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Abstract. In this work we apply a combination of classical molecular dynamics (MD) and ab
initio multiple-scattering EXAFS approach (MD-EXAFS methodology) to study the influence
of point defects (Ni vacancies) on the structure and lattice dynamics of NiO nanoparticles. A
NiO nanoparticles model, able to reproduce the experimental Ni K-edge EXAFS spectra, has
been developed and allowed us to obtain original information on the particle size, the amount
of Ni vacancies, thermal disorder and atomic structure relaxation.

1. Introduction
Nanosized nickel oxide (NiO) shows an increase of the lattice parameter upon decreasing of the
particle size, as is evidenced by x-ray diffraction [1]. EXAFS spectroscopy reveals a decrease
of the first shell Ni–O1 average distance by ∼0.02-0.04 Å and an increase of the mean second
shell Ni–Ni2 distance by ∼0.01-0.02 Å for pure Ni1−xO and vanadium doped Ni1−xVxOy thin
films [2, 3]. At the same time, an elongation of the first shell Ni–O1 and the second shell Ni–Ni2
distances has been found in ultra fine NiO particles dispersed on activated carbon fibers [4].
Such structure relaxation is closely connected with the nanoparticles size and surface as well
as the presence of defects in the bulk. Recently, the presence and the role of the Ni vacancies
have been studied by EXAFS in sputtered NiO films [5, 6] and nanoparticles [7] based on the
analysis of the first two shells. It has been proposed that the distribution of the Ni vacancies in
NiO nanoparticles, having a size of 10–18 nm, can be considered within a core-shell model [7].

In this work we evaluate the effects of the NiO nanoparticles size and the presence of
Ni vacancies employing a recently developed simulation method [8], based on the use of
classical molecular dynamics with ab initio multiple-scattering EXAFS calculations (MD-
EXAFS methodology). Such approach allowed us to go beyond the limitations of the
conventional EXAFS analysis procedure.

2. Experimental and data analysis
Two different NiO nanocrystalline samples, nanoparticles (nano-NiO) and thin film (tf-NiO),
were studied in comparison with commercial microcrystalline NiO (c-NiO, Aldrich, 99%), having
green color. Black color of nano-NiO and dark brown color of tf-NiO indicate the presence
of the Ni vacancies [9]. Sample preparation details were reported previously in [10, 11].
According to the Scherrer’s method and assuming the cubic crystallites shape, the average size
of nanocrystallites was around 6 nm. The Ni K-edge x-ray absorption spectra were measured in
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Figure 1. Low temperature Ni K-edge
EXAFS spectra χ(k)k2 for polycrystalline
NiO, NiO nanoparticles and thin film.
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Figure 2. Comparison of the experimen-
tal and configuration-averaged Ni K-edge EX-
AFS spectra χ(k)k2 for nano-NiO and tf-NiO
at T=300 K.

transmission mode at the HASYLAB/DESY C1 bending-magnet beamline in the temperature
range from 6 K to 300 K. Details of experiments can be found in [10, 11].

The EXAFS oscillations χ(k) were extracted and analysed following the conventional
procedure [12] using the EDA software package [13]. Noticeable difference between the EXAFS
spectra of microcrystalline and nanocrystalline samples is clearly visible due to the static disorder
caused by the atomic structure relaxation near the nanocrystallite surface and around defects
(Fig. 1). The contribution from the first two coordination shells was analysed in the single-
scattering approximation [11]. The values of the interatomic distances for the 1st (Ni–O1,
±0.002 Å) and 2nd (Ni–Ni2, ±0.003 Å) coordination shells of Ni at low temperature are,
respectively, 2.088 Å and 2.952 Å for c-NiO, 2.082 Å and 2.961 Å for nano-NiO, 2.084 Å and
2.969 Å for tf-NiO. This result is in agreement with previous EXAFS works [2, 3].

3. MD-EXAFS simulations
The scheme of our MD-EXAFS calculations is shown in Fig. 3. First, we selected the cubic
model for the nanoparticles with the size L × L × L. It was generated starting from the unit
cell containing 4 Ni and 4 O atoms and having the lattice parameter a0=4.173 Å as for c-NiO
[1]. The required concentration of Ni vacancies (Cvac) was introduced by removing randomly
selected Ni atoms in order to achieve uniform distribution of the vacancies in the particle.

Our force-field (FF) potential model includes two-body central force interactions between
atoms and is described by a sum of the Buckingham and Coulomb potentials with the values
reported in [11, 14]. The charge of nickel atoms ZNi was selected as the optimization parameter,
and the charge of the oxygen atoms ZO was calculated to fulfill electroneutrality condition. In
our model all Ni ions have the same charge and so do all oxygen ions. All other Buckingham
potential parameters have been left unchanged as for c-NiO [11, 14].

MD simulations were performed using the DLPOLY4.02 code [15], which is suitable for both
crystalline and nanosized materials with huge number of the particles. Crystalline c-NiO was
modeled in the isothermal-isobaric NPT ensemble using the supercell 6a0 × 6a0 × 6a0 and 3D
periodic boundary conditions. The nanosized NiO particles were simulated in the canonical
NVT ensemble with the nanoparticle placed in the middle of a large empty box. All simulations
were performed at 300 K and zero pressure corresponding to the conditions of the EXAFS
experiment. Technical details of calculations have been reported previously in [10, 11].

For each nanoparticle with the given size L and Ni vacancy concentration Cvac we performed
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Figure 3. Scheme of the MD-EXAFS calculations for nanoparticles (NP).

MD calculations with two different FF parameter values (in our case two different ZNi values:
+2.0 and +1.9). Then we found the corresponding interatomic distanceR(Ni–Ni2) and compared
it with the value obtained from the conventional EXAFS analysis using the single-scattering
approximation RSS(Ni–Ni2). If two values do not coincide within the desired precision, then
we adjust FF parameters for the next iteration. This process is repeated until the required
precision is achieved. At the end, we found for each nanoparticle with the size L and the
vacancy concentration Cvac the FF parameters, which give the same value of the average Ni–Ni2
distance as the one obtained from conventional EXAFS analysis.

At the next step (see the right part of the scheme in Fig. 3), the residual between the
experimental and configuration-averaged (CA) EXAFS spectra for the model nanoparticle is
used as a criterion for the FF model optimization and to evaluate the quality of the nanoparticle
model. At each iteration step, we calculate a set of atomic configuration snapshots using classical
MD. The number of snapshots depends on the nanoparticle material, size and shape as well as on
the experimental conditions, i.e. pressure and temperature, and should ensure the convergence
of the CA EXAFS spectrum. We found that EXAFS spectra from at least 4000 absorbers are
required to achieve convergence. For EXAFS calculations we used ab initio real-space multiple-
scattering FEFF8 code [16], and the technical details of calculations were reported in [10, 11].

Further we will describe the algorithm of the FF optimization. We start from the results
of the previous step and calculate the CA EXAFS spectra for two MD simulations, obtained
using slightly different (usually ±0.005) ZNi values. Then we compare residuals between the
experimental and CA EXAFS spectra and guess new value of ZNi in order to minimize the
residual value. Here we change ZNi value in steps within the desired precision (in our case
±0.005). When the residual minimum is reached, we stop the MD-EXAFS calculations and
evaluate all other required properties from the MD data, for example, values of coordination
numbers CNi, interatomic distances Ri, and MSRDs σ2

i for each i coordination shell.
As the first application of the described procedure we optimized the ions charges for c-NiO.

The best fit to its EXAFS spectrum was achieved with ZNi=+2.015 and ZO=–2.015.
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Next we have studied the reliability of our FF model in a description of the local atomic
structure relaxation around the Ni vacancy in the bulk of c-NiO. Our results show that the six
nearest oxygen atoms move away from the center of the vacancy by ≈0.2 Å, thus significantly
shortening the distances to nearest Ni atoms. At the same time, twelve nearest Ni atoms move
slightly towards the center of the vacancy by ≈0.08 Å, thus increasing the distance with their
neighbouring Ni atoms. Such relaxation of atomic structure, induced by the presence of single
Ni vacancy, plays significant role in the average structure relaxation, especially for the first
coordination shell of Ni, as was found recently [5]. The results of our simulations are in excellent
agreement with those from the recent ab initio calculations [17, 18], which predict the relaxation
of O atoms by about 0.17 Å outwards from the Ni vacancy site. This result confirms that our
simple FF potential model reproduces well structure relaxation around the Ni vacancies.

Finally we have simulated NiO nanoparticles, starting from the initially cubic shape. The
size of the cube L and the concentration of the nickel vacancies Cvac were chosen as model
parameters, which were optimized by minimizing the residual between the experimental and
CA Ni K-edge EXAFS spectra (Fig. 2). A well defined residual minimum has been found
indicating the reliability of the model. The best agreement was achieved for nanoparticles with
non-zero concentration of the Ni vacancies: Cvac≈0.4-1.2% for NiO nanoparticles with the size
of L≈3.6-4.2 nm and Cvac≈1.6-2.0% for NiO thin film with the size of L≈1.3-2.1 nm.

4. Conclusions
We report on the recently developed complex simulation approach, combining classical MD and
ab initio multiple-scattering EXAFS theory, which allows us to reliably simulate both bulk and
nanosized materials using small number of adjustable model parameters (L, Cvac, Z). The
method leads to better use of the rich information hiding in the EXAFS spectra, which is
particulary interesting for nanosized objects. The application of the method to nickel oxide
allowed us to evaluate the size of nanoparticles and the concentration of nickel vacancies.
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