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Abstract

Beam-excited higher order modes (HOM) can be used to provide beam diagnostics. Here we focus
on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and
its application to beam position determinations. In order to extract beam position information, linear
regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are
used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and
k -means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms.
A cross-validation technique is used to study the sample independent precisions of the position predictions
given by these three methods. A RMS prediction error in the beam position of approximately 50 micron
can be achieved by DLR and SVD, while k -means clustering suggests 70 micron.
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1 Introduction

FLASH is a free-electron laser (FEL) facility at DESY (Hamburg, Germany) providing ultrashort radiation
pulses with an unprecedented brilliance [1]. This is a user facility for fundamental light source applications
and test facility for accelerator physics. An electron source generates a high quality electron beam, which is
then driven by seven 1.3 GHz superconducting TESLA type [2] accelerating modules to maximum energy
of 1.2 GeV. In the undulator section the beam produces a laser-like coherent FEL radiation.

Electron 
Source

Steering Magnets BPM-A ACC39 Module BPM-B

Electron beam direction

Cavity 1 Cavity 2 Cavity 3 Cavity 4

HOM Couplers

1.3 GHz TESLA 
Cavity Module

~ 150 MeV~ 5 MeV

Figure 1: Schematic of the FLASH injector section (not to scale, the 1.3 GHz TESLA cavity is approximately
three times longer than the 3.9 GHz cavity in ACC39 module).

The injector section of FLASH is shown schematically in Fig. 1. A third harmonic module (ACC39)
containing four 3.9 GHz superconducting cavities is installed in FLASH in order to linearize the longitudinal
phase space of the electron bunch [3]. Wakefields are much stronger in these cavities than in the TESLA
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1.3 GHz cavities [4]. If left unchecked, these will add adverse effects to the beam resulting in a dilution of
the beam quality. Dipole higher order modes (HOM), with linear dependence on the offset of the excitation
bunch [5], have the main contribution to the transverse wakefield. By centering the beam in the cavities,
one can reduce the excited transverse wakefield. Moreover, monitoring dipole modes provides an indirect
measurement of the transverse beam position in the cavity. Such beam diagnostics have been previously
studied and electronics have been built for the TESLA 1.3 GHz cavities at FLASH, using a dipole mode at
approximately 1.7 GHz with large R/Q value [6]. In the 3.9 GHz cavities, however, no obvious candidate
mode exists [7]. The spectrum is dense particularly due to most HOMs being above the cutoff frequency
of the inter-connecting beam pipes [8]. Also these inter-coupled modes preclude a local determination of
beam position within each cavity in contradistinction to the TESLA 1.3 GHz cavities. There are however
a limited number of modes in the fifth dipole band which are not coupled [9]. These have smaller R/Q
values compared to those in the inter-coupled region and hence have a reduced resolution for beam position
diagnostics [10].

In order to evaluate the various frequency regions which could be used for diagnostics, test electronics
have been built by FNAL [10, 11]. This down-converts the HOM signal measured from one of the two
HOM couplers of each cavity containing dipole modes between 4 and 9.1 GHz to 70 MHz with a 20 MHz
bandwidth. The signal is then digitized with a rate of 216 MS/s and a 14 bit resolution. The HOM data are
recorded synchronously to various data from the FLASH control system such as beam position monitors,
magnetic steerers and charge monitors. The results obtained with the test electronics are used for the
following studies.

In order to diagnose transverse beam position with the HOM signal, a straightforward method is to
perform a direct linear regression (DLR). However due to a large number of sampling points present in the
HOM signal, a considerable amount of unknown variables need to be determined. This is computationally
expensive and has the risk of overfitting. It is therefore advisable to reduce the signal dimension. Arranging
HOM signals in a matrix form, a row-based method named singular value decomposition (SVD) and a
column-based method named k -means clustering are used. The signal size has been effectively cut down by
two orders of magnitude to several tens whilst the prediction accuracies are retained compared to DLR. All
three methods are elucidated comprehensively in Section 2. The performances of these methods are analyzed
and compared firstly on a fixed sample split. Since the samples are scarce, a cross-validation technique is
applied to remove the sample dependence in the performance evaluations. These comparisons are presented
in Section 3. In Section 4 we conclude that in the HOM-based beam position diagnostics, DLR is an accurate
but time-inefficient method, while k -means clustering is computation-efficient but degenerates the position
resolution by approximately one third. In contrast, SVD is a robust method in terms of both computation
time and position resolution, and has been therefore chosen to be used in the final electronics.

2 Algorithms for beam position diagnostics

The test electronics have been connected to the upstream HOM coupler of Cavity 3 as shown in Fig. 1.
The digitized data has been filtered such that only the trapped cavity modes in the fifth dipole band from
9040 MHz to 9078 MHz [9] are preserved and then normalized to the beam charge. These modes are of
particular interest since they can provide localized beam position information. We have steered the beam
in a two-dimensional grid manner by using a pair of steerer magnets located upstream of ACC39 module
as shown in Fig. 1. The RF of ACC39 and the nearby quadrupole magnets were both switched off in order
to produce a straight-line beam trajectory between the two beam position monitors: BPM-A and BPM-B.
Thus the transverse beam positions inside the cavity can be determined from the readouts of the two BPMs
by linear interpolation. The detailed setup of the FLASH machine for this study can be found in [10]. The
goal is to extract transverse beam position from the HOM waveforms.

2.1 Data preparation

The HOM waveforms for 85 different beam positions are shown in Fig. 2(a). The corresponding beam
positions are shown in Fig. 2(b) (blue and red dots).

In order to define the problem, we arrange the waveforms and beam positions in matrix forms. The
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Figure 2: (a) Waveforms of all 85 samples. (b) Fixed sample split. Calibration samples are in blue and
validation samples are in red.

matrix A contains the waveforms and is constructed as

A =


waveform1

waveform2
...

waveformm

 =
(
a1, a2, · · · , an

)
∈ Rm×n. (1)

A is a m× n matrix. ai ∈ Rm is the ith column of A, which contains values of the ith sampling point from
all m waveforms. Each waveform has 4096 sampling points, therefore n = 4096.

The matrix B contains the interpolated beam positions and is constructed as

B =


x1 y1
x2 y2
...

...
xm ym

 ∈ Rm×2. (2)

B is a m×2 matrix. xi and yi are the ith transverse beam positions at the center of the cavity corresponding
to the measurement of waveformi. There are technical difficulties which would be entailed in obtaining
angle effects in ACC39 independently. As the contribution of the angle wakefield is much smaller than that
of the offset wakefield [6], the angle is not considered in this study.

Now we have built a system consisting of waveforms A and beam positions B. To study this system, we
split the samples in a fixed manner as shown in Fig. 2(b). 49 samples are used for calibration (blue) and
the remaining 36 samples for validation (red). Therefore, calibration samples have m = 49 and validation
samples have m = 36 in both Eq. 1 and Eq. 2.

2.2 Direct linear regression

To extract beam position information from the waveforms, a straightforward method is Direct Linear Re-
gression (DLR),

A ·M = B, (3)

where A ∈ Rm×(n+1) with one column of 1 added to the waveform matrix defined in Eq. 1 representing the
intercept term, B ∈ Rm×2 is the position matrix defined in Eq. 2, M ∈ R(n+1)×2 is the matrix of regression
coefficients. M is further represented as (M1,M2), where Mk is a (n + 1) × 1 vector (k = 1 or 2). The
matrix M is obtained by solving the linear system composed by matrix A and B.

The linear system is highly under-determined where m� n, which is vulnerable to overfitting. Therefore,
we used a modified least square algorithm to do the linear regression: Regularized Least Squares (RLS) [12].
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A regularization term is added into the normal error function in order to control the overfitting. The RLS
error function is therefore defined as

Jk =
1

2

m∑
i=1

(Bpre
i −Bi)

2
+
λ

2
‖ ~Mk ‖2, (k = 1, 2) (4)

where Bpre
i is the predicted beam position calculated by using Eq. 3, Bpre

i and Bi represent x when k = 1 or

y when k = 2, ‖ ~Mk ‖ is the 2-norm [13] of Mk, and λ is the regularization coefficient controlling the relative
importance of the regularization term. λ provides a shrinkage of the value of the regression coefficients in
M . The linear regression is therefore performed by minimizing the RLS error functions while updating the
elements of M . A figure of merit has also been defined in order to evaluate the goodness of the regression:
the root-mean-square (RMS) error,

ERMS =

√√√√ 1

m

m∑
i=1

(Bpre
i −Bi)

2
. (5)

ERMS has the unit of mm, which is the same as Bpre
i and Bi.

The impact of the regularization term in Eq. 4 on the prediction error can be seen in Fig. 3 by plotting
the RMS errors of both calibration and validation samples against the regularization coefficient λ. A model
with a λ < 108 has a stable and promising performance, while in contrast a poor fit emerges for a large λ.
The complexity of the model is now controlled with λ overseeing the degree of overfitting. When λ < 107,
the RMS errors fall sharply for calibration samples whiles slightly rise for validation samples. This is an
indication of overfitting due to the lack of control by a too small λ. Thus we choose λ = 107 for the following
analysis.

Figure 3: RMS error versus λ.

The value of the RLS error function is reduced in each iteration while performing the linear regression
as shown in Fig. 4(a). The difference of the J ’s between two consecutive iterations is denoted as ∆J . The
values of J ’s decrease evidently when ∆J > 10−7 , and then land on a relatively flat region between 10−9

and 10−7 of ∆J . The RMS errors of both calibration and validation samples for each iteration are shown
in Fig. 4(b). The prediction power on the validation samples stabilizes after ∆J < 10−6. An overfitting
emerges while ∆J < 10−7 as the RMS errors of calibration samples drop sharply, while the RMS errors of
validation samples rise slightly. Therefore, we set that the calculation stops when ∆J < 10−7.

Using λ = 107 and ∆J < 10−7, the predicted beam positions are obtained by RLS and then plotted
together with the direct measurement for both calibration and validation samples in Fig. 5. To measure
the consistency, the coefficient of determination r2 is calculated (r2 = 1 corresponds to a perfect fit whilst
r2 = 0 is a poor fit) [14]. The differences between predicted and measured positions are shown in Fig. 6 as
the residuals. The RMS error on the validation samples is 40 µm for x and 50 µm for y.

The size of matrix M is 4097× 2. A considerable number of unknown variables need to be determined.
This is computationally expensive. As all sampling points are used in the regression, each column of matrix
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Figure 4: Error function and RMS error in calculating the calibration matrix M .

Figure 5: Measurement (blue) and prediction (red) of the transverse beam position from calibration and
validation samples. The method applied is DLR.

A, ai, is a regressor. The correlation coefficients R(i, j) of these regressors are calculated as [14]

R(i, j) =
Cov(ai, aj)√

Cov(ai, ai) · Cov(aj , aj)
, (6)

where ai and aj are ith and jth column of matrix A as defined in Eq. 1, Cov(ai, aj) is the covariance [15]
between two regressors ai and aj . In this definition, R = ±1 corresponds to a strong correlation while
R = 0 indicates no correlation at all. Fig. 7 shows the correlation coefficients of the calibration samples.
Most regressors are strongly correlated and this makes the linear system sensitive to the fluctuations of the
calibration samples. In our case, it means that the system is vulnerable to noise. Moreover, even though we
have made efforts to control it, overfitting is always a potential problem unless the number of calibration
samples is fairly large (m > n). To avoid these risks, it is prudent to reduce the system size from multi-
thousand to several tens, and then apply linear regression on the reduced system. The methods we used for
this purpose are described in the following sections.

2.3 Singular value decomposition

In order to reduce the dimension of the system, a method known as Singular Value Decomposition (SVD)
[16] is used to find a small number of prominent components from the waveform matrix A. In general, SVD
looks for patterns of a matrix in terms of SVD modes without the knowledge of any physical parameters
(like dipole mode frequency, quality factor, beam position, etc.). Those SVD modes are natural groupings
of the signal matrix, which are not clearly visible or explicitly defined in the matrix itself.
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Figure 6: Difference of measured and predicted transverse beam position from calibration and validation
samples. The method applied is DLR.

Figure 7: (a) Waveforms of 49 calibration samples; (b) Correlation coefficients between each regressor of
DLR.

Applying SVD, the matrix A is decomposed into the product of three matrices,

A = U · S · V T , (7)

where V T indicates the transpose of V . The columns of U and V are singular vectors of A, which form
the bases of the decomposition. S is a diagonal matrix whose non-zero elements are known as singular
values. Fig. 8(a) shows the singular value of each SVD mode decomposed from the calibration samples. It
can be seen that the first few SVD modes have relatively large singular values, in other words, they are the
dominant patterns of matrix A.

Each of the SVD modes can be used to produce a waveform matrix by

Ai = Ui · Sii · V T
i , (8)

where Ui is the ith column of U , and V T
i is the ith row of V T . Sii denotes the ith diagonal element of S. Ai

has the same size as the original waveform matrix A. Fig. 9 shows one waveform for each of the first nine
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Figure 8: (a) Singular value of each SVD mode; (b) Difference of the original and the reconstructed waveform
using the first 26 SVD modes. Note the scale of the waveform amplitude when comparing with Fig. 2(a).

Ai. The approximation Areco can be calculated by simply summing over the related Ai’s by

Areco =

p∑
i=1

Ai. (9)

Fig. 8(b) shows the difference between the original waveform A and Areco for p = 26. One can see that the
waveform can be well represented by using only the first 26 SVD modes, which is also illustrated by r2 ≈ 1.
The choice of p will be discussed later.

Figure 9: Waveform reconstructed from each of the first nine SVD modes.

With the SVD base vectors from the decompositions of waveform matrix A, the amplitude of all SVD
modes, Asvd,full, can be obtained for each beam position by

Asvd,full = A · V = (Asvd
1 , Asvd

2 , · · · ). (10)
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Asvd
i ∈ Rm×1 contains the mode amplitude for each beam position of the ith SVD mode. Fig. 10(a) shows

the mode amplitude of the first 49 SVD modes with non-zero singular values obtained from the calibration
samples. The correlation coefficient between each pair of SVD mode is also calculated using Eq. 6 by
replacing ai and aj by Asvd

i and Asvd
j and it is shown in Fig. 10(b). The first SVD mode has relatively

strong correlations with several SVD modes. This is because the mean of the 49 calibration waveforms is
not zero.
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Figure 10: SVD mode amplitudes and their correlations.

Along with a column of 1, I ∈ Rm×1, representing the intercept term, we use the first p (p ≤ m) SVD
modes to build the SVD mode amplitude matrix Asvd:

Asvd = (I, Asvd
1 , Asvd

2 , · · · , Asvd
p ), (11)

The size of the matrix Asvd is significantly smaller (p+1 columns, representing p SVD modes and 1 intercept
term) compared to the original waveform matrix A (4097 columns, representing 4096 sampling points and
1 intercept term). Replacing A by Asvd in the regression (Eq. 3), the linear system composed by Asvd and
B is now over-determined, and has a best solution in a least square sense. The prediction for the validation
samples has two steps: first, project A onto the base vectors obtained from calibration samples to get the
amplitude of the SVD modes using Eq. 10; second, predict positions using the SVD amplitude matrix and
the coefficient matrix M .

The contribution of combining the first p SVD modes to determine the transverse beam position x and
y is measured by the RMS error as shown in Fig. 11. Zooming into the region where 12 ≤ p ≤ 32, the
ERMS of x and y for validation samples are shown in Fig. 12. Using the first 26 SVD modes is seen to give
an optimal performance for both x and y plane. This confirms, with Fig. 8, that the first few SVD modes
contain the majority of the beam position information.

Fig. 13 shows the HOM response from calibration and validation samples by using the first 26 SVD
modes to determine the transverse beam position x and y. The RMS errors remain small and comparable
for calibration and validation samples as shown in Fig. 14. The RMS error is 44 µm for x and 45 µm for y
when predicting positions from validation samples.

2.4 k-means clustering

An information redundancy is present in the linear system composed of A (Eq. 1) and B (Eq. 2), as the
regressors ai’s from the waveform matrix A are highly correlated (Fig. 7). A technique named k-means
clustering [12] is used in order to group the data into a few cohesive clusters. Each ai is considered as one
point in the m-dimensional space, and the goal is to find k groups of points based on Euclidean distance.
The cluster centroid µj is defined as the average value of ai’s

µj =
1

M

jM∑
i=j1

ai, (12)
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Figure 11: Contribution of the first p SVD modes to determine the transverse beam position x and y
measured by ERMS .

Figure 12: Contribution of the first p SVD modes (12 ≤ p ≤ 32) to determine the transverse beam position
x and y measured by ERMS .

where (j1, j2, · · · , jM ) are M indices of the m-dimensional points ai’s which belong to the jth cluster whose
centroid is µj . Fig. 15 shows 22 clusters in red partitioned from the calibration samples in blue for one beam
position. The values of the corresponding 22 centroids are shown in Fig. 16(a) for all 49 beam positions.
The correlation coefficients of these clusters can be calculated by replacing ai with µj in Eq. 6 and are shown
in Fig. 16(b). As expected, correlations can be observed among clusters.

The contribution of different number of clusters to determine the transverse beam position x and y is
measured by the RMS error as shown in Fig. 17. Using 22 clusters is seen to give an optimal performance
for both x and y.

Fig. 18 shows the HOM response from calibration and validation samples by using 22 clusters to determine
the transverse beam position x and y respectively. The RMS errors remain small and comparable for
calibration and validation samples as shown in Fig. 19. The RMS error is 68 µm for x and 56 µm for y
when predicting positions from validation samples.

9



Figure 13: Measurement (blue) and prediction (red) of the transverse beam position from calibration and
validation samples. The method applied is SVD with the first 26 SVD modes.

Figure 14: Difference of measured and predicted transverse beam position from calibration and validation
samples. The method applied is SVD with the first 26 SVD modes.
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Figure 15: 22 clusters (red) partitioned from the calibration samples (blue) for one beam position.

0 2 4 6 8 10 12 14 16 18 20 22
−40
−30
−20
−10

0
10
20
30
40

Cluster

C
lu

st
er

 c
en

tro
id

(b
its
⋅1

03 )

(a) Cluster centroid (49 calibration samples)

Figure 16: Cluster centroids and their correlations.
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Figure 17: Different number of clusters to determine the transverse beam position x and y measured by
ERMS .

Figure 18: Measurement (blue) and prediction (red) of the transverse beam position from calibration and
validation samples. The method applied is k -means clustering with 22 clusters.
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Figure 19: Difference of measured and predicted transverse beam position from calibration and validation
samples. The method applied is k -means clustering with 22 clusters.
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3 Performance Evaluation

The performance of the three methods used to extract the beam position described in the previous section
is evaluated in this section by two different techniques: the fixed sample split and cross-validation. A figure
of merit, position resolution, is defined as the RMS error when predicting the validation samples (Eq. 5).

3.1 Fixed sample split

For the fixed sample split shown in Fig. 2(b), the position resolutions obtained from the three different
methods are listed in Table 1 along with the calibration RMS errors. The RMS errors are comparable for
DLR and SVD of both calibration and validation samples. Both methods suggest an approximately 50 µm
position resolution. The k -means clustering suggests a worse resolution of 60–70 µm.

Table 1: Direct comparison of DLR, SVD and k -means clustering for the fixed sample split.
Calibration Validation

ERMS (x) ERMS (y) ERMS (x) ERMS (y)

DLR 30 µm 25 µm 40 µm 50 µm

SVD 31 µm 22 µm 44 µm 45 µm

Clustering 47 µm 36 µm 68 µm 56 µm

3.2 Cross-validation

Until now, our analysis is based on a specific sample split (Fig. 2(b)). To remove the sample dependence,
a technique named cross-validation is used [12]. As our total sample size is quite small (85 samples), we
use the technique called leave-one-out cross-validation (LOOCV) [12]. For each sample split, LOOCV uses
only one sample from the total samples as validation, and the remaining 84 samples are used for calibration.
This is repeated 85 times such that each sample out of all the samples is used once for validation. The RMS
error is then calculated on the residuals for the validation sample from all 85 different sample splits.

Figure 20: Measurement (blue) and prediction of the transverse beam position from each of 85 validation
samples using LOOCV. The DLR is in red. The SVD is in green with the first 26 SVD modes. The k -
means clustering is in magenta with 22 clusters. Points connected with black lines belong to the same beam
position.

Fig. 20 shows the measurement and the prediction of each sample when it is used for validation in that
specific sample split. The methods applied are DLR (red), SVD (green) with the first 26 SVD modes, and
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Figure 21: Difference of measured and predicted transverse beam position from each of 85 validation samples
using LOOCV.

k -means clustering (magenta) with 22 clusters. Fig. 21 shows the corresponding residuals for these three
methods. The sample-independent RMS errors are listed in Table 2. Since the calibration samples for each
of the 85 sample splits are similar, the RMS error for the validation sample from all 85 sample splits is a
good estimation of the position resolution. The results are similar to the fixed sample split case shown in
Table 1. Although the results are comparable for all three methods, SVD and k -means clustering are far
more efficient than DLR in computing calibration coefficients, since the number of unknown variables is
much smaller, as shown in Table 2. However, once the calibration matrix M is obtained, the time required
for position prediction is generally equally fast.

Table 2: Direct comparison of DLR, SVD and k -means clustering using cross-validation.
ERMS (x) ERMS (y) Number of unknowns

DLR 47 µm 47 µm 4097

SVD 51 µm 48 µm 27

Clustering 70 µm 64 µm 23

4 Summary and Conclusions

We have studied various methods to extract the transverse beam position from the HOMs excited by an
electron beam in a third harmonic superconducting cavity. A linear system has been composed from HOM
waveforms in the fifth dipole band with frequencies in the range 9040–9078 MHz and measured beam
positions. DLR on the entire waveforms suggests a position resolution of 40 µm for x and 50 µm for y. Due
to the large number of sampling points occurred from the waveforms, the system has a considerable number
of unknown variables to be determined. This leads to a long computation time in the calibration phase.
Therefore, two methods are used to reduce the dimension of the system effectively: SVD and k -means
clustering. SVD gives a comparable position resolution to DLR of 44 µm for x and 45 µm for y, while
k -means clustering provides a reasonable resolution of 68 µm for x and 56 µm for y. In order to eliminate
the sample dependence, a cross-validation technique has been applied with these three methods. The RMS
prediction error of approximately 50 µm can be achieved by both DLR and SVD, while a 30%–40% worse
precision is suggested by the k -means clustering.

In this study, SVD is seen to be an effective and computation-efficient method to reduce the system
dimension while preserving good position resolutions in both x and y. Therefore it has been decided to
implement SVD into the final HOM electronics for beam position diagnostics in third harmonic cavities for
FLASH and the European XFEL.
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