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Zusammenfassung

Supersymmetrische Erweiterungen des Standard Models mit kleiner R-Paritätsbrechung und
leptonzahlverletzenden Kopplungen sind natürlicherweise konsistent mit primordialer Nu-
kleosynthese, thermaler Leptogenese und dunkler Materie, bestehend aus Gravitinos. Wir
untersuchen sowohl Supergravitationsmodelle mit universellen Randbedingungen an der Skala
der großen Vereinheitlichung und skalaren Taus oder bino-artigen Neutralinos als zweitleich-
testen supersymmetrischen Teilchen (NLSP) als auch Modelle mit gemischter Eich- und
Gravitationsvermittlung mit higgsino-artigen Neutralinos als NLSP. Fermi-LAT Daten über
den Fluss der isotropen und diffusen Gamma Strahlung führen zu einer unteren Schranke an
die Gravitino Lebensdauer, die wir in eine untere Schranke an die NLSP Zerfallslänge von
einigen Zentimetern übersetzen. Zusammen mit den Massen des Gravitinos und des Neutrali-
nos erhält man eine mikroskopische Bestimmung der Planck Masse. Für supersymmetrische
Massenparamter, die am Large Hadron Collider (LHC) messbar wären, würde die Entdeckung
einer Photonlinie in der Größenordnung der Fermi-LAT Obergrenze eine NLSP Zerfallslänge
von einigen hundert Metern nach sich ziehen. Dies wäre am LHC messbar. Daher untersuchen
wir im Detail die Empfindlichkeit der LHC Experimente auf die Größe der R-Paritätsbrechung
auf Modelle, deren Massen für farbgeladene Teilchen starke Produktion erlauben als auch
Modelle, deren Massen nur Drell-Yan Produktion erlauben. Wir simulieren die Signale und
deren Untergrund mit öffentlich zugänglichen Programmen, die wir um die endliche Lebens-
dauer der NLSPs erweitert haben. Wir stellen fest, dass Werte der R-Paritätsbrechenden
Skala vermessen werden können, die ein bis zwei Größenordnungen unter der aus Astrophysik
und Kosmologie abgeleiteten oberen Schranke liegen. Am Beispiel des Higgsinos zeigen wir,
dass im Falle eines Signals die NLSP Masse durch die Rekonstruktion einer zwei-Muon-Kante
gemessen werden kann.



Abstract

Supersymmetric extensions of the Standard Model with small R-parity and lepton-number
violating couplings are naturally consistent with primordial nucleosynthesis, thermal lepto-
genesis and gravitino dark matter. We consider both supergravity models with universal
boundary conditions at the grand unification scale and a scalar tau or bino-like neutralino as
the next-to-lightest supersymmetric particle (NLSP) as well as hybrid gauge-gravity mediation
models with a higgsino-like neutralino as the NLSP. Fermi-LAT data on the isotropic diffuse
gamma-ray flux yield a lower bound on the gravitino lifetime, which we translate into a lower
bound of the NLSP decay length of several centimeters. Together with gravitino and neutralino
masses, one obtains a microscopic determination of the Planck mass. For supersymmetric
mass parameters that can be tested at the Large Hadron Collider (LHC), the discovery of a
photon line with an intensity close to the Fermi-LAT limit would imply a NLSP decay length
of several hundred meters, which can also be measured at the LHC. We conduct a detailed
investigation of the sensitivity of LHC experiments to the amount of R-parity breaking for
models with masses of the coloured particles, which allow for strong production, as well as
masses which only allow for Drell-Yang production. We perform a simulation of signal and
background events using tools that are publicly available, which we have extended in order to
also simulate the finite NLSP decay length. We find that values of the overall scale of R-parity
violation can be probed which are one to two orders of magnitude smaller than the present
upper bound obtained from astrophysics and cosmology. Using the example of higgsinos, we
demonstrate that, given a signal, the NLSP mass can be determined by reconstructing the
di-muon mass edge.
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Chapter 1

Introduction

The Large Hadron Collider (LHC) at CERN has greatly extended the energy reach of
experimental particle physics. The recent observation of the Higgs particle [5] by both the
ATLAS and CMS experiments at ∼ 126 GeV [6, 7] has confirmed the mechanism of spontaneous
electroweak (EW) symmetry breaking. Although the discovery of the Higgs field completes
the Standard Model (SM), the search for new physics at even higher energies is not over.
Such a light scalar receives quadratically divergent corrections to its mass, leading to large
fine-tuning within the SM. Furthermore, although the gravitational evidence for dark matter
(DM) is strong (see e.g. [8]), its particle nature has yet to be determined.

The minimal supersymmetric standard model (MSSM) addresses both these issues but
also faces new problems. While unbroken supersymmetry (SUSY) only introduces one new
parameter, the higgsino mass parameter µ, soft SUSY breaking generally introduces many
new parameters along with sources of large flavour- and CP-violation (see e.g. [9]). The latter
problems would be alleviated if the superpartners had large (multi-TeV) masses. Indeed, this
would be consistent with the relatively large value of the Higgs mass and the current absence
of LHC signals for any other new particles.

Furthermore, the SM predicts massless neutrinos, which contradicts the observation of
neutrino oscillations [10]. The most straightforward extension of the SM to concur with
this finding is given by right-handed Majorana neutrinos. Additionally, this model leads to
interesting cosmological consequences, as one is able to explain the baryon asymmetry of the
universe via leptogenesis. In thermal leptogenesis, the lepton asymmetry is created through
the decays of these heavy right-handed neutrinos and then transferred to a baryon asymmetry
via sphaleron processes. In order to generate the amount of CP asymmetry which is needed
for this process, as well as to account for the small neutrino masses generated via the seesaw
mechanism, the right-handed neutrinos need to be very heavy and therefore a high reheating
temperature is required to produce them thermally [11–14].

Locally supersymmetric extensions of the SM predict the existence of the gravitino, the
gauge fermion of supergravity (SUGRA) [15]. The high reheating temperature needed for
thermal leptogenesis also leads to gravitinos being produced in great abundance. Since the
gravitino couplings are suppressed by the Planck scale, late decays of heavy unstable gravitinos
may interfere with big bang nucleosynthesis (BBN) and, hence, cause what is called gravitino
problem [16–21]. For some patterns of SUSY breaking, however, the gravitino is the lightest
supersymmetric particle (LSP), and therefore a natural DM candidate [22]. Accordingly,
gravitino DM has become an attractive alternative [23] to the standard scenario of weakly
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interacting massive particles (WIMPs) [24]. If the gravitino is the LSP and a DM candidate,
the BBN bounds instead apply to the next-to-lightest supersymmetric particle (NLSP), which
is then meta-stable and might alter BBN predictions.

One possible solution to this problem is given by a slight breaking of R-parity. R-parity
conserves baryon and lepton number and is imposed in the usual MSSM in order to forbid
proton decay. Its conservation also renders the lightest supersymmetric particle stable, making
e.g. the lightest neutralino a natural WIMP DM candidate. From a theoretical point of
view, however, R-parity conservation is not particularly favoured and the stability of the
proton can be ensured by demanding the absence of either baryon or lepton number violation.
The requirement of successful baryogenesis puts an upper bound on the amount of R-parity
violation (RPV) that can be allowed without erasing the baryon asymmetry before the EW
phase transition sets in [25–28].

Following [29], we break R-parity spontaneously at the grand unification scale, which leads
to a model with bilinear R-parity breaking [30–33]. A small amount of RPV leads to a decaying
gravitino with a lifetime exceeding the age of the universe, due to the double suppression of
gravitino decays by the Planck mass and the small R-parity violating coupling. The lifetime
of the NLSP, however, is sufficiently short to be consistent with primordial nucleosynthesis.
This makes it possible to have a good gravitino DM candidate even with the high reheating
temperatures needed for leptogenesis, thus solving the gravitino problem [34].

It has been shown that the gravitino can account for the observed DM abundance for
typical gluino masses and different types of NLSPs [35]. Gravitino decays lead to characteristic
signatures in high-energy cosmic rays, in particular to a diffuse gamma-ray flux [29, 34, 36–42].
The search of the Fermi Large Area Telescope (Fermi-LAT) collaboration for monochromatic
photon lines [43] and the measurement of the diffuse gamma-ray flux [44] severely constrain
possible signals from decaying DM [45].

The nature of the NLSP is determined by the details of the SUSY breaking mechanism.
The simplest class of SUGRA models with universal boundary conditions at the scale of grand
unified theories (GUTs) leads to bino-like neutralino or scalar tau NLSPs. More involved
models, such as hybrid gauge-gravity mediated SUSY breaking [46], lead to light higgsinos
with masses around the EW scale and the other sparticles typically in the TeV range. Such
models are motivated by ways of obtaining the MSSM and grand unification in string theory
that feature a hidden sector of exotic states. They thus make use of the mechanism present in
gravity-mediated SUSY breaking to generate an EW-scale higgsino mass parameter, as well as
of the advantages of gauge mediation by providing a large number of messengers.

For a neutralino NLSP, the matrix elements for gravitino and NLSP decays are directly
related. Together with the lower bound on the gravitino lifetime, and the corresponding upper
bound on the value of R-parity breaking, which is derived from the diffuse gamma-ray flux
observed by the Fermi-LAT collaboration [43, 44], one obtains a lower bound on the NLSP
decay length, varying from a few centimeters to several hundred meters.

Large macroscopic decay lengths are extremely powerful in discriminating against SM
backgrounds in searches for decaying NLSPs [54]. This remains true if the decay length is
larger than the size of the detector since a sizeable fraction of NLSPs may still decay inside
the detector. This has been studied for both neutral and charged NLSPs with decay lengths
ranging from a few millimeters to hundreds of meters [47–53]. This will lead to displacements
of decay vertices in the outer layers of the multi-purpose LHC detectors ATLAS and CMS,
which motivates the muon signatures that are considered here.
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This work is organized as follows. In Chapter 2 we give a short overview of SUSY and
introduce the relevant formulas. Afterwards, in Chapter 3 we motivate RPV in general and
present our detailed analysis of bilinear RPV and consequential decays. We propose a new
description of bilinear RPV with vanishing sneutrino vacuum expectation values (VEVs) and
show how this notation simplifies the calculation of R-parity breaking decays. In Chapter 4
we use these results in order to constrain the viable parameter range of bilinear RPV as well
as the properties of the decaying particles. Subsequently, in Chapter 5 we perform detailed
detector studies of three relevant scenarios. Firstly, we show that bounds on sparticle masses
can be weakened due to RPV, thus providing a possible explanation as to why SUSY has not
been discovered yet, even if it is already being produced at the LHC. Secondly, we demonstrate
that RPV can also enable detection of weakly coupled new physics that is generally not probed
by the usual LHC searches. Furthermore, we discuss why the signal we consider would hide
from the LHC searches performed so far, and show that the search strategy that we propose
here could reveal new physics in the data already accumulated during the LHC runs with
proton collisions at 8TeV center-of-mass energy. Finally, we summarize our work in Chapter 6.
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Chapter 2

Supersymmetry basics

The mass parameter of the Higgs Lagrangian is the only dimensionful parameter of the SM and
determines the overall scale of the EW SM. The SM, however, does not possess a symmetry
to protect this scalar mass against quadratic divergences. Therefore, quantum corrections
will push the Higgs mass towards the cut-off scale of the theory, which might be as high
as the Planck scale. An elegant solution to this so-called hierarchy problem of the SM is
the introduction of SUSY, which stabilises this hierarchy by relating all bosonic masses to
fermionic masses and, moreover, is free of quadratic divergences. Furthermore SUSY leads
naturally to a DM candidate, be it a WIMP or the gravitino. An interesting observation is
the unification of the gauge couplings at the GUT scale within the MSSM, as opposed to the
SM, which does not lead to gauge coupling unification (cf. Figure 2.1).

In this chapter we give a rough overview of topics related to SUSY, which we need in the
following sections and introduce the notation we are using.

2.1 Supersymmetric multiplets

SUSY is a symmetry between bosons and fermions (for a review see e.g. [56]). To that end every
particle is accompanied by an supersymmetric partner, which has exactly the same properties
with exception of the spin. These pairs together with non-propagating bosonic auxiliary fields
form so-called supermultiplets. A supersymmetric field theory can be described by extending
the usual bosonic Lorentz spacetime with coordinates xµ with two fermionic directions θ
and θ to superspace. A superfield is a function on superspace and can be decomposed into
its component fields which are functions on the usual Lorentz spacetime, by means of a
power series expansion in the Grassmann variables θ and θ. In order to find irreducible
representations of the SUSY algebra one has to impose constraints on the general scalar
superfield. Demanding that the superderivative of the superfields vanishes

DΦ = 0 , D = − ∂

∂θ
− iθσµ∂µ , (2.1a)

DΦ = 0 , D = ∂

∂θ
+ iσµθ∂µ , (2.1b)

leads to a chiral superfield Φ, which contains a complex scalar field φ, a Weyl fermion ψ and
an auxiliary scalar field F as well as its conjugate Φ containing the conjugate component fields.
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Figure 2.1: In contrast to the SM (light) the RGE running of the gauge couplings in the
MSSM (strong) intersect in one point, which defines the GUT scale [55].

Requiring, on the other hand, that a superfield is real,

V † = V , (2.2)

leads to a vector superfield V , which contains in the Wess-Zumino gauge a vector field Aµ, a
Majorana fermion λ, as well as an auxiliary scalar field D.

The superpotential is a holomorphic function of chiral superfields

W (Φ) = LiΦi +
1
2MijΦiΦi +

1
6yijkΦiΦjΦk , (2.3)

which, together with the real Kähler potential K, defines a renormalizable supersymmetric
theory. For example the mass terms for Dirac fermions and the Yukawa coupling between two
fermions and a scalar are given by the second derivative of the superpotential as a function of
the scalar fields

L ⊃ ∂2W (φ)
∂φi∂φj

ψiψj + h.c. = W ijψiψj + h.c. (2.4)

Whereas the scalar potential is given by

V = ∂W (φ)
∂φi

∂W ∗(φ)
∂φi

= W iW ∗i . (2.5)

Furthermore we will need supersymmetric gauge interactions. The coupling between gauginos
and the component fields of the chiral multiplet are given by the Lagrangian

−L =
√

2g(φ†T aψ)λa + h.c. (2.6)
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Name Superfield Scalar Fermion (SU(3)C, SU(2)L)U(1)Y

Quarks
Squarks

Q q̃ =
(
ũL
d̃L

)
q =

(
uL
dL

)
(3,2) 1

6

U ũR uR (3,1)− 2
3

D d̃R dR (3,1) 1
3

Leptons
Sleptons

L l̃ =
(
ν̃L
ẽL

)
l =

(
νL
eL

)
(1,2)− 1

2

E ẽR eR (1,1)1
N ν̃R νR (1,1)0

Higgs
Higgsinos

Hu Hu =
(
H+
u

H0
u

)
hu =

(
h+
u

h0
u

)
(1,2) 1

2

Hd Hd =
(
H0
d

H−d

)
hd =

(
h0
d

h−d

)
(1,2)− 1

2

Table 2.1: Chiral superfields of the MSSM including right-handed neutrinos.

2.2 Minimal supersymmetric standard model

The MSSM is the minimal consistent supersymmetric extension of the standard model (for a
review see e.g. [57]). Every fermion and scalar of the SM is extended to a chiral supermultiplet,
additionally a second Higgs multiplet is necessary (cf. Table 2.1) Therefore, the MSSM predicts
many new scalar fields. The SM couplings are encoded in the superpotential

WRPC = µHuHd + huijQiU
c
jHu + hdijQiD

c
jHd + heijLiE

c
jHd , (2.7)

which conserves baryon and lepton number. The gauge fields of the SM are extended to gauge
multiplets and therefore accompanied by gauginos (cf. Table 2.2).

2.3 Supergravity

Promoting SUSY to a local symmetry leads to SUGRA, which is a supersymmetric extension
of general relativity. The supermultiplet of SUGRA contains, next to the usual graviton and
some auxiliary fields, a spin three-half fermion, the gravitino ψµ.

2.3.1 Gravitino

Having spin three-half the gravitino possesses properties which distinguish it from usual
fermions. In Appendix B.2 we derive the Lagrangian of a spinor-vector. In momentum space
the mode functions are given by

ψµ(x) = ψ+
µ (p, s)e−ipx , ψµ(x) = ψ−µ (p, s)e−ipx , s = ±3/2,±1/2 . (2.8)
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Name Superfield Fermion Vector (SU(3)C, SU(2)L)U(1)Y

B, Bino B b Bµ (1,1)0
W , Wino W w Wµ (1,3)0

Gluon, Gluino G g Gµ (8,1)0

Table 2.2: Gauge supermultiplets of the MSSM.

The mode functions can be constructed from the usual spin-one-half fermion fields and the
spin-one polarization vector εµ [58]

ψ+
µ (p, s) =

∑
m,λ

〈
(1/2,m)(1, λ)

∣∣∣ (3/2, s)〉x(p,m)εµ(p, λ) , (2.9a)

ψ−µ (p, s) =
∑
m,λ

〈
(1/2,m)(1, λ)

∣∣∣ (3/2, s)〉 y(p,m)εµ(p, λ) , (2.9b)

where the brackets are Clebsch-Gordan coefficients. In the following we will need the polariza-
tion tensor for gravitinos

P±µν(p) =
∑
s

ψ±µ (p, s)ψ±†ν (p, s) . (2.10)

which we have derived in Appendix (B.4.3) and which is given in two-component notation by

P±µν(p) = (m3/2 ∓ (σp))
(

Πµν(p)− 1
3Πµσ(p)Πνλ(p)σσσλ

)
, (2.11)

where

Πµν(p) = −gµν + pµpν
m2

3/2

, (2.12)

is the polarization tensor for a massive vector boson (cf. Equation (B.89)). The couplings of
the gravitino are weaker than the couplings of usual fermions as they are suppressed by the
Planck mass.

2.4 Supersymmetry breaking
As SUSY has not been discovered so far, it is obvious that SUSY cannot be an exact symmetry
of an effective theory which extends the SM, but must be broken. The breaking of SUSY leads
to masses for just the scalar field of the MSSM and, therefore, shifts the masses of these fields
in so far unprobed energy regimes. SUSY can only be broken spontaneously by VEVs of the
auxiliary fields of a supermultiplet. Therefore, one can distinguish between F -term breaking if
the SUSY breaking is caused by the auxiliary field of a chiral multiplet, and D-term breaking
if it is caused by the auxiliary field of a vector multiplet. Due to the supertrace theorem [59],
it is, however, not possible to construct viable models which break SUSY in the auxiliary
fields of the MSSM supermultiplets or any supermultiplet that couples renormalizable to the
MSSM. Therefore, one has to assume that SUSY breaking happens in a hidden sector and is
mediated to the MSSM.
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Figure 2.2: RGE running of gaugino masses under the CMSSM assumption of unified
gaugino masses m1/2 at the GUT scale [55].

2.4.1 Explicit supersymmetry breaking

The precise breaking mechanism is so far unknown, but can be parametrized by the explicit
breaking terms collected in the soft SUSY breaking Lagrangian

−Lsoft = m2
uH
†
uHu +m2

dH
†
dHd + (BHuHd + h.c.)

+ m̃2
li l̃
†
i l̃i + m̃2

eiẽ
†
i ẽi + m̃2

qiq̃
†
i q̃i + m̃2

uiũ
†
i ũi + m̃2

did̃
†
i d̃i

+ 1
2 (M1bb+M2ww +M3gg + h.c.)

+
(
Auq̃iHuũ

†
j +Adq̃iHdd̃

†
j +Ae l̃iHuẽ

†
j + h.c.

)
. (2.13)

In order to reduce this large number of new parameters, one has to assume a certain breaking
mechanism or at least relate these parameter to just a few parameters at the mass scale of a
unified theory.

2.4.2 Planck-suppressed mediation

One possible mediation mechanism is mediation by Planck-suppressed operators, which is
usually called gravity mediation and originates in new physics including quantum gravity at
the Planck scale. F -term breaking in this scenario would lead to soft SUSY breaking masses
of order

msoft ' 〈F 〉
MP

. (2.14)

Therefore, the SUSY breaking scale for TeV-scale MSSM soft terms is of order
√〈F 〉 '

5×1011 GeV. The most severe problem of gravity mediated SUSY breaking is the introduction
of new sources of flavour violation and therefore possible large flavour changing neutral currents
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(FCNCs). Hence, a mechanism must be implemented which ensures flavour universality of the
soft SUSY breaking terms. The CMSSM is the result of a popular assumption which reduced
the number of parameters to four

M1 = M2 = M3 = m1/2 , (2.15a)
m̃2
q = m̃2

u = m̃2
d = m̃2

L = m̃2
e = m2

01 , m2
Hd

= m2
Hu = m2

0 , (2.15b)
Au = A0yu , Ad = A0yd , Ae = A0ye , (2.15c)
B = B0µ . (2.15d)

The ongoing searches for SUSY at the LHC have already excluded a large part of the parameter
space of this overly simple model. The unification at the high energy scale leads to simple
relations at the TeV scale. For example, assuming unified gaugino masses at the GUT scale
the RGE running predicts mass ratios between the gaugino mass parameters at the TeV scale
of1

M2
M1

= 3
5

1
t2w
' 2 , M3

M1
= 3

5
αs
α
c2w ' 6 , (2.16)

where cw and tw are the sine and tangent of the weak mixing angle, respectively. This can as
well be seen in Figure 2.2.

2.4.3 Messenger gauge mediation

Another possibility to mediate the breaking of SUSY in the hidden sector to the MSSM is via
messengers of mass Mm which are charged under the SM gauge group [60]. The soft masses
are loop-suppressed and F -term breaking leads to a characteristic soft mass scale of

msoft ' αi
4π
〈F 〉
Mm

, (2.17)

where αi are the fine-structure constants of the SM. If the masses of the messengers are
comparable to the VEV responsible for SUSY breaking, then the SUSY breaking scale can be
as low as

√〈F 〉 'Mm ' 104 GeV. In general, however, both scales can be much higher.

2.4.4 Hybrid gauge gravity mediation

If both the above mediation mechanism are present, the two contributions are of the same
order as long as the messenger scale is only about a loop factor smaller than the Planck scale.
In this case, gauge mediation is dominant for large numbers of messengers.

In certain grand-unified models which naturally emerge from string constructions, there
is a large number of vector-like states in incomplete GUT multiplets which should decouple
close to the GUT scale [46]. They serve as messengers for gauge-mediated supersymmetry
breaking, inducing gaugino masses and scalar soft masses. The gravity-mediated contributions
to the MSSM parameters are subdominant with respect to the gauge-mediated ones. The
only exception are the µ and B parameters, to which (minimal) gauge mediation does not
contribute at all. These two parameters are induced by gravitationally suppressed interactions
through the Giudice-Masiero mechanism [61], leading to light higgsinos and otherwise heavy
superparticles. Related models with mixed gauge-gravity mediation have previously been
discussed in [62].

1Here and in the following we abbreviate the trigonometric functions by: cos(w) = cw, sin(w) = sw and
tan(w) = tw.
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Light higgsinos

The main properties of the higgsino sector in our model of hybrid gauge gravity mediation
can be summarized as follows. Since

|µ| � |M1| , |M2| , (2.18)

where M1 and M2 are the bino and wino masses of (2.13) respectively, there are three higgsino-
like light states χ0

1 , χ±1 and χ0
2 with masses close to |µ|. Their mass splittings will be of

the order m2
Z/M1,2, typically a few GeV for |µ| & 100GeV and for TeV-scale gaugino masses.

A thermally produced χ0
1 LSP is not a viable dark matter candidate, since its relic density

is extremely low due to the large annihilation cross section. This same mechanism, on the
other hand, can substantially ameliorate the gravitino BBN problem if dark matter consists of
gravitinos instead. The χ0

1 is then the NLSP, but it will be effectively stable on collider time
scales.
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Chapter 3

R-parity breaking

In this section we first give a short introduction to the concept of conserved R-symmetry and
reasons for its breaking to the residual R-parity. Then we give two physical models which
break R-parity, thereby we derive a thorough overview of bilinear R-parity breaking and its
physical consequences. Finally, we derive the decays of scalar leptons, neutralinos and the
gravitino which are induced by R-parity breaking.

3.1 Neutrino masses and lepton number violation
Despite the fact, that the SM predicts massless neutrinos, it is by now well established that
neutrinos are massive, even so their mass is tiny [10]. Although many extensions of the SM
which explain this observation have been proposed, the debate on the correct mechanism is
still active. As we will show, broken R-parity leads to neutrino masses, as long as it is lepton
number violating. This is an example for the general statement, that every lepton number
violating operator leads to neutrino masses [63]. A more common mechanism, which does
not depend on SUSY, is the seesaw mechanism which introduces a set of heavy right-handed
neutrinos νR which are singlets under the SM gauge group (A.1). It is straightforward to
extend this idea to SUSY, i.e. promote νR to a chiral multiplet N . The new fields allow new
superpotential terms

WN = heijLiE
c
jHd + hνijLiN

c
jHu + 1

2M
N
ij N

c
iN

c
j . (3.1)

The Majorana mass term MN is unique in the (minimal supersymmetric) SM as it is only
allowed for gauge singlets. One consequence is the violation of lepton number by ∆L = 2. We
are assuming that the Majorana mass term is close to the GUT scale. Whereas the Dirac
mass mD = hνijv is of the order of the Higgs VEV v. Therefore the seesaw mechanism [64–66]
leads to tiny neutrino masses which are to first order given by the eigenvalues of

Mν = −mD(MN )−1mT
D . (3.2)

The SM Lagrangian with massless neutrinos conserves lepton and baryon number. Therefore
the SM, barring non-perturbative effects, conserves these quantum numbers. Hence, basic
extensions such as the R-parity conserving MSSM are assumed to be also lepton and baryon
number conserving. The motivation to keep these accidental symmetries as well in supersym-
metric extensions of the SM is reduced if even the non supersymmetric theory breaks lepton
number.
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3.2 From R-invariance to R-parity
In an attempt to extend the SM with SUSY one faces the problem of how to define baryon and
lepton number in supersymmetric theories, especially as the concept of conserved baryon and
lepton number is in the SM intrinsically connected with fermion fields. As it turns out, the
(N = 1) super Poincaré-algebra has a unique Abelian extension, the U(1)R-symmetry, which
acts on the SUSY generators. Therefore, it is possible to introduce an additive conserved
quantum number R [67], whose value differs by ±1 unit for the two components of each
SUSY multiplet, and might be connected to baryon and lepton number. Hence, as long as the
R-charge is conserved, all potentially dangerous processes which connect different SM fermion
fields via their scalar partners are forbidden.

With this symmetry imposed, however, Majorana masses are prohibited and gauginos and
the gravitino stay massless, which contradicts experimental results, e.g. the non-observation
of light R-hadrons. Furthermore an explicit higgsino mass term µ is forbidden as well. As
spontaneously broken SUGRA requires a massive gravitino it has to break the U(1)R. The
remaining discrete Z2 subgroup is called R-parity [68] and can be expressed as a product of
the spin quantum number S and matter parity 3B + L

Rp = (−1)R = (−1)2S(−1)3B+L = (−1)2S(−1)3(B−L) , (3.3)

where B is the baryon number and L is the lepton number. R-parity allows not only for massive
gravitinos but also for mass terms of gauginos and higgsinos. This intimate relationship of the
breaking of R-invariance and these mass terms allows to build models where theses masses are
of the same order [69].

In superspace R-parity can be interpreted as an invariance under reflection of the fermionic
Grassmann coordinate θ → −θ, in practice it distinguishes between particles and super
particles. All terms of the superpotential (2.7) are invariant under R-parity.

In the SM of particle physics, baryon and lepton number conservation are accidental
symmetries, therefore there is no theoretical reason to assume R-parity conservation (RPC),
however observation of nature tells us that it must be at least a approximate symmetry of
every supersymmetric low energy extension of the SM.

3.3 General R-parity breaking
If one abandons the requirement of R-parity conservation, new and potentially dangerous
operators have to be considered. The most general gauge invariant superpotential of the
MSSM particle content contains, next to the RPC terms (2.7), the R-parity breaking terms

WRPV = µiHuLi +
1
2λijkLiE

c
jLk + λ′ijkD

c
iQjLk + 1

2λ
′′
ijkU

c
iD

c
jD

c
k . (3.4)

Where the bilinear term and the first two trilinear terms leads to lepton number violation
(LNV) and the last term to baryon number violation (BNV). After introducing R-parity
breaking operators in the supersymmetric theory in general one has to extend the model
of SUSY breaking as well. In order to stay agnostic about the concrete structure of SUSY
breaking, we introduce all allowed explicit SUSY and R-parity breaking terms

−LRPV = BiHu l̃i +m2
id l̃
†
iHd + 1

2Aijk l̃i l̃iẽ
c
k +A′ijk l̃ig̃id̃

c
k + 1

2A
′′
ijkũ

c
i d̃
c
i d̃
c
k + h.c. (3.5)
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Figure 3.1: Proton decay in general RPV via the lepton number violating coupling λ′
and the baryon number violating coupling λ′′.

In general these new operators introduce 48 supersymmetric parameters and 51 SUSY breaking
parameters.

3.3.1 Proton decay

Together, baryon number and lepton number violating processes lead to proton decay. In
the case of RPV the largest contribution comes from an effective interaction of the form (cf.
Figure 3.1) [32]

L = λ′′λ′∗

m2
d̃

(
(ucdc)†(νd)− (ucdc)†(eu)

)
+ h.c. (3.6)

So far no evidence for proton decay have been found and the strongest constraint on the
proton lifetime is given by [70]

τp→π0e+ ≥ 5.5× 1023τUniverse , (3.7)

which leads to a stringent bound of
√
λ′λ′′ . 4× 10−14 . (3.8)

By forbidding either lepton or baryon number violating terms we are left with weaker bounds
coming e.g. from neutrino-less double β decay.

3.4 Minimal flavour violating R-parity breaking

One way to control baryon and lepton number violating processes and to suppress flavour
changing operators is to impose minimal flavour violation (MFV).

3.4.1 Spurious flavour symmetries

The largest possible flavour group of the SM matter content that still commutes with the SM
gauge group (A.1) is given by [71, 72]

U(3)5 ' Gq ×Gl ×GA , (3.9)
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where we have defined

Gq = SU(3)Q × SU(3)U × SU(3)D , (3.10a)
Gl = SU(3)L × SU(3)E , (3.10b)
GA = U(1)B ×U(1)L ×U(1)Y ×U(1)PQ ×U(1)E . (3.10c)

The charges of the Abelian symmetries are Baryon number (B), Lepton number (L), hyper-
charge (Y), a Peccei-Quinn (PQ) symmetry of two Higgs doublet models (2HDMs) and a global
rotation of a single SU(2)L singlet (E). The SM Higgs mass keeps these symmetries intact,
the Yukawa couplings, however, break these symmetries except for U(1)B ×U(1)L ×U(1)Y.
In order to recover the full flavour symmetry one promotes the Yukawa couplings to spurion
fields, which transform under the flavour group in such a way that all gauge invariant terms
of the superpotential are also flavour invariant

hu = (3,3,1)Gq , hd = (3,1,3)Gq , he = (3,3)Gl . (3.11)

In supersymmetric theories these spurion fields have to be superfields. Remembering that the
superpotential terms must be holomorphic severely restricts the RPV terms which are allowed
next to the usual RPC terms [73]. The only allowed RPV term is the BNV in (3.4)

WMFV = 1
2ah

uU chdDchdDc , (3.12)

where a is a coupling which we assume to be of O (1). This superpotential term is naturally
suppressed by O(h3).

3.4.2 Minimal flavour violation and the seesaw mechanism

Adding the right-handed neutrino (3.1) increases the flavour symmetry. The lepton flavour
group (3.10b) is now

Gl = SU(3)L × SU(3)E × SU(3)N . (3.13)

The Majorana neutrino mass term (3.1) breaks the SU(3)N [74]. In order to restore the
spurious symmetries broken by the Yukawa couplings and the Majorana mass term three
spurions are needed in the extended lepton sector

he = (3,3,1)Gl , hν = (3,1,3)Gl , MN = (1,1,6)Gl . (3.14)

The two new spurions allow, in addition to the BNV term (3.12), just one holomorphic, lepton
number violating superpotential term [73].

W seesaw
MFV = 1

2Λcdet2 hν (LL)
(
(hν)−1MN (hν)−1

)
(heEc) . (3.15)

Therefore, all lepton number violating processes are suppressed by the small neutrino mass
(3.2). which allows to keep processes leading to proton decays small enough to evade the
proton bounds (3.8). Furthermore non-holomorphic bilinear RPV terms are generated and
are as well suppressed by the neutrino mass, which leads to the usual RPV phenomenology
induced by scalar neutrino VEVs.
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Ψ Hu Hd N N c Φ X Z

R 1 0 0 0 -2 -1 4 0

Table 3.1: R-charges of matter fields Ψ = q, uc, ec, dc, l, νc, Higgs fields and gauge
singlets in spontaneous R-parity breaking.

3.5 Bilinear R-parity breaking
In this section we will discuss a further possibility to break R-parity in such a way that only
couplings which are proportional to the SM Yukawa couplings are introduced. In models with
bilinear R-parity breaking, only the mass mixing term between lepton and Higgs fields appears
in the superpotential,

∆W = µiHuLi . (3.16)

Induced by SUSY breaking, the mixing between lepton and Higgs fields appears as well in the
scalar potential,

∆L = −BiHu l̃i −m2
id l̃
†
iHd + h.c. (3.17)

In the following we will discuss a model that introduces this kind of RPV and the consequences
following from these mixing terms together with the RPC superpotential (2.7) and the SUSY
breaking masses (2.13), where, for simplicity, we have assumed flavour diagonal mass matrices.

3.5.1 Spontaneous R-parity breaking

Let us now compute the parameters µi, Bi andm2
id in a specific example where the spontaneous

breaking of R-parity is related to the spontaneous breaking of B− L, the difference of baryon
and lepton number [29].

We consider a supersymmetric extension of the SM with symmetrygroup

G = GSM × U(1)B−L × U(1)R . (3.18)

In addition to three quark lepton generations and the Higgs fields Hu and Hd the model
contains three right-handed neutrinos νci , two non-Abelian singlets N c and N , which transform
as νc and its complex conjugate, respectively, and three gauge singlets X, Φ and Z. The part
of the superpotential responsible for neutrino masses has the usual form

Wν = hνijliν
c
jHu + 1

MP
hnijν

c
i ν
c
jN

2 , (3.19)

where MP = 2.4× 1018 GeV is the Planck mass. The expectation value of Hu generates Dirac
neutrino masses, whereas the expectation value of the singlet Higgs field N generates the
Majorana mass matrix of the right-handed neutrinos νci . The superpotential responsible for
B− L breaking is chosen as

WB−L = X
(
NN c − Φ2

)
, (3.20)

where unknown Yukawa couplings have been set equal to one. Φ plays the role of a spectator
field, which will finally be replaced by its VEV, 〈Φ〉 = vB−L. Similarly, Z is a spectator
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field which breaks SUSY and U(1)R, 〈Z〉 = FZθθ. The superpotential in Equation (3.19)
and (3.20) is the most general one consistent with the R-charges listed in Table 3.1, up to
nonrenormalizable terms which are irrelevant for our discussion.

The expectation value of Φ leads to the breaking of B− L,

〈N〉 = 〈N c〉 = 〈Φ〉 = vB−L , (3.21)

where the first equality is a consequence of the U(1)B−L D-term. This generates a Majorana
mass matrix M for the right-handed neutrinos with three large eigenvalues, which we assume
to fulfil M3 > M2 > M1. If the largest eigenvalue of hn is O (1), one has M3 ' v2

B−L/MP.
Integrating out the heavy Majorana neutrinos one obtains the familiar dimension-5 seesaw
operator which yields the light neutrino masses.

Since the field Φ carries R-charge −1, the VEV 〈Φ〉 breaks R-parity, which is conserved
by the VEV 〈Z〉. Thus, the breaking of B − L is tied to the breaking of R-parity, which is
then transmitted to the low-energy degrees of freedom via higher-dimensional operators in
the superpotential and the Kähler potential. Bilinear R-parity breaking is obtained from a
correction to the Kähler potential,

∆K = 1
M3

P

(
aiZ

†Φ†N cHuli + a′iZ
†ΦN †Huli

)
+ 1
M4

P

(
biZ
†ZΦ†N cHuli + b′iZ

†ZΦN †Huli

+ ciZ
†ZΦ†N cl†iHd + c′iZ

†ZΦN †l†iHd

)
+ h.c. (3.22)

Replacing the spectator fields Z and Φ, as well as N c and N by their expectation values, one
obtains the correction to the superpotential

∆W = µiHuli , (3.23)

with

µi =
√

3
(
ai + a′i

)
m3/2Θ , Θ =

v2
B−L
M2

P
' M3
MP

, m3/2 = FZ√
3MP

. (3.24)

Note that Θ can be increased or decreased by including appropriate Yukawa couplings in
Equation (3.19) and (3.20). The corresponding corrections to the scalar potential are given by

−∆L = BiHu l̃i +m2
id l̃
†
iHd + h.c. , (3.25)

where

Bi = 3
(
bi + b′i

)
m2

3/2Θ , m2
id = 3

(
ci + c′i

)
m2

3/2Θ . (3.26)

The corresponding R-parity conserving terms are generated by [61]

K ⊃ a0
MP

Z†HuHd + b0
M2

P
Z†ZHuHd + h.c. , (3.27)

which yields

W ⊃ µHuHd , µ =
√

3a0m3/2 , (3.28a)
−L ⊃ BHuHd + h.c. , B = 3b0m2

3/2 . (3.28b)
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ψi 103 102 101 Φ∗3 Φ∗2 Φ∗1 νc3 νc2 νc1 Hu Hd Φ X Z

Qi 0 1 2 1 1 2 0 0 1 0 0 0 0 0

Table 3.2: Froggatt-Nielsen U(1) flavour charges. 10i = (qi, uci , eci ), Φ = (dci , li), i = 1 . . . 3.

Higher dimensional operators yield further R-parity violating couplings between scalars and
fermions. However, the cubic couplings allowed by the symmetries of our model are suppressed
by one power of MP compared to ordinary Yukawa couplings and cubic soft SUSY breaking
terms. Note that the coefficients of the nonrenormalizable operators are free parameters, which
are only fixed in specific models of SUSY breaking. In particular, one may have µ2, m̃2

i > m2
3/2

and hence a gravitino LSP. All parameters are defined at the GUT scale and have to be
evolved to the EW scale by the renormalization group equations.

Flavour symmetry

The phenomenological viability of the model depends on the size of R-parity breaking mass
mixings and therefore on the scale vB−L of R-parity breaking as well as the parameters ai . . . c′i
in Equation (3.22). Any model of flavour physics, which predicts Yukawa couplings, will
generically also predict the parameters ai . . . c′i. As a typical example, we use a model [75] for
quark and lepton mass hierarchies based on a Froggatt-Nielsen U(1) flavour symmetry, which
is consistent with thermal leptogenesis and all constraints from flavour changing processes [76].

The mass hierarchy is generated by the expectation value of a singlet field φ with charge
Qφ = −1 via nonrenormalizable interactions with a scale

Λ = 〈φ〉
η

> ΛGUT , η ' 0.06 . (3.29)

The η-dependence of Yukawa couplings and bilinear mixing terms for multiplets ψi with
charges Qi is given by

hij ∝ ηQi+Qj , µi ∝ ηQi , Bi ∝ ηQi , m2
id ∝ ηQi . (3.30)

The charges Qi for quarks, leptons, Higgs fields and singlets are listed in Table 3.2. The neutrino
mass scale mν ' 0.01 eV implies for the heaviest right-handed neutrinos M2 ∼M3 ∼ 1012 GeV.
The corresponding scales for B− L breaking and R-parity breaking are

vB−L ' 1015 GeV , Θ =
v2

B−L
M2

P
' 10−6 . (3.31)

For the small R-parity breaking considered in this paper the neutrino masses are dominated
by the conventional seesaw contribution [29].

The R-parity breaking parameters µi, Bi and m2
id strongly depend on the mechanism of

SUSY breaking. In the example considered in this section all mass parameters are O(m3/2),
which corresponds to gravity or gaugino mediation. From Equation (3.24), (3.26) and (3.30)
one reads off

µi = âηQim3/2Θ , Bi = b̂ηQim2
3/2Θ , m2

id = ĉηQim2
3/2Θ , (3.32)

with â, b̂, ĉ = O (1).
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Loop corrections

Depending on the mechanism of SUSY breaking, the R-parity breaking soft terms may vanish
at the GUT scale [31], therefore, we choose

Bi (ΛGUT) = m2
id (ΛGUT) = 0 . (3.33)

Non-zero values of these parameters at the EW scale are then induced by radiative corrections.
The renormalization group equations for the bilinear R-parity breaking mass terms read (cf.
Reference [31]):

16π2 dµi
d ln Λ = 3µi

(
hujkh

u∗
jk −

1
5g

2
1 − g2

2

)
+ µkh

e
ijh

e∗
kj − µ

(
λijkh

e∗
kj + 3λ′kjihd∗kj

)
, (3.34a)

16π2 dBi
d ln Λ = 3Bi

(
hujkh

u∗
jk −

1
5g

2
1 − g2

2

)
+ 6µi

(1
5g

2
1M1 + g2

2M2

)
+Bkh

e
ijh

e∗
kj −B

(
λijkh

e∗
kj + 3λ′kjihd∗kj

)
, (3.34b)

16π2 dm
2
id

d ln Λ = λ∗kjih
e
kjm

2
d −m2

jdh
e
jkh

e∗
ik − 3λ′kjihdkjm2

d + hejkh
e∗
jkm

2
id

+ 3hd∗kjhdkjm2
id + m̃2

liλ
∗
nkih

e
nk − 3m̃2

liλ
′∗
nkih

e
nk

+ 2λ∗kjim̃2
lkλkj + 2λ∗kjihekjm̃2

ej − 6λ′∗kjihdkjm̃2
dk − 6λ′∗kjim̃2

qjh
d
kj . (3.34c)

In bilinear R-parity breaking, the R-parity violating Yukawa couplings vanish at the GUT
scale. One-loop radiative corrections then yield for the soft terms at the EW scale (cf.
Equations (3.34a) and (3.34b))

Bi (ΛEW) = µi
16π2 6

(1
5g
′2M1 + g2M2

)
ln ΛGUT

ΛEW
, m2

id (ΛEW) = 0 . (3.35)

This illustrates that the bilinear R-parity breaking terms µ2
i , Bi and m2

id are not necessarily
of the same order of magnitude at the EW scale.

3.5.2 Generic parameter choice

For a generic choice of parameters µi, Bi and m2
id the EW symmetry is broken by VEVs of all

scalar SU(2) doublets,〈
H0
u

〉
= vu ,

〈
H0
d

〉
= vd , 〈ν̃i〉 = vi , (3.36)

with the usual 2HDM VEV relations (A.15) and a new relation including the scalar neutrino
VEVs [77] 1

ε̂i ≡ vi
vd

= Bitβ −m2
id − µµ∗i

m̃2
li + 1

2m
2
Zc2β

, (3.37)

where higher order terms in the R-parity breaking parameters have been neglected.
1Note that our result for ε̂i = vi/vd holds at all renormalization scales, contrary to different expressions used

in the literature.
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3.5.3 Superfield rotation

It is convenient to discuss the predictions of the model in a basis of SU(2) doublets where
the R-parity breaking mass mixing between Higgs and lepton fields µi, Bi and m2

id in the
superpotential (3.16) and the Lagrangian (3.17) are traded for R-parity breaking Yukawa
couplings of the form (3.4) and (3.5). This can easily be achieved by field redefinitions. First
one rotates the superfields Hd and Li,

Hd = H ′d − εiL′i , Li = L′i + εiH
′
d , εi = µi

µ
. (3.38)

Then the bilinear term in the superpotential (3.16) vanishes for the new fields and the sneutrino
VEVs depends solely on soft SUSY and EW symmetry breaking parameters

µ′i = 0 , ε̂′i = Bitβ −m2
id

m̃2
li + 1

2m
2
Zc2β

. (3.39)

One obtains instead cubic R-parity and lepton number violating terms2

∆W ′ = 1
2λijkl

′
ie
c
jl
′
k + λ′ijkd

c
iqjl
′
k . (3.40)

where the R-parity breaking Yukawa couplings are functions of the rotation parameter εi and
the R-parity conserving Yukawa couplings

λijk = −heijεk + hekjεi , λ′ijk = −hdijεk . (3.41)

Applying the supersymmetric rotation (3.38) to the RPV scalar masses (3.17) leads to new
R-parity breaking mass mixing given by

B′i = Bi −Bεi , m2′
id = m2

id + εi
(
m̃2
li −m2

d

)
. (3.42)

The corrections for R-parity conserving mass terms are negligible. Note that the Higgs mass
terms m2

u and m2
d contain the contributions both from the superpotential (2.7) and the soft

SUSY breaking terms.

3.5.4 Scalar field rotation

In a second step one can perform a non-supersymmetric rotation among all scalar SU(2)
doublets,

H ′d = H ′′d − ε′i l̃′′i , εH∗u = εH ′∗u − ε′′i l̃′′i , l̃′i = l̃′′i + ε′iH
′′
d + ε′′i εH

′∗
u , (3.43)

where ε is the usual SU(2) matrix, ε = iσ2. After this rotation the bilinear R-parity breaking
mass mixing terms (3.17) become

B′′i = B′i − ε′iB +
(
m2
u − m̃2

li

)
ε′′i , m2′′

id = m2′
id + ε′′iB +

(
m̃2
li −m2

d

)
ε′′i . (3.44)

Choosing for the two parameters of the scalar rotation

ε′i = − B′iB +m2′
id

(
m̃2
li −m2

u

)(
m̃2
li −m2

u

) (
m̃2
li −m2

d

)−B2 , ε′′i = B′i
(
m̃2
li −m2

d

)
+Bm2′

id(
m̃2
li −m2

u

) (
m̃2
li −m2

d

)−B2 , (3.45)

2The term proportional to HdEciHd vanishes due to SU(2) symmetry.
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leads to vanishing mixing terms between Hu l̃i and l̃†iHd in the new basis of doublets. According
to (3.39) also the scalar lepton VEVs 〈ν̃i〉 vanish in this basis.

B′′i = 0 , m2′′
id = 0 , ε̂′′i = 〈ν̃i〉′′ = 0 . (3.46)

Consequently we have eliminated all bilinear RPV terms in both the superpotential (3.16)
and the Lagrangian (3.17).

Trilinear couplings

It is straightforward to work out the R-parity violating Yukawa couplings which are induced
by applying the rotation (3.43) on the Lagrangian which follows from applying standard
procedures (2.4) on the RPC superpotential (2.7). The corresponding couplings read, after
dropping prime and double-prime superscripts on all fields

−∆L = 1
2λijkliẽ

c
jlk + λ̂ijklie

c
j l̃k + heij

(
ε′Hd + ε′′εH∗u

)
ecjhd

+ λ′li
(
q̃jdk + qj d̃k

)
+ λ̂′dciqj l̃k + λ̃ijkqiu

c
jεl̃
∗
k + h.c. , (3.47)

where the Yukawa couplings are given by the supersymmetric expressions (3.41) as well as by
the new non-supersymmetric terms

λ̂ijk = −heij(εk + ε′k) + hekjεi , λ̂′ijk = −hdij(εk + ε′k) , λ̃ijk = huijε
′′
k . (3.48)

Note that a new coupling of right-handed up-quarks, λ̃ijk, has been generated which is not
present in the usual RPV Lagrangian (3.5).

Electroweak phenomenology

After shifting the Higgs fields around their VEVs (A.14) and omitting the primes the rotated
scalar lepton fields (3.43) read

l̃i = l̃i + ε′iHd + ε′′i εH
∗
u = l̃i + ε′i

(
vd − sα√

2h
0

0

)
+ ε′′i

(
0 1
−1 0

)(
0

vu + cα√
2h

0∗

)

= l̃i +
(
ε′ivd + ε′′i vu

0

)
+ 1√

2

(
−ε′isαh0 + ε′′i cαh

0∗

0

)

=
(
ν̃i + ζiv + κi√

2h
0

l̃i

)
, (3.49)

where we have taken only the lightest Higgs state into account and have introduced

ζi = ε′icβ + ε′′i sβ , κi = −ε′isα + ε′′i cα . (3.50)

Finally, we can assume the Higgs decoupling limit (A.16) which simplifies the result further

κi ' ζi , l̃i '
(
ν̃i + ζi

(
v + 1√

2h
0
)

l̃i

)
. (3.51)
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After EW symmetry breaking the term containing the Higgs fields in the Lagrangian (3.47)
leads together with this result to a mass mixing between charged down type higgsinos and
right-handed leptons

L = heij
(
ε′Hd + ε′′εH∗u

)
ecjhd = heij

(
ζi(v + 1√

2h
0)

0

)
ecj

(
h0
d

h−d

)
= me

ijc
−1
β ζih

−
d e

c
j , (3.52)

where we have introduced the usual lepton mass matrix

me
ij = heijvd . (3.53)

Therefore, we can conclude this section by noting that ζiv plays a similar role as the
sneutrino VEVs in the general basis of RPV.

3.5.5 Comparison between the general and the rotated basis

Given the Yukawa couplings huij , hdij and heij , the bilinear RPV phenomenology is governed by
9 independent parameters which may be chosen as either of the combinations

µi, Bi, m
2
id , εi, ε

′
i, ε
′′
i . (3.54)

These parameters determine lepton-gaugino mass mixing, lepton-slepton and quark-slepton
Yukawa couplings, and therefore the low-energy phenomenology. The values of these parameters
depend on the pattern of SUSY breaking and the flavour structure of the supersymmetric SM.
In terms of the parameters of the SUSY breaking model (3.24), (3.26) and (3.28a) as well as
the Froggatt-Nielsen flavour model (3.30) one obtains for the ε-parameters

εi = aηQiΘ , ε′i = bηQiΘ , ε′′id = cηQiΘ , (3.55)

with a, b, c = O (1). For R-parity violating phenomenology concerning EW symmetry breaking
it is sufficient to consider the linear combination ζi ∝ ηQiΘ.

3.6 Neutralino and chargino mass matrices
The mass eigenstates of the neutral gauginos and higgsinos are called neutralinos. The new
operators introduced by RPV lead to mixing terms between neutralinos and neutrinos. Hence
the RPV neutralino eigenstates are mixtures of gauginos, higgsinos and neutrinos. The mass
eigenstates of charged wino and higgsino are called charginos. RPV mixes the charginos with
charged leptons of the SM.

3.6.1 Gaugino couplings

The Lagrangian which couples the components of the chiral multiplet to gauginos (2.6) leads
for the lepton and Higgs doublets after the non supersymmetric rotation to the R-parity
breaking couplings of bino and wino to

−L = 1√
2

((
ε′H ′′†d + ε′′H ′Tu ε

)
li − ε′′L′′†i hu − ε′L′′†i hd

) (−g′b+ gσawa
)
. (3.56)
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taking additionally to the Higgs VEV only the couplings to the lightest neutral Higgs state
into account leads after dropping the primes to the mixing

−L = 1√
2

((
ζ∗i (v + 1√

2h
0†)

0

)
li − ε′′L†ihu − ε′Lihd

)(
g′b+ gσawa

)
+ h.c.

⊃− ζ∗i swmZνib+ ζ∗imW νiw
3 +
√

2ζ∗imW eiw
+

− 1
2ζ
∗
i g
′h0†νib+ 1

2ζ
∗
i gh

0†νiw
3 + 1√

2
ζ∗i geiw

+ + h.c. (3.57)

Where we have for simplicity omitted the RPV scalar lepton couplings.

3.6.2 Neutralino mass matrix

The higgsino mass term µ of the superpotential (2.7), the SUSY braking gaugino masses
M1 and M2 (2.13) and a possible right-handed neutrino mass Mν

ij (3.2) together with the
gaugino higgsino mixing terms in the Lagrangian (2.6) especially the RPV contributions in
the Lagrangian (3.57) represent the 7 × 7 neutralino mass matrix in the basis of gauginos b,
w3, higgsinos h0

u, h0
d and the three gauge eigenstates of the neutrino νi

MN =


M1 0 mZsβsw −mZcβsw −ζimZsw
0 M2 −mZsβcw mZcβcw ζimZcw

mZsβsw −mZsβcw 0 −µ 0
−mZcβsw mZcβcw −µ 0 0
−ζimZsw ζimZcw 0 0 Mν

ij

 . (3.58)

Before diagonalizing the neutralino matrix, it is instructive to first analyse the neutralino
matrix in the basis of photino γ̃, zino z and higgsino h1,2 eigenstates

γ̃ = sww
3 + cwb , z = cww

3 − swb , h1,2 = 1√
2

(hd ∓ hu) . (3.59)

where the higgsinos h1,2 are defined in such a way that their supersymmetric mass term is
diagonalized. These eigenstates are defined by the unitary transformation

U =


−sw cw 0 0 0
cw sw 0 0 0
0 0 − 1√

2
1√
2 0

0 0 1√
2

1√
2 0

0 0 0 0 1

 . (3.60)

This transformation leads to a basis in which only the zino mixes with the other neutralino
eigenstates

M′N =



Mz
s2w
2 (M2 −M1) cβ+sβ√

2 mZ
cβ−sβ√

2 mZ ζjmZ
s2w
2 (M2 −M1) Mγ 0 0 0
cβ+sβ√

2 mZ 0 µ 0 0
cβ−sβ√

2 mZ 0 0 −µ 0
ζimZ 0 0 0 Mν

ij


, (3.61)
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where we have defined the photino and zino mass parameters

Mγ = M1c
2
w +M2s

2
w , Mz = M1s

2
w +M2c

2
w . (3.62)

The neutralino mass matrix is fully diagonalized by an unitary matrix

U (n)TMNU
(n) =Mdiag

N , U (n)†U (n) = 1 , (3.63)

which relates the neutral gauge eigenstates to the mass eigenstates3
b
w3

h0
u

h0
d

νi

 = U (n)


χ0
b

χ0
w

χ0
hu
χ0
hd
ν ′i

 . (3.64)

Our convention for the separation of the transformation matrices into RPC and RPV parts is

U (n) =

 U
(χ0)
ab U

(χ0,ν)
ai

U
(ν,χ0)
ia U

(ν)
ij

 . (3.65)

This diagonalisation leads to masses for the four neutralinos and a R-parity breaking mass
term for the neutrinos. The diagonalisation can only be accomplished approximately in mZ/m̃,
where m̃ is the largest out of the supersymmetric mass parameters M1, M2 and µ. Hence the
approximated diagonalisation does not depend on the details of the supersymmetric spectrum,
but in fact its accuracy depends only on the ratio between the EW scale and the largest
supersymmetric parameter. The mass eigenstates are given by

mb = M1 −m2
Zs

2
w

µs2β +M1
µ2 −M2

1

(
1 +O

(
m2
Z

m̃2

))
, (3.66a)

mw0 = M2 −m2
W

µs2β +M2
µ2 −M2

2

(
1 +O

(
m2
Z

m̃2

))
, (3.66b)

mh0
1

= −µ−m2
Z

µ+M1c
2
w +M2s

2
w

2(µ+M1)(µ+M2)
(1− s2β)

(
1 +O

(
m2
Z

m̃2

))
, (3.66c)

mh0
2

= µ+m2
Z

µ−M1c
2
w −M2s

2
w

2(µ−M1)(µ−M2)
(1 + s2β)

(
1 +O

(
m2
Z

m̃2

))
, (3.66d)

mν
ij = Mν

ij − ζ2m2
Z

(
s2w
M1

+ c2w
M2

)(
1 +O

(
m2
Z

m̃2

))
. (3.66e)

where we have introduced the overall R-parity breaking parameter ζ

ζ2 =
∑
i

ζ2
i . (3.67)

The names of the mass eigenstates indicate that they are closely related to the gauge eigenstates
this holds only as long as the three supersymmetric mass parameters involved are non-
degenerate.

3Usually the mass eigenstates are already at this stage called χ0
1...4, we will use this notation after we have

settled on a specific hierarchy between the mass parameters M1, M2 and µ.
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Neutrino masses

The R-parity violating contribution to the neutrino masses (3.66e) can be derived without
the approximation in the differences between the EW scale and the largest of the SUSY mass
parameters and reads in this case

mRPV
ν = ζ2

(
s2β
µ
− M1M2
Mγm2

Z

)−1

(1 +O (ζ)) . (3.68)

In order to generate neutrino Masses of order 50–200meV mostly by RPV, a model with GeV
to TeV scale gauginos needs ζ to be approximately 2× 10−4–2× 10−5

ζ ' 3× 10−5
(

mν

100 meV

) 1
2
(

M1
100 GeV

) 1
2
. (3.69)

Hence, for fixed gaugino masses an upper limit on neutrino masses leads to an upper limit
on ζ.

3.6.3 Chargino mass matrix

The higgsino mass parameter µ of the superpotential (2.7), the soft SUSY breaking wino mass
M2 (2.13) together with the lepton massesme

ij (3.52) and the mixing terms in Lagrangian (3.57)
lead to the 5× 5 chargino mass matrix of gaugino, higgsino and the gauge eigenstates of the
charged leptons4

MC =


M2

√
2mZsβcw 0√

2mZcβcw µ ζih
e
ijµ√

2ζimZcw 0 heijvcβ

 , heij = diag(he1, he2, he3) . (3.70)

This matrix is diagonalized by a bi-unitary transformation,

U (c)†MCŨ
(c) =Mdiag

C , U (c)†U (c) = Ũ (c)†Ũ (c) = 1 , (3.71)

which relates charged gauge eigenstates to the mass eigenstates
w−

h−d

ei

 = U (c)


χ−w

χ−h

e′i

 ,


w+

h+
u

eci

 = Ũ (c)


χ+
w

χ+
h

ec′i

 . (3.72)

Our convention for the separation of the transformation matrices into RPC and violating
parts is

U (c) =

 U
(χ−)
αβ U

(χ−,e)
αi

U
(e,χ−)
iα U

(e)
ij

 , Ũ (c) =

 Ũ
(χ+)
αβ Ũ

(χ+,ec)
αi

Ũ
(ec,χ+)
iα Ũ

(ec)
ij

 . (3.73)

4Note the extra factors of
√

2 in the charged mass matrix compared to [1].
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The chargino and lepton mass eigenstates5 are to leading order (LO) in mZ/m̃

mw± = M2 + m2
W

M2 − µs2β
(

1 +O
(
m2
W

m̃2

))
(3.74a)

mh± = µ+ m2
W

µ−M2
s2β

(
1 +O

(
m2
W

m̃2

))
(3.74b)

mei = heijvcβ
(
1 +O

(
ζ2
))

(3.74c)

It is unambiguous to call the mass eigenstates wino and higgsino as long as the two parameters
are non-degenerate. The RPV contributes to the lepton masses can safely be neglected. The
mass difference between the charginos is given by

mw± −mh± = M2 − µ+ m2
W

M2 − µ(s2β + 1) +O
(
m2
Z

m̃2

)
(3.75)

3.6.4 Currents in mass eigenstate basis

The basis change from gauge eigenstates to mass eigenstates modifies the currents which couple
gauge fields to neutralinos and charginos (A.32). As shown in Appendix A.4 the currents
in the mass eigenstate basis depend on CKM-type matrix elements for the neutral V (χ0,ν)

and the charged V (χ0,e) currents, which are functions of the transformation matrices U (3.65)
and (3.73).

Jeµ = χ−ασµV
(χ−)
αβ χ−β + χ+

ασµV
(χ+)
αβ χ+

β + eiσµV
(e)
ij ej + eciσµV

(ec)
ij ecj

+
(
χ−ασµV

(χ−,e)
αj ej + χ+

ασµV
(χ+,ec)
αj ecj + h.c.

)
, (3.76a)

JZµ = χ0
aσµV

(χ0)
ab χ0

b + χ−ασµV
(χ−)
αβ χ−β + χ+

ασµV
(χ+)
αβ χ+

β

+ νiσµV
(ν)
ij νj + eiσµV

(e)
ij ej + eciσµV

(ec)
ij ecj

+
(
χ0
aσµV

(χ,ν)
aj νj + χ−ασµV

(χ−,e)
αj ej + χ+

ασµV
(χ+,ec)
αj ecj + h.c.

)
− s2wJeµ , (3.76b)

J−µ = χ0
aσµV

(χ)
aβ χ−β + χ+

ασµV
(χ)
αb χ

0
b + χ0

aσµV
(χ,e)
aj ej + eciσµV

(χ,e)
ib χ0

b

+ νiσµV
(ν,χ)
iβ χ−β + χ+

ασµV
(ν,χ)
αj νj + νiσµV

(ν,e)
ij ej + eciσµV

(ν,e)
ij νj , (3.76c)

The R-parity conserving part of these matrices is well known from SUSY introductions. The
R-parity breaking part is given in Appendix A.4.2.

3.7 Gravitino interactions
In order to calculate RPV gravitino decays we have to derive the corresponding coupling. To
that end, we start with the RPC coupling of gravitino to gauginos and higgsinos given by the
Lagrangian [34, 45, 56, 78]

L = − i

4MP
ψµγ

νργµλaF aνρ −
i√

2MP

(
ψµγ

νγµχDνφ
∗ + c.c.

)
, (3.77)

5Also in this case it is more common to name the mass eigenstates χ±1...2, we will do so after choosing a
hierarchy between the mass parameters M2 and µ.
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where our definition of the antisymmetric product of two gamma matrices is given by (B.28).
The coupling to gauge fields and gauginos of the supersymmetric EW SM reads after the RPV
rotations

L =− i

4MP
ψµγ

νργµ
(
Bνρb+W a

νρw
a
)

=− i

4MP
ψµγ

νργµ
[
Fνρ

(
cwb+ sww

3
)

+ Zνρ
(
cww

3 − swb
)

+W−νρw
+ +W+

νρw
−
]

=− i

4MP
ψµγ

νργµ
[
Fνρ

(
swU

w,ν
i + cwU

b,ν
i

)
νi + Zνρ

(
cwU

w,ν
i − swU b,νi

)
νi

+W−νρU
w,ec

i eci +W+
νρU

w,e
i ei

]
=− i

2MP
ψµγ

νργµ
[
(∂νAρUγ,νi + ∂νZρU

z,ν
i ) νi + ∂νW

−
ρ U

w,ec

i eci + ∂νW
+
ρ U

w,e
i ei

]
, (3.78)

where we have used the RPV transformation matrices mixing gauginos and neutrinos (3.65)
as well as gauginos and charged leptons (3.73). In the last step we have introduced the mixing
of photino and zino with neutrinos

U
(γ,ν)
i = cwU

(b,ν)
i + swU

(w,ν)
i , U

(z,ν)
i = −swU (b,ν)

i + cwU
(w,ν)
i . (3.79)

Furthermore, we have used the fact that γµν and the field strength tensors Fµν are both
antisymmetric

γµνFµν = 2γµν∂µAν = 2γµ∂µγνAν − 2∂µAµ . (3.80)

The coupling of gravitino to the components of chiral superfields Hu, Hd and Li reads with the
covariant derivative of the supersymmetric Higgs fields (A.17b) and the non supersymmetric
rotation of the scalar lepton field (3.51)

L =− i√
2MP

ψµγ
νγµ

(
huDνH

∗
u + hdDνH

∗
d + liDν l̃

†
i

)
+ h.c.

=− i√
2MP

ψµγ
νγµ

∂ν − i

2

 √
2gW−µ

−√g2 + g′2Zµ

 sβ (v + 1√
2
h0
)
hu

+

∂ν − i

2

√g2 + g′2Zµ√
2gW+

µ

 (cβhd + ζili)
(
v + 1√

2
h0
)+ h.c.

= 1
2MP

ψµγ
νγµ

[
mZZν

(
−sβUhuν + cβU

hdν + ζi
)
νi − i∂νh0

(
sβU

huν + cβU
hdν + ζi

)
νi

+
√

2mWW
−
ν sβU

hueeci +
√

2mWW
+
ν

(
cβU

hde + ζi
)
ei

]
+ h.c. (3.81)

For the gravitino coupling to Z and neutrino as well as the coupling to W and lepton we will
use in the following the abbreviations

κWi = ζi + cβU
(hd,e)
i + sβU

(hu,ec)
i , κZi = ζi + cβU

(hd,ν)
i − sβU (hu,ν)

i . (3.82)

The gravitino coupling to Higgs and neutrino simplifies due to the symmetry between the
transformations of the two different Higgs types, which is simplest to observe in the neutralino
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q, M

k, mB

p, mF

Figure 3.2: General two body decay of a particle with mass M and momentum q in two
particles with masses mB,F and momenta k and p.

mass matrix in the photino-zino basis (3.61)

cβU
(hd,ν)
i + sβU

(hu,ν)
i = 0 , ζi + cβU

(hd,ν)
i + sβU

(hu,ν)
i = ζi . (3.83)

Combining the RPV coupling of gravitino to the components of chiral and gauge superfields
after EW symmetry breaking leads to

L = 1
2MP

{
ψµγ

νγµ
[(
mZκ

Z
i Zν − iζi∂νh0

)
νi +

√
2mWκ

W
i W

+
ν ei

]
− iψµγνργµ

[(
U

(z,ν)
i ∂νZρ + U

(γ,ν)
i ∂νAρ

)
νi + U

(w,e)
i ∂νW

+
ρ ei

]}
+ h.c. (3.84)

Where the RPV mixing between gauginos and higgsinos with leptons are to first order in ζ
and mZ/m̃ given by

U
(γ,ν)
i = ζiswmW

M2 −M1
M1M2

, (3.85a)

U
(w,e)
i = −√2ζi

mW

M2
=
√

2ξWi , κWi = ζi

(
1 + m2

W

µM2
s2β

)
, (3.85b)

U
(z,ν)
i = −ζimZ

(
c2w
M2

+ s2w
M1

)
, κZi = ζi

(
1 + m2

Z

µ
s2β

(
c2w
M2

+ s2w
M1

))
, (3.85c)

As the mixing of the lepton doublet with the three components of the wino is uniform before
the rotation into mass eigenstates we are able to verify that this uniformity holds via the
relation6

cwU
(z,ν)
i + swU

(γ,ν)
i = 1√

2
U

(w,e)
i = ξWi , (3.86)

as well after the rotation [40].

3.8 Decays of the lightest supersymmetric particles
The two body decay width of a particle with mass M (cf. Figure 3.2) as a function of the
Lorentz-invariant matrix elementM is given by [79, 80]

Γ = 1
16π |M|

2 λ

M3 , (3.87)

6The trigonometric factors in this relation are due to the rotation into the neutral gauge mass eigenstates
and the factor

√
2 is due to the rotation into charged mass eigenstates.
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τ̃

t, τ , µ

b, νµ, ντ

Figure 3.3: Stau decays into top and bottom as well as leptons and neutrinos.

where the phase space is parametrized by

λ2 =
(
M2 − (mB +mF )2

) (
M2 − (mB −mF )2

)
, |pB| = |pF | = λ

2M . (3.88)

In the following we will calculate the two body decays of neutralino and gravitino in the two
spinor notation, the derivation and details of the treatment of two component spinors can be
found e.g. in [80].

3.8.1 Scalar lepton decays

The Lagrangian (3.47) leads to decays of sleptons into two leptons. Our interest lies in the
decays of the lightest slepton, usually the stau, which decays either hadronically into a top
and a bottom quark or leptonically into a tau lepton and a muon neutrino or a muon and a
tau neutrino (cf. Figure 3.3). The leptonic decay is governed by the amplitude

iM = −iλyτxν . (3.89)

The square of this amplitude is then given by

|M|2 = |λ| yτxνx†νx†τ . (3.90)

Summing over the final state fermion spins leads to∑
f

|M|2 = |λ|2 tr(kτσ)(pνσ) = |λ|2
(
m2
τ̃ −m2

τ −m2
ν

)
. (3.91)

The decay width is, finally, given by

Γτ̃ ' |λ|
2

16πmτ̃fS(mτ̃ ,mτ ) , (3.92)

where we have neglected the neutrino mass and have introduced the scalar phase space
suppression factor, which is normalized to one

fS(m1,m2) = (1− r)2 =
(

1− m2
2

m2
1

)2

, r = m2
2

m2
1
. (3.93)

The energy dependence of the scalar phase space factor for the coloured channel is depicted in
Figure 4.4.
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Figure 3.4: Neutralino decay into the lightest Higgs boson and neutrino.

3.8.2 Neutralino decays

A neutralino with a mass larger than 100GeV decays predominantly via two-body channels
either into W boson and charged lepton (see Figure 3.5a), Z boson and neutrino [81] (see
Figure 3.5b) or Higgs boson and neutrino [82] (see Figure 3.4).

Decay into Higgs and neutrino

The Lagrangian (3.57) couples the gauge eigenstates of the neutralino to Higgs and neutrino
and gives rise to the amplitude

iM = i

2gṼ
(νχ)
i1 xiyj , (3.94)

where V (νχ)
i1 is the matrix element coupling the lightest Higgs state to neutralino and neu-

trino (A.44).7 The square of this amplitude is

|M|2 = 1
4g

2
∣∣∣Ṽ (νχ)
i1

∣∣∣2 xiyjy†jx†i . (3.95)

Summing over outgoing neutrinos (B.83)∑
j

|M|2 = 1
4g

2
∣∣∣Ṽ (νχ)
i1

∣∣∣2 xikjσx†i , (3.96)

and averaging over incoming neutralinos (B.83) leads to
1
2
∑
|M|2 = 1

4g
2
∣∣∣Ṽ (νχ)
i1

∣∣∣2 tr kjσpiσ = 1
4g

2
∣∣∣Ṽ (νχ)
i1

∣∣∣2 kjpi
= 1

8g
2
∣∣∣Ṽ (νχ)
i1

∣∣∣2 (m2
χ0

1
−m2

h) , (3.97)

where we have simplified the traces over sigma matrices using (B.84) and have applied the
momentum and mass relations

m2
χ0

1
= m2

h +m2
ν + 2kjpi , mν � mχ0

1
,mh . (3.98)

Using the formula for a general two body decay (3.87) this leads finally to the decay width of
a neutralino decaying into the lightest Higgs and neutrino

Γ(χ0
1 → h0νi) = 1

32
α

s2w

∣∣∣Ṽ (νχ)
i1

∣∣∣2mχ0
1

1− m2
h

m2
χ0

1

 = 1
32

α

s2w

∣∣∣Ṽ (νχ)
i1

∣∣∣2mχ0
1
fS(mχ0

1
,mh) . (3.99)

In the last step we have used the scalar phase space factor (3.93).
7Here we are using the usual definition that χ0

1 is the lightest neutralino.
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(a) χ0
1 →W±l∓i

χ0
1

Z

νi

(b) χ0
1 → Zνi

Figure 3.5: Neutralino decays into W boson and charged lepton (a) as well as Z boson
and neutrino (b).

Decay into gauge boson and lepton

The Lagrangian (A.21) which couples gauge bosons via RPV currents (3.76a) to neutralino
and lepton leads to neutralino decays into Z boson and neutrino via the amplitude

iM = −i g
cw
V

(χ,ν)
1i ε∗µxiσ

µx†j . (3.100)

The square of this amplitude is

|M|2 = g2

c2w

∣∣∣V (χ,ν)
1i

∣∣∣2 ε∗µενxiσµx†jxjσνx†i . (3.101)

Summing over final state neutrinos (B.83) leads to

∑
j

|M|2 = g2

c2w

∣∣∣V (χ,ν)
1i

∣∣∣2 ε∗µενxiσµ(kjσ)σνx†i . (3.102)

Averaging over initial states neutralinos (B.83) and using the spin sum for gauge bosons (B.89)
simplifies this expression to

1
2
∑
|M|2 = 1

2
g2

c2w

∣∣∣V (χ,ν)
1i

∣∣∣2 ε∗µεν trσµ(kjσ)σν(piσ)

= 1
2
g2

c2w

∣∣∣V (χ,ν)
1i

∣∣∣2 (kjpi + 2kjkZpikZ)

= 1
4
g2

c2w

∣∣∣V (χ,ν)
1i

∣∣∣2 (m2
χ0

1
−m2

Z

)m2
χ0

1

m2
Z

+ 2

 . (3.103)

Finally, the decay width is

Γ
(
χ0

1 → Zν
)

= 1
4
α

s22w

∣∣∣V (χ,ν)
1i

∣∣∣2mχ0
1

1− m2
Z

m2
χ0

1

22 +
m2
χ0

1

m2
Z


= 1

4
α

s22w

∣∣∣V (χ,ν)
1i

∣∣∣2 m3
χ0

1

m2
Z

fV (mχ0
1
,mZ) . (3.104)
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Figure 3.6: Phase space suppression factors for neutralino decays into W and Z bosons
(cf. Equation (3.105)) as well as the lightest Higgs (cf. Equation (3.93)).

Note the Nambu-Goldstone enhancement factor m2
χ/m2

Z for the longitudinal polarizations of
the gauge bosons [83]. In the last step we we have introduced the normalized vector boson
phase space factor

fV (m1,m2) = fS(m1,m2) (1 + 2r) =
(

1− m2
2

m2
1

)2(
1 + 2m

2
2

m2
1

)
, (3.105)

which is depicted in Figure 3.6. Compared to the decay into scalar bosons (3.99), the
normalization leads to the extra factor of m2

χ0
1
/m2

Z in the decay width (3.104). The calculation
of the decay into W boson is analogue to the decay into Z boson.

Total decay width

Summarizing, the partial decay widths, taking also decays into antiparticles into account, are
given by

Γ
(
χ0

1 →W±l∓
)

= GF

4
√

2π
m3
χ0

1

∑
i

∣∣∣V (χ0,e)
1i

∣∣∣2 fV (mχ0
1
,mW ) , (3.106a)

Γ
(
χ0

1 → Zν
)

= GF

2
√

2π
m3
χ0

1

∑
i

∣∣∣V (χ0,ν)
1i

∣∣∣2 fV (mχ0
1
,mZ) , (3.106b)

Γ
(
χ0

1 → hν
)

= α

16s2w
mχ0

1

∑
i

∣∣∣Ṽ (ν,χ0)
1i

∣∣∣2 fS(mχ0
1
,mh) , (3.106c)

where V (χ0,e)
1i and V (χ0,ν)

1i are the charged and neutral current matrix elements, whereas Ṽ (ν,χ0)
1i

is the matrix element for the decay into the Higgs boson. The total neutralino decay width is
given by the sum

Γχ0
1

= Γ(χ0
1 →W±l∓) + Γ(χ0

1 → Zν) + Γ(χ0
1 → hν) , (3.107)
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(b) χ0
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Figure 3.7: Neutralino decays into gravitino and Higgs boson (a) as well as gravitino and
neutral gauge boson (b).

and depends on the character of the lightest neutralino. In Section 4 we will give detailed
formulas for the cases where the lightest neutralino is the bino-, wino- or higgsino-like.

R-parity conserving decays

The neutralino may also decay via RPC channel into a light gravitino. For example the decay
width into gravitino and photon is given by [84–88]

Γ(χ→ γψµ) = 1
48π |U11cw + U12sw|2

m5
χ0

1

M2
Pm

2
3/2

f
3/2
S (mχ0

1
,m3/2)

1 + 3
m2

3/2

m2
χ0

1

 . (3.108)

Dividing the total RPV decay width by the total RPC decay width leads in the gaugino NLSP
case to

ΓRPV
ΓRPC

= 8π α
c4w
ζ2m

2
3/2M

2
P

m4
χ0

1

fRPV
fRPC

. (3.109)

The RPC decay becomes dominant for

ζ . 7 × 10−16
(

m3/2

10 GeV

)( mχ0
1

100 GeV

)−2 (fRPC
fRPV

) 1
2
, (3.110)

hence, it dominates only for very small RPV and extremely large mass splitting between the
mass of the lightest neutralino and the mass of the gravitino.

3.8.3 Gravitino decays

The Lagrangian (3.84) leads to RPV gravitino decays. These decays are not only suppressed
by the smallness of RPV but also by the Planck mass.

Decay into photon and neutrino

The Lagrangian which couples gravitino to gauge boson and neutrino (3.84) reads in two
component notation

L = i

2MP
U

(γ,ν)
i ψ†µσ

νρσµ∂νAρνi , (3.111)
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Figure 3.8: Gravitino decay into photon and neutrino.

and leads with the momentum assignment of Figure 3.2 to the amplitude

iM = − 1
2MP

U
(γ,ν)
i ε∗ρψ

+
µ (σk)σρσµx†i , (3.112)

where we have used the antisymmetry of σµν (3.80) and the polarization of the gauge boson.
The square of this amplitude is

|M|2 = − i

4M2
P

∣∣∣U (γ,ν)
i

∣∣∣2 ε∗ρελψ+
µ (σk)σρσµx†xσκσλ(σk)ψ+†

κ . (3.113)

Summing over the final state neutrinos

|M|2 = i

4M2
P

∣∣∣U (γ,ν)
i

∣∣∣2 ε∗ρελψ+
µ (σk)σρσµ(pσ)σκσλ(σk)ψ+†

κ , (3.114)

and averaging over initial states gravitino leads to
1
4
∑
|M|2 = − 1

16M2
P

∣∣∣U (γ,ν)
i

∣∣∣2 ε∗ρελ tr
(
(σk)σρσµ(pσ)σκσλ(σk)P+

κµ

)
. (3.115)

Using the sum over gravitino spins (B.94) and gauge boson spins (B.90) and solving the
following traces over σ-matrices

tr ((σk)σρσµ(pσ)σµσρ(σk)(σq)) = 16(kp)(kq)− 8k2(pq) , (3.116a)
tr ((σk)σρ(σq)(pσ)(σq)σρ(σk)(σq)) = 8q2(kp)(kq)− 16(kq)2(pq) + 4k2q2(pq) ,

(3.116b)
tr ((σk)σρσµ(pσ)σκσρ(σk)(σq)σκσµ) = −16k2(pq) , (3.116c)

tr ((σk)σρ(σq)(pσ)σκσρ(σk)(σq)σκ(σq)) = 16q2(kp)(kq)− 32(kq)2(pq) , (3.116d)
tr ((σk)σρσµ(pσ)(σq)σρ(σk)(σq)(σq)σµ) = 8k2q2(pq) , (3.116e)

leads to
1
4
∑
|M|2 = 1

12
1

M2
Pm

2
3/2

∣∣∣U (γ,ν)
i

∣∣∣2 (m2
3/2 −m2

ν)2(3m2
3/2 +m2

ν)

' 1
4
m4

3/2

M2
P

∣∣∣U (γ,ν)
i

∣∣∣2 . (3.117)

Finally, the decay width reads

Γ(ψ3/2 → γν) = 1
64π

m3
3/2

M2
P

∣∣∣U (γ,ν)
i

∣∣∣2 . (3.118)
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Figure 3.9: Gravitino decay into the lightest Higgs boson and neutrino.

Decay into Higgs and neutrino

The part of the Lagrangian (3.84) which couples gravitino to Higgs and photon reads in two
component notation

L = − i2
ζi
MP

ψ†µσ
νσµ∂νh

0νi , (3.119)

which leads to the matrix element

iM = i

2
ζi
MP

ψµ(kσ)σµx†l . (3.120)

The square is

|M|2 = 1
4
ζ2

M2
P

ψµ(σk)σµx†lxlσ
ν(σk)ψ†ν , (3.121)

summing over the final states

|M|2 = 1
4
ζ2

M2
P

ψµ(σk)σµ(pσ)σν(kσ)ψ†ν , (3.122)

and averaging over the initial states leads to
1
4 |M|

2 = 1
16

ζ2

M2
P

tr
(
(σk)σµ(pσ)σν(σk)P+

νµ

)
. (3.123)

Hence after solving the traces of sigma matrices
tr (σµ(kσ)(pσ)(σk)σµ(σq)) = 4k2(pq)− 8(kp)(kq) , (3.124a)

tr ((qσ)(kσ)(pσ)(σk)(σq)(σq)) = 4q2(kq)(kp)− 2k2q2(pq) , (3.124b)
tr (σµ(kσ)(pσ)(σk)σν(σq)σµσν) = 16(kp)(kq)− 8k2(pq) , (3.124c)

tr (σµ(kσ)(pσ)(σk)(qσ)(σq)σµ(σq)) = 4k2q2(pq)− 8q2(kp)(kq) , (3.124d)
tr ((qσµ)(kσ)(pσ)(σk)σν(σq)(σq)) = 16q2(kq)(kp)− 16k2q2(pq) , (3.124e)

the square of the matrix element reads
1
4 |M|

2 =− 1
24

ζ2

M2
Pm

2
3/2

(m3/2 −mh −mν)(m3/2 +mh −mν)(m3/2 −mh +mν)

× (m3/2 +mh +mν)(m2
3/2 −m2

h +m2
ν)

'− 1
24

ζ2

M2
Pm

2
3/2

(m2
3/2 −m2

h)3 . (3.125)
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Figure 3.10: Gravitino decays into W boson and charged lepton as well as Z boson and
neutrino.

Finally, the decay width is

Γ(ψ3/2 → hν) = 1
384π

m3
3/2

M2
P

ζ2f2
S(m3/2,mh) , (3.126)

where we have used the scalar phase space suppression factor (3.93), which shows up quadrati-
cally.

Decay into massive gauge bosons and leptons

The decay width for gauge bosons is more complicated as the coupling of gravitino to gauge
bosons is governed by two independent parts in the Lagrangian (3.84) For the Z bosons these
parts read in two component notation

L = 1
2MP

ψµ

(
mZκ

Z
i σ

νσµ − iU (z,ν)
i σρνσµ∂ρ

)
Zννi + h.c. (3.127)

which leads to the matrix element

iM = i

2MP
ε∗νψ

†
µ (a+ b(kσ))σνσµx†i , (3.128)

where

a = mZκ
Z
i , b = U

(z,ν)
i . (3.129)

The square of the matrix element is

|M|2 = 1
4M2

P
ε∗νελψ

†
µ (a+ b(kσ))σνσµx†ixiσκσλ (a∗ + b∗(kσ))ψκ . (3.130)

Summing over final state neutrinos∑
p

|M|2 = 1
4M2

P
ε∗νελψ

†
µ (a+ b(kσ))σνσµ(pσ)σκσλ (a∗ + b∗(kσ))ψκ , (3.131)

and averaging over the initial state gravitinos leads to
1
4
∑
pq

|M|2 = 1
16M2

P
ε∗νελ tr

(
(a+ b(kσ))σνσµ(pσ)σκσλ (a∗ + b∗(kσ))Pκµ

)
. (3.132)
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Figure 3.11: Gravitino phase space suppression factors for massive neutral particle. The
decay into W boson is governed by the same factors as the decay into Z boson, just the
masses have to be replaced. Note the maximum at f3/2(m3/2 ' 1.9mV ) ' 2.

Fortunately we have already solved one half of the traces we have to calculate in (3.116) the
other half is given by

tr ((σk)(σk)σµ(pσ)σµ(σk)(σk)(σq)) = 16k2(kp)(kq)− 8k4(pq) , (3.133a)
tr ((σk)(σk)(σq)(pσ)(σq)(σk)(σk)(σq)) = 8k2q2(kp)(kq)− 16k2(kq)2(pq) + 4k4q2(pq) ,

(3.133b)
tr ((σk)(σk)σµ(pσ)σκ(σk)(σk)(σq)σµσκ) = 32k2(kp)(kq) , (3.133c)

tr ((σk)(σk)σµ(pσ)(σq)(σk)(σk)(σq)σµ(σq)) = 16k2q2(kp)(kq)− 32k2(kq)2(pq) , (3.133d)
tr ((σk)(σk)(σq)(pσ)σκ(σk)(σk)(σq)(σq)σκ) = 8k4q2(pq) . (3.133e)

Therefore, the result for the amplitude is

1
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[
m2

3/2

(
−2m2

3/2 +m2
Z +m2

l

)
+
(
m2
Z −m2

l

)2
]

(3.134)

+ 2
∣∣∣U (z,ν)
i

∣∣∣2 [m4
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)3
]}

.

Finally, the decay rate into Z bosons is given by

Γ(ψ3/2 → Zν) = 1
384π

m3
3/2

M2
P

(3.135)

×
(∣∣∣κZi ∣∣∣2 f3/2(m3/2,mZ) + 16 mZ
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ReκZi U

(z,ν)
i f ′3/2(m3/2,mZ) + 6

∣∣∣U (z,ν)
i

∣∣∣2 f ′′3/2(m3/2,mZ)
)
,



41 Chapter 3. R-parity breaking

where we have introduced three phase space suppression factors for gravitino decays into gauge
bosons

f3/2(m1,m2) = fS(m1,m2)
(
1 + 10r + r2

)
=
(

1− m2
2

m2
1

)2(
1 + 10m

2
2
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1

+ m4
2
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1

)
, (3.136a)

f ′3/2(m1,m2) = fS(m1,m2)
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1 + 1
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)
, (3.136b)

f ′′3/2(m1,m2) = fS(m1,m2)
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(
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3
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2
m4
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)
, (3.136c)

which are normalized to one and shown in Figure 3.11. The decay into W bosons is calculated
in the same manner.

Total decay width and branching ratios

Summarizing, the two body decays of gravitino resulting from the Lagrangian (3.84) are after
summing over particles and antiparticles given by [45, 89, 90]

Γ(ψ3/2 → γν) = 1
32π

m3
3/2

M2
P

∣∣∣U (γ,ν)
i

∣∣∣2 , (3.137a)

Γ(ψ3/2 → hν) = 1
192π

m3
3/2

M2
P

ζ2
i f

2
S(m3/2,mh) , (3.137b)

Γ(ψ3/2 →W±l∓) = 1
96π

m3
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M2
P

(3.137c)

×
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∣∣∣ξWi ∣∣∣2 f ′′3/2(m3/2,mW )
)
,

Γ(ψ3/2 → Zν) = 1
192π

m3
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M2
P

(3.137d)

×
(∣∣∣κZi ∣∣∣2 f3/2(m3/2,mZ) + 16 mZ
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ReκZi U

(z,ν)
i f ′3/2(m3/2,mZ) + 6

∣∣∣U (z,ν)
i

∣∣∣2 f ′′3/2(m3/2,mZ)
)
.

The total decay width is the sum of these partial decay widths

Γψµ = Γ(ψµ →W±l∓) + Γ(ψµ → Zν) + Γ(ψµ → hν) + Γ(ψµ → γν) , (3.138)

and the branching ratios are shown in Figure 3.12. For large gravitino mass the branching
ratio into photon and neutrino approaches zero, and the branching ratio into Z boson and
neutrino as well as Higgs boson and neutrino are identical and half the size of the branching
ratio into W boson and lepton.
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Figure 3.12: Gravitino branching ratio for the decays into photon and neutrino, W boson
and lepton, Z boson and neutrino and Higgs boson and neutrino (cf. Equation (3.137)).
We distinguish the three case where the NLSP is bino- (a), wino- (b) or higgsino-like (c).
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Chapter 4

Constraining neutralino decays via
gravitino decays

In this section we first analyse the dependence of the gravitino decay width on the RPV
parameter ζ and the gaugino masses. Afterwards we relate neutralino NLSP to gravitino
decay widths and derive lower bounds on the NLSP decay lengths. Knowing the lifetimes
of the LSPs we are able to constrain the parameters with cosmological and astrophysical
observations. Finally we analyse the behaviour of scalar tau NLSP.

4.1 Gravitino dark matter

Inserting the matrix element (3.85a) into the partial decay width for a gravitino decaying into
a photon and a neutrino (3.118) and summing over neutrinos and anti-neutrinos one obtains
for the gravitino lifetime to LO1 in mZ/m̃

Γ3/2(γν) = 1
32πζ

2s2wm
2
W

m3
3/2

M2
P

(
M2 −M1
M1M2

)2
. (4.1)

Whenever the NLSP is bino- or wino-like the gravitino lifetime depends directly on the value
of the RPV parameter ζ (3.50), the mass of the NLSP as well as the ratio of the two gaugino
mass parameter. In the case of higgsino-like NLSP, however, the gravitino lifetime depends on
the mass of the possibly much heavier gauginos instead of the NLSP mass. Nevertheless, one
can invert the relation (4.1) with respect to the R-parity breaking parameter

ζ2 = 32π 1
s2wm

2
W

M2
P

m3
3/2τ3/2

(
M1M2
M2 −M1

)2
, (4.2)

and constrain its value from the bounds on the gravitino lifetime (see Section 4.3.3). For a
gravitino lifetime comparable to the age of the Universe and reasonable assumptions on the
masses of the gauginos and the gravitino ζ becomes

ζ ' 0.005
(

M1
100 GeV

)(
m3/2

10 GeV

)−3/2 ( τ3/2

τUniverse

)− 1
2
. (4.3)

1Where m̃ is the largest out of the three supersymmetric neutralino mass parameters M1, M2, µ.
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Comparing this to the upper bound derived from the RPV contribution to the neutrino
mass (3.69) leads to the conclusion that the lifetime of gravitinos, which are not too heavy,
must be much larger than the age of the universe

τ3/2 = 128π
s22w

M2
P

m3
3/2mν

M1M2Mγ

(M1 −M2)2

' 107 τUniverse

(
M1

100 GeV

)(
m3/2

10 GeV

)−3 ( mν

100 meV

)−1
. (4.4)

For fixed m3/2 this expression represents a lower bound on the lifetime of gravitino as the
value for M1 is a lower bound on the bino mass parameter and the value of mν is an upper
bound on the RPV contribution to the neutrino mass.

4.1.1 Microscopic determination of the Planck mass

In principle, one can determine the Planck mass from decay properties of the NLSP together
with the observation of a photon line in the diffuse gamma-ray flux, which is produced by
gravitino decays. This has been proposed for τ̃ -NLSP in [29] based on a similar analysis for
stable gravitino [91].

In our analysis of NLSP decays in Section 3.8.2 we have seen that the value of RPV ζ can
be determined by the mass and the lifetime of the lightest gaugino. Therefore, it is clear that
gaugino NLSP decays are particularly well suited for a measurement of the Planck mass

MP = 1
8
√

2π
mZs2wζ

M2 −M1
M1M2

m
3/2
3/2τ

1/2
3/2 . (4.5)

MP will be a function of the masses and lifetimes of the LSPs only.

4.2 Quasi stable next-to lightest neutralinos

After having determined the lifetime of the gravitino LSP we are in the position to analyse
the properties of the NLSP. In this section we will restrict ourselves to neutralino NLSPs and
will give analytic formulas for the three cornering cases where one of the three parameters M1,
M2, µ is notably lighter than the other two.

4.2.1 Bino-like

If M1 is the lightest of the supersymmetric mass parameter, the NLSP is bino-like. As long as
the masses of the two EW gauginos are identical at the GUT scale, we can expect the ratio of
their masses to be roughly two at the TeV scale (cf. Equation (2.16)). If we further assume
that the higgsino mass parameter µ is also larger than the bino mass parameter we are in a
pure bino NLSP scenario.

In the extreme case (µ � m1/2) the masses of the next-to lightest neutralino and the
lightest chargino are degenerate and the mass difference to the lightest neutralino is given by

mχ±1
−mχ0

1
= mχ0

2
−mχ0

1
= M2 −M1 − c2wm

2
Z

µ
c2β +O

(mχ0
1

µ

)
. (4.6)
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Figure 4.1: Gaugino phase space suppression factor.

In the bino-like neutralino NLSP scenario the decays of the χ0
1 into Z, W and Higgs

bosons as well as leptons is up to order m2
Z/m̃2 governed by the three matrix elements (cf.

Appendix A.4.2)

V
(χ0,ν)
1i = −ζi sw2

mZ

M1
, V

(χ−,e)
1i = −ζiswmZ

M1
, Ṽ

(ν,χ0)
i1 = −ζitw . (4.7)

Using these matrix elements in the total decay width (3.107) leads under the assumptions
that mχ0

1
'M1 to first order in mZ/m̃ to the bino-like neutralino decay width

Γχ0
1

= 1
4
α

c2w
ζ2mχ0

1
fG̃(mχ0

1
) , (4.8)

where we have introduced the gaugino phase space suppression factor (cf. Equations (3.93)
and (3.105))

fG̃(mχ0
1
) = 1

2fV (mχ0
1
,mW ) + 1

4fV (mχ0
1
,mZ) + 1

4fS(mχ0
1
,mh) , (4.9)

which approaches one for large neutralino masses and is depicted in Figure 4.1. In this case the
branching ratios for the decay into Z and Higgs are equal and half the size as the branching
ratio into W , as one can as well see in Figure 4.2. The lifetime is for reasonable assumptions
given by

cτχ0
1
' 7.7 m

( mχ0
1

100 GeV

)−1 ( ζ

10−8

)−2
f−1
G̃

(mχ0
1
) . (4.10)

Using the Gravitino decay width (4.2) in order to eliminate the RPV coupling ζ the neutralino
lifetime can be directly related to the gravitino lifetime

τχ0
1

= 1
8
c2ws

2
wm

2
W

α

(
M2 −M1
M1M2

)2 m3
3/2τ3/2

M2
Pmχ0

1

f−1
G̃

(mχ0
1
) , (4.11)
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Figure 4.2: Branching ratios for gaugino decays into W -, Z- and the lightest Higgs boson
as well as leptons.

We obtain for a typical neutralino decay length the relation

cτχ0
1
' 4.3 m

( mχ0
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100 GeV

)−3 ( m3/2

10 GeV

)3
(
τ3/2(γν)

6× 1028 s

)
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1
) . (4.12)

The formula for the microscopic determination of the Planck mass (4.5) reads in the case
of a bino-like NLSP

MP = 1
4
√

2π
mW s2w√
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τ3/2
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) 1
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(mχ0
1
) .

It is remarkable that the observation of a photon line in the diffuse gamma-ray flux, to-
gether with a measurement of the neutralino lifetime at the LHC, can provide a microscopic
determination of the Planck mass.

4.2.2 Wino-like

In the case of wino-like NLSP the mass of the lightest neutralino is to first order in m2
Z/m̃2

degenerate with the mass of the lightest chargino. This constitutes the most optimistic case
for three body decays. Compared to the two body decays, however, the three body decays
can still be neglected, as these are not only suppressed by the larger phase space but also by
two coupling constants. Keep in mind that a, albeit suppressed, decay channel into photons
opens up. For wino-like NLSP the matrix elements leading to two body wino decays are up to
order m2

Z/m̃2 given by

V
(χ0,ν)
1i = 1

2ζicw
mZ

M2
, V

(χ0,e)
1i = −ζicwmZ

M2
, Ṽ

(ν,χ0)
i1 = ζi . (4.14)
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This leads under the assumption mχ0
1
'M2 to the total decay width of

Γχ0
1

= 1
4
α

s2w
ζ2mχ0

1
fG̃(mχ0

1
) , (4.15)

which is as well governed by the gaugino phase space suppression factor (4.9) and leads to the
same branching ratios as in the bino-like NLSP case. As the total decay length differ only by
a factor of t2w ' 0.3, the numerical values for the decay length are similar to the bino-like case

cτχ0
1
' 2.3 m

( mχ0
1

120 GeV

)−1 ( ζ

10−8

)−2
f−1
G̃

(mχ0
1
) . (4.16)

With the Gravitino decay width (4.1) also the wino-like neutralino lifetime can be expressed
directly in terms of the gravitino lifetime

τχ0
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M1M2

)2 m3
3/2τ3/2
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) , (4.17)

We obtain for a typical neutralino decay length

cτχ0
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100 GeV
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)3
(
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) . (4.18)

Also in the wino-like neutralino NLSP case on is able to determine the Planck mass micro-
scopically

MP = 1
2
√

2π
mW s

2
w√
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) 1
2
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m3/2
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2 ( τ3/2

1028 s

) 1
2
( cτχ0

1

200 m

) 1
2
f
− 1

2
G̃

(mχ0
1
) (4.19)

4.2.3 Higgsino-like

In the light higgsino scenario (LHS) motivated by hybrid gauge-gravity mediation µ is the
lightest of the supersymmetric parameters: µ � M1,M2. In this case the matrix elements
governing the RPV neutralino decays are more complicated than in the gaugino case and read
to first order in mZ/m̃ (cf. Appendix A.4.2)

V
(χ0,ν)
1i = ζim

2
Z

2
√

2µ

((
s2w
M1

+ c2w
M2

)
(sβ − cβ)− Mγ − µ

(M1 − µ)(M2 − µ)(sβ + cβ)
)
, (4.20a)

V
(χ0,e)
1i = ζim

2
Z√

2µ

(
2µc

2
w(sβ + cβ)

M2(M2 − µ) −
Mγ − µ

(M1 − µ)(M2 − µ)(sβ + cβ)− 2 c
2
w

M2
sβ

)
, (4.20b)

Ṽ
(ν,χ0)
i1 = −ζimZ√

2

(
cw

M2 − µ + swtw
M1 − µ

)
(sβ + cβ) . (4.20c)

The evaluation of the partial decay widths in the case of a higgsino-like neutralino (see
Figure 4.3) leads to the conclusion that the lifetime of the lightest higgsino can be estimated
solely from the decay into a W boson and a charged lepton. In the following, we only provide
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Figure 4.3: Branching ratios for higgsino decays into W -, Z-, and the lightest Higgs boson
as wel as leptons.

the approximate formulae, where we have taken into account that tan β in hybrid gauge-gravity
mediation is in general large. In the numerical evaluation, however, we use the full results.
The lifetime of the lightest higgsino reads as a function of ζ

τχ0
1
' 16c

2
ws

2
w

αm2
Z

1
ζ2

1
mχ0

1

f−1
V (mχ0

1
,mW ) (4.21)

×
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2 µc2w
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(M1 − µ)(M2 − µ)(sβ + cβ)− 2 c
2
w

M2
sβ

)−2

,

here and in the rest of this section we have set mχ0
1
' µ. Expanding the higgsino lifetime

in µ/m̃ we arrive at a formula which is to first order independent of the gaugino mass scale
m̃ ∼M1 ∼M2
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4
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. (4.22)

The factor including the gaugino masses M1 and M2 depends only on their ratio and is e.g. in
the case of unified GUT masses very close to 1/2. For reasonable assumptions the decay length
is given by

cτχ0
1

& 4.3 m
(

ζ

10−7

)−2 ( mχ0
1

400 GeV

)−1 ( mχ0
3

2 TeV

)2
f−1
V (mχ0

1
,mW ) . (4.23)

Expressing ζ in terms of the gravitino lifetime using Equation (4.2) together with the assump-
tion of large tan β and large branching ratio into W bosons leads to following expression for



49 Chapter 4. Constraining neutralino decays via gravitino decays

the higgsino-like neutralino lifetime

τχ0
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.

The neutralino lifetime depends on the neutralino mass, the gravitino mass and its lifetime,
and additionally on the bino and wino mass parameters. Expanding the higgsino lifetime in
µ/m̃ allows us to arrive at a formula which is to first order independent of the higher neutralino
mass scale m̃ ∼M1 ∼M2
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The term consisting of the gaugino masses M1 and M2 and the weak mixing angle depends
only on the ratio of the gaugino masses and is at the TeV scale e.g. in the case of unified GUT
masses very close to 1/8. The relation for the decay length is now
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1
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Finally, we are able to give a relation for the microscopic determination of the Planck scale in
the case of higgsino-like NLSP
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In the LHS, higgsino-like charginos and neutralinos would be pair produced at the LHC
via virtual Z and W bosons. Heavier higgsinos decay into lighter ones, the lightest one being
the neutralino-like NLSP. The mass difference between the lightest chargino and the lightest
neutralino is

mχ±1
−mχ0

1
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, (4.28)

where we have introduced

c1 = (1− s2β)c2w , c2 = (1 + s2β)s2w . (4.29)

The mass difference between the next-to-lightest neutralino and the lightest neutralino is
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2
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+ 1
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. (4.30)
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Hence, in the case of heavy gauginos the mass difference is rather small and to first order
proportional to mZ/m̃. Therefore, SM products at this stage of the decay chain will be too
soft to be detectable. In the presence of RPV, however, the NLSP would propagate in the
detector and further decay, prominently into a W boson and a lepton, yielding detectable SM
objects coming from a displaced vertex.

4.3 Cosmological bounds

Both lower and upper bounds on ζ can be derived from cosmology. The lower bound comes
from the BBN constraints on the NLSP when the gravitino is the LSP. An upper bound can
in principle be derived by demanding that the baryon asymmetry generated by leptogenesis is
not washed out before the EW phase transition in the early universe [25–28]. However, the
bound from the constraints on decaying DM from the Fermi gamma-ray searches is stronger.
As we will see, for our analysis the lower bound is not very constraining while the upper bound
will be the motivation for our LHC search strategy.

Having derived the decay widths of the gravitino LSP and the neutralino-like NLSP, we
are now ready to estimate the gravitino mass range allowing for gravitino DM and successful
leptogenesis [35]. This allows us to connect the results from gamma-ray searches with displaced
neutralino decays at the LHC.

4.3.1 Big bang nucleosynthesis

To start with, we need to make sure that the decays of neutralino NLSPs do not interfere
with BBN. Hence we demand that all neutralinos decay during the first 100 seconds of the
universe [20, 92, 93]. Deriving the neutralino lifetime without substituting the R-parity
violating parameter ζ for the gravitino mass and lifetime leads (cf. Equations (4.8) and (4.22))
in the case of bino-like NLSP to

ζ ' 1.6× 10−13
( τχ0

1

100 s

)− 1
2
( mχ0

1

100 GeV

)− 1
2
f
− 1

2
G̃

(mχ0
1
) . (4.31)

In the LHS this bound becomes stronger due to the larger gaugino masses

ζ ' 4.2× 10−12
( τχ0

1

100 s

)− 1
2
( mχ0

1

100 GeV

)− 1
2
( mχ0

3

2 TeV

)
f
− 1

2
V (mχ0

1
,mW ) , (4.32)

which then characterizes the model depend lower bounds on ζ.

4.3.2 Gravitino dark matter mass

The minimal gravitino mass is limited by the requirement that the gravitino abundance
does not overclose the universe. Since gravitinos are produced in thermal SQCD scatterings
gg → g̃ψµ [94], the gravitino mass must increase with increasing gluino mass for a given
reheating temperature.

As we are interested in models in which the coloured particles are massive enough to have
evaded detection at the LHC, gluinos will typically be heavy. For example, in the hybrid
gauge-gravity mediation scenario in [95], which gives rise to a Higgs mass close to the LHC
result, the gluino mass is close to 4TeV. In order to still allow for small gravitino masses, we
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will assume that the hot phase of the universe was created in the decay of the false vacuum of
unbroken B− L [96, 97]. Since right-handed neutrinos are created from B− L Higgs decays,
this scenario allows for gravitino DM, leptogenesis and the correct values for the neutrino mass
parameters while requiring lower reheating temperatures compared to the thermal leptogenesis
case. The lower bound on the gravitino mass obtained in [97] for mg̃ = 1 TeV is mmin

3/2 = 10 GeV.
It is possible to scale this bound to other gluino masses using [96]

m3/2 = mmin
3/2

(
mg̃

1 TeV

)2
. (4.33)

Assuming e.g. a gluino mass of 2TeV, the minimal gravitino mass is 40GeV and therefore a
neutralino NLSP with a mass of 100GeV is still viable.

4.3.3 Fermi-LAT bound on the gravitino lifetime

With the help of the data of Fermi-LAT we are able to restrict the lifetime of gravitinos for
a given mass. Using the isotropic diffuse gamma-ray flux one can derive a lower bound of
τ3/2 & 3× 1028 seconds. A stronger bound of τ3/2 & 6× 1028 s can be derived as a consequence
of the non-observation of any gamma-ray lines [98–100].

For bino-like neutralino this translate into a bound of ζ . 2.3× 10−8 and ζ . 1.6× 10−8,
respectively. For a LHS with a bino mass of roughly M1 ∼ 2 TeV this translates via (4.2) into
an upper bound on the RPV of ζ . 4.70× 10−8 and ζ . 3.32× 10−8, respectively.2

In Section 4.2 we have used this bounds in order to derive the decay lengths of neutralino
NLSPs as a function of the gravitino mass and lifetime. We would like to remind the reader
that the resulting neutralino decay lengths (4.12), (4.18) and (4.26) are well within the reach
of the multi-purpose detectors at the LHC. Even when the neutralino decay length is larger
than the detector dimensions, some neutralinos would, due to the statistical nature of the
process, decay inside the detector.

4.4 Scalar tau as next-to-lightest supersymmetric particle

Contrary to the neutralino NLSP decay, the R-parity violating decays of a τ̃1-NLSP strongly
depend on the flavour structure and the supersymmetry breaking parameters. Since the R-
parity breaking Yukawa couplings are proportional to the ordinary Yukawa couplings, decays
into fermions of the second and third generation dominate. The leading partial decay widths
of left- and right-handed τ̃ -leptons are given by Equation (3.92). Inserting the appropriate
Yukawa-like RPC couplings (3.47), neglecting the τ mass and multiplying the colour factors
for the decay into top and bottom results for the left-handed τ̃ -lepton in

Γτ̃R(τLν) = Γτ̃R(µLν) = 1
16π

∑
i

|λi33|2mτ̃R , (4.34a)

Γτ̃L(τRν) = 1
16π

∑
i

∣∣∣λ̂i33
∣∣∣2mτ̃L , (4.34b)

2This stringent RPV bound implies that the RPV contribution to the neutrino masses can be neglected
compared to the contribution from right-handed neutrinos [29].
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Figure 4.4: Phase space suppression factor for stau decays into top and bottom quarks.

and for the right-handed τ̃ -lepton in

Γτ̃L(tLbR) = Γτ̃L(tLsR) = 3
16π

∣∣∣λ̂′333

∣∣∣2mτ̃LfS(mτ̃ ,mt) , (4.35a)

Γτ̃L(tRbL) = 3
16π

∣∣∣λ̃333
∣∣∣2mτ̃LfS(mτ̃ ,mt) . (4.35b)

The dependence of the phase space suppression factor for stau decays into top and bottom
quark on the stau mass is shown in Figure 4.4. In the flavour model discussed in Section 3.5.1,
the order of magnitude of the various decay widths is determined by the power of the hierarchy
parameter η (η2 ' 1/300),

Γτ̃L(τRν) ∼ Γτ̃R(τLν) = Γτ̃R(µLν) ∼ Γτ̃L(tLbR) = Γτ̃L(tLsR) ∼ η4Θ2mτ̃ , (4.36a)
Γτ̃L(tRbL) ∼ η2Θ2mτ̃ . (4.36b)

The lightest mass eigenstate τ̃1 is a linear combination of τ̃L and τ̃R,

τ̃1 = sτ τ̃L + cτ τ̃R . (4.37)

From the above equations one obtains the τ̃1-decay width

Γτ̃1 = s2τ

(
Γτ̃L(τRν) +

(
2Γτ̃L(tLbR) + Γτ̃L(tRbL)

)
fS(mτ̃ ,mt)

)
+ 2c2τΓτ̃R(τLν) . (4.38)

The total width is dominated by the contributions τ̃R → τLν, µLν and τ̃L → tRbL, respectively,

Γτ̃1 = s2τΓτ̃L(tRbL)fS(mτ̃ ,mt) + 2c2τΓτ̃R(τLν) , (4.39)

and it can be directly expressed in terms of the τ -lepton and top-quark masses,3

Γτ̃1 = ε2

16πv2

(
3m2

t s
2
τfS(mτ̃ ,mt) + 2m2

τ t
2
βc

2
τ

)
mτ̃1 , (4.40)

3Note the additional phase space factor fS(mτ̃ ,mt) compared to [1, 82], which can only be neglected for
mτ̃ � mt.
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Figure 4.5: τ̃ -mixing angle: sin2 τ as function of the lightest τ̃ -mass mτ̃1 .

where we have assumed

ε2,3 = ε′2,3 = ε′′2,3 ≡ ε . (4.41)

This corresponds to the parameter choice a = b = c = 1 in Equation (3.55). Note that τ̃1-decay
width and branching ratios have a considerable uncertainty since these parameters depend on
the unspecified mechanism of supersymmetry breaking. From Equation (3.24) and η ' 0.06,
one obtains for the R-parity breaking parameter

ε ' ζ ' ηΘ ' 6× 10−8 , (4.42)

which is consistent with the present upper bound derived in Section (4.3.3) within the
theoretical uncertainties.

The dependence of the mixing angle τ on mτ̃1 is shown in Figure 4.5 for the boundary
conditions

m0 = 0 , a0 = 0 , tan β = 10 . (4.43)

For masses below the top-bottom threshold only leptonic τ̃1-decays are possible. When the
decay into top-bottom pairs becomes kinematically allowed, sin2 τ is small. However, the
suppression by a small mixing angle is compensated by the larger Yukawa coupling compared
to the leptonic decay mode. This is a direct consequence of the RPV couplings to up quarks λ̃
which were not taken into account in previous analyses.

Due to the competition between mixing angle suppression and hierarchical Yukawa cou-
plings, the top-bottom threshold is clearly visible in the τ̃1-decay length as well as the branching
ratios into leptons and heavy quarks. This is illustrated in Figures 4.6 and 4.7, respectively,
where these observables are plotted as functions of mτ̃1 . Representative values of the τ̃1-decay
lengths below and above the top-bottom threshold are

mτ̃1 < mt +mb : cττ̃1 |150GeV = 1.4 m
(

ε

5× 10−8

)−2
, (4.44a)

mτ̃1 > mt +mb : cττ̃1 |250GeV = 0.6 m
(

ε

5× 10−8

)−2
. (4.44b)
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Figure 4.6: τ̃1-decay length as function of mτ̃1 . Above the top-bottom threshold hadronic
decays decrease the τ̃1-lifetime.
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Figure 4.7: Lightest scalar tau branching ratios as functions of mτ̃1 . The dependence on
the τ̃1-mass is determined by the top-bottom threshold and the mass dependence of the
τ̃1-mixing angle.
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Choosing for ε a representative value from gravitino decay, ε = ζobs = 10−9, one obtains
cττ̃1 = 4 km (1 km) for mτ̃1 = 150 GeV (250GeV). It is remarkable that such lifetimes can be
measured at the LHC [47, 48].

Is it possible to avoid the severe constraint from gravitino decays on the τ̃1-decay length?
In principle, both observables are independent, and the unknown constants in the definition
of ε, ε′ and ε′′ can be adjusted such that ζ = 0. However, this corresponds to a strong
fine-tuning, unrelated to an underlying symmetry. To illustrate this, consider the case where
the soft R-parity breaking parameters vanish at the GUT scale, Bi = m2

id = 0, which was
discussed in Section 3.5.1. In bilinear R-parity breaking, also the R-parity violating Yukawa
couplings vanish at the GUT scale. With the one-loop radiative corrections at the EW scale
(cf. Equation (3.35); εi = µi/µ),

Bi(ΛEW) = εiµ

16π2 6
(1

5g
′2M1 + g2M2

)
ln ΛGUT

ΛEW
, m2

id(ΛEW) = 0 , (4.45)

and M1,2 ∼ µ, one reads off from Equations (3.42) and (3.45)

ε′i, ε
′′
i = O (εi) . (4.46)

Hence, all R-parity breaking parameters are naturally of the same order, unless the fine-tuning
also includes radiative corrections between the GUT and the EW scale.

Even if one accepts the fine-tuning ζ = 0, one still has to satisfy the cosmological bounds on
R-parity violating couplings, which yield εi = µi/µ . 10−6 [28]. In the flavour model discussed
in Section 3.5.1 this corresponds to the choice a = 20 in Equation (3.32). For the smaller
τ̃1-mass, which is preferred by electroweak precision tests, one then obtains the lower bound
on the decay length

cττ̃1 |150GeV & 4 mm . (4.47)

However, let us emphasize again that current constraints from Fermi-LAT on the diffuse
gamma-ray spectrum indicate decay lengths several orders of magnitude larger.
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Chapter 5

Neutralino at the LHC

Having laid the groundwork we are prepared to investigate possible signatures of light neu-
tralinos with and without conserved R-parity at the LHC. First we introduce in Section 5.1
the software we are using to analyse the signatures of neutralinos. Then we introduce in
Section 5.2 two benchmark models featuring light higgsinos and propose a search for RPC
signatures. Afterwards, in Section 5.3, we describe the extension of the software we have
implemented in order to work with displaced vertices. Finally we demonstrate the power of
searches for displaced vertices using the example of strongly produced bino-like neutralino
NLSP and weakly produced higgsino-like neutralino NLSP in Section 5.4 and 5.5, respectively.

5.1 Event simulation

Our simulation of the signal events relied on the following procedure. First, supersymmetric
mass spectra were calculated with a modified version of SOFTSUSY 3.1.5 [101, 102]. The
SOFTSUSY version was modified in order to produce if needed additionally to the spectrum
the R-parity violating decay widths and branching ratios of the lightest neutralino. All other
RPV decays are neglectable due to the tiny amount of R-parity breaking we introduce. The
SOFTSUSY mass spectra were fed into SDECAY 1.3b [103] in order to calculate the decay widths of
the SUSY particles (besides the neutralino LSP). In the next step the possible neutralino decay
information was included into the SDECAY output. The signal process as well as the background
was simulated with MADGRAPH 4.4.44 [104] and then given to PYTHIA 6.4.22 [105] for computation
of all subsequent decays according to the SDECAY output as well as for parton showering and
hadronization. All Monte Carlo samples were generated using parton distribution functions
given by CTEQ6L1 [106]. The generic detector simulation DELPHES 1.9 [107], tuned to the
CMS detector1, was used in order to account for effects of event reconstruction at the detector
level.

5.2 Search for light higgsinos with b-jets and missing leptons

The MSSM with RPC, light higgsinos and otherwise heavy superparticles has previously
been studied e.g. in [108]. Recently some models were constructed which predict precisely
this pattern, such as the “lopsided gauge mediation” models of [109, 110], as well as the

1As discussed in Section 5.5.1, our results would be similar for the ATLAS detector.
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mixed gauge-gravity mediation models of [46] which this analysis will be concerned with (cf.
Section 2.4.4).

5.2.1 Benchmark points

The precise details of the spectrum depend on the messenger content of the model, on the
exact choice of messenger scale and SUSY breaking scale, and on the assumptions about the
gravity-mediated contributions to the soft terms. For our purposes of a first tentative study
of collider phenomenology, it is convenient to adopt a simplified parametrization: We fix the
gravitino mass to be m3/2 = 100GeV, and choose a common messenger mass just below the
GUT scale, Mm = 5× 1015 GeV. Then the essential free parameters are the gaugino masses
M1, M2 and M3, the Higgs soft mass mixing Bµ, and the higgsino mass µ. At the GUT scale
we expect

|Bµ| ' |µ|2 ' m2
3/2 , |M1,2,3| � m3/2 . (5.1)

Scalar soft masses are dominated by the gauge-mediated contribution, which is completely
fixed after prescribing the gaugino masses. Explicitly, they are given by the standard minimal
gauge mediation formula

m2
Φ = 2

(
g2

16π2

)2(∑
a

Cana

) ∣∣∣∣ FMm

∣∣∣∣2 , (5.2)

where a = 1, 2, 3 labels the SM gauge factors, Ca is the corresponding quadratic Casimir of Φ,
the SUSY breaking scale F is

F =
√

3m3/2MP =
(
2× 1010 GeV

)2
, (5.3)

and the effective messenger numbers na are obtained by inverting the standard gaugino mass
formula

Ma = g2

16π2na
F

Mm
. (5.4)

We are neglecting the running of the gauge couplings between Mm and MGUT, as well as the
subdominant gravity-mediated contributions. Trilinear terms are again dominated by gravity
mediation; for simplicity we choose them to be universal and set A0 = µ.

Having thus fixed the MSSM parameters at the messenger scale, we evolve them to the
weak scale by means of their RGEs using SOFTSUSY. Reproducing the correct value of the Z
mass further reduces the number of free parameters by one. In the end, within our simplified
ansatz the mass spectrum is entirely determined by the five parameters M1, M2, M3, µ and
Bµ at the messenger scale. These are subject to the conditions that EW symmetry should be
broken with mZ = 91 GeV, and that there should be a separation of mass scales according to

µ ∼
√
Bµ ∼ m3/2 � M1 ∼M2 ∼M3 . (5.5)

Table 5.1 shows two examples for low-energy spectra, both with µ = 150 GeV and
√
Bµ =

200 GeV and with equal values for M1 and M2.

Spectrum I : M1 = M2 = 1250GeV , M3 = 428GeV . (5.6)
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particle model

Spectrum I Spectrum II HH50 HH50’ simplified

h0 116 121 115 117 117

χ0
1 124 117 206 207 125
χ±1 129 119 389 395
χ0

2 134 121 389 395

χ0
3 559 1 319 635 771
χ0

4 1 059 2 453 649 778
χ±2 1 059 2 453 648 779

H0 641 660 861 958
A0 642 666 861 958
H± 648 672 865 962

g̃ 1 063 2 485 1 167 1 167

t̃1 665 1 558 860 660 659
b̃1 797 1 614 1 034 943
ũ1 1 155 2 438 1 122 1 130
d̃1 1 065 2 294 1 119 1 127

other squarks 1 070–1 500 2 300–3 100 1 120–1 160 990–1 270

τ̃1 509 669 528 520
other sleptons 790–1 160 1 400–2 300 530–600 530–600

Table 5.1: A light and a heavy spectrum, with a CMSSM point HH50, a CMSSM-like
point HH50’ and a simplified model for comparison. The parameters defining these models
are listed in Table 5.2. Particle masses are in GeV.

These parameters were chosen such that the model was close to the former LHC exclusion
limits.2

Spectrum II : M1 = M2 = 3TeV , M3 = 1130GeV , (5.7)

for which the model would be invisible at the early LHC and quite difficult to find even at
14TeV. Our analysis will be mostly concerned with the phenomenology of Spectrum I at√
s = 7 TeV.3

2This parameter point is ruled out by now.
3The Higgs mass chosen for these models does not coincide with the mass measured at ATLAS and CMS,

adjusting the Higgs mass, however, would not have a large effect on the analysis.
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model µ
√
Bµ M1 = M2 M3 m0 m

(3)
0 A0 A

(3)
0 tan β

Spectrum I 150 200 1 250 428 46
Spectrum II 150 200 3 000 1 130 53

HH50 500 500 500 500 0 0 10
HH50’ 500 500 500 300 0 −1 000 10

Table 5.2: Defining parameters for a light and a heavy spectrum, with a CMSSM point
and a CMSSM-like point for comparison. Particle masses are in GeV. In HH50’ third-
generation squarks and sleptons were given a universal soft mass m(3)

0 and a trilinear
A-parameter A(3)

0 .

For comparison, we have also included a similar CMSSM benchmark point HH50 and a
CMSSM-like benchmark point HH50’.

HH50 : m0 = M1,2 = 500GeV , tan β = 10 , sign(µ) = +1 , A0 = 0 . (5.8)

HH50’ is defined in the same way, but with the soft terms of the third generation chosen
differently: Third-generation squarks and sleptons were given a universal soft mass m(3)

0 =
300 GeV and a trilinear A-parameter A(3)

0 = −1 TeV. This choice was made in order to have a
reference spectrum whose t̃1t̃∗1 production cross section is comparable to that of Spectrum I,
while closely resembling the CMSSM. Finally, we also list a comparable simplified model,
containing only the t̃1 and a bino-like neutralino LSP. The model definitions are summarized
in Table 5.2.

5.2.2 Signatures

The light higgsinos of our scenario will be produced in copious numbers in EW processes at the
LHC. The Drell-Yan process gives rise to χ+

1 χ
−
1 , χ±1 χ0

1,2 and χ0
1χ

0
2 final states, and W boson

fusion can give like-sign χ±1 χ±1 pairs. The subsequent decays of χ0
2 and χ±1 into χ0

1 will lead to
events with missing energy and soft jets or leptons.

Unfortunately, with the higgsino mass splittings in the range of only a few GeV, most
of these jets and leptons are too soft to even trigger on, and those events with high enough
transverse momentum (pT ) (PT) to be detected are completely swamped by the SM background.
Demanding large missing transverse energy (/ET ) (MET) does not help much, since also the
MET spectrum falls very rapidly. For illustration, the lepton PT and MET distributions for
Spectrum I are shown in Figure 5.1. We have also studied events with additional jets from
initial-state gluon radiation, in order to increase the number of events with larger PT and
MET. While this somewhat enhances the tails of the distributions, it also reduces the overall
cross section, and the combined effect does very little to improve the overall situation. In
conclusion we confirm the findings of [111] that, in order to find evidence for our scenario in
EW processes, a linear collider would be far better suited.4

4For the LHC, a mono-jet (from initial-state gluon radiation) together with large MET might perhaps be a
useful signal, in combination with other searches. We will however not pursue this possibility in the present
work because of the difficulties in accurately estimating the background without a full detector simulation.
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Figure 5.1: Lepton transverse momentum and MET distributions of leptonic events from
electroweakly produced higgsino decays within Spectrum I. For comparison, the SM
background from WZ production (which is just one of the several contributing processes)
is also shown. See Section 5.2.3 for details of the event simulation.

We are therefore led to consider those regions of parameter space where some coloured
superparticles are still light enough to be produced at the LHC. The lightest coloured
superparticle in our class of models is always the lighter of the scalar top quarks t̃1. At the
LHC it may be produced in pairs, or it may appear in cascade decays of first-generation
squarks and gluinos if these are kinematically accessible. It turns out that processes involving
the t̃1 are particularly well suited to find evidence for our scenario (or to constrain it), and
also to distinguish it from more generic incarnations of the MSSM.

For definiteness we will from now on focus on the Spectrum I benchmark point5

M1 = M2 = 1250GeV , M3 = 428GeV , µ = 150GeV ,
√
Bµ = 200GeV . (5.9)

With superparticle masses as in Spectrum I, the clearest signatures at the early LHC will
be jets with MET. We will see that the cross sections for stop pair production on the one hand
and the more familiar q̃q̃, q̃q̃∗, q̃g̃ and g̃g̃ production (where q̃ stands for any first-generation
squark) on the other hand are comparable; all these processes contribute to the signal.

More importantly, once there is evidence for supersymmetry in searches for jets plus MET,
our model can also be distinguished experimentally from generic variants of the MSSM which
lack its characteristic features of light and near-degenerate higgsinos. This is achieved by
focussing on the stop pair production channel. In Spectrum I, stop decays do not involve
hard leptons, since possible leptons from χ0

2 or χ±1 decays are too soft to be detected. The
signature of a t̃1 is therefore always a hard b-jet plus MET; a typical stop pair event is shown
in Figure 5.2. By contrast, in generic supersymmetric models one usually expects also events
with jets, MET and isolated leptons, be it from cascade decays of squarks and gluinos or from

5In a sense this was a maximally optimistic set of parameters, chosen such that it was still marginally
allowed by former search limits.
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Figure 5.2: An example for a stop pair production event, showing up as to two high-
energetic b-jets and missing energy.

t̃ decaying into charginos or non-LSP neutralinos. Once a signal is found in the jets + MET
channel, we could use the absence of signals with leptons to severely constrain interpretations
in terms of generic supersymmetry, thus providing further indirect evidence for our scenario.

We may even be able to discriminate between our model and a “simplified model” comprising
only a t̃1 and a bino-like χ0

1 . In such a framework, likewise, no events with hard isolated
leptons are expected. However, because the only possible t̃1 decay is then t̃1 → tχ0

1 with the
t decaying further into bW , the b-jet spectrum turns out to be significantly different from
that of our model, where about half of the stops decay directly into a b quark without an
intermediate top.

In the following Sections we present the results of three simulated searches. The first is for
jets and large MET, in order to show that early LHC will be able to find evidence for our
model. The second also includes leptons, to show that early LHC will, furthermore, be able to
distinguish our model from a comparable CMSSM-like model. More precisely, our model will
be compared both with the CMSSM point HH50, which has similar g̃ and q̃ production cross
sections, and with the CMSSM-like point HH50’, which in addition has also a comparable t̃1
pair production cross section. Finally, we present a search with the cuts optimized to select
events from t̃1 pair production, and compare the result with the simplified model mentioned
above.

5.2.3 Simulation of signal and background

The signal production cross sections and generated luminosities are listed in Table 5.3. The
corresponding figures for SM backgrounds are listed in Table 5.4. It turns out that tt is
the most important background. Since, consequently, the best statistics is needed for this
channel, we have simulated about three times more events than expected. For the remaining
backgrounds, the number of simulated events roughly matches the number of expected events,
or exceeds it in the case of tri-bosons (where the cross sections are small) in order to avoid
large Monte Carlo errors. An exception are background events with vector bosons plus jets,
where we have only simulated a small fraction of the expected events. However, as will become
clear when we present the cut flows, this background is very efficiently removed by our cuts.
Therefore, it can be safely neglected without having to simulate the full sample.
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model partial cross sections [fb] σ(tot)[fb] Lgen [fb−1]

σ(q̃q̃∗) σ(q̃q̃) σ(t̃t̃∗) σ(b̃b̃∗) σ(g̃g̃) σ(g̃q̃)

Spectrum I 0.388 3.83 5.61 0.6 2.9 8.45 21.78 2000
HH50 1.79 12 0.682 0.044 1 9.3 24.8 403
HH50’ 1.65 11.5 5.96 0.136 0.979 8.9 29 345

Table 5.3: Production cross sections of different models in fb calculated with PROSPINO.
The cross section for b̃b̃∗-production is given at the lowest order, all other cross sections
are calculated at NLO.

5.2.4 Event selection and analysis

Discovery with all-hadronic search

The first analysis serves to show that LHC will be able to find evidence for our model, i.e. to
distinguish its signatures from the SM background.

In the first stage, candidate events with multiple high-energetic jets and MET are selected
with the following pre-selection cuts at the level of the detector simulation:

• 1 < N(j) < 5 , where pT (j) > 100 GeV,

• /ET > 50 GeV.

Furthermore, all events with an isolated lepton (electron or muon) with pT > 10GeV are
rejected in order to suppress events with genuine missing energy from neutrinos:

• N(l) = 0.

After imposing these pre-selection cuts, we use a set of cuts optimized for discriminating
between signal and background. Events are required to satisfy

• HT ′ > 500 GeV,

where HT ′ is the sum of the PTs of the two most energetic jets,

HT ′ =
2∑
i=1

pT (ji) . (5.10)

Following the experimental analyses, we use the αT variable [115–117] as the main discriminator
against quantum chromo dynamics (QCD) multi-jet production, defined for di-jet events as:

αT = ET (j2)
MT

= ET (j2)√(∑2
i=1ET (ji)

)2 −
(∑2

i=1 px(ji)
)2 −

(∑2
i=1 py(ji)

)2
, (5.11)

where j2 denotes the next-to-leading jet. In our analysis we use PT of the jets provided by
DELPHES instead of ET , and require the event to have

• αT > 0.55
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sample σ [pb] Lgen [fb−1]

tt 163 69.3
single top 85.1 20
W + jet 826 0.06
W+W− 44.974 22.2
W+Z 11.580

}
22.3

W−Z 6.342
ZZ 6.195 24.2
W+W−W+ 4× 10−2 375
W+W−Z 3× 10−2 500
W+ZZ 9× 10−3 1670
ZZZ 3× 10−3 1876

Table 5.4: Cross sections and generated luminosity of SM background used in the present
analysis. The single top production cross section includes all LHC production channels.
The cross sections for the tri-boson events are calculated at the Born level with MADGRAPH,
all other cross sections are taken from [112–114]

in order to pass the cut. In events with jet multiplicity N(j) > 2, two pseudo jets are formed
following the CMS strategy [117] and the αT variable is constructed from the pseudojets.
Finally, in order to further suppress the tt background, we demand a very high value of MET:

• /ET > 400 GeV.

Because of the high MET cut in combination with the selection based on αT , we can safely
neglect QCD di- and multi-jet background contributions. The resulting cut flow is shown in
Table 5.5.

Evidently, with this analysis it will be possible to discriminate between our model and the
SM background. The same is true for the HH50 and HH50’ models.

Model discrimination: CMSSM-like models

The more interesting question is that of model discrimination. For this a fully hadronic search
such as the one we just presented is not suitable, even though the number of events passing
the above cuts is significantly different between our model and HH50 / HH50’. This difference
could, after all, be accounted for by slightly different squark and gluino production cross
sections — for instance, the HH50 and HH50’ spectra would just need to be slightly heavier
in order to reproduce the 42 events after cuts which we found for our model.

In fact, some information can be gained already by requesting, in addition to the cuts
presented above, that at least one jet should be b-tagged. We assume a PT-independent
b-tagging efficiency of 40%, and a mistagging probability of 10% as implemented in DELPHES.
The additional cut is then
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pre-cuts

N(j) /ET N(l) HT ′ αT /ET

Sp
ec
tr
um

I

q̃q̃∗ 0.307 0.299 0.226 0.216 0.0463 0.042
q̃q̃ 3.21 3.16 2.39 2.29 0.46 0.381
t̃t̃∗ 4.45 4.36 3.85 2.56 0.537 0.432
b̃b̃∗ 0.497 0.491 0.433 0.346 0.081 0.069
g̃g̃ 2.34 2.31 1.79 1.63 0.405 0.316
g̃q̃ 6.71 6.63 5.12 4.83 1.04 0.843

sum 2.08

HH50 22.1 21.9 17.7 17.1 4.68 4.39

HH50’ 25.5 25.2 19.9 18.1 4.59 4.25

SM

tt 46200 13400 7360 865 4.5 0.923
t 8020 1190 755 103 0.3 0.1
W + jet 1980 82.6 33 0 0 0
di-bosons 1640 170 102 18 0.178 0.134
tri-bosons 14.7 4.47 2.78 0.761 0.0146 0.00162

sum 1.21

Table 5.5: Cut flow of general all-hadronic analysis for different signals and backgrounds
at
√
s = 7 TeV in fb. Figures are given for all events that were simulated. The cut flow

for the Spectrum I is shown separately for each different production channel.

• N(b-jets) ≥ 1 .

The cut flow is shown in Table 5.6. Note that the number of events from both HH50 and HH50’
is dramatically reduced. This is partly because, in our model, a sizeable fraction of events was
due to t̃ pair production, and the gluino can only decay into t̃1 or b̃1. By contrast, in HH50
and HH50’ most events involve q̃ decays which do not necessarily lead to b-jets. Moreover, by
vetoing events with isolated leptons, fewer t̃1 events in our model are cut away than in HH50
and HH50’ — these models tend to produce more leptonic events, which we will now put to
use in a separate semi-leptonic analysis.

More precisely, as explained in Section 5.2.2, t̃1 decays in our model can give hard isolated
leptons at most from secondary top decays (which is, incidentally, also true for b̃1 and even g̃
decays, since the gluino can only decay into t̃1 or b̃1). In HH50 and HH50’ many more leptons
are expected, jets with MET and isolated leptons being one of the hallmark signatures for
generic supersymmetry. This motivates a semi-leptonic search for better model discrimination.

An event is selected for further analysis if it contains exactly one lepton (muon or electron)
candidate
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After pre-cuts b-tag HT ′ αT /ET

Sp
ec
tr
um

I

q̃q̃∗ 0.226 0.042 0.0415 0 0
q̃q̃ 2.39 0.577 0.563 0.113 0.0915
t̃t̃∗ 3.85 1.93 1.63 0.417 0.281
b̃b̃∗ 0.433 0.225 0.203 0.056 0.0435
g̃g̃ 1.79 0.922 0.897 0.233 0.176
g̃q̃ 5.12 1.97 1.93 0.423 0.326

sum 0.918

HH50 17.7 1.56 1.54 0.308 0.268

HH50’ 19.9 2.70 2.44 0.458 0.360

SM

tt 7360 2880 701 5.64 0.361
t 755 240 32.8 0.15 0.10

sum 0.461

Table 5.6: Cut flow of the hadronic analysis with b-tagging for different signals and the
relevant backgrounds at

√
s = 7 TeV. The remaining signal and background events, scaled

to an integrated luminosity of 20 fb−1, are printed in bold. The cut flow for Spectrum I is
shown separately for each different production channel.

• N(l) = 1 , pT (l) > 15 GeV.

Other than that, our pre-selection cuts are as before,

• N(j) > 1 , pT (j) > 100 GeV,

• /ET > 50 GeV.

The actual cuts are now as follows. We select events with exactly two high-energetic jets,

• N(j) = 2.

This criterion selects preferably the t̃t̃∗ production channel, since usually more than two jets
are expected to appear in channels involving q̃ or g̃. Furthermore, we employ the transverse
mass variable

mT =
√

2pT (l)/ET
(
1− cos ∆φ(l, /ET )

)
, (5.12)

where ∆φ(l, /ET ) is the angle between MET and the momentum of the lepton in the transverse
plane. This variable is bounded by the W -boson mass if the lepton and MET originate in
W -boson decay. We select events with

• mT > 100 GeV,
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pre-cuts

N(l) N(j) /ET N(j) mT Iso HT ′ /ET

Sp
ec
tr
um

I

q̃q̃∗ 0.128 0.126 0.123 0.0140 0.00916 0.00323 0.00323 0.000539
q̃q̃ 1.35 1.33 1.31 0.19 0.136 0.065 0.0615 0.037
t̃t̃∗ 2.03 1.6 1.57 1.10 0.851 0.115 0.045 0.02
b̃b̃∗ 0.225 0.184 0.184 0.122 0.09 0.0125 0.008 0.004
g̃g̃ 1.11 1.1 1.09 0.129 0.104 0.0265 0.023 0.0145
g̃q̃ 3.20 3.17 3.13 0.345 0.268 0.085 0.071 0.038

sum 0.114

HH50 6.03 5.83 5.78 1.53 1.09 0.600 0.558 0.365

HH50’ 7.83 7.31 7.24 2.31 1.67 0.893 0.713 0.426

SM tt 57700 14400 6350 5050 657 432 18.3 0.0433

Table 5.7: Cut flow of semi-leptonic analysis for different signals and relevant background
at
√
s = 7 TeV. All cross sections are in fb. The cut flow for Spectrum I is shown

separately for each different production channel.

and ensure that the leptons in these events are isolated. Furthermore, as in the previous
analysis we demand that the two jets have high PT and high MET,

• HT ′ > 500 GeV,

• /ET > 400 GeV.

The resulting cut flow is displayed in Table 5.7. As advertised, the number of leptonic
events to survive the cuts is not significantly above the SM background, whereas a significant
number of events survive in HH50 and HH50’ (cf. Figure 5.3). This set of cuts therefore serves
to discriminate between our model and CMSSM-like models.

Model discrimination: a simplified model

The analysis of the previous section relies on the presence of intermediate states (in the case
of HH50 and HH50’, the wino-like χ±1 and χ0

2) whose decay into the LSP produces isolated
leptons. In models with non-unified gaugino masses, the LSP could still be bino-like while all
remaining charginos and neutralinos are much heavier. Can we still distinguish our model
from a generic model with a comparably heavy t̃1 and only a light bino LSP below it? It turns
out that this is rather more difficult, but still possible.

The simplified model in Table 5.1 has been designed to reproduce the relevant collider
signals. We use the production cross section of stop pairs taken from Spectrum I. The only
active states are a moderately heavy t̃1 and a light bino-like χ0

1 . Stops that are produced in
pairs will decay as t̃1 → tχ0

1, with the t further decaying into bW . The signature is therefore
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Figure 5.3: MET distribution in the semi-leptonic analysis before the final MET cut. SM
events are black, events in Spectrum I are blue and events in HH50’ are red.

b-jets and missing energy. A similar decay chain is also open in our model (as in the lower
branch in Figure 5.2). However, in our model about 50% of the stops will decay directly into b
quarks and missing energy (as in the upper branch). These latter events will produce slightly
harder b-jets than those involving an intermediate top.

To select the stop pair production channel in our model, we impose a series of simple cuts.
At the pre-selection cut level, we select event with at least two and at most four high-energetic
jets with PT larger than 100GeV, similar to the all-hadronic analysis:

• 1 < N(j) < 5 , where pT (j) > 100 GeV,

• /ET > 50 GeV.

Heavy squarks and gluinos will decay via long decay chains, typically giving rise to a large
number of high-energetic jets. Therefore, we select events with exactly two high-energetic jets
in order to single out stop pair production. Furthermore, we demand that at least one of these
jets is a b-jet:

• N(j) = 2, where pT (j) > 100 GeV,

• N(b-jets) ≥ 1.

The invariant mass of the 2-jet system originating in such decays is sensitive to the masses of
the parent particles. We select events with relatively small 2-jet transverse mass:

• mT
jj ≡

√
2pT (j1)pT (j2) (1− cos ∆φ(j1, j2)) < 500 GeV

In order to suppress the SM background we employ following cuts:

• HT ′ > 400 GeV,

• ∆φ
(
/ET , j2

)
> 1,

• /ET > 400 GeV,
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pre-cuts

N(j) /ET N(j) b-tag mT
jj HT ′ ∆φ /ET N(l)

Sp
ec
tr
um

I

q̃q̃∗ 0.307 0.299 0.0383 0.00647 0.00162 0.00162 0.00108 0.00108 0.00108
q̃q̃ 3.21 3.16 0.489 0.0895 0.0275 0.0265 0.024 0.0165 0.012
t̃t̃∗ 4.45 4.36 3.05 1.58 0.964 0.689 0.619 0.319 0.288
b̃b̃∗ 0.497 0.492 0.326 0.166 0.076 0.0625 0.058 0.036 0.0315
g̃g̃ 2.34 2.31 0.329 0.174 0.072 0.0575 0.052 0.039 0.029
g̃q̃ 6.71 6.63 0.903 0.342 0.122 0.101 0.089 0.0605 0.0385

sum 0.4

simplified 4.34 4.24 2.83 1.12 0.711 0.415 0.354 0.168 0.129

SM

tt 48900 16300 12060 4730 4370 555 141 0.554 0.261
t 8020 1190 1060 343 317 45.4 8.81 0.30 0.15

sum 0.41

Table 5.8: Cut flow of the analysis in which we examine the possibility to distinguish t̃
decays via bino-like neutralinos from decays via higgsino-like neutralinos at

√
s = 7 TeV.

All cross sections are given in fb.

• N(l) = 0.

MET in QCD di- and multi-jet events can only appear due to the mismeasurement of one of
the jets. We assume that, in events with very large MET and exactly two high-energetic jets,
the mismeasured jet is the next-to-leading one. We therefore expect that no QCD event will
survive the cuts on ∆φ

(
/ET , j2

)
and MET. The resulting cut flow is displayed in Table 5.8.

Evidently, these cuts can discriminate between Spectrum I and the simplified model. Of
course the latter is not a realistic scenario, and in a fully-fledged model cascade decays of
heavier states may also be relevant. However, since the cuts single out the stop pair production
channel in our model quite efficiently, it seems reasonable to expect that this remains true
for a generic full model which the simplified model is taken to represent here. The cuts are
even tight enough to remove almost all of the stop decay events in the simplified model, while
leaving a substantial excess above the SM background in our model (presumably coming from
direct t̃1 → bχ±1 decays). Note, however, that this analysis will be rather challenging with real
data: Only few events survive, and the discrimination is not mainly due to a single cut, but
rather to the combined effects of all of them.

5.3 R-parity violation leading to displaced muon vertices

There are two multipurpose experiments at the LHC, the ATLAS and CMS detectors. Each
detector consists of several subdetectors, from the inner detector, for track reconstruction
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and primary and secondary vertex reconstruction, to the calorimeters and outermost the
muon system. Since the models under study here give rise to rather large displacements,
we will choose to rely on the identification of muon objects in our search strategy. ATLAS
has larger dimensions than CMS, with its muon system stretching out to a radius of about
20m [118]. In our analysis, we choose to use requirements on the radial and beam-line
coordinates corresponding to the CMS detector geometry, which will then be the somewhat
more conservative choice. We do not expect our results to depend much on which of the two
detectors is considered. The different detector layers of the CMS detector are [119]:

• The inner detector or tracker, which stretches out to a radius of r ∼ 110 cm transverse
to the beam. Its innermost part, the pixel detector, covers r ≤ 11 cm.

• The electromagnetic calorimeter which measures electron and photon energies and
stretches to r . 2 m.

• The hadronic calorimeter, for measuring strongly interacting particles and identification
of jets, which stretches out to r . 3 m.

• The magnet, stretching out to r ∼ 4 m.

• The system of muon detectors or muon chambers, for identification of muons and
measurement of their momentum, out to radius of r ∼ 7.4 m.

In our analyses we are using the detector simulation DELPHES, tuned to the CMS detector,
in order to account for effects of event reconstruction at the detector level. However, DELPHES
describes the detector geometry solely in terms of angular variables, i.e. the detector is
stretched infinitely in the radial direction. This approximation is sufficient for most studies
involving prompt decays but is untenable in the case of late decaying particles. We overcome
this obstacle by adding vertex information from particles at the generator level to objects
at the detector level. Usually, this information is provided by the detector simulation. Our
procedure is described in detail in the following section. We emphasize that a full detector
simulation, which includes vertex reconstruction, needs to be done to improve our analyses.

5.3.1 Muon reconstruction process

Particles produced in the late decay of the neutralino will not be properly reconstructed in
a real detector if the position of their vertex is beyond or even within the crucial detector
component responsible for the respective identification. For example, an electron produced
inside of the electromagnetic calorimeter will leave no track in the tracker and will therefore
be identified as a photon or jet. In order to simulate the detector response to such events we
use a detector geometry in the (r, z) coordinates, which is inspired by the CMS detector at
the LHC (see Figure 5.4). The angular position of the detector components is given by the
CMS tune of DELPHES.

In order to be as conservative as possible we only use muon and track objects for the
present analysis, since these objects allow a simple simulation of detection efficiency losses due
to the finite size of the detector. Namely, we assume that a muon can be reconstructed as long
as its vertex is in front of the muon chambers, and analogously a track can be reconstructed
if it originates approximately in the first third of the tracker (This region is called pixel
detector in Figure 5.4). For the matching between generator level particles and objects
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Figure 5.4: Layout of one quarter of the generic detector used for particle identification.

reconstructed by DELPHES we use the distance in pseudorapidity η and azimuthal angle φ,
defined as ∆R =

√
(∆φ)2 + (∆η)2.

In the following we will call generator level muons, produced by PYTHIA, GenMuons,
muons reconstructed initially by DELPHES muon candidates, and track objects reconstructed by
DELPHES RecoTracks. Only GenMuons and RecoTracks have the coordinates of their vertex.

First, we perform the following PT cuts on muon candidates and RecoTracks:

• pT (µ) > 20 GeV,

• pT (Track) > 15 GeV.

These cuts are guided by our SUSY search strategies, since we expect that muons coming
from boson decays have high PT, and a sufficiently high PT cut can effectively suppress QCD
fake leptons. Furthermore, DELPHES itself reconstructs only muons with PT above 10GeV.
Additionally, these cuts were optimized in order to get a realistic muon reconstruction efficiency
(see Section 5.3.2).

In the second step vertex information is added to the muon candidates by matching with
GenMuons:

• A GenMuon is selected for matching with muon candidates if its vertex lies in front of
the muon system : r(µ) =

√
x2 + y2 < 4000 mm, |z(µ)| < 6000 mm (see Figure 5.4).

• The ∆R distance between each selected GenMuon and all muon candidates is computed.

• A GenMuon vertex is added to the muon candidate closest in ∆R, if ∆R < 0.1 and
GenMuon and muon candidate have the same charge.

• Muon candidates with added vertex information are called RecoMuons.

In the final step, muons with or without signal in the tracker are distinguished:



71 Chapter 5. Neutralino at the LHC

Gen-
Muons

DELPHES
muon

candidates
vertex

information
Reco-
Muons

Reco-
Tracks

match
with tracks

tracker
muons

chamber
muons
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• A RecoTrack is selected for matching with RecoMuons if the track vertex lies in the
following range: rT < 400 mm , |zT | < 1300 mm.

• Each selected RecoTrack is matched with the RecoMuon closest in ∆R, if ∆R < 0.1.

• Matched RecoTracks and RecoMuons are called tracker muons. RecoMuons which
cannot be matched with RecoTracks are called chamber muons. Each RecoMuon is
therefore either a tracker muon or a chamber muon.

After the reconstruction procedure one is left with two kinds of muon objects: (i) chamber
muons which have no track in the tracker and are therefore reconstructed solely by the muon
chambers, and (ii) tracker muons which have a track. The muon reconstruction process is
depicted in Figure 5.5. The ∆R matching condition has been optimized in order to get a
realistic muon reconstruction efficiency (see next section).

5.3.2 Muon reconstruction efficiency

In order to test our method of obtaining physically sensible objects we compute the muon
reconstruction efficiency in the following way:

• Muons are created as described above.

• GenMuons are matched with RecoMuons without any constraints on the position of the
GenMuon vertex.

• The number of successfully matched objects is compared bin-wise (in bins of r and |z|)
with the number of all GenMuons.

The second condition is necessary in order to see whether the assignment between RecoMuons
and GenMuons is correct. Since the matching procedure only relies on angular variables, it is
possible that a RecoMuon originally matched with a GenMuon created in front of the muon
chamber belongs in fact (i.e. has smaller angular distance) to a GenMuon coming from a
decay inside the muon chamber or even outside of the detector. Such wrong matchings would
be seen in the efficiency plot as efficiencies not equal to zero in regions where muons could not
be detected by the detector defined above (r(µ) > 4000 mm,

∣∣∣z(µ)

∣∣∣ > 6000 mm).
Figure 5.6 shows the computed muon efficiency in bins of r and |z|. As expected one sees

a sharp decline in efficiency in the r plot at r(µ) = 4000 mm, where the hard cut applies. The
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Figure 5.6: Muon reconstruction efficiency for the benchmark point HH27 in radial (r)
and axial (|z|) directions.

decline in the z plot is gradually, since physical particles have to fulfil both r and |z| criteria.
The particles originating at small values of r and large values of |z| are not reconstructed due to
the limited pseudorapidity coverage of the muon detector. The efficiency stays at zero beyond
r = 4000 mm and |z| = 6000 mm as expected, confirming our method of muon reconstruction.
We expect that the computed muon efficiency agrees within 15% with efficiencies of present
LHC detectors including losses due to muon-jet separation requirements.

5.4 Strong production using the example of binos
In this section we present a search strategy for strongly produced bino-like neutralinos at
the LHC. We show that for small values of the R-parity breaking parameter ζ usual SUSY
searches are insufficient to find the signal. However, RPV leads to new signals including
striking secondary vertices at large distances from the primary interaction point.

5.4.1 Decay signatures

Consider for simplicity, the following cascade process:

qg → q̃g̃ → jjjχ0
1χ

0
1 , (5.13)

where q̃ is a squark, g̃ is a gluino, and j denotes a jet. The final state neutralinos decay in a
secondary vertex into W bosons and leptons as well as into Z bosons and neutrinos. Figure 5.7
shows an example of a decay cascade with muons in final state. The distance between the
collision point and the secondary vertex depends on the decay width of the neutralino (3.107)
and hence on the R-parity breaking parameter ζ.

Table 5.9 summarizes the LHC signatures of the process (5.13) for sufficiently large values
of ζ such that it is probable that both neutralinos decay inside of the tracker volume. All
signatures contain at least three jets from the antecedent supersymmetric decays. In general
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category χ0
1 decays LHC signature

leptonic W+W−ll̄ → l̄lll̄νν

3j + 2l + 2l̄ + /ET

W+W+ll → l̄l̄llνν

W−W− l̄l̄ → lll̄l̄νν

ZW− l̄ν → ll̄ll̄νν

ZW+lν → ll̄l̄lνν

ZZνν → ll̄ll̄νν

(opposite sign, /ET from Z) ZW+lν → ννl̄lνν

ZW− l̄ν → ννll̄νν 3j + 1l + 1l̄ + /ET

ZZνν → ννll̄νν

semi-leptonic W+W−ll̄ → jjlll̄ν

W+W+ll → jjl̄llν 5j + 2l + 1l̄ + /ET

ZW+lν → ll̄jjlν

W+W−ll̄ → jjl̄ll̄ν

W−W− l̄l̄ → jjll̄l̄ν 5j + 1l + 2l̄ + /ET

ZW− l̄ν → ll̄jjl̄ν

ZW+lν → jjl̄lνν

ZW− l̄ν → jjll̄νν 5j + 1l + 1l̄ + /ET

ZZνν → jjll̄νν

W+W−ll̄ → jjjjll̄ 7j + 1l + 1l̄

(same sign, no /ET ) W+W+ll → jjjjll 7j + 2l
W−W− l̄l̄ → jjjjl̄l̄ 7j + 2l̄

single lepton ZW+lν → jjjjlν 7j + 1l + /ET

(/ET from Z) ZW− l̄ν → jjjjl̄ν 7j + 1l̄ + /ET

ZW+lν → ννjjlν 5j + 1l + /ET

ZW− l̄ν → ννjjl̄ν 5j + 1l̄ + /ET

all-hadronic ZZνν → jjjjνν 7j + /ET

(/ET from Z) ZZνν → ννjjνν 5j + /ET

invisible (/ET from 2 Z) ZZνν → νννννν 3j + /ET

Table 5.9: Possible final states assuming process (5.13) if both neutralinos decay inside
the tracking volume. In general more complicated signatures can arise.
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Figure 5.7: Typical strongly produced RPV decay chain at the LHC. The primary and
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more complicated signatures can arise. Intermediate chargino decays can lead to additional
gauge bosons in the final state, which then produce more jets or leptons. These decay chains
as well as all production processes were taken into account in the simulation of the signal.

The signatures are classified according to the final states in the neutralino decays: leptonic
signatures involving only leptons in the final state, semi-leptonic signatures involving at least
two charged leptons and jets, single lepton signatures containing only one lepton, all-hadronic
signatures where only jets accompanied by neutrinos are present, and finally invisible channels
where both neutralinos decay solely to neutrinos. Additionally we single out channels having
a considerable amount of MET from Z boson decays, since MET is one of the main features
searched for in usual searches for new physics. Furthermore the channels labelled as opposite
sign could be found in usual SUSY searches as they include a considerable amount of MET,
many jets and one isolated lepton pair with different signs. However, some searches remove
events with muon pairs having invariant mass around the Z pole in order to dispose of
Drell-Yan Z/γ∗ → ll̄ processes. Note that in the model presented in this work this cut would
lead to a suppression of the signal. Other leptonic and semi-leptonic channels also contain
opposite-sign lepton pairs but only small amount of MET and therefore they are not considered
in the usual searches, (cf. References [120, 121]). Neutralino decays lead also to signatures
containing same-sign lepton pairs but since no MET is present in these channels they are
usually discarded in order to suppress various backgrounds [122].

If the value of ζ is rather small one of the neutralinos will decay outside of the detector
leading to signatures with large amount of MET as shown in Table 5.10. The leptonic decays
of one of the neutralinos inside the detector lead to a perfect opposite-sign signature. As
mentioned above this signature can be hidden if one rejects events where the invariant mass
distribution of the lepton pair is in the range of the Z boson mass. Another strategy is the
search for single lepton events with large amount of MET.

Thus the applicability and the reach of the usual SUSY searches applied to the model
presented in this work depends crucially on the size of R-parity breaking. In order to further
evaluate this statement we investigated a number of characteristic variables in supersymmetric
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category χ0
1 decays LHC signature

leptonic W+l → l̄lν

(opposite sign) W− l̄ → ll̄ν 3j + 1l + 1l̄ + /ET

Zν → ll̄ν

single lepton W+l → jjl 5j + 1l + /ET

W− l̄ → jjl̄ 5j + 1l̄ + /ET

all-hadronic Zν → jjν 5j + /ET

invisible Zν → ννν 3j + /ET

Table 5.10: Possible final states assuming process (5.13) if one of the neutralinos decays
outside the tracking volume. In general more complicated signatures can arise.

events. The events were generated with PYTHIA with the CMSSM boundary conditions6

m1/2 = m0 = 270GeV , tan β = 10 , a0 = 0 , signµ = +1 . (5.14)

R-parity violating neutralino decays were taken into account.
Figure 5.8 shows the distribution of the βγ factors of the neutralinos. This factor enters

the formula for the neutralino decay length and one sees from the plot that analytic results
in the literature, which have been computed with βγ = 1, are correct within one order of
magnitude. The most important kinematic property connected with the neutralino decay
length is the amount of missing transverse momentum (/pT ) which is shown in Figure 5.9
for different values of the RPV parameter ζ. The MPT was computed as the sum of the
PTs of all neutrinos produced in the detector before the hadronic calorimeter (r < 1800mm,
|z| < 3700 mm) and the PTs of the neutralinos decaying outside the hadronic calorimeter. The
MPT distribution of the R-parity conserving model ζ = 0 cannot be distinguished from the
model with ζ = 1× 10−9. However, the distribution is significantly different for ζ = 3× 10−8

since in this case most events have only very little MPT due to early neutralino decays. This
suggests that our model could only hardly be discovered in usual searches relying on MET.
A further analysis with full detector simulation is needed in order to properly evaluate the
discovery potential of usual SUSY searches.

Another general feature of models with relatively large ζ is the large possible number of
leptons in the final state, illustrated in Figure 5.10. The generator level particles selected for
this plot had to fulfil the criteria shown in Table 5.11 imposed in order to select leptons from
hard processes which could be reconstructed in a realistic detector. The cuts on the vertex
position represent a pessimistic estimate of the reconstruction efficiency (see Section 5.3.2).

5.4.2 Search strategies

As mentioned in the previous section one of the striking features of the presented model are
events with secondary vertices and possibly many leptons in the final state. The search for

6By now this parameter point is already ruled out by the LHC experiments.
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Figure 5.8: βγ distribution of neutralinos at generator level for benchmark point HH27
(see Table 5.12). The number of neutralinos corresponds to twice the number of the
events scaled to 10 fb−1 at
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Figure 5.10: The number of generated particles per event for the benchmark point HH27
after selection cuts described in Table 5.11 at

√
s = 7 TeV.

a secondary vertex is crucial in order to ensure the R-parity violating nature of the decays.
Possible search strategies can be optimized in order to find some of the channels described in
Tables 5.9 and 5.10. It is remarkable that many channels allow for the full reconstruction of
the neutralino mass: all decay chains including Z bosons or hadronically decaying W bosons.
The reconstruction of the neutralino mass from the particles produced in the Z boson decay
depends crucially on the full reconstruction of the secondary vertex, which is beyond the
scope of this work7. This method of neutralino mass reconstruction works also in R-parity
conserving models where the neutralino decays into Z boson and gravitino [50].

For example, one promising search strategy working for all ζ values considered in this work
is based on single lepton events with some number of hard jets and MET larger than 90GeV.
After the preselection one could look for events where the lepton is coming from a secondary
vertex and try to reconstruct the W boson mass from a jet pair. In the final step one could try
to reconstruct the neutralino mass from the jets selected in the previous step and the lepton.
However such study depends crucially on the knowledge of the detector response in the case
of late decaying particles. A neutralino can decay in various detector components and lead
to unusual signals. Furthermore the mass resolution is limited by the uncertainty in the jet
energy scale and by the uncertainty in the determination of the jet momentum direction.

We will focus our study on leptonic final states, which have a particularly clean signature,
and reconstruct the Z boson coming from a secondary vertex. We will use only muon and track
objects for which we assume to have modelled a realistic detector response (see Section 5.3.2).
A possible background for this search are cosmic muons leaving no track in the detector. It
is important to note that one would miss the signal in this channel entirely if one imposes a
cosmic muon veto which rejects all events with muon pairs having no associated tracks (cf.
Reference [120]).

7The four-vector pointing to the secondary vertex and the three-momenta of the leptons or jets from the
Z boson provide sufficient information for the reconstruction of the neutralino mass.
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particle transverse momentum (pT ) pseudorapidity vertex position

electron pT > 7 GeV |η| < 2.5 r < 400 mm |z| < 1300 mm
muon pT > 6 GeV |η| < 2.5 r < 4000 mm |z| < 6000 mm

Table 5.11: Cuts for the generator level particle selection for the study of particle
multiplicity.

5.4.3 Simulation of signal and background

In this section we define a set of representative points in the parameter space of our model
and describe the generation of the signal and dominant SM background samples. In particular
we examine the simulation of detector effects using the generic detector simulation DELPHES
on signal and background in the presence of secondary vertices.

Benchmark points

A typical set of boundary conditions for the SUSY breaking parameters of the MSSM at
the grand unification scale is given by equal scalar and gaugino masses, m0 = m1/2. These
boundary conditions lead to a bino-like neutralino χ0

1 as NLSP. We choose a representative
value of tan β and set the scalar trilinear couplings to zero,

a0 = 0 , tan β = 10 . (5.15)

Thus the universal gaugino mass remains the only independent SUSY breaking parameter
which will be varied in the present study.

EW precision tests lead to lower bounds on the supersymmetric particle spectrum. In the
present study the LSP spectrum corresponds to the choice m0 = m1/2 = 270 GeV (HH27). At
this benchmark point the NLSP is a neutralino with mass mχ0

1
= 105.8 GeV.

In order to probe the region of gluino and squark masses accessible at the LHC [123] we
increase the gaugino mass parameter in four steps: m1/2 = 350, 500, 650, 800GeV. Some
particle masses at these points are shown in Table 5.12. For the different benchmark points
the production cross sections, calculated with PROSPINO 2.1 [124] at

√
s = 7 TeV, are given in

Table 5.13. For the R-parity breaking parameter ζ we choose the following values:

ζ = 3× 10−8, 2× 10−8, 1× 10−8, 5× 10−9, 1× 10−9, 5× 10−10, 1× 10−10 . (5.16)

Note that for gravitino masses m3/2 = O (100 GeV) one has ζ . 1× 10−9.

Major backgrounds

Neutralino decays usually have W - and Z bosons in the final state (cf. Figure 3.5). In our
study we focus on the reconstruction of Z boson decays to muon pairs. Therefore, we only
consider SM backgrounds which lead to at least two muons in the final state originating from
W or Z bosons:

• tt production: W bosons from top quark decays.

• Z production
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GUT masses particle masses

m0 m1/2 mχ0
1

mh mg̃ mũ

HH27 270 270 105.8 110.5 662.4 653.4
HH35 350 350 140.5 112.5 841.7 831.8
HH50 500 500 205.7 115.1 1170 1160
HH65 650 650 271.5 116.7 1492 1481
HH80 800 800 337.8 117.9 1809 1798

Table 5.12: Definition of the benchmark points together with some particle masses, which
are given in GeV.

• Di-boson production (WW , WZ, ZZ)

• Tri-boson production (WWW , WWZ, ZZW , ZZZ)

Table 5.14a gives an overview of the background samples used in our analysis. We have
simulated 10 times more signal events for small values of ζ than for large values of ζ in order
to improve the statistics. We assume that pure QCD background can be efficiently suppressed
in multi-lepton final states with high PT, particularly after imposing lepton isolation criteria
(cf. References [121, 127]).

5.4.4 Search for the neutralino decays into Z boson and neutrino

As described in Section 5.4.2 this search proposal is focused on the channel χ0
1 → Zν → µ+µ−ν.

This channel possesses certain physical and technical advantages. On the physical side reliable
muon identification is possible already in the early stage of the LHC data taking and one can
assume that QCD background can hardly fake two muons at the same time. Furthermore
this signal leads to spectacular events and has no easily identifiable SM background at all, as
shown in this section. Additionally, the muon chamber is the detector component which is
farthermost away from the primary vertex and hence one can expect that it will be possible
to detect a significant number of clean late time decays even for very small R-parity breaking.
On the technical side, muons seem to be the simplest objects for which a realistic detector
response can be modelled within DELPHES (see Section 5.3.1), due to the limitations of this
simulation in the presence of secondary vertices.

The spectacular feature of this signal are opposite sign muon pairs with invariant mass
close to the Z boson mass, which have either associated tracks in the tracker with clearly
visible secondary vertices or no associated tracks at all. Such muon pairs cannot be generated
by usual SM background as will be shown in the following. However, a similar signal can arise
from cosmic muons traversing the detector. We could not create a Monte Carlo background
sample for cosmic muons, and we simply assume that such background can be suppressed by
use of the full timing information of the event: cosmic muons will first cause a signal in the
muon chamber which is closest to the ceiling of the experimental hall followed by a signal in
the opposite direction.
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partial cross-sections [fb] σ(tot) [fb]

σ(q̃g̃) σ(q̃q̃) σ(q̃q̃) σ(g̃g̃)

HH27 1090 682 256 208 2236
(739) (570) (174) (83) (1566)

HH35 172 149 38 26 385
(105) (126) (25.2) (8.47) (265)

HH50 8.91 11.8 1.7 0.95 23.36
(4.36) (10.1) (1.02) (0.206) (15.7)

HH65 0.579 1.01 0.0943 0.0466 1.73
(0.216) (0.877) (0.0458) (6.37 × 10−3) (1.145)

HH80 0.0379 0.0805 5.37 × 10−3 2.44× 10−3 0.126
(0.0109) (0.0723) (1.98× 10−3) (0.203× 10−3) (0.0854)

Table 5.13: Production cross sections at NLO (LO) at the benchmark points calculated
with PROSPINO.

Sample σ [pb] L [pb−1]

tt 163 1230

Z 977 716

W+W− 47 1060
ZZ 6.46 7740
W+Z 11.88 4210

W−Z 6.69 7480

W+W−Z 0.182 82000
W+ZZ 0.040 375000
W+W−W+ 0.146 103000
ZZZ 0.015 375000

(a) Samples of SM background. The
production cross sections are taken
from [112, 113, 125, 126].

ζ L [fb−1]

HH27 ≥ 5× 10−9 9.96
≤ 1× 10−9 99.6

HH35 ≥ 5× 10−9 26.0
≤ 1× 10−9 259

HH50 ≥ 5× 10−9 428
≤ 1× 10−9 4280

HH65 ≥ 5× 10−10 5780
1× 10−10 57800

HH80 all ζ 79400

(b) Samples of signal events for
different benchmark points (see
Table 5.12) and ζ = α × 10−9

(α = 0.1, 0.5, 1, 5, 10, 20, 30).

Table 5.14: Monte Carlo samples of SM background and signal events used for our
analysis.
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An intrinsic background for the presented search are muon pairs from R-parity violating
decays, where one muon is coming from the W boson decay while the other muon is coming
either from the neutralino decay into the W boson in either of the two branches or from the W
or Z boson decay in the second branch (cf. Figure 5.7). This background can be suppressed if
one has access to the corresponding tracks by demanding that both of them originate from
the same vertex. In the case of muons without tracks this background is irreducible. However
it belongs itself to the signal one is looking for.

5.4.5 Event selection

In order to find the signal we now employ a series of simple cuts on the reconstructed objects
(muons, tracker muons, and chamber muons). First, we perform a selection cut on the number
of muons in the event:

• N(muons) ≥ 2.

We define two event classes depending on the number of tracker muons:

• Class 1: the event contains at least two tracker muons N(tracker muons) ≥ 2.

• Class 2: otherwise.

From the description of the signal presented above, we implement additionally two sets of cuts
depending on the class of the event. The cuts for Class 1 events are:

• All possible invariant masses of opposite sign tracker muons are computed. The event
passes the cut if at least one invariant mass is in the range of the Z boson mass: 80 GeV <
Mµ+µ− < 100 GeV. If the event contains more than one appropriate combination of the
tracker muons then the muons from the combination with invariant mass closest to the
Z boson mass are selected for further analysis.

• d(Vertex) > 5mm: Each of the tracks associated with the two selected tracker muons
should have a vertex which is further than 5mm away from the primary vertex. This
value is approximately one order of magnitude larger than the current resolution of the
inner tracker (cf. References [119, 127]).

• ∆d(Vertex)ij < 5 mm: The distance between the two track vertices should be less than
5mm.

• If the event fails one of the cuts it is classified as a Class 2 event.

The cuts for Class 2 events are:

• N(chamber muons) ≥ 2: If an event has less than two tracker muons then it should
have at least two chamber muons.

• All possible invariant masses of opposite sign chamber muons are computed. An event
passes the cut if at least one invariant mass is in the range of the Z boson mass:
80 GeV < Mµ+µ− < 100 GeV.
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Cuts Background Signal

tt Z di- tri- ζ

boson 3× 10−8 10−9

N(muons) ≥ 2 2480 13200 1360 14.2 292 44.8

C
la
ss

1 80 GeV < Mµ+µ− < 100 GeV 275 12700 1160 9.91 19.6 9.96
d(Vertex) > 5 mm 7.34 0 0 0 4.92 0.132

∆d(Vertex)ij < 5 mm 0 0 0 0 3.61 0

C
l.
2 N(chamber muons) ≥ 2 0 0 0 0 105 0.183

80 GeV < Mµ+µ− < 100 GeV 0 0 0 0 13.8 0.0203

Total 0 0 0 0 17.5 0.0203

Table 5.15: Cut flow for HH27 at
√
s = 7 TeV. All cross sections are given in fb.

Since each Class 1 event is classified as a Class 2 event if it fails one of the cuts, no signal event
is discarded because of the presence of muons with tracks not coming from neutralino decay.

Most events will fall into the second class. The analysis is then very simple and amounts
to the search for events with muons without associated track in which the invariant mass of a
muon pair lies in the Z boson mass range. The cut flow is given in Table 5.15. As expected, no
background events survived the cuts, since no SM process should produce secondary vertices
so far away from the primary interaction point. Although our background estimate has an
uncertainty due to the limited statistics, we assume on physical grounds that no background
events will pass the cuts if we increase the number of simulated events. However, the major
uncertainty in this study, the number of the background events from cosmic muons, cannot
be estimated with the present software. Therefore, a full fledged analysis with full detector
simulation which takes into account the cosmic muon background is needed. In the following we
assume that this background can be efficiently suppressed with the full timing information of
the event as described in the introduction to Section 5.4.4. Furthermore, we only estimate the
systematic uncertainty due to the background and neglect statistical errors and the uncertainty
of the muon reconstruction efficiency.

The significance of the signal is computed with the profile likelihood method [128] incorpo-
rated in the SIGCALC code [129]. We assume an integrated luminosity of 1 fb−1 at

√
s = 7 TeV

LHC and a ten times higher Monte Carlo luminosity LMC = Nb/σb = 10 fb−1 for all the
background events. At this integrated luminosity 17 signal events and no background events
survive the cuts, which corresponds to a significance ZPL = 9.03. Instead, if one makes the
pessimistic estimate that 1 background event from the cosmic muons passes the cuts one finds
a significance ZPL = 6.39.
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Figure 5.11: Contour plot showing the density of neutralino decays inside the detector per
m−3 for HH27. The numbers on the horizontal boundaries of the detector components
correspond to the total number of decays in the enclosed volume; ζ = 3 × 10−8 and
L = 10 fb−1.

5.4.6 Discovery reach at the LHC

In the previous section we have studied in detail the benchmark point HH27: m1/2 = m0 =
270GeV, which yields the rather small superparticle masses mχ0

1
= 106GeV, mg̃ ' 660GeV

and mq̃ ' 650 GeV for the light quark flavours (cf. Table 5.12). From the decay rates given in
Section 3.8.2 and the phase space factors shown in Figure 3.6 one obtains for decay length
and branching ratio into Z boson/neutrino final states:

cτχ0
1
' 31 m

(
ζ

10−8

)−2
, BR(χ0

1 → Zν) ' 0.17 . (5.17)

Based on the production cross sections listed in Table 5.13 an integrated luminosity L = 10 fb−1

yields about 22000 events and therefore 44000 NLSPs.
We have studied this benchmark point for two different values of the R-parity breaking

parameter: ζ = 3 × 10−8 and ζ = 1 × 10−9. For the larger value of ζ one has cτχ0
1
' 3.5m.

Hence, essentially all neutralinos decay inside the detector, most of them close to the origin.
The spacial distribution of secondary vertices is displayed in the contour plot Figure 5.11. Using
BR(Z → µ+µ−) ' 0.034 and the branching ratio given in Equation (5.17), one concludes
that there are 251 events with a secondary χ0

1 -decay vertex, which contain a µ+µ− pair with
Mµ+µ− 'MZ . This is consistent with the simulation which yields 282 events in the detector
volume (cf. Figure 5.12) and 174 events passing all cuts (cf. Table 5.15). The locations of the
secondary vertices of these events are shown in Figure 5.12.

For the smaller value of the R-parity breaking parameter, ζ = 1× 10−9, the decay length
increases to cτχ0

1
' 3.1 km. Now most neutralino NLSPs decay outside the detector. This is

apparent from Figure 5.13 where the total number of decays in the different sub-volumes of
the detector are given. Compared to ζ = 3× 10−8, the number of decays inside the detector is
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Figure 5.12: Location of secondary vertices for the decays χ0
1 → Zν with Z → µ+µ−

(green crosses: inside pixel detector, blue dots: outside pixel detector); the numbers on
the horizontal boundaries of the detector components give the number of decays in the
enclosed volume; m1/2 = m0 = 270GeV, ζ = 3× 10−8 and L = 10 fb−1.
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Figure 5.13: Location of all neutralino decays inside of the detector (blue crosses: decays
inside pixel detector; black dots: decays outside pixel detector); the numbers on the
horizontal boundaries of the detector components correspond to the total number of
decays in the enclosed volume; m1/2 = m0 = 270GeV, ζ = 1× 10−9 and L = 10 fb−1.
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smaller by a factor ∼ 200, which roughly corresponds to the ratio of the decay lengths, as
suggested in [47].

According to the simulation described in the previous section, for ζ = 1 × 10−9 an
integrated luminosity of 100 fb−1 is needed to obtain 2 signal events χ0

1 → Zν → µ+µ−ν,
which is consistent with the naive estimate within the statistical uncertainty and the detector
efficiency. The number is very small compared to the total number of about 1000 decays in
the detector volume used in the present analysis (cf. Section 5.3.1), which is a consequence of
the tiny branching ratio into the chosen specific final state. It is likely that a substantially
larger fraction of the events can be used in the search for a decaying neutralino. In [47] it has
been argued that already 10 χ0

1 decays inside the detector may be sufficient for the discovery
of a decaying NLSP. It remains to be seen whether for events with a secondary vertex and
jets, signal and background can be sufficiently well separated.

Let us now consider the benchmark point

HH50: m1/2 = m0 = 500GeV , (5.18)

which implies the heavier superparticle masses mχ0
1

= 206GeV and mg̃ ' mq̃ ' 1200GeV
for the light quark flavours (cf. Table 5.12). The phase space suppression is now negligible,
fW ' fZ ' 1, and one obtains for decay length and branching ratio into Z boson/neutrino
final states:

cτχ0
1
' 5.4 m

(
ζ

10−8

)−2
, BR(χ0

1 → Zν) ' 0.32 . (5.19)

The total production cross section for these heavier gluino/squark pairs is about two orders of
magnitude smaller (cf. Table 5.13), and therefore an integrated luminosity L = 10 fb−1 only
yields 460 NLSP.

We have studied this benchmark point again for the two different values of the R-parity
breaking parameter ζ = 3 × 10−8 and ζ = 1 × 10−9. For the larger value of ζ one has
cτχ0

1
' 60 cm, and essentially all neutralinos decay inside the detector. The branching ratio

into the considered final state is now somewhat larger, BR(χ0
1 → Zν → µ+µ−ν) ' 0.01, so

that one expects about 5 events with this final state, which is consistent with our simulation.
For ζ = 1 × 10−9, the decay length is cτχ0

1
' 540m and most neutralino NLSPs decay

outside the detector. The spacial distribution of secondary vertices inside the detector, in total
12 for 10 fb−1, is shown in Figure 5.14. Due to the 1% branching ratio into the Zν → µ+µ−ν
final state one then estimates that 1000 fb−1 will be needed for a discovery, which is consistent
with our simulation.

In Figure 5.15 we have summarized the results of our simulations for the decay chain
χ0

1 → Zν with Z → µ+µ−. The benchmark points HH27–HH80 correspond to gluino and
squark masses ranging from 650GeV to 1800GeV (cf. Table 5.12). The bands reflect the
different number of events required for a 5σ discovery depending on the simulated background.
The central value corresponds to 6 signal events (with luminosity L) with no background
events for a simulated luminosity of 10 × L; the lower (upper) boundary represents 3 (13)
signal events (with luminosity L) with no (1) background event for a simulated luminosity of
100× L (10× L). We conclude that with 10 fb−1 a 5σ discovery of a quasi-stable neutralino
is possible for squark and gluino masses of 830GeV (cf. HH35) and an R-parity breaking
parameter ζ = 3×10−9, which is one order of magnitude smaller than the present astrophysical
bound [98].
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Figure 5.14: Location of all neutralino decays inside of the detector (blue cross: decay
inside pixel detector; black dots: decays outside pixel detector); the numbers on the
horizontal boundaries of the detector components correspond to the total number of
decays in the enclosed volume; m1/2 = m0 = 500GeV, ζ = 1× 10−9 and L = 10 fb−1.
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Figure 5.15: 5σ discovery reach in ζ for quasi-stable neutralino NLSP via the decays
χ0

1 → Zν with Z → µ+µ−. The different bench mark points correspond to gluino and
squark masses between 650 GeV and 1800 GeV; the bands represent different assumptions
about the background (see text).
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Figure 5.16: Estimate of the 5σ discovery reach in ζ for quasi-stable neutralino NLSP at
the LHC; the lower (upper) boundary of the bands corresponds to 10 (20) decays inside
the detector. The different bench mark points correspond to gluino and squark masses
between 650 GeV and 1800 GeV.

We expect that the sensitivity in the parameter ζ can be significantly improved if also
neutralino decays with jets are taken into account. Figure 5.16 represents an estimate of the
discovery reach for quasi-stable neutralino NLSPs at the LHC, assuming 10–20 decays inside the
detector (cf. Reference [47]). The parameter space, which can be probed, is now significantly
extended. As an example, with 10 fb−1 and squark and gluino masses of 830GeV (cf. HH35),
one is now sensitive to ζ = 3× 10−10, which lies two orders of magnitude below the present
astrophysical bound. Correspondingly, for heavier gluinos and squarks, mg̃ ' mq̃ ' 1480 GeV
(cf. HH65), one can probe values of the R-parity breaking parameter down to ζ = 3× 10−9.

5.5 Drell-Yan production using the example of higgsinos
As shown in section 4.2.3, higgsinos that are produced in proton collisions at the LHC decay
in a secondary vertex into a W boson and a charged lepton in almost 100% of all decays. In
the model we are studying in this section the coloured particles are too heavy to be produced
at the LHC, therefore we have to rely on Drell-Yan production of light higgsinos. Figure 5.17
shows an example of a cascade decay with muons in the final state. The distance between the
collision point and the secondary vertex depends on the decay width of the neutralino (3.106),
and hence on the R-parity breaking parameter ζ.

5.5.1 Signatures and search strategy

Table 5.16 summarizes all possible LHC signatures if the NLSP is a higgsino-like neutralino in
the case when both neutralinos decay inside of the tracker volume. The signatures are classified
according to the final states in the neutralino decays. Unlike the previously studied case of
bilinear RPV in the MSSM in Section 5.4, when the spectra contain light squarks and gluinos
and a bino-like neutralino NLSP, there are only two types of signatures: leptonic signatures
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Figure 5.17: Typical R-parity violating decay chain involving higgsino-like neutralinos at
the LHC. The secondary vertices as well as the two possibilities of interesting muon com-
binations are highlighted. The Z boson decay is invisible, due to the small mass difference
between the heavier higgsinos and the lightest higgsino (see Equation (4.28), (4.30) and
Table 5.19). The signature is essentially the same for chargino production, since also in
this case the decays into the lightest higgsino lead only to particles with small PT.

category χ0
1 decays LHC signature

leptonic W+W−l+l− → l+νl−νl+l−

2l− + 2l+ + /ETW+W+l−l− → l+νl+νl−l−

W−W−l+l+ → l−νl−νl+l+

semi-leptonic W+W−l+l− → jjl−νl+l− 2j + 2l− + 1l+ + /ET
W+W+l−l− → jjl+νl−l−

W+W−l+l− → jjl−νl+l− 2j + 1l− + 2l+ + /ET
W−W−l+l+ → jjl−νl+l+

W+W−l−l+ → jjjjl−l+ 4j + 1l− + 1l+

(same sign, no /ET )
W+W+l−l− → jjjjl−l− 4j + 2l−

W−W−l+l+ → jjjjl+l+ 4j + 2l+

Table 5.16: All possible final states in the higgsino-like neutralino case if both neutralinos
decay inside the tracking volume.
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category χ0
1 decays LHC signature

leptonic W+l− → l+νl− 1l− + 1l+ + /ET
(opposite sign) W−l+ → l−νl+

single lepton W+l− → jjl− 2j + 1l− + /ET

W−l+ → jjl+ 2j + 1l+ + /ET

Table 5.17: All possible final states in the higgsino-like neutralino case if one of the
neutralinos decays outside the tracking volume.

involving only charged leptons in the final state, and semi-leptonic signatures involving at
least two charged leptons and jets.

Most SUSY searches for such final states at the LHC so far rely on the large production
cross sections of the strongly interacting squarks and/or gluinos. The searches that are
starting to probe direct EW production of charginos and neutralinos have been interpreted in
R-parity conserving models with a stable neutralino LSP [130–132]. They rely on leptonic
signatures with larger MET than what would be present in our scenario in the case of both
neutralinos decaying inside the tracker. Searches in the first LHC data for RPV have also
been performed [133–141] but because of differences in the scenarios considered and differing
signatures they do not apply here. Searches for long-lived neutral particles have been carried
out as well but do not apply to our model as they assume either the wrong event topologies [142,
143], final states [144] and/or size of the displacements [143, 145].

For smaller values of ζ, one of the neutralinos may decay inside or after the muon system
leading to signatures with a larger amount of MET as shown in Table 5.17. We show in
Figure 5.18 how this possibly gives rise to a missing energy signature as ζ decreases. However,
this situation would still not be covered by the current direct neutralino- and chargino searches
by ATLAS and CMS [130–132] since the lepton reconstruction in these searches requires a
track in the pixel detector, often with a certain maximum impact parameter to the primary
vertex. For the same reason that we obtain missing energy from one of the neutralinos decaying
outside of the detector, it will also be less probable that the other neutralino decays early
enough for the leptons to fulfil such requirements on their inner tracks, as will be illustrated
below.

For very small RPV both neutralinos may escape the detector without being observed.
This case cannot be distinguished from the one with R-parity conservation. As we argue
in Section 5.2.2 this is for stable higgsinos and heavy coloured particles very challenging to
detect [111]. This can as well be understood just by looking at the typical LHS process shown
in Figure 5.17 and trying to imagine possible signatures in the case of the lightest neutralino
being stable.

We illustrate in Table 5.18 how often the different situations of none, one or two of the
neutralinos, produced in processes like in Figure 5.17, decaying inside the detector occurs
depending on the RPV and the higgsino mass. We also check how often the events would give
inner tracks, possibly with a small impact parameter to the primary vertex, since this is a
common requirement on lepton objects in existing searches. Table 5.18 illustrates:

• For decreasing ζ, we approach a situation indistinguishable from the case of R-parity
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Figure 5.18: MPT at the generator level, defined as the sum of the PT of all neutrinos
and of the neutralinos that decay after they have left the detector. In the case where only
one of the two neutralinos escapes the detector, corresponding to a large value in the
second columns in Table 5.18b, we notice an increased MPT around the neutralino mass.
In the case where both neutralino decay outside the detector corresponding to a large
value in the first columns in Table 5.18b, the values for small MPT are increased. This
reflects that the neutralinos are mostly back-to-back, due to the absence of other high
PT objects in the decay cascade.
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r ≤ 5 mm Number of neutralino decays before the muon system

0 1 2

0 RPC LHS-like displaced µ+µ− displaced µ+µ−

1 may be covered by existing SUSY searches displaced µ+µ−

2 SM-like

Signature no LHC signature possibly large MET no or small MET

(a) Legend: Classification of event types depending on the number of neutralino decays inside the
detector (columns) and inside the innermost 5mm of the tracker (rows). The fractions of events
quoted in green belong to the type covered by our search strategy, the fraction of events in red
cannot be distinguished from the RPC LHS. The fraction quoted in blue might be covered by
existing SUSY searches (see text), and the black events might be misidentified as SM events.

ζ µ

100 200 300 400

1× 10−7
18.2 40.5 41.1

0.059 0.182
0.002

0.046 2.59 95.6
0.004 1.72

0.012

0 0.121 96.3
0.002 3.52

0.038

0 0.004 94.4
0 5.51

0.105

5× 10−8
56.1 35.5 8.36

0.042 0.030
0

4.48 28.6 66.4
0.083 0.404

0

0.405 9.64 89.0
0.040 0.928

0.002

0.028 2.64 95.8
0.016 1.52

0.006

1× 10−8
97.4 2.58 0.222

0 0
0

82.1 16.7 1.16
0.014 0

0

68.7 27.8 3.41
0.030 0.004

0

55.3 37.0 7.68
0.048 0.024

0

5× 10−9
99.4 0.643 0.002

0 0
0

95.0 4.94 0.083
0.008 0

0

90.4 9.23 0.323
0.008 0

0

85.4 13.9 0.709
0.012 0

0

1× 10−9
99.9 0.018 0

0 0
0

99.8 0.204 0
0 0

0

99.6 0.391 0
0.002 0

0

99.4 0.633 0.002
0.002 0

0

(b) Generator level fractions in % of neutralinos decaying inside and outside of the detector as
well as in its innermost part. The meaning of the positions in the subtables and the colour code is
explained in Legend (a). Numbers larger than 10% are bold. A zero entry means that ≤ 0.001 %
of the decays happen in this channel. The tendency of lighter higgsinos with smaller RPV to decay
outside the detector follows from relation (4.32).

Table 5.18: Fractions of neutralino decays occurring either within a radius of 5mm, inside
the muon system or outside the detector, depending on the ζ and µ parameters. In
Legend (a) we explain the colour code and the meaning of the positions in Table (b).
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higgsino µ

100 200 300 400

χ0
2 106 209 311 413

χ±1 104 207 309 411
χ0

1 102 205 307 408

Table 5.19: Mass spectrum of light higgsinos in our four benchmark models with a higgsino
mass parameter µ between 100GeV and 400GeV. All masses are given in units of GeV.

conserving LHS (see numbers in red).

• The second column in each sub-table shows that when we can have large MET in the
event due to one of the neutralinos decaying outside of the detector, very few events will
have the other neutralino decaying sufficiently close to the primary vertex for the event
to be seen in existing searches for direct production of charginos and neutralinos (see
numbers in blue).

• We also see that for a given ζ, increasing higgsino mass will lead to more decays inside
the detector.

In Figure 5.19 we give the fraction of higgsinos decaying inside and outside of the detector,
depending on the size of ζ.

The leptonic decays of at least one of the neutralinos inside the detector lead to an
opposite-sign di-muon signature, which will be exploited in the present work. We will focus on
events with two opposite sign muons originating either in a secondary vertex in the tracker, far
away from the primary interaction point, or having no associated track at all, being identified
solely by the muon system.

5.5.2 Benchmark points

In models with hybrid gauge-gravity mediated SUSY breaking it is possible to realize a
spectrum with higgsino masses around the EW scale, Higgs partners around the TeV scale
and all other particles at the multi TeV scale, as demonstrated in Section 5.2.1 [46].

The gravity mediated higgsino parameter µ of the superpotential and hence the lightest
neutralinos and charginos can be of order 100GeV. The existing lower bound on the chargino
mass of roughly 95GeV for degenerate spectra comes from Large Electron-Positron Collider
(LEP) [79, 146]. In this study we have chosen four benchmark points for which we have
varied the higgsino mass parameter µ in three steps from the lower bound of about 100GeV to
400GeV, see Table 5.19. The masses of the MSSM Higgs particles are in this case set by the
CP-odd Higgs mass parameter mA, which we have taken to be 800GeV. All other particles
are governed by the gauge mediated parameters m0 and m1/2 which are chosen to be 3TeV,
putting them out of reach of the LHC.

In all our benchmark points the Higgs mass is around 125GeV, in agreement with the
observed Higgs-like resonance at the LHC [6, 7]. Furthermore, while the LHC-beauty (LHCb)
result of an excess in the search for the rare decay B0

s → µ+µ− [147] excludes many models



93 Chapter 5. Neutralino at the LHC

µ

100 200 300 400

χ0
1χ

+
1 1640 121 22.8 6.28

χ0
2χ

+
1 1530 116 22.2 6.15

χ−1 χ
+
1 1300 94.8 17.2 4.58

χ0
1χ
−
1 918 55.9 9.23 2.29

χ0
2χ
−
1 851 53.6 8.94 2.24

χ0
1χ

0
2 1410 91.3 16.1 4.19

σtot 7649 532.6 96.47 25.73
Lgen

min 18.3 93.9 518 1940
Lgen

max 565 263 1450 5440

(a) L = 8TeV.

µ

100 200 300 400

χ0
1χ

+
1 3350 293 66.0 21.9

χ0
2χ

+
1 3130 282 64.3 21.5

χ−1 χ
+
1 2770 246 53.9 17.4

χ0
1χ
−
1 2090 158 32.0 9.72

χ0
2χ
−
1 1950 152 31.2 9.54

χ0
1χ

0
2 3030 240 51.0 16.2

σtot 16320 1371 298.4 96.26
σtot

14 /σtot
8 2.1 2.6 3.1 3.7

(b) L = 14TeV.

Table 5.20: Partial and total NLO production cross sections for our benchmark models
at 8TeV and 14TeV LHC in units of fb. The minimal and maximal (depending on ζ)
integrated luminosity corresponding to the generated number of events at 8TeV for each
model is given in units of fb−1.

with large tan β [148], the LHS is unaffected by this constraint due to the large mass splitting
between the µ parameter and the squark masses.

We have used these parameter choices as input values for a full RGE calculation performed
with SOFTSUSY. As expected the production cross sections for all supersymmetric particles
except the light higgsino states are negligible. The higgsino production cross sections for the
four benchmark points are listed in Table 5.20.

5.5.3 Background

The SM processes that dominate the di-muon channel are:

• γ∗/Z∗ → µ+µ−

• tt

• V ∗V ∗, where V = W,Z.

In Table 5.21 we give the NLO cross section for the processes that we have simulated for our
study. As we will see, these will be efficiently removed by the requirement of a secondary
vertex.

In our analysis, we will require the muons to be isolated, which efficiently removes leptons
originating in jets, and we further remove possible contributions from displaced b quarks by a
sufficiently large cut on tracks in the inner radius. For low background levels, however, other
background sources might come into play. These are:
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tt Z → µµ WW WZ ZZ

[149] [150] [113] [113] [113]

σNLO 183 536 57.25 18.55 7.92
Lgen 196 167 360 306 143

Table 5.21: NLO production cross sections for the relevant background processes in units
of pb at an energy of 8TeV as well as the integrated luminosity corresponding to the
generated number of events in units of fb−1.

• cosmic muons,

• pion and kaon decays in flight,

• hadronic punch-throughs,

• pileup.

An estimation of such contributions to our background has to be done with real LHC data,
and is beyond the scope of this work. We argue here that most of this background, should it
contribute, can be removed without significant loss of signal. Cosmic muons can be vetoed
against by using the timing information, as discussed in Section 5.4.4, or a cut on back-to-back
muons. Punch-throughs are also not simulated in Delphes but should in principle be possible
to veto since in this case the muon would be associated with a jet. Most of any possible
contribution to displaced muons from decay in flight should be removed by our high PT
requirement on muons. Pileup was estimated in a partly similar analysis to give a systematic
uncertainty in the event selection efficiency of 2% [145]. The displacement due to pileup
is in general much smaller than the secondary vertices we are expecting. Therefore, such a
background can be reduced by increasing the minimal impact parameter value required, which
in our case of larger displacements would not lead to a large decrease in signal efficiency.

In the following we therefore neglect these backgrounds to our displaced muon channel.
However, as will be described in Section 5.5.5, we will in our statistical analysis allow some
margin for systematic uncertainty in case of vanishing estimated background levels by requiring
our predicted signal to amount to a certain number of observed events.

5.5.4 Analysis

As in Section 5.4.4 we focus our search solely on the muon objects as we assume that we can
trust the detector simulation results in this case even in the presence of secondary vertices.
We aim to reconstruct clear signatures where one of the neutralinos decays into a muon and
a W boson, which in turn decays into another muon and a neutrino. Thus, we demand two
opposite sign muons that are either chamber muons or tracker muons with a secondary vertex
far away from the primary interaction point. We remind the reader that displaced muons
are not expected in SM processes giving two isolated muons, and we will show in this section
that the requirement of large displacements efficiently removes the SM di-muon background.
Furthermore, we require that the invariant mass of the two-muon system is not too small,
thus suppressing back-to-back signals. This reduces not only the SM background, but also
helps to decrease the background of cosmic muons.
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cuts tt Z → µµ WW WZ ZZ

N(µ) ≥ 2 3057 397 410 361 283

Class 1 2177 385 352 297 256
minv(µ+µ−) > 5 GeV 1761 385 351 297 256
d(Vertex) > 5 mm 11.2 0 0.369 0.281 0.189

∆d(Vertex)ij < 1 mm 0 0 0 0 0

Class 2 0 0 0 0 0
minv(µ+µ−) > 5 GeV 0 0 0 0 0

Total 0 0 0 0 0

Table 5.22: Cutflow for the main SM di-muon background in units of fb.

Cuts

Only DELPHES muon objects with a PT larger than 10GeV are passed in our additional muon
reconstruction processes described above. We demand that the secondary vertex of the muons
lies before the muon system, meaning r(Vertex) < 4m and z(Vertex) < 6m, where r and z
are the radial coordinate perpendicular to the beam and the coordinate parallel to the beam,
respectively. We assume that tracks can be reconstructed reliably as long as the secondary
vertex lies inside the cylinder defined by r(Vertex) < 40 cm and z(Vertex) < 1.3 m. The cut on
the pseudorapidity for muons is taken to be η < 2.5. In addition to the isolation requirements
in DELPHES, we only select muons that have no overlap with jet objects in angular coordinates
∆R > 0.1, where

∆R =
√

∆φ2 + ∆η2 , (5.20)

and ∆φ and ∆η are the appropriate angle differences between the muon and the jet in the
usual detector coordinates. Then we perform a selection cut on the total number of muons
(chamber and tracker muons) in the event:

• N(muons) ≥ 2.

We define two event classes:

• Class 1: the event contains exactly two tracker muons, i.e. N(tracker muons) = 2, with
opposite charge.

• Class 2: the event does not fulfil the conditions for Class 1 and contains exactly two
chamber muons, i.e. N(chamber muons) = 2, of opposite charge.

As the amount of R-parity breaking decreases, more and more events will fall into the second
class. In accordance with the description of the signal presented above, we implement the
following cuts on the Class 1 events:
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cuts 100 200

1× 10−8 5× 10−9 1× 10−8 5× 10−9

N(µ) ≥ 2 4.26 1.64 3.50 0.82

Class 1 0.219 0.109 0.394 0.096
minv(µ+µ−) > 5 GeV 0.219 0.109 0.394 0.096
d(Vertex) > 5 mm 0.219 0.109 0.394 0.096

∆d(Vertex)ij < 1 mm 0.219 0.109 0.341 0.075

Class 2 3.77 1.31 2.49 0.692
minv(µ+µ−) > 5 GeV 3.66 1.31 2.49 0.692

Total 3.88 1.42 2.83 0.767

Table 5.23: Cutflow in units of fb for the two lighter benchmark points (µ = 100, 200GeV)
with the two most relevant of the analysed values of R-parity breaking ζ.

• minv(µ+µ−) > 5GeV: We compute the invariant mass of the muon pair and demand
that it is larger than 5GeV.

• d(Vertex) > 5mm: Each of the tracks associated with the two tracker muons should
have a vertex which is further than 5mm away from the primary vertex. This value is
approximately one order of magnitude larger than the resolution of the inner tracker [119,
127].

• ∆d(Vertex)ij < 1 mm: The distance between the two track vertices should be less than
1mm, in order to capture events where both muons originate in the same secondary
vertex.

If the event fails one of the above cuts and fulfils the criteria for Class 2 events it is classified
as Class 2:

• minv(µ+µ−) > 5 GeV: Also in this case we demand that the invariant mass of the muon
pair is larger than 5GeV.

As expected, all of the SM background events are removed by the cut on the minimal distance
of the vertex from the primary interaction point and the requirement that the reconstructed
secondary vertices are close to each other (see Table 5.22). The LHS model events, however,
survive these cuts to such an extent that a signal is detectable (see Table 5.23).

Mass determination

Rejecting the background-only hypothesis is only one contribution to the degree of belief that
new physics has been discovered. Whether the signal hypothesis is a plausible one should
be tested in other ways as well. Here, we show that the chosen signature allows for the
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Figure 5.20: Examples of the mass-edge reconstruction when the higgsino mass is mχ0
1

=
102GeV (benchmarks µ = 100GeV), so that the theoretical value for the edge in the
di-muon invariant mass is 62.4GeV. The values in the legend show that already a small
total number of events (#) are sufficient in order to reconstruct the mass edge with an
error around 2GeV.

determination of the neutralino mass via the well-known mass edge method [151, 152]. The
mass edge in the di-muon invariant mass distribution is to LO determined by

m2
ll = m2

χ0
1
−m2

W +O
(
ml

mχ0
1

)2

. (5.21)

Following [153] we fold the phase space function with a Gaussian to model the mass edge:

T (mll) = 1√
2πσ

∫ mcut

0
dy y exp

(
−1

2

(
mll − y
σ

)2
)
, (5.22)

where the endpoint mcut and the height of the triangle σ are the free parameters to be fitted
to the di-lepton invariant mass mll distribution to reconstruct the di-muon mass edge. We
implemented this mass edge formula in the MINUIT class of the ROOT package.

For this method to work, a sufficiently large sample of signal events is needed. In Figure 5.20
we show examples of the mass edge reconstruction for different numbers of observed events in
the case of our benchmarks model with µ = 100GeV. We conclude from Figure 5.20b that a
total number of events between 26 and 50 should give an accurate estimate of the higgsino
mass.

5.5.5 Result

The signal cross sections after cuts for all our LHS benchmark models are given in Table 5.24.
The SM background is removed by our cuts, as shown in Table 5.22.
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ζ µ

100 200 300 400

5× 10−8 90 ± 2 25.6 ± 0.5 4.9 ± 0.1 1.17 ± 0.03
1× 10−8 3.9 ± 0.5 2.8 ± 0.2 1.07 ± 0.05 0.39 ± 0.01
5× 10−9 1.4 ± 0.3 0.77 ± 0.09 0.27 ± 0.02 0.105 ± 0.007
1× 10−9 0.028 ± 0.007 0.023 ± 0.009 0.014 ± 0.003 0.0037 ± 0.0008

Table 5.24: Signal cross sections after cuts for all benchmark models and different values of
the RPV parameter ζ, in units of fb. The errors are Poisson errors and the center-of-mass
energy 8TeV.

When dealing with very low background levels, a Gaussian approximation may not be
adequate, and one should assume the number of events to be Poisson distributed. Under the
null hypothesis of B background events, the probability of observing N or fewer events is then

P (N ;B) =
N∑
k=0

Bk

k! e
−B , (5.23)

given that the expectation value B is the true mean. We denote the expected number of events
predicted by the model with S. To estimate the integrated luminosity8 needed for a 5 sigma
detection, one can require that there is a value for the minimum number of observed events
Nobs = N +1 such that 1−P (N ;B) < 2.9× 10−5 %, corresponding to five standard deviations
in the case of a one-sided Gaussian. In addition, Nobs has to satisfy (1− P (N ;S +B)) being
larger than some probability Pobs for observation under the hypothesis of our model.9

In our case, the expectation is B = 0, and in principle any S > 0 would constitute a signal.
In a real measurement, however, the estimated background will be known only to a limited
precision, and we will require Nobs ≥ 5 in order to have some margin to allow for systematic
uncertainties. In Figure 5.21 we present results assuming a Pobs of 50%, 90% and 99%. We
see that the integrated luminosities of ∼ 30 fb−1 expected in the 8TeV run at the LHC would
suffice for discovery of the lightest higgsinos with RPV in the range ζ ∼ 2× 10−9–2× 10−8,
and for ζ above 6× 10−9 masses of µ = 400GeV may be reached.

After applying the mass edge method described in section 5.5.4 to one of our benchmark
models, we estimate that 30 signal events are sufficient to reconstruct the neutralino mass
with a couple of GeV’s precision. Figure 5.22 shows the resulting integrated luminosities at
which the higgsino mass could be determined at the LHC running at 8TeV for our benchmark
models.

We use our 8TeV results to estimate the reach when LHC runs at the design centre-of-mass
energy of 14TeV, by the same statistical analysis applied after a naive scaling of the cross
sections after cuts with the factors σtot

14 /σtot
8 presented in Table 5.20. Since the background is

assumed to be completely removed by our cuts, the reach at 14TeV would be significantly
improved. Larger higgsino masses can be reached at smaller integrated luminosities, as can

8The integrated luminosity is L = σN where σ is the cross section and N the number of events.
9For a discussion of the statistical measures used for this kind of study, see Appendix B of [154].
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Figure 5.21: Discovery reach with 8TeV centre-of-mass energy at the LHC for our four
benchmark models. Each coloured band represents a value of µ and the lower, middle
and upper line on each band corresponds to Pobs = 50%, 90% and 99%, respectively.
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Figure 5.22: Mass reconstruction reach at 8TeV under the assumption that S = 40 events
(middle line of each coloured band) are sufficient in order to reconstruct the neutralino
mass. The lower and bands correspond to S = 30 and S = 50 events, respectively, and
Pobs ≈ 50 %.
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Figure 5.23: Estimation of the 14TeV discovery reach based on our 8TeV results. Each
colored band represents a value of µ and the lower, middle and upper line on each band
corresponds to Pobs = 50%, 90% and 99%, respectively.
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Figure 5.24: Estimation of the mass reconstruction reach for 14TeV based on our 8TeV
analysis, under the assumption that S = 40 events are sufficient in order to reconstruct
the neutralino mass. The bands correspond to the interval spanning between 30 and 50
events, and Pobs ≈ 50 %.
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be observed in Figure 5.23. Also the luminosity which is needed in order to reconstruct the
neutralino masses is reduced, as can be seen in Figure 5.24. These results are approximate
and we expect that changes in e.g. the PT cut on the muons may be needed to deal with
systematic effects such as increasing pileup.
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Chapter 6

Summary and Outlook

We have studied a supersymmetric extension of the SM with small R-parity breaking related
to spontaneous B− L breaking, which is consistent with primordial nucleosynthesis, thermal
leptogenesis and gravitino DM. We have considered both SUGRA models with universal
boundary conditions at the GUT scale, which lead to a scalar tau or a bino-like neutralino as
the NLSP, as well as models with hybrid gauge-gravity mediation, which lead to a higgsino-like
neutralino as the NLSP. We have analysed bilinear R-parity breaking in a basis of scalar SU(2)
doublets, where all bilinear terms vanish. In this basis one has R-parity violating Yukawa and
gaugino couplings. They are given in terms of ordinary Yukawa couplings and nine R-parity
breaking parameters, which are constrained by the flavour symmetry of the model. Flavour
independent processes connected to EW symmetry breaking are described by just one linear
combination of these parameters, ζ, which can be used as a overall measure of RPV. The
R-parity violating couplings include terms proportional to the up-quark Yukawa couplings,
which were not taken into account in previous analyses.

We have derived the branching ratios for gravitino LSP as well as neutralino and scalar
tau NLSP decays, along with the quantitative connection between these. Furthermore we have
calculated the implications of Fermi-LAT data on the isotropic diffuse gamma-ray flux for
superparticle decays at the LHC. In order to establish this connection one needs the relevant
R-parity breaking matrix elements of neutral, charged and supercurrents. These matrix
elements can be obtained analytically to good approximation, since the diagonalization of the
neutralino-neutrino and chargino-lepton mass matrices in powers of the EW scale over the
SUSY scale converges well. The analytic expressions for the decay rates make the implications
of the Fermi-LAT data for NLSP decays very transparent. It is intriguing that the observation
of a photon line in the diffuse gamma-ray flux, together with a measurement of the neutralino
lifetime at the LHC, can yield a microscopic determination of the Planck mass, a crucial test
of local SUSY.

For a light neutralino NLSP the Fermi-LAT data yield a lower bound of several centimeters.
This bound does not depend on the details of the superparticle mass spectrum or the flavour
structure of the model. It directly follows from the comparison of two-particle gravitino and
neutralino decays. On the contrary, there exists no model-independent lower bound on the
scalar tau-decay length. The natural relation between gravitino and scalar tau-decay widths,
leading to similar bounds as for neutralino NLSP, can be avoided by fine-tuning. In this case
the cosmological constraint that the baryon asymmetry is not washed out leads to the lower
bound of some millimeters.
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The prospects of finding SUSY at the LHC strongly depends on the masses of the coloured
particles. If the lightest of these particles is still in reach of the LHC it leads, in general, to
interesting signatures. On the other hand, if the lightest coloured particle is too heavy to be
produced at the LHC, neutralino NLSP with masses just above the LEP bound might evade
the searches at the CMS and ATLAS detectors.

In order to quantify this statement we have analysed complementary to the usually analysed
CMSSM and simplified models with RPC the CMSSM with bilinear RPV as well as models
featuring light higgsinos with both, conserved R-parity and relatively light stops as well as
broken R-parity and heavy coloured particles.

We have studied the qualitative signatures of these events, the βγ distribution of the
produced NLSPs, the MPT-spectrum and the number of leptons in the final state. A detailed
simulation of signal and background events for the generic detector DELPHES (with CMS tune)
has been performed with emphasis on the reconstruction of muons. The major uncertainty in
the present study is the unknown background from cosmic muons. The crucial new element of
our analysis has been the implementation of the finite NLSP decay length.

As representative examples for strongly produced bino-like neutralino NLSP we have
considered five benchmark points, HH27–HH80, with gluino and squark masses ranging from
650 GeV to 1800 GeV.1 We have determined the range of the RPV parameter ζ which can be
probed at the LHC running at the center-of-mass energy of 7TeV, for varying superparticle
masses. As a conservative starting point, we have focused on events with a clean signature:
cascade processes with jets where one of the produced neutralino NLSPs decays into a Z boson
and a neutrino, with a subsequent decay of the Z boson into a muon pair.

The sensitivity extends from decay lengths of less than a meter, with NLSP decays mostly
inside the detector, to values of several kilometers where almost all NLSPs decay outside
the detector. The results for the discovery reach for quasi-stable bino-like neutralino NLSPs
roughly agree with the simple estimates which one obtains from the branching ratios into the
Z(µ+µ−)ν final state together with the assumption that these events are background free.

As a second RPV scenario we have investigated the LHC detection prospects for the
light higgsino scenario (LHS), in the MSSM extended with bilinear R-parity breaking terms.
Because the higgsinos are nearly mass degenerate and the strongly interacting superparticles
are out of reach, such a scenario within the usual MSSM is difficult to probe at the LHC. The
prospects change if we allow for RPV, which also in this model leads to a consistent cosmology
where leptogenesis and gravitino DM can be accounted for without conflict with BBN.

This motivated our study of a di-muon LHC signature with macroscopic and large displaced
vertices. We simulated events and detector response for a few benchmark models, varying the
value of the higgsino mass parameter µ and the amount of RPV. We found that this scenario
can show up already in the data of the 8TeV run at the LHC and that the reach in the RPV
parameter ζ is improved by up to an order of magnitude compared to the current reach of
gamma-ray searches.

We also demonstrated that in the case of a signal, the LHS with RPV hypothesis can be
tested further by a mass edge reconstruction. Except for the largest ζ and smallest higgsino
masses considered, the luminosity accumulated during the 8TeV run may not be enough.
However, based on a our rough estimation of the 14TeV reach, the higgsino mass in all our

1The lighter benchmark points considered in this model are already excluded by more recent LHC searches
(cf. e.g. [155]), the main idea of searching for strongly produced neutralinos in displaced vertices, however,
remains unchanged.
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benchmark scenarios can be determined in the 14TeV run, requiring integrated luminosities in
the range 30–1000 fb−1. We conclude that for neutralino masses accessible at the LHC values
of the R-parity breaking parameter ζ can be probed which are far below the present upper
bounds obtained from astrophysics and cosmology.

Given the absence of a signal in the searches for supersymmetry at the LHC it becomes
more important to consider also models resulting in signals without large missing transverse
energy (the key signature in SUSY searches). We have proposed search strategies for two
models leading to signals easily disregarded at the LHC, namely small R-parity violation and
light higgsinos with heavy coloured particles.

The prospects of finding possible RPV signals at the LHC are good as long as the overall
scale of RPV is not too small. With more advanced simulation software, used by the LHC
experiments, the severe restriction to muon final states in the RPV searches can be relaxed
and a much larger fraction of events can be used for the analysis. So far the experimental
collaborations have focused on large values of RPV, in principle, however, they should be able
to extend their searches to values of R-parity breaking proposed in this work.

The search for light higgsinos with very heavy coloured particles and RPC, on the other
hand, might be too challenging at the LHC. At a linear collider, however, such a scenario
would be detectable.

The complementarity of gamma-ray and LHC signatures for models with RPV may also
be used to falsify these models. A future observation of a gamma-ray line consistent with
decaying DM would fix the gravitino mass and the value of ζ. If also a LHC signal of a
neutralino shows up, which may even be possible in the LHS if the stops are light enough to
be produced at the higher center-of-mass energy, the absence of any displaced decays would
then render the model with RPV in conflict with experiments.
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Appendix A

From the electroweak Standard
Model to R-parity violating
currents

In this chapter we derive formulas needed throughout this work. We begin by introducing our
conventions of the EW SM. Afterwards we extend the Higgs sector of the SM to the one of the
2HDM. Looking then at the supersymmetric partners of the Higgs fields and the gauge bosons
enables us to derive the currents coupling neutralinos and charginos to the gauge bosons. As
we have seen in Section 3.6 the mass matrices of the neutralinos and charginos have to be
diagonalized which affects the currents as well. Therefore, we calculate the currents in the
mass eigenstate basis, which allows us to give the R-parity violating currents in this basis.

A.1 Electroweak Standard Model

Although the EW SM [156] can be found in every textbook about field theory we will quickly
derive basic relations as some of the SUSY RPV results depend on the details of the EW SM
and we would like to demonstrate that we have chosen a consistent set of definitions.

The SM of particle physics is based on the gauge group

GSM = SU(3)c × SU(2)w ×U(1)Y , (A.1)

where SU(3)c is the strong colour gauge group, SU(2)w is the weak iso-spin gauge group and
the U(1)Y is the Abelian group of hypercharge.

The covariant derivative of the SM which couples the U(1) field Bµ and the SU(2) field W i
µ

to matter fields is given by

Dµ = ∂µ + ig′YBµ + igTaW i
µ = ∂µ + i

2

2g′YB + gW3 gW1 − igW2

gW1 + igW2 g′YB − gW3

 , (A.2)

where g and g′ are the coupling constants, Y is the hypercharge of the matter field under
consideration and we have used for simplicity the spinorial generators of SU(2) Ti = 1

2σ
i which
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are proportional to the Pauli matrices

σ1 =

0 1
1 0

 , σ2 =

0 −i
i 0

 , σ3 =

1 0
0 −1

 . (A.3)

Due to its potential the scalar Higgs field φ develops a VEV v and reads in unitary gauge

φ =

v + 1√
2h

0

 . (A.4)

Applying the covariant derivative (A.2) to the Higgs field in unitary gauge, leads to

Dµφ = 1√
2
∂µh+ i

2v

 gW 3
µ − g′Bµ

gW 1
µ + igW 2

µ

 = 1√
2
∂µh+ i

2v

√g2 + g′2Zµ√
2gW−µ

 , (A.5)

where we have introduced linear combinations of the gauge fields

W±µ = 1√
2

(
W 1
µ ∓ iW 2

µ

)
W±†µ = W∓µ , (A.6a)Z0

µ

A0
µ

 = 1√
g2 + g′2

g −g′
g′ g

W 3
µ

Bµ

 =

cw −sw
sw cw

W 3
µ

Bµ

 , (A.6b)

the sine and cosine of the weak mixing angle are defined by

sw = g′√
g2 + g′2

, cw = g√
g2 + g′2

. (A.7)

The adjoint of the covariant derivative is

(Dµφ)† = 1√
2
∂µh− i

2v

√g2 + g′2Zµ√
2gW+

µ

 (A.8)

Hence the mass terms originating in the kinetic Lagrangian of the Higgs field are

L = (Dµφ)†Dµφ

⊃ 1
4v

2
(
(g2 + g′2)ZµZµ + 2g2W−µ W

+µ
)

= 1
2m

2
ZZµZ

µ +mWW
−
µ W

+µ . (A.9)

where we have introduced canonically normalized masses for the gauge fields Zµ and Wµ,
whereas the photon Aµ stays massless

mA = 0 , mW = 1√
2
gv , mZ = 1√

2

√
g2 + g′2v = 1√

2
g′

sw
v , mW = mZcw . (A.10)
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With the knowledge of the mass eigenstates we can rewrite the covariant derivative (A.2) as

Dµ = ∂µ + i

2


(2Y+1)gg′Aµ−(2Yg′2−g2)Zµ√

g′2+g2

√
2gW+

µ

√
2gW−µ

(2Y−1)gg′Aµ−(2Yg′2+g2)Zµ√
g′2+g2


= ∂µ + i

2

(2Y + 1)eAµ − (2Y swg′ − cwg)Zµ
√

2gW+
µ√

2gW−µ (2Y− 1)eAµ − (2Y swg′ + cwg)Zµ


= ∂µ + i√

2
g(W+

µ T+ +W−µ T−) + ieZµ(t−1
w T3 − twY) + ieAµ(T3 + Y)

= ∂µ + i√
2
g(W+

µ T+ +W−µ T−) + ic−1
w eZµ(s−1

w T3 − swQ) + ieAµQ , (A.11)

where we have introduced the electric charge e, the electric charge quantum number Q and
the ladder operators T±

e = gg′√
g2 + g′2

= swg = cwg
′ , Q = T3 + Y , T± = T1 ± iT2 . (A.12)

Finally, the fine-structure constant α is given by

e2 = g2s2w = 4πα . (A.13)

A.2 Two Higgs doublet model

Fermion masses in the SM are generated by Yukawa couplings to the Higgs field. In the
MSSM the superpotential has to be holomorphic, therefore, no Yukawa couplings involving the
conjugate of the Higgs field are allowed and a second Higgs field has to come into play. Hence
we introduce the standard notation for 2HDMs under the constraint that CP is conserved and
no tree level FCNC are present [157, 158]. In this case there are eight fields, three of them are
the usual Goldstone bosons, the remaining five are physical fields. The neutral scalar Higgs
fields acquire VEVs and are mixing to four eigenstates distinguished by being either CP even
or odd and light or heavyH0

u

H0
d

 =

vu
vd

+ 1√
2

 cα sα

−sα cα

h0

H0

+ i√
2

 sβ0 cβ0

−cβ0 sβ0

G0

A0

 (A.14)

where vu and vd are the VEVs of the Higgs fields. They are related to the SM Higgs VEV via

v2 = v2
d + v2

u , vd = vcβ , vu = vsβ ,
vu
vd

= tan β . (A.15)

In the decoupling limit all but one Higgs field become much heavier than the EW scale
mA0 � mZ

α ' β − π

2 , cα ' sβ , sα ' −cβ . (A.16)
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In the decoupling limit we can neglect the heavier fields and the covariant derivative of the
two Higgs fields are

Dµφd = ∂µ + i

2

−g′Bµ
1

0

+ gW 1
µ

0
1

+ gW 2
µ

0
i

+ gW 3
µ

1
0

(vd − sα√
2
h0
)

= − sα√
2
∂µh

0 + i

2vcβ

 gW 3
µ − g′Bµ

gW 1
µ + igW 2

µ

 = − sα√
2
∂µh

0 + i

2vcβ

√g2 + g′2Zµ√
2gW−µ

 , (A.17a)

Dµφu = ∂µ + i

2

g′Bµ
0

1

+ gW 1
µ

1
0

+ gW 2
µ

−i
0

+ gW 3
µ

 0
−1

(vu + cα√
2
h0
)

= cα√
2
∂µh

0 + i

2vsβ

gW 1
µ − igW 2

µ

g′Bµ − gW 3
µ

 = cα√
2
∂µh

0 + i

2vsβ

 √
2gW+

µ

−√g2 + g′2Zµ

 . (A.17b)

A.3 Minimal supersymmetric standard model

The EW sector of the MSSM is a supersymmetric version of the 2HDM. Therefore, do not
only have to take into account the scalar Higgs fields but also the fermionic higgsinos. The
covariant derivative of the down type higgsino is given by

Dµhd = ∂µ

h0
d

h−d

+ i√
2
g

W+
µ

h−d
0

+W−µ

 0
h0
d

+ i

2
g

cw
Zµ

 h0
d

−c2wh−d

+ i

2eAµ

 0
h−d

 ,

(A.18)

Whereas the covariant derivative of the up type higgsino is

Dµhu = ∂µ

h+
u

h0
u

+ i√
2
g

W+
µ

h0
u

0

+W−µ

 0
h+
u

+ i

2
g

cw
Zµ

c2wh+
u

−h0
u

+ i

2eAµ

h+
u

0

 ,

(A.19)

Finally, as the quantum numbers of the down type Higgs are identical to the lepton superfield,
we have to as well take into account the covariant derivative of the lepton doublet

Dµli = ∂µ

νi
ei

+ i√
2
g

W+
µ

ei
0

+W−µ

 0
νi

+ i

2
g

cw
Zµ

 νi

−c2wei

+ i

2eAµ

0
ei

 ,

(A.20)

A.4 Neutral and charged currents

For a phenomenological analysis we need the couplings of the gauge fields i.e. photon, Z and
W boson to charged and neutral matter.

L = −eJeµAµ − g

cw
JZµZ

µ − g√
2
J−µW

+µ − g√
2
J+
µW

−µ − 1
2MP

ψµS
µ . (A.21)
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The couplings of gauge bosons to fermions arise from the covariant derivatives in the fermionic
kinetic terms. In the two component notation the kinetic terms have the form

L = iλ
i
σµ(Dµ) ji λj , (A.22)

In the case of the chiral multiplet we have to consider the higgsinos and the leptons. The
kinetic term for the down type higgsino reads

h†dσ
µDµhd = 1√

2
gh0†

d σ
µW+

µ h
−
d + 1√

2
gh−†d σµW−µ h

0
d + 1

2
g

cw
h0†
d σ

µZµh
0
d

− 1
2
g

cw
c2wh

−†
d σµZµh

−
d + eh−†d σµAµh

−
d . (A.23)

The same term for the up type higgsino is given by

h†uσ
µDµhu = 1√

2
gh+†

u σµW+
µ h

0
u + 1√

2
gh0†

u σ
µW−µ h

+
u + 1

2
g

cw
h+†
u c2wσ

µZµh
+
u

− 1
2
g

cw
h0†
u σ

µZµh
0
u + eh+†

u σµAµh
+
u . (A.24)

The kinetic term for the lepton doublet is

l†iσ
µDµli = 1√

2
gν†i σ

µW+
µ ei +

1√
2
ge†iσ

µW−µ νi +
1
2
g

cw
ν†i σ

µZµνi

− 1
2
g

cw
e†ic2wσ

µZµei + ee†σµAµei (A.25)

and, finally, for the lepton singlet we find

e†iσ
µDµei = s2w

g

cw
eciσ

µeciZµ − eeciσµeciAµ . (A.26)

Additionally we have to calculate the kinetic terms of the fermions of the vector multiplet.
The bino is not charged under the SM gauge group and does not couple to vector fields. The
winos are in the adjoint representation of the SU(2), therefore we need the generators of the
adjoint representation [159–161]

T 1 =


0 0 0
0 0 −i
0 i 0

 , T 2 =


0 0 i

0 0 0
−i 0 0

 , T 3 =


0 −i 0
i 0 0
0 0 0

 . (A.27)

This enables us to write the covariant derivative of the wino as

Dµwi = ∂µ


w1

w2

w3

+ i

2g

W+
µ


−w3

−iw3√
2w−

+W−µ


w3

−iw3

−√2w+


+ e

(
t−1
w Zµ +Aµ

)
−w2

w1

0


(A.28)

where we have introduced charged wino eigenstates

w± = 1√
2

(w1 ∓ iw2) , w±† = 1√
2

(
w†1 ± iw†2

)
. (A.29)
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Hence the kinetic term becomes
iwi†σµDµw

i = iwi†σµ∂µw
i + g

(
w+†σµw3 − w†3σµw−

)
W+
µ (A.30)

+ g
(
w†3σ

µw+ − w−†σµw3
)
W−µ + e

(
t−1
w Zµ +Aµ

) (
w−†w− − w+†w+

)
.

We can verify that based on our definition of the Pauli matrices we have chosen the correct
definition for the vector representation by noting that the identity

w†iTijkW
µ
k wj = 4 trw†iσiW

µ
j σjwkσk , (A.31)

holds. Finally, we are able to collect the various terms, in order to derive the currents in the
gauge eigenstate basis

Jeµ = J3
eµ + J2,1

eµ

= w+σµw
+ − w−σµw− − eiσµei + eciσµe

c
i − h−d σµh−d + h

+
u σµh

+
u , (A.32a)

JZµ =− 1
2h

0
uσµh

0
u + 1

2h
0
dσµh

0
d + 1

2νiσµνi

+ w+σµw
+ − w−σµw− − 1

2eiσµei −
1
2h
−
d σµh

−
d + 1

2h
+
u σµh

+
u − s2wJ2,1

eµ , (A.32b)

J−µ =
√

2
(
w3σµw

− − w+σµw
3
)

+ νiσµei + h
0
dσµh

−
d + h

+
u σµh

0
u , (A.32c)

J+
µ =

√
2
(
w−σµw

3 − w3σµw
+
)
− eiσµνi − h−d σµh0

d − h0
uσµh

+
u . (A.32d)

Having derived the currents we now have to transform them into the mass-eigenstate basis of
the fermions.

A.4.1 The currents in the mass eigenstate basis

The masses of the neutral and charged fermions of MSSM are collected in the mass matrices
(3.58) and (3.70) and are diagonalized with (3.65) and (3.73). The higgsino and neutrino mass
gauge eigenstates read in terms of the mass eigenstates

b = U
(χ0)
1b χ0

b + U
(χ0,ν)
1j ν ′j , (A.33)

w3 = U
(χ0)
2b χ0

b + U
(χ0,ν)
2j ν ′j , w− = U

(χ−)
1β χ−β + U

(χ−,e)
1j e′j , w+ = Ũ

(χ+)
1β χ+

β + Ũ
(χ+,ec)
1j ec′j ,

h0
u = U

(χ0)
3b χ0

b + U
(χ0,ν)
3j ν ′j , h+

u = Ũ
(χ+)
2β χ+

β + Ũ
(χ+,ec)
2j ec′j ,

h0
d = U

(χ0)
4b χ0

b + U
(χ0,ν)
4j ν ′j , h−d = U

(χ−)
2β χ−β + U

(χ−,e)
2j e′j ,

νi = U
(ν,χ0)
ib χ0

b + U
(ν)
ij ν

′
j , ei = U

(e,χ−)
iβ χ−β + U

(e)
ij e

′
j , eci = Ũ

(ec,χ+)
iβ χ+

β + Ũ
(ec)
ij ec′j .

Therefore, the photon current in mass eigenstates is

Jeµ = χ+
α Ũ

(χ+)
1α σµŨ

(χ+)
1β χ+

β + χ+
α Ũ

(χ+)
1α σµŨ

(χ+,ec)
1j ec′j + ec′i Ũ

(χ+,ec)
1i σµŨ

(χ+)
1β χ+

β

+ ec′i Ũ
(χ+,ec)
1i σµŨ

(χ+,ec)
1j ec′j − χ−αU (χ−)

1α σµU
(χ−)
1β χ−β − χ−αU (χ−)

1α σµU
(χ−,e)
1j e′j

− e′iU (χ−,e)
1i σµU

(χ−)
1β χ−β − e′iU (χ−,e)

1i σµU
(χ−,e)
1j e′j − χ−αU (e,χ−)

iα σµU
(e,χ−)
iβ χ−β

− χ−αU (e,χ−)
iα σµU

(e)
ij e

′
j − e′iU (e)

ki σµU
(e,χ−)
kβ χ−β − e′iU (e)

ki σµU
(e)
kj e

′
j

+ χ+
α Ũ

(ec,χ+)
iα σµŨ

(ec,χ+)
iβ χ+

β + χ+
α Ũ

(ec,χ+)
iα σµŨ

(ec)
ij ec′j + ec′i Ũ

(ec)
ki σµŨ

(ec,χ+)
kβ χ+

β

+ ec′i Ũ
(ec)
ki σµŨ

(ec)
kj ec′j − χ−αU (χ−)

2α σµU
(χ−)
2β χ−β − χ−αU (χ−)

2α σµU
(χ−,e)
2j e′j

− e′iU (χ−,e)
2i σµU

(χ−)
2β χ−β − e′iU (χ−,e)

2i σµU
(χ−,e)
2j e′j + χ+

α Ũ
(χ+)
2α σµŨ

(χ+)
2β χ+

β

+ χ+
α Ũ

(χ+)
2α σµŨ

(χ+,ec)
2j ec′j + ec′i Ũ

(χ+,ec)
2i σµŨ

(χ+)
2β χ+

β + ec′i Ũ
(χ+,ec)
2i σµŨ

(χ+,ec)
2j ec′j , (A.34)



111 Appendix A. From the electroweak standard model to R-parity violating currents

which can be combined to

Jeµ = χ−ασµV
(χ−)
αβ χ−β + χ+

ασµV
(χ+)
αβ χ+

β + eiσµV
(e)
ij ej + eciσµV

(ec)
ij ecj

+
(
χ−ασµV

(χ−,e)
αj ej + χ+

ασµV
(χ+,ec)
αj ecj + h.c.

)
, (A.35)

where we have introduced the CKM-like matrices

V
(χ−)
αβ = −U (χ−)

1α U
(χ−)
1β − U (χ−)

2α U
(χ−)
2β −

∑
i

U
(e,χ−)
iα U

(e,χ−)
iβ , (A.36a)

V
(χ+)
αβ = Ũ

(χ+)
1α Ũ

(χ+)
1β + Ũ

(χ+)
2α Ũ

(χ+)
2β +

∑
i

Ũ
(ec,χ+)
iα Ũ

(ec,χ+)
iβ , (A.36b)

V
(e)
ij = −U (χ−,e)

1i U
(χ−,e)
1j − U (χ−,e)

2i U
(χ−,e)
2j −

∑
k

U
(e)
ki U

(e)
kj , (A.36c)

V
(ec)
ij = Ũ

(χ+,ec)
1i Ũ

(χ+,ec)
1j + Ũ

(χ+,ec)
2i Ũ

(χ+,ec)
2j +

∑
k

Ũ
(ec)
ki Ũ

(ec)
kj , (A.36d)

V
(χ−,e)
αj = −U (χ−)

1α U
(χ−,e)
1j − U (χ−)

2α U
(χ−,e)
2j −

∑
i

U
(e,χ−)
iα U

(e)
ij , (A.36e)

V
(χ+,ec)
αj = Ũ

(χ+)
1α Ũ

(χ+,ec)
1j + Ũ

(χ+)
2α Ũ

(χ+,ec)
2j +

∑
i

Ũ
(ec,χ+)
iα Ũ

(ec)
ij . (A.36f)

On the other hand, the neutral current in the mass eigenstate basis is

JZµ =− 1
2χ

0
aU

(χ0)
3a σµU

(χ0)
3b χ0

b −
1
2χ

0
aU

(χ0)
3a σµU

(χ0,ν)
3j ν ′j −

1
2ν
′
jU

(χ0,ν)
3j σµU

(χ0)
3b χ0

b

− 1
2ν
′
iU

(χ0,ν)
3i σµU

(χ0,ν)
3j ν ′j + 1

2χ
0
aU

(χ0)
4a σµU

(χ0)
4b χ0

b + 1
2χ

0
aU

(χ0)
4a σµU

(χ0,ν)
4j ν ′j

+ 1
2ν
′
jU

(χ0,ν)
4j σµU

(χ0)
4b χ0

b + 1
2ν
′
jU

(χ0,ν)
4j σµU

(χ0,ν)
4j ν ′j + 1

2χ
0
aU

(ν,χ0)
ia σµU

(ν,χ0)
ib χ0

b

+ 1
2χ

0
aU

(ν,χ0)
ia σµU

(ν)
ij ν

′
j + 1

2ν
′
jU

(ν)
ij σµU

(ν,χ0)
ib χ0

b + 1
2ν
′
iU

(ν)
ki σµU

(ν)
kj ν

′
j

+ χ+
α Ũ

(χ+)
1α σµŨ

(χ+)
1β χ+

β + χ+
α Ũ

(χ+)
1α σµŨ

(χ+,ec)
1j ec′j + ec′i Ũ

(χ+,ec)
1i σµŨ

(χ+)
1β χ+

β

+ ec′i Ũ
(χ+,ec)
1i σµŨ

(χ+,ec)
1j ec′j − χ−αU (χ−)

1α σµU
(χ−)
1β χ−β − χ−αU (χ−)

1α σµU
(χ−,e)
1j e′j

− e′iU (χ−,e)
1i σµU

(χ−)
1β χ−β − e′iU (χ−,e)

1i σµU
(χ−,e)
1j e′j −

1
2χ
−
αU

(e,χ−)
iα σµU

(e,χ−)
iβ χ−β

− 1
2χ
−
αU

(e,χ−)
iα σµU

(e)
ij e

′
j −

1
2e
′
iU

(e)
ki σµU

(e,χ−)
kβ χ−β −

1
2e
′
iU

(e)
ki σµU

(e)
kj e

′
j

− 1
2χ
−
αU

(χ−)
2α σµU

(χ−)
2β χ−β −

1
2χ
−
αU

(χ−)
2α σµU

(χ−,e)
2j e′j −

1
2e
′
iU

(χ−,e)
2i σµU

(χ−)
2β χ−β

− 1
2e
′
iU

(χ−,e)
2i σµU

(χ−,e)
2j e′j + 1

2χ
+
α Ũ

(χ+)
2α σµŨ

(χ+)
2β χ+

β + 1
2χ

+
α Ũ

(χ+)
2α σµŨ

(χ+,ec)
2j ec′j

+ 1
2e

c′
i Ũ

(χ+,ec)
2i σµŨ

(χ+)
2β χ+

β + 1
2e

c′
i Ũ

(χ+,ec)
2i σµŨ

(χ+,ec)
2j ec′j − s2wJeµ . (A.37)

This can be combined to

JZµ = χ0
aσµV

(χ0)
ab χ0

b + χ−ασµV
(χ−)
αβ χ−β + χ+

ασµV
(χ+)
αβ χ+

β + νiσµV
(ν)
ij νj + eiσµV

(e)
ij ej (A.38)

+ eciσµV
(ec)
ij ecj +

(
χ0
aσµV

(χ,ν)
aj νj + χ−ασµV

(χ−,e)
αj ej + χ+

ασµV
(χ+,ec)
αj ecj + h.c.

)
− s2wJeµ ,



A.4. Neutral and charged currents 112

where we have introduced the CKM-like matrices

V
(χ0)
ab = −1

2U
(χ0)
3a U

(χ0)
3b + 1

2U
(χ0)
4a U

(χ0)
4b + 1

2
∑
i

U
(ν,χ0)
ia U

(ν,χ0)
ib , (A.39a)

V
(χ−)
αβ = −U (χ−)

1α U
(χ−)
1β − 1

2U
(χ−)
2α U

(χ−)
2β − 1

2
∑
i

U
(e,χ−)
iα U

(e,χ−)
iβ , (A.39b)

V
(χ+)
αβ = Ũ

(χ+)
1α Ũ

(χ+)
1β + 1

2 Ũ
(χ+)
2α Ũ

(χ+)
2β , (A.39c)

V
(ν)
ij = −1

2U
(χ0,ν)
3i U

(χ0,ν)
3j + 1

2U
(χ0,ν)
4i U

(χ0,ν)
4j + 1

2
∑
k

U
(ν)
ki U

(ν)
kj , (A.39d)

V
(e)
ij = −U (χ−,e)

1i U
(χ−,e)
1j − 1

2U
(χ−,e)
2i U

(χ−,e)
2j − 1

2
∑
k

U
(e)
ki U

(e)
kj , (A.39e)

V
(ec)
ij = Ũ

(χ+,ec)
1i Ũ

(χ+,ec)
1j + 1

2 Ũ
(χ+,ec)
2i Ũ

(χ+,ec)
2j , (A.39f)

V
(χ,ν)
aj = −1

2U
(χ0)
3a U

(χ0,ν)
3j + 1

2U
(χ0)
4a U

(χ0,ν)
4j + 1

2
∑
k

U
(ν,χ0)
ka U

(ν)
kj , (A.39g)

V
(χ−,e)
αj = −U (χ−)

1α U
(χ−,e)
1j − 1

2U
(χ−)
2α U

(χ−,e)
2j − 1

2
∑
i

U
(e,χ−)
iα U

(e)
ij , (A.39h)

V
(χ+,ec)
αj = Ũ

(χ+)
1α Ũ

(χ+,ec)
1j + 1

2 Ũ
(χ+)
2α Ũ

(χ+,ec)
2j . (A.39i)

Finally, the complete neutral CKM-like matrices are given by

V
(χ0)
ab = −1

2U
(χ0)
3a U

(χ0)
3b + 1

2U
(χ0)
4a U

(χ0)
4b + 1

2
∑
i

U
(ν,χ0)
ia U

(ν,χ0)
ib , (A.40a)

V
(χ−)
αβ = (s2w − 1)U (χ−)

1α U
(χ−)
1β + (s2w −

1
2)U (χ−)

2α U
(χ−)
2β + (s2w −

1
2)
∑
i

U
(e,χ−)
iα U

(e,χ−)
iβ ,

(A.40b)

V
(χ+)
αβ = (1− s2w)Ũ (χ+)

1α Ũ
(χ+)
1β + (12 − s

2
w)Ũ (χ+)

2α Ũ
(χ+)
2β − s2w

∑
i

Ũ
(ec,χ+)
iα Ũ

(ec,χ+)
iβ , (A.40c)

V
(ν)
ij = −1

2U
(χ0,ν)
3i U

(χ0,ν)
3j + 1

2U
(χ0,ν)
4i U

(χ0,ν)
4j + 1

2
∑
k

U
(ν)
ki U

(ν)
kj , (A.40d)

V
(e)
ij = (s2w − 1)U (χ−,e)

1i U
(χ−,e)
1j + (s2w −

1
2)U (χ−,e)

2i U
(χ−,e)
2j + (s2w −

1
2)
∑
k

U
(e)
ki U

(e)
kj ,

(A.40e)

V
(ec)
ij = (1− s2w)Ũ (χ+,ec)

1i Ũ
(χ+,ec)
1j + (12 − s

2
w)Ũ (χ+,ec)

2i Ũ
(χ+,ec)
2j − s2w

∑
k

Ũ
(ec)
ki Ũ

(ec)
kj , (A.40f)

V
(χ,ν)
aj = −1

2U
(χ0)
3a U

(χ0,ν)
3j + 1

2U
(χ0)
4a U

(χ0,ν)
4j + 1

2
∑
k

U
(ν,χ0)
ka U

(ν)
kj , (A.40g)

V
(χ−,e)
αj = (s2w − 1)U (χ−)

1α U
(χ−,e)
1j + (s2w −

1
2)U (χ−)

2α U
(χ−,e)
2j + (s2w −

1
2)
∑
i

U
(e,χ−)
iα U

(e)
ij ,

(A.40h)

V
(χ+,ec)
αj = (1− s2w)Ũ (χ+)

1α Ũ
(χ+,ec)
1j + (12 − s

2
w)12 Ũ

(χ+)
2α Ũ

(χ+,ec)
2j − s2w

∑
i

Ũ
(ec,χ+)
iα Ũ

(ec)
ij . (A.40i)
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The charged current is given by

J−µ =
√

2 χ0
bU

(χ0)
2b σµU

(χ−)
1β χ−β +

√
2 χ0

bU
(χ0)
2b σµU

(χ−,e)
1j e′j +

√
2 ν ′jU

(χ0,ν)
2j σµU

(χ−)
1β χ−β

+
√

2 ν ′kU
(χ0,ν)
2k σµU

(χ−,e)
1j e′j −

√
2 χ+

β Ũ
(χ+)
1β σµU

(χ0)
2b χ0

b −
√

2 χ+
β Ũ

(χ+)
1β σµU

(χ0,ν)
2k ν ′k

−√2 ec′j Ũ
(χ+,ec)
1j σµU

(χ0)
2b χ0

b −
√

2 ec′j Ũ
(χ+,ec)
1j σµU

(χ0,ν)
2k ν ′k + χ0

bU
(ν,χ0)
ib σµU

(e,χ−)
iβ χ−β

+ χ0
bU

(ν,χ0)
ib σµU

(e)
ij e

′
j + ν ′jU

(ν)
ij σµU

(e,χ−)
iβ χ−β + ν ′kU

(ν)
ik σµU

(e)
ij e

′
j

+ χ0
bU

(χ0)
3b σµU

(χ−)
2β χ−β + χ0

bU
(χ0)
3b σµU

(χ−,e)
2j e′j + ν ′jU

(χ0,ν)
3j σµU

(χ−)
2β χ−β

+ ν ′kU
(χ0,ν)
3k σµU

(χ−,e)
2j e′j + χ+

β Ũ
(χ+)
2β σµU

(χ0)
3b χ0

b + χ+
β Ũ

(χ+)
2β σµU

(χ0,ν)
3j ν ′j

+ ec′j Ũ
(χ+,ec)
2j σµU

(χ0)
3b χ0

b + ec′j Ũ
(χ+,ec)
2j σµU

(χ0,ν)
3k ν ′k . (A.41)

This can be combined to

J−µ = χ0
aσµV

(χ)
aβ χ−β + χ+

ασµV
(χ)
αb χ

0
b + χ0

aσµV
(χ,e)
aj ej + eciσµV

(χ,e)
ib χ0

b

+ νiσµV
(ν,χ)
iβ χ−β + χ+

ασµV
(ν,χ)
αj νj + νiσµV

(ν,e)
ij ej + eciσµV

(ν,e)
ij νj , (A.42)

where we have introduce the CKM-like matrices

V
(χ)
aβ =

√
2 U (χ0)

2a U
(χ−)
1β + U

(χ0)
3a U

(χ−)
2β +

∑
k

U
(ν,χ0)
ka U

(e,χ−)
kβ , (A.43a)

V
(χ)
αb = −√2 Ũ (χ+)

1α U
(χ0)
2b + Ũ

(χ+)
2α U

(χ0)
3b , (A.43b)

V
(χ,e)
aj =

√
2 U (χ0)

2a U
(χ−,e)
1j + U

(χ0)
3a U

(χ−,e)
2j +

∑
k

U
(ν,χ0)
ka U

(e)
kj , (A.43c)

V
(χ,e)
ib = −√2 Ũ (χ+,ec)

1i U
(χ0)
2b + Ũ

(χ+,ec)
2i U

(χ0)
3b , (A.43d)

V
(ν,χ)
iβ =

√
2 U (χ0,ν)

2i U
(χ−)
1β + U

(χ0,ν)
3i U

(χ−)
2β +

∑
k

U
(ν)
ki U

(e,χ−)
kβ , (A.43e)

V
(ν,χ)
αj = −√2 Ũ (χ+)

1α U
(χ0,ν)
2j + Ũ

(χ+)
2α U

(χ0,ν)
3j , (A.43f)

V
(ν,e)
ij =

√
2 U (χ0.ν)

2i U
(χ−,e)
1j + U

(χ0,ν)
3i U

(χ−,e)
2j +

∑
k

U
(ν)
ki U

(e)
kj , (A.43g)

V
(ν,e)
ij = −√2 Ũ (χ+,ec)

1i U
(χ0.ν)
2j + Ũ

(χ+,ec)
2i U

(χ0,ν)
3j . (A.43h)

Finally, we have to calculate the Higgs to neutralino and neutrino. After rotation into mass
eigenstates the coupling induced by the Lagrangian (3.57) reads

Ṽ
(ν,χ)
i1 =

∑
j

ζj
(
twU

(χ,ν)
1j U

(ν,χ)
i1 + twU

(ν)
ij U

(χ)
11 − U (χ,ν)

2j U
(ν,χ)
i2 − U (ν)

ij U
(χ)
21

)
. (A.44)

A.4.2 R-parity violating currents

The following results are approximated by an expansion in ζ and ε, where ε = mZ/m̃ and m̃
the largest mass parameters of either M1, M2 or µ. The parameter choice affects neither the
expansion of U (n) nor the mass eigenstates. For the RPV part of the neutral CKM-like matrix
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we find

V
(χ,ν)
aj = −1

2ζjmZ



sw
M1

− cw
M2

mZ√
2µv1

mZ√
2µv2


(

1 +O
(
mZ

m̃

))
, (A.45)

with abbreviations

v1 = (sβ + cβ)
M1c

2
w +M2s

2
w − µ

(M1 − µ)(M2 − µ) − (sβ − cβ)
(
s2w
M1

+ c2w
M2

)
, (A.46a)

v2 = (sβ − cβ)M1c
2
w +M2s

2
w + µ

(M1 + µ)(M2 + µ) − (sβ + cβ)
(
s2w
M1

+ c2w
M2

)
. (A.46b)

Numerically, the relative errors are smaller than 0.10, 0.20, 0.15, 0.05 for a = 1, . . . , 4. For the
RPV part of the charged CKM-like matrix we find

V
(χ,e)
aj = −ζjmZ



sw
M1
cw
M2

mZ√
2µ ṽ1

mZ√
2µ ṽ2


(

1 +O
(
mZ

m̃

))
, (A.47)

with abbreviations1

ṽ1 = (sβ + cβ)
M1c

2
w +M2s

2
w − µ

(M1 − µ)(M2 − µ) − 2(sβ + cβ)
µc2w

M2(M2 − µ) + 2sβ
c2w
M2

, (A.48a)

ṽ2 = (sβ − cβ)M1c
2
w +M2s

2
w + µ

(M1 + µ)(M2 + µ) − 2(sβ + µ

M2
cβ)

M1 + µ

(M1 + µ)(M2 + µ)c
2
w . (A.48b)

Here we again neglected corrections that involve the Yukawa couplings heii. The numerical
corrections to the NLO contributions to V (χ,e)

ai are smaller than 0.05, 0.15, 0.20 for a = 1, 2, 3,
respectively. For a = 4 we reach the limit of our numerical precision. The RPV part of the
matrix coupling Higgs to neutrino and neutralino reads

Ṽ
(ν,χ)
i1 = ζi


−tw
1

mZ√
2 (sβ + cβ) (M1−M2)cw+(M2−µ)swtw

(µ−M1)(M2−µ)
mZ√

2 (sβ − cβ) (µ+M1)cw+(M2+µ)swtw
(µ+M1)(M2+µ)


(

1 +O
(
mZ

m̃

))
. (A.49)

1The formula for ṽ1 differs slightly from the version in [1], due to a typo therein.
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Appendix B

Free gauge fields

In the following we would like to demonstrate a consisted way how to construct the action S
for free gauge fields φµ

S =
∫
d4xL (φµ, ∂νφµ) . (B.1)

To that end, we replace the scalar field in the Klein-Gordon Lagrangian with a vector field
Aµ and a tensor field hµν , respectively, as well as the spinor in the Dirac Lagrangian with a
spinor-vector ψµ. Since there are more than one Lorentz invariant combinations, we write
down the most general linear combination of Lorentz scalars. Varying the action with respect
to the gauge fields φµ = Aµ, ψµ, hµν

δS =
∫
d4x

(
∂L
∂φµ

− ∂ν ∂L
∂∂νφµ

)
δφµ , (B.2)

and demanding invariance under gauge transformation δφµ → fµΛ fully constraints the
free parameter of the action. For the massless action it is enough to introduce the gauge
transformation fµ = ∂µ (applied to both indices in the case of the tensor field). For the massive
spinor-vector and tensor field, however, the gauge transformation must be extended to be
functions of fµ = f(∂µ, γµ) and fµν = f(∂µ, ∂ν , ηµν), respectively. The mass terms, however,
break gauge invariance in all three cases.

In the massless case, the derived constraints single out one certain gauge condition, which
leads to the massless Klein-Gordon and Dirac equation, respectively. As we would like to
know how many degrees of freedom (DOFs) we have to gauge in the massless case, we also
calculate the differences of DOFs between the massive and massless fields with the Stückelberg
technique.

B.1 Vector field

In order to demonstrate the method we will apply this procedure to a vector field Aµ(x). There-
fore, we need the most general Lorentz invariant extension of the Klein-Gordon Lagrangian
which is still quadratic in Aµ(x)

L = ∂µAν(x) (aηµνηρσ + bηµρηνσ) ∂ρAσ(x) +m2Aν(x)Aν(x) , (B.3)
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where a and b are free parameters. Demanding invariance under the gauge transformation

Aµ(x)→ Aµ(x) + ∂µΛ(x) . (B.4)

leads to the equation

(a+ b)∂ν∂2Aν(x)−m2∂νA
ν(x) = 0 . (B.5)

We see that the invariance under gauge transformation can be fulfilled by massless fields
m = 0 for a = −b. In order to make the anti-symmetry manifest one usually introduces the
anti-symmetric field strength tensor

Fµν(x) = ∂[µAν](x) = ∂µAν(x)− ∂νAµ(x) . (B.6)

The Lagrangian is now the usual Proca Lagrangian [162]

L = −1
4Fµν(x)F

µν(x) + 1
2m

2Aµ(x)Aµ(x) , (B.7)

extremizing leads to the Proca-equation

∂µF
µν(x) +m2Aν(x) = 0 . (B.8)

We have seen that the mass term breaks gauge invariance, but instead of setting m = 0 we
can constrain the massive vector field by

∂νA
ν(x) = 0 . (B.9)

This constraint simplifies the Proca equation

∂2Aν(x) +m2Aν(x) = 0 . (B.10)

and results in the Klein-Gordon equation for a massive vector field. This equation has four
DOFs. Together with the constraint (B.9) it shows that the massive vector field has three
DOFs.

B.1.1 Stückelberg Lagrangian

In the massless limit m→ 0 the Proca Lagrangian (B.7) becomes the Maxwell Lagrangian
[163]

L = −1
4Fµν(x)F

µν(x) , (B.11)

which is invariant under the gauge transformation (B.4) even without the constraint (B.9).
The introduction of a scalar Stückelberg field φ(x) makes also the Proca equation independent
of the constraint (B.4) and circumvents this abrupt change at m→ 0

Aµ(x)→ Aµ(x) + ∂µ

m
φ(x) , (B.12)
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where we have kept track of the canonical mass dimensions by dividing the Stückelberg field
by m. The resulting Lagrangian is the Stückelberg Lagrangian [164]

L = −1
4Fµν(x)F

µν(x) + 1
2m

2Aµ(x)Aµ(x) +mAµ(x)∂µφ(x) + 1
2∂

µφ(x)∂µφ(x) , (B.13)

which still has three DOFs and is invariant under the gauge transformation

δAµ(x) = ∂µΛ(x) , δφ(x) = −mΛ(x) . (B.14)

Going to unitary gauge φ(x) = 0 leads back to the Proca Lagrangian (B.7). The massless
limit, on the other hand, leads now to the Lagrangian of a massless vector field and a massless
scalar field

L = −1
4Fµν(x)F

µν(x) + 1
2∂

µφ(x)∂µφ(x) . (B.15)

We see that for the massless vector field we have to gauge one DOF.

B.1.2 Maxwell equation

The massless vector field obeys the Maxwell equation

∂µF
µν(x) = 0 , (B.16)

and must be gauge fixed. As gauge condition one can e.g. demand that also for the massless
vector field the constraint (B.9) is fulfilled (Lorenz gauge [165]). Applying this gauge to the
Maxwell equation

∂2Aν(x) = 0 , (B.17)

leads to the Klein-Gordon equation for a massless vector field.

B.2 Rarita-Schwinger field
A spinor-vector ψµ(x) transforms simultaneously under the spinor and the vector representation
of the Lorentz group (for an overview see e.g. [166]). Therefore, we have to extend the Dirac
Lagrangian with the goal to incorporate the extra vector indices without changing the linearity
in the derivative.1 This can be achieved either by reassigning the vector indices in /∂ with the
metric or by using three γ-matrices instead of one

L = ψµ(x)i (aγµγνγρ + bγµηνρ + cγνηµρ + dγρηµν) ∂νψρ(x) (B.18)
= iaψµ(x)γµ/∂γρψρ(x) + ibψµ(x)γµ∂ρψρ(x) + icψµ(x)/∂ψµ(x) + idψµ(x)∂µγρψρ(x) .

where we have introduced four parameters a. . . d and for simplicity postponed the discussion
of the mass term. Demanding invariance under the gauge transformation

ψµ(x)→ ψµ(x) + ∂µχ(x) , (B.19)
1In order to describe neutral-spinor vectors e.g. the gravitino, the Majorana reality condition ψcµ = ψµ has

to be imposed.
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leads to the equations

(a+ d)i∂2γρψρ(x) + (b+ c)i/∂∂ρψρ(x) = 0 , (B.20a)
(a+ b)iψµ(x)γµ∂2 + (c+ d)iψµ(x)∂µ/∂ = 0 . (B.20b)

These constraints can be fulfilled by a = −b = c = −d and determine the form of the kinetic
term of the Rarita-Schwinger Lagrangian

L = aψµ(x)i
(
γµ/∂γρψρ(x)− γµ∂ρψρ(x) + /∂ψρ(x)− ∂µγρψµ(x)

)
= aψµ(x)i (γµγνγρ − γµηνρ + γνηµρ − γρηµν) ∂νψρ(x)
= aψµ(x)iγµνρ∂νψρ(x) , (B.21)

where we have introduced the anti-symmetrised combination of three γ-matrices

γµνρ = γ[µγνγρ] = γµγνγρ − γµηνρ + γνηµρ − γρηµν = −iεµνρσγσγ5 . (B.22)

The equation of motion (EOM) for a massless spinor-vector reads

0 = iγµνρ∂νψρ(x) . (B.23)

B.2.1 Massive Rarita-Schwinger Lagrangian

Now we are adding the most general linear combination of Lorentz invariant mass terms

L = ψµ(x) (aiγµνρ∂ν + emγµγρ + fmηµρ)ψρ(x)
= aiψµ(x)γµνρ∂νψρ(x) +meψµ(x)γµγρψρ(x) +mfψµ(x)ψµ(x) . (B.24)

Invariance under gauge transformation (B.19) can only be ensured for e = f = 0 or m = 0.
Demanding, however, invariance under the extended transformation

ψµ(x)→ ψµ(x) + ∂µ
m
χ(x)− iγµχ(x) , (B.25)

leads to

(2a+ e)/∂γρψρ − (2a− f)∂ρψρ + (4e+ f)imγρψρ = 0 . (B.26)

Hence the Lagrangian is invariant for massless fields m = 0 with e = −f = −2a. Therefore,
the Rarita-Schwinger Lagrangian for a massive spinor-vector is given by [167]

L = ψµ(x)
(
iγµνρ∂ν − 1

2mγ
µρ
)
ψρ(x) , (B.27)

and the mass term breaks the gauge invariance. We have used the anti-symmetrised combina-
tion of two γ-matrices

γµν = γ[µγν] = 1
2 [γµ, γν ]− = γµγν − ηµν , γµνργρ = 2γµν , γµνγν = 3γµ . (B.28)

The EOM reads

0 = iγµνρ∂νψρ(x)− 1
2mγ

µρψρ(x) , (B.29)



119 Appendix B. Free gauge fields

and its divergence leads to the relation

γνρ∂νψρ(x) = /∂γµψµ − ∂µψµ = 0 , (B.30)

The mass term breaks the invariance under the transformation (B.25), however, instead of
setting m = 0 we can constrain the massive spinor-vector field by

γρψρ = 0 . (B.31)

Using this constraint in the Equation (B.30) leads to the additional relation

∂ρψρ(x) = 0 . (B.32)

Finally, applying these two constraints to the Rarita-Schwinger equation (B.29) shows that
the massive Rarita-Schwinger field obeys the Dirac equation

(i/∂ −m)ψµ(x) = 0 , (B.33)

The Dirac equation for a spinor-vector (B.33) represents 16 DOFs. The two constraints (B.31)
and (B.32) reduce this by four constraints each. Hence we end up with eight DOFs for the
massive Dirac Rarita-Schwinger field.

B.2.2 Stückelberg Rarita-Schwinger Lagrangian

The Lagrangian of the massless Rarita-Schwinger field is invariant under the transforma-
tion (B.25) even without the additional constraint (B.31). As in the case of the vector field
we would like to avoid this change for m→ 0 by introducing a Stückelberg field ψ′(x) [168]

ψµ(x)→ ψµ(x) + ∂µ
m
ψ′(x) . (B.34)

This field shift leads to mixing terms

∆L = −1
2ψµ(x)γ

µρ∂ρψ
′(x) + h.c. (B.35)

In contrast to the result of applying the same technique to the vector field, this does not lead to
a kinetic term for the spinor field, but introduces kinetic mixing between the spinor-vector and
the spinor field. In this case, however, we are able to make use of the second transformation
in (B.25) by introducing the Stückelberg field ψ′′(x)

ψµ(x)→ ψµ(x) + γµψ
′′(x) , (B.36)

which adds to the Lagrangian the terms

∆L = 3ψ′′(x) (iγµ∂µ −m)ψ′′(x) + ψµ(x)
(

2iγµν∂ν − 3
2mγ

µ
)
ψ′′(x) + h.c. (B.37)

Possible mixing terms originating from the combined transformation

ψµ(x)→ ψµ(x) + ∂µ
m
ψ′(x) + γµψ

′′(x) , (B.38)
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vanish. Finally, the field redefinitions

ψ′(x)→ 2
√

2√
3
iψ(x) , ψ′′(x)→ 1√

6
ψ(x) , (B.39)

lead to a canonical kinetic term for the spinor field and eliminate the kinetic mixing. The
Lagrangian is now given by

L = ψµ(x)
(
iγµνρ∂ν − 1

2mγ
µρ
)
ψρ(x) + ψ(x) (iγµ∂µ −m)ψ(x)

−
( √

3
2
√

2
mψµ(x)γµψ(x) + h.c.

)
, (B.40)

and is invariant under the transformation

δψµ(x) =
(
γµ + 4i∂µ

m

)
χ(x) , δψ(x) = −√6χ(x) . (B.41)

For unitary gauge ψ(x)→ 0 the Lagrangian becomes the usual Rarita-Schwinger Lagrangian
and for m→ 0 the Lagrangian becomes the Lagrangian of massless spinor-vector and and a
massless spinor.

L = ψµ(x)iγµνρ∂νψρ(x) + ψ(x)iγµ∂µψ(x) , (B.42)

Hence we deduce that the massless Dirac spinor-vector has four DOFs.

B.2.3 Massless Rarita-Schwinger field

Now we are turning our attention to the massless spinor-vector. First we notice that we are
able to re-express the Lagrangian in terms of the γ5-matrix and the Levi-Civita symbol (cf.
Equation (B.22))

L = ψµ(x)εµνρσγ5γν∂ρψσ(x) . (B.43)

In order to simplify the EOM of the massless Rarita-Schwinger field (B.23) we further notice
that the contraction of the EOM with a γ-matrix leads to the relation (B.30), which in turn
reduces the EOM

/∂ψµ − ∂µγρψρ = 0 . (B.44)

Furthermore we have observed that the massless Lagrangian does not depend on the con-
straint (B.31) in order to be invariant under the transformation (B.25), therefore an obvious
gauge condition is given by demanding that the constraint (B.31) holds as well in the massless
case, which leads to

/∂ψµ = 0 , (B.45)

and shows that also the massless spinor-vector obeys the Dirac equation.
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B.3 Tensor field

Let us finally derive the Lagrangian describing a symmetric tensor field hµν(x) = hνµ(x).
For simplicity we first derive the massless Lagrangian. The most general kinetic Lagrangian
quadratic in the field is given by

L = ∂µhνρ(x)
{
aηµσηντηρλ + b

[
yηµνηρτησλ + (1− y)ηµρηντησλ

]
+c
[
zηµτηνρησλ + (1− z)ηµνηρσητλ

]
+ dηµσηνρητλ

}
∂σhτλ(x)

= a∂σhνρ(x)∂σhνρ(x) + b∂νhνρ(x)∂λhρλ(x) + c∂νhνρ(x)∂ρh(x) + d∂σh(x)∂σh(x) , (B.46)

where h(x) = hµµ(x) = ηµνh
µν(x) and a, . . . , d are constants appearing in the Lagrangian,

whereas y and z are constants, which only appear in the variation of the Lagrangian. Further-
more we have already taken the symmetry in the tensor field and the derivatives into account.
Demanding invariance under gauge transformation with regard to the first index

hνρ(x)→ hνρ(x) + ∂νξρ(x) . (B.47)

leads to

0 =
(
(a+ by)∂ν∂2hνρ(x) + (b(1− y) + cz) ∂ν∂ρ∂σhνσ(x) + (c(1− z) + d) ∂2∂ρh(x)

)
ξρ

(B.48)

Demanding on the other hand invariance under gauge transformation with regard to the
second index

hνρ(x)→ hνρ(x) + ∂ρξν(x) . (B.49)

leads to

0 =
(
(a+ b(1− y)) ∂ρ∂2hνρ(x) + (by + cz)∂ρ∂ν∂λhρλ(x) + (c(1− z) + d) ∂ν∂2h(x)

)
ξν .

(B.50)

Under the assumption that z = y the combined gauge transformation

hνρ(x)→ hνρ(x) + ∂νξρ(x) + ∂ρξν(x) , (B.51)

determines the constants to be a = −1
2b = 1

2c = −d and y = 1
2 . The Lagrangian reads

L0 = a (∂µhνρ(x)∂µhνρ(x)− 2∂µhνρ(x)∂νhµρ(x) + 2∂µh(x)∂ρhµρ(x)− ∂µh(x)∂µh(x)) ,
(B.52)

which leads to the EOM of a massless tensor field

∂2hνρ(x)− ∂µ∂νhµρ(x) + ηνρ∂µ∂σh
µσ(x)− ∂µ∂ρhµν(x) + ∂ν∂ρh(x)− ηνρ∂2h(x) = 0 .

(B.53)
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B.3.1 Fierz Pauli Lagrangian

Let us now turn to the massive tensor field. We find two possible mass terms quadratic in
hµν(x)

∆L = m2hνρ(x)
(
eηντηρλ + fηνρητλ

)
hτλ(x)

= m2
(
ehνρ(x)hνρ(x) + fh2(x)

)
, (B.54)

with two constants e and f . Demanding invariance under gauge transformation (B.51) leads
to either e = f = 0 or m = 0. Invariance under the extended transformation

hµν(x)→ hµν(x) + ∂µ
m
ξν(x) + ∂ν

m
ξµ(x) + ∂µ∂ν

m2 Λ(x) + ηµνΛ(x) , (B.55)

leads to

(2a+ e)∂µ∂σhµσ(x)− (2a− f)∂2h(x)−m (e∂ρhνρ(x) + f∂νh(x))−m2(e+ 4f)h(x) = 0 ,
(B.56)

which is invariant for e = −f = −2a and m = 0. Hence all constants except for a overall
scaling are fixed and we see that only the mass term breaks the invariance. The Fierz-Pauli
Lagrangian for a massive tensor field reads now [169]

L =− 1
2∂ρhµν(x)∂

ρhµν(x) + ∂µhνρ(x)∂νhµρ(x)− ∂µhµν(x)∂νh(x) + 1
2∂ρh(x)∂

ρh(x)

− 1
2m

2
(
hµν(x)hµν − h2(x)

)
, (B.57)

and extremizing results in the Fierz-Pauli equation for a massive tensor field

0 = ∂ρ∂
ρhµν(x)− ∂ρ∂µhρν(x)− ∂ρ∂νhρµ(x) + ηµν∂ρ∂σh

ρσ(x) + ∂µ∂νh(x)− ηµν∂ρ∂ρh(x)
+m2 (hµν(x)− ηµνh(x)) . (B.58)

We have seen, that the mass terms break the gauge invariance of the Fierz Pauli Lagrangian,
however, instead of setting m = 0 we can constrain the massive tensor field to obey

∂νhµν(x) = ∂µh(x) , h(x) = 0 . (B.59)

This simplifies the Fierz Pauli EOM(
∂2 +m2

)
hµν(x) = 0 , (B.60)

which becomes the Klein-Gordon equation. Hence for a real symmetric tensor the Klein-Gordon
equation gives ten DOFs, which is reduced to five DOF by the constraints (B.59).

B.3.2 Stückelberg Fierz-Pauli Lagrangian

The Lagrangian of the massless tensor field is invariant under the transformation (B.55) even
without the additional constraint (B.59). In order to keep track of the DOFs at m→ 0 we
introduce Stückelberg fields (following [170])

hµν(x)→ hµν(x) + ∂µ
m
Aν(x) + ∂ν

m
Aµ(x) , (B.61)
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This introduces new terms to the Fierz-Pauli Lagrangian

L = L0 − 1
2m

2
(
hµν(x)hµν(x)− h2(x)

)
− 1

2Fµν(x)F
µν(x)− 2m (hµν(x)∂µAν(x)− h(x)∂µAµ(x)) , (B.62)

which now has the gauge symmetry

δhµν(x) = ∂µξν(x) + ∂νξµ(x) , δAµ(x) = −mξµ(x) . (B.63)

Gauge fixing Aµ(x) = 0 leads to the original Lagrangian. Rescaling the vector field

Aµ(x)→ 1√
2
Aµ(x) , (B.64)

leads to a Lagrangian with canonical kinetic terms

L = L0 − 1
2m

2
(
hµν(x)hµν(x)− h2(x)

)
− 1

4Fµν(x)F
µν(x)

−√2m (hµν(x)∂µAν(x)− h(x)∂µAµ(x)) . (B.65)

The massless limit, however, still possesses a gauge freedom not present in the massive
Lagrangian

Aµ(x)→ Aµ(x) + ∂µΛ(x) . (B.66)

Therefore, we have to introduce a further Stückelberg field

Aµ(x)→ Aµ(x) + ∂µ
m
φ′(x) . (B.67)

The Lagrangian is then given by

L = L0 − 1
2m

2
(
hµν(x)hµν(x)− h2(x)

)
− 1

4Fµν(x)F
µν(x) (B.68)

−√2m (hµν(x)∂µAν(x)− h(x)∂µAµ(x))−
√

2
(
hµν(x)∂µ∂νφ′(x)− h(x)∂2φ′(x)

)
,

and exhibits the gauge symmetries

δhµν(x) = ∂µξν(x) + ∂νξµ(x) , δAµ(x) = −mξµ(x) , (B.69a)
δAµ(x) = ∂µΛ(x) , δφ′(x) = −mΛ(x) . (B.69b)

Gauge fixing φ′(x) = 0 leads to the previous Lagrangian, the scalar and the tensor field,
however, are kinetically coupled. We resolve this by the final field shift

hµν(x) = hµν(x) + ηµνφ
′′(x) , (B.70)

which leads to

L = L0 − 1
2m

2
(
hµν(x)hµν(x)− h2(x)

)
− 1

4Fµν(x)F
µν(x)

−√2m (hµν(x)∂µAν(x)− h(x)∂µAµ(x))−
√

2
(
hµν(x)∂µ∂νφ′(x)− h(x)∂2φ′(x)

)
+ 3∂µφ′′(x)∂µφ′′ + 3

√
2φ′′(x)∂2φ′(x) + 2∂µh(x)∂µφ′′(x) + 2∂µhµν(x)∂νφ′′(x)

+ 6m2φ′′2(x) + 3m2φ′′(x)h(x) + 3
√

2mφ′′(x)∂µAµ(x) , (B.71)
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Finally, by rescaling the scalar fields in order to have a canonical kinetic term for the scalar
field with vanishing kinetic mixing between the scalar and the tensor field

φ′(x)→ −
√

2
3φ(x) , φ′′(x)→ 1√

3
φ(x) , (B.72)

we arrive at the desired Lagrangian

L = L0 − 1
2m

2
(
hµν(x)hµν(x)− h2(x)

)
− 1

4Fµν(x)F
µν(x)− ∂µφ∂µφ+ 2m2φ2(x)

−√2m (hµν(x)∂µAν(x)− h(x)∂µAµ(x)) +
√

6mφ(x)∂µAµ(x) +
√

3m2h(x)φ(x) (B.73)

Unitary gauge Aµ(x), φ(x) → 0 gives the Fierz-Pauli Lagrangian and taking the massless
limit m→ 0 leads to the Lagrangian of a massless tensor field, a massless vector field and a
massless scalar field

L = L0 − 1
4Fµν(x)F

µν(x)− ∂µφ(x)∂µφ(x) . (B.74)

Therefore, we see that the real massless tensor field has two DOFs.

B.3.3 Massless tensor field

Contracting the EOM of the massless tensor field (B.53) with the metric results in

∂µ∂νh
µν(x)− ∂2h(x) = 0 , (B.75)

which can be used in order to simplify the EOM

∂2hνρ(x)− ∂µ∂νhµρ(x)− ∂µ∂ρhµν(x) + ∂ν∂ρh(x) = 0 . (B.76)

We have seen that we have to eliminate three DOFs by gauging the massless tensor field.
Demanding the viability of the constraint (B.59) also in the massless case simplifies the EOM

∂2hµν(x) = 0 . (B.77)

Therefore, in the so called transverse traceless gauge, also the massless tensor field obeys the
Klein-Gordon equation.

B.4 Momentum space
In order to perform actual calculations we are interested in the Fourier transform of the fields

φµ(x) = φ+
µ (p, s)e−ipx , (B.78)

where s runs over the spin DOFs derived in the previous sections. The various constraints
we have derived hold as well in momentum space. Furthermore we will need the polarisation
tensor, which is the spin sum over the product of two gauge fields

Φ±µν(p) =
∑
s

φ†±µ (p, s)φ±ν (p, s) . (B.79)

Due to the normalization of the fields the contraction of the polarization tensor with the
metric leads to

ηµνΦ±µν(p) = sN . (B.80)

and N depends on the normalization.
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B.4.1 Spinor

In Section 3.8 we have calculated the decay widths and branching ratios of the lightest and
next-to-lightest supersymmetric particle. As these supersymmetric fermions are Majorana
fermions it turns out to be advantageous to perform this calculation in the two-component
spinor notation. Here we summarise the formulas which are important for our calculations,
the details of the two-component spinor notation are given in [80]. Dirac spinors u(p) and
v(p) are normalized according to

u(p, s)u(p, s′) = 2mdss′ , v(p, s)v(p, s′) = −2mdss′ , (B.81)

and the spin sum is given by∑
s

u(p, s)u(p, s) = γp+m .
∑
s

v(p, s)v(p, s) = γp−m . (B.82)

Weyl Spinors x(p) and y(p) are normalized according to∑
s

x(p, s)x†(p, s) = pσ ,
∑
s

y(p, s)y†(p, s) = pσ , (B.83a)∑
s

x†(p, s)x(p, s) = pσ ,
∑
s

y†(p, s)y(p, s) = pσ , (B.83b)∑
s

x(p, s)y(p, s) = m ,
∑
s

y†(p, s)x†(p, s) = m , (B.83c)∑
s

y(p, s)x(p, s) = −m ,
∑
s

x†(p, s)y†(p, s) = −m , (B.83d)

We need the trace over a even number of σ-matrices

trσµσν = trσµσν = 2gµν , (B.84a)
trσµσνσρσσ = 2 (gµνgρσ − gµρgνσ + gµσgνρ + iεµνρσ) , (B.84b)
trσµσνσρσσ = 2 (gµνgρσ − gµρgνσ + gµσgνρ − iεµνρσ) . (B.84c)

Higher products of σ-matrices can be derived via

[σµ, σν ]+ = 2ηµν . (B.85)

B.4.2 Vector

In momentum space the constraint for a massive vector field reads

pµε
µ(p, s) = 0 . (B.86)

The most general polarization tensor is given by

Π±µν(p) = aηµν + bpµpν , (B.87)

The polarization tensor is constraint by

pµpνΠ±µν(p) = 0 , ηµνΠµν(p) = 3N . (B.88)
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which leads to

Πµν(p) = −ηµν + pµpν
m2 , (B.89)

where we have already used the proper normalization N = −1
In the massless case every contraction which contains two momenta is bound to vanish, a

full calculation after gauge fixing reveals, that the polarization tensor is just given by

Πµν(p) = −ηµν . (B.90)

B.4.3 Spinor-vector

The EOM of spinor-vectors is constrained by

pµψ
µ(p, s) = 0 , γµψ

µ(p, s) = 0 . (B.91)

The most general polarization tensor reads

P±µν(p) = aηµν + bγµγν + cpµγµ + dγµpν + epµpν . (B.92)

where we have used five constants a . . . e which have to be calculated using the five constraints

ηµνP±µν(p) = 4N , γµγνP±µν(p) = pµγνP±µν(p) = γµpνP±µν(p) = pµpνP±µν(p) = 0 , (B.93)

which leads to

P±µν(p) = (m∓ pγ)
(

Πµν(p)− 1
3Πµσ(p)γσΠνλ(p)γλ

)
= (m+ pγ)

(
−ηµν + 1

3γµγν −
1
3(pγ)pµγµ

m2 −
1
3(pγ)γµpν

m2 + 2
3
pµpν
m2

)
. (B.94)

where we have already applied the four spinor normalization N = −1
2(m+ pγ).

B.4.4 Tensor

For the tensor field the most general polarisation tensor is given by

Πµνρσ(p) = aηµνηρσ + bηµρηνσ + cηµσηνρ + dηµνpρpσ + eηµρpνpσ

+ fηµσpνpρ + gηνρpµpσ + hηνσpµpρ + iηρσpµpν + jpµpνpρpσ , (B.95)

where we have introduced ten constants a . . . j, which have to be fixed by applying the
ten constraints, which originate in the tracelessness, the initial value condition and the
normalization

ηµρηνσΠµνρσ(p) = ηµσηνρΠµνρσ(p) = 5N , (B.96a)
ηµνηρσΠµνρσ(p) = pµpνpρpσΠµνρσ(p) = 0 , (B.96b)

ηµνpρpσΠµνρσ(p) = ηµρpνpσΠµνρσ(p) = ηµσpνpρΠµνρσ(p) = 0 , (B.96c)
ηνρpµpσΠµνρσ(p) = ηνσpµpρΠµνρσ(p) = ηρσpµpνΠµνρσ(p) = 0 , (B.96d)
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which leads to the polarisation tensor

Πµνρσ(p) = 1
2 (Πµρ(p)Πνσ(p) + Πµσ(p)Πνρ(p))− 1

3Πµν(p)Πρσ(p)

=− 1
3ηµνηρσ + 1

2ηµρηνσ + 1
2ηµσηνρ + 1

3
ηµνpρpσ
m2 − 1

2
ηµρpνpσ
m2

− 1
2
ηµσpνpρ
m2 − 1

2
ηνρpµpσ
m2 − 1

2
ηνσpµpρ
m2 + 1

3
ηρσpµpν
m2 + 2

3
pµpνpρpσ

m4 , (B.97)

where we have already used the proper normalization N = −1.
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