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We present a first Nf = 2 lattice estimate of the hadronic coupling g12 which parametrises the
strong decay of a radially excited B∗ meson into the ground state B meson at zero recoil. We work
in the static limit of Heavy Quark Effective Theory (HQET) and solve a Generalised Eigenvalue
Problem (GEVP), which is necessary for the extraction of excited state properties. After an extrap-
olation to the continuum limit and a check of the pion mass dependence, we obtain g12 = −0.17(4).

PACS numbers: 12.38.Gc, 13.20.He.

I. INTRODUCTION

Questions have been raised recently on the poor handling of excited states in the analyses of experimental
data and their comparison with theoretical predictions. For instance, it has been advocated that the ∼ 3σ
discrepancy observed between V excl

cb and V incl
cb may be reduced if the transition B → D′ were large. This

attractive hypothesis implies a suppression of the B → D(∗) hadronic form factors, as a study in the OPE
formalism suggests [1]. On the other hand, it has been argued that the light-cone sum rule determination
of the gD∗Dπ coupling, which parametrises the D∗ → Dπ decay, likely fails to reproduce the experimental
measurement unless one explicitly includes the contribution from the first radial excited D(∗)′ state on the
hadronic side of the three-point Borel sum rule [2]. Comparison with sum rules is of particular importance

because the heavy mass dependence of ĝQ ≡ gH∗Hπfπ
2
√
mHmH∗

deduced from recent lattice simulations [3–8] and

experiment [9] seems much weaker than expected from analytical methods [10], as shown in Figure 1.
Techniques have been developed to study excited states of mesons using lattice QCD [11], especially to

extract the spectrum [12–15]. Similar techniques can now be applied to three-point correlation functions
to perhaps illuminate the phenomenological issues discussed above. In this letter we will report on the
lattice computation of g12 ≡ 〈B∗′ |Ai|B〉 in the static limit of HQET, where Ai is the axial vector bilinear

of light quarks and B∗′

is polarised along the ith direction. As a by-product of our work, we will also
report on the computation of g11 ≡ 〈B∗|Ai|B〉 and g22 ≡ 〈B∗′ |Ai|B′〉.
The Heavy Quark Symmetry of leading order HQET is well suited for our qualitative study. As the

spectra of excited B and B∗ mesons are degenerate, it is enough to solve a single Generalized Eigenvalue
Problem (GEVP) while degrees of freedom ∼ mb, that are somehow irrelevant for the dynamics of the
cloud of light quarks and gluons that governs the process we examine, are integrated out. The plan of the
letter is the following: in Sec. II we describe our approach while in Sec. III we present our lattice set-up
and discuss results before concluding in Sec. IV.

∗ On a leave of absence from CERN
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FIG. 1: Experimental measurement [9], lattice computations [3–7] and sum rules estimates [10] of ĝc, ĝb and ĝ ≡ ĝ∞.
We have performed a weighted average of recent ĝ lattice results at Nf = 2 with respect to the error quoted in
[3–6].

II. EXTRACTION OF 〈B∗
′

|Ai|B〉

The transition amplitude of interest is parametrised by

〈B∗′

(p′, ǫλ)|Aµ|B(p)〉 = 2mB∗
′A0(q

2)
ǫ(λ) · q
q2

qµ + (mB +mB∗
′ )A1(q

2)

(

ǫ(λ)µ − ǫ(λ) · q
q2

qµ
)

+ A2(q
2)

ǫ(λ) · q
mB +mB∗

′

[

(pB + pB∗
′ )µ +

m2
B −m2

B∗
′

q2
qµ

]

, (1)

with q = p′−p. In the zero recoil kinematic configuration where ~p = ~p′ = ~0, one has q2max = (mB∗
′ −mB)

2

so that

〈B∗′

(p′, ǫλ)|Ai|B(p)〉 = (mB +mB∗
′ )A1(q

2
max)ǫ

(λ) i . (2)

At that stage it is useful to introduce the HQET normalisation of states: |H〉 =
√
2mH |H〉HQET, with

〈H(p)|H(p′)〉 = 2E(p)δ3(~p− ~p′):

〈B∗′

(p′, ǫλ)|Ai|B(p)〉HQET =
mB +mB∗

′

2
√
mBmB∗

′

A1(q
2
max)ǫ

(λ) i . (3)

In the static limit we are left with 〈B∗′

(p′, ǫλ)|Ai|B(p)〉HQET = A1(q
2
max)ǫ

(λ) i. Choosing the quantization

axis along the z direction and the polarisation vector ǫµ(0) =







0
0
0
1






, with the metric (+,-,-,-), we get

finally A1(q
2
max) = 〈B∗′

(p′, ǫ0)|A3|B(p)〉HQET. Of course, extracting g11 ≡ ĝ and g22 is similar, except that
the relevant axial form factors are defined at q2 = 0.
GEVP methods [16–18] are a very efficient tool to study excited states on the lattice. We consider

N × N matrices of two-point correlation functions together with the corresponding matrices of three-

point correlation functions C
(′)(2)
ij (t) ≡ 〈O(′)

i (t)O
(′)†
j (0)〉 and C

(3)
ij (t, ts) ≡ 〈O′

i(ts)OΓ(t)O
†
j (0)〉, where i, j

represent different wave functions and Dirac structures with quantum numbers generically denoted (h).
More explicitly, the Oi are interpolating fields of pseudoscalar static-light mesons, the O′

i interpolating
fields of vector static-light mesons and OΓ the axial vector light-light bilinear of quarks.
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In HQET the spectral decomposition reads C
(′)(2)
ij (t) =

∑

n ψ
∗(h(′))
ni ψ

(h(′))
nj e−Ent, ψ

(h(′))
ni =

〈M (h(′))
n |Ô†(′)

i |0〉. The purpose of solving GEVP is to construct quantities which tend toward the desired
excited state properties asymptotically in time. In practice we solve

∑

j

C
(2)
ij (t)v

(n)
j (t, t0) =

∑

j

λ(n)(t, t0)C
(2)
ij (t0)v

(n)
j (t, t0), λ(n)(t, t0) = e−Eeff

n (t,t0)(t−t0) . (4)

We will use two ratio methods, GEVP and sGEVP, to extract the matrix elementMmn ≡ 〈M (h)
n |ÔΓ|M (h′)

m 〉.
Those ratios converge quickly as the contribution of higher excited states is strongly suppressed [19]1 and
read:

RGEVP
mn (t, ts) =

〈v(n)(ts − t, t0), C
(3)
Γ (t, ts)v

(m)(t, t0)〉λ(m)(t0 + a, t0)
−t/2λ(n)(t0 + a, t0)

t−ts/2

√

〈v(n)(ts − t, t0), C(2)(ts − t)v(n)(ts − t, t0)〉〈v(m)(t, t0), C′(2)(t)v(m)(t, t0)〉
t/a≫1,(ts−t)/a≫1∼ Mmn +O(e−∆N+1,mt, e−∆N+1,n(ts−t)) , (5)

∆N+1,n = EN+1 − En , 〈a, b〉 ≡
∑

i

aibi .

RsGEVP
mn (t) = ∂t

[

〈v(m)(t, t0), [K
mn(t, t0)/λ

(n)(t, t0)−Kmn(t0, t0)]v
(n)(t, t0)〉

√

〈v(m)(t, t0), Dmn(t, t0)v(m)(t, t0)〉
√

〈v(n)(t, t0), C(2)(t0)v(n)(t, t0)〉

]

t/a≫1,(ts−t)/a≫1∼ Mmn +O(∆te−∆t0) , (6)

Kmn
ij (t, t0) =

∑

t1

e−(t−t1)Σ
mn(t,t0)C

(3)
ij (t1, t), Dmn

ij (t, t0) = e−tΣmn(t,t0)C
′(2)
ij (t),

In the appendix, we have calculated the time dependence of the corrections in RsGEVP
mn (t) to first order in

ǫ, where

C
(2)
ij (t) = C

(2,0)
ij (t) + ǫC

(2,1)
ij (t) =

N
∑

n=1

e−Entψniψnj +

∞
∑

n=N+1

e−Entψniψnj ,

RsGEVP
mn =Mmn + ǫRsGEVP,1

mn

We have found that for n > m the dominant contribution to ǫRsGEVP,1
mn is te−(EN+1−En)t and for n < m

the leading contribution is in e−(EN+1−Em)t.

The global phase is fixed by imposing the positivity of the ‘decay constant’ f
M

(h)
n

≡ 〈M (h)
n |O†

L|0〉 =
∑

i C
(2)
Li (t)v

(n)
i (t,t0)λ

(n)(t0+a,t0)
−t/2

√

〈v(n)(t,t0),C(2)(t)v
(n)
j (t,t0)〉

, where L refers to some local interpolating field.

III. LATTICE RESULTS

We have performed measurements on a subset of the Nf = 2 CLS lattice ensembles, which employ the
plaquette gauge action and non-perturbatively O(a) improved Wilson-Clover fermions. The parameters
of the ensembles used in this work are collected in Table I. Three lattice spacings (0.05 fm . a . 0.08 fm)

1 We give in the Appendix a hint of the proof of the t behaviour of RsGEVP
mn (t), as it was not discussed in detail in [19].
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FIG. 2: Plateau of E2 − E1 for the CLS ensemble E5.
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FIG. 3: Dependence of bare g12 on the size of the GEVP (left) and on the radius of wave functions (right) for the
CLS ensemble E5.

are considered with pion masses in the range [310MeV, 440MeV]. The static-light correlation functions
employ the ‘HYP2’ discretization of the static quark action [20, 21] and stochastically estimated all-to-all
light quark propagators with full time dilution [22]. A single fully time-diluted stochastic source has been
used on each gauge configuration, except for the ensemble E5 where we have four stochastic sources for
each gauge configuration. We use interpolating fields for static-light mesons of the form [23]

Oi = ψ̄hΓ (1 + κGa
2∆)Riψl ,

where κG = 0.1, ri ≡ 2a
√
κGRi ≤ 0.6fm, and ∆ is a gauge covariant Laplacian made of 3 times APE-

blocked links [24].
In order to reduce the statistical uncertainty in ratio (6), we have taken the asymptotic value of the

energy splittings Σmn
∞ = En − Em. We have shown in Figure 2 an example plateau for Σ12

∞. In addition
we have set ts to 2t in (5). We have solved both 3× 3 and 4× 4 GEVP systems and checked the stability
of the results when the local operator is included, as shown in Figure 3. To check the dependence on t0,
to which the contribution from higher excited states is sensitive, we have both fixed it at a small value
(typically, 2a) and let it vary as t− a.
Though the uncertainty is a bit larger, we have confirmed the finding by [19] that using sGEVP (6)

seems beneficial compared to the standard GEVP approach (5) to more strongly suppress contamination
from higher excited states in the hadronic matrix element we measure. As illustrated in Figure 4, plateaux
obtained from the GEVP and sGEVP are compatible: -0.25(1) for GEVP and -0.23(2) for sGEVP, with
one additional point in the plateau of the sGEVP. Therefore, in the following we give results using the
sGEVP only.
After applying a non-perturbative procedure to renormalise the axial light-light current [25, 26], we

are ready to extrapolate to the continuum limit. Inspired by Heavy Meson Chiral Perturbation Theory
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FIG. 4: Plateaus of bare g12 extracted by GEVP (left) and sGEVP (right) for the CLS ensemble E5.

at leading order [27, 28] and due to the O(a) improvement of the three-point correlation functions (the
improved part of the axial current, acA∂iP , is absent at zero momentum), we apply two fit forms:

g12 = C0 + (a/aβ=5.3)
2C1 + (mπ/m

0
π)

2C2 , (7)

g12 = C′
0 + (a/aβ=5.3)

2C′
1 . (8)

We show in Figure 5 the continuum extrapolation (7) of g12. We observe quite large cut-off effects (∼ 30%
at β = 5.3), it is thus crucial to have several lattice spacings. We obtain finally, using (7) as the best
estimate of the central value,

g12 = −0.17(3)(2) , (9)

where the first error is statistical, and the second error corresponds to the chiral uncertainty that we
evaluate from the discrepancy between (7) and (8). We collect in Table II the value of g12 at each lattice
point and at the physical point as well as the fit parameters for (7) and (8).
In simulations with light dynamical quarks, the onset of multi-hadron thresholds due to the emission

of pions must be considered when examining excited B meson properties. Such thresholds significantly
complicate the extraction of hadron-to-hadron matrix elements from the two- and three-point correlation
functions considered here. However with the L < 3 fm volumes in this work, the P -wave decay B∗′

(~0) →
B(~p)π(−~p) is kinematically forbidden. The S-wave decay B∗′ → B∗

1π is potentially more dangerous.
Examining the mass splittings Σ12 in Table III, we notice that 630MeV . Σ12 . 710MeV. If we assume
that 400MeV . mB∗

1
−mB . 500MeV in the pion mass range [310MeV, 440MeV], (as has been found in

a recent lattice study of the static light meson spectrum [29]), we conclude that our analysis is safe from
these threshold effects. Moreover the bare couplings g12 we obtain are similar to the quenched result of
Ref. [19].
We show in Figure 6 a typical plateau of the bare coupling g11 and the extrapolation to the continuum

and chiral limit. That extrapolation is smooth, with a negligible dependence on mπ, and we obtain from

CLS label β L3 × T κ a [fm] mπ [MeV] # of cnfgs
A5 5.2 323 × 64 0.13594 0.075 330 500
E5 5.3 323 × 64 0.13625 0.065 435 500
F6 483 × 96 0.13635 310 600

N6 5.5 483 × 96 0.13667 0.048 340 400

TABLE I: Parameters of the simulations.



6

g12
A5 -0.245(29)
E5 -0.186(8)
F6 -0.207(15)
N6 -0.181(12)

physical point -0.173(28)(18)

fit (7) fit (8)
C0 -0.178(29) -0.155(26)
C1 -0.063(32) -0.040(29)
C2 0.0053(29) -

TABLE II: Value of g12 at the lattice points and at the physical point (left) as well as the fit parameters of Eq. (7)
and (8) (right).

aΣ12

A5 0.255(8)
E5 0.222(8)
F6 0.216(12)
N6 0.173(7)

TABLE III: Mass splitting Σ12 in lattice units. The error we quote is the discrepancy between plateaux that we
extract for different time ranges {[tmin, tmax], [tmin ± 0.2r0, tmax ± 0.2r0]}.

the fit form (7) g11 = 0.52(2), in excellent agreement with a computation by the ALPHA Collaboration
focused on that quantity [5]. We have added an error of 2% due to higher excited states which is estimated
from plateaux at early times with a range ending at ∼ r0. Following the same strategy, we show in
Figure 7 a typical plateau of the bare coupling g22 and the extrapolation to the continuum and chiral
limit, once again quite smooth, with an almost absent dependence on the sea quark mass. We obtain
from the fit form (8) g22 = 0.38(4). Remarkably, the “diagonal” couplings g11 and g22 are significantly
larger than the off-diagonal one g12. This suggests that neglecting the contribution from B′ mesons to the
three-point light-cone sum rule used to obtain gB∗Bπ introduces uncontrolled systematics. Note that the
decay constant fB∗

′ itself is large compared to fB [30, 31]. For completeness we have collected in Table IV
the value of g11 and g22 at each lattice point and at the physical point and the fit parameters of (7) and
(8).

0 0.002 0.004 0.006

a
2
 [fm

2
]

-0.25

-0.2

-0.15

-0.1

g 12

mπ = 435 MeV

mπ = 310 MeV

mπ = mπ
phys

FIG. 5: Continuum and chiral extrapolation of g12.
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g11 g22
A5 0.541(5) 0.492(19)
E5 0.535(8) 0.455(10)
F6 0.528(4) 0.474(26)
N6 0.532(6) 0.434(23)

physical point 0.516(12)(5)(10) 0.385(24)(28)

g11: fit (7) g11: fit (8) g22: fit (7) g22: fit (8)
C0 0.515(13) 0.521(9) 0.416(27) 0.385(24)
C1 0.012(9) 0.012(9) 0.074(25) 0.076(26)
C2 0.0011(15) - -0.0033(33) -

TABLE IV: Value of g11 and g22 at the lattice points and at the physical point (left) and fit parameters of eq. (7)
and (8) (right). The third error on g11 is an estimate of the effects of higher excited states.

4 8 12
t/a
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0.64
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0.72

0.76

0.8

g 11
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)

0 0.002 0.004 0.006

a
2
 [fm

2
]

0.5

0.52

0.54

g 11

FIG. 6: Plateau of bare g11 for the CLS ensemble E5 (left) and its extrapolation to the continuum and chiral limit
(right).

IV. CONCLUSION

We have performed a first estimate of the axial form factor A1(q
2
max) ≡ g12 parametrising at zero recoil

the decay B∗′ → B in the static limit of HQET from Nf = 2 lattice simulations. Assuming the positivity of
decay constants fB and fB∗

′ , we have obtained a negative value for this form factor. It is almost three times
smaller than the g11 coupling: g12 = −0.17(4) while g11 = 0.52(2). Moreover we find g22 = 0.38(4), which is
not strongly suppressed with respect to g11. Our work is a first hint of confirmation of the statement made
in Ref. [2] to explain the small value of gD∗Dπ computed analytically when compared to experiment. This
computation using light-cone Borel sum rules may have been too naive. Following Ref. [32], a next step in
our general study of excited static-light meson states would be the measurement of A1(0) by computing

the distribution in r of the axial density fA(r) ≡ 〈B∗′ |ψ̄lγ
iγ5ψl(r)|B〉 and A1(0) = 4π

∫∞
0 r2fA(r)e

i~q·~r dr.
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Appendix

In this section we discuss the time dependence of RsGEVP
mn (6). To simplify notation, we have fixed a to

1. We have followed the strategy of Ref. [18] to treat in perturbation theory the full GEVP, with an exact
computation of the N lowest states:

C
(2)
ij (t) = 〈Oi(t)Oj(0)〉 = C

(2,0)
ij (t) + ǫC

(2,1)
ij (t) =

N
∑

n=1

e−Entψniψnj +

∞
∑

n=N+1

e−Entψniψnj ,

C(2)(t)vn(t, t0) = λn(t, t0)C
(2)(t0)vn(t, t0) ,

vn(t, t0) = v(0)n (t, t0) + ǫv(1)n (t, t0) ,

λn(t, t0) = λ(0)n (t, t0) + ǫλ(1)n (t, t0) .

Vectors are normalised such that

〈v(0)m , C(2,0)(t0)v
(0)
n 〉 = ρnδnm ,

〈v(1)n , C(2,0)(t0)v
(0)
n 〉 = 0 .

where ρn = e−Ent0 . Introducing the dual vectors un defined by
∑N

n=1 uniψmi = δmn ∀n ≤ N , we note
that

C(2,0)(t)un = e−Ent ψn, v(0)n (t, t0) = un, λ(0)n (t, t0) = e−En(t−t0).

At first order in ǫ, we have

λ(1)n = ρ−1
n

(

v(0)n ,∆nv
(0)
n

)

,

v(1)n =
∑

m 6=n

v(0)m ρ−1
m

(v
(0)
m ,∆nv

(0)
n )

λ
(0)
n − λ

(0)
m

=
∑

n6=m

αnm v(0)m ,
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where ∆n = C(2,1)(t)− λ
(0)
n (t, t0)C

(2,1)(t0). With cn,m,l = 〈un, ψl〉〈um, ψl〉 we get:

ǫ
λ
(1)
n (t, t0)

λ
(0)
n (t, t0)

= −
∑

l>N

cn,n,le
−(El−En)t0

[

1− e−(El−En)(t−t0)
]

,

ǫ αnm(t, t0) = −
∑

l>N

cn,m,l
1− e−(El−En)(t−t0)

1− e−(Em−En)(t−t0)
e−(El−Em)t0 .

Finally the normalisation conditions read

〈vn(t, t0), C(t0)vn(t, t0)〉 = ρn + ǫ〈v(0)n , C(2,1)(t0)v
(0)
n 〉 .

We are ready to develop (6) to first order in ǫ:

Meff,s
mn = ∂t

{

〈vm(t, t0), [K(t, t0)/λn(t, t0)−K(t0, t0)] vn(t, t0)〉
[

〈vm(t, t0), C(2)(t0)vm(t, t0)〉〈vn(t, t0), C(2)(t0)vn(t, t0)〉
]1/2

e
t0
2 Σ(t0,t0)

}

= Meff,s,0
mn + ǫMeff,s,1

mn ,

Meff,s,0
mn = ∂t







〈um,
[

K(t, t0)/λ
(0)
n (t, t0)−K(t0, t0)

]

un〉
[

〈um, C(2)(t0)um〉〈un, C(2)(t0)un〉
]1/2

e
t0
2 Σ(t0,t0)







.

With

〈um,K(t, t0)un〉 =
∑

t1

e−Σ(t−t1)〈um, C(3)(t, t1)un〉 = hmn te
−Ent, 〈un, C(2)(t0)un〉 = ρn = e−Ent0

we have at leading order

Meff,s,0
mn = hmn.

The subleading order reads

ǫMeff,s,1
mn = ǫ∂t

5
∑

a=1

Ta.

T1 = − λ
(1)
n (t, t0)

(λ
(0)
n (t, t0))2

〈v(0)m (t, t0),K(t, t0)v
(0)
n (t, t0)〉

(ρnρm)1/2
e

t0
2 Σ(t0,t0) = −λ

(1)
n (t, t0)

λ
(0)
n (t, t0)

〈v(0)m (t, t0),K(t, t0)v
(0)
n (t, t0)〉eEnt .

The first subleading contribution is given by

T1 = −hmn t×
λ
(1)
n (t, t0)

λ
(0)
n (t, t0)

∼ cn,n,N+1 hmn × te−∆N+1,nt0
[

1− e−∆N+1,n(t−t0)
]

.

Defining the discrete derivative ∂tA = A(t+1)−A(t), and taking at the end of the computation t0 = t−1,
we get

∂tT1 ∼ cn,n,N+1 hmn

(

1− e−∆N+1,n
)

×
(

t+ 1 + e∆N+1,n
)

e−∆N+1,nt.

The second subleading contribution reads

T2 =

(

v
(1)
m (t, t0),

[

K(t, t0)/λ
(0)
n (t, t0)−K(t0, t0)

]

v
(0)
n (t, t0)

)

(ρnρm)1/2
e

t0
2 Σ(t0,t0) =

∑

p6=m

αmp 〈v(0)p (t, t0),
[

K(t, t0)e
Ent −K(t0, t0)e

Ent0
]

v(0)n (t, t0)〉 .
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With some algebra, we deduce

〈v(0)p (t, t0),K(t, t0)v
(0)
n (t, t0)〉eEnt =

∑

t1

e−(t−t1)(En−Em)
∑

rs

〈up, ψr〉〈ψs, un〉hrse−Er(t−t1)e−Est1eEnt

=
∑

t1

e−(t−t1)(En−Em)hpne
−Ep(t−t1)e−Ent1eEnt

=
∑

t1

hpne
−(Ep−Em)t1 ,

and

〈v(0)p (t, t0),
[

K(t, t0)e
Ent −K(t0, t0)e

Ent0
]

v(0)n (t, t0)〉 =
t
∑

t1=t0+1

hpne
−(Ep−Em)t1 .

Finally,

T2 =
∑

p6=m

[

αmp(t, t0)

t
∑

t1=t0+1

hpne
−(Ep−Em)t1

]

,

∂tT2 =
∑

p6=m

[

(αmp(t+ 1, t0)− αmp(t, t0))

t
∑

t1=t0+1

hpne
−(Ep−Em)t1 + αmp(t+ 1, t0) hpne

−(Ep−Em)(t+1)

]

.

Setting t0 = t− 1, the first term reads

∑

p6=m

(αmp(t+ 1, t0)− αmp(t, t0))× e−(Ep−Em)t

∼ −
∑

p6=m

[

cm,p,N+1e
−(EN+1−Ep)(t−1) ×

(

1− e−2(EN+1−Em)

1− e−2(Ep−Em)
− 1− e−(EN+1−Em)

1− e−(Ep−Em)

)]

× hpne
−(Ep−Em)t

∼ −e−(EN+1−Em)t
∑

p6=m

[

cm,p,N+1hpne
(EN+1−Ep) ×

(

1− e−2(EN+1−Em)

1− e−2(Ep−Em)
− 1− e−(EN+1−Em)

1− e−(Ep−Em)

)]

,

and the second term reads

∑

p6=m

αmp(t+ 1, t0) hpne
−(Ep−Em)(t+1)

∼ −
∑

p6=m

e−(EN+1−Ep)(t−1) 1− e−2(EN+1−Em)

1− e−2(Ep−Em)
cm,p,N+1 hpn × e−(Ep−Em)(t+1)

∼ −e−(EN+1−Em)t
∑

p6=m

e(EN+1+Em−2Ep)
1− e−2(EN+1−Em)

1− e−2(Ep−Em)
cm,p,N+1 hpn.

We find

∂tT2 ∼ e−(EN+1−Em)t
∑

p6=m

cm,p,N+1hpn
1− e−(EN+1−Em)

1− e−(Em−Ep)
.

The third contribution

T3 =

(

v
(0)
m (t, t0),

[

K(t, t0)/λ
(0)
n (t, t0)−K(t0, t0)

]

v
(1)
n (t, t0)

)

(ρnρm)1/2
e

t0
2
Σ(t0,t0)
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is obtained similarly to ∂tT2, permuting m and n.
The fourth subleading contribution reads

T4 =
1

λ
(0)
n (t, t0)

〈v(0)m (t, t0),K
(1)(t, t0)v

(0)
n (t, t0)〉

(ρnρm)1/2
e

t0
2 Σ(t0,t0) = 〈v(0)m (t, t0),K

(1)(t, t0)v
(0)
n (t, t0)〉eEnt .

With some algebra we deduce

〈v(0)m (t, t0),K
(1)(t, t0)v

(0)
n (t, t0)〉 =

∑

t1

e−(En−Em)(t−t1)
∑

(r or s)>N

〈um, ψr〉〈ψs, un〉hrse−Er(t−t1)e−Est1

=
∑

t1

e−(En−Em)(t−t1)〈um, ψN+1〉hN+1,ne
−EN+1(t−t1)e−Ent1

+
∑

t1

e−(En−Em)(t−t1)〈un, ψN+1〉hN+1,me
−Em(t−t1)e−EN+1t1

+
∑

t1

e−(En−Em)(t−t1)
∑

(r,s)>N

〈un, ψr〉〈um, ψs〉hr,se−Er(t−t1)e−Est1

∼
∑

t1

e−(En−Em)t1〈um, ψN+1〉hN+1,ne
−EN+1t1e−En(t−t1)

+
∑

t1

e−En(t−t1)〈un, ψN+1〉hN+1,me
−EN+1t1

+
∑

t1

e−(En−Em)(t−t1)〈un, ψN+1〉〈um, ψN+1〉hN+1,N+1e
−EN+1t

∼ e−Ent〈um, ψN+1〉hN+1,n

∑

t1

e−(EN+1−Em)t1

+ e−Ent〈un, ψN+1〉hN+1,m

∑

t1

e−(EN+1−En)t1

+ cn,m,N+1 hN+1,N+1 e
−EN+1t

∑

t1

e−(En−Em)t1 ,

and we obtain

∂tT4 ∼+ 〈um, ψN+1〉hN+1,ne
−(EN+1−Em)(t+1)

+ 〈un, ψN+1〉hN+1,me
−(EN+1−En)(t+1)

− cn,m,N+1hN+1,N+1
e−(EN+1−En) − 1

e−(En−Em) − 1
e−(EN+1−En)t

− cn,m,N+1hN+1,N+1
e−(EN+1−Em) − 1

e−(Em−En) − 1
e−(EN+1−Em)t .

The last subleading contribution reads

T5 = −t hmn ×
(

〈v(0)m , C(2,1)(t0)v
(0)
m 〉

2ρm
+

〈v(0)n , C(2,1)(t0)v
(0)
n 〉

2ρn

)

∼ −t hmn ×
(

1

2
cm,m,N+1e

−(EN+1−Em)t0 +
1

2
cn,n,N+1e

−(EN+1−En)t0

)

.

With t0 = t− 1, we get

∂tT5 ∼ −hmn

2
×
(

cm,m,N+1e
−(EN+1−Em)(t−1) + cn,n,N+1e

−(EN+1−En)(t−1)
)

We see that for n > m the dominating contribution T1 to ǫM eff,s,1
mn is in te−∆N+1,nt with subleading terms

T2 − T5 while for n < m the leading contribution is in e−(EN+1−Em)t.
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We have tested numerically our finding in the toy model of Ref. [19], with r0En = n, r0 = 0.3, the 3× 5
matrix of couplings

ψ = 〈0|Oi|n〉 =





0.92 0.03 −0.10 −0.01 −0.02
0.84 0.40 0.03 −0.06 0.00
0.56 0.56 0.47 0.26 0.04



 ,

and the hadronic matrix elementsMnn = 0.7 6
n+5 ,Mn,n+m = Mnn

3m . The comparison between the analytical
formulae and the numerical solution is plotted in Figure 8. It is encouraging to obtain such good agreement
after t = 8.

4 8 12 16
t

0.22

0.23

0.24

0.25

0.26

M
01

numerical sGEVP
all subleading contributions
dominant subleading contribution

4 8 12 16
t

0.22

0.225

0.23

0.235

0.24

M
10

numerical sGEVP
all subleading contributions
dominant subleading contribution

FIG. 8: Analytical formulae for RsGEVP
mn compared to the numerical solution of our toy model.
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