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  Abstract   Small-angle X-ray scattering (SAXS) is a low resolution (1–2 nm) struc-
tural method, which is applicable to macromolecules in solution providing informa-
tion about the overall structure and structural transitions. The method covers an 
extremely broad range of sizes (from a few kDa to hundreds MDa) and experimen-
tal conditions (temperature, pH, salinity, ligand addition  etc. ). Recent progress in 
instrumentation and novel data analysis methods signifi cantly enhanced resolution 
and reliability of structural models provided by the technique and made SAXS a 
useful complementary tool to high resolution methods. In particular, SAXS allows 
for rapid validation of high resolution crystallographic or theoretically predicted 
models, identifi cation of biologically active oligomers and visualization of missing 
fragments. Quaternary structure of complexes can be analyzed by rigid body move-
ments/rotations of high resolution models of the individual subunits of domains. 
The basics of SAXS will be presented and illustrated by advanced applications to 
macromolecular solutions.  

  Keywords   Solution structure  •   Ab initio  methods  •  Rigid body modeling  
•  Oligomeric mixtures  •  Flexible proteins      

    15.1   Introduction 

 The structural genomics initiatives aiming at large-scale expression and purifi ca-
tion for subsequent structure determination using X-ray crystallography (MX) and 
NMR spectroscopy  [  10,   12  ]  have already yielded unprecedented numbers of high 
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resolution models for isolated proteins and/or their domains These numbers are 
expected to grow rapidly in the coming years  [  24  ] . The focus of modern structural 
biology has largely shifted towards the study of macromolecular machines accom-
plishing most important cellular functions  [  1  ] . The macromolecular complexes are 
usually too large for the structural NMR studies, and they often possess inherent 
structural fl exibility making them diffi cult to crystallize. 

 The structural analysis approach to macromolecular complexes includes new 
crystallographic initiatives complemented by the use of methods yielding structural 
information in solution at lower resolution. In particular, Cryo-EM allows one to 
obtain excellent results in many cases  [  39  ] , but it is usually limited to relatively 
large macromolecular aggregates (starting from 200–300 kDa). 

 Small-angle X-ray scattering (SAXS) is a rapid method to characterize low 
resolution structures of individual macromolecules and complexes in solution and 
to analyse structural changes in response to variation of external conditions. For 
establishing the three-dimensional structural models this technique needs mono-
disperse solutions of purifi ed macromolecules but does not require special sample 
treatment (growth of crystals, isotopic labelling, cryo-freezing  etc. ). SAXS is 
applicable to a broad range of conditions and sizes (from a few kDa to hundreds 
MDa). Unlike most other structural methods, SAXS is able to quantitatively charac-
terize equilibrium and non-equilibrium mixtures and monitor kinetic processes 
such as (dis)assembly and (un)folding. 

 Recently, the power of SAXS has been boosted by the signifi cant improvements 
in instrumentation (most notably, by the high brilliance synchrotron radiation sources) 
accompanied by the development of novel data analysis methods. These develop-
ments made it possible to signifi cantly improve resolution and reliability of the 
structural models constructed from the SAXS data. Here, the main aspects of SAXS 
including data processing and interpretation procedures and some applications will 
be briefl y reviewed.  

    15.2   Basics of a SAXS Experiment 

 This section will briefl y describe the basic theoretical and experimental aspects of 
SAXS to understand the main principles of the technique as applied to solutions of 
biological macromolecules. The reader is referred to textbooks  [  11,   14  ]  or to recent 
reviews  [  22,   37,   44  ]  for more detailed description information. 

 Conceptually, a SAXS experiment is rather simple, as illustrated in Fig.  15.1 . 
The samples are exposed to a collimated monochromatic X-ray or neutron beam 
with the wave vector  k =  2  p / l   where   l   is the radiation wavelength (Fig.  15.1 ). The 
isotropic scattered intensity  I  is recorded as a function of the momentum transfer 
 s =  4  p   sin  q / l ,  where 2  q   is the angle between the incident and scattered beam. The 
scattering from the solvent is measured separately and subtracted to remove the 
solvent and parasitic background signals.  
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 The SAXS experiments are usually performed at synchrotrons, and the experi-
mental stations offering biological SAXS are available at all synchrotron major 
sites. Laboratory SAXS cameras, (available from various producers) yield much 
lower beam brilliance but may be useful at least for preliminary analysis. For struc-
ture analysis (shape, quaternary structure), the samples with monodispersity better 
than 90% are required, which must be verifi ed by other methods (native gel fi ltra-
tion, dynamic light scattering, analytical ultracentrifugation) prior to the synchro-
tron SAXS experiment. Typical concentrations required are in the range of 
0.5–10 mg/ml, and a concentration series is usually measured to get rid of interpar-
ticle interference effects. The sample volume per measurement on modern stations 
is about 10–50  m l so that about 1–2 mg of purifi ed material is usually required for a 
complete study. The upcoming microfl uidic devices  [  48  ]  will allow one to work on 
high brilliance sources with nanoliter volumes and  m g sample amounts. 

 One should also mention that neutrons are also employed for small-angle scatter-
ing (SANS) analysis of biological macromolecules. SANS (which is performed on 
research reactors or spallation sources) is sensitive to isotopic H/D exchange. This 
property is exploited for contrast variation involving measurements in different 

  Fig. 15.1    A general scheme of a SAXS/SANS experiment, structural tasks addressed by the tech-
nique and its synergistic use with other methods. The nominal resolution of the data in the scatter-
ing pattern is indicated as  d =  2  p /s. MS  mass spectroscopy,  AUC  analytical untracentrifugation, 
 FRET  fl uorescence resonance energy transfer,  EM  electron microscopy,  NMR  nuclear magnetic 
resonance,  EPR  electron paramagnetic resonance       
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information about complex particles  [  51  ] . The basic equations and the analysis 
methods are similar for SAXS and SANS.  

    15.3   Basics of SAXS Data Analysis 

 The net SAXS intensity after solvent subtraction contains, generally speaking, two 
contributions. The so-called form factor  I(s)  emerges from the scattering from indi-
vidual particles in solution and is employed to extract the structural information. The 
“structure factor”  S(s)  is due to interference effects between the different particles and 
yields information about the interparticle interactions (see e.g.  [  22  ]  for a review). 

 Purifi ed dilute solutions of macromolecules at concentrations in mM range are 
usually employed in SAXS to get rid of the interference effects and perform the struc-
tural studies assuming that I(s) contains only “form-factor” contrinution. Two impor-
tant cases are distinguished: (1) monodisperse systems, when all the particles are 
identical and (2) polydisperse systems, when they are different in size and/or shape.  

    15.4   Monodisperse Systems 

 For monodisperse solutions, the net intensity  I(s)  is proportional to the scattering from a 
single particle averaged over all orientations. This allows one to immediately determine 
the overall geometrical and weight parameters e.g. radius of gyration R 

g
   [  16  ] , volume of 

the hydrated particle V 
p
   [  36  ] , and the molecular mass of the particle MM  [  27  ] . The 

Fourier transformation of the scattering intensity provides a characteristic function 
(averaged Patterson function), which also yields the maximum particle diameter D 

max
  

 [  13,   25,   41  ] , Moreover, the low resolution macromolecular shape can be obtained  ab 
initio  (i.e. without information from other methods). Several approaches have been 
proposed  [  2,   7,   8,   18,   43,   46  ] , and  ab initio  shape determination belongs nowadays 
to routine analysis of the SAXS data. Usually, the shape analysis programs are ran 
several times and analysed to obtain the most probable and an averaged model  [  50  ] . 

 Calculation of the SAXS profi les from atomic models  [  45  ]  is used to validate 
theoretically predicted models and verify the structural similarity between macro-
molecules in crystals and in solution. Moreover, if high resolution models of indi-
vidual fragments or subunits in a complex are available from crystallography or 
NMR, rigid body refi nement can be employed to model the quaternary structure of 
the complex. Automated and semi-automated procedures based on screening randomly 
or systematically generated models were employed by different authors  [  19,   21,   28  ] . 
A comprehensive rigid body modelling program suite is based on the use of spherical 
harmonics formalism  [  31,   32,   40,   42  ] . 

 SAXS is also very useful for the cases when loops or entire domains are missing 
in high resolution models (e.g. because of fl exibility). The missing portions are 
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represented as chains of the so-called dummy residues  [  34  ] , and the known domains/
subunits can be translated and rotated as rigid bodies while simultaneously changing 
the local conformation of the chains representing the unknown fragments  [  23  ] . 
Numerous applications of rigid body modelling are reported to build structural 
models of complicated objects in solution (see e.g. references in  [  33,   37  ] ). 

 The structural modeling based on the SAXS data is especially effective if one 
simultaneously incorporates information provided by other methods. An example 
of such a successful multipronge approach is given by a study of a human tumour 
suppressor p53  [  47  ] , which is a homotetrameric transcription factor (four times 393 
residues) playing a central role in the cell cycle. The protein contains a folded core 
and tetramerization domains, linked and fl anked by intrinsically disordered segments. 
 Ab initio  and rigid body SAXS modelling accounting for NMR-derived interfaces 
revealed an extended cross-shaped structure with tetrameric contacts and a pair of 
loosely coupled core domain dimers at the ends (Fig.  15.2 ). In contrast, the calculated 

  Fig. 15.2    The models of free and DNA-bound tumour suppressor p53 generated by combining 
SAXS with MX, NMR and EM data. The available high resolution structures of the domains 
employed in the modelling are displayed as ribbons, the fl exible portions of p53 as semi-transpar-
ent beads (dummy residues). In the free form ( left panel ) the four domains that recognize DNA 
(peripheral domains) are arranged in two separate dimers, forming a relatively “fl at” structure, 
with the tetramerization domains in the center. Upon binding to DNA ( right panel ) these core 
domains wrap around the latter trapping it into a cleft. The models are obtained by rigid body 
modeling against the SAXS curves displayed as intensity versus momentum transfer in the bottom 
panel. The data from the free and bound p53 are appropriately displaced along the abscissa axis for 
better visualization ( dots , experimental data;  solid lines , computed patterns from the models)       
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scattering from a previously published rather compact cryo-EM structure of murine 
p53  [  29  ]  showing dissociated tetramerization domains did not fi t the experimental 
SAXS data. The structure of the complex of p53 with 24 bp DNA independently 
determined by SAXS and negative stain EM displays a compact complex with the 
core domains closing around DNA (Fig.  15.2 ). Interestingly, negatively stained EM 
analysis of the conformationally mobile, unbound p53 selected a minor compact 
conformation (less than 20% of the adsorbed particles). The study underlines the 
signifi cance of the synergistic use of different techniques together with SAXS, in 
particular, for the structural characterization of a rapidly growing number of proteins 
with inherent disorder.   

    15.5   Poyldisperse Systems and Mixtures 

 For polydisperse systems consisting of different types of non-interacting particles, 
the measured scattering pattern can be written as a linear combination

     ν
=

= ∑
1

( ) ( )
K

k k
k

I s I s    (15.1)  

where   n   
 k 
  > 0 and  I  

 k 
 ( s ) are the volume fraction and the scattering intensity from 

the  k -th type of particle (component), respectively, and  K  is the number of 
components. 

 When neither the number nor intensities of the components are known  a priori , 
but multiple data sets are recorded from the system with varying volume fractions 
of the components, the number of components can be determined extracted by 
model-independent analysis using singular value decomposition (SVD  [  15  ] ). If the 
number of components and their scattering intensities are known, the volume 
fractions can be readily found by a linear least-squares fi t to the experimental 
data. Numerous applications of these approaches encompass e.g. the analysis of 
intermediates during folding and assembly processes and quantitative description 
of oligomeric equilibria  [  9,   17,   49,   52  ] . 

 SAXS belongs to very few structural methods able to quantitatively characterize 
fl exible macromolecules, and the method was traditionally used to monitor the 
processes of protein folding/unfolding  [  30  ] . For fl exible systems, SAXS data refl ect 
conformational average over the entire ensemble and the scattering patterns are to 
be interpreted accounting for this average instead of searching for a single model. 
This has recently become possible with a general approach called ‘ensemble 
optimization method’ (EOM) allowing for coexistence of multiple conformations  [  4  ] . 
Given a pool of (random) conformers, EOM selects sub-ensembles from them, 
which, taken as mixtures, fi t the experimental profi le using Eq.  15.1 . The EOM is 
already actively used to characterize fl exible proteins and complexes  [  5,   26  ]  and it 
is expected to fi nd broad applications, in particular, in combination with NMR to 
provide information about both structure and dynamics of the system  [  3,   6  ] .  
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    15.6   Conclusions 

 During the last decade, biological SAXS has become increasingly popular in 
molecular biology revealing low resolution structures of macromolecule in close to 
native conditions. SAXS can be readily and usefully combined with other computa-
tional and experimental techniques to yield comprehensive description of complex 
objects and processes. The advanced analysis methods are well established by 
now and are publicly available e.g. in the program package ATSAS (  http://www.
embl-hamburg.de/biosaxs/    ). Automated sample changers and pipelines are being 
developed for high throughput SAXS on synchrotrons  [  20,   35,   38  ] . All these develop-
ments taken together make the technique readily available for a broad scope of tasks 
and a broad community of scientists in structural biology.      
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