via electroweak decay channels,

ΓX ∝ αew. For resonances decaying via strong interactions the counting scheme is ΓX ∼ αs ∼
√
αew.

2Here and in the following we assume that the invariants sij = 2pi · pj constructed from the external

momenta are of the same order of m2
X , and we treat them as a single scale.
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in particular, a field ΦX to describe the resonant unstable particle X. The finite-width

of the particle is resummed into the leading EFT kinetic term in a generalisation of the

heavy-quark effective theory (HQET) Lagrangian in the case of a non-vanishing width [15],

L(0)
EFT,kin = 2m̂XΦ†x

(
iv · ∂ − ΩX

2

)
ΦX , (2.2)

where m̂Xv, with v2 = 1, represents the large, on-shell component of the resonant-particle

momentum, and m̂X is the renormalized mass in a generic renormalization scheme. The co-

efficient ΩX is related to the complex pole µ2
X ≡ m2

X − imXΓX of the full unstable-particle

propagator,

ΩX =
µ2
X − m̂2

X

m̂X
. (2.3)

In the pole scheme, m̂X = mX , ΩX has the simple form ΩX = −iΓX . Additional terms

in the EFT Lagrangian are given by bilinear terms for soft and collinear fields, power-

suppressed corrections to (2.2) and terms describing the interaction of ΦX and collinear

fields with soft fields. Hard modes are not explicitly part of the effective Lagrangian and

their contribution is encoded in matching coefficients multiplying effective interaction ver-

tices. These can be schematically parameterized as

Ci,P (µX)F iP (Φ†X , φc, φs, ∂µ), Cj,D(µX)F jD(ΦX , φc, φs, ∂µ), Ck,NR(µX)FkNR(φc, φs, ∂µ) ,

(2.4)

where F iP , F jD and FkNR denote functions of fields and derivatives and the indices i, j, k

label different Lorentz structures. φc,s generically represent collinear and soft fields and

Ci,P and Cj,D are the hard matching coefficients of the production and decay effective ver-

tices, which are computed from on-shell SM amplitudes. In this context “on-shell” has to

be understood as p2
X = m̂2

X + m̂XΩX = µ2
X , meaning that the effective couplings in the

Lagrangian are in general complex. This is a feature that the EFT framework shares with

the complex-mass scheme. The interaction terms Ck,NRFkNR encode the contribution of

non-resonant configurations which also contribute to the cross section starting from a cer-

tain order in δ. Note that in order to describe pair-production of unstable particles, e.g. tt̄

production, two distinct resonant fields, Φt and Φt̄, have to be introduced which annihilate

a top and an antitop state respectively. Furthermore, the kinetic terms will contain two

velocities v and v̄ which are generally different.

2.1 Born amplitudes

From a practical point of view, at tree-level the EFT result coincides with an expansion of

the matrix element around the complex pole of the propagator. In fact, the EFT approach

can be viewed as a generalization, to arbitrary order in δ, of the pole approximation [18, 19].

To be specific, let us consider the process

i1(p1)i2(p2)→ X(pX), . . .→ f1(k1)f2(k2) , (2.5)

where the final-state particles f1 and f2 can originate from the decay of an intermediate

unstable scalar particle X (the generalization to higher spins is trivial), or from other pro-

duction mechanisms. The Feynman-diagram topologies contributing to this process at the

– 5 –



J
H
E
P
0
5
(
2
0
1
3
)
1
5
6

✭ � ✁ ✭ ✂ ✁

✐ ✶

✐ ✷

❢ ✶

❢ ✷

❳

✐ ✶

✐ ✷✐ ✷

❢ ✶

❢ ✷

Figure 1. Feynman-diagram topologies contributing to the process i1i2 → f1f2. (a) resonant

production through an intermediate unstable X; (b) non-resonant production.

tree-level are given by the resonant and non-resonant contributions drawn in figure 1, where

the grey blobs denote the model-dependent production and decay vertices. The tree-level

amplitude can be written as

Atree =
VP ({pi}, pX)VD(pX , {ki})

p2
X −m2

0,X

+N ({pi}, {ki}) , (2.6)

where VP and VD represent the vertices for the production and decay of the (off-shell)

particle X respectively, while N contains the non-resonant contributions. m0,X denotes

the bare mass of the particle X. It is immediately clear from eq. (2.6) that due to the

intermediate resonant propagator, p2
X − m2

0,X ∼ m2
Xδ, only resonant diagrams will con-

tribute to the amplitude at leading order in δ, while N will generally be suppressed by

extra powers of δ. The actual suppression of the non-resonant contributions is determined

from the interplay between the suppression from the missing resonant propagators and the

scaling of the couplings appearing in VP , VD and N , see eq. (2.1).

The gauge-invariant expansion in δ of the amplitude, eq. (2.6), is obtained by expanding

the matrix elements for production and decay around p2
X = µ2

X . This requires a projection

of the external momenta {pi}, {ki} onto on-shell configurations {p̄i}, {k̄i}, with

p̄i = p̄i(pi, pX) k̄i = k̄i(ki, pX) . (2.7)

The on-shell projection is chosen such that momentum is exactly conserved at each vertex

and p̄2
X = µ2

X . Note that the explicit form of the projection in eq. (2.7) is not unique, being

defined up to terms of order δ. However, calculations at order δn obtained with different

projections, deviate from each other by sub-leading corrections of order δn+1, i.e. always

an order higher than the target accuracy of the calculation.

Adopting eq. (2.7), the expansion in δ of the tree-level matrix element reads

Atree =
APAD

∆X

+
1

∆X

(
(pi − p̄i)

∂VP
∂pi
AD +AP (ki − k̄i)

∂VD
∂ki

)
+N + . . . (2.8)

where AP ≡ VP ({p̄i}, p̄X), AD ≡ VD(p̄X , {k̄i}) are evaluated with the projected momenta

p̄i, k̄i, and the ellipses represent higher-order terms in δ. As expected, the leading-order
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Figure 2. Correspondence between the expansion by regions and the EFT calculation: the

hard-region contribution (top left) corresponds to a O(αs) correction to the production matching

coefficient Ci,P (top right), while the soft-region contribution (bottom left) reproduces one-loop

soft-gluon corrections in the EFT (bottom right).

amplitude (first line in eq. (2.8)) corresponds to the resonant diagram with the vertices

for production and decay of the unstable particle replaced by (gauge-invariant) on-shell

amplitudes. These amplitudes are in fact directly related to the matching coefficients C0,P ,

C0,D of the (leading) effective vertices appearing in eq. (2.4). The modified propagator

∆X ≡ p2
X − µ2

X = p2
X − m̂2

X − m̂XΩX Dyson-resums the finite-width effects related to the

self-energy ΠX(p2
X) of the particle X:

1

p2
X − m̂2

X + ΠX(p2
X)

=
1

∆X
+ . . . (2.9)

with higher-order terms in δ indicated by the ellipses. Note that it is not the full self-energy

that is kept in the propagator. Only the gauge-invariant hard part of the self-energy ΩX

contributes to the matching coefficient and is resummed in the propagator. The sub-leading

gauge-violating residual soft terms are included perturbatively and are combined with other

contributions to form a separate gauge-invariant part of the one-loop amplitude. The next

term in δ in the expansion of the amplitude (second line in eq. (2.8)) receives contributions

from non-resonant diagrams, as expected, but also from resonant ones in which the propa-

gator ∆X is cancelled by terms of the form pi− p̄i ∼ δ and ki− k̄i ∼ δ, which originate from

the expansion around on-shell configurations. In the EFT language these contributions are

described by effective four-particle operators, i.e. terms of the form Ck,NRFkNR in eq. (2.4).

We stress that while the leading resonant term is gauge-invariant, at higher orders in δ only

the sum of resonant and non-resonant contributions is on the whole gauge independent.

2.2 Virtual corrections

Virtual corrections in the EFT framework are divided into two categories: loop correc-

tions to the EFT matrix elements, where the degrees of freedom flowing in the loops are

– 7 –
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given by the effective fields ΦX , φc, φs, and corrections to the hard matching coefficients

Ci,P , Cj,D, Ck,NR. The latter are computed by a “matching procedure” which arises by

requiring that the full-theory matrix element and the EFT result coincide order by order in

δ. They can be written as a power series in the couplings (the QCD coupling, in this case),

Ci,P = C
(0)
i,P +

αs
2π
C

(1)
i,P + . . . (2.10)

with similar expressions for Cj,D and Ck,NR. In practice, the EFT matrix elements and the

matching coefficients can be obtained from an expansion of SM matrix elements using the

method of regions [21], which we find to be more convenient here than an explicit two-step

calculation of matching coefficients and effective-theory matrix elements. This is the ap-

proach we adopt for the calculation of the amplitudes for tt̄ production in section 3, where

details on how the expansion by regions is implemented for the specific case of resonant

top-pair production are given.

As already outlined, the momentum regions relevant to the expansion are the hard,

soft and collinear regions. The contributions of hard momenta (q ∼ mX) correspond to the

matching coefficients, while those from an expansion in the soft region (q ∼ mXδ) of the

full SM integrals reproduces loop contributions in the effective theory. This is schemati-

cally depicted in figure 2 for the case of the one-loop gluonic correction to the production

vertex. Hard corrections correspond to factorizable contributions to the production or

decay subprocesses [22], and, at leading order in δ, coincide with the matrix element for

production or decay of the on-shell massive particle(s). On the other hand, soft correc-

tions encode non-factorizable interferences between the production and decay subprocesses

as well as off-shell effects. Note that in general the contribution from collinear regions

is needed to reproduce the full SM matrix element. However, for the case considered,

this contribution vanishes if loop integrals are regularized dimensionally and the external

light-fermion masses are set to zero, as done in this work. It can thus be safely ignored in

the following discussion. In the soft region, the unstable-particle propagator in the loop,

(pX − q)2 −m2
X ∼ m2

Xδ, is resonant and has to be Dyson-resummed,

1

(pX − q)2 − m̂2
X + ΠX((pX − q)2)

=
1

∆X − 2p̄X · q
+ . . . , (2.11)

with the ellipses denoting, as usual, higher-order terms in δ. As in the tree-level matrix ele-

ment, only the on-shell gauge-invariant part of the self energy is resummed in the resonant

propagator. In the hard region, where (pX − q)2 − m̂2
X ∼ m̂2

X � mXΓX , no self-energy

resummation is necessary and gauge-invariance is similarly preserved.

An important feature of the effective-theory approach is that the EFT counting scheme,

eq. (2.1), enables one to assign the correct parametric scaling to any particular contribution

of a Feynman diagram prior to its actual calculation. This determines whether or not it

has to be computed to obtain a given accuracy in δ.

Suppose for example that one wants to compute all terms which scale as αs ∼ δ1/2 rel-

ative to the leading tree-level contribution. From now on we will refer to such corrections

as NLO corrections. If we ignore the couplings appearing in the production and decay

vertices VP and VD, the leading tree-level matrix element (first term in eq. (2.8)) scales as

– 8 –
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Figure 3. Examples of triangle and box diagrams contributing to the production and decay of the

scalar X at one loop.

1/∆X ∼ δ−1, and NLO is thus defined as the sum of all terms scaling as δ−1δ1/2 = δ−1/2.

One can then immediately see that the sub-leading tree-level terms in eq. (2.8), which

scale as δ−1δ = 1 (assuming that VPVD ∼ N ), are not part of the NLO matrix element,

contributing to the amplitude only at NNLO. Consider now the triangle and box integrals

shown in figure 3. In the soft region of the loop momentum (q ∼ mXδ), the unstable-

particle propagator inside the loop scales as δ−1, while the gluon and fermion propagators

scale as δ−2 and δ−1 respectively. Taking into account the scaling of the volume element

d4q ∼ δ4, one finds the scaling δ−1αsδ
4δ−2δ−1δ−1 ∼ δ−1/2 for the soft part of the triangle,

while the soft part of the box scales as αsδ
4δ−2δ−1δ−1δ−1 ∼ δ−1/2. Therefore, the soft

limit of both the triangle and box contribute at NLO. In the hard region (q ∼ mX) all

the propagators inside the loop scale parametrically as ∼ 1 (in units of the mass mX).

Thus, the hard part of the triangle scales as δ−1αs1
4/13 ∼ δ−1/2, while for the box one

finds αs1
4/14 ∼ δ1/2. In this case only the hard part of the triangle counts as NLO, while

the hard box integral is highly suppressed, scaling as a N3LO correction. Given that for

the simple process (2.5), the hard box in figure 3(b) is the most complicated integral at

one loop, discarding it simplifies the NLO calculation. As we will see in section 3.3, for

the phenomenologically relevant case of top-pair production one can use the same scal-

ing arguments to show that all one-loop hard 5- and 6-point functions are parametrically

suppressed and need not be computed to achieve NLO accuracy in the resonant region.

2.3 Real corrections

Even though the expansion by regions is well understood for loop diagrams, it is less clear

how the expansion can in general be implemented for real corrections, since in the presence

of an extra massless particle with momentum q, the expansion parameter can be p2
X −µ2

X ,

(pX + q)2 − µ2
X or both. While the split into hard and soft contributions is possible for

the total cross section, by relating real corrections to cut one-loop diagrams via the optical

theorem, the formulation of the expansion in hard and soft contributions is not straight-

forward for an arbitrary observable. In refs. [13, 14] we proposed a way to circumvent this

problem by using the exact real-radiation matrix element and expanding the integrated in-

frared and collinear subtraction terms in δ so as to properly match the singularity structure

of the expanded virtual matrix element.
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Figure 4. Real gluonic corrections to the process i1i2 → f1f2.

While this “ad-hoc” treatment of the real matrix element was sufficient to illustrate

the basic features of the EFT approach and to assess the contribution of non-factorizable

corrections in single-top production, a theoretically more satisfactory treatment of real

corrections is certainly desirable. In particular, one would wish for a framework in which a

strict expansion in δ for both virtual and real corrections is achieved and gauge-invariance

is exact order-by-order in δ. Here we introduce such a framework which will be used in

section 3.4 for the calculation of real corrections to tt̄ production.

Real gluon-emission contributions fall into three categories, as indicated in figure 4.

Topology (a) and (b) represent emission from the production and decay subprocess respec-

tively, whereas topology (c) is due to generic non-resonant real-emission. Analogously to

eq. (2.8), the corresponding amplitude can be written as

Areal =
AP+gAD

∆X
+
APAD+g

∆Xg
+Asub-lead, (2.12)

where ∆Xg = (pX+q)2−µ2
X and AP+g (AD+g) is the amplitude for on-shell production (de-

cay) of the unstable particle with an additional real gluon. The first two terms in eq. (2.12)

contribute to the leading resonant real-emission amplitude, whereasAsub-lead contains terms

sub-leading in δ. Note that in this picture there is no topology with gluon emission from

the unstable particle. In the corresponding Feynman diagram either of the two unstable-

particle propagators can be resonant. In fact, when the emitted gluon is soft, q ∼ mXδ,

both propagators can simultaneously be resonant, p2
X −m2

0,X ∼ (pX + q)2 −m2
0,X ∼ m2

Xδ.

However, it can be shown [23] that the product of two unstable-particle poles can be written

as the sum of two terms containing a single massive pole and a soft singularity

1

(p2
X −m2

0,X)((pX + q)2 −m2
0,X)

=
1

2pX · q

[
1

p2
X −m2

0,X

− 1

(pX + q)2 −m2
0,X

]
, (2.13)

so that the parameterization eq. (2.12) still holds true.

Following eq. (2.12), the squared amplitude, Mreal ≡ |Areal|2, can be written as

Mreal =
|AP+gAD|2

|∆X |2
+
|APAD+g|2

|∆Xg|2
+ 2Re

[
(AP+gAD)(APAD+g)

∗

∆X∆∗Xg

]
+ . . . (2.14)

The first two terms can be interpreted as factorizable real corrections to either production

or decay of the unstable particle X, while the interference term gives rise to non-factorizable
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corrections. Note that the interference term gives a sizeable contribution only if both ∆X

and ∆Xg are resonant, i.e. when the emitted gluon is soft. This shows that, for the real ma-

trix element as well, non factorizable and off-shell effects are encoded by soft radiation. The

omitted terms in eq. (2.14), denoted by the ellipses, are suppressed by αsδ ∼ δ3/2 compared

to the leading tree-level contribution and first contribute to the matrix element at N3LO in

the power-counting. Hence, they can be neglected in most calculations relevant for hadron-

collider phenomenology. However, we point out that they can, in principle, be computed to

the desired accuracy in δ, in a way similar to the expansion of the Born amplitude, eq. (2.8).

2.4 Cross sections

The real and the virtual amplitudes squared have been split into a hard factorizable part

and a soft non-factorizable part. The hard part is further divided into corrections to the

production and corrections to the decay. As usual, the virtual and real cross sections, ob-

tained by integrating the squared matrix elements over phase space, have infrared and/or

collinear singularities.

The cancellation of these singularities between real and virtual corrections takes place

separately for all parts of the cross section. The (hard) production part typically has

initial-state collinear singularities that have to be absorbed into the parton distribution

functions. It can additionally develop infrared singularities and, when particles other than

the unstable particle are present in the final state of the production subprocess, can develop

final-state collinear singularities as well. These singularities cancel against the correspond-

ing real singularities of the production part. The (hard) decay part typically has final state

collinear singularities and infrared singularities that cancel against the corresponding real

singularities.

Finally, the non-factorizable soft corrections only have infrared, but no collinear singu-

larities. Once again, these cancel between the real and virtual corrections. Also, with this

cancellation, all explicit scale dependence vanishes and the non-factorizable corrections

only depend implicitly on the renormalization and factorization scale. Because the soft

emission is governed by a soft scale, µs ∼ mXδ, it is natural to choose a scale of this order

for the coupling from the additional soft emission. The factorization scale and the scale

related to the born term are not affected by this and should be kept at the usual hard scale.

2.5 Mass scheme

The results given in this section have been expressed in terms of the unstable-particle

mass in a generic renormalization scheme, m̂X , which is related to the gauge-invariant

complex pole of the propagator by µ2
X = m̂2

X + m̂XΩX . While the EFT approach is not

limited to a particular scheme, it is more naturally formulated in a class of schemes related

to the pole scheme by (m̂X − mX)/mX ∼ δ, which have the property of preserving the

EFT scaling p2
X − m̂2

X ∼ m2
Xδ under renormalization. The MS is not such a scheme since

(m̂X,MS −mX)/mX,MS ∼ αs ∼
√
δ and the finite-width expansion becomes less transpar-

ent in this case. The pole mass on the other hand, which is the natural mass choice for

unstable electroweak gauge bosons and other particles which do not couple to strong in-

teractions, is affected by long-distance ambiguities related to QCD renormalons [24–26] in
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the case of heavy quarks. This makes a precise definition and extraction of this parameter

problematic. It is possible to circumvent these issues with the use of so-called “threshold

masses” [24, 27–29] or “jet masses” [30, 31], which preserve the EFT counting and are not

affected by renormalon ambiguities. The implication of the mass-renormalization scheme

choice in the case of tt̄ production is discussed in section 3.5.

3 Top-antitop production at hadron colliders

At hadron colliders the main top-production mechanism is the production of a tt̄ pair,

which proceeds through strong interactions.3 At Born level two partonic processes con-

tribute to the cross section: qq̄ → tt̄, which dominates at Tevatron, and gg → tt̄, which

is the dominant production channel at the LHC. Beyond leading order other partonic

production channels contribute as well. Next-to-leading order QCD corrections to the

tree-level results, both at the inclusive and differential level, have been known for more

than 20 years [32–35] and have been recomputed recently for helicity-specific amplitudes

using generalized-unitarity methods [36]. One-loop electroweak contributions are also

known [37–41]. At next-to-next-to-leading order in QCD several ingredients and partial

results have been known for some time [42–53] and the full NNLO calculations for the

fermion-initiated [54, 55] and gq(q̄) [56] production channels have been recently completed.

In addition, resummation of Coulomb singularities and soft logarithms up to next-to-next-

to-leading logarithmic accuracy has been studied by several groups [57–61].

All the aforementioned results were computed in the approximation of stable tops.

Results in the NWA, including the on-shell decay of the top-antitop pair to the physical

final state W+W−bb̄, were given in refs. [62–65]. The fully differential semi-leptonic decay

of on-shell top quarks is also now known to NNLO [66, 67]. Recently the full NLO QCD

calculation of the off-shell top-pair production and decay process in the complex-mass

scheme was performed by two separate groups [10–12].4 As expected, finite-width effects

were found to be small for the total cross section. However, larger effects were observed

for more exclusive distributions, in particular near kinematic boundaries [20]. If such

distributions are used for a precise determination of the top-quark mass, the change of

shape of distributions caused by finite-width effects has to be under control. This can only

be achieved with a careful treatment of finite-width effects in tt̄ production.

In this section we present the calculation of the LO and NLO virtual and real ampli-

tudes for tt̄ production in the EFT framework, as a non-trivial example of application of

the formalism described in section 2. We will focus on the qq̄ production channel,

qq̄ → tt̄→W+W−bb̄

3While the electroweak-mediated production of a single top is numerically only 3-4 times smaller than

top-pair production, a much larger background makes the extraction of the signal in this channel more

challenging.
4The calculation of ref. [11] treats also the leptonic W decays completely off-shell, while in ref. [10] the W

decays are described in narrow-width approximation. The effects of finite W -width effects in tt̄ production

have been investigated recently in ref. [12].

– 12 –



J
H
E
P
0
5
(
2
0
1
3
)
1
5
6

where the decay of the two W bosons to leptons is understood. Our notation and con-

ventions for momentum and colour labelling is given in section 3.1 where we also give

explicit expressions for the leading tree-level helicity amplitudes. The calculation of soft

and hard virtual corrections as well as the renormalization necessary at NLO are detailed

in section 3.3, while the implementation of real corrections is described in section 3.4.

3.1 Leading tree-level amplitude

Throughout this work we adopt the following momentum labelling

q(p1; c1)q̄(p2; c2)→ bb̄W+W− → b(p3; c3)b̄(p4; c4)l̄1(p5)ν1(p6)l2(p7)ν̄2(p8) , (3.1)

with c1 . . . c4 the colour indices of the four external quarks. The leptonic decay of the two

W -bosons is treated in the NWA. For sake of simplicity, we introduce the shortcuts

pt = p3 + p5 + p6 ,

pt̄ = p4 + p7 + p8 ,

and the on-shell projections p̄t and p̄t̄, with p̄2
t = p̄2

t̄ = µ2
t , which are necessary5 for the

systematic expansion of the amplitudes in δ. As usual µ2
t denotes the complex pole of the

propagator, µ2
t = m2

t − imtΓt. We also introduce the abbreviations

∆t ≡ p2
t − µ2

t ∆t̄ ≡ p2
t̄ − µ

2
t , (3.2)

for the resummed inverse top and antitop propagator. The expression (3.2) is valid in the

pole scheme, i.e mt here denotes the pole mass. The conversion to other renormalization

schemes is discussed in section 3.5. The amplitudes for the tt̄ production process are

decomposed onto a basis of colour-state operators, given by

O(1)
{c} =

1

Nc
δc1c2δc3c4 O(2)

{c} =
2√

N2
c − 1

TAc2c1T
A
c3c4 , (3.3)

with TA denoting the generators of the SU(3) algebra in the fundamental representation

and Nc = 3. The two operators describe the s-channel exchange of a colour-singlet and

colour-octet state respectively, and satisfy the orthonormality condition∑
{c}

O(i)
{c}O

(j)∗
{c} = δij . (3.4)

At the Born level both doubly-resonant Feynman diagrams containing an intermediate

top and antitop pair, as well as singly-resonant and non-resonant diagrams, contribute to

the amplitude for the process (3.1). The dominant tree-level contribution to the amplitude

is given by the leading term in the expansion in δ of the left Feynman diagram in figure 5.

In the effective-theory framework, the interaction mediated by the intermediate s-channel

gluon is replaced by a four-fermion contact interaction (right diagram in figure 5) of the form

ig2
s

ŝ
γµα2α1

γµ,αᾱT
A
c2c1T

A
cc̄ , (3.5)

5Note that in an NLO calculation one can set p̄2
t = p̄2

t̄ = m2
t instead, since the term −imtΓt ∼ m2

t δ is

formally an NNLO contribution.
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Figure 5. Leading tree-level doubly-resonant contribution to qq̄ → bb̄W+W− in the SM and

its EFT counterpart. The grey square and circles represent EFT production and decay matching

coefficients.

with ŝ the partonic centre-of-mass energy, α1, α2, α, ᾱ the Lorentz indices of the initial

quark and antiquark and final top and antitop, and c1, c2, c, c̄ the corresponding colour

indices. The tree level amplitude reads (omitting the on-shell decay of the two W s)

Atree =

√
N2
c − 1

2
O(2)
{c}A

(0) , (3.6)

with

A(0) =
g2
sg

2

2ŝ∆t∆t̄
v̄(p̄2)γµu(p̄1)ū(p̄3)/ε∗+(/̄pt +mt)γµ(−/̄pt̄ +mt)/ε

∗
−v(p̄4) . (3.7)

ε± represent the polarization vectors of W±. Note that the numerator of A(0) depends on

the projected on-shell momenta which guarantees the gauge-invariance of the result. The

contribution of resonant and non-resonant diagrams will be discussed in section 3.2.

Using eq. (2.1) one can easily determine the scaling of the leading amplitude, which is

A(0) ∼ αsα

∆t∆t̄
∼ δ−1/2 . (3.8)

As a consequence of the relative scaling of the top-quark width and the strong coupling

constant, αs ∼
√

Γt/mt, the expansion of the amplitude is organized in powers of δ1/2.

Thus in the following we define as NkLO all contributions to the amplitude that scale as

δ(k−1)/2. In particular, NLO corrections, which we will focus on in this paper, scale as

δ0. Potentially, these include sub-leading tree-level terms, O(αs) hard and soft virtual

corrections to the leading doubly-resonant amplitude eq. (3.6), and real QCD corrections.

These three contributions will be discussed in turn in the following sections.

3.2 Sub-leading tree-level contributions

The first class of corrections which could potentially contribute at NLO in δ is represented

by terms arising from sub-leading tree-level diagrams, which are shown in figure 6. These

include QCD singly-resonant and non-resonant topologies (diagrams (a) and (b)). Since

the effective-theory counting of eq. (2.1) relates the expansion in αs to the one in the elec-

troweak coupling constant, electroweak diagrams must also be taken into account beyond

LO in δ. For all practical purposes it is sufficient to consider the leading doubly-resonant
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Figure 6. Subleading tree-level diagrams in the effective theory: (a) singly-resonant diagrams,

(b) non-resonant diagrams, (c) doubly-resonant diagrams with electroweak matching coefficients

(represented by the grey and white square in the figure). See the text for explanation.

topologies corresponding to diagram (c) in figure 6. Here we use scaling arguments to

determine the size of these terms compared to the leading-order amplitude, eq. (3.7).

Contributions with the structure of diagram (a) correspond to the terms on the second

line of eq. (2.8), where one of the resonant propagators is either cancelled by higher-order

contributions originating from the expansion around the pole, or is not present in the first

place. In the effective theory they are described by five-particle contact interactions, whose

matching coefficients are proportional to g2
sgew. Their contribution to the amplitude thus

scales as
αsαew

∆t
∼ δ1/2 , (3.9)

which makes them an NNLO correction. Their interference with the leading Born ampli-

tude gives a NNLO correction to the cross section, while the square of diagram (a) con-

tributes to the cross section initially at N4LO. Non-resonant QCD topologies correspond to

six-particle effective interactions (diagram (b)) with matching coefficients starting at order

g2
sg

2
ew. Since they do not contain intermediate resonant propagators, these scale as

αsαew ∼ δ3/2 (3.10)

and contribute to the cross section as N4LO in δ, being suppressed by δ2 compared to the

leading Born amplitude.

The doubly resonant electroweak diagrams (diagram (c)) scale as

α2
ew

∆t∆t̄
∼ δ0 . (3.11)

Note that in this case the suppression is given by the electroweak nature of the match-

ing coefficients (∼ g2
ew) of the four-particle production operator, rather than by missing

resonant propagators. The interference of diagram (c) with the LO amplitude thus gives

an NLO correction. However, due to the colour structure of the electroweak production

operators, this interference is non-vanishing only for a bb̄ initial state. This contribution is

numerically suppressed due to the smallness of the bottom-quark PDF inside the proton

and is in practice negligible (< 0.1% of the leading doubly-resonant QCD-mediated dia-

gram). The squared electroweak matrix element counts as an NNLO correction and in this
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Figure 7. A sample of one-loop diagrams (above) contributing to the O(αs) corrections to the

production matching coefficient (below).

case there is generally no suppression arising from the parton luminosities, since operators

with any light-flavour quark in the initial state contribute.

To conclude, if one neglects the (accidentally) tiny NLO contribution from the inter-

ference of diagram (c) with A(0), the first Born-level corrections to eq. (3.7) arise at NNLO

from the interference of singly-resonant QCD diagrams with the leading amplitude and

from the squared matrix element of electroweak doubly-resonant diagrams. Being sup-

pressed by δ ∼ Γt/mt compared to eq. (3.7) they are expected to contribute to the cross

section at the percent level. This is investigated more quantitatively in section 4, in par-

ticular to test whether the EFT counting applies in practice to the case of tt̄ production.

As we will see, sub-leading terms account for at most a few percent of the cross section

which is in good agreement with the expectation from the EFT scaling arguments.

3.3 Virtual QCD corrections

As explained in section 2.2, virtual corrections in the EFT approach are classified into

corrections to the hard matching coefficients of the production and decay effective vertices

as well as soft corrections to the EFT matrix elements. The former encode physics at the

large scale, q ∼ mt, whilst the latter describe long-scale physics, q ∼ mtδ. To obtain NLO

accuracy, αs corrections to the hard matching coefficients and one-loop soft corrections are

required. As pointed out in section 2.2, O(αs) hard matching coefficients can be related

to one-loop corrections to the amplitudes for production and decay of on-shell tops. For

the production part we use the results of ref. [36], whereas the results for the decay can

for example be found in ref. [23]. A sample of the diagrams contributing to the production

matching coefficient is shown in figure 7. As for the toy model discussed in section 2.2,

hard loops connecting initial and final-state particles, or final-state particles originating

from different decays, are suppressed by higher powers of δ. Consider, for example, the

two diagrams shown in figure 8. If the momentum flowing in the loop is hard, the in-

termediate antitop propagator in the first diagram is far off-shell. Thus the diagram is
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Figure 8. Two examples of one-loop diagrams which do not contribute to the hard matching

coefficients at NLO in δ. See the text for further explanation.

suppressed by αs∆t̄ ∼ δ3/2 compared to the leading amplitude eq. (3.7), which makes it

a N3LO correction. The pentagon diagram, in which both top and antitop propagators

are off shell, is even more suppressed, ∼ αs∆t∆t̄ ∼ δ5/2, and contributes to the amplitude

starting at N5LO. These contributions do not have to be included in a calculation that

aims for NLO accuracy in δ, thus dramatically reducing the computational complexity of

the EFT calculation compared to that in the complex-mass scheme.

Contrary to the hard corrections, non-factorizable soft diagrams that connect initial

and final states do contribute already at NLO in δ, since the two intermediate top prop-

agators remain resonant if the loop momentum is soft. The complete set of soft one-loop

diagrams contributing to the amplitude at order δ0 consists of:

• 2 self-energy corrections, to the top and antitop resonant propagator,

• 8 triangle diagrams, shown in figure 9,

• 6 box diagrams, shown in figure 10,

• 1 pentagon diagram, also shown in figure 10 (right bottom corner).

Note that the renormalization of the bare couplings and masses only affects the hard

matching coefficients, but does not contribute to the soft corrections. The contribution of

the soft diagrams listed above can be obtained by expanding full QCD diagrams in the

soft region. Only a consistent expansion in δ guarantees the gauge invariance of the final

result. Most of the integrals shown in figures 9 and 10 were already computed for the case of

single-top production [13, 14], with the new soft integrals required given by the triangle in

figure 9d, the boxes 10e and 10f, and the pentagon. As a further example of how the method

of regions works we will now briefly discuss the calculation of the triangle diagram 9d.

All soft integrals can be written in terms of the colour operators eq. (3.3), the colour-

stripped leading-order amplitude eq. (3.7) and scalar functions depending on the invariants

sij ≡ 2pi · pj built from the external momenta. In particular, the contribution to the

amplitude of the triangle in figure 9d can be written as

A(1),V
3,d = −

√
N2
c − 1

4Nc
O(2)
{a}A

(0)Itt̄ , (3.12)
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Figure 9. Soft triangle diagrams contributing at NLO in the EFT counting. Dashed lines represent

soft gluons.

with the scalar integral Itt̄ defined as

Itt̄ = 16πiαs(p̄t · p̄t̄)
eεγEµ2ε

(4π)ε

∫
ddq

(2π)d
1

q2

1

∆t − 2p̄t · q
1

∆t̄ + 2p̄t̄ · q
(3.13)

and d = 4 − 2ε. The simple expression of Itt̄ follows from the eikonal form of the QCD

fermion-gluon interaction vertex in the soft limit, ū(p)γµ(/pt± /q+mt) ∼ 2p̄µt ū(p), and from

the expansion of the propagators in the integrand of the full QCD triangle integral,

(pt ± q)2 − µ2
t = p2

t ± 2pt · q + q2 − µ2
t ∼ ∆t ± 2p̄t · q , (3.14)

where the quadratic term q2 ∼ δ2 must be dropped, being sub-leading compared to the

term ∆t ± 2p̄t · q ∼ δ. Note that in eq. (3.13) the off-shell top and antitop momenta pt
and p̄t have been replaced by the on-shell projections p̄t and p̄t̄, except in the combinations

p2
t − µ2

t ≡ ∆t and p̄2
t − µ2

t ≡ ∆t̄. In addition, finite-width effects have been resummed into

the top propagators, in accordance with the EFT Lagrangian eq. (2.2).

Using Feynman parameters and standard integration techniques eq. (3.13) can be re-

duced to the one-dimensional integral

Itt̄ =
αs
2π
ηeεγEΓ(1− ε)Γ(2ε)

∫ ∞
0

dy [(y − ξ+)(y − ξ−)]−1+ε

(
−∆t − y∆t̄

mtµ

)−2ε

, (3.15)

where we have introduced the invariant η = 2p̄t · p̄t̄/m2
t and

ξ± =
η ±

√
η2 − 4 + io+

2
, (3.16)
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Figure 10. Soft box and pentagon diagrams contributing at NLO in the EFT counting. Dashed

lines represent soft gluons.

with io+ an infinitesimal and positive imaginary part. Expanding Itt̄ in ε one obtains

Itt̄ =
αs
4π
η

{
I

(−1)
tt̄

[
1

ε
− 2 ln

(
− ∆t

mtµ

)]
+ I

(0)
tt̄

}
, (3.17)

where the integrals I
(−1)
tt̄

and I
(0)
tt̄

are given by

I
(−1)
tt̄

= − ln(−ξ+)− ln(−ξ−)

ξ+ − ξ−
, (3.18)

I
(0)
tt̄

=
1

ξ+ − ξ−

{
−1

2
ln2(−ξ+) +

1

2
ln2(−ξ−)2 − ln(−ξ+) ln(ξ+ − ξ−)

+ ln(−ξ−) ln(ξ− − ξ+) +
1

2
ln2(ξ+ − ξ−)− 1

2
ln2(ξ− − ξ+)

+Li2

(
ξ+

ξ+ − ξ−

)
− Li2

(
ξ−

ξ− − ξ+

)
− ln2

(
∆t̄

∆t + ∆t̄ξ+

)
+ ln2

(
∆t̄

∆t + ∆t̄ξ−

)
−2 ln(−ξ+) ln

(
∆t

∆t + ∆t̄ξ+

)
+ 2 ln(−ξ−) ln

(
∆t

∆t + ∆t̄ξ−

)
−2Li2

(
∆t̄ξ+

∆t + ∆t̄ξ+

)
+ 2Li2

(
∆t̄ξ−

∆t + ∆t̄ξ−

)}
. (3.19)

Note that the only explicit scale dependence in eq. (3.17) is due to the term ln (−∆t/(mtµ)),

indicating that the natural scale choice for non-factorizable corrections is µsoft ∼ ∆t/mt ∼
Γt. All other terms in eq. (3.17) have no explicit µ dependence and do not contain po-

tentially large logarithms. This is a common feature of all soft contributions in figures 9

and 10. The calculation of the missing box and pentagon integrals closely follows the one

outlined above for the triangle and will not be given explicitly here.
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Figure 11. Real-corrections diagrams contributing to the cross section at NLO in δ.

3.4 Real QCD corrections

At NLO real QCD diagrams must also be taken into account. As discussed in section 2.3

and illustrated in figure 11, any real emission diagram can be split into a linear combina-

tion of terms containing a single resonant propagator. In turn, these can be interpreted

as corrections to either the production or decay subprocesses and their contribution to the

amplitude is obtained from the expansion of the full QCD matrix elements around on-shell

configurations. These on-shell configurations are defined by p2
t = p2

t̄ = µ2
t for diagram (a),

(pt+k)2 = p2
t̄ = µ2

t for diagram (b) and p2
t = (pt̄+k)2 = µ2

t for diagram (c), with k being the

momentum of the emitted gluon. Note that here only gluonic corrections to the tree-level

topology are considered, but a full calculation which also includes the gluon-initiated pro-

duction channel would require the calculation of diagrams with a gq(q̄) initial state at NLO.

Soft and collinear singularities are treated in the standard way, by adding a suitable

subtraction term to the real matrix element and subtracting the corresponding integrated

function from the virtual corrections, such that the cancellation of poles is manifest and real

corrections can be safely computed in four dimensions. In particular, for the calculation

of the results given in section 4, two independent numerical codes were used, one imple-

menting the FKS subtraction method [68, 69] and the other, the Catani-Seymour dipole

method [70, 71]. As explained in section 2.4, the cancellation of virtual poles against real

ones occurs separately for factorizable and non-factorizable corrections. For factorizable

corrections this follows from the cancellation of infrared and collinear singularities for the

on-shell production and decay subprocesses. On the other hand, the (infrared) poles of non-

factorizable virtual corrections (i.e. the sum of all soft virtual contributions) are given by

dσV,non-fact. =
αs
6πε

[
16 + 7 ln

(
s13

m2
t

)
+ 7 ln

(
s24

m2
t

)
+ 2 ln

(
s14

m2
t

)
+ 2 ln

(
s23

m2
t

)
− ln

(
s34

m2
t

)
− 7 ln

(
s1t

m2
t

)
− 7 ln

(
s2t̄

m2
t

)
− 2 ln

(
s1t̄

m2
t

)
− 2 ln

(
s2t

m2
t

)
−8 ln

(
s3t

m2
t

)
− 8 ln

(
s4t̄

m2
t

)
+
η[ln(−ξ+)− ln(−ξ−)]

2(ξ+ − ξ−)

]
dσBorn , (3.20)

with sij = 2pi·pj . These can be shown to coincide with the pole structure of the production-

decay interference terms in eq. (2.14).
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3.5 Mass-scheme choice

The results shown in the previous sections have been computed in the so-called “pole-mass

scheme”, in which the renormalized mass parameter is chosen to coincide with the real part

of the complex pole of the top-quark propagator. This particular mass scheme is affected by

ambiguities related to QCD renormalons [24–26], making a determination of the top-quark

mass at an accuracy better than ΛQCD conceptually impossible. Avoiding these problems

requires the use of a mass scheme which is not affected by long-distance ambiguities. An ex-

ample of such a mass is the MS-renormalized mass, mMS
t . On the other hand the MS mass

presents the unpleasant feature of not preserving the effective-theory counting (or, in other

words, it differs from the pole mass by terms of order αs), thus spoiling the EFT counting

scheme. More suitable choices are represented by the so-called “threshold masses” [24, 27–

29], introduced in the context of heavy-quark threshold physics, and “jet masses” [30, 31]

studied for boosted top-jet events in e+e−-collisions. These masses have the attractive fea-

ture of not being sensitive to low-momentum physics and of differing only by amounts of or-

der ∼ mtα
2
s ∼ mtδ from the pole mass, thus preserving the effective-theory counting. In the

following we will consider the “potential-subtracted” (PS) mass definition [27] as an alter-

native suitable mass scheme, illustrating how this fits into the effective-theory calculation.

The relation between the pole mass and the PS mass can be found in ref. [27], and up

to second order in αs (enough for applications in this work) reads

mt = mt,PS + µPS

[
αs
2π
δPS

1 +
(αs

2π

)2
δPS

2

]
, (3.21)

with

δPS
1 = 2CF

δPS
2 = CF

[
a1 − b0

(
ln

(
µ2

PS

µ2
R

)
− 2

)]
(3.22)

and a1 = 31/3−10nf/9, b0 = 11−2nf/3. The cutoff µPS has to be chosen of order ∼ mtαs
to preserve the EFT counting. Substituting the pole mass in favour of the PS mass in the

(renormalized) resummed top propagator one obtains

1

p2
t −m2

t,PS + imt,PSΓt − αs
π δ

PS
1 µPSmt,PS − α2

s
2π2 δ

PS
2 µPSmt,PS + . . .

(3.23)

with the ellipses denoting terms that scale as δ2 or higher. Note that, counting µPS ∼
√
δ,

the term −αsδPS
1 µPSmt,PS/π scales as the leading term p2

t −m2
t,PS + imt,PSΓt ∼ δ, and has

to be kept in the denominator of the propagator. The term proportional to α2
s is suppressed

by an additional
√
δ and can be re-expanded to fixed-order in the expansion parameters,

1

p2
t−m2

t,PS+imt,PSΓt− αs
π δ

PS
1 µPSmt,PS

{
1+

α2
s

2π2 δ
PS
2 µPSmt,PS

p2
t−m2

t,PS+imt,PSΓt− αs
π δ

PS
1 µPSmt,PS

}
.

(3.24)
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Note that the replacement mt → mt,PS + αs
2π δ

PS
1 µPS + . . . in the numerator of the matrix

elements does not generate extra terms at NLO since αsµPS ∼ δ. Thus to convert the pole-

scheme result for the renormalized cross section to the PS scheme it is sufficient to replace

m2
t − imtΓt → m2

t,PS − imt,PSΓt + αs
π δ

PS
1 µPSmt,PS in the denominator of the top (antitop)

propagator (in both the LO and NLO cross section), mt → mt,PS in the numerator and to

add the higher-order propagator contribution

δA(1)
pole→PS = A(0)

α2
s

2π2 δ
PS
2 µPSmt,PS

p2
t −m2

t,PS + imt,PSΓt − αs
π δ

PS
1 µPSmt,PS

(3.25)

to the NLO amplitude and a similar one for the internal antitop propagator.

The result for the conversion from pole scheme to PS scheme can be equivalently

obtained considering how the top-quark propagator is renormalized and resummed in the

two schemes. We introduce the short-cut Dt = p2
t − m2

t and Dt,PS = p2
t − m2

t,PS to

indicate the renormalized inverse propagator in the pole and PS scheme (without self-

energy resummation). In the pole scheme, the contribution of the hard part of the one-loop

QCD self-energy to the internal top-quark line can be written as [13]

δQCD(mt)

[
2im2

t (/pt +mt)

D2
t

+
imt

Dt
−
i(/pt +mt)

Dt

]
, (3.26)

with

δQCD(mt) =
αsCF

2π

[
3

2ε
+ 2 +

xsc
2
− 3

2
ln

(
m2
t

µ2

)]
+O(α2

s) , (3.27)

while the correction to the top-quark line from the mass-renormalization counterterm δmt

reads
δmt

mt

[
2im2

t (/pt +mt)

D2
t

+
imt

Dt

]
. (3.28)

In the pole scheme one has δmt/mt = −δQCD(mt), which leads to the renormalized one-loop

propagator
i(/pt +mt)

Dt
(1− δQCD(mt)) . (3.29)

Including in addition the hard part of the electroweak self energy one obtains

i(/pt +mt)

∆t
(1− δQCD(mt)) . (3.30)

In the PS scheme the self-energy correction to the propagator has the same functional

form as in the pole scheme, but it depends on the PS mass mt,PS

δQCD(mt,PS)

[
2im2

t,PS(/pt +mt,PS)

D2
t,PS

+
imt,PS

Dt,PS
−
i(/pt +mt,PS)

Dt,PS

]
. (3.31)

Analogously, the mass renormalization gives the contribution

δmt,PS

mt,PS

[
2im2

t,PS(/pt +mt,PS)

D2
t,PS

+
imt,PS

Dt,PS

]
. (3.32)
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The mass counterterm in the PS scheme can be obtained using the relation between the

pole and PS mass, eq. (3.21), and the results given in eqs. (3.20) and (3.24) of ref. [13]

δmt,PS

mt,PS
= −δQCD(mt,PS) +

µPS

mt,PS

[
αs
2π
δPS

1 +
(αs

2π

)2
δPS

2 + . . .

]
.

Thus the one-loop renormalized propagator in the PS scheme reads

i(/pt +mt,PS)

Dt,PS
(1− δQCD(mt,PS))

+
µPS

mt,PS

[
αs
2π
δPS

1 +
(αs

2π

)2
δPS

2

](
2im2

t,PS(/pt +mt,PS)

D2
t,PS

+
imt,PS

Dt,PS

)
. (3.33)

Remembering that µPS ∼ αsmt and keeping only the parametrically relevant terms one

obtains

i(/pt +mt,PS)

Dt,PS

(
1− δQCD(mt,PS) +

αs
π δ

PS
1 µPSmt,PS + α2

s
2π2 δ

PS
2 µPSmt,PS

Dt,PS

)
. (3.34)

The terms proportional to δQCD and δPS
2 scale as ∼ αs ∼

√
δ compared to the leading propa-

gator, and can be included perturbatively in the calculation of the cross section. In contrast,

the term proportional to δPS
1 is a correction of order one, since αsµPSmt,PS/Dt,PS ∼ 1. It

thus has to be resummed into the leading-order propagator. Including the contribution of

the one-loop electroweak self energy, the resummed renormalized propagator reads

i(/pt +mt,PS)

∆t,PS − αs
π δ

PS
1 µPSmt,PS

[
1− δQCD(mt,PS) +

α2
s

2π2 δ
PS
2 µPSmt,PS

∆t,PS − αs
π δ

PS
1 µPSmt,PS

]
, (3.35)

with ∆t,PS = p2
t − m2

t,PS + imt,PSΓt. This confirms that the conversion from pole to PS

scheme amounts to the replacement ∆t → ∆t,PS − αs
π δ

PS
1 µPSmt,PS in the denominator of

the resummed top-quark propagator and the addition of the term

δA(1)
pole→PS = A(0)

α2
s

2π2 δ
PS
2 µPSmt,PS

∆t,PS − αs
π δ

PS
1 µPSmt,PS

(3.36)

to the NLO amplitude for each intermediate top or antitop quark line present at LO.

3.6 Validity of EFT results

We conclude this section with a remark on the validity of the EFT results for tt̄ production.

As outlined in section 2, in our effective-theory framework the unstable particle is correctly

treated by HQET (plus finite-width effects). Strictly speaking, for production of a pair of

unstable particles this is true as long as the two velocities v, v̄ are relativistic, which is

the case if
√
ŝ� 2mt, namely when the partonic centre-of-mass energy

√
ŝ is much larger

than the pair-production threshold. When
√
ŝ − 2mt ∼ Γt the two particles become non-

relativistic, v ∼ v̄ ∼ (1,~0), and the correct effective theory to describe the pair-production

process is non-relativistic QCD (NRQCD). In the expansion by regions this is seen as an
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additional potential region which develops when the heavy particles become non-relativistic,

and describes Coulomb interactions of the two slow-moving particles. This breakdown of

the expansion in δ was already noticed in the context of the pole approximation for W -

pair production, with the double-pole approximation quickly loosing accuracy when
√
ŝ

approaches 2MW [72]. While this is relevant for an e−e+ collider, where the centre-of-

mass energy can be tuned to probe the threshold region, at hadron colliders the physical

hadronic cross section is obtained by convoluting the partonic cross section and parton

luminosities over the full range
√
ŝ = [0,

√
s]. For a multi-TeV hadronic c.o.m. energy

√
s,

and particle masses in the range of 100-200 GeV, the contribution of the threshold region is

expected to be small, so that the error introduced by using the wrong EFT description near

threshold is negligible. We have checked this explicitly for the total NLO cross section in

the stable-top approximation and found that the threshold region, defined by v ≤ 0.1-0.2,

contributes 1-5% of the total hadronic cross section. The Coulomb terms, which are the

ones incorrectly reproduced by HQET in the threshold limit, are in fact less than 1%.

Below threshold, doubly-resonant configurations do not dominate the cross section

because the phase space for production of two resonant tops is strongly suppressed for√
ŝ < 2mt. In this region NRQCD should be replaced by a new effective theory describ-

ing singly-resonant production of a tt̄∗ (t∗t̄) pair, which would require the calculation of

non-trivial QCD corrections to the processes qq̄ → tW−b̄(t̄W+b). For this reason, below

threshold we switch to a Born-level prediction of the top-pair production cross section, and

set virtual and real corrections to zero. Once again, one expects the error in introducing

this approximation to be below the accuracy of a few percent which we pursue here. Ac-

tually, in the results presented next, we impose a physical cut on the final state so that we

never run into the complications near threshold.

4 Results

In this section we present explicit results for a sample of representative kinematical distri-

butions relevant for top quark pair production studies. Our main purpose here is to discuss

the importance of off-shell and factorizable corrections by making a direct comparison to

the NWA approach. The distributions presented in sections 4.1–4.3 are computed in the

pole-mass renormalization scheme whilst a comparison to results obtained in the PS scheme

is given in section 4.4.

The input values for the SM parameters are given in table 1. For the convolution of

the partonic cross section with the PDFs we use the MSTW2008 NLO set [73] for both LO

and NLO cross sections, taking the corresponding value for αs for consistency. In addition,

for all contributions involving the top decay width we use the NLO width, ΓNLO
t . Using

NLO PDFs and ΓNLO
t throughout is a choice that has been made to ease identification of

off-shell effects, ensuring that corrections arising from changes in PDFs or decay widths

do not cloud the effects introduced by the off-shellness of the tops. Our default choice of

factorization and renormalization scales is µF = µR = mt. Where present, bands around

LO and NLO off-shell results are obtained by simultaneously varying the renormalization

and factorization scales in the interval [mt/2, 2mt].
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Collider: Tevatron,
√
s = 1.96 TeV

pT (Jb) > 15 GeV pT (l+) > 15 GeV /ET > 20 GeV

pT (Jb̄) > 15 GeV pT (l−) > 15 GeV Djet = 0.7

Mt = 172.9 GeV ΓNLO
t = 1.3662 GeV MZ = 91.2 GeV

MW = 80.4 GeV ΓW = 2.14 GeV αew = 0.03394

Table 1. Example process definition at the Tevatron collider and parameter setup.

Throughout the following discussion we assume that the final state contains a b and

a b̄ jet and furthermore that the W -bosons are perfectly reconstructed. Despite the latter

not being feasible in the di-lepton channel it allows one to identify features arising from

the off-shellness of the top quarks that will also be relevant in an experimentally rigorous

analysis. It is emphasised however, that wherever we discuss an observable related to the

(anti)top, it is understood this is the reconstructed (anti)top quark, defined in terms of the

W+(−)-boson and (b̄)b-jet, Jb(b̄).

In order that the EFT approach and counting remains valid the following conditions

on the reconstructed top-quark momenta, p(t) = p(Jb)+p(W+) and p(t̄ ) = p(Jb̄)+p(W−),

are also imposed:

140 GeV < Minv(t) =

√
(p(t))2 < 200 GeV,

140 GeV < Minv(t̄) =

√
(p(t̄))2 < 200 GeV,

Minv(tt̄) =

√
(p(t) + p(t̄))2 > 350 GeV. (4.1)

The experimental setup we consider, typical for a study of top-pair production, is detailed

in table 1 and defines the process

p p̄ → Jb Jb̄ /ET l
+ l− +X. (4.2)

We note that the jets have been clustered using the standard kt-algorithm with jet resolu-

tion parameter Djet = 0.7.

The implementation of the factorizable corrections to production and decay subpro-

cesses has been checked in the limit of on-shell top quarks against the di-lepton channel

implementation in MCFM [65]. Very good agreement was found both for inclusive cross

sections and for all distributions we have checked. The analytical expressions for the virtual

non-factorizable corrections have been put through extensive numerical checks and corre-

sponding real corrections display the correct independence on the soft FKS parameter ξcut.

4.1 Invariant and transverse masses

We start by presenting results for the invariant and transverse masses of the reconstructed

tops, displayed in figures 12 and 13 respectively. These observables are expected to be
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sensitive to the off-shellness of the top quarks. The off-shell LO (σLO, off-s., green band)

and NLO (σNLO, off-s., red band) results are displayed in the upper plots, as is the NLO

prediction in the NWA (σNLO,on-s., blue, solid). Note that even though the top quarks are

strictly on-shell in the NWA, beyond LO the invariant mass of the reconstructed top (i.e.

the W+ Jb system) is not necessarily equal to mt. In order to straightforwardly assess the

importance of off-shell effects, non-factorizable corrections (σNF, interference between ra-

diation from production and decay) and sub-leading contributions (σsub-lead., non-resonant

tree-level contributions), we study the quantities

σNLO, off-s. − σNLO, on-s.

σNLO, on-s.
(red, solid), (4.3)

σNF

σNLO, on-s.
(blue, solid), (4.4)

σsub-lead.

σNLO,on-s.
(green, dashed), (4.5)

in the lower panel of each figure. The non-factorizable corrections have been evaluated at

the scale µsoft ' mt δ, as motivated at the end of section 3.3. For the case at hand this

amounts to multiplying σNF(µ = mt) by the factor αs(µsoft)/αs(mt) ' 2.24, when δ = 0.02.

It would also be desirable to include a resummation of logarithms of µsoft/mt by running

the hard matching coefficients down to the soft scale using RGEs, however this will not be

discussed here.

Firstly we focus on the invariant mass distribution of the reconstructed antitop quark,

shown in figure 12.6 An important feature present in the upper plot is that the shapes

of the NLO off-shell and on-shell distributions are significantly different, particularly near

and beyond the peak position. This is made clear in the lower inset where one observes

that off-shell effects are indeed sizeable, exceeding 60% around the peak. However, one

also notices that they change sign in this region, resulting in the net off-shell effects being

small due to an averaging out that occurs for inclusive enough observables like the total

cross section. The lower inset in figure 12 also shows the effect of strict non-factorizable

effects and sub-leading contributions, both normalized to the NLO on-shell results. Non-

factorizable corrections, given by the sum of virtual and real soft contributions, are very

small, ∼ 1% over the whole invariant-mass range considered, except around the pole, where

they grow to roughly 6-7%. The contribution of sub-leading diagrams is also very small

close to the peak, where δ � 1 and the effective-theory counting is satisfied, but becomes

sizeable in the tail region for Minv(t) > mt, as one would expect.

We now consider figure 13 which displays the transverse mass distribution of the re-

constructed top quark, defined via

MT (t) =
(
(|~pT (Jb)|+ |~pT (l+)|+ |ET (νl)|)2 − (~pT (Jb) + ~pT (l+) + ~pT (νl))

2
)1/2

(4.6)

where ~pT (k) is the transverse momentum of the final state k.

Once more, it is clear that there are substantial differences between the shape of the

distribution in the on-shell and off-shell approaches. In particular, the relatively sharp

6The LO on-shell result is a delta function centred at mt and it is omitted in the plot.
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Figure 12. Invariant mass distribution for the reconstructed antitop quark. Upper plot: results for

the off-shell LO result (green), off-shell NLO result (red) and on-shell NLO prediction (blue). Lower

inset: relative contributions of total off-shell effects, non-factorizable corrections and singly-resonant

diagrams. See the text for explanation.

edge in the on-shell calculation becomes much less steep once the on-shell assumption is

relaxed. The size of off-shell effects are quantified in the lower inset where one observes that

these constitute a negative 2-3% correction to the NWA result, except near and beyond

the edge (at MT ∼ mt) where much larger effects are present. In this region, the averaging

effect mentioned earlier is less effective leading to enhanced corrections. The pure non-

factorizable corrections are negligible for almost the entire range, but do grow to 5-6%

near the edge. Finally it is clear from the figure that the sub-leading terms are also small

(∼ 2%) for values of MT below mt and become more important for values beyond the edge.

The common characteristics shared by the contributions (4.3)–(4.5) for this observable

can be understood by the fact that the distribution in the on-shell approach has a fixed

edge at mt at LO, whilst at NLO it can only receive contributions beyond mt from events

involving additional radiation that is clustered into Jb. In the off-shell computation (at both

LO and NLO) this region receives additional contributions from events where Minv(t) > mt

and thus differs from the on-shell result distinctly. It should be noted that in this region

soft-gluon resummation or parton shower effects are also expected to play an important role.
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Figure 13. Transverse mass distribution for the reconstructed top quark. Upper plot: results for

the off-shell LO result (green), off-shell NLO result (red) and on-shell NLO prediction (blue). Lower

inset: relative contributions of total off-shell effects, non-factorizable corrections and singly-resonant

diagrams. See the text for explanation.

4.2 Individual NLO contributions

We now examine the relative importance of the different contributions to the cross section

for the distribution HT (Jb, Jb̄) = pT (Jb) + pT (Jb̄). The findings, illustrated in figure 14,

are typical of observables that are inclusive in the invariant masses of the top quarks.

It is clear from the figure that the corrections to the top and antitop decay subprocesses

are important for the correct normalization of the distribution, each separately correcting

the LO results by about −10%. The negative sign of the latter means that there is a

partial cancellation of NLO corrections between the production and decay subprocesses. It

is evident from the almost flat shape of the decay corrections in the lower inset of figure 14

that these do not noticeably alter the shape of the distribution. Rather, any significant

correction to the LO shape comes about through the factorizable corrections to the pro-

duction subprocess. The non-factorizable corrections have not been included in the plot

as they are tiny, as expected by the almost complete cancellation between real and virtual

corrections for inclusive observables. In fact, the off-shell effects (also not displayed) are,

as a whole, also small over the full range of HT considered, in agreement with the a priori

expectation that these effects are of order ∼ Γt/mt. The sub-leading contributions consti-

tute a 1-2% correction to the LO result (except at very low HT ), indicating that the EFT

power-counting is working well.
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Figure 14. HT (Jb, Jb̄) distribution. Upper plot: off-shell LO (green, solid) and NLO (red, solid)

results. The factorizable corrections to the production (blue, solid), top decay (pink, solid) and

antitop decay (dark green, dashed) subprocesses are also displayed along with the tree-level sub-

leading contributions (purple, dashed). The ratios of the latter four contributions with respect to the

LO results are shown in the lower inset (same colours and line-styles). See the text for explanation.

4.3 Forward-backward asymmetry

Figure 15 displays the differential distribution relevant for the study of the forward-

backward asymmetry of the top quark,

top asymmetry:
dσ

dy(t)
− dσ

dy(t̄ )
. (4.7)

The important feature to pick out is that off-shell effects amount to a small negative

correction to the on-shell asymmetry of less than 4% in magnitude. This is fully expected

for an observable that is inclusive over the invariant mass of the top. The sub-leading

terms display a small asymmetry, giving a ∼ 7% correction to the on-shell asymmetry.

4.4 Pole mass versus PS mass

In this subsection we examine the effects of using the PS-mass scheme as an alternative

to the pole scheme. As discussed previously, the PS mass has the advantage of being free

of non-perturbative ambiguities whilst still being a suitable mass for the effective-theory

setup as long as the choice µPS ∼ αsmt is made.

We illustrate the above statements in figures 16 and 17 where the reconstructed top-

quark invariant mass and pseudo-rapidity are shown respectively. Distributions in the pole
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Figure 15. Differential forward-backward asymmetry for the reconstructed top quarks, see

eq. (4.7). Upper plot: off-shell (red, solid), on-shell (blue, solid) and sub-leading (purple, dashed)

asymmetries. Lower inset: ratio of the off-shell correction (red, solid) and sub-leading asymmetries

(blue, dashed) with respect to the on-shell asymmetry. See text for further explanation.

scheme and PS-scheme with µPS ∈ {10, 20, 30, 50}GeV at LO (l.h.s. panels) and NLO

(r.h.s. panels) are plotted. In detail, we fix the numerical value of mt,PS(µPS) to the pole

mass mt = 172.9 GeV at next-to-leading order, i.e. including the term ∼ δPS
1 in eq. (3.21)

and obtain mt,PS(10) = 172.44 GeV, mt,PS(20) = 171.97 GeV, mt,PS(30) = 171.53 GeV

and mt,PS(50) = 170.6 GeV respectively. The width of the top is also adapted in accordance

with mt at next-to-leading order in αs.

According to our discussion in sections 2.5 and 3.5, we would expect the suitability of

µPS = 50 GeV to be highly questionable, whereas µPS = 10 GeV should be perfectly ac-

ceptable. To confirm this, firstly, we point out that at LO the distributions in all schemes

agree very well with each other (within ∼ 5% for all bins), even for ‘bad’ scheme choices.

This is clear since terms affecting the perturbative stability of a particular mass scheme

only enter at orders beyond LO. In the RH panel of figure 16, where the NLO invariant

mass distributions are plotted, it is evident that the choice µPS & 30 GeV leads to seri-

ous deviations in shape from the pole-scheme curve and to large NLO corrections. This

shift is due to the term given in eq. (3.25) and, to a lesser extent, due to non-factorizable

corrections. The size of the NLO corrections implies that a NLO description of the line-

shape for µPS & 30 GeV is not trustworthy. In the same plot however, we observe that

sensible scheme choices (µPS = 10, 20 GeV) give lineshapes that have a stable perturbative

expansion. Thus it is perfectly legitimate to use such schemes rather than the pole-mass

scheme for the extraction of the top mass from a measurement of the invariant mass of its

decay products. Moreover, at NLO it is only observables that are more exclusive in the
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Figure 16. Invariant-mass distribution for reconstructed top quark at LO (left panel) and NLO

(right panel) for pole and various PS-schemes. See the text for explanation.

Figure 17. Pseudo-rapidity distribution for reconstructed top quark at LO (left panel) and NLO

(right panel) for pole and various PS-schemes. See the text for explanation.

invariant mass that will display significant differences in shape for different schemes. The

latter feature is illustrated well for the top pseudo-rapidity in the RH panel of figure 17,

where all schemes display the same shape and the NLO corrections are under control.
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Figure 18. Invariant-mass distribution for reconstructed top quark at NLO for pole and various

PS-schemes. See the text for explanation.

In order to investigate the impact of mass-scheme ambiguities on the determination

of the top mass, we now consider in a toy analysis the invariant mass distribution for

µPS ∈ {0, 10, 20}GeV, where µPS = 0 of course corresponds to the pole scheme. We want

to compare the extraction of the top mass in these schemes at LO and NLO. We stress

that we only consider effects from scheme changes and ignore all other effects, such as

colour-reconnection effects and many more.

Starting at LO, we extract the mass in all schemes by adjusting its value to obtain

optimal agreement with the measured distribution. Let us assume in the pole scheme the

measured distribution is matched perfectly for mt = 172.9 GeV. After the extraction of this

value for the pole mass we can now convert the latter to the MS scheme to obtainm = 162.2,

where the conversion is done at three loop [74] with a crude Pade estimate7 for higher-order

corrections. However, as we have argued above, we are also entitled to use the PS scheme

with µPS = 10 GeV or µPS = 20 GeV for such an analysis. Given the results shown in the

left panel of figure 16, the extracted values for the masses in these schemes are extremely

close to the NLO converted masses given previously in this subsection and listed in the

first column of table 2. If we now convert these values to the MS scheme with precisely the

same procedure used for the pole scheme, we obtain the values for m listed in the second

7We emphasise that the precise method employed to estimate effects of higher order corrections does

not play a major role here. For all numbers quoted in this subsection, including table 2, the estimate of

the error in the conversion is . 100 MeV.
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LO NLO

µPS mexp m mt mexp m mt

0 172.9 162.2 172.9 172.9 162.2 172.9

10 172.4 162.7 173.5 172.2 162.4 173.3

20 172.0 163.0 173.8 171.5 162.5 173.4

Table 2. Extraction of the top mass in various schemes at LO (left panel) and NLO (right panel).

All numbers are in units of GeV.

column of table 2. These values differ by 600− 800 MeV from m = 162.2. Alternatively, if

we convert the extracted values of mt,PS(10) = 172.44 GeV and mt,PS(20) = 171.97 GeV

back to the pole scheme, we obtain the values mt = 173.5 GeV and mt = 173.8 GeV

respectively, as listed in the third column of table 2. This conversion is done at O(α4
s),

again supplemented by a crude Pade approximation to estimate higher-order effects. We

stress that all values given in the left panel of table 2 are of course consistent at O(αs)

and differ only by terms that are formally of higher order. The crucial point is that the

numerical effect of these higher-order terms lead to an ambiguity of 500− 900 MeV in the

LO extraction of the top mass from the invariant mass distribution.

We can now repeat this exercise at NLO where we begin by stressing that NLO in this

context implies the inclusion of NLO corrections to the propagation of the top quark, in

addition to the factorizable and non-factorizable corrections. Simply taking into account

NLO corrections to the production subprocess alone does not improve the LO toy analysis

presented above. We again assume that the experimental measurement of the invariant

mass is perfectly matched in the pole scheme by setting mt = 172.9 GeV. To extract the

PS-mass from this measurement we would have to perform a best-fit analysis in the PS-

scheme and extract the best value for the top mass. We have found that this best value is

very close (but not exactly identical) to the value obtained from two-loop conversion of the

pole mass to the PS mass, listed in the first column in the right panel of table 2. In figure 18

we show the corresponding distributions to confirm that they are indeed very close.

As in the LO case we then convert the extracted values for the mass to the MS scheme

(second column) and back to the pole scheme (third column). Not surprisingly, the ambi-

guities in the extraction of the mass has decreased compared to the LO case and is now

about 200− 300 MeV for the determination of m and 400− 500 MeV for the determination

of the pole mass.

Let us conclude this subsection with a few comments regarding this toy analysis. First

and foremost, this is of course only a basic investigation. Apart from taking into account

all partonic channels, a fully rigorous analysis would have to include numerous effects be-

yond fixed order in perturbation theory. However, the main result that there is an existing

additional ambiguity due to the scheme dependence, is unlikely to change drastically. In

particular, it is not justified to blindly identify the extracted mass of the top quark as the

pole mass. The size of this additional error will depend most of all on whether the analysis

is done at LO or NLO. It also depends on what values of µPS are considered acceptable -
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increasing the range in µPS increases the spread in the extracted mass. We find that the

ambiguity in the (indirect) determination of m is smaller than that present in the deter-

mination of the pole mass. This could be due to the better convergence of the associated

perturbative series relating the different masses, which in turn is related to the renormalon

ambiguities inherent to the pole mass.

5 Conclusions

We have presented an approach that allows the computation of cross sections involving

heavy unstable particles, formalising the physical picture of production and subsequent

decay. Our approach makes use of techniques common to effective-theory calculations,

organizing the amplitude into contributions from matching coefficients and from dynamic

soft degrees of freedom in the effective theory. This split allows one to disentangle and

separately study effects from widely different scales. Compared to computations using

the complex-mass scheme, our approach leads to calculations that are considerably sim-

pler technically. However, our results do have the disadvantage of being valid only in the

resonant region. To relax this constraint within the effective theory approach, we would

have to match our results to a strict fixed-order calculation (without any self-energy re-

summation) outside the resonance region. Similarly, if we wanted to extend the results to

the threshold region, we would have to match our effective theory to another NRQCD-like

effective theory that describes a top pair near resonance.

The approach applied in this paper to top pair production from initial state quarks is

a generalization and development of an approach applied earlier to single-top production.

In particular, the real corrections are expanded at the integrand level so that no further

expansions after phase space integration are required.

Generically, off-shell effects are found to be small and only have an impact near kine-

matic edges where distributions are not inclusive in the invariant mass and, therefore, the

corresponding cancellations are not complete. As a toy application we have investigated

the impact of mass-scheme ambiguities for the extraction of the top mass from the invari-

ant mass distribution. In a simple analysis we found scheme ambiguities of 500− 900 MeV

and 400− 500 MeV for the determination of the pole mass using LO and NLO calculations

respectively. Future applications of the EFT method include the possibility of studying

resummation of logarithms of ratios of widely separated scales for fully differential cross sec-

tions. The fact that effective theories disentangle effects from different scales is a promising

starting point for such an investigation.
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