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1 Introduction

Many extensions of the Standard Model of particle physics predict the presence of TeV-
scale strongly interacting particles that decay to weakly interacting descendants. In the
context of R-parity-conserving supersymmetry (SUSY) [1–5], the strongly interacting par-
ent particles are the partners of the quarks (squarks, q̃) and gluons (gluinos, g̃), and are
produced in pairs. The lightest supersymmetric particle (LSP) is stable, providing a candi-
date that can contribute to the relic dark-matter density in the universe [6, 7]. If they are
kinematically accessible, the squarks and gluinos could be produced in the proton–proton
interactions at the Large Hadron Collider (LHC) [8].

Such particles are expected to decay in cascades, the nature of which depends on the
mass hierarchy within the model. The events would be characterised by significant missing
transverse momentum from the unobserved weakly interacting descendants, and by a large
number of jets from emissions of quarks and/or gluons. Individual cascade decays may
include gluino decays to a top squark (stop, t̃) and an anti-top quark,

g̃ → t̃+ t̄ (1.1a)

followed by the top-squark decay to a top quark and a neutralino LSP, χ̃0
1,

t̃→ t+ χ̃0
1. (1.1b)

Alternatively, if the top squark is heavier than the gluino, the three-body decay,

g̃ → t+ t̄+ χ̃0
1 (1.2)

may result. Other possibilities include decays involving intermediate charginos, neutralinos,
and/or squarks including bottom squarks. A pair of cascade decays produces a large
number of Standard Model particles, together with a pair of LSPs, one from the end of
each cascade. The LSPs are assumed to be stable and only weakly interacting, and so
escape undetected, resulting in missing transverse momentum.

In this paper we consider final states with large numbers of jets together with significant
missing transverse momentum in the absence of isolated electrons or muons, using the pp
collision data recorded by the ATLAS experiment during 2012 at a centre-of-mass energy
of
√
s = 8 TeV. The corresponding integrated luminosity is 20.3 fb−1. Searches for new

phenomena in final states with large jet multiplicities – requiring from at least six to at
least nine jets – and missing transverse momentum have previously been reported by the
ATLAS Collaboration using LHC pp collision data corresponding to 1.34 fb−1 [9] and to
4.7 fb−1 [10] at

√
s = 7 TeV. Searches with explicit tagging of jets from bottom quarks

(b-jets) in multi-jet events were also performed by ATLAS [11] and CMS [12–14]. These
searches found no significant excess over the Standard Model expectation and provide
limits on various supersymmetric models, including decays such as that in eq. (1.2) and an
mSUGRA/CMSSM [15–20] model that includes strong production processes. The analysis
presented in this paper extends previous analyses by reaching higher jet multiplicities and
utilizing new sensitive variables.
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Events are first selected with large jet multiplicities, with requirements ranging from at
least seven to at least ten jets, reconstructed using the anti-kt clustering algorithm [21, 22]
and jet radius parameterR = 0.4. Significant missing transverse momentum is also required
in the event. The sensitivity of the search is further enhanced by the subdivision of the
selected sample into several categories using additional information. Event clasification
based on the number of b-jets gives enhanced sensitivity to models which predict either
more or fewer b-jets than the Standard Model background. In a complementary stream
of the analysis, the R = 0.4 jets are clustered into large (R = 1.0) composite jets to form
an event variable, the sum of the masses of the composite jets, which gives additional
discrimination in models with a large number of objects in the final state [23]. Events
containing isolated, high transverse-momentum (pT) electrons or muons are vetoed in order
to reduce backgrounds involving leptonic W boson decays. The previous analyses [9, 10]
had signal regions with smaller jet multiplicities; those are now omitted since the absence
of significant excesses in earlier analyses places stringent limits on models with large cross
sections.

Searches of this type were confirmed to have good sensitivity to decays such as those
in eqs. (1.1) and (1.2) [10], but they also provide sensitivity to any model resulting in final
states with large jet multiplicity in association with missing transverse momentum. Such
models include the pair production of gluinos, each of them decaying via

g̃ → q̄ + q̃ (1.3a)

followed by squark decay
q̃ → q′ + χ̃±1 → q′ +W + χ̃0

1, (1.3b)

or alternatively
q̃ → q′ + χ̃±1 → q′ +W + χ̃0

2 → q′ +W + Z + χ̃0
1. (1.3c)

Another possibility is the pair production of gluinos which decay as in eq. (1.1a) and the
subsequent decay of the t̃-squark via

t̃→ b+ χ̃±1 ,

or via the R-parity-violating decay
t̃→ b̄+ s̄. (1.4)

Several supersymmetric models are used to interpret the analysis results: simplified
models that include decays such as those in eqs. (1.1)–(1.4), and an mSUGRA/CMSSM
model with parameters1 tanβ = 30, A0 = −2m0 and µ > 0, which accommodates a lightest
Higgs boson mass compatible with the observed Higgs boson mass at the LHC [24, 25].

1A particular mSUGRA/CMSSM model point is specified by five parameters: the universal scalar mass

m0, the universal gaugino mass m1/2, the universal trilinear scalar coupling A0, the ratio of the vacuum

expectation values of the two Higgs fields tanβ, and the sign of the higgsino mass parameter µ.
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2 The ATLAS detector and data samples

The ATLAS experiment is a multi-purpose particle physics detector with a forward-backward
symmetric cylindrical geometry and nearly 4π coverage in solid angle.2 The layout of the
detector is defined by four superconducting magnet systems, which comprise a thin solenoid
surrounding the inner tracking detectors (ID), and a barrel and two end-cap toroids gener-
ating the magnetic field for a large muon spectrometer. The calorimeters lie between the
ID and the muon system. In the pseudorapidity region |η| < 3.2, high-granularity liquid-
argon (LAr) electromagnetic (EM) sampling calorimeters are used. An iron/scintillator-tile
calorimeter provides hadronic coverage for |η| < 1.7. The end-cap and forward regions,
spanning 1.5 < |η| < 4.9, are instrumented with LAr calorimeters for both EM and hadronic
measurements.

The data sample used in this analysis was taken during the period from March to
December 2012 with the LHC operating at a pp centre-of-mass energy of

√
s = 8 TeV. Ap-

plication of data-quality requirements results in an integrated luminosity of 20.3±0.6 fb−1,
where the luminosity is measured using techniques similar to those described in ref. [26],
with a preliminary calibration of the luminosity scale derived from beam-overlap scans
performed in November 2012. The analysis makes use of dedicated multi-jet triggers, the
final step of which required either at least five jets with ET > 55 GeV or at least six jets
with ET > 45 GeV, where the jets must have |η| < 3.2. The final level of the trigger
selection is based on a jet algorithm and calibration method closely matched to those used
in the signal region selections. In all cases the trigger efficiency is greater than 99% for
events satisfying the jet multiplicity selection criteria for the signal regions described in
section 4. Events selected with single-lepton triggers and prescaled multi-jet triggers are
used for background determination in control regions.

3 Physics object selection

Jets are reconstructed using the anti-kt jet clustering algorithm with radius parameter R =
0.4. The inputs to this algorithm are the energies and positions of clusters of calorimeter
cells, where the clusters are formed starting from cells with energies significantly above
the noise level. Jet momenta are constructed by performing a four-vector sum over these
clusters of calorimeter cells, treating each as an (E,p) four-vector with zero mass. The
local cluster weighting (LCW) calibration method is used to classify clusters as being of
either electromagnetic or hadronic origin and, based on this classification, applies specific
energy corrections derived from a combination of Monte Carlo simulation and data [27, 28].
A further calibration is applied to the corrected jet energies to relate the response of the
calorimeter to the true jet energy. The jets are corrected for energy from additional proton–
proton collisions (pile-up) using a method, proposed in ref. [29], which estimates the pile-up

2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre

of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse

plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the

polar angle θ as η = − ln tan(θ/2), and the transverse energy ET by ET = E sin θ.
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activity in any given event, as well as the sensitivity of any given jet to pile-up. The method
subtracts a contribution from the jet energy equal to the product of the jet area and the
average energy density of the event. All jets are required to satisfy pT > 20 GeV and
|η| < 2.8. More stringent requirements on pT and on |η| are made when defining signal
regions as described in section 4.

Jets with heavy-flavour content are identified using a tagging algorithm that uses
both impact parameter and secondary vertex information [30]. This b-tagging algorithm
is applied to all jets that satisfy both |η| < 2.5 and pT > 40 GeV. The parameters of the
algorithm are chosen such that 70% of b-jets and about 1% of light-flavour or gluon jets
are selected in tt̄ events in Monte Carlo simulations [31]. Jets initiated by charm quarks
are tagged with about 20% efficiency.

Electrons are required to have pT > 10 GeV and |η| < 2.47. They must satisfy
‘medium’ electron shower shape and track selection criteria based upon those described
in ref. [32], but modified to reduce the impact of pile-up and to match tightened trig-
ger requirements. They must be separated by at least ∆R = 0.4 from any jet, where
∆R =

√
(∆η)2 + (∆φ)2. Events containing electrons passing these criteria are vetoed

when forming signal regions. Additional requirements are applied to electrons when defin-
ing leptonic control regions used to aid in the estimate of the SM background contributions,
as described in section 5.4; in this case, electrons must have pT > 25 GeV, must satisfy the
‘tight’ criteria of ref. [32], must have transverse and longitudinal impact parameters within
5 standard deviations and 0.4 mm, respectively, of the primary vertex, and are required to
be well isolated.3

Muons are required to have pT > 10 GeV and |η| < 2.5, to satisfy track quality selection
criteria, and to be separated by at least ∆R = 0.4 from the nearest jet candidate. Events
containing muons passing these criteria are vetoed when forming signal regions. When
defining leptonic control regions, muons must have pT > 25 GeV, |η| < 2.4, transverse and
longitudinal impact parameters within 5 standard deviations and 0.4 mm, respectively, of
the primary vertex and they must be isolated.4

The missing transverse momentum two-vector pmiss
T is calculated from the negative

vector sum of the transverse momenta of all calorimeter energy clusters with |η| < 4.5
and of all muons [33]. Clusters associated with either electrons or photons with pT >

10 GeV, and those associated with jets with pT > 20 GeV and |η| < 4.5 make use of
the calibrations of these respective objects. For jets the calibration includes the area-based
pile-up correction described above. Clusters not associated with such objects are calibrated
using both calorimeter and tracker information. The magnitude of pmiss

T , conventionally

3The electron isolation requirements are based on nearby tracks and calorimeter clusters, as follows.

The scalar sum of transverse momenta of tracks, other than the track from the electron itself, in a cone of

radius ∆R = 0.3 around the electron is required to be smaller than 16% of the electron’s pT. The scalar

sum of calorimeter transverse energy around the electron in the same cone, excluding the electron itself, is

required to be smaller than 18% of the electron’s pT.
4The scalar sum of the transverse momenta of the tracks, other than the track from the muon itself,

within a cone of ∆R = 0.3 around the muon must be less than 12% of the muon’s pT, and the scalar sum

of calorimeter transverse energy in the same cone, excluding that from the muon, must be less than 12% of

the muon’s pT.
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denoted by Emiss
T , is used to distinguish signal and background regions.

4 Event selection

Following the physics object reconstruction described in section 3, events are discarded
if they contain any jet that fails quality criteria designed to suppress detector noise and
non-collision backgrounds, or if they lack a reconstructed primary vertex with five or more
associated tracks. Events containing isolated electron or muon candidates are also vetoed
as described in section 3. The remaining events are then analysed in two complementary
analysis streams, both of which require large jet multiplicities and significant Emiss

T . The
selections of the two streams are verified to have good sensitivity to decays such as those
in eqs. (1.1) – (1.4), but are kept generic to ensure sensitivity in a broad set of models with
large jet multiplicity and Emiss

T in the final state.

4.1 The multi-jet + flavour stream

In the multi-jet + flavour stream the number of jets with |η| < 2 and pT above the
threshold pmin

T = 50 GeV is calculated. Events with exactly eight or exactly nine such
jets are selected, and the sample is further subdivided according to the number of the jets
(0, 1 or ≥2) with pT > 40 GeV and |η| < 2.5 which satisfy the b-tagging criteria. The
b-tagged jets may belong to the set of jets with pT greater than pmin

T , but this is not a
requirement. Events with ten or more jets are retained in a separate category, without any
further subdivision.

A similar process is performed for the higher jet-pT threshold of pmin
T = 80 GeV. Signal

regions are defined for events with exactly seven jets or at least eight jets. Both categories
are again subdivided according to the number of jets (0, 1 or ≥2) that are b-tagged. Here
again, the b-tagged jets do not necessarily satisfy the pmin

T requirement.
In all cases the final selection variable is Emiss

T /
√
HT, the ratio of the Emiss

T to the
square root of the scalar sum HT of the transverse momenta of all jets with pT > 40 GeV
and |η| < 2.8. This ratio is closely related to the significance of the Emiss

T relative to
the resolution due to stochastic variations in the measured jet energies [33]. The value of
Emiss

T /
√
HT is required to be larger than 4 GeV1/2 for all signal regions.

4.2 The multi-jet + MΣ
J stream

Analysis of the multi-jet + MΣ
J stream proceeds as follows. The number of (R = 0.4) jets

with pT above 50 GeV is determined, this time using a larger pseudorapidity acceptance
of |η| < 2.8. Events with at least eight, at least nine or at least ten such jets are retained,
and a category is created for each of those multiplicity thresholds. The four-momenta of
the R = 0.4 jets satisfying pT > 20 GeV and |η| < 2.8 are then used as inputs to a second
iteration of the anti-kt jet algorithm, this time using the larger distance parameter R = 1.0.
The resulting larger objects are denoted as composite jets. The selection variable MΣ

J is
then defined to be the sum of the masses mR=1.0

j of the composite jets

MΣ
J ≡

∑
j

mR=1.0
j ,
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where the sum is over the composite jets that satisfy pR=1.0
T > 100 GeV and |ηR=1.0| < 1.5.

Signal regions are defined for two different MΣ
J thresholds. Again the final selection requires

that Emiss
T /

√
HT > 4 GeV1/2.

4.3 Summary of signal regions

The nineteen resulting signal regions are summarized in table 1. Within the multi-jet +
flavour stream the seven signal regions defined with pmin

T = 50 GeV are mutually disjoint.
The same is true for the six signal regions defined with the threshold of 80 GeV. However,
the two sets of signal regions overlap; an event found in one of the pmin

T = 80 GeV signal
regions may also be found in one of the pmin

T = 50 GeV signal regions. The multi-jet +
MΣ
J stream has six inclusive signal regions; for example an event which has at least ten

R = 0.4 jets with pT > 50 GeV, MΣ
J > 420 GeV and Emiss

T /
√
HT > 4 GeV1/2 will be found

in all six multi-jet + MΣ
J regions. These overlaps are treated in the results of the analysis

as described in section 6.

5 Standard Model background determination

Two background categories are considered in this search: (1) multi-jet production, in-
cluding purely strong interaction processes and fully hadronic decays of tt̄, and hadronic
decays of W and Z bosons in association with jets, and (2) processes with leptons in the
final states, collectively referred to as leptonic backgrounds. The latter consist of semilep-
tonic and fully leptonic decays of tt̄, including tt̄ production in association with a boson;
leptonically decaying W or Z bosons produced in association with jets; and single top
quark production.

The major backgrounds (multi-jet, tt̄, W + jets, and Z + jets) are determined with the
aid of control regions, which are defined such that they are enriched in the background
process(es) of interest, but nevertheless remain kinematically close to the signal regions.
The multi-jet background determination is fully data-driven, and the most significant of the
other backgrounds use data control regions to normalise simulations. The normalisations of
the event yields predicted by the simulations are adjusted simultaneously in all the control
regions using a binned fit described in section 6, and the simulation is used to extrapolate
the results into the signal regions. The methods used in the determination of the multi-jet
and leptonic backgrounds are described in sections 5.2 and 5.4, respectively.

5.1 Monte Carlo simulations

Monte Carlo simulations are used as part of the leptonic background determination pro-
cess, and to assess the sensitivity to specific SUSY signal models. Most of the leptonic
backgrounds are generated using Sherpa-1.4.1 [34] with the CT10 [35] set of parton dis-
tribution functions (PDF). For tt̄ production, up to four additional partons are modelled
in the matrix element. Samples of W + jets and Z + jets events are generated with up to
five additional partons in the matrix element, except for processes involving b-quarks for
which up to four additional partons are included. In all cases, additional jets are generated
via parton showering. The leptonic W + jets, Z + jets and tt̄ backgrounds are normalised
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according to their inclusive theoretical cross sections [36, 37]. In the case of tt̄ produc-
tion, to account for higher-order terms which are not present in the Sherpa Monte Carlo
simulation, the fraction of events initiated by gluon fusion, relative to other processes, is
modified to improve the agreement with data in tt̄-enriched validation regions described
in section 5.4. This corresponds to applying a scale factor of 1.37 to the processes initi-
ated by gluon fusion and a corresponding factor to the other processes to keep the total tt̄
cross section the same. The estimation of the leptonic backgrounds in the signal regions is
described in detail in section 5.4.

Smaller background contributions are also modelled for the following processes: sin-
gle top quark production in association with a W boson in the s-channel (MC@NLO

4.06 [38–41] / Herwig 6.520 [42] / Jimmy 4.31 [43]), t-channel single top quark production
(AcerMC3.8 [44] / Pythia-6.426 [45]), and tt̄ production in association with a W or Z
boson (Madgraph-5.1.4.8 [46] / Pythia-6.426).

Supersymmetric production processes are generated using Herwig++2.5.2 [47] and
Madgraph-5.1.4.8 with the PDF set CTEQ6L1 [48]. The cross sections are calculated
to next-to-leading order in the strong coupling constant αS, including the resummation of
soft gluon emission at next-to-leading-logarithmic accuracy (NLO+NLL) [49–53].

For each process, the nominal cross section and its uncertainty are taken from an
envelope of cross-section predictions using different PDF sets and factorisation and renor-
malisation scales, as described in ref. [54]. All Monte Carlo simulated samples also include
simulation of pile-up and employ a detector simulation [55] based on GEANT4 [56]. The
simulated events are reconstructed with the same algorithms as the data.

5.2 Multi-jet background

The dominant background at intermediate values of Emiss
T is multi-jet production including

purely strong interaction processes and fully hadronic decays of tt̄. The contribution from
these processes is determined using collision data and the selection criteria were designed
such that multi-jet processes can be accurately determined from supporting measurements.

The background determination method is based on the observation that the Emiss
T

resolution of the detector is approximately proportional to
√
HT and almost independent

of the jet multiplicity in events dominated by jet activity, including hadronic decays of
top quarks and gauge bosons [9, 10]. The distribution of the ratio Emiss

T /
√
HT therefore

has a shape that is almost invariant under changes in the jet multiplicity. The multi-jet
backgrounds can be determined using control regions with lower Emiss

T /
√
HT and/or lower

jet multiplicity than the signal regions. The control regions are assumed to be dominated
by Standard Model processes, and that assumption is corroborated by the agreement with
Standard Model predictions of multi-jet cross-section measurements for up to six jets [57].

Events containing heavy quarks show a different Emiss
T /

√
HT distribution than those

containing only light-quark or gluon jets, since semileptonic decays of heavy quarks contain
neutrinos. The dependence of Emiss

T /
√
HT on the number of heavy quarks is accounted for

in the multi-jet + flavour signal regions by using a consistent set of such control regions with
the same b-jet multiplicity as the target signal distribution. The Emiss

T /
√
HT distribution is

also found to be approximately independent of theMΣ
J event variable, so a similar technique
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is used to obtain the expected multi-jet background contributions to the multi-jet + MΣ
J

signal regions.
The leading source of variation in Emiss

T /
√
HT under changes in the jet multiplicity

comes from a contribution to Emiss
T from calorimeter energy deposits not associated with

jets and hence not contributing to HT. The effect of this ‘soft’ energy is corrected for by
reweighting the Emiss

T /
√
HT distribution separately for each jet multiplicity in the signal

region, to provide the same
∑

ECellOut
T /HT distribution, where

∑
ECellOut

T is the scalar sum
of ET over all clusters of calorimeter cells not associated with jets having pT > 20 GeV or
electron, or muon candidates.

For example, to obtain the multi-jet contribution to the multi-jet + flavour stream
9j50 signal region with exactly one b-jet, the procedure is as follows. A template of the
shape of the Emiss

T /
√
HT distribution is formed from events which have exactly six jets with

pT > 50 GeV, and exactly one b-jet (which is not required to be one of the six previous
jets). The expected contribution from leptonic backgrounds is then subtracted, so that
the template provides the expected distribution resulting from the detector resolution,
together with any contribution to the resolution from semileptonic b-quark decays. The
nine-jet background prediction for the signal region (Emiss

T /
√
HT > 4 GeV1/2) with exactly

one b-jet is then given by

Nmulti-jet
predicted =

(
NA, njet=9

data −NA, njet=9
leptonic MC

)
×

NB, njet=6
data −NB, njet=6

leptonic MC

NA, njet=6
data −NA, njet=6

leptonic MC

 , (5.1)

where A ≡ Emiss
T /

√
HT < 1.5 GeV1/2, B ≡ Emiss

T /
√
HT > 4 GeV1/2, and each of the

counts N is determined after requiring the same b-jet multiplicity as for the target signal
region (i.e. exactly one b-jet in this example). Equation 5.1 is applied separately to each
of ten bins (of width 0.1) in

∑
ECellOut

T /HT to find the prediction for that bin, and then
the contributions of the ten bins summed to provide the

∑
ECellOut

T /HT-weighted multi-jet
prediction.

An analogous procedure is used to obtain the expected multi-jet contribution to each
of the other multi-jet + flavour stream signal regions by using the appropriate pmin

T , jet
multiplicity, and b-jet multiplicity as required by the target signal region. In each case
the shape of the Emiss

T /
√
HT distribution is obtained from a ‘template’ with exactly six

(five) jets for signal regions with pmin
T = 50 (80) GeV. The distributions of Emiss

T /
√
HT for

multi-jet + flavour stream control regions are shown in figure 1.
The procedure in the multi-jet + MΣ

J stream is similar: the same jet pmin
T , jet multi-

plicity and MΣ
J criteria are used when forming the template and control regions that are

required for the target signal region. Emiss
T /

√
HT distributions for control regions with

exactly seven jets with pT>50 GeV and additional MΣ
J selection criteria applied are shown

in figure 2. Leptonic backgrounds are subtracted, and
∑

ECellOut
T /HT weighting is applied.

For all cases in the multi-jet + MΣ
J stream the Emiss

T /
√
HT template shape is determined

from a sample which has exactly six jets with pT > 50 GeV.
Variations in the shape of the Emiss

T /
√
HT distribution under changes in the jet mul-

tiplicity are later used to quantify the systematic uncertainty associated with the method,
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(c) At least two b-jets

Figure 1: Distribution of Emiss
T /

√
HT for the control regions with exactly seven jets with

pT ≥ 50 GeV and |η| < 2.0, for different b-jet multiplicities. The multi-jet prediction is
determined from an Emiss

T /
√
HT template obtained from events with exactly six jets. It

is normalised to the data in the region Emiss
T /

√
HT < 1.5 GeV1/2 after subtraction of the

leptonic backgrounds. The most important leptonic backgrounds are also shown, based on
Monte Carlo simulations. Variable bin sizes are used with bin widths (in units of GeV1/2)
of 0.5 (up to Emiss

T /
√
HT = 4 GeV1/2), 1 (from 4 to 6), 2 (from 6 to 8) and 4 thereafter. For

reference and comparison, a supersymmetric model is used where gluinos of mass 900 GeV
are pair produced and each decay as in eq. (1.2) to a tt̄ pair and a χ̃0

1 with a mass of
150 GeV. The model is referred to as ‘[g̃, χ̃0

1] : [900, 150] [GeV]’.
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Figure 2: Distribution of Emiss
T /

√
HT for control regions with exactly seven jets with

pT ≥ 50 GeV, and satisfying the same requirements as the multi-jet + MΣ
J stream signal

regions, other than that on Emiss
T /

√
HT itself. The multi-jet prediction was determined

from an Emiss
T /

√
HT template obtained from events with exactly six jets. Other details are

as for figure 1.
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as described in section 5.3.

5.3 Systematic uncertainties in the multi-jet background determination

The multi-jet background determination method is validated by measuring the accuracy of
the predicted Emiss

T /
√
HT template for regions with jet multiplicities and/or Emiss

T /
√
HT

smaller than those chosen for the signal regions. The consistency of the prediction with
the number of observed events (closure) is tested in regions with Emiss

T /
√
HT [ GeV1/2] in

the ranges (1.5, 2.0), (2.0, 2.5), and (2.5, 3.5) for jet multiplicities of exactly seven, eight
and nine, and in the range (1.5, 2.0) and (2.0, 3.5) for ≥10 jets. The tests are performed
separately for 0, 1 and ≥ 2 b-tagged jets. In addition, the method is tested for events with
exactly six (five) jets with pmin

T = 50 GeV (80 GeV) across the full range of Emiss
T /

√
HT in

this case using a template obtained from events with exactly five (four) jets. The five-jet
(four-jet) events are obtained using a prescaled trigger for which only a fraction of the total
luminosity is available. Agreement is found both for signal region jet multiplicities at inter-
mediate values of Emiss

T /
√
HT and also for the signal region Emiss

T /
√
HT selection at lower

multiplicity. A symmetrical systematic uncertainty on each signal region is constructed by
taking the largest deviation in any of the closure regions with the same jet multiplicity or
lower, for the same b-tagging requirements. Typical closure uncertainties are in the range
5% to 15%; they can grow as large as ∼50% for the tightest signal regions, due to larger
statistical variations in the corresponding control regions.

Additional systematic uncertainties result from modelling of the heavy-flavour con-
tent (25%), which is assessed by using combinations of the templates of different b-tagged
jet multiplicity to vary the purity of the different samples. The closure in simulation of
samples with high heavy-flavour content is also tested. The leptonic backgrounds that are
subtracted when forming the template have an uncertainty associated with them (5–20%,
depending on the signal region). Furthermore, other uncertainties taken into account are
due to the scale choice of the cutoff for the soft energy term,

∑
ECellOut

T , (3–15%) and the
trigger efficiency (<1%) in the region where the template is formed.

5.4 Leptonic backgrounds

The leptonic backgrounds are defined to be those which involve the leptonic decays W →
`ν or Z → νν. Contributions are determined for partly hadronic (i.e. semileptonic or
dileptonic) tt̄, single top, W and Z production, and diboson production, each in association
with jets. The category excludes semileptonic decays of charm and bottom quarks, which
are considered within the multi-jet category (section 5.2). The leptonic backgrounds which
contribute most to the signal regions are tt̄ and W + jets. In each case, events can evade
the lepton veto, either via hadronic τ decays or when electrons or muons are produced but
not reconstructed.

The predictions employ the Monte Carlo simulations described in section 5.1. When
predictions are taken directly from the Monte Carlo simulations, the leptonic background
event yields are subject to large theoretical uncertainties associated with the use of a
leading-order Monte Carlo simulation generator. These include scale variations as well
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as changes in the number of partons present in the matrix element calculation, and un-
certainties in the response of the detector. To reduce these uncertainties the background
predictions are, where possible, normalised to data using control regions and cross-checked
against data in other validation regions. These control regions and validation regions are
designed to be distinct from, but kinematically close to, the signal regions, and orthogonal
to them by requiring an identified lepton candidate.

The validation and control regions for the tt̄ and W + jets backgrounds are defined in
table 2. In single-lepton regions, a single lepton (e or µ) is required, with sufficient pT to
allow the leptonic trigger to be employed. Modest requirements on Emiss

T and Emiss
T /

√
HT

reduce the background from fake leptons. An upper limit on

mT =
√

2
(
|pmiss

T ||p`T| − pmiss
T · p`T

)
,

where p`T is the transverse momentum vector of the lepton, decreases possible contamina-
tion from non-Standard-Model processes.

Single-lepton validation region

Lepton pT > 25 GeV

Lepton multiplicity Exactly one, ` ∈ {e, µ}

Emiss
T > 30 GeV

Emiss
T /

√
HT > 2.0 GeV1/2

mT < 120 GeV

Jet pT

Jet multiplicity As for signal regions
(table 1)b-jet multiplicity

MΣ
J

Control region (additional criteria)

Jet multiplicity Unit increment if p`
T > pmin

T

Emiss
T /

√
HT (+p`

T) > 4.0 GeV1/2

Table 2: The selection criteria for the validation and control regions for the tt̄ and
W + jets backgrounds. In the control region the lepton is recast as a jet so it contributes
to HT if p`T > 40 GeV and to the jet multiplicity count if p`T > pmin

T .

Since it is dominantly through hadronic τ decays that W bosons and tt̄ pairs contribute
to the signal regions, the corresponding control regions are created by recasting the muon
or electron as a jet. If the electron or muon has sufficient pT (without any additional cali-
bration), it is considered as an additional ‘jet’ and it can contribute to the jet multiplicity
count, as well as to HT and hence to the selection variable Emiss

T /
√
HT. The same jet

multiplicity as the signal region is required for the equivalent control regions. Additionally,
the same criteria for Emiss

T /
√
HT, MΣ

J and the number of b-tagged jets are required. For
the MΣ

J stream these control regions are further split into regions with no b-tagged jets and
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(b) Exactly one b-jet
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(c) ≥2 b-jets

Figure 3: Jet multiplicity distributions for pmin
T = 50 GeV jets in the one-lepton tt̄ and

W + jets control regions (CR) for different b-jet multiplicities. Monte Carlo simulation
predictions are before fitting to data. Other details are as for figure 1. The band in the
ratio plot indicates the experimental uncertainties on the Monte Carlo simulation prediction
and also includes the Monte Carlo simulation statistical uncertainty. Additional theoretical
uncertainties are not shown.

those with b-tagged jets to allow separation of contributions from W+jets and tt̄ events.
Provided the expected number of Standard Model events in the corresponding control re-
gion is greater than two, the number of observed events in that control region is used in a
fit to determine the Standard Model background as described in section 6. Distributions
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(c) MΣ
J distribution, ≥7j50 selection applied

Figure 4: Jet multiplicity distributions for pmin
T = 50 GeV jets in the one-lepton tt̄ and

W + jets control regions (CR) for different b-jet multiplicities and a selection on MΣ
J >

340 GeV (4a) - (4b), and the MΣ
J distribution for an inclusive selection of seven jets with

pmin
T = 50 GeV (4c). Other details are as for figure 3.

of jet multiplicity for the leptonic control regions can be found in figures 3–4. In figure 4
the MΣ

J distribution for a leptonic control region is also shown.
The Z+jets control regions require two same-flavour leptons with an invariant mass

consistent with that of the Z boson. To create control regions that emulate the signal
regions, the lepton transverse momenta are added to the missing momentum two-vector
and then the requirement Emiss

T /
√
HT > 4 GeV1/2 is applied. This emulates the situation

expected for the Z → νν background. The details of the selection criteria are given in table
3. This selection, but with relaxed jet multiplicity criteria, is used to validate the Monte
Carlo simulation description of this process; however, insufficient events remain at high jet
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multiplicity, so the estimation of this background is taken from Monte Carlo simulations.

Two-lepton validation region

Lepton pT > 25 GeV

Lepton multiplicity Exactly two, e e or µµ

m`` 80 GeV to 100 GeV

Jet pT

Jet multiplicity As for signal regions
(table 1)b-jet multiplicity

MΣ
J

Control region (additional criteria)

|p miss
T + p`1

T + p`2
T |/
√
HT > 4.0 GeV1/2

Table 3: The selection criteria for the validation and control regions for the Z + jets
background.

5.5 Systematic uncertainties in the leptonic background determination

Systematic uncertainties on the leptonic backgrounds originate from both detector-related
and theoretical sources from the Monte Carlo simulation modelling. Experimental uncer-
tainties are dominated by those on the jet energy scale, jet energy resolution and, in the
case of the flavour stream, b-tagging efficiency. Other less important uncertainties result
from the modelling of the pile-up, the lepton identification and the soft energy term in the
Emiss

T calculation; these make negligible contributions to the total systematic uncertainty.
The ATLAS jet energy scale and resolution are determined using in-situ techniques [28,

58]. The jet energy scale uncertainty includes uncertainties associated with the quark–
gluon composition of the sample, the heavy-flavour fraction and pile-up uncertainties. The
uncertainties are derived for R = 0.4 jets and propagated to all objects and selections used
in the analysis. The sources of the jet energy scale uncertainty are treated as correlated
between the various Standard Model backgrounds as well as with the signal contributions
when setting exclusion limits. The uncertainties on the yields due to those on the jet
energy scale and resolution range typically between 20% and 30%. The b-tagging efficiency
uncertainties are treated in a similar way when setting limits and have typical values of
≈ 10%. They are derived from data samples tagged with muons associated with jets, using
techniques described in refs. [30, 31].

For the tt̄ background, theoretical uncertainties are evaluated by comparing the particle-
level predictions of the nominal Sherpa samples with additional samples in which some of
the parameter settings were varied. These include variations of the factorisation scale, the
matching scale of the matrix element to the parton shower, the number of partons in the
matrix element and the PDFs. Alpgen [59] samples are also generated with the renormal-
isation scale associated with αS in the matrix element calculation varied up and down by
a factor of two relative to the original scale kt between two partons [60]. Finally, samples
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with and without weighting of events initiated by gluon fusion relative to other processes
are used to provide a systematic uncertainty on this procedure. The two latter sources of
systematic uncertainty are the dominant ones with typical values of 25–30% each, leading
to a total theoretical uncertainty on the tt̄ background of ≈ 40%.

Alternative samples are generated similarly for the other smaller backgrounds with
different parameters and/or generators to assess the associated theoretical uncertainties,
which are found to be similar to those for the tt̄ background.

6 Results

Figures 5–8 show the Emiss
T /

√
HT distributions for all the signal regions of both analysis

streams. In order to check the consistency of the data with the background-only and signal
hypotheses, a simultaneous profile maximum likelihood fit [61] is performed in the control
and signal regions, for each of the analysis streams separately. Poisson likelihood functions
are used for event counts in signal and control regions. Systematic uncertainties are treated
as nuisance parameters. They are assumed to follow Gaussian distributions and their effect
is propagated to the likelihood function. A control region is taken into account in the fit
if there are at least two expected events associated with it. The fits differ significantly
between the two analysis streams, as described in the following sections.

When evaluating a supersymmetric signal model for exclusion, any signal contamina-
tion in the control regions is taken into account for each signal point in the control-region
fits performed for each signal hypothesis. Separately, each signal region (one at a time),
along with all control regions, is also fitted under the background-only hypothesis. This
fit is used to characterise the agreement in each signal region with the background-only
hypothesis, and to extract visible cross-section limits and upper limits on the production
of events from new physics. For these limits, possible signal contamination in the control
regions is neglected.

6.1 Simultaneous fit in the multi-jet + flavour stream

The seven pmin
T = 50 GeV signal regions (and similarly the six pmin

T = 80 GeV signal
regions) are fitted to the background and signal predictions. Correlations from sample to
sample and region to region are taken into account, separately for the pmin

T = 50 GeV and
pmin

T = 80 GeV signal regions. Systematic uncertainties arising from the same source are
treated as fully correlated.

The fit considers several independent background components:

• tt̄ and W + jets. One control region is defined for each signal region, as described in
table 2; the normalisation of each background component is allowed to vary freely in
the fit.

• Less significant backgrounds (Z + jets, tt̄+W , tt̄+Z, and single top) are determined
using Monte Carlo simulations. These are individually allowed to vary within their
uncertainties.
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• Multi-jet background. Being data-driven, it is not constrained in the fit by any
control region. It is constrained in the signal regions by its uncertainties, which are
described in section 5.3.

The systematic effects, described in sections 5.3 and 5.5, are treated as nuisance param-
eters in the fit. For the signal, the dominant systematic effects are included in the fit; these
are the jet energy scale and resolution uncertainties, the b-tagging efficiency uncertainties,
and the theoretical uncertainties.

6.2 Simultaneous fit in the multi-jet + MΣ
J stream

For the multi-jet + MΣ
J signal regions, a separate fit is performed on each signal region

to adjust the normalisation of the tt̄ and W + jets backgrounds using control regions, as
defined in table 2.

The systematic uncertainties affecting the background, described in sections 5.3 and
5.5, and signal predictions are treated as nuisance parameters in the fit. The dominant
sources of uncertainty are considered for the signal predictions: the jet energy scale, the
jet energy resolution, and the theoretical uncertainties.

6.3 Fit results

Tables 4–7 summarise the fit results; the number of events observed in each of the signal
regions, as well as their Standard Model background expectations, are reported before
and after the fit to the control regions. In each of the signal regions, agreement is found
between the Standard Model prediction and the data. The fit results are checked for
stability and consistency with the background modelling based on the predictions described
in sections 5.2 and 5.4. There is no indication of a systematic mis-modelling of any of the
major backgrounds; the fitted values are in all cases consistent with the Monte Carlo
simulation predictions.

In addition to the event yields, the probability (p0-value) that a background-only
pseudo-experiment is more signal-like than the observed data is given for each individ-
ual signal region. To obtain these p0-values, the fit in the signal region proceeds in the
same way as the control-region-only fit, except that the number of events observed in the
signal region is included as an input to the fit. Then, an additional parameter for the non-
Standard-Model signal strength, constrained to be non-negative, is fitted. The significance
(σ) of the agreement between data and the Standard Model prediction is given. No signif-
icant deviations from the Standard Model prediction are found. The 95% confidence level
(CL) upper limit on the number of events (N95%

BSM) and the cross section times acceptance
times efficiency (σ95%

BSM,max · A · ε) from non-Standard-Model production are also provided,
neglecting in the fit possible signal contamination in the control regions.

7 Interpretation

In the absence of significant discrepancies, exclusion limits at 95% CL are set in the con-
text of several simplified supersymmetric models and an mSUGRA/CMSSM model, all

– 19 –



described in section 1. Theoretical uncertainties on the SUSY signals are estimated as de-
scribed in section 5.1. Combined experimental systematic uncertainties on the signal yield
from the jet energy scale, resolution, and b-tagging efficiency in the case of the flavour
stream, range from 15% to 25%. Acceptance and efficiency values, uncertainties and other
information per signal region are tabulated in HepData [62].

The limit for each signal region is obtained by comparing the observed event count
with that expected from Standard Model background plus SUSY signal processes. All
uncertainties on the Standard Model expectation are used, including those which are cor-
related between signal and background (for instance jet energy scale uncertainties) and all
but theoretical cross-section uncertainties (PDF and scale) on the signal expectation. The
resulting exclusion regions are obtained using the CLs prescription [63]. For the multi-jet
+ flavour stream a simultaneous fit is performed in all the signal regions for each of the
two values of pmin

T , and the two fit results are combined using the better expected limit
per point in the parameter space, as described in section 6.1. For the multi-jet + MΣ

J

stream the signal region with the best expected limit at each point in parameter space is
used. The stream with the better expected limit at each point in parameter space is chosen
when combining the two streams. The multi-jet + flavour stream typically has stronger
expected exclusion limits than the multi-jet + MΣ

J stream. However, in models with large
numbers of objects in the final state, and more so in boosted topologies, the multi-jet +
MΣ
J stream becomes competitive. Limits on sparticle masses quoted in the text are those

from the lower edge of the 1σ signal cross-section band rather than the central value of the
observed limit.

As shown in the rest of this section, the analysis substantially extends previous pub-
lished exclusion limits on various models, from ATLAS [10, 11] and CMS [12, 64].

‘Gluino–stop (off-shell)’ model

The analysis result is interpreted in a simplified model that contains only a gluino octet
and a neutralino χ̃0

1 within kinematic reach, and decaying with unit probability according
to Eq. 1.2, via an off-shell t̃-squark. The results are presented in the (mg̃,mχ̃0

1
) plane in

figure 9, which shows the combined exclusion. Within the context of this simplified model,
the 95% CL exclusion bound on the gluino mass is 1.1 TeV for the lightest neutralino mass
up to 350 GeV.

‘Gluino–stop (on-shell)’ model

In this simplified model, each gluino of a pair decays as g̃ → t̃+ t̄; t̃→ χ̃0
1 + t. The mass

of χ̃0
1 is fixed to 60 GeV. The results are presented in the (mg̃,mt̃) plane in figure 10 which

shows the combined exclusion limits. Within the context of this simplified model, the 95%
CL exclusion bound on the gluino mass is 1.15 TeV for stop masses up to 750 GeV.

‘Gluino–squark (via χ̃±
1 )’ model

In this simplified model, each gluino of a pair decays as g̃ → q + q̃ and the squark as
q̃ → q′ + χ̃±1 → q′ +W + χ̃0

1. Two versions of this model are evaluated, and the combined

– 20 –



exclusion results are shown in figure 11. In figure 11a, the fractional mass splitting, x,
defined as x = (mχ̃±1

− mχ̃0
1
)/(mg̃ − mχ̃0

1
), is set to 1/2, while the χ̃0

1 mass varies, and

the results are shown in the (mg̃,mχ̃0
1
) plane. In the second case, the χ̃0

1 mass is fixed to
60 GeV while x varies, and the results are presented in the (mg̃, x) plane. Gluino masses
are excluded below 1 TeV at 95% CL, for χ̃0

1 masses below 200 GeV, in the case of x = 1/2.

‘Gluino–squark (via χ̃±
1 and χ̃0

2)’ model

In this simplified model, each gluino of a pair decays as g̃ → q + q̃ and the squark as
q̃ → q+ χ̃±1 → q′+W + χ̃0

2 → q′+W +Z+ χ̃0
1. The intermediate particle masses, mχ̃±1

and
mχ̃0

2
, are set to (mg̃+mχ̃0

1
)/2 and (mχ̃±1

+mχ̃0
1
)/2, respectively. The results are presented in

the (mg̃,mχ̃0
1
) plane in figure 12, which shows the combined exclusion limits for this model.

Gluino masses are excluded below 1.1 TeV at 95% CL, for χ̃0
1 masses below 300 GeV.

mSUGRA/CMSSM

An mSUGRA/CMSSM model with parameters tanβ = 30, A0 = −2m0 and µ > 0 is also
used to interpret the analysis results. The exclusion limits are presented in the (m0,m1/2)
plane in figure 13. For large universal scalar mass m0, gluino masses smaller than 1.1 TeV
are excluded at 95% CL.

‘Gluino–stop (RPV)’ model

In this simplified model, each gluino of a pair decays as g̃ → t̃+ t̄; and the t̃-squark decays
via the R-parity- and baryon-number-violating decay t̃→ s+ b. The results are presented
in the (mg̃,mt̃) plane in figure 14. Within the context of this simplified model, the 95% CL
exclusion bound on the gluino mass is 900 GeV for t̃-squark masses ranging from 400 GeV
to 1 TeV.

8 Conclusion

A search is presented for new phenomena with large jet multiplicities (from 7 to ≥10)
and missing transverse momentum using 20.3 fb−1 of 8 TeV pp collision data collected by
the ATLAS experiment at the Large Hadron Collider. The sensitivity to new physics is
enhanced by considering the number of b-tagged jets and the scalar sum of masses of ra-
dius R = 1.0 jets in the event, reconstructed using the anti-kt clustering algorithm. The
Standard Model predictions are found to be consistent with the data. The results are
interpreted in the context of an mSUGRA/CMSSM model and various simplified models
resulting in final states with large jet multiplicity and Emiss

T . The exclusion limits substan-
tially extend previous results. For example, in a model where both of the pair-produced
gluinos decay via g̃ → t + t̄ + χ̃0

1, gluino masses smaller than 1.1 TeV are excluded for
neutralino masses below 350 GeV.
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(f) 9j50, ≥ 2 b-jets

Figure 5: Emiss
T /

√
HT distributions for the multi-jet + flavour stream with pmin

T = 50 GeV,
and either exactly eight jets (left) or exactly nine jets (right) with the signal region selection,
other than that on Emiss

T /
√
HT itself. The b-jet multiplicity increases from no b-jets (top) to

exactly one b-jet (middle) to at least two b-jets (bottom). Other details are as for figure 1.
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Figure 6: Emiss
T /

√
HT distribution for the multi-jet + flavour stream with pmin

T = 50 GeV,
and at least ten jets. The complete ≥ 10j50 selection has been applied, other than the final
Emiss

T /
√
HT requirement. Other details are as for figure 1.
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(f) 8j80, ≥ 2 b-jets

Figure 7: Emiss
T /

√
HT distributions for the multi-jet + flavour stream with pmin

T = 80 GeV.
The complete signal region selections were applied, other than the final Emiss

T /
√
HT require-

ment. Other details are as for figure 1.
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Figure 8: Emiss
T /

√
HT distributions for the multi-jet + MΣ

J stream with the signal region
selection, other than the final Emiss

T /
√
HT requirement. The figures on the left are for

events with MΣ
J > 340 GeV, while those on the right are for MΣ

J > 420 GeV. The minimum
multiplicity requirement for pmin

T = 50 GeV, R = 0.4 jets increases from eight (top) to nine
(middle) and finally to ten jets (bottom). Other details are as for figure 1.
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Signal region 7j80 8j80

b-jets 0 1 ≥ 2 0 1 ≥ 2

Observed events 12 17 13 2 1 3

Total fitted events 11.0± 2.2 17± 6 25± 10 0.9± 0.6 1.5± 0.9 3.3± 2.2

Fitted tt̄ 0.00+0.26
−0.00 5.0± 4.0 12± 9 0.10+0.14

−0.10 0.32+0.67
−0.32 1.5+1.9

−1.5

Fitted W+jets 0.07+0.38
−0.07 0.29+0.37

−0.29 − − − −
Fitted others 1.9+1.1

−0.9 0.71+0.31
−0.25 2.6+1.7

−1.1 0.02± 0.02 0.02± 0.02 0.32+0.36
−0.21

Total events before fit 11.7 16 23 0.8 1.8 3.3

tt̄ before fit 0.34 4 10 0.08 0.6 1.5

W+jets before fit 0.46 0.29 − − − −
Others before fit 1.8 0.89 3.0 0.02 0.02 0.35

Multi-jets 9.1± 1.6 11± 4 10± 4 0.75± 0.56 1.2± 0.5 1.4± 1.0

N95
BSM (exp) 10 17 14 4 4 6

N95
BSM (obs) 10 16 12 5 3.5 6

σ95%
BSM,max ·A · ε (exp) [fb] 0.5 0.8 0.7 0.18 0.18 0.31

σ95%
BSM,max ·A · ε (obs) [fb] 0.5 0.8 0.6 0.24 0.17 0.31

p0 0.5 0.6 0.8 0.19 0.6 0.5

Significance (σ) 0.05 −0.14 −1.0 0.9 −0.28 −0.06

Table 5: As for table 4 but for the six signal regions for which pmin
T = 80 GeV.

Signal region 8j50

MΣ
J [GeV] 340 420

Observed events 69 37

Total events after fit 75± 19 45± 14

Fitted tt̄ 17± 11 16± 13

Fitted W+jets 0.8+1.3
−0.8 0.4+0.7

−0.4

Fitted others 5.2+4.0
−2.5 2.8+2.9

−1.6

Total events before fit 85 44

tt̄ before fit 27 14

W+jets before fit 0.8 0.4

Others before fit 5 2.8

Multi-jets 52± 15 27± 7

N95%
BSM (exp) 40 23

N95%
BSM (obs) 35 20

σ95%
BSM,max ·A · ε (exp) [fb] 1.9 1.1

σ95%
BSM,max ·A · ε (obs) [fb] 1.7 1.0

p0 0.60 0.7

Significance (σ) −0.27 −0.6

Table 6: As for table 4 but for the signal regions in the multi-jet + MΣ
J stream for which

the number of events in the control regions allowed background determination using a fit.
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Signal region 9j50 10j50

MΣ
J [GeV] 340 420 340 420

Observed events 13 9 1 1

Total events 17± 7 11± 5 3.2+3.7
−3.2 2.2± 2.0

tt̄ 5± 4 3.4+3.6
−3.4 0.8+0.8

−0.8 0.6+0.9
−0.6

W+jets − − − −
Others 0.58+0.54

−0.33 0.39+0.32
−0.30 0.12± 0.12 0.06± 0.06

Multi-jets 12± 4 7.0± 2.3 2.3+3.6
−2.3 1.6+1.8

−1.6

N95%
BSM (exp) 13 11 5 5

N95%
BSM (obs) 11 10 4 4

σ95%
BSM,max ·A · ε (exp) [fb] 0.7 0.5 0.23 0.23

σ95%
BSM,max ·A · ε (obs) [fb] 0.5 0.5 0.2 0.2

p0 0.7 0.6 0.8 0.7

Significance (σ) −0.6 −0.34 −0.8 −0.6

Table 7: As for table 4 but for the signal regions in the multi-jet + MΣ
J stream for

which the number of events in the control regions did not allow background determination
using a fit and therefore the leptonic background is extracted directly from Monte Carlo
simulations.
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Figure 9: 95% CL exclusion curve for the simplified gluino–stop (off-shell) model. The
dashed grey and solid red curves show the 95% CL expected and observed limits, respec-
tively, including all uncertainties except the theoretical signal cross-section uncertainty
(PDF and scale). The shaded yellow band around the expected limit shows the ±1σ re-
sult. The ±1σ lines around the observed limit represent the result produced when moving
the signal cross section by ±1σ (as defined by the PDF and scale uncertainties). The
diagonal dashed line is the kinematic limit for this decay channel.
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Y. Hernández Jiménez168, R. Herrberg-Schubert16, G. Herten48, R. Hertenberger99,

– 41 –



L. Hervas30, G.G. Hesketh77, N.P. Hessey106, R. Hickling75, E. Higón-Rodriguez168,
J.C. Hill28, K.H. Hiller42, S. Hillert21, S.J. Hillier18, I. Hinchliffe15, E. Hines121,
M. Hirose117, D. Hirschbuehl176, J. Hobbs149, N. Hod106, M.C. Hodgkinson140,
P. Hodgson140, A. Hoecker30, M.R. Hoeferkamp104, J. Hoffman40, D. Hoffmann84,
J.I. Hofmann58a, M. Hohlfeld82, S.O. Holmgren147a, J.L. Holzbauer89, T.M. Hong121,
L. Hooft van Huysduynen109, J-Y. Hostachy55, S. Hou152, A. Hoummada136a,
J. Howard119, J. Howarth83, M. Hrabovsky114, I. Hristova16, J. Hrivnac116, T. Hryn’ova5,
P.J. Hsu82, S.-C. Hsu139, D. Hu35, X. Hu25, Y. Huang33a, Z. Hubacek30, F. Hubaut84,
F. Huegging21, A. Huettmann42, T.B. Huffman119, E.W. Hughes35, G. Hughes71,
M. Huhtinen30, T.A. Hülsing82, M. Hurwitz15, N. Huseynov64,r, J. Huston89, J. Huth57,
G. Iacobucci49, G. Iakovidis10, I. Ibragimov142, L. Iconomidou-Fayard116, J. Idarraga116,
P. Iengo103a, O. Igonkina106, Y. Ikegami65, K. Ikematsu142, M. Ikeno65, D. Iliadis155,
N. Ilic159, T. Ince100, P. Ioannou9, M. Iodice135a, K. Iordanidou9, V. Ippolito133a,133b,
A. Irles Quiles168, C. Isaksson167, M. Ishino67, M. Ishitsuka158, R. Ishmukhametov110,
C. Issever119, S. Istin19a, A.V. Ivashin129, W. Iwanski39, H. Iwasaki65, J.M. Izen41,
V. Izzo103a, B. Jackson121, J.N. Jackson73, P. Jackson1, M.R. Jaekel30, V. Jain2,
K. Jakobs48, S. Jakobsen36, T. Jakoubek126, J. Jakubek127, D.O. Jamin152, D.K. Jana112,
E. Jansen77, H. Jansen30, J. Janssen21, M. Janus171, R.C. Jared174, G. Jarlskog80,
L. Jeanty57, G.-Y. Jeng151, I. Jen-La Plante31, D. Jennens87, P. Jenni30, J. Jentzsch43,
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R. Mandrysch62, J. Maneira125a, A. Manfredini100, L. Manhaes de Andrade Filho24b,
J.A. Manjarres Ramos137, A. Mann99, P.M. Manning138, A. Manousakis-Katsikakis9,
B. Mansoulie137, R. Mantifel86, L. Mapelli30, L. March168, J.F. Marchand29,
F. Marchese134a,134b, G. Marchiori79, M. Marcisovsky126, C.P. Marino170,
C.N. Marques125a, F. Marroquim24a, Z. Marshall121, L.F. Marti17, S. Marti-Garcia168,
B. Martin30, B. Martin89, J.P. Martin94, T.A. Martin171, V.J. Martin46,
B. Martin dit Latour49, H. Martinez137, M. Martinez12,p, S. Martin-Haugh150,
A.C. Martyniuk170, M. Marx83, F. Marzano133a, A. Marzin112, L. Masetti82,
T. Mashimo156, R. Mashinistov95, J. Masik83, A.L. Maslennikov108, I. Massa20a,20b,
N. Massol5, P. Mastrandrea149, A. Mastroberardino37a,37b, T. Masubuchi156,
H. Matsunaga156, T. Matsushita66, P. Mättig176, S. Mättig42, J. Mattmann82,
C. Mattravers119,d, J. Maurer84, S.J. Maxfield73, D.A. Maximov108,g, R. Mazini152,
L. Mazzaferro134a,134b, M. Mazzanti90a, S.P. Mc Kee88, A. McCarn166, R.L. McCarthy149,
T.G. McCarthy29, N.A. McCubbin130, K.W. McFarlane56,∗, J.A. Mcfayden140,
G. Mchedlidze51b, T. Mclaughlan18, S.J. McMahon130, R.A. McPherson170,j , A. Meade85,
J. Mechnich106, M. Mechtel176, M. Medinnis42, S. Meehan31, R. Meera-Lebbai112,
S. Mehlhase36, A. Mehta73, K. Meier58a, C. Meineck99, B. Meirose80, C. Melachrinos31,
B.R. Mellado Garcia146c, F. Meloni90a,90b, L. Mendoza Navas163, A. Mengarelli20a,20b,
S. Menke100, E. Meoni162, K.M. Mercurio57, S. Mergelmeyer21, N. Meric137, P. Mermod49,
L. Merola103a,103b, C. Meroni90a, F.S. Merritt31, H. Merritt110, A. Messina30,z,
J. Metcalfe25, A.S. Mete164, C. Meyer82, C. Meyer31, J-P. Meyer137, J. Meyer30,
J. Meyer54, S. Michal30, R.P. Middleton130, S. Migas73, L. Mijović137, G. Mikenberg173,
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