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ABSTRACT 

 

The thesis can be divided into two parts.  

In the first part of my thesis, I present the design, construction and test results of 

a prototype gas-cell Photoacoustic (PA) Spectrometer and Microscope. It is a low 

cost, non-contact technique, which can be used to characterize semiconductor 

band-gap structures and subsurface defects. It requires no liquid coupling and no 

sample surface preparation in advance 

The instrument development includes the optical system design, mechanical 

design of the PA cell using AutoCAD®, pre-amplifier circuit design, system noise 

analysis, hardware control, data acquisition system and graphical user interface 

(GUI) development using LabView®. A multiple-microphone detection scheme, 

helium gas coupling, acoustic resonance and a high power laser light source are 

used to enhance the PA signal and to increase the data acquisition speed. The PA 

system is calibrated to remove the acoustic resonance effect and the background 

fingerprint of light source intensity spectrum. The linear relationship between the 

PA signal and the source intensity is verified. The impacts of the lock-in amplifier 

performance, the focus offset and the coupling gas within the cell on the PA 

signal are discussed. 

Various samples are used to verify performance of the developed PA system. 

These include Silicon wafers, GaAs wafers, multi-layered structures on silicon 

substrates, carbon-black powder, laser-machined air trenches, bonded silicon 

wafers and a packaged IC chip. For spectroscopy applications, the PA spectra of 

two types of GaAs wafers are characterized successfully. For microscopy 

applications, the PA system is proven to have a vertical resolution of ~ 20 nm 

and a lateral resolution of ~ sub-100 m. Its probe depth could be as deep as 450 
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m below the silicon surface. The data acquisition speed of the PA system is 

improved for industrial applications. Two high-resolution (10,000 pixels) thermal 

images (one in phase and another in amplitude) of semiconductor devices can be 

obtained in less than 50 seconds across an area of approx. 9 mm x 9 mm.  

In the second part of my thesis, other related non-destructive characterization 

work on advanced semiconductor materials is presented. In chapter six, 

Synchrotron X-ray Topography (SXRT) and Micro-Raman Spectroscopy (uRS) 

are used to study two sets of the femto-second and nano-second laser machined 

grooves on InP substrates. In chapter seven, other characterization work is 

presented to study the H2 preconditioning effect on self-assembled Ge-islands on 

Silicon. Both cases demonstrate the commercialised metrology tools’ capabilies to 

analyse the distribution profile of the strain and the chemical composition on the 

top surface.   

The PA system prototype presented in this thesis can be used as a 

complementary tool. It provides ultra-deep probe depth for the subsurface 

defects, when compared to the SXRT and the uRS methods. 
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C h a p t e r  1  

INTRODUCTION 

1  

Introduction 

In this chapter, the rationale of the project is discussed. The fundamental aim of 

this research is outlined. An introduction to gas cell photoacoustic techniques and 

a brief summery of previous research is included. 

1.1  

Objectives of the project 

Photoacoustic (PA) Spectroscopy and Microscopy for the semiconductor 

industry are essentially at the same level of development as micro-Raman 

spectroscopy ca. 20 years ago. The PA equipment is at research tool level and has 

not evolved into a system for routine analysis. No robust, commercial metrology 

product, which is coupled with automatic data acquisition, graphical user interface 

and data analysis tooling, is available on the market.  

The aim of this research is to develop a novel, automatic photoacoustic system 

based on the gas-microphone concept and to characterize a selection of advanced 

semiconductor materials and devices. In addition, some selected semiconductor 

materials are analysed using complementary techniques, which is discussed later 

in Chapter 1.2.3.  

The PA data is compared with the results from Raman Spectroscopy (uRS) and 

Synchrotron X-ray topography (SXRT). The work demonstrates the unique 

characterization capability of photoacoustic methods for subsurface-structure 

imaging, elucidation of thermoelastic properties (elasticity, specific heat, thermal 
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diffusivity), thin-film thickness metrology and the non-destructive identification 

of bandgap defects in semiconductors. 

1.2  

Background of the photoacoustic techniques 

The photoacoustic (PA) effect in condensed matter was first discovered in the 

1880s by Alexander Graham Bell [1.1, pp.7-14]. The scientific investigation of 

this phenomenon was largely ignored until the 1970s, when the necessary 

processing electronics, especially lock-in amplifiers, became readily available. 

Then it became possible to overcome the major technical bottleneck associated 

with the photoacoustic signal, i.e. the poor signal to noise ratio (SNR). [1.2]  

Semiconductor metrology using the photoacoustic effect is implemented 

generically as follows: When a beam of light hits the sample surface, a fraction of 

its optical energy is absorbed and converted into heat rapidly. It is an intrinsically 

non-contact process and produces a very precisely defined region of modulated 

heating. The subsurface structures inside optically opaque materials, i.e. 

semiconductor materials or devices, can be characterized non-destructively 

through the thermal wave diffusion process. The spectroscopic information for 

semiconductors can be obtained, while monitoring that material’s selective 

absorption properties.  

Currently, there are various PA semiconductor metrology products available on 

the university research market. Depending on their detection schemes, they have 

different components, i.e. excitation light sources, modulators, detectors, signal 

processing modules and display units. In the next section, I present a brief 

overview of these metrology products. 
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1.2.1  

Current status of semiconductor metrology products using the PA effect 

In a PA system, there are two possible classes of excitation/probe light sources. 

One is an incoherent source for spectroscopy applications in order to provide a 

broad spectral range, e.g. a Xenon lamp with a spectral range from 0.2 to 2.0 um 

and a typical power density of 0.2 W.mm-2. The other option is to use coherent 

lasers for thermal-wave imaging applications in order to give a well-defined 

localized region of heating. Examples of such lasers include Helium-Neon (gas) 

(623.8 nm, 0.1-50 mW), Argon ion (gas) (488 nm or 514 nm, 5 mW - 20W), 

Gallium Arsenide semiconductor diode (780-990 nm, 1 mW - 1 cW), and etc. 

To impose a temporal variation on the optical energy, the excitation light source 

needs to be periodically modulated. This can be done using various methods, 

depending on the requirement of the modulation frequency range, the 

modulation depth and the output power. Typical modulation methods include 

mechanical chopping (1 Hz to 20 Hz), direct electrical modulation (up to MHz 

with a semiconductor laser diode), acousto-optic modulation (AOM), and electro-

optic/beam deflection method (e.g. rotating a multi-face mirror and using a 

vibrating mirror). [1.3] 

When a fraction of the optical energy is absorbed and converted into heat, three 

possible schemes can be used to detect the consequent temperature increase on 

the sample surface: The PA effect can be measured acoustically, optically or 

thermally.  

The acoustic detection scheme employs either a condenser microphone to detect 

the pressure variation in a small airtight chamber (called a photoacoustic cell), or a 

piezoelectric transducer to detect the thermal elastic waves in a solid medium. [1.3] 

For the microphone detection method, the PA signal intensity is inversely 
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proportional to the air volume of the cell. It is often suggested in the literature 

that it is important to minimize the cell volume as much as possible [1.4]. 

Therefore, to date, virtually all of the PA characterization using the gas-

microphone method is performed on small samples, whose diameter is only ~ 10 

mm. For large samples, such as 300 mm silicon wafers used in CMOS 

manufacturing processes, a piezoelectric transducer is normally used instead. [1.3, 

1.5] This methodology is completely incompatible with industrial requirements, 

where non-invasive, non-destructive characterization techniques are desired. The 

reasons for this are twofold. Firstly, bonding the transducer to the sample is 

inherently invasive and potentially destructive. Secondly, user needs to separate 

the transducer response from the signal when interpreting the PA data. Given the 

fact that each piezoelectric transducer has its own unique response depending on 

the bonding conditions, it is very difficult to ensure the matching performance 

from tool to tool. 

The optical sensing method uses the probe beam and photo-detector to measure 

the optical property variation on the sample surface or within the fluid medium 

adjacent to it. It is possible to detect the PA effect by monitoring the modulated 

thermal expansion using the probe beam displacement method (e.g. laser 

interferometer) or the cantilever probe approach (e.g. atomic force microscopy). 

Several pioneer experimental instruments are developed. [1.3] The first optical 

sensing method is called optical beam deflection (OBD). It is designed to 

monitor a deflected laser beam propagating through a gas medium. The refractive 

index of the gas medium varies periodically, while it is heated by the sample 

surface in contact. This method has been successfully used for photoacoustic gas 

sensors and can be applied to solid semiconductor samples with smooth and 

planarized surfaces. Therefore, curved surfaces, e.g. the wafer edges, will restrict 

the detectablity and the sensitivity of this technique. The second technique is 

called modulated optical reflectance (MOR). It is used to monitor the reflectivity 
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of the sample surface, which changes while being heated by a modulated pump 

light source. This method needs very accurate alignment between the probe 

beams and the pump beams. It cannot be applied to a sample with an unpolished 

surface, as the reflected light intensity will decrease significantly due to the 

scattering effect. The third technique is called photothermal displacement (PTD) 

and uses interferometric methods to detect the sample volume expansion, which 

is synchronized with the modulated heating induced by the PA effect. The main 

parameters limiting its sensitivity are the intensity of the probe lasers, pointing 

noise and environmental vibration noise. Currently, the sensitivity for the 

displacement measurement can be as high as 4*10-4 nm Hz1/2 using 

interferometric scheme. However, similar to the MOR method, a thin layer of 

metal, which has a polished surface, needs to be deposited in order to prepare the 

samples for the PA characterization. The fourth technique is called the 

photothermal radiometry (PTR). It is based on the infrared detection of the 

temperature perturbation. This technique is non-contacting and compatible with 

many industry requirements. To increase the SNR, the infrared detection must be 

maximized and the direct incidence of the excitation radiation into the detector 

needs to be minimized. This method cannot be applied to certain samples with 

reflective top surface, such as copper interconnection layers on a silicon substrate. 

In such cases, most of the source radiation is reflected or scattered towards the 

detector, which increases the background noise. In addition, thin metal films 

block the infrared emission from the sub-layers and reduce the detectable signal 

simultaneously.  

Finally, thermal detection methods can be used for PA characterization, but they 

involve the attachment of thermocouples, thermistors and pyroelectric 

transducers to the samples in order to measure the temperature variation directly. 

These thermal detection methods are intrinsically invasive, and thus are not as 

popular as the optical methods mentioned above. [1.3] 
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Compared to the photothermal detection schemes listed above, PA 

characterization using the gas-microphone concept is inherently non-contact and 

non-invasive. It does not require bonding of transducers directly to the sample 

itself. It does not need liquid coupling media or top surface reconditioning before 

the PA measurements. The microphone detection system is of relatively lower 

cost and does not need any complex optical alignment. Unlike photothermal 

radiometry (PTR), the background noise induced by direct light scattering can be 

completely eliminated, by passing the acoustic signal through a long acoustic tube. 

The small volume of condenser microphones also makes it possible to integrate 

tens of them into one PA system. This can easily improve the SNR performance 

by averaging the signals from these multiple sensors. This is especially important 

when high data acquisition speed is needed for industrial applications. 

1.2.2  

Potential PA applications for semiconductor industry 

Non-destructive characterization of subsurface defects inside semiconductor 

materials and devices is of increasing importance for the microelectronics 

industry. Such defects are usually encountered in the four technically advanced 

applications outlined below. 

1.2.2.1  

Wafer level packaging and 3D interconnections 

Fast, lower power IC devices can now be fabricated with multiple functionalities. 

A high level of device integration (e.g. IC-MEMS) can be fabricated by stacking 

modules or wafers on the top of each other. Stacking IC devices has been 

justified by many potential benefits, such as size reduction, increase in ‘‘silicon 

efficiency’’, reduction of signal time delay, reduced parasitic effects, decrease of 

power consumption, increase in IC speed, increase in number of neighbouring 

devices and extension of the operational frequency bandwidth [1.5]. Such 3-
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dimensional (3D) circuits require process steps, such as wafer/die bonding and 

thinning. Both power and signal are delivered through the silicon VIAs at the 

bonding interface, as shown in Figure 1.1 [1.7]. 

Since any un-bonded regions can cause catastrophic failure and yield losses, 

critical information needs to be obtained. An inspection is required to detect un-

bonded bumps in flip-chip packages, to find the missing interconnections and to 

visualize the presence of delaminating layers. It is worth noting that the bonding 

interface is typically buried somewhere from a few to several hundred microns 

beneath the wafer surface, depending on the post-processing condition. The lack 

of fast semiconductor metrology tools, which have this ultra-deep probing 

capability, is becoming the major technical barrier. [1.8] This quality control 

difficulty can delay the complete acceptance of 3D wafer packaging by the 

industry. 
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Figure 1.1: Schematic of a 3D integrated circuit. Two silicon wafers are bonded 
with high density of interconnections in between. The characterization of the 

bonding layer uniformity is critical to ensure the electrical connections between 
those two devices. [1.7] 

1.2.2.2  

Advanced inter-metal low-k dielectric materials 

The most recent International Technology Roadmap for Semiconductors (ITRS) 

indicates that with the advancement of “multi-gate MOSFETs to below 10 nm 

gate length” and “ memory chips approaching high densities of 512 Gb – 4 TB”, 

the integration of multi-billions of transistors per integrated circuit is required. 

[1.8] The interconnect system of this one billion transistor chip are required to 

deliver high frequency signals and power to various circuits. The parasitic effect 

becomes evident and cannot be ignored. Small parasitic capacitance (C) is 
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required to reduce crosstalk, power consumption, and RC delays. Therefore, 

interconnects with advanced low dielectric constant (k) materials are required. 

However, these materials are known to have low elastic modulus, low fracture 

toughness and poor adhesion to the capping layers, because of their higher 

porosities. [1.9] Subsurface damage such as cohesive fracture, interface de-

bonding and cracks inside low-k layers can easily occur during integration 

processes, such as chemical mechanical polishing (CMP) and packaging. The 

development of metrology equipments for sub-surface defects can insure the 

mechanical reliability of this advanced interconnection system and improve the 

yield for IC manufacturing industry. 

1.2.2.3  

Wafer edge inspection for 300 mm silicon wafer manufacturing 

While developing advanced processes for 300 mm silicon wafers, edge defects 

become one of the main manufacturing issues. Some manufacturers even 

estimate that 30% or more of the killer defects originate from the wafer edges. 

[1.10] Typical defects include edge film delamination and vertical cracks. They 

normally occur after certain processes such as thermal cycling. The issue becomes 

more and more severe, especially when the thin films are deposited over the 

contaminations that are already present, e.g. CMP residuals or scratches left by 

wafer handlers at the edge surface.  

Currently, the dominant approach for wafer edge inspection is based on high-

resolution CCD imaging. It has the limitation of a small field of view, introduced 

by small depths of focus (DoF) of the CCD cameras. It is not applicable to 

curved surfaces. Other optical metrologies (OM), such as laser scanning 

scatterometry, reflectometry and ellipsometry, are only sensitive to defects within 
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the optical penetration depth. They have difficulty in characterizing cracks 

extending deep under the surface.  

Scanning electron microscopy (SEM) and atomic force microscopy (AFM) are 

also limited for surface morphology visualization. To obtain microstructure 

information at depths of tens of microns below the surface the samples have to 

be destructively cleaved or prepared by special techniques e.g. focused ion beam 

(FIB). This can then allow the access to the cross-sectional facet using 

transmission electron microscopy (TEM). The destructive nature of TEM cannot 

be accepted for the industrial applications requiring in-line wafer inspection.  

Micro Raman spectroscopy (RS) is very sensitive to the strain contrast within 

the semiconductor material, which can be related to the embedded defects. 

However, its probe depth is confined to the optical penetration depth of the 

excitation laser, e.g. ~ 400 nm in silicon when using an Ar+ laser (488 nm). No 

Raman signal can be detected when there is a metallization layer on the top 

surface.  

White beam synchrotron x-ray topography (SXRT) is one a useful technique to 

obtain transmission images of stacked wafers and devices. It can provide a 

comprehensive map of the strain distribution on different crystal planes 

simultaneously. By using a high-resolution film as a detector, its sensitivity to the 

strain magnitude is estimated to be at least in the order of 6×10-5. A set of SXRT 

images with the spatial resolution of ~5 m can be easily captured in minutes. 

[1.11] However, the SXRT experiment requires a very expensive synchrotron 

radiation source. The X-ray beam needs to meet the strict requirements for 

intensity, divergence, continuous spectrum, polarization and time structure, which 

cannot be achieved without the synchrotron station, e.g. HASYLAB in Hamburg 
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Germany. Therefore, the SXRT method can only lie in the domain of laboratory 

research and cannot be easily commercialized.  

 

Figure 1.2: (a) The CSAM result for successfully bonded wafers. Uniform 
contrast indicates good bonding quality. The contrast is due to the circuit pattern 

in each die. (b) The CSAM result for a partially de-bonded wafer, which is 
processed under non-optimal conditions. The bright region corresponds to 

defects at the bonding interface. [1.7] 

Currently, C-mode scanning acoustic microscopy (CSAM) is the principal 

successful commercial solution for the subsurface defect imaging. It can be used 

to image voids, whose size is in the order of 20–30 m. As shown in Figure 1.2, a 

delaminated region, located 700 m below the surface in silicon, can be clearly 

visualized [1.7]. CSAM typically uses the acoustic wave in the frequency range 

between 100 MHz to 200 MHz. However, at such high frequencies, the acoustic 

wave is heavily attenuated in air. Water is usually used as a convenient coupling 

medium between the sample and the receiver. Therefore, during the 

measurements, the semiconductor wafers have to be immersed in water. 

Therefore, the CSAM method cannot be applied to moisture-sensitive IC devices. 

It is also impossible to improve its resolution further by simply increasing the 
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ultrasound wave frequency.  There is an effective upper frequency limit, when the 

acoustic wave is attenuated too much to form an output image successfully. [1.12]  

The PA system described in this thesis provides an alternative metrology solution. 

The use of harmonic heat flow (named as thermal wave) is a good means of 

probing for subsurface microstructures. The thermal wave probe/diffusion 

length varies typically from tens of micron to several millimetres, depending on 

the thermal property of the material and the modulation frequency. The 

harmonic heat flow has wave-like features, including reflection, refraction, 

interference and scattering. It is possible to detect subsurface structures and 

thermal properties by measuring the consequent temperature variation on the 

surface.  

1.2.2.4  

Semiconductor bandgap defect characterization associated with non-radiative 

recombination channels 

When light is incident onto a semiconductor thin film or bulk material, free 

carriers are excited optically. These carriers then recombine via radiative or non-

radiative pathways. They decay to the ground state by dissipating the excess 

energy. The radiative recombination can be detected very efficiently by optical 

method, which is the well-known photoluminescence (PL) technique. On the 

other hand, there is no commercial semiconductor metrology equipment to 

monitor the non-radiative process, which only generates heat rather than emitting 

light during the recombination.  

The PA system is a non-invasive photo-calorimetric solution for this application. 

It is a complementary spectroscopy technique, which is only sensitive to the non-

radiative thermal de-excitation channels. A PA response will only be created 

when light is absorbed and converted into heat. Thus, elastically scattered light or 
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the transmitted optical energy does not influence this highly sensitive technique. 

By using different modulation frequencies, PA spectroscopy can be used to 

measure the non-radiative absorption spectrum, the lifetime of photo-excited 

species and the energies of electronic defects within the bandgap of 

semiconductor materials. [1.3] 

1.2.3  

Complementary semiconductor characterization techniques 

1.2.3.1  

Synchrotron X-ray Topography (SXRT) 

Synchrotron x-ray topography is an X-ray imaging technique based on Bragg 

diffraction. The output images record a two-dimensional intensity profile of a 

beam of X-rays diffracted by a crystal. The result reflects the distribution of 

scattering power inside the crystal and therefore reveals the irregularities in a non-

ideal crystal lattice. It can be used for monitoring crystal quality and visualizing 

the subsurface defects in many different crystalline materials. In many cases, 

topography can be applied without preparing or otherwise damaging the sample. 

It is therefore one variant of a non-destructive semiconductor metrology. 

While imaging the subsurface structures and associated strain fields, two main 

contrast mechanisms can occur. One is called “extinction contrast”, which is 

caused by the difference in reflecting power between perfect and imperfect crystal 

regions. The second one is called “orientation contrast”, wherein one observes a 

non-uniform diffracted image of the distorted crystal, when the lattice 

disorientation exceeds the divergence of the synchrotron beam. [1.6] The probe 

depth of this technique is determined by x-ray penetration depth, which itself can 

be adjusted by selecting different diffraction images on the recording film. Thus a 

3D knowledge of the distribution of subsurface structures in the sample from top 

to bottom can be built up.  



 

 19 

1.2.3.2  

Micro-Raman Spectroscopy 

Raman spectroscopy is a spectroscopic technique used to study vibrational, 

rotational, and other low-frequency modes in a system. [1.13] It relies on inelastic 

scattering, or Raman scattering, of monochromatic light, usually from a laser in 

the visible, near infrared, or near ultraviolet range. The laser light interacts with 

molecular vibrations, phonons or other excitations in the material under test, 

resulting in the energy of incident laser photons being shifted up or down. The 

shift in energy gives information about the phonon modes in the system, which 

themselves are very sensitive to the strain status. Raman spectroscopy can also be 

used to characterize the subsurface defects non-destructively. It is worth noting 

here that, in semiconductor materials, rotational modes are not probed by Raman 

spectroscopy, as atoms are not free to rotate in solids.  

1.3  

Overview of the thesis 

The thesis can be divided into two parts. In the first part of my thesis, I present 

the design, construction and test results of a prototype gas-cell Photoacoustic (PA) 

Spectrometer and Microscope. It is a low cost, non-contact technique, which can 

be used to characterize semiconductor band-gap structures and subsurface 

defects. It requires no liquid coupling and no sample surface preparation in 

advance 

The instrument development includes the optical system design, mechanical 

design of the PA cell using AutoCAD®, pre-amplifier circuit design, system noise 

analysis, hardware control, data acquisition system and graphical user interface 

(GUI) development using LabView®. A multiple-microphones detection scheme, 

helium gas coupling, acoustic resonance and a high power laser light source are 

used to enhance the PA signal and to increase the data acquisition speed. The PA 
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system is calibrated to remove the acoustic resonance effect and the background 

fingerprint of light source intensity spectrum. The linear relationship between the 

PA signal and the source intensity is verified. The impacts of the lock-in amplifier 

performance, the focus offset and the coupling gas within the cell on the PA 

signal are discussed. 

Various samples are used to verify performance of the developed PA system. 

These include Silicon wafers, GaAs wafers, multi-layered structures on silicon 

substrates, carbon-black powder, laser-machined air trenches, bonded silicon 

wafers and a packaged IC chip. For spectroscopy applications, the PA spectra of 

two types of GaAs wafers are characterized successfully. For microscopy 

applications, the PA system is proven to have a vertical resolution of ~ 20 nm 

and a lateral resolution of ~ sub-100 m. Its probe depth could be as deep as 450 

m below the silicon surface. The data acquisition speed of the PA system is 

improved for industrial applications. Two high-resolution (10,000 pixels) thermal 

images (one in phase and another in amplitude) of semiconductor devices can be 

obtained in less than 50 seconds across an area of approx. 9 mm x 9 mm.  

In the second part of my thesis, other related non-destructive characterization 

work on advanced semiconductor materials is presented. In chapter six, 

Synchrotron X-ray Topography (SXRT) and Micro-Raman Spectroscopy (uRS) 

are used to study two sets of the femto-second and nano-second laser machined 

grooves on InP substrates. In chapter seven, another characterization work is 

presented to study the H2 preconditioning effect on self-assembled Ge-islands on 

Silicon. Both cases demonstrate the commercialised metrology tools’ capability, 

to analyse the distribution profile of the strain and the chemical composition on 

the top surface.   
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The PA system prototype presented in this thesis can be used as a 

complementary tool. It provides ultra-deep probe depth for the subsurface 

defects, when comparing to the SXRT and the uRS methods.  

The contents included in Chapter 6 and 7 were published in 2 journals during my 

PhD research period. The copyright permission has been granted by the 

publisher and attached in the appendix section of this thesis. 
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C h a p t e r  2  

THE PHOTOACOUSTIC THEORY 

2  

The Photoacoustic Theory 

2.1  

Rosencwaig-Gersho Theory 

Rosencwaig-Gersho theory (R-G Theory) is a relatively simple one-dimensional 

analysis, developed in the 1970s. [1.1] It was originally used to study the 

production of photoacoustic signals in a cylindrical photoacoustic cell. The 

authors obtained a series of analytical expressions of the PA signal by first 

modeling the heat flow within a 3-component system, including sample, gas and 

backing material, which was heated by the excitation light source. After applying 

the appropriate boundary conditions for the thermal diffusion equations, the 

temperature distribution inside the gas column, which was in contact with the 

sample, can be calculated. This air column acted as an “acoustic piston”. It 

underwent compression and expansion due to convective heating from the 

periodically irradiated sample surface. The acoustic piston induced the acoustic 

pressure variation within the cell, which can be detected by microphones. R-G 

theory is the first major mathematical model for the PA effect. The acoustic 

signal is dependent on the properties of the sample, gas and backing materials, 

including the thermal diffusion coefficient, specific heat, material density and etc. 

The R-G theory is now reformulated in detail in this chapter below, since many 

of the design criteria for the presented PA system are implicitly defined by this 

theory. 
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Figure 2.1: Schematic of one-dimensional photoacoustic cell, where the 
parameter for a given material is identified by the subscript. The label of s, g or b 
represents the sample, gas or backing material, respectively. The thickness of the 

thermally excitable region can be estimated as 2 g , where g  is the thermal 

diffusion length in the gas column, as calculated in Figure 2.2. (Adapted from Ref. 
[1.1]) 

When the PA cell’s dimensions in the y- and z-directions are much smaller than 

that in the x-direction, the photoacoustic effect can be described as shown in 

figure 2.1. In this case, the thermal diffusion process occurs only along one axis, x. 

Several assumptions have been made with regard to the PA system: 

1. The length of the cell ( gl ) is far greater than the acoustic wavelength. 
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2. The incident excitation light source is monochromatic and modulated. 

))cos(1(
2

0 t
I

I  , where f 2  is the angular modulation 

frequency and I0 is the incident light intensity. 

3. The gas and backing material do not absorb light. 

4. The backing material is thermally thick. 

5. The system is adiabatic. 

6. The PA cell window is optically and thermally transparent. 

Neglecting semiconductor carrier diffusion and recombination effects, the heat 

density generated in the sample ( 0sl x   ) due to the light absorption is given 

by 

)cos1(
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),( 00 t
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



 

               (2.1) 

where   is the optical absorption coefficient and x is a negative number when 

the heated position is under the sample surface. We assume that the optical 

energy will be absorbed only within the sample and converted to heat by non-

radiative de-excitation processes with efficiency  In the R-G theory, the 

radiative de-excitation process is neglected, which will be discussed later for 

photoacoustic materials for semiconductors in section 2.3. Therefore,  in 

equation 2.1 above.  

Using one-dimensional heat equation, equation 2.2 incorporates the effect of the 

distributed heat source, due to the incident light, into the thermal diffusion 
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process within the sample. Similarly, the one dimensional thermal diffusion 

process within the gas column and backing material without heating sources is 

given by the equation 2.3 and 2.4.  
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where ),( txT  is the spatially and temporally dependent temperature and   is the 

thermal diffusivity, described in equation 2.9. 
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where k is the thermal conductivity and  is the heat converting efficiency via 

non-radiative de-excitation processes;  as mentioned previously. 0I  is the 

light intensity impinging on the sample surface.  

As for the solution of equation 2.2, 2.3 and 2.4, the temperature distribution 

inside the PA cell is given by the following expression: 

 tjlx

b

b

eWeWllx
l

txT b  )(

0)(
1

),(


 , when ssb lxll  )(          (2.6) 

tjxxxx eEeVeUedexeetxT ss  )(),( 21 


, when 0 xls     (2.7) 



 

 26 

where U, V, e1 and e2 are constant, E is defined in equation 2.17, the other symbo

ls are defined through Equation 2. 9 to 2.16. 
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where (1 )j a   , as described later in equation 2.12.  W is the time dependent 

component of the temperature relative to the ambient temperature 0T  at the 

interface between the sample and backing material. 0W  is the time independent 

component of the temperature relative to the ambient temperature T0 at the 

sample-backing interface ( sx l  ).   is the time dependent component of the 

temperature relative to the ambient temperature 0T  at the interface between the 

sample and coupling gas. 0 is the time independent component of the 

temperature relative to the ambient temperature T0 at the sample surface ( 0x  ).  

k

C



                                                   (2.9) 

where k is the thermal conductivity (Wm-1K-1),   is the density, C  is the specific 

heat and  is the thermal diffusivity (m2s-1). 

2
a




                                                (2.10) 

 where a (defined as the thermal diffusion coefficient in the R-G theory) is a 

frequency dependent thermal diffusion parameter with units of m-1, analogous to 

the thermal absorption coefficient.. As illustrated by equation 2.9, the thermal 

diffusivity   is one of the material properties, which is independent of the 

modulation frequency of the incident light. The thermal diffusion coefficient, a, is 
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frequency dependent and the higher the modulation frequency, the bigger is the 

thermal diffusivity and the shorter is the thermal diffusion length within the 

sample material.  

  is the thermal diffusion length  

 
1

a
                                                    (2.11) 

and 

(1 )j a                                               (2.12) 

where   is the adapted thermal diffusion coefficient including an extra 45 degree 

phase shift. It is a complex number due to both spatial and time dependant 

variation of the thermal diffusion process. The equality of the real and imaginary 

components dictates that the thermal energy emerging at the sample surface 

experiences this 45° phase shift. 

sk

I
d

2

0                                                  (2.13) 

)(2
22

0

ssk

I
E






                                          (2.14) 

where sk is the thermal conductivity within the sample material and s  is the 

adapted thermal diffusion coefficient within the sample materials. To get the 

expression for the temperature variation at the sample surface  , the following 

boundary conditions for temperature and heat flux continuity at the sample-gas 

and sample-backing interfaces are considered.  
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where gT ,  sT  and bT  is the temperature in the gas media, sample and backing 

materials; gk , sk  and bk  is the thermal conductivity in the gas media, sample and 

backing materials; sl  is the sample thickness; t is time and x is location. 

 Appling the boundary conditions of 2.15a above to the equations 2.6, 2.7 and 2.8, 

it yields [1.1, pp. 98-100]: 
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Solving the equations of 2.15b above, the resulting time dependent temperature 

at the sample surface,  , is [1.1, pp. 98-100] 
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It can be concluded that the time dependent temperature component within the 

gas column,  , is represented by a complex valued function. It has a phase and 

amplitude relationship with the ac component of the incident excitation light 

intensity.  

Investigation of the temperature distribution in the gas column in equation 2.8 

shows that it is composed of temporally dependent and independent components. 

Since only the time varying component is responsible for the creation of the 

pressure fluctuations in the gas, the time independent component 0 may be 

neglected and the ac component of the temperature variation inside gas column 

can be expressed as: 

  tjx

g eetxT g
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Plotting equation 2.19 for various phases, Rosencwaig and Gersho found that the 

time dependent component would be fully damped out at a distance of 

approximately 2 g from the sample-gas interface.[1.1] Let us consider a simple 

PA system, where the sample is a silicon wafer of 500 um thickness, the backing 

material is aluminium and the coupling gas is air. A 300 W arc lamp (modulation 

frequency = 100 Hz) is used as the excitation light source. As shown in Figure 2.2, 

the temperature variation in the gas column can be neglected when the 

temperature sensor is placed >1 mm away from the sample surface. 

 

 

 

 



 

 31 

 

Figure 2.2: Spatial distribution of the time-dependent temperature within PA cell 
for a 500um thick silicon sample. The backing material is aluminum, the coupling 
gas is air and a 300 W arc lamp is used as the light source, modulated at 100 Hz. 

Therefore, one can define a boundary length in the gas that is thermally excitable 

by the sample. In this region, periodic expansion and contraction takes place, 

which acts as an “acoustic piston” with a volume velocity related to the 

modulated excitation light intensity. The piston compresses the rest of the gas 

column inside the PA cell and produces an acoustic wave that travels the entire 

length of the gas column. The acoustic piston length with air and helium coupling 

gas has been plotted as a function of modulation frequency. As shown in Figure 

2.3, the acoustic piston thickness in helium is much greater than that in air at all 

frequencies The consideration of acoustic piston length is important when 

designing a photoacoustic characterization instrument, as it defines the lower 

limit of the PA cell volume. Tam and Wong have reported that the highest PA 



 

 32 

signal amplitude can be achieved when the gas column length gl  is roughly about 

1.8 g . [2.1, 2.2]  
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Figure 2.3: Acoustic piston length, 2 g , as a function of modulation frequency 

for air and helium coupling gas inside the PA cell, calculated using 

heliumC  5.193 J/gK@300K , 3

helium 178.7 g / m  , heliumk  0.1513W / mK , 

airC  1.047J / g*k , 3

air 616 g / m  , airk  0.0457 W/mK  

For smaller values of gl , the temperature variation in the gas column will be 

reduced due to direct heat diffusion losses through the optical window. The PA 

signal intensity decreases with decreasing air volume and follows roughly a linear 
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gl  and 
1

2f


 dependency. For a gas column length longer than 1.8 g , the PA 

signal decreases with increasing gas volume and exhibits 1

gl
  and 1f   dependency 

[2.1, 2.2]. According to Figure 2.3, it is perfectly reasonable to choose 4 mm as 

the gas column length for the photoacoustic cell design, within the frequency 

probe range from 102 Hz to 104 Hz for both air and helium gas coupling. 

The spatially averaged temperature of the gas within the acoustic piston length 

can be calculated by obtaining the spatial mean of equation (2.19) as follows: 
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Using the approximation e-2π<<1, equation 2.20 yields: 
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where  is the time dependent temperature at the sample surface calculated in 

equation 2.15. The volume of the acoustic piston expands thermally as the mean 

temperature increases inside the cell and can be expressed by  

V
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where T  is the thermal cubic expansion coefficient of the adiabatic gas. Since 

T  is a constant value for the coupling gas, using equation 2.22, the gas volume 

variation induced by the periodical heating can be calculated as 
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where 2( ) 2
2

g

D
V   , is the acoustic piston volume and D is the diameter of 

the photoacoustic cell. 

The remainder of the gas inside the PA cell is compressed by the acoustic piston 

and an increase in pressure in the PA cell can be detected by a microphone sensor. 

As the system is assumed to be adiabatic, the ideal gas law may be applied to the 

whole PA cell gas column assuming lg is far bigger than 2 g  

CPV                                                   (2.24) 
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where C is a constant value in equation 2.24. P0 is the ambient pressure, V0 is the 

PA cell volume and   is the ratio of the molar specific heats at constant pressure.  

The pressure variation with in the cell is calculated through two steps. The first 

step is the volume variation induced by the temperature increment. Since 2 g  is 

much smaller than the total length of the gas volume within the cell lg , the total 

temperature change within the photoacoustic cell can be calculated as a weighted 

fraction of 
ACgT : 
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Combining equations 2.23 and 2.26a yields: 
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The second step for calculation is to estimate the pressure variation induced by 

the gas volume change. Combining equations 2.26b and 2.25, pressure variation 

inside the PA cell now can be mathematically described as: 
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The pressure variation, also called the photoacoustic signal, can be broken into 

two components, which comprises of both the amplitude and phase signals. By 

inserting equations 2.21 and 2.15c into equation 2.26c above, the acoustic signal 

can be calculated as 
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where Q is a complex number that specifies the complex envelope of the 

sinusoidal pressure variation. We define  

0 0

02 2 g
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l T
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                                              (2.28) 

where Y is a constant independent of the material properties included in the PA 

system. Equation 2.27 can be simplified after inserting equation 2.28 as  
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(2.29) 

As shown in equations 2.26, 2.27 and 2.29, R-G theory presents a complete 

model for the photoacoustic effect of one homogeneous sample placed on a 

thermally thick backing material inside an airtight chamber. The photoacoustic 

signal is a complex function oscillating at the same frequency as the modulated 

excitation light source. The amplitude and phase of the PA signal are frequency 

dependent and can be used to characterise the optical and thermal properties of 

the sample. These conclusions can be applied to samples with various optical and 

thermal properties and can be directly used to interpret the experimental data 

from the PA system developed in subsequent chapters. 

2.2  

Simplified Rosencwaig-Gersho Theory: Special Cases  

From the previous section, it is obvious that the mathematical expression for the 

PA signal is quite complicated, particularly due to the complex nature of Q in 

equations 2.27 and 2.29. To overcome this problem, Rosencwaig and Gersho 

developed a simplified theory using physical insight for the special cases. For 

example, 

 When the sample thickness is greater than the thermal diffusion length, the 

sample is considered “thermally thick”. Otherwise, the sample is 

considered to be “thermally thin”. 
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 When the sample thickness is smaller than optical absorption length, the 

sample is considered “optically transparent”. Otherwise, the sample is 

considered to be “opaque”. 

Therefore, by comparing the values of optical absorption length, thermal 

diffusion length in the sample and sample thickness, PA samples can be grouped 

into 6 simplified cases. In the equations below, as defined by R-G theory,   is 

the optical absorption length, s  is thermal diffusion length in the sample, b  is 

the thermal diffusion length in the backing material and sl is the sample thickness. 

As also defined in Figure 2.1, the subscripts g, s and b below refer to the material 

properties for gas, sample and backing material, respectively. For further 

elaboration the reader is referred to [1.1, pp. 104-107] and [4.7] 

2.2.1  

Case 1: Optically transparent and thermally thin samples ( s >> sl , s    

and sl  ) 

In this case, 1sl

se l
 
  , 1s sle


  and 1r  . Equation 2.29 can be simplified 

as  
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s b

g b

j l
Q Y

a k

 
                                      (2.30) 

As can be seen in equation 2.30, the PA signal intensity is linearly proportional to 

sl . According to equation 2.10 and 2.11, 
gb

b

ak

1
is proportional to 1 . Thus 

the PA signal intensity has a 1  dependency on the modulation frequency of the 

excitation light source. 
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2.2.2  

Case 2: Optically transparent and thermally thin (
s sl  , s   ) 

In this case, 1sl

se l
 
  , 1s sl

s se l
 

   and 1r   Equation 2.29 can now be 

simplified as  
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                                      (2.31) 

In fact, it is identical to equation 2.30. For both cases with the thermally thin 

samples, the backing material properties have to be taken into account for the PA 

signal estimation, via dependency on b

bk


. 

2.2.3  

Case 3: Optically transparent and thermally thick ( s sl  , s <<  ) 

In this case, 1sl

se l
 
  , 0s sle


 and |r|<<1. Equation 2.29 can be 

simplified as  

( )
2

s s

g s

j
Q Y

a k

 
                                     (2.32) 

In comparison with equation 2.31, the s  term is used here instead of sl . 

Thus, only the light absorbed within the thermal diffusion length contributes to 

the PA signal. 
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2.2.4  

Case 4: Optically opaque and thermally thin (
s >>

sl , 
s >>   and sl  ) 

 In this case, 0sle

 , 1s sle


 and |r|>>1. For this situation, equation 2.29 

can be simplified as  

                         
(1 )

( )
2

b

g b

j
Q Y

a k


                                     (2.34) 

Here, the PA signal is independent of the optical absorption coefficient. This 

conclusion is very important, particularly when studying the semiconductor 

bandgap structures using PA spectroscopy. When the photon energy of the 

excitation light source is greater than that of the semiconductor bandgap, the 

semiconductor sample is optically opaque. Thus the PA system is not sensitive to 

optical absorption processes above the bandgap.  

In a fashion similar to equations 2.30 and 2.31, the PA signal intensity also 

depends on the properties of the backing material and is inversely proportional to 

the chopping frequency 

2.2.5  

Case 5: Optically opaque and thermally thick ( s sl  , s    and sl  ) 

In this case, 0sle

 , 0s sle


 and 1r  . Equation 2.29 can now be simplified 

as  

                         
(1 )

( )
2

s

g s

j
Q Y

a k


                                        (2.35) 

where the PA signal is independent of the backing material and the optical 

absorption coefficient.  
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2.2.6  

Case 6: Optically opaque and thermally thick (
s <<

sl , s    and sl  ) 

In this case, 0sle

 , 0s sle


 and 1r  . Here, equation 2.29 can be simplified 

as  

                         ( )
2

s s

g s

j
Q Y

a k

 
                                        (2.36) 

This case is very interesting. Although the sample is still optically opaque, the PA 

signal intensity is proportional to s  and is sensitive to the optical absorption 

coefficient. However, this conclusion is only valid when the thermal diffusion 

length is smaller than the optical penetration depth. Considering the modulation 

frequency range used in the PA system described in this thesis, i.e. from 100 Hz 

to 10 kHz, the typical thermal diffusion length in silicon is of the order of 

hundreds of microns. This is far bigger than the typical optical penetration depth, 

which is of the order of hundreds of nanometres, when the incident photon 

energy is above the semiconductor bandgap energy.  Therefore, it is still valid to 

conclude that the PA system developed here is not sensitive to optical absorption 

processes above the semiconductor bandgap. 

2.3  

Photoacoustic Theory For Semiconductor Materials 

The R-G theory assumes that the heat is generated instantaneously at the point in 

the sample where the light is absorbed. Therefore the distribution of the heat 

source is governed by the light source intensity (e.g. Gaussian profile), which 

decreases away from the surface in an xe   fashion. However, in reality, the light 

absorption process will create electron-hole pairs in the sample, which will exist 
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for a certain period of time and move around before converting their energy to 

other forms, such as heat, etc. 

When the incident light energy is above the semiconductor material bandgap 

energy, the optical absorption coefficient is high and the generated excess carriers 

are very close to the illuminated semiconductor surface. Most of the heat will be 

created by the surface recombination of those excess carriers. The recombination 

process will be so fast that the transport properties of the carriers will not affect 

the photoacoustic response and the R-G theory is sufficient to describe this 

photoacoustic effect. On the other hand, when the incident light energy is below 

the semiconductor bandgap energy, the optical absorption coefficient is low and 

light penetrates deep into the bulk of the semiconductor material. In this case, 

there is a substantial number of photo-excited carriers, whose diffusion effect will 

play an important role in the generation of the photoacoustic signal. 

Bandeira et al. and several other groups have developed the theory of the 

photoacoustic effect in semiconductor materials, which includes the excess carrier 

diffusion effect. [2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10] 
 

To summarize the aforementioned work, there are two major differences 

between the photoacoustic theory for semiconductor materials and non-

semiconductor materials. For semiconductor samples, the light absorption can 

only introduce photoexcited carriers and there is no direct heating effect. The 

heat is generated in the subsequent interaction of these carriers with the sample. 

In addition, the heat flux at the gas and semiconductor material interface is no 

longer continuous. Extra heat is created by the surface recombination of excess 

carriers. 
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C h a p t e r  3  

PHOTOACOUSTIC SYSTEM DESIGN AND NOISE ANALYSIS 

3. Photoacoustic System Design and Noise Analysis 

3.1 Introduction 

In the previous chapter, the theory of photoacoustic effect in condensed matter is 

illustrated. In this chapter, this theory is used as a guideline to design and 

construct a photoacoustic cell.  

For the “conventional” PA spectroscopy design, the operation of the system is as 

follows.  The polychromatic light from a 300 W Xenon arc lamp is first 

modulated by the optical chopper and then focused onto the entrance slit of a 

monochromator.  The intensity-modulated light undergoes diffraction in 

accordance with the diffraction equation: 

sing a                                                  (3.1) 

where g is the order of the reflection,   is the monochromatic diffracted light, a 

is the line spacing of the grating and   is the diffraction angle. This is the special 

case for the grating equation, (sin sin )ig a    , when the light incidence 

angle, i , equals to 0°. A band-pass color filter is placed at the output port of the 

monochromator to block the harmonic wavelength contributions.  The 

spectroscopic resolution of the PAS system is determined by the open slit width 

at the output of the monochromator. The narrower the slit opening, the better 

the spectroscopic resolution and the lower the output light intensity. The PA 

system presented here provides a typical output light intensity of about 12 mW, 

when setting the monochromator output wavelength at 1,000 nm (blazing 

wavelength of the grating).  The monochromatic light enters a focus sub-system 
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and is subsequently incident on the semiconductor sample.  The optical energy is 

absorbed by the sample and converted to the periodical thermal expansion of the 

gas volume within the PA cell via the photoacoustic effects, which is 

subsequently detected using microphones.  Due to the low incident light intensity 

and poor conversion efficiency of the absorbed light into a detectable gas 

expansion within the PA cell, the typical microphone signal suffers a low signal to 

noise ratio (SNR), even when a pre-amplifier and lock-in amplifier are used for 

the PA signal processing. Currently, photoacoustic spectrometers for gaseous 

substances are more commercially available [1.3], because of a more significant 

PA effect and the relatively simpler models for the data interpretation.  The PA 

spectra for condensed matter, such as semiconductor wafers, is more difficult to 

obtain and relatively more complex to model.  

Various in-house PA systems have been developed to maximize the performance 

for different and specific experimental conditions. [3.1-3.5] One of the most 

commercially successful systems is the PAS cell provided by MTEC Photoacoustics 

Inc. [3.5].  That system is constructed as a detector head, which can be easily 

integrated into the standard FTIR spectrometers.  The SNR is boosted using the 

FTIR method. It can increase the incident light intensity and reduces the signal 

accumulation time significantly. The typical analysis time to produce one useful 

spectrum is about 5 seconds.  But, the energy range of that spectrometer is way 

below typical semiconductor band gap energies and practically useless for the 

analysis of bandgap defects. In addition, like any other PAS system published so 

far, the volume of the PA cell needs to be minimized to sustain a sufficient signal 

level for detection. The maximum sample size allowed in the MTEC system is 

only 5 mm in radius and 8 mm in height. [3.5]  

To extend the PAS wavelength spectral range down to UV-VIS range, the PA 

system presented here uses the monochromator scanning method for the light 
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excitation, which is similar to that developed by Zegadi et. al at the University of 

Salford ca.1994. The PA cell design is optimized to improve SNR performance 

for the modulation frequency range and thermal wave probe depths of interest.  

Multi-channel acoustic signal acquisition, acoustic resonance provided by the cell 

geometry, an optimized band-pass filter and pre-amplification are considered in 

the PA cell design. The graphical user interface (GUI) is shared by both the PA 

spectroscopy (PAS) and the PA microscopy (PAM) systems. The optical 

excitation trains for the PAS and PAM systems is designed separately. One 

provides a broadband light source with the photonic energy in the range from 0.5 

eV to 6.2 eV for the spectroscopy applications, while the other produces a very 

high probe intensity using a well collimated single wavelength laser source for the 

microscopic scanning. 

3.2 Photoacoustic Spectrometer (PAS) and Microscopy (PAM) 

Specifications 

In this section, the wavelength and modulation frequency rang is presented to 

meet the application requirements. In order to implement sub-bandgap defect 

energy analysis, the wavelength range for PA spectroscopy should cover the 

typical semiconductor band gap energy in the photonic interval from 0.5eV to 

6.2eV, as shown in Table 3.1. 
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Material   Symbol 
  

Band gap (eV) 
@ 300K   

Silicon Si 1.11 

Germanium Ge 0.67 

Silicon carbide SiC 2.86 

Aluminium phosphide AlP 2.45 

Aluminium arsenide AlAs 2.16 

Aluminium antimonide AlSb 1.6 

Aluminium nitride AlN 6.3 

Diamond C 5.5 

Gallium(III) phosphide GaP 2.26 

Gallium(III) arsenide GaAs 1.43 

Gallium(III) nitride GaN 3.4 

Gallium(II) sulphide GaS 2.5 (@ 295 K) 

Gallium antimonide GaSb 0.7 

Indium(III) nitride InN 0.7 

Indium(III) phosphide InP 1.35 

Indium(III) arsenide InAs 0.36 

Zinc oxide ZnO 3.37 

Zinc sulphide ZnS 3.6 

Zinc selenide ZnSe 2.7 

Zinc telluride ZnTe 2.25 

Cadmium sulphide CdS 2.42 

Cadmium selenide CdSe 1.73 

Cadmium telluride CdTe 1.49 

Lead(II) sulphide PbS 0.37 

Lead(II) selenide PbSe 0.27 

Lead(II) telluride PbTe 0.29 

Copper(II) oxide Cu2O 2.17 

Table 3.1: List of lowest selection of semiconductor band gaps: lowest energy 

transitions in each case [3.6, 3.7, 3.8, 3.9] 

For PA microscopy, the thermal diffusion length determines the lateral resolution 

and probe depth. Combining equations 2.9, 2.10 and 2.11, the thermal diffusion 

length  can be calculated as follows: 
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i
i

i ifC




 
                                                (3.2) 

where f,  
i , Ci  and 

i are the frequency at which the incident light source is 

amplitude modulated with an optical chopper, the thermal conductivity, the 

specific heat and density of the material i , respectively. For copper, 

390Cu W·m-1·K-1, CCu = 385 J·kg-1·K-1 and Cu 8900 kg·m-3. For silicon, 

 Si  390W m1 K 1
, Csi  = 710 J·kg-1·K-1  and si  2329kg m3 . As shown 

in figure 3.1 above, the thermal diffusion length within the isotropic silicon bulk 

material decreases from 350 um to 100 um by changing the modulation 

frequency from 250 Hz to 2,500 Hz. Therefore, the PA microscopy requires the 

capability to scan across the wafer with a 20 um step size and a focused laser spot 

size smaller than 100 um in order to achieve a reasonably high spatial resolution. 
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Figure 3.1:  The thermal diffusion length decreases while increasing the 
modulation frequency 

3.3 Overview of the Photoacoustic Spectrometer and Microscope  

The PAS and PAM systems can be broken into several independent subsystems. 

As shown in Figure 3.2, for the spectroscopy system (PAS), the light source is a 

300 W Xenon arc lamp (LOT Oriel model 6258), which provides a continuous 

light spectrum in the range of 0.5-6.2 eV. The light is modulated at a selected 

frequency by the optical chopper (LOT Oriel model 75170) mounted at the 

output port of the lamp housing (LOT Oriel model 66901).  The modulated light 

is collimated and focused onto the entrance slit (LOT Oriel model 74001) of the 

¼ m monochromator (Cornerstone 260 LOT Oriel model 74100). The 

resolution of the output monochromatic light (FWHM of the wavelength range 

of the output light) can be adjusted by the opening width of the monochromator 

output slit (LOT Oriel model 74001). A motorized filter wheel (LOT Oriel model 
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74010) is placed within the optical excitation path to cut off the diffraction of 

high order harmonics.   

 

Figure 3.2: Schematics of the photoacoustic spectroscopy system (PAS) 

The acoustic signal generated within the PA cell is collected by 4 microphones 

(Knowles model FG-23629-C36) and amplified before the signal detection using 

a DSP lock-in amplifier (Stanford Research Systems model SR830). A band pass 

filter is included in the pre-amp circuit to cut off the low frequency ambient noise.   

The photoacoustic signal measured in the PA cell is compared to the reference 

signal provided by the optical chopper controller. Both the amplitude and the 

phase of the PA signal are detected and sent to a PC via a GPIB interface. The 

monochromator and motorized filter wheel are also connected to the PC via a 
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GPIB interface and provide the hardware control functions to select the output 

wavelengths.  The input of the optical chopper controller (LOT Oriel model 

75160) is connected to the TTL sync-out port on the SR830 lock-in amplifier. It 

synchronizes the optical chopping frequency with the frequency generator within 

the lock-in amplifier. Using LabView® software, the PA signal and the 

information of the modulation frequency and the selected wavelength is collected 

by the PC. The results are shown within the GUI and saved on the local hard 

disk for further analysis. 

The microscopy system (PAM) is presented in Figure 3.3. The laser light source is 

a ProLite® SF Series Fiber Coupled Single emitter (model SFB100-810-D2-01A) 

diode laser. The output wavelength is 808 nm with a typical spectral width of 3.5 

nm. The maximum output power is 1.2 W. The laser diode is mounted on 762 

series high-power laser diode mounts with a thermoelectric (TE) cooling module 

and sensor included.  To provide a constant output power, a temperature 

controller (model 325B) is used to control the laser diode temperature with an 

accuracy of 0.2C. The temperature is set to 22C.  The laser diode is powered by 

a Newport Laser diode drive (525B) with a typical operating current of 1.85A.  

The external input of the laser diode drive is connected to the TTL sync-out of 

the SR850 lock-in amplifier. The modulation frequency of the laser generated by 

the single emitter is synchronized with the frequency generator within the lock-in 

amplifier.  The laser diode is pig-tailed and the emitted laser is coupled into an 

optical fibre with a core diameter of 100 um.  The light emitted at the end of the 

fibre is highly divergent. A confocal lens cage is used to collect the laser light, re-

shape the beam profile with a 200um pinhole and focus the light into the PA cell 

with a working distance of 25.4 mm. The laser light source and the focusing lens 

are fixed in position during the laser scanning process. 
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Figure 3.3: Schematics of the photoacoustic microscopy system (PAM) 

The PA cell is mounted on two motorized stages (Micos® VT-80 Translation 

Stages) for X-Y positioning while scanning across the semiconductor samples 

with the laser beam.  A single axis stepper controller (SMC Pollux Type I) is used 

to control each translation stage, through a D-sub connection. The motorized 

stage gives a bi-directional positioning repeatability of 15 um. With the exception 

of the light source, optical excitation path and the motorized stage, the remainder 

of the subsystems, including the photoacoustic cell, the acoustic signal acquisition 

and processing, are the same for both microscopy (PAM) and spectroscopy (PAS) 

systems. Using LabView®, the information on the laser spot position, 

modulation frequency, PA amplitude and phase are collected by the controlling 

PC. In this way, wafer maps of the PA amplitude and phase can be plotted on the 
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screen. By changing the modulation frequency of the laser diode, the thermal 

diffusion length can be altered and the thermal imaging results with a variety of 

probe depths can be obtained. 

3.4 Hardware description 

3.4.1 Optical Hardware for Photoacoustic Spectroscopy 

The primary purpose of the optical hardware is to create a high intensity, 

modulated, monochromatic light beam to induce the photoacoustic effect in the 

semiconductor samples.  

 

 

 

Figure 3.4: Spectral irradiance of 300 W ozone-free xenon arc lamp (LOT Oriel 
model 6258). Reproduced from [3.10] 
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To isolate the photoacoustic system from the ambient low frequency vibration, 

all of the optical hardware is mounted on a RP Reliance vibration damped optical 

table manufactured by Newport. The light source is a 300 W Short Arc Xenon 

lamp (model 6258), manufactured by LOT Oriel. The arc size is 0.7 mm * 2.4 

mm.  Within the arc lamp housing (model 66901), a parabolic reflector is situated 

behind the lamp to enhance the device efficiency. An f/1 primary condensing 

lens and an f/4.6 secondary coupling lens (f = 150 mm) is mounted at the output 

port of the lamp housing.  The arc lamp is at the focal point of the primary 

condensing lens, which provides a collimated beam for the secondary lens.  The 

secondary coupling lens is used to perform the f-number matching to maximize 

the light intensity throughput. The entrance slit of the monochromator is placed 

at its focal point, i.e. 150 mm away.   
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Figure 3.5: The output light power spectrum for the monochromator measured 
by a silicon photodiode (The exit slit width = 1.34 mm) 

The lamp is ozone-free and can provide constant irradiance from 250 nm 

(Oxygen cut-off wavelength) to 2,400 nm. The spectral output of the lamp can be 

examined in Figure 3.4. 
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The optical chopper, LOT Oriel model 75170, is inserted in the path of the 

collimated beam between the primary and secondary condensing lenses.  The 

optical chopper has been placed away from the photoacoustic cell to minimize 

the acoustic noise arising from the motor and the air being chopped.  A 

controller (LOT Oriel model 75160) is used to control the chopping frequency. It 

varies from sub-Hz to 3kHz. For all the spectral results presented later, the 

modulation frequency is set at 70Hz to obtain relatively high PA amplitude. The 

reference signal for the optical chopper controller is provided by the TTL-sync-

out signal from the lock-in amplifier. It insures zero frequency difference between 

the detection frequency and excitation frequency. 

For the optical wavelength selection, a LOT Oriel Cornerstone 260 

monochromator is used. It has entrance and exit focal lengths of 260mm, a 

relative aperture of f/3.9 and a potential operating range from 180 nm to 20 um 

depending on the diffraction grating used. The maximum wavelength-scanning 

rate is 175 nm/s.  The monochromator has an accuracy of 0.35 nm and a 

wavelength repeatability of 0.08 nm. 

Grating 
No 

Type No of the Grooves 
(l/mm) 

λ range 

[nm] 

Blaze λ 

[nm] 

1 Holographic 1200 180 - 650 250 

2 Ruled 1200 450 - 1400 750 

3 Ruled 600 900 -2800 1600 

Table 3.2: The gratings selected in the Cornerstone 650 monochromator  

There are two types of the grating: holographic and ruled gratings. The 

holographic grating provides good spectral resolution at the expense of reduced 

intensity. The ruled grating offers increased light intensity with relatively poor 

spectral resolution. The resolution of the grating increases and the light 

throughput decreases as one increases the number of the grooves on the grating. 

The resolution of the Cornerstone 260 is 0.15 nm for a 1200 l/mm grating when 
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setting the entrance and exit slit size as 10 um * 2 mm. As shown in Table 3.2, 

three gratings are selected here to enable the monochromator scan from 180 nm 

to 2400 nm. As shown in Figure 3.5, the monochromator output spectrum is 

measured using a silicon power meter. The result includes the combined effects 

of the monochromator throughput variation and the arc lamp power spectrum 

across the wavelength.  Since this output spectrum is measured with a silicon 

photodiode, it has a limited detection range from 400 nm to 1,090 nm. The 

optical chopper was set open and the exit slit was closed slightly to a slit width of 

1.34 mm to avoid signal saturation of the power meter. 
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Figure 3.6: The monochromator output power spectrum measured using 
photoacoustic cell and carbon black powder. (Modulation frequency = 43 Hz, 

lock-in amplifier sensitivity = 500 mV, lock-in time constant = 30 ms, AC 
coupling, High reserve, negative edge triggering, scan range = 180 nm – 2400 nm)  

It is worth noting that the spectrum, shown in Figure 3.5, does not represent a 

complete picture of the monochromator capability used in the PAS system, due 

to the limited spectral detectable range of the silicon photodiode. Using a 

combination of the PA cell and carbon black powder as the detector, the 

complete monochromator output spectral can be obtained with extended 
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wavelength range of 180-2400 nm. Carbon black powder, which has been widely 

used as a reference sample for the PA spectrum normalization, is considered to 

have a constant optical absorption coefficient across the wavelength. [1.3] 

Beyond ~1800 nm, the PA amplitude falls into the background noise level of 

about 12 mV. When comparing Figure 3.5 and 3.6, in the wavelength range from 

400-1090 nm, the measured PA amplitude spectrum shows very similar features 

to those obtained using the silicon power meter. 

The details of the PA cell and the processing electronics used in this 

measurement will be described later in this chapter. 

Wavelength Selection Mechanism
(The optmized combination of grating and optical filter)
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Figure 3.7: The wavelength selection mechanism (The output of the 
monochromator is determined by the combination of the selected grating and 

optical filter for each individual wavelength within the range of the PAS scanning 
spectrum.) 

Coupled to the output slit of the Cornerstone 260 monochromator is the 

motorized filter wheel (Oriel Instruments model 74010). This optical filter is 
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necessary to remove the high order harmonic contamination in the output 

spectrum.  Within the optical wavelength range of interest, the combination of 

the optical filter and grating has been optimized to achieve the highest 

throughput of the light power, as shown in Figure 3.7 and the Table 3.3. The 

filter change mechanism is controlled directly by the monochromator, which 

itself is controlled directly using a dedicated hand controller and the IEEE 488.2 

GPIB communication protocols. 

 Optical Filter Selection    

Filter no #1 #2 #3 #4 #5 #6 

Cut On λ
[nm] 

Empty 324 590 830 1531 1750 

Max λ[nm] 339 633 1099 1614 1756 3099 

Min λ[nm] 180 340 634 1100 1615 1757 

 

  Grating 

Selection 

 

Grating no #1 #2 #3 

Designed λ range (180nm-

650nm) 

(450nm-

1400nm) 

(900nm-

2800nm) 

Max λ[nm] 449 899 2400 

Min λ[nm] 180 450 900 

Table 3.3: The list of the gratings and the optical cut-on filters used in the PAS 

system. The wavelength limit of each color filter is determined by experiment to 

maximize the optical power throughput. 

Since the photoacoustic effect is directly proportional to the intensity of the 

incident light source, we must maximize the power from the output port of the 

monochromator and focus it into an area as small as possible. Therefore, 

appropriate focusing optics is required, as shown in Figure 3.8.  
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Figure 3.8: The optical setup for Photoacoustic Spectroscopy (PAS) 

By way of example, suppose the monochromator is operated at 450 nm. The 

entrance and the exit slits are opened to 3 mm in width by 15 mm in height. 

Assume the power density provided by the arc lamp at 450 nm is 4.75 mW/nm 

and arc size is 0.7 mm * 2.4 mm. The magnification ratio of the condensing lens 

and the coupling lens can be calculated by the ratio of the f-number. 

sec/ #
4.6

/ #

ondary

condensor

f
m

f
 

                                      (3.3)

 

At the entrance of the monochromator, the image of the arc lamp source will be 

3.2 mm in width and 11.0 mm in height. Assuming uniform image irradiance, the 

power entering the monochromator is proportional to the fraction of the image 

that passes through the entrance slit. Therefore, the light power P entering the 

monochromator is  

3
4.75 / 3.58 /

3.2
P mW nm mW nm  

                   (3.4)
 

At the exit slit of the monochromator, the bandwidth   can be calculated as 
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d

dL


  

                                               (3.5)
 

where   is the exit slit width and 
d

dL


 is the reciprocal linear dispersion. 
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                                  (3.6)

 

where g is the order of the diffraction, a is the line space of the grating. At 450 

nm, the reciprocal linear dispersion is calculated as 3.8 nm/mm. Consequently 

the power output at the exit slit of the monochromator is calculated as  

4 2 4 2* * * * * * 10.49output g m l g m l

d
P P R T P R T mW

dL


      

     (3.7)
 

where g  (=50%) is the efficiency of the grating at 450 nm, mR  (=88%) is the 

reflectivity of the four aluminium mirrors integrated inside the monochromator, 

lT  (=90%) is the transparency of the primary condensing lens and secondary 

coupling lens across the wavelength of interest 

The output beam size from the monochromator has been experimentally 

ascertained to be  

0.15 0.5w u        Horizontal beam size in mm              (3.8) 

0.166 6.76h u           Vertical beam size in mm             (3.9) 



 

 59 

where u is the distance away from the output of the monochromator. A concave 

aluminium mirror with a focal length of 150 mm and a diameter of 75 mm has 

been used to collect the diffracted light and couple it into the acceptance angle of 

an off-axis elliptical mirror. The image distance of the concave mirror is set to be 

the same as the first focal length of the elliptical mirror to minimize the projected 

spot size within the photoacoustic cell. 

Since the concave mirror is placed 431 mm away from the exit slit of the 

monochromator, the diffracted beam image expands to 65 mm in width and 78 

mm in height. The diameter of the concave mirror has been selected as 75 mm to 

collect all the diffracted light to enhance the light throughput. 

The projected spot size at the sample plane within the PA cell can be calculated 

as 0.6 mm in width and 2.6 mm in height. 

230 51
3 * * 0.6

431 230

230 51
12 * * 2.6

431 230

w mm mm

h mm mm

 

 
                          (3.10)

 

Assuming there is no significant energy loss due to imaging spot over-fill at the 

concave aluminium mirror, the light intensity measured at the sample plane can 

be calculated as 

3 5.35incident output m filterP P R T mW 
                          (3.11)

 

where filterT  (=70%) is the transparency of the cut-on color filter and mR  (=90%) 

is the aluminium reflectivity. This is of the same order as the measurement result 

shown in Figure 3.5. 
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3.4.2 Optical hardware for Photoacoustic Microscopy 

The optics setup used for photoacoustic microscopy is much simpler compared 

to the PAS system. It has already been described in detail in section 3.3. 

A confocal lens cage has been used to re-shape the beam profile emitted from the 

pigtailed optical fibre, as shown in Figure 3.9. 

Figure 3.9: The optics setup for Photoacoustic Microscopy (PAM) 

The resulting beam diameter at the sample plane is calculated as: 

25.4
200 * 67

75

mm
D um um

mm
 

                             (3.12)
 

The measured spot size is approx 100 um within the photoacoustic cell, which is 

of the same order as the estimated laser spot size. 

The laser diode light source is connected to the Newport Laser diode drive 

(525B). The diode drive current is set at 300 mA, when it is turned on. The TTL-

sync signal generated by the lock-in amplifier is connected to the voltage input 

port of the laser diode drive.  The averaged voltage supplied by the TTL-sync 

signal is 2.67 V, with an equivalent averaged current value of 667.5 mA (250 

mA/V). The output current of laser diode drive is in the form of a square wave, 
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varying from 300mA to 1643mA. According to the laser diode spec sheet, the 

typical slope efficiency of the laser diode is 0.75W/A. The peak laser diode 

output power can thus be calculated to be 1.23mW. 

3.4.3 Design of Photoacoustic Cell 

Figure 3.10: Schematic of the photoacoustic cell for PAS and PAM systems. 

The schematic of the photoacoustic cell is illustrated in Figure 3.10. The size of 

the PA cell has been kept as small as possible to enhance the SNR of the PA 

signal. It is 16 mm in diameter and 9 mm in height. Several volume-reducing 

spacers have also been machined to fit at the bottom of the cell to further reduce 

the cell volume. Metering valves have been incorporated into the cell to facilitate 

the admittance of gas (helium) into the cell. The thermal conductivity of Helium 

gas is better than that of air, which can enhance the thermal diffusion process 

from the sample surface to the coupling gas volume. It can help to increase the 

PA signal level by a factor of 2. (The detailed calculation is given in Chapter 4.) 

The PA cell system contains four microphones (Knowles FG-23629-C36). Each 

microphone is contained in an individual housing to facilitate ease of replacement. 

Compared to the single microphone configuration, the SNR of n microphones 

can be reduced by a factor of n due to the statistical averaging effect. 
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Figure 3.11: The assembly sheet of the photoacoustic cell (PA cell) 

 

 

The cell can be bolted directly to an X-Y stage to facilitate spatially resolved 

photoacoustic measurements or can be used in a stand-alone configuration if 

desired. The X-Y stage consists of two VT-80 translation stages manufactured by 

Micos®, Germany. These stages have a 200 mm travel range, with bi-directional 

repeatability of 15 um. The simple backing plate used to bolt the cell to the X-Y 

stage can also be replaced with a more sophisticated plate that incorporates a 

Peltier cooler for low-temperature PAS measurements or electrical feed-through 

for active device measurements. The assembly sheet for the individual 

components of the PA is illustrated in Figure 3.11. 

3.4.4 Electronic system for photoacoustic signal processing and noise analysis 

Noise is defined as any unwanted signal contribution, generated internally within 

or external to a signal processing system. Typical external noise sources include 

mains hum and RF interference; whilst internal noise signals arise from both 

discrete and passive devices. Respective examples include IC noise in transistors 

and Gaussian noise in resistors.  

Noise is an inherent property of all physical systems. It can never be completely 

eliminated; it can only be reduced to an acceptable level. For systems where the 

signal level is inherently weak, as is typically the case in photoacoustic 

spectroscopy, one must strive to reduce all noise sources to their theoretical 

minimum. Contrary to popular belief, elimination of noise is not “black magic” 

and can be tackled methodically within the engineering paradigm [3.11].  
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In this section, the frequency response and self-noise of the microphone and pre-

amplifier currently employed in the photoacoustic spectroscopy system are 

simulated. These models are used to determine the noise spectral density of the 

overall photoacoustic signal detector. The results of the model are compared with 

measurements of the system noise spectral density performed with the SR830 

DSP lock-in amplifier. 

3.4.4.1  System Frequency Response Microphone and Pre-amplifier 

Consider the equivalent circuit for the microphone shown in Figure 3.12 [3.12]. 

The gain in the transformers is 1.63479 and the FET drain terminal (V2) is biased 

to 1.5 V. Figure 3.13 illustrates the frequency response of the device to a pressure 

variation of 1 Pa. The microphone has a flat response of 25 mV/Pa over the 

frequency range 100 Hz to 1 kHz. The phase is relatively constant over this 

frequency range also.  

 

Figure 3.12: Equivalent Circuit for Knowles FG-3629 Microphone 

The microphone signal was pre-amplified using the circuit shown in Figure 3.14. 

Low noise OP-27 operational amplifiers (Analog Devices) were employed. The 

frequency response of the system is illustrated in Figure 3.13. A constant gain of 

200 V/V with a phase shift of -180o is observed in the frequency range 100 Hz to 

1 kHz. As shown in 3.13 and 3.15, the frequency responses of the microphone 

and amplifier circuits are linear (constant) over most of the useful frequency 
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range for gas cell photoacoustic spectroscopy. This will make interpretation of 

the results easier as instrumentation effects will be easy to remove.  
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Figure 3.13:  Frequency Response of the Knowles FG-3629 Microphone for 
signal with amplitude 1 Pa: (a) Amplitude vs. Frequency (top) (b) Phase vs. 

Frequency (bottom) 

Figure 3.14:  Circuit for Microphone Preamplifier. 
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Figure 3.15: Frequency Response of Microphone Preamplifier. (a) Gain [V/V] vs. 
frequency (top); (b) Phase vs. frequency (bottom) 

3.4.4.2 Noise Spectral Densities: Microphone and Pre-amplifier 

Simulation of the noise spectral density for the microphone is straightforward in 

PSPICE. With the exception of the FET all components are passive and PSPICE 

readily generates the appropriate noise signals. The result is illustrated in Figure 

3.16. A noise characteristic similar to IC noise is illustrated. One can determine 

the RMS noise output voltage from the noise spectral density as follows: [3.15] 

2

0

( ) 15n n RMSE e f df mV



                                                      (3.13) 
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Figure 3.16: Noise Spectral Density en [V/Sqrt(Hz)] for Knowles FG-3629 
microphone. The y axis label is noise voltage amplitude [mV]. 

This value is slightly greater than the manufacturer’s quoted value of 10 uV or -

102 dBV(A). The difference could be easily explained by the manufacturer setting 

the upper frequency limit in the integral to approximately 10 kHz, the upper end 

of the audio spectrum.  

 

Figure 3.17 Noise model for operational amplifier 
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Simulation of the noise spectral density for the pre-amplifier and in particular its 

constituent operational amplifiers is complicated by the fact that PSPICE does 

not readily include a noise model for the operational amplifier. An equivalent 

circuit model for a noisy op-amp is used, as shown in Figure 3.17.  

The current and voltage noise sources can be generated by appealing to the 

manner in which PSPICE models diode noise [3.15]: 











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
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where KF and AF are diode parameters, f  is the frequency, q is the electric charge 

and ID is the DC current flowing through the diode. This is a power density with 

noise floor Dw qIi 22   and corner frequency
q

I
KFf

AF

D
C

2

1

 . By letting AF = 1, 

we obtain CqfKF 2  and
q

i
I w

D
2

2

 . Thus, the corner frequency and noise floor 

can be read from the manufacturer’s data sheet and the diode model can be 

edited to set KF. 

A circuit implementation for the noise source in can be seen in Figure 3.18. The 

instance model of the diode is edited to set AF and KF according to the noise 

corner frequency. The constant current source is set such that a 1 /pA Hz  noise 

current is capacitively coupled through C1 into the current controlled current 

source (CCCS). By setting the gain of the CCCS one can arbitrarily adjust the 

noise current injected into the system without having to recalculate all the diode 

parameters. For each noise source present in the system, a separate noise 

generating circuit must be employed to ensure no correlation between sources. 

To generate a voltage noise source, the appropriate corner frequency is used and 
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the CCCS is simply replaced by a current controlled voltage source (CCVS) with 

the appropriate gain setting. 

 

Figure 3.18: PSPICE model to produce op-amp current noise source 

The response of an internally compensated noiseless op-amp is dominated, to 

first order, by one pole in the transfer function [3.15]: 

af

s

a
sT

2
1

)( 0





                                        (3.15)

 

Thus the noiseless op-amp may be replaced by the ELAPLACE function in 

PSPICE. 

For the OP-27 low-noise op-amps used in the design: 

enw = 3 /nV Hz                                     (3.16)  

inw = 0.4 /pA Hz                                   (3.17)  

fce = 9 Hz                                               (3.18)  
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      fci = 250 Hz                                           (3.19) 

a0 = 125 dB                                           (3.20) 

The simulated noise spectral density of the preamplifier circuit of Figure 3.14 is 

shown in Figure 3.19. Due to the high gain employed in the circuit (= 200 V/V), 

the noise spectral density of the amplifier is slightly greater than the microphone. 

The amplitude of the noise spectral density increases with the circuit gain. One 

can see that a significant proportion of the noise density is present for f  < 10 Hz. 

In the future a more judicious amplifier design can be employed to decrease the 

relative contribution of this noise source by providing a high pass filter with a 

cut-on frequency of 10 Hz. The RMS output noise, with the input to the 

amplifier grounded, is  [3.15] 

2

0

( ) 394n n RMSE e f df mV



                                                   (3.21)  

For the overall system, the noise from the microphone combines in quadrature 

with the preamplifier noise and undergoes amplification within the amplifier. The 

resulting noise spectral density for the system is shown in Figure 3.20. It can be 

clearly seen that the major contribution to the noise lies in the frequency range 

for which f < 10 Hz. This is due to significant contributions from the 

microphone and amplifier noise sources within this frequency range. The RMS 

output noise of the system is 3.21 mV. This is equivalent to a peak-to-peak noise 

voltage of 21.1 mV.  
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Figure 3.19: Noise spectral density en [ /V Hz ] of microphone preamplifier. 
The y axis label is noise amplitude [mV]. 

 

Figure 3.20: Noise spectral density en [ /V Hz ]  of combined microphone pre-
amplifier system. The y axis label is noise amplitude [mV]. 

3.4.4.3 Lock-in Amplifier Operational Overview 

A lock-in amplifier employs phase sensitive detection to measure a signal at a 

specific frequency and phase. In brief, the experiment is designed so that the 

signal of interest occurs at a known constant frequency and the lock-in reference 

frequency is set to match this. The two signals are combined in a phase sensitive 

detector (multiplier). The output has a component at the sum and difference 
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frequencies. As the difference between the reference and experiment frequency is 

designed to be zero, the signal of interest is effectively shifted to 0 Hz or DC. 

This signal is then passed through a low pass filter. The filter strongly attenuates 

signals with frequency components outside its pass band. Such signals include the 

sum frequency generated by the multiplier and all noise signals occurring at 

frequencies other than the reference frequency. Thus a DC signal proportional to 

the product of the reference signal and the experimental signal of interest is 

produced.  

The low-pass filter will have some pass band determined by the filter slope and 

the cut-off frequency. Input signals to the amplifier within the detection 

bandwidth appear at the output of the device. Therefore if one wishes to increase 

the signal to noise ratio, one must implement sharper filter slopes with lower cut-

off frequencies. As we are dealing with presumably random noise sources (mains 

hum, for example, being a notable exception), it is more appropriate to discuss 

the noise equivalent bandwidth (NEB) of the filter rather than the pass band. The 

NEB and cut-off frequency are primarily determined by the filter time constant τ. 

When increasing the time constant, the NEB is narrowed at the expense of 

increasing the time for the filter to charge to its final value. Table 3.4 illustrates 

the relationship between the filter slope, NEB and the wait time [3.6].  

Slope 
[3.dB/oct] 

NEB 
[3.Hz] 

Wait Time 
[3.s] 

6 1/(4t) 5t 

12 1/(8t) 7t 

18 3/(32t) 9t 

24 5/(64t) 10t 

Table 3.4: Filter slope, NEB and Wait Time for SR830 Lock-in Amplifier 

For example, using a time constant of 250 ms, one can easily achieve a NEB of 1 

Hz using lock-in detection. To further illustrate this example, imagine that the 
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experiment was running at 1 kHz and one tried to measure the signal by passing 

it through a band pass filter centered at 1 kHz with Q = 100. A bandwidth of 10 

Hz would be passed. Now assuming the noise spectral density is constant (as 

would be the case for Gaussian noise), the lock-in amplifier would pass ten times 

less noise compared to the conventional filter, thereby achieving a signal to noise 

ratio ten times greater than the traditional filter. Referring back to the simulated 

data in Figure 3.20, one can see from the previous discussion that the lock-in 

amplifier will only admit a small component of the noise density spectrum. Thus 

very weak electrical signals arising from the photoacoustic effect, which would be 

impossible to measure with conventional analogue processing techniques, may be 

detected with lock-in amplification. 

One final aspect of lock-in detection requires explanation before the 

measurements can be discussed. This is the topic of dynamic reserve. The 

dynamic reserve defines the maximum permissible strength, which a signal 

outside the NEB of the lock-in amplifier can possess before it overloads the 

amplifier. Dynamic reserve is expressed in dB. This concept will be further 

illustrated by an example. Suppose the NEB of the amplifier is 1 Hz, centered at 

120 Hz and the dynamic reserve is set to 60 dB. If a signal outside the NEB, say 

for example at 130 Hz, has strength greater than 60 dB then the amplifier will be 

overloaded by the noise source. Signals with strength less than 60 dB will be 

attenuated and hence will not interfere with the measurement. Please note that at 

the reference/experiment frequency the dynamic reserve is 0 dB – obviously we 

do not want to attenuate the signal of interest! The actual dynamic reserve is 

controlled by the sensitivity of the amplifier. The SR850 DSP lock-in amplifier 

offers three reserve modes: low noise, normal and high reserve. The relationship 

between amplifier sensitivity and each of these modes is illustrated in Table  3.5 

[3.16]. One should strive to use the minimum amount of reserve possible at all 

times.  
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Sensitivity 
[3.mV] 

Low Noise 
[3.dB] 

Normal 
[3.dB] 

High Reserve 
[3.dB] 

1000 0 0 0 

500 6 6 6 

200 4 14 14 

100 0 10 20 

50 6 16 25 

20 4 24 34 

10 0 20 40 

5 6 26 46 

2 4 34 54 

1 10 40 60 

0.5 16 46 66 

0.2 24 54 74 

0.1 30 60 80 

0.05 36 66 86 

0.02 44 74 94 

0.01 50 80 100 

0.005 56 86 106 

0.002 64 94 114 

0.001 70 100 120 

0.0005 76 106 126 

0.0002 84 114 134 

0.0001 90 120 140 

0.00005 96 126 146 

0.00002 104 134 154 

0.00001 110 140 160 

0.000005 116 146 166 

0.000002 124 154 174 

Table 3.5: Dynamic Reserve Settings for SR830 DSP Lock-in Amplifier 

3.4.4.4 Noise Measurement in the photoacoustic signal conditioning system  

The SR830 DSP lock-in amplifier can measure the noise spectral density 

associated with an input signal using a technique known as mean average 

deviation (MAD). The signal is decomposed into its orthogonal components on 

the Argand plane. Using an initial value of the mean computed from an initial 

data subset, a running average of the absolute value of the deviation of 

subsequent data elements from the mean is computed. This is the mean average 

deviation. If the noise is Gaussian in nature, the MAD result is related to the 
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RMS noise by a constant factor. To ensure good statistical convergence it is 

advisable to wait at least eighty time constants before reading the noise values. 

The experimental setup used to measure the noise spectral density within the 

photoaocustic spectroscopy system is shown in 3.21. A voltage was sent from the 

lock-in amplifier auxiliary output to the voltage-controlled oscillator (VCO) in the 

chopper controller. This set the desired modulation frequency. The reference 

frequency output from the chopper controller was then fed back to the lock-in 

amplifier as its reference. This militated against any internal drift in the chopper 

controller. During the measurement, all photoacoustic system components were 

turned on. The laser light was blocked from entering the photoacoustic cell. In 

this manner, the measurement was susceptible to all noise sources present under 

normal user conditions without exciting the sample. 

 

Figure 3.21: Experimental Set up used to measure noise spectral density. 

The result of the measurement is shown in Figure 3.22. One can see that the 

measured result agrees quite closely with the simulated result shown in Figure 

3.20. In this measurement the lock-in amplifier was configured with a time 

constant t = 30 ms, filter slope 24 dB/oct, sensitivity s = 5 mV and low noise 

dynamic reserve. The signal was AC coupled with the shield floating. The 

synchronous filter and line filters were turned off. According to Table 3.4, this 

Lock-In Amplifier 

PAS Cell and 
Preamplifier 

Chopper controller 
VCO 

Reference 
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implied a NEB = 2.6 Hz and a wait time of 300 ms. According to Table 3.5, 6 dB 

of dynamic reserve is used. The simulated RMS output noise in the frequency 

interval 10 < f < 600 Hz is 1.55 mV compared to the measured value of 2.45 mV. 

When the peak-to-peak noise voltage was measured on a standard analogue 

oscilloscope a value of ~20 mV was recorded. The oscilloscope was DC coupled 

and thus did not attenuate the signal over the frequency range of interest. This is 

in excellent agreement with the simulated value of 21.1 mV. Thus the noise in the 

signal conditioning system is close to the prediction. The entire noise component 

within the photoacoustic system has been taken into the consideration and been 

modeled properly. 

Figure 3.22: Noise Spectral Density of PAPAS system measured using SR830 

DSP lock-in amplifier 
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In our exploration of the noise dynamics in the system, several other 

measurements were performed that will be briefly summarized here. The BNC 

cable connecting the preamplifier to the lock-in amplifier was disconnected at the 

preamplifier and the measurement was repeated. In this situation the cable acted 

as an antenna and the noise spectral density reflected this with large peaks at the 

odd harmonics of 50 Hz. A similar result was observed when the cable was 

connected to the preamplifier when powered off. Effectively, the cable behaved 

as if it were still floating and acted as an antenna. Similar data was recorded when 

the cable was disconnected. 

Following this measurement, the preamplifier and the remaining constituent 

components were powered up in sequence with noise spectra recorded at each 

step. No significant deviation from the result shown in Figure 3.22 was observed 

at any stage. Thus, noise due to mains hum was removed once the BNC shield 

was properly grounded and the remaining potential noise sources did not couple 

into the system to any observable extent.  

For the measurement in Figure 3.22, quite a low dynamic reserve of 6 dB was 

employed. This translates into a relative attenuation factor for signals far outside 

the NEB of the low pass filter of 2. The measurement was repeated with reserves 

of 16 dB and 25 dB. No difference was observed in the recorded noise spectra 

implying that the external noise sources were weak in amplitude. This further 

substantiates the observations made in the previous paragraph. 

2.3.1  

Controlling software design LabView® 

The full potential of the optical and electrical equipment previously described can 

only be harnessed by placing the entire system under the control of a personal 

computer. All the equipment in the system is controlled directly or indirectly via 
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the IEEE 488.2 GPIB or RS-232 communication standards. Conventional GPIB 

provides a modular robust approach for interfacing up to fifteen devices on a 

single data bus. Unlike RS- 232, where parameters such as baud rate, parity and 

the number of stop bits have to be known, any device adhering to the GPIB 

standard may be connected to the bus with little or no knowledge of its 

communication requirements. In conjunction, RS-232 does not readily permit 

simultaneous communication with several devices without the use of 

sophisticated hardware or software routines.  

GPIB devices communicate with each other by sending device-dependent 

messages and interface messages through the interface system. Device-dependent 

messages, commonly known as data messages, contain device specific 

information such as programming instructions that control its operation. 

Interface messages are primarily concerned with bus management. Interface 

messages perform functions such as initializing the bus and addressing devices.  

GPIB devices may be categorized as talkers, listeners and controllers. Listeners are 

devices that may receive data transmitted by a talker. For example, the lock-in 

amplifier acts as a talker (transmitting data to the computer), a listener (acquiring 

data from the microphone via the preamplifier) and also a controller (sending the 

commands to the optical chopper controller and the laser diode current drive to 

set the optical modulation frequency). A PCI card (GPIB card) installed in the 

control PC, which is employed as the controller in this application, manages the 

flow of information on the bus by sending commands to all the devices, including 

the monochromator, motorized filter wheel. The Ethernet card in the PC was 

also used to send the positioning commands to the motorized stages using the 

RS-232 interface as another controller. 
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Table 3.6: List of the selected VI written for the PAS and PAM systems. 
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Figure 3.23: The Graphical User Interface for the Photoacoustic Spectroscope 

 



 

 82 

Devices are usually connected via a shielded 24-conductor cable with both a plug 

and receptacle connector at each end. The bus uses negative logic with standard 

TTL levels. In order to achieve the high data transmission rates, nominally 1.5 

Mbytes/s when using a PCI controller, the physical distance between devices is 

limited as follows: The maximum separation between any two devices should be 

less than 4 m and the average device separation must not be greater than 2 m 

over the entire bus. The total cable length must not exceed 20 m. This will clearly 

not be a problem for the photoacoustic spectrometer and microscope 

implemented in this thesis. 

One of the ancillary benefits of using the IEEE 488.2 GPIB standard is that the 

hardware companies have developed sophisticated high-level application 

development tools, which provide application specific user interfaces to enable 

engineers to build their own GPIB systems. LabView®, a product of National 

Instrument Inc, is such graphical program development environment. The 

LabView® programs, known as VIs (virtual instruments), can mimic the actual 

device operation with which they are communicating. It consists of interactive 

user interfaces, data flow diagrams and icon connections that allow the VIs to be 

called from higher level VIs. 

The VIs designed for the photoacoustic systems fall into three functional 

categories: hardware control, data acquisition and graphic user interface (GUI). 

Groups of VIs have been written to control individual hardware components 

within the photoacoustic system, as shown in Table 3.6. 

In this work, LabView® VIs are implemented for the two major photoacoustic 

applications. One is for the Photoacoustic Spectrometer, whose user interface is 

shown in Figure 3.23 and the VI operational flow chart is shown in Figure 3.24. 

Prior to starting the VI, the user enters the start wavelength, end wavelength and 
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wavelength increment for the scan. The user specifies the number of scans that 

are to be performed and also provides the details of where the data is to be stored. 

The VI is then started and proceeds according to the flowchart. 

Figure 3.24: Flowchart of the operation of the Photoacoustic Spectroscope VI as 
listed in Table 8 (Energy_muti_lock_call_130106)  

The other major application VI is for the Photoacoustic Microscopy, whose user 

interface is shown in Figure 3.25. With this VI, using the stage control knobs on 

the GUI and featuring webcam video data from the sample surface, .the user can 

navigate across the sample and find the area of interest for photoacoustic 

mapping. Once the user enters the start and end positions for the X-Y motorized 

stage and the spatial resolution, the laser scan will start automatically. The 

measured PA amplitude and phase will be displayed in real-time on-screen for 

each horizontal scan and the 3D mapping results will be plotted when the 
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measurements are completed. The zoom functionality can be activated during the 

measurement; the resolution of the image can be adjusted and becomes effective 

immediately. 

 

Figure 3.25: The User interface for Photoacoustic Microscope 
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C h a p t e r  4  

PHOTOACOUSTIC SYSTEM CALIBRATION AND VERIFICATION 

4. Photoacoustic System Calibration and Verification 

In the previous chapter, the design criteria for a high resolution and fully 

computerized photoacoustic spectrometer and microscope are outlined.  The 

mechanical drawing of the PA cell, the layout of the electronic sensing 

components, and the LabView® software control system are described. In this 

chapter, the calibration results are presented to demonstrate the effectiveness of 

the PA system.  Carbon black powder, which is widely used as a PA reference 

sample, will be analyzed intensively.  

With a gas-microphone photoacoustic configuration, the amplitude and the phase 

of the detected acoustic signal are dependent on numerous system parameters.  

These include the light source intensity, the PA cell geometry, the coupling gas in 

the cell, the backing material below the sample and the microphone sensitivity.  

Therefore, it is necessary to calibrate the photoacoustic system before starting the 

real measurements. 

4.1. Light source intensity linearity calibration 

For this calibration, a He-Ne gas laser (632.8 nm) is used as a light source.  The 

maximum power output from this laser is about 17 mW. A neutral density (ND) 

filter is placed in front of the laser output port to change the light source intensity. 

A glass slide is placed inside the optical beam path and 4% of the light power is 

redirected to an optical power meter to estimate the light source intensity after 

the ND filter.  A mechanical optical chopper is used to modulate the light source 

at a specified frequency. The laser, which has a low divergence angle, is focused 
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through a lens tube, as shown in Figure 4.1, to periodically heat up the samples 

within the PA cell. 

 

Figure 4.1: The experimental hardware layout for PA System with He-Ne laser 
light source. Not to scale. 

The carbon black powder is placed into the PA cell as a reference sample in this 

test case. The typical thermal conductivity of this material can be found in the 

literature [4.1], where density  = 836 kg/m3, thermal conductivity k = 60 

mW/m*K and specific heat C = 650 J/kg*k. As seen in Figure 4.2, within the 

testing frequency range from 100 Hz to 500 Hz, the thermal diffusion length of 

this material varies from 18.5 um to 8.5 um. This is much smaller than the carbon 

black powder thickness within the PA cell, which is approx 500 um. 
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Figure 4.2: Thermal diffusion length dependence on the modulation frequency 
(Carbon Black powder, Degussa N990) 

By changing the laser position on the ND filter, the light source intensity of the 

PA system can be reduced from 16.5 mW to 12.625 mW, 7.625 mW, 3.75 mW, 

2.45 mW, 1.2425mW, 0.595 mW and 0.22 mW, respectively.  As shown in Figure 

4.3, the average PA amplitude is linearly proportional to the light source intensity. 

As shown in Figure 4.4, the PA signal intensity decreases as the modulation 

frequency increases.  In contrast, the PA phase is independent of the light source 

intensity, presented in Figure 4.5.  A linear fit of PA Phase vs. log (f), where f is 

the modulation frequency of the optical chopper, remains almost the same across 

the frequency range for different value of light source intensity.  



 

 88 

 

Figure 4.3: Dependence of PA Amplitude on Modulation Frequency for 
decreasing light source intensity. (Sample: Carbon Black Powder) 

 

Figure 4.4: Dependence of PA Amplitude on Modulation Frequency for varying 
light source intensity. (Sample: Carbon Black Powder) 
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These results are consistent with the predictions of R-G theory, given in the 

previous chapter. According to equations 2.35 and 2.28, for an optically opaque 

and thermally thick sample, ( s sl  , s    and sl  ), such as carbon black 

powder, the PA signal dependence on the modulation frequency can be described 

by the equation below: 

0 0

0

(1 )

2 2 2

s

g s g

P Ij
Q

a k T l

  
  

 
                                       [4.1] 

where Q is the complex envelope of the sinusoidal pressure variation,
 ga  is the 

thermal diffusion coefficient in the gas, and 
s  is the thermal diffusion length in 

the sample.  As confirmed by Figure 4.4, the PA amplitude is linearly 

proportional to the light source intensity (
0I ). As confirmed by Figure 4.3, the 

PA Amplitude decreases as the modulation frequency increases.   
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Figure 4.6: The linear function fit of the PA amplitude dependency on log (f) 
(Sample: Carbon Black Powder with light source power of 16.5 mW) 

According to equation 4.1, for carbon black powder, the PA amplitude should be 

linearly proportional to 1  and the PA phase should remain constant at - 45 

degrees across the modulation frequencies. However, this is not exactly the case 

here. As shown in Figure 4.6, the PA amplitude only starts to be linearly 

proportional to log (f) or 1  at frequencies above approx 200 Hz. The 

experimental data obtained at lower frequencies are not as predicted by the R-G 

theory.  

This is due to the fact that the R-G theory is based on the assumption of a one-

dimensional photoacoustic cell, where the thermal wave only diffuses along the 

vertical z-axis. This assumption is valid only when the laser spot radius, a, is much 

bigger than the thermal diffusion length s and the thermal diffusion along the x 

and y-axes can be neglected.  In the test case here, a lens tube has been used to 

focus the low divergence He-Ne laser beam to a small spot size, which is about 

10 um in diameter. As shown in Figure 4.2, the higher the modulation frequency, 

the smaller the thermal diffusion length when compared to the laser spot size. 
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Therefore, the better will be the fit to the frequency dependency using the R-G 

theory.  

Since it is difficult to measure exactly the thickness of the carbon black powder 

within the PA cell and also difficult to make an evenly distributed homogeneous 

testing sample from a powder material, the detailed frequency dependency 

characterization of the PA cell will be discussed later using standard 

semiconductor wafer samples. 

4.2. SR850 lock-in amplifier calibration 

The PA system developed here uses a Stanford Research SR850 lock-in amplifier 

to detect and measure very small PA signals. It uses a technique known as phase-

sensitive detection (PSD) to single out the component of a signal at a specific 

reference frequency and phase.  

As shown in Figure 4.7, the SR830 multiplies the incoming signal with two pure 

sine waves at the reference frequency simultaneously. These two sine waves have 

a fixed 90-degree phase shift with respect to each other.  The product of these 

two yields a DC output signal, which is proportional to the components of the 

signal, whose frequency is exactly the same as the reference frequency.  The 

multiplier result or the output of PSD can be described as: 

,1 sin( )sin( )

1/ 2 cos([ ] ) 1/ 2 cos([ ] )

PSD sig L r sig L ref

sig L r L sig ref sig L r L sig ref

V V V t t

V V t V V t

   

       

  

       
 

(4.2)

 

where sigV , sig , LV and ref  are the amplitudes and the phases for the input 

signal and the lock-in reference respectively. L  is the reference  modulation 

frequency. ,1PSDV  is the output voltage of phase sensitive detector.  
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Figure 4.7: SR830 Lock-in Amplifier Functional Block Diagram [4.2]  

As shown in Figure 4.7, there are 2 PSDs within the SR830 lock-in amplifier, 

denoted as ,1PSDV  and ,2PSDV . The low pass filter, which follows two multipliers, 

removes the signal components at all other frequencies except for L r  . This 

DC filter is what makes the lock-in such a narrow band detector. 

The filtered PSD output will be 

,1

1
cos( )

2
PSD sig L sig refV V V   

                               (4.3)
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This is a DC signal, which is proportional to the signal amplitude and the phase 

difference between the signal and the lock-in reference. This phase dependence 

can be eliminated by the 2nd PSD, using a lock-in reference whose phase is shifted 

by 90 degrees. The filtered PSD output is 

,2

1
cos( ( ))

2 2

1
sin( )

2

PSD sig L sig ref

sig L sig ref

V V V

V V


 

 

  

                           (4.4)

 

Combining these two PSD outputs, wherein one is proportional to 

cos( )sig ref   and the other is proportional to sin( )sig ref  , the signal 

magnitude, R, can be calculated without the phase dependence: 

2 2

,1 ,2

1

2
PSD PSD sig LR V V V V  

                               (4.5)
 

In addition, the phase between the signal and lock in reference can be described 

as 

,21

,1

tan ( )
PSD

PSD

V

V
 

                                           (4.6)

 

Since a mechanical chopper or a TTL signal from the SR830 internal function 

generator has been used to modulate the light source intensity in the PA system, 

the PA signal is shown as a square wave in the oscilloscope. Similar to any other 

lock-in amplifier, the SR830 multiplies the input signal with pure sine waves and 

measures the individual Fourier components of the signal.   
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For example, if the PA signal generated in the cell is a 2V peak-to-peak square 

wave (PA amplitude = 1 V), it can be expressed as 

( ) 1.273sin( ) 0.4244sin(3 ) 0.2546sin(5 ) ...S t t t t             (4.7) 

where 2 f   and f is the frequency of the PA signal.  The signal detected by 

the lock-in amplifier is the 1st Fourier component only and the output PA 

amplitude will 1.27V, which is slightly bigger than the real PA amplitude 

generated in the cell. 

I PA Amp. t1 t2 NEB [Hz] 

16.5 0.0296 0.03 0.15 8.333333333 

12.625 0.0222 0.03 0.15 8.333333333 

7.625 0.0124 0.1 0.5 2.5 

3.75 0.00606 0.1 0.5 2.5 

2.45 0.004 1 5 0.25 

1.2425 0.00196 3 15 0.083333333 

0.595 0.00095 10 50 0.025 

0.22 0.000319 30 150 0.008333333 

Notes:     

I Light intensity [mW]    

PA Amp. 

PA Amplitude @ 152 Hz 

[V]    

t1 Time Constant [s]    

t2 Wait time [s]    

 

Table 4.1: The lock-in amplifier settings used to detect the PA signal generated by 

varied light source intensities. The SR830 has been configured to wait 5   before 

collecting the signal.   

The corresponding noise equivalent bandwidth (NEB) can be calculated as 
1

4
. 

With the same input signal, the narrower the bandwidth, the higher is the signal 

to noise ratio (SNR). Traditionally, the lock-in amplifier sets the low pass filter 
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bandwidth by setting the time constant ( ). By increasing the time constant ( ) 

within the SR830 configuration, the output becomes steadier and reproducibility 

of the PA system is improved. However, the SR830 typically requires waiting for 

about 5   for the low pass filter (a single RC filter) to settle to its final value. The 

time constant ( ) not only determines the repeatability performance of the tool 

but also reflects the speed of the output response. As shown in Table 4.1, while 

decreasing the light source intensity, the PA signal amplitude decreases linearly. 

To keep the same signal to noise ratio (SNR), the time constant has to be 

increased from 30 ms to 30 s to reduce the noise equivalent bandwidth (NEB).  

The throughput of the PA system decreases from 150 ms per data point to 150 s 

per data point.  To get a reasonable throughput performance for a metrology tool, 

it is necessary to keep the calculation time less than 0.5 s per data point and the 

PA amplitude is required to be more than 6 mV as shown in Table 4.1. 

4.3. Arc lamp light source spectrum calibration 

Carbon black powder has a constant optical absorption coefficient across all 

wavelengths. [1.3] Therefore, the PA amplitude spectrum of the carbon black 

powder should follow exactly the same trend as the arc lamp power spectrum, 

which has been used as the light source in the PA spectroscopy system. 

As shown in Figures 4.8 and 4.9, within the detection range of the silicon 

photodiode (200 nm – 1100 nm), the power spectrum detected by the optical 

power meter looks very similar comparing to the one collected by the PA system. 

The main differences between those two spectra are as following 

i. PA spectrum has much greater detection range, which extends up to 2400 

nm.  The power spectrum obtained by silicon diode can only extend to 

~1000 nm, which is limited to the silicon bandgap energy. 
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ii. The resolution of the power spectrum obtained by PA system is much 

smaller comparing to the one captured by silicon diode. This was due to the 

LabView® code setting used at the time for data collection in this 

experiment. 

 

Figure 4.8. PA spectroscopy power spectrum measured using a PA cell filled with 
carbon back powder reference samples. The lock-in amplifier setting is time 
constant = 30 ms, AC coupling, sensitivity = 500 mV, modulation frequency 

=43Hz, Ground, High reserve, Negative edge triggering. 
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Figure 4.9: PA spectroscopy power spectrum measured using SM05PD2A Silicon 
photodiode.  

The performance specification of the SM05PD2A photodiode can be found in 

the literature [4.3], where the spectral response is in the 200 -1100 nm wavelength 

range, active area is 0.8 mm2, rise time ( 50LR   ) is 1ns (@20V bias), fall time 

( 50LR   ) is 1ns (@20V bias), NEB (@ 440 nm) is 145 10 W Hz  (@ 20 V 

bias), dark current is 2.5 nA max. (@20V), damage threshold (CW) is 100 

2/W cm , maximum bias voltage is 25 V, damage threshold (10 ns pulse) is 500 

2/mJ cm . 

4.4. Impact of focus offset between the PA sample position and the 

focal point 

As discussed previously, it is necessary to maximize the total light source intensity 

to improve the signal to noise ratio of the PA system. However, with the same 

light source, the PA amplitude will not increase by focusing the same laser to a 

smaller spot size.  
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Figure 4.10: Impact of lens focal position (before focus) on the PA amplitude at 
various modulation frequencies (PA sample: Carbon Black Powder, PA light 

source: He-Ne laser. Experimental settings: time constant = 300 ms, sensitivity = 
50 mV, AC Coupling, Float. 
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Figure 4.11: Impact of lens focal position (before focus) on the PA phase at 
various modulation frequencies (PA sample: Carbon Black Powder, PA light 

source: He-Ne laser. Experimental settings: time constant = 300 ms, sensitivity = 
50 mV, AC Coupling, Float. 

A He-Ne laser is used as the light source in this test. This low divergence laser has 

been collimated at first and then focused by a FL 152.4 mm lens into the PA cell.  

The minimum laser spot size, which can be measured at the focal point, is about 

50 um.  By positioning the PA cell a certain distance away from the focal point, 

the laser beam spot size on the carbon black sample surface can be adjusted.  The 

bigger the focus offset, the larger the laser spot size. The PA frequency 

dependence has been recorded with different focus offsets.  The thermal 

diffusion length  for the modulation frequencies used in this test varies from 13 

um to 20 um, as calculated in Figure 4.2. 

When the PA sample is placed at the focal plane of the lens, the laser spot size is 

of the same order as the thermal diffusion length.  The thermal wave generated 

by the optical absorption at the sample surface diffuses not only in the z-axis but 

also along the x-y plane. In this case, the PA amplitude and phase depends not 

only on the modulation frequency  , but also on the radius, a, of the laser spot   
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As shown in Figure 4.10, the PA Amplitude reaches its minimum value at the 

focal point and it increases as the laser spot size increases. When the focus offset 

is about 5 mm, the PA amplitude reaches its maximum value and becomes 

insensitive to the laser spot size. 

In summary, to maximize the PA signal, it is necessary to increase the total light 

intensity, however it is not necessary to focus the laser beam as tight as possible. 

The possible reason for this phenomenon could be related to the thermoelastic 

deformation on the sample surface and three-dimensional thermal diffusion 

process, as was previously investigated by Opsal and Rosencwaig. [4.4] It is 

worthwhile to investigate this issue in future research to optimize the optical 

settings for the prototype photoacoustic system. 

4.5. Impact of the coupling gas within the cell: Air vs. Helium Gas 

As described in chapter 2, when the thermal diffusion length in the gas medium is 

smaller than the PA cell height, the PA signal is dependent on the coupling gas 

properties.  
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Figure 4.12: The impact of the coupling gas on PA Amplitude: Helium Gas vs. 
Air (sample: Silicon wafers with polished surface towards the laser beam, Lock-in 
Amplifier settings: time constant  = 300 ms, Lock-in sensitivity = 200 mV, one 

active microphone only in the PA cell) 

According to equation 2.26c, 2.9, 2.10 and 2.11, without considering the acoustic 

resonance effect within in the PA cell, the PA signal dependence on the coupling 

gas is described by: 
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where gl  is the height of PA cell (= 9mm, as noted in chapter 3), 
0P  is the 

ambient pressure and 
0T  is the ambient temperature.  , gk , g and gC  are 

defined in chapter 2. 

The material properties of air and helium gas are found as follows [4.13, 4.14]:  
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The PA signal intensity ratio given by the use of the two different coupling gases 

can be calculated as 

( )
3.3029

( )

Helium

Air

P t

P t




                                      (4.10)
 

Thus, theoretically, while using helium gas as the coupling gas in the PA cell, the 

PA Amplitude will increase by a factor of 3. The PA amplitude ratio is 

independent of the modulation frequency.  Changing the coupling gas has no 

impact on the PA phase. 

However, this conclusion can only be valid in the lower frequency range of the 

experimental data.  As shown in Figure 4.12, when one uses air as the coupling 

gas in the PA cell, the signal amplitude shows a broad peak in the range from 

600-900 Hz. This peak is related to acoustic resonance, whose frequency is 
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determined by the PA cell geometry and the coupling gas therein. For a 

cylindrical tube, which is closed at one end, the acoustic resonance frequency is 

given by [4.6] 

4( 0.4 )

n
f

L d




                                            (4.11)

 

where n is an odd number (1, 3, 5,…),  is the speed of sound (Helium Gas: 972 

m/s, Air: 343 m/s), L is the length of the tube or the height of the PA cell (9 mm, 

given in chapter 3), d is the cross-sectional diameter of the tube or PA cell (16 

mm, given in chapter 3). For an open PA cell without a window, the resonance 

frequency is estimated to be 4375Hz and 1239Hz for helium or air coupling gas, 

respectively. 
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Figure 4.14: The impact of the coupling gas on PA Phase: Helium Gas vs. Air 
(sample: Silicon wafers with polished surface towards the laser beam, Lock-in 

Amplifier Settings: time constant  = 300 ms, Lock-in sensitivity = 200 mV, one 
active microphone only in the PA cell) 

The resonance frequency of the PA cell is proportional to the sound velocity 

within the coupling gas. This is consistent with the experimental data. The 

acoustic resonance peak within the PA cell, while using Helium coupling gas, is 

700 Hz and 1980 Hz, as shown in Figure 4.12. The resonance frequency is 

increased by a factor of 2.83, compared to the situation with air coupling.  This 

value is exactly the same as the ratio of the speed of sound in helium to that in air. 

Presented in Figure 4.14, the frequency dependence for PA phase also shows 

different peak positions depending on which coupling gas is used. One is located 

at ~ 500 Hz and another is at ~ 1200 Hz.  

The difference between the calculated and measured resonance frequencies is due 

to the fact that the PA cell is actually closed at both ends during the 

measurements and the shape of the enclosed volume is more like a disk rather 

Air 
Helium 
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than a tube. Therefore end corrections need to be applied to the acoustic model 

to obtain a more accurate estimation. 

 Figure 4.15: PA amplitude ratio for measurements taken using Helium Gas vs. 
air. (Sample: Silicon wafers with polished surface towards the laser beam, Lock-in 
Amplifier Settings: time constant  = 300 ms, Lock-in sensitivity = 200 mV, one 

active microphone only in the PA cell) 

For certain photoacoustic applications when the frequency response of the PA 

signal is analyzed, e.g. to estimate the thermal properties of semiconductor 

materials, it is essential to remove these acoustic resonance effects. 

As shown in Figure 4.15, when the modulation frequency is below 220 Hz, the 

PA Amplitude ratio (i.e. He vs. air coupling) remains constant, as predicted by the 

photoacoustic theory. However, for higher modulation frequencies, the acoustic 

resonance effect cannot be neglected.  It is worth noted here that the measured 

PA signal ratio between the PA cell with helium coupling and air is higher than 

the estimated value, given by equation 4.10. It needs further investigation for the 

future research. 



 

 106 

As shown in Figure 4.12, the working frequency range without the resonance 

effect can reach up to 220 Hz for the air-filled PA cell and up to 900 Hz for the 

PA cell filled by Helium gas. To analyze the frequency response of the PA signal 

outside this range, an extra calibration needs to be performed. This analysis is 

presented in section 4.6. 

For some PA applications, e.g. when the PA signal is collected at a fixed 

frequency, such as for PA spectroscopy and PA microscopy imaging, the acoustic 

resonance effect can be ignored.  According to Figures 4.12, 4.13 and 4.14, when 

the modulation frequency is below 500 Hz or above 1200 Hz, it is preferable to 

use helium as the coupling gas, in order to provide larger PA amplitudes and 

better SNR performance. 

4.6. Impact of the acoustic resonance of the PA cell  

As shown in Figure 4.15, the ratio of PA amplitude measured by helium gas cell 

and air cell is not a constant in the higher frequency. This is not consistent with 

conclusion as predicted by equation 4.13. It indicates that, the acoustic resonance 

effect cannot be neglected, when analyzing the PA amplitude dependence on 

frequency. When using air as the coupling gas, the PA signal is dominated by the 

acoustic resonance effect in the frequency range from 300 Hz to 3000Hz. This 

applies equally to all sample types, including data taken in this study for bare 

silicon wafers or multi-layer structures, such as silicon substrate with thin copper 

capping layers and etc.  

The PA cell geometry and the coupling gas therein determine the shape of this 

acoustic resonance peak. Two main types of acoustic resonance can occur in a 

PA cell. One originates from the cylindrical shape of the PA cell itself, which has 

been discussed previously. The other is the Helmholtz resonance effect, 

originated from both the PA cell and the closed air volume in front of each 
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microphone. The best treatment found in the literature on the theory of the 

Helmholtz resonator is by Rayleigh. [4.5] For the case of a resonator with no 

external openings to the atmosphere, Rayleigh arrived at a resonant frequency of  

1 2

1/2

1 1
( )

2
1

( )
2

V V
f

L



 








                                    (4.12)

 

where   is the speed of the sound,  is the cross-sectional area of tube 

connecting the PA cell and microphone, L is the length of said tube, 1V  is the 

volume of the PA cell and 
2V  is the volume of the air space in front of the 

microphone. The schematic of a typical Helmholtz resonator is presented in 

Figure 4.16 

Figure 4.16: The schematic of a typical Helmholtz resonator  

Troke gives a small modification to this Helmholtz resonance equation. [4.6] For 

higher modulation frequencies, an adiabatic sound velocity needs to be used, i.e. 

/a P  
                                           (4.13)

 

For lower modulation frequencies, an isothermal sound velocity needs to be used 

given by 

V1
V2

L
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/i P 
                                             (4.14)

 

where P is the gas pressure,   is the gas density and  is the adiabatic index of 

the gas. 

An awareness of the existence of acoustic resonance can help experimenters to 

design a PA cell in which the resonance only occurs outside the frequency range 

of interest. By increasing the cross-sectional area of the connecting tube between 

the PA cell and microphone, the Helmholtz resonance can be placed at a higher 

frequency. 
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Figure 4.17: The frequency dependence of the PA amplitude. (Light source: NIR 
laser diode with 808 nm wavelength; Lock-in amplifier settings: time constant = 
300 ms, sensitivity = 500 mV; Sample 1: bare silicon wafer with a thin copper 
layer coated on the top surface, Sample 2: bare silicon wafer, Sample 3: Bare 
silicon wafer with SiO2 layers deposited on both side of the wafer and a thin 

copper layer coated on the top surface, all PA samples have been placed on the 
Aluminium backing material during the measurements) 

The acoustic resonance effect can be a nuisance when analyzing the frequency 

dependence of the PA signal in order to estimate the thermal properties of a 

sample. However, this effect can be eliminated using a reference sample. 

By way of example, we used a bare silicon wafer as the reference sample and the 

IR laser ( = 808 nm) as the PA light source. Under these conditions, the sample 

is optically opaque. According to equation 2.34, the observed PA signal (S) 

should exhibit a modulation frequency dependence of 1S Af   in the lower 

frequency range. [4.7-4.11] However, at higher frequencies, when the acoustic 

wavelength is comparable with the length of the gas column in the PA cell or 

when the cell is operating near its resonance frequency, the assumption of the 

adiabatic condition throughout the cell is no longer valid.  
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When using higher modulation frequencies, not only acoustic resonance but also 

sample surface vibration needs to considered when analyzing the PA signal. 

McDonald and Wetsel provided a generalized theory to include the acoustic 

resonance in the PA modelling. In comparison to the R-G theory described in 

Chapter 2, the McDonald-Wetsel theory takes both thermal expansion and the 

thermal elastic pressure wave into consideration and replaces the acoustic piston 

with a composite piston. [4.12] 

When amplitude modulated monochromatic light energy is absorbed, periodic 

heating is induced within the sample and a thermal wave is created in the sample. 

In addition, owing to the thermo-elasticity effect, pressure waves are formed and 

propagate towards the bottom and top sample surfaces. Superposition of these 

waves at the sample surface gives rise to a surface motion, which then serves as a 

boundary condition for the acoustic waves in the gas. The acoustic piston is now 

superimposed on the mechanical surface motion induced by the internal sample 

pressure variations. The resulting “composite piston” as defined by McDonald 

and Wetsel, produces the pressure variation in the gas detected by the 

microphone. This effect is much more significant at higher frequencies. 

According to [4.12], at the lower modulation frequencies, when s >> l , there is 

no difference between R-G theory and the McDonald-Wetsel theory. The 

photoacoustic signal ( )gP x  is linearly proportional to 
1


 for both thermally thin 

and thermally thick samples.  However, at the higher frequencies, the surface 

vibrations cannot be neglected. 

For a silicon substrate, the optical absorption coefficient is ~ 606cm1 at  = 808 

nm, the optical penetration depth is 16.5 um at that wavelength, the thermal 

conductivity is 1.3Wcm
1
K
1

and the thermal diffusivity is 0.8cm2 /s. [4.15] The 
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thermal diffusion length will decrease from 713 um to 92 um, as one increase the 

modulation frequency from 50 Hz to 3000 Hz.  

 

Figure 4.18: The frequency dependence of the PA amplitude measured for a bare 
silicon wafer. Inset: the power function fit at lower frequencies. (Light source: 

NIR laser diode with 808 nm wavelength; Lock-in amplifier settings: time 
constant = 300 ms, sensitivity = 500 mV) 

As shown in Figure 4.18, a power function has been used to fit the PA amplitude 

data taken on a bare silicon wafer in the lower frequency range of 50-220 Hz.  

The fitting result shows that the frequency dependence of the PA amplitude 

varies as nS Af , where n = -0.9933. This result is consistent with the 

prediction given by the photoacoustic theory (n = -1). It is a direct confirmation 

that the design of PA system, illustrated in Chapter 3, is correct and is producing 

physically reasonable datasets. 

Assuming that a fitted power function can be used to describe the PA Amplitude 

at higher frequencies, the PA amplitude enhancement factor can be calculated by 
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dividing the measured experimental curve by the fitted power function. As shown 

in Figure 4.17 and 4.18, the photoacoustic amplitude shows 2 resonance peaks, 

centered at 600 Hz and 1050 Hz.  

 

Figure 4.19: The PA amplitude enhancement factor due to the acoustic resonance 
effect of the cell. 

As discussed previously, since the composite piston effect has not been taken 

into the consideration, the maximum error in this plot can be estimated to be 

occurring at the highest frequency of 3000 Hz. However, this error will not affect 

the shape of this PA amplitude enhancement curve given by the acoustic 

resonance.  

This PA amplitude enhancement curve can be used to remove the acoustic 

resonance effect from the PA frequency spectrum, as shown in Figure 4.19. After 

normalization, this process is implemented for all the characterized thin-film 

structures under test (presented in Figure 4.17). The PA amplitude decreases with 

increasing the modulation frequency and it possesses a spectral “fingerprint” 

which is due to acoustic resonance. Now that these are well understood the can 

be removed, an example of which is shown in Figure 4.20. Using this type of 
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signal calibration and modeling, the PA system can be applied to thin-film 

characterization for semiconductor industrial applications. 

 

Figure 4.20: The normalized PA Amplitude Frequency Response for different 
thin film semiconductor material structures, wherein the acoustic resonance effect 

has been removed from Figure 4.17 using Figure 4.19. (Light source: NIR laser 
diode with 808 nm wavelength; Lock-in amplifier settings: time constant = 300 
ms, sensitivity = 500 mV).  Sample List: Sample 1: bare silicon; Sample 2: bare 

silicon wafer with a ~300 nm copper layer deposited on the top surface, Sample 3:  
Bare silicon wafer with ~300 nm SiO2 layers deposited on both sides of the wafer 
and a ~300 nm copper layer deposited on the back surface of the wafer; Sample 4: 
Bare silicon wafer with ~300 nm SiO2 layers deposited on both sides of the wafer 
and a ~300 nm copper layer deposited on the top surface of the wafer; Sample 5: 
bare silicon wafer with a ~300 nm copper layer deposited on the bottom surface 

of the wafer. All PA samples have been placed on the Aluminium backing 
material during the measurements. 
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C h a p t e r  5  

APPLICATIONS OF THE PHOTOACOUSTIC SYSTEM 

5. Applications of the PA system 

5.1. PA signal modeling of multi-layered semiconductor structures 

As discussed in chapter 4, neglecting the acoustic resonance effect, the 

photoacoustic signal is proportional to the temperature variation at the sample-

gas interface. [5.1] The interpretation of PA signal contrast for layers embedded 

within semiconductor materials can be simplified, by modelling the thermal wave 

diffusion process only. Salazar et al. developed a simplified theory to discuss the 

thermal diffusion process within such multilayer structures. [5.2] The thermal 

diffusion interference of each layer and bonding interface can be calculated using 

an individual transfer matrix. By multiplying these matrices together, it becomes 

very easy to predict the PA signal (phase and amplitude) in any given multi-

layered structure.  In this section, from the theoretical point of view, a set of the 

sample structures have been used to demonstrate the sensitivity of the PA system 

developed in chapter 3, using the theory of Salazar et al. 

For an isotropic, homogeneous, optically opaque and semi-infinite material, the 

internal temperature distribution, where x ≤ 0 when the probe position is below 

the top surface, can be calculated as: 
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where all parameters are previously defined in Chapter 2 and ( 1)j    The 

modulated thermal wave below the surface will be heavily damped to 1/e of its 

initial amplitude and shifted by -115o or 360/ in phase, after it propagates one 

thermal diffusion length away from the heated spot. At the surface, the phase lag 

is 45o  between the heat source and resulting surface temperature and the 

temperature is determined by the thermal effusivity, Ck  (Ws1/2m-2K-1). Lower 

values of thermal effusivity lead to higher surface temperature amplitudes. 

When one modulated thermal wave penetrates perpendicularly through the 

interface between two isotropic homogeneous semi-infinite materials running 

from medium 1 to medium 2, both reflection and transmission occurs.  

At the interface, where x =0, where the initial heat flow, labelled as Ti, is given as  

0

2

x j t

i

H
T e

k

 



                                               (5.2) 

The reflected heat flow, labelled as Tr, can be calculated as 
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                                           (5.3) 

The transmitted heat flow, labelled as Tt, can be calculated as 
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where 
1

1

b
R

b





 is the reflection coefficient, 

2

1
T

b



 is the transmission 

coefficient and 2 2 2

1 1 1

k C
b

k C




 , and the positive x direction runs from medium 1 

to medium 2. The values of R and T depend on the thermal mismatch between 

the two media, the ratio of thermal effusivity, which are independent of the 

modulation frequency. When applying the material properties to the equation 5.2, 

5.3 and 5.4 above, the reflection coefficient R can be calculated. For the thermal 

wave travelling through the interface from copper to silicon or from silicon to air, 

R at the bonding interface is 0.407 or 0.999, respectively.  

This approach to calculating the PA signal turns out to be particularly suitable for 

investigating the properties (thickness, thermal effusivity mismatch and interface 

defects) of coatings on a thermally thick substrate. When the coating thickness is 

far less than the thermal diffusion length, the amplitude signal is more sensitive 

than the phase data. The phase signal will give the best contrast when the film 

thickness is about 30% of its thermal diffusion length. [5.1] 

When a distinct layer with limited thickness (l2) has formed at the interface 

between two media, for example an air gap between the copper interconnection 

layer and the silicon substrate, the effective reflection coefficient Г of the 

interface layer becomes a complex number. [5.1, pp. 106-108] It can be calculated 

as: 
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                                         (5.5)

 

where the subscripts 1, 2, 3 refer to the media 1, 2, 3 respectively. Г1 and Г2 are 

the reflection coefficients for thermal waves travelling from medium 1 to medium 

2 and medium 2 to medium 3, respectively. Due to the presence of the l term in 

equation 5.5, the effective reflection coefficient of a layer interface has both phase 

and amplitude values. It is dependent on the modulation frequency of the thermal 

wave.  

By way of example, let us consider an air gap with finite thickness of 10 nm, 100 

nm, 1 um and 10 um, respectively, between two thermally thick silicon wafers. 

Such structures are typically introduced by delamination generated during the 

wafer bonding process. Using equation 5.5, the effective reflection coefficient 

dependency on the modulation frequency of the thermal wave can be calculated, 

as shown in Figure 5.1. 
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Figure 5.1: The effective reflection coefficient for an embedded air gap layer in 
silicon with finite thickness d (labelled as l2 in equation 5.5) as a function of the 
modulation frequency. This coefficient is a complex number. It includes both 

amplitude (left) and phase components (right). 

Having established the basic properties of thermal waves and their interactions at 

the interfaces, it is possible to calculate the surface temperature as a result of 

thermal wave interference in the top layer. Consider the propagation of a plane 

thermal wave in a thin layer of material of thickness L. We assume that the 

thermal properties of all the media concerned are homogeneous. The subscript c, 

b, g will be used to refer to the coating, substrate and gas media, respectively. The 

substrate layer is assumed to be thermally thick and the coating layer is exposed 

to the air. The thermal wave is generated on the top surface, which is valid for an 

absorbing coating or a metallization layer on the top surface. 

The surface temperature can be expressed as: 
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where Rg and Tg are the thermal wave reflection and transmission coefficients at 

the coating-air interface, respectively. Rb is the reflection coefficient of the 

interface between the coating and substrate. [5.1, pp. 106-108, eq (5.11) therein] 

Assuming there is a thin air layer of 100 nm thickness embedded at a varying 

depth L inside a semi-infinite silicon substrate, the normalized amplitude and 

phase shift of the top surface temperature can be calculated using equation 5.6. A 

plot of this is shown in Figure 5.2. Within the modulation frequency range of 

10Hz to 10kHz, both the amplitude and phase signals are sensitive to the 

presence of such a thin air gap with an embedded depth running from 1 um to 

300 um. The shallower the air gap layer is embedded, the better is the signal 

contrast introduced by the air gap.  
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Figure 5.2: Normalized Amplitude and Phase Shift of the top surface temperature 
for a 100 nm thick air layer embedded in semi-infinite silicon substrate. The 

depth of the air layer below the top surface varies from 1 um to 300 um. 

 

Thus the use of the thermal wave has been numerically proven to have the 

capability to detect non-destructively delamination defects at the bonding 

interface between two silicon wafers or embedded cracks parallel to the silicon 

wafer surface.  

Using similar calculations, an air gap with varying thickness from 10 nm to 10 um 

is also shown to be detectable through a 1 um thick copper capping layer using 

this thermal wave method. The frequency response of the PA signal is illustrated 

in Figure 5.3.  
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Figure 5.3: Normalized Amplitude and Phase Shift of the top surface temperature 
for a delamination layer (air) under a 1 um-thick copper metallization layer on a 

semi-infinite silicon substrate. The air layer thickness varies from 10 nm to 10 um. 

For other multi-layered structures subjected to plane heating on the top surface, 

Salazar et al. have provided a general solution for the surface temperature 

calculation [5.2], which is described as follows: Consider an opaque and stratified 

material made of n parallel layers (i=1, 2, 3, ..., n), the thickness of each layer is 

defined as lj, , its thermal diffusivity is Dj and its thermal effusivity is ej.  The light 

source intensity (I0) of the PA system is modulated at a frequency f.  

The temperature at the illuminated surface can be described by the transfer 

matrix method: 
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where jq  is the thermal wave vector. The extra thermal resistance, thR , at the 

layer interfaces can be accounted for by inserting the matrix 
1

0 1

thR 
 
 

between 

the two adjacent matrices j and j+1 into equation 5.6a.  [5.2] 

Therefore, the surface temperature depends on the thermal diffusivity, thermal 

effusivity of each layer and the thermal resistance at the layer interfaces within a 

thermal diffusion length. It is possible to measure the variations of these 

properties for buried multi-layer structures, such as metallization interconnections, 

using thermal wave methods. As shown in Figure 5.4, both the phase and 

amplitude of the top surface temperature variation can be used to confirm the 

existence of a thin air gap (thickness = 100 nm) inside multilayer Cu/SiO2 

sandwich structures. It can therefore be concluded that the PA system has great 

potential to reveal subsurface defects in advanced semiconductor materials and 

devices. 
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Figure 5.4: Normalized Amplitude and Phase Shift of the top surface temperature 
for a multilayer Cu (1um)/SiO2 (5um) structure on a thermally thick silicon 

substrate.  

5.2. Application 1: PA imaging of subsurface air trenches in silicon 

In this section, the PA system is used to characterize via the wafer backside a set 

of two air trenches, which are laser machined in a silicon substrate. Both 

amplitude and phase images reveal the subsurface features. The frequency 

dependence of the photoacoustic signals with different laser spot sizes was 

compared and analyzed with a one-dimensional model developed by Salazar et al.. 

The effect of lateral heat diffusion on subsurface defect characterization is 

investigated. 

Identifying embedded air voids and metallization defects that affect the integrity 

of integrated circuits, in a rapid and nondestructive manner, can be of 

considerable use for metal interconnect processing. As stated earlier, the PA 

system is a relatively low-cost, non-contact, non-destructive analysis technique, 
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which has the capability to detect embedded structures as deep as several 

hundred microns without any material pre-processing. As discussed in section 5.1, 

both the phase and amplitude signals are sensitive to perturbations in thermal 

wave propagation, resulting from localized changes in the thermo elastic 

properties at a defect site. Some similar techniques have been used successfully to 

identify voids and micro-cracks in an aluminium metallization process [5.3]. 

Using the PA system described in chapter 3, the data acquisition time in this test 

is as short as 50 ms per point. The sample comprises of a 1 cm by 1 cm piece of 

silicon wafer (thickness = 680 um) with 2 air trenches laser machined on the 

surface. The measured trench dimensions are 2 mm by 5 mm by 200um and 2 

mm by 5 mm by 300 um. They are labeled as position A and C respectively in 

Figure 5.5 and 5.6. The sample is mounted in the PA cell on a silicon substrate 

(thickness = 500 um) with the machined side facing away from the probe laser. 

This eliminates the thermal wave interaction between the sample and cell backing 

material. As the machined trenches are ~500 um below the top surface, which is 

far greater than the optical penetration depth for an 808 nm laser in silicon (~10 

um) [5.5], we are effectively probing these sample features with the thermal wave. 

Figure 5.6 shows the photoacoustic microscopy images for a grid of 200 by 200 

points recorded from an 8 mm by 8 mm area on the sample, investigated with 40 

um step size and 170 um laser spot size. The modulation frequency and the peak 

output laser power are set to 917 Hz and 800 mW, respectively. The thermal 

wave generated during one period of the modulation cycle propagates a distance 

determined by thermal diffusion length (~160 um at 917 Hz) and interacts with 

the subsurface defects.  Both photoacoustic amplitude and phase images revealed 

the two 5 mm by 2 mm laser machined trenches, although the embedded depth 

of the structures is almost three times that of the calculated thermal diffusion 

length. With our current experimental set up, the phase image has better contrast 
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and more accurately reflects the actual subsurface structure size as shown in 

Figure 5.7. Both images confirmed that the right trench (position C) is slightly 

deeper than the left one (position A), which is consistent with the sample 

geometry. 

 

Figure 5.5: Geometry of the silicon sample under test. 

In Figure 5.7, the PA microscopy line scans across the region containing the 

trenches. It shows a slight slope difference for the PA signal at the edges of the 

embedded trenches. It is believed that this is induced by the PA edge effect when 

the probe laser crosses the trenches embedded at different depths. To evaluate 

the general photoacoustic contrast mechanism and to simplify the calculation 

complexity, we consider a 1D model, which is valid when the spot size of the 

laser is significantly bigger than the thermal diffusion length. As this assumption 

is not strictly true for our configuration, we find semi-quantitative agreement with 

our data.  

Using thermal wave solutions for a three layer sample between two semi-infinite, 

optically non-absorbing media and assuming the optical penetration depth is 

much smaller than the first layer thickness, the complex top surface temperature 
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Ts has been calculated using the formulas presented in equation 5.6, with the 

sample geometry at positions A, B and C in the modulation frequency range from 

1 Hz to 2000 Hz. 

To eliminate the systematic delivery function of the PAM system, such as PA cell 

acoustic resonance effects, and make the analysis results comparable with other 

photothermal techniques, both the measured and the theoretical data are 

presented in the form of normalized signals: 

( ) ( ) ( )n s reff f f                                        (5.7) 

( ) ( ) ( )n s refA f A f A f                                    (5.8) 

where, ( )ref f , ( )refA f  refer to the phase and amplitude signal from position B 

in Figures 5.5, 5.6 and 5.7, a homogeneous reference region without the 

embedded structures and, ( )s f , ( )sA f , refer to the signal from either position 

A or C above the middle of the buried air trenches. The minus sign for the 

normalized phase refers to the time delay of the temperature variation on the top 

surface for the samples with embedded structures when compared with the phase 

signal from the homogeneous region of the sample.  
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Figure 5.6: Recorded Photoacoustic Amplitude (upper) and Phase Images (lower) 
at 917Hz with 40um step size. 
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Figure 5.7: Photoacoustic line scan across the two embedded trenches at 917Hz 
with 40um step size. 

 

Figure 5.8: Normalized photoacoustic amplitude (left) and phase (right) 
experimental data with 170 um laser spot size and simulation results at position A 

and C marked in Figure 5.5 

 



 

 129 

As shown in Figure 5.8, the phase is much more sensitive, giving up to -35 degree 

signal contrast, to the reflected thermal wave from the subsurface defects, in our 

measured frequency range. The PA amplitude is strongly dependent on the 

optical absorption coefficient and the morphology of the top surface, whereas the 

phase relies on the thermal diffusivity of the subsurface volume. This 

experimental data follows the same variation predicted by the 1D simulation. 

However, in the low frequency range, lateral heat transport, not considered in the 

1D model, plays an important role and causes considerable differences between 

the measured and simulated results.  

 

Figure 5.9: Frequency dependence of normalized phase (left) and amplitude (right) 
with varying laser spot size at position A 

By enlarging the laser spot size, we observe that the measured relative phase 

minimum occurs at a lower modulation frequency and the maximum phase 

contrast is increased as shown in Figure 5.9. In the limit that the laser spot is far 

bigger than the thermal diffusion length, one would expect to recover the 1D 

simulation curve experimentally. Similar results were observed for a diamond like 

carbon (DLC) coatings on a metallic alloy using photothermal displacement 

measurements [5.7].    
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5.3. Application 2: PA imaging of wafer bonding defects 

The silicon on insulator (SOI) technique is a popular substrate fabrication 

method for the manufacture of electronic devices with improved speed for low 

power consumption and low voltage applications. One of the fast processing 

methods to produce SOI wafers is wafer bonding, which is referred as bonded 

silicon on insulator (BSOI).  

 

Figure 5.10: The BSOI wafer manufacturing process, reproduced from reference 
[5.10]  

As described by Maszara, this method basically connects a seed wafer (e.g. silicon) 

with one oxidized surface to a silicon-handling wafer by directly contacting them. 

[5.8] After thinning the handling wafer, the resulting BSOI wafer has the 
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following multi-layer structure: thin silicon layer – silicon oxide – substrate (e.g. 

silicon). The detailed process flow is illustrated in Figure 5.10. 

For ULSI applications (ultra large scale integration), it is essential to control the 

crystalline quality of the upper thin silicon film. There are three main defects that 

can have very deleterious consequences: dislocations and their strain fields, voids 

or non-bonded areas and long-range strain fields originating from the bonding 

interface.  

 

Figure 5.11: The sample geometry used to model the temperature variation on 
the top surface with a wafer-bonding defect included. 

Synchrotron X-ray topography (SXRT) and infrared gray field polariscopy (IR-

GFP) can be used for full-field measurements of the residual stresses arising from 

wafer bonding. [5.9] We will show that the PA system, presented in this thesis, 

also has the capability to detect non-destructively these interface defects.  Unlike 

the IR-GFP method, the PA system is more robust and insensitive to the wafer 

process steps. It is possible to characterize deeply embedded defects even when 

the wafers are optically opaque, e.g. with a metal layer coating on the top surface. 
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Using the theory developed by Salazar et al., which has been described in section 

5.1, it is possible to calculate the PA signal for a multi-layer structure. Two silicon 

wafers (thickness = 470 nm) are bonded by contacting each other, as shown in 

Figure 5.11. At certain positions on the bonding interface, delamination defects 

are presented. To simplify the model, these defects are treated as thin air gaps 

with different thickness. During the measurements, the samples are placed upon 

a stainless steel backing material.  The mathematical model assumes that the 

optical penetration depth of the excitation laser is much smaller than the thermal 

diffusion length for all modulation frequencies of interest. This assumption is 

valid since the energy of the excitation laser used in this test (808 nm; E = 1.54 

eV) is above the silicon band gap energy (Eg = 1.1 eV).  The material properties 

of each layer are given in Table 5.1 below. 

Material Density 

(Kgm-3)  

Specific 

Heat 

(JKg-1K-1) 

Thermal 

Conductivity 

(Wm-1K-1) 

Thermal 

Diffusivity 

(10-6m2s-1) 

Thermal 

Effusivity 

(Ws1/2m-2K-1) 

Silicon 2330 712 148 89.21 15669.27 

Air 

304 

Stainless 

Steel 

1.16 

8000 

1007 

500 

0.026 

16.2 

22.26 

4.05 

5.51 

8050 

Table 5.1: The material properties of each layer included in the sample geometry 

illustrated in Figure 5.11. The same material properties have also been used in 

Chapters 2 & 3. 
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Figure 5.12: The simulated PA frequency dependence based the theory developed 
by Salazar et al. [5.2]. The x-axis unit of the PA Phase plot is √f

 
 to provide more 

detail in the lower frequency range.  The PA Amplitude is plotted using log scale 
for both x and y-axes to verify the general linear behaviour of the frequency 

response. The sample geometry is given in Figure 5.11 and the material properties 
are provided in Table 5.1. 

 
Using the MATLAB® simulation suite, the frequency dependence of the PA 

Amplitude and Phase can be calculated using the code, which is shown in the 
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appendix section at the end of this thesis. As shown in Figure 5.12, the PA 

amplitude decreases while the modulation frequency increases. When there is no 

defect at the bonding interface, the PA amplitude is linearly proportional to 1f  . 

For both PA amplitude and phase, the sensitivity to the existence of the 

embedded air layer disappears at higher modulation frequencies, as in these 

situations the thermal diffusion length is smaller than the subsurface depth of the 

air gap.  

The PA system described in chapter 3 was used in this test.  A bonded silicon 

wafer was cut into 9 mm by 9 mm pieces to fit into the PA cell.  The sample 

geometry is given in Figure 5.11. Unlike the situation for the detection of bonding 

defects using PA imaging in transmission mode [5.11], by measuring the 

temperature variation on the top surface, PA scanning images are captured 

herein. This feature allows the PA system to be used at higher modulation 

frequencies. This will reduce the thermal diffusion length to improve the lateral 

resolution of this microscopy application and reduce the minimum time required  

( 1f  ) for the lock-in amplifier to wait when detecting the PA signal at each pixel. 

Using helium as the coupling gas in the PA cell and setting the modulation 

frequency to 220 Hz, a set of PA images comprised of 10,000 pixels (data 

consisting of PA amplitude and phase), can be captured in less than 8 minutes. 

An example of the PA scanning results is shown in Figure 5.13.  
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Figure 5.13: PA mapping images of de-bonded silicon wafers. (PA amplitude: 

upper image; PA Phase: lower image. (Sample Name: HBH-200, Light source: IR 

laser diode 808 nm, PA cell filled with Helium Gas, Modulation frequency = 220 
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Hz, Lock-in amplifier setting: Float coupling, sensitivity = 1V, time constant = 10 

ms, Total image acquisition time = 8 min) 

 

Figure 5.14: White beam synchrotron x-ray topography (SXRT) of bonded silicon 
wafers. (Exposure Configuration: [-1 -1 9] Large area Back-reflection (LABRT), 
sample-film distance = 80 mm, x-ray penetration depth = 153 um, beam current 

= 85.597 mA, exposure time = 186 sec) 

Both PA amplitude and phase images show the existence of a de-bonded area at 

the top right hand corner of the sample. In addition, the PA system detected a 

small particle-related defected at the bonding interface, which has been confirmed 

by SXRT-LABRT results, as shown in Figure 5.14.  With the given modulation 

frequency of 220 Hz, the PA signal difference between the bonded and de-

bonded area is ~ 2  phase and ~ 50 mV in amplitude. In this test case, the phase 

signal is more sensitive than the amplitude and the lateral resolution is ~ 0.1 mm. 
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Figure 5.15: White beam synchrotron x-ray topography (SXRT) of bonded Si 
wafers. (Exposure Configuration: [-2 -2 0] Large area transmission (LAT), 
sample-film distance = 95 mm, x-ray penetration depth = 1.361 mm, beam 

current = 83.45 mA, exposure time = 497 sec) 

To verify the results given by the PA system, a 5 mm by 5 mm area, delineated by 

the dotted area in Figure 5.13 (bottom image), has been characterized using 

synchrotron x-ray topography (SXRT). These experiments were performed at 

HASYLAB-DESY, Hamburg, Germany, utilizing the continuous spectrum of 

synchrotron radiation from the DORIS III storage ring bending magnet source. 

The ring operated at the positron energy of 4.45 GeV and at typical currents of 

80–150 mA. The Laue/Bragg diffraction patterns were recorded on Geola VRP-

M Holographic films, which have an emulsion grain size of about 40 nm.  

Figures 5.14 and 5.15 are typical x-ray topography results in large area back 

reflection and transmission modes, respectively.  In the transmission topography, 

the white x-ray beam penetrates through the sample and the resulting diffraction 

pattern was imaged on a film placed 95 mm behind the bonded wafers. Both the 

diffraction image from the top and the bottom silicon substrates are visible. 
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These are partially overlapped due to the small rotational misalignment between 

the two bonded wafers. The strong dark contrast across the complete 

characterization area from left to right, is the border of the de-bonded regions, 

which can be related to strong lattice distortion. Within the de-bonded area, top 

right hand corner of the sample, the “orange peel” contrast is related to the 

unpolished surface of the silicon substrate. For the bonded region, the 

wavy/sinusoidal “cellular” black/white contrast becomes much stronger and its 

spatial wavelength has increased to ~ 193 um.   

 

Figure 5.16: Left plot: Schematic representation of the deformation introduced by 
the bonding process (A) wafer surfaces before bonding, (B) after room 

temperature bonding, (C) after complete bonding at high temperature [5.8]. The 
six horizontal (in A) and bent (in B) lines illustrate the form of a set of lattice 

planes before and after bonding. Right plot: Illustration of the focusing-
defocusing behaviour of a thin crystal film with a wavy (sinusoidal) deformation. 

[5.8, 5.12] 

Härtwig and Köhler have demonstrated a quantitative method to estimate the 

crystal deformation at the bonding interface. [5.12] In their X-ray topography 
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results for most samples, the main spatial frequency of the image intensity 

contrast varied in the range from 100 μm to 300 μm. The contrast formation 

mechanism is found to be orientational contrast (and not extinction contrast with 

varying integrated reflectivity), which can be interpreted by an interface 

deformation model proposed by Maszara and shown in Figure 5.16. [5.8] 

The crystal plane at the bonding interface is deformed in the process of 

contacting two silicon wafers to each other. The local Bragg angle is perturbed by 

the varying misorientation of the reflecting lattice planes. Certain regions of these 

planes act as focusing or defocusing components. If one places the recording film 

at a distance close to a focal length, the x-ray topography images show a series of 

dark lines with a bright background, which is exactly the same as observed in 

Figure 5.15. Assuming a sinusoidal deformation at the bonding interface with a 

spatial wavelength   and defining the sample-film distance as f, the x-ray 

diffraction intensity 0a can be estimated by [5.8] 

2

0
16

a
f






                                             (5.9)
 

 The maximum inclination 0  of the deformed lattice planes can is given by [5.8] 

0 0.0020318[ ] 0.116
8

rad
f


   

                              (5.10)
 

This strain field will not only be confined to the region close to the bonding 

interface. Its penetration depth was reported to be of the same order as the 

spatial wavelength of the interface waviness, regardless of whether the seed wafer 

has been thinned down to a smaller thickness or not. This is consistent with our 

SXRT-LABRT results. As shown in the back reflection topograph of Figure 5.14, 
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the synchrotron x-ray penetration depth is calculated as 153 um for the [-1, -1 9] 

topograph shown therein. The characterized silicon crystal region is about 320 

um away from the bonding interface. At the bonded region, the sinusoidal/wavy 

contrast, the indication of the existence of the strained crystal, is still visible. In 

addition, there is also a dot-like feature visible in the LABRT image, which is 

marked by an arrow in Figure 5.14. This feature shows a black and white contrast, 

which indicates that it is related to crystal deformation and there is long-range 

strain field around it. As noted in Figure 5.13, this feature has also been picked up 

in the PA Phase imaging, which confirms that the lateral resolution of the PA 

microscope system presented in this thesis is of the order of 100 um.  

Two typical positions have been selected on the sample, one at a bonded region 

and the other at a de-bonded region for a PA frequency scan. As shown in Figure 

5.17, the PA frequency dependence shows relatively little difference between the 

two cases except at lower frequencies. To remove the acoustic resonance peaks 

and in order to compare the measurement results to the mathematical model 

described in Figure 5.12, the PA signals are again normalized as previously 

outlined using: 

( ) ( ) ( )n s reff f f                                        (5.11) 

( ) ( ) ( )n s refA f A f A f                                    (5.12) 

where, ( )ref f , ( )refA f  refer to the phase and amplitude signals from position 

A. ( )s f  and ( )sA f refer to the signals from either position B. 
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Figure 5.17: The PA frequency dependence for Amplitude (upper plot) and Phase 
(lower plot) at two positions on the sample surface: Position A = bonded area; 

Position B = debonded/delaminated area (Sample Name: HBH-200, Light 
source: IR laser diode 808 nm, PA cell filled with Helium Gas, Modulation 

frequency = 25-3000 Hz, Lock-in amplifier setting: Float coupling, sensitivity = 
1V, time constant = 10 ms, Total image acquisition time = 8 min) 
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Figure 5.18: The normalized PA frequency dependence in Phase. Comparison of 
measured and simulated results. 

After the PA signal normalization, the measured data, given in Figure 5.17, and 

the simulated results, given in Figure 5.12, are plotted in the same scale, as shown 

in Figure 5.18. The PA signal has been simulated with a varying air gap thickness 

at the bonding interface. The measured data is consistent with the theoretical 

predictions. Both datasets show very similar trends. There is some deviation at 

the lower frequencies, which could be due to the simplified structure assumption 

for the bonding interface. It could be worthwhile in the future to also include the 

SiO2 layer within the simulation sample geometry when performing a function 

fitting for the experimental results. 

As shown in Figure 5.18, the PA phase plot, as one varies the air gap thickness 

from 1000 nm to 100 nm, the maximum phase difference change is  ~16. With 
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the current experimental configuration and sample geometry, the typical 

reproducibility in PA phase is ~2 and ~ 0.3 degrees for the air cell or the 

helium gas cell, respectively. Assuming that the phase difference is linearly 

proportional to the thickness difference of the air gap, the estimated sensitivity of 

the PA system for detection of deeply embedded air gaps is ~ 20 nm or ~ 113 

nm when using Helium or air as the coupling gas. 

In summary, the PA system is proven to be a lower cost and non-contact imaging 

technique for wafer bonding applications. It does not require a liquid coupling 

medium and can be applied to moisture-sensitive devices, non-annealed bonds, 

optically opaque or non-crystal bonding materials. 

5.4. Application 3: Photoacoustic Imaging on packaged IC 

With the current gas-microphone detection scheme, the modulation frequency 

range is from DC to 3000 Hz. In this case, the minimum thermal diffusion length 

in silicon is ~ 90 um. When using higher frequencies, the damping effect of the 

coupling gas on the acoustic piston becomes very significant and the PA signal 

becomes too weak to be detected. For PAM, the thermal diffusion length 

determines the lateral resolution. The typical resolution (~100 um) is much worse 

than some metrology tools, such as optical microscopy or CD-SEM. However, 

the PA microscope has unique advantages. Its probe depth can reach as deep as 

hundreds of microns below the surface. It has very high vertical resolution, as 

demonstrated in section 5.3. The measurement approach is robust and no sample 

pre-conditioning is required.  

The photoacoustic images can be achieved by a variety of scans over a region of 

interest. One possibility is to move the excitation light source and keep the 

detection system unchanged.  Another is to keep the excitation source fixed and 

to move the detection system (usually by scanning a probe beam). A third 
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approach is based on scanning both excitation and detection system relative to 

each other across the sample. In this study, the sample under test has to be placed 

inside a PA cell, wherein the microphone is fixed at certain location. Our PA 

images are therefore obtained using the 1st scanning method. 

 

Figure 5.19: IC sample studied in this test: HN462532G 

Herein, a packaged IC chip, HN462532G, is characterized.  The sample picture is 

shown in Figure 5.19.  Before placing the chip into the photoacoustic cell, the top 

capping material was removed to reduce the sample height, which makes it 

possible to fit the chip into the PA cell. It also allows direct access for the 

excitation laser to the patterned top surface. There is no need to scan the sample 

through the optical window on the package top.  

Initial scans were performed on the sample by scanning through from the IC 

backside. As shown in Figure 5.20, no IC circuit pattern was found. Neither PA 

phase or amplitude images reveal the existence of an IC chip. Even though the 

modulation frequency was reduced to 70 Hz, the thermal diffusion length within 

the packaging material is still shorter than the package thickness. However, by 

scanning the IC sample from the topside, as shown in Figure 5.21, both PA 



 

 145 

amplitude and phase images clearly show the electronic circuit layout. The typical 

lateral resolution observed here is 50 - 100 um. The PA amplitude data are much 

more sensitive to the presence of particles on the top surface when compared to 

the PA phase data. The reason for this is that the inner wall of the PA cell can 

absorb the scattered light from the particles very heavily. The PA amplitude is 

increased significantly due to this cell effect.  

Figure 5.22 shows the optical microscopy image of a manually damaged 

HN462532G chip. The upper left corner of the chip was totally removed and a 

crack, which is tens of microns wide, extends from this severely damaged area to 

the lower right corner. By adjusting the focusing position of the optical 

microscope, the adjacent area on the right along the crack can be seen to be tilted 

upwards. This phenomenon indicates that there is a subsurface delamination layer 

on the right side of the crack. 
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Figure 5.20: Photoacoustic Amplitude (upper) and Phase (lower) Images of 

packaged IC chip. (PA sample: IC chip HN462532G_JAPAN_2G1_D with the 
top capping material removed; Photoacoustic System settings: modulation 

frequency = 70Hz, lock-in Amplifier time constant = 30ms, scanned area = 4.5 
mm * 6 mm, scanning step size = 30um, scan via the back surface) 
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Figure 5.21: Photoacoustic Amplitude (upper) and Phase (lower) Images of 

packaged IC chip. (PA sample: IC chip HN462532G_JAPAN_2G1_D with the 
top capping material removed; Photoacoustic System settings: modulation 

frequency = 970Hz, lock-in Amplifier time constant = 3ms, scanned area = 4.5 
mm * 6 mm, scanning step size = 30um, scan via the front surface) 
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Figure 5.22: Optical Microscope image of the manually damaged HN462532G 

chip 

Photoacoustic Microscopy has been used to characterize the shape of the 

subsurface delamination area, which cannot be seen by optical microscopy. The 

PAM modulation frequency is 970 Hz with a 1ms time constant. The scan is 

made on a 6mm*6mm area with a 30um step size, using air as the coupling gas. 

(AC coupling, normal reserves, 24db and 200mV sensitivity). As seen in Figure 

5.23, both Amplitude and Phase images reveal the subsurface delamination layer, 

which is of several mms wide on the left side of the crack. The phase image is 

more sensitive to the subsurface defects and shows less interference from the dirt 

on the top surface. Across the sample, the IC circuit pattern can be seen clearly 

except for the surface damaged area on the left upper corner.  

 

The  PA Microscope scanning 
line location. Data is 
presented in Figure 5.23. 

         1 mm 
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Figure 5.23: Phase and Amplitude image of manually damaged HN462532G chip 
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Figure 5.24: Line scanning PA Microscopy results (Upper image = Phase data; 
lower image = Amplitude data) at the position indicated by the red line in Figure 

5.22. 

Figure 5.24 shows the line scanning PA microscope result at the position 

indicated by the red line in Figure 5.22. As seen in both amplitude and phase 

plots, the delamination layer extends up to 3 mms away from the crack itself and 
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reaches its maximum extent at the right side of the crack. No delamination can 

been found on the left side of the crack. These results are consistent with the 

optical microscopy results.  

5.5. Application 4: Photoacoustic Spectroscopy for Bandgap Defect 

Characterization in Semiconductor Materials 

Several techniques have been developed to characterize the impurities or the 

defects formed deep within the energy bandgap of semiconductor materials. 

Optical absorption spectroscopy (OAS) is one of the most conventional methods, 

which measures the intensity ratio of the incident and the transmitted light. 

However, it has low sensitivity for certain impurities, whose absorption 

coefficient is below 1cm-1. In such cases, the sample thickness needs to be more 

than a few millimeters for OAS to obtain accurate absorption spectra. An 

alternative metrology method is photoluminescence (PL). It has been reported 

that PL can detect boron and phosphorous shallow impurities, whose 

concentrations are as low as 1×1011 and 5×1010 cm-3, respectively, in silicon. [5.13]  

When amplitude modulated light is incident on the semiconductor surface, 

optically excited free carriers are generated. These carriers then recombine 

through radiative or non-radiative pathways and decay to the ground state by 

dissipating the excess energy. The radiative re-combination process can be 

detected efficiently by PL method. On the other hand, non-radiative 

recombination also generates heat within the sample. The modulated heat creates 

thermal waves and elastic waves, which propagate through the sample. This signal 

is a photoacoustic signal, which can be measured using the PA system described 

in chapter 3. The PA technique is a complementary metrology tool for PL 

methods, as it provides a direct monitor of the non-radiative recombination 

channels within the semiconductor materials. For large-scale integrated circuits 

and opto-electronic device fabrication, the non-radiative centers, will result in the 
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degradation of devices. It is thus very important to understand such electronic 

transitions. 
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Figure 5.25: A typical PA Amplitude Spectroscopy result for Sample 1: Carbon 
Black Powder and Sample 2: GaAs wafer grown by VGF method (Light source: 
Arc lamp 700 nm ~ 1500 nm, PA cell filled with Air, Modulation frequency = 70 

Hz, wavelength scan step size = 1 nm, 4 microphones activated, averaged 
spectrum of 5 scans, Lock-in amplifier setting: Float coupling, sensitivity = 1V, 

time constant = 500 ms)   

In addition, the photoacoustic technique is sensitive enough to measure very 

small optical absorption coefficients in highly transparent media. This gives PA 

methods a big advantage while measuring the absorption spectra of thin film 

structures. It has been reported that the PA method can detect a thin layer of 

amorphous Se film, whose thickness is less than 20 nm and whose absorption 

coefficient is as low as 0.1cm-1. [5.14] It is very possible for the PA system 

described in chapter 3 to detect impurities and defects of quite low 

concentrations.  
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As shown in Figure 5.25, a photoacoustic spectrum in spectroscopy mode (PAS) 

for carbon black powder is recorded with the same settings as for a vertical 

gradient freeze (VGF) grown GaAs sample. This includes using the same 

modulation frequency, the same time constant setting for the lock-in amplifier 

and the same photonic interval. The carbon black spectrum is used to remove the 

fingerprint of light source intensity from the GaAs PA spectroscopy results. Due 

to its significantly higher optical absorption coefficient, the PA signal amplitude 

from the carbon black powder is about 45 times greater than that from GaAs. 

However, the signal to noise ratio (SNR) for the VGF GaAs spectrum is still 

quite usable. Its PA spectrum follows a trend similar to that of the carbon black 

sample, this being dominated by the intensity distribution curve of the arc lamp 

light source. No extra filtering has been applied to the above data to reduce the 

noise. This is a direct proof showing that the SNR performance of our PA system 

is good enough to perform the (sub)-bandgap characterization even for 

semiconductor bulk material. 

As described in previous section, by dividing the PAS amplitude values for GaAs 

samples by those for the carbon black powder, the PAS Amplitude results can be 

normalized. The normalized PA spectra for two types of GaAs wafers, grown by 

the Vertical Gradient Freeze (VGF) method and Liquid Encapsulated 

Czochralski (LEC) methods, respectively, are shown in Figure 5.26. For both 

GaAs spectra, the PA amplitude increases dramatically once the incident photon 

energy is above 1.4 eV. This is due to the abrupt increase of optical absorption 

near and above the bandgap energy and band-to-band transitions occur with a 

high probability. [5.15] According to Figure 5.26, the bandgap energy for both 

characterized GaAs samples is about 1.4 eV, which is consistent with the data (Eg 

~ 1.43 eV) listed in Table 3.1.  
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Figure 5.26: Normalized PAS Amplitude spectra are presented for two types of 
GaAs wafer grown by the VGF and LEC methods, respectively. (Samples: VGF 
GaAs wafers, 4 microphones activated, PA cell filled by Helium Gas, modulation 
frequency = 70 Hz, time constant for lock-in amplifier = 300 ms, averaged result 
of 5 PA spectra, 30 point adjacent averaging is applied for noise reduction; For 
Dataset iii-135-0002, sample: LEC GaAs wafer from MCP Tech, modulation 

frequency = 43 Hz, PA cell filled by air, lock-in amplifier setting: time constant = 
3 s, sensitivity = 100 mV, AC coupling, Ground, Normal reserve, Negative Edge 

Triggering, with reduced PA cell volume (1/2 of its original size).) 

As shown in equations 2.34 and 2.35, the PA Amplitude data below the bandgap 

can accurately reflect the physical properties of the gap states, such as deep 

impurity and defect levels. For both GaAs PA spectra, there appear to be two 

defect levels below the bandgap energy, E1 ≈ 1.17 eV and E2 ≈ 1.3 eV, as 

indicated by arrows in Figure 5.26. The defect level of E2 seems to be more 

obvious in GaAs LEC spectrum and its contribution to PA signal is slightly 

bigger.  In addition, there is a broad peak in LEC GaAs spectrum, which is 

extending up to ~1.35 eV. This broad feature overlaps the peak position of E1. 

Ikrai et al. have also reported this phenomenon [5.16] and they suggest that this 

E1     E2 
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“D-band” might be due to the electron transition involving the EL2 defect level 

in the GaAs substrate.  

To determine the nature of these band gap defects in detail is beyond the scope 

of this thesis, and will require further study in the future combining PAS with e.g. 

low-temperature Deep Level Transient Spectroscopy (DLTS) characterization. 
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C h a p t e r  6  

SYNCHROTRON X-RAY TOPOGRAPHY AND MICRO RAMAN 
STUDY ON LASER MICRO MACHINING 

6 Synchrotron x-ray topography and micro Raman study on laser micro- 

machining 

The major portion of the content of this chapter was published in the journal, 

Semiconductor Science and Technology in 2007. The DOI number is 10.1088/0268-

1242/22/8/024. The permission to include this article in my thesis has been 

granted by the publisher and the proof or permission is included in an appendix 

at he end of this thesis.  

6.1 Introduction 

Indium phosphide (InP) is a very important III-V compound semiconductor 

material for high speed optoelectronic applications. Using the different optical 

reflectivity between laser induced amorphous and crystalline phase structures on 

the same InP substrate, high density optical memory recording systems can be 

manufactured and this has drawn great attention in the past few years. Compared 

with conventional nanosecond (ns) laser methods, material micro-processing with 

ultra-fast femtosecond (fs) laser pulses can lead to improved surface morphology 

and a reduction in the heat-affected zone (HAZ) due to the absence of direct 

coupling of the laser energy into the thermal modes of the material during 

irradiation. The quality difference of substrates machined with different laser 

pulse durations, in terms of collateral damage to the crystal structure, residual 

strain and localized changes in optical, mechanical and electronic properties, has 

been demonstrated by many groups.  
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Typically, non-destructive studies on laser machined samples have been limited to 

the top surface using optical (OM), scanning electron (SEM) [6.1] and atomic 

force microscopy (AFM) for surface morphology visualization [6.2], micro-

Raman spectroscopy (μRS) for stress analysis [6.2, 6.3] and Auger electron 

spectroscopy (AES) for chemical modification [6.4]. Thus, according to most of 

the published work, in order to obtain the crystal structure and strain information 

tens of microns under the laser machined surface, the samples have to be 

destructively cleaved or further prepared by special techniques e.g. focused iron 

beam (FIB) to allow access to the cross-sectional facet for analysis by techniques 

such as degree of polarization (DOP) photoluminescence (PL) [6.5], or 

transmission electron spectroscopy (TEM) [6.6].  

Since the threshold fluence dependency of irradiated semiconductors on the 

number of laser pulses can be described by a fatigue damage mechanism, it 

becomes very important to understand the accumulated mechanical stress in the 

multiple-pulse laser machining process. [6.7] This stress can be induced by the 

thermal process, top surface chemical compositional changes and the crystal 

structure distortion underneath. 

In this chapter, I present a totally non-destructive 3D analysis of strain induced 

by femtosecond and nanosecond laser machining using white beam synchrotron 

x-ray topography (SXRT) and high resolution micro-Raman Spectroscopy (μRS). 

Depth profiling and cross section images of strain fields right through the 

processed InP wafer have been obtained. Both uniaxial and shear stress values 

from the top surface and the underlying crystal have been calculated based on the 

Raman peak shifts and the orientation contrast of SXRT images. To the best of 

this author’s knowledge, this is the first time that white beam synchrotron x-ray 

topography (SXRT) has been applied to the strain analysis of laser-machined 

samples. 
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The method of strain field imaging using SXRT is based on two contrast 

mechanisms: (1) extinction contrast: the difference in reflecting power between 

perfect and imperfect crystal regions and (2) orientation contrast: the non-

uniform diffracted imaging of distorted crystal regions whose misorientation 

exceeds the divergence of the synchrotron beam, ~0.06 mrad vertically in this 

study. The SXRT sensitivity to strain magnitude is estimated to be at least of the 

order of 6×10-5 and a spatial resolution of about 5μm can be easily achieved [6.8]. 

Unlike the aforementioned strain characterization techniques used on laser 

machined samples, SXRT is a genuinely nondestructive analysis tool sensitive to 

the subsurface features. By selecting different diffraction images on the recording 

film and varying the corresponding X-ray penetration depth, a 3D strain field 

profile right through from the top-side to back-side can be built up. Using a 

transmission section topography (TS) geometry, a set of cross-section images of 

the strain distribution on different crystal planes can be obtained in a few minutes. 

SXRT has already been successfully used to characterize the defects in single 

crystal Si, thermal processing induced strain fields in packaged Si integrated 

circuits and solder bump process induced stress distributions in Si substrates [6.9-

6.11].  

One drawback to be noted at this stage is that it is normally very difficult to 

determine the sign of the strain which produced the contrast on the recording 

film and only the magnitude of the strain can be calculated based on SXRT 

results. Therefore, in order to calculate the exact stress value, obtain a high-

resolution stress line profile (less than 1 μm spatial resolution) and also to analyze 

the chemical surface modification, micro-Raman Spectroscopy (μRS) has also 

been used as a complementary tool in this study.  
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6.2 Experimental details 

 

 

Figure 6.1. (a) Schematic details of large area back-reflection topography (LABRT) 
geometry, (b) back-reflection section topography (BRST) geometry, (c) large area 

transmission topography (LAT) geometry and (d) transmission section 
topography (TS) geometry 

The micro-machined samples are prepared with a commercial, regeneratively 

amplified Ti:sapphire laser operating at a centre wavelength of 800 nm at a 1 kHz 

repetition rate. The laser beam was focused on the sample surface by a 5×-

microscope objective to a spot size of 5.5±0.5 μm (Gaussian beam radius at 1/e2 

intensity fall off). Inside a small vacuum chamber, four grooves were machined 

on the (001) surface of one n-InP substrate (S doped ~1018 cm-3) along the [100] 

direction with pulse durations of approximately 130 femtoseconds and 8 
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nanoseconds, respectively. The nanosecond pulse is obtained from the same laser 

as the 130 fs pulse by blocking the seed pulse to the amplifier and bypassing the 

compressor. With a beam linearly polarized perpendicular to the cutting direction, 

pulse energies of 1.0 and 0.35 μJ were utilized at a machining rate of 500 μm/s, as 

shown in Table 6.1. This machining rate implies that approximately 10 pulses are 

incident on the sample in each beam diameter length, making this a multi-pulse 

process. 

The X-ray topography measurements were performed at HASYLAB-DESY, 

Hamburg, Germany, utilizing the continuous spectrum of synchrotron radiation 

from the DORIS III storage ring bending magnet source. The ring operated at a 

positron energy of 4.45 GeV and at typical currents of 80–150 mA. The 

Laue/Bragg patterns of topographs were recorded on Geola VRP-M 

Holographic films, which have an emulsion grain size of about 40 nm. Four 

experimental arrangements, large area back-reflection topography (LABRT), 

back-reflection section topography (BRST), large area transmission topography 

(LAT) and transmission section topography (TS), as illustrated in Figure 6.1, have 

been used to obtain depth profile information and cross-section images of the 

strain fields.  

Micro-Raman measurements were conducted in the backscattering geometry 

using a 488 nm Ar+ laser excitation at room temperature on a Jobin Yvon 

LabRam HR800 μRS system equipped with a liquid nitrogen cooled CCD 

detector (wavenumber resolution = 0.4 cm-1). With an Olympus 100× 

microscope objective, the laser was focused on the sample surface to a diameter 

of 1 μm. Line scanning with 1 μm step size was performed automatically on a 

motorized X-Y microscope stage whose step resolution is 0.1 μm and 

reproducibility is 1 μm. 20 seconds integration time was selected and 3 Raman 
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spectra from the same probing position were averaged to increase the signal to 

noise ratio (SNR). 

6.3 Results and discussion 

6.3.1 SXRT Large area back reflection (LABRT) results 

As shown in Figure 6.2, the (0 2 6) large area back-reflection topograph (LABRT), 

of four laser-machined grooves can be observed as 4 stripes of reduced intensity 

along the [100] direction, where black corresponds to enhanced x-ray diffraction 

intensity. The two femtosecond laser machined grooves can be easily identified 

with one extra dark line at the centre of the each stripe. 

 

Figure 6.2: Typical SXRT LABRT images for four laser-machined grooves: (0 2 6) 
diffraction image. The diffraction vector g is indicated on the image. 

The kinematic penetration depth (tp) of the x-rays in each SXRT diffraction 

image, which is measured perpendicular to the surface, can be calculated using 

the equation: 
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where μ(λ) is the linear x-ray absorption coefficient at wavelength λ, i  and f  

are the incidence and exit angles with respect to the sample surface [6.12]. 

Therefore, the probe depth of the (0 2 6) diffraction image can be estimated to be 

2.78 μm, which is far deeper than the probe depth of the Raman measurement 

(~50 nm with 488 nm laser excitation).  

Two possible mechanisms can be used to explain the reduced intensity contrast 

for all four laser machined grooves shown in Figure 6.2. The extinction contrast 

mechanism suggests that the reduced intensity around the grooves may represent 

greatly reduced x-ray diffractive capability due to the presence of a thick x-ray 

absorbing re-solidified surface layer, which comprises a high percentage of 

amorphous or polycrystalline InP. However, the cross sectioned transmission 

electron microscope (XTEM) results for the same sample presented by another 

group [6.6] indicate that the re-solidified layer thickness only varies from 200 nm 

to 500 nm, which is far less than the x-ray penetration depth calculated using 

equation 6.1. Additionally, the width of the white low x-ray intensity region is 

much bigger than the groove width or the re-solidified layer width across the 

grooves (from 10-20 μm measured by XTEM). Therefore, this image can only be 

explained by a dominant orientation contrast mechanism, resulting from the 

overlap and/or separation of an inhomogeneously diffracted x-ray beam. The 

width of the reduced intensity stripes on the SXRT film should be equal to the 

SXRT detectable width of shear strained InP crystal 2.78 μm below the top 

surface. Therefore, according to Figure 6.2, the width of the distorted underlying 

crystal about the 4 grooves from No.1 to No.4 can be estimated to be 64 μm, 32 

μm, 28 μm and 24 μm respectively, as listed in Table 6.1. With the same laser 

pulse energy, laser machining with shorter pulse duration leads to smaller strained 

regions about the grooves. 
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Figure 6.3: Schematic of ‘focusing’ (a) and ‘defocusing’ (b) mechanism of 
diffraction x-ray intensity line profile with two oppositely shear strained areas 
associated with femtosecond and nanosecond laser machining respectively. 

In addition, two totally different diffracted x-ray line profiles, termed here as 

‘focusing’ and ‘defocusing’ phenomena, are observed across the fs and ns laser 

machined grooves respectively. Similar to SXRT orientation contrast for edge 

dislocations [6.13], these phenomena can be explained by the opposite sign of (0 

0 1) crystal plane Bragg angle variation (ΔθB) with respect to the incident direction 

of the synchrotron x-ray beam in the shear strained area. Referring to figure 6.3(a), 

the femtosecond laser machining process modified the subsurface (0 0 1) crystal 

plane such that the diffracted x-ray intensity from the distorted region is ‘focused’ 

to the groove center, shown as a symmetric white-black-white sandwich structure 

contrast in the LABRT image. In contrast, for the nanosecond laser machined 

trenches, as shown in figure 6.3(b), the diffracted x-rays from the shear strained 

area is ‘defocused’ to the groove sides, resulting in a wide white stripe structure 

with enhanced intensity at the edges along the [1 0 0] direction. According to the 

‘defocusing’ orientation contrast observed, the subsurface (0 0 1) crystal planes 
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tilt upwards and tend to align perpendicularly to the laser machined surface when 

approaching the groove centre. One possible reason could be that during the 

time between two nanosecond laser pulses, which is longer than the time need for 

thermal diffusion deep into the bulk, a heat affected zone (HAZ) is built up by 

the excess heat induced by the initial laser pulse. The (0 0 1) crystal planes in the 

HAZ are deformed along the temperature gradient, which is normal to the laser 

machined surface. A tensile strained area could be expected in the underlying 

crystal substrate after the nanosecond laser machining process. In contrast, the (0 

0 1) crystal planes under the femtosecond laser machined grooves are simply 

compressed downwards and leave a compressively strained area below the groove 

centre, as shown in Figure 6.3(a). In this case, non-thermal melting occurs. 

Similar imaging results of shear strain distribution have been observed using a 

destructive probing method (degree of polarization photoluminescence technique) 

on the cleaved InP facet across all four laser machined grooves, where the degree 

of polarization (DOP) signal, associated with linear strain, and the rotated degree 

of polarization (ROP) signal distribution, which is directly related to the shear 

strain and lattice distortion direction, have been found to be of opposite sign 

beneath the fs and ns laser machined grooves [6.5]. Although the extinction 

contrast mechanism may have some minor impact on the LABRT images 

especially for the fs laser machined case where dislocations along groove sides 

and twins at the center are observed by XTEM [6.6], the dominant orientation 

contrast mechanism still clearly indicates the opposite sign of crystal distortion in 

the two cases. This conclusion is also confirmed by Figure 6.6, the simulation of 

SXRT transmission section topography (TS) images.  
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6.3.2 SXRT back reflection section topography (BRST) results 

 

Figure 6.4: The (0 2 6) SXRT back reflection section topography (BRST) of four 

laser-machined grooves with x-ray penetration depth (tp) of 2.8 μm. 

One of the advantages of SXRT back reflection section topography is its ability 

to provide nondestructive depth profiling of a thin slice of InP crystal across the 

four laser machined grooves perpendicular to the top surface. By carefully 

comparing the topographs and the corresponding x-ray penetration depths for 

different diffracted images, the depth of imperfect crystal region can be estimated. 

As shown in Figure 6.4, the broken line features (defocusing orientation contrast) 

introduced by nanosecond laser machining process can be found on this BRST 

image with tp=2.8 μm and all the other diffracted images on the recording film. 

The corresponding x-ray penetration depth varies from 1.5 μm for 1 1 5 

diffraction to 22.5 μm for 3 3 13 diffraction. Therefore, the magnitude of shear 

strained depth induced by nanosecond laser machining is greater than 20 μm. At 

the positions of G No.3 and G No.4 in Figure 6.4, the SXRT misorientation 

contrast of trifurcate shape related to the distorted InP crystal under femtosecond 

laser machined grooves is not obvious, which indicates much smaller shear strain 

values about the fs machined grooves compared to the nanosecond processed 

counterparts. Among all the studied diffraction images, the strongest SXRT 

misorientation contrast about G No.3 and G No.4 can be found in the 0 2 6 

diffraction, which suggests that the most imperfect crystal region induced by fs 

laser machining is about 3 um below the top surface. 
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6.3.3 Transmission section results and simulation 

 

Figure 6.5: The 022   SXRT Transmission Section Image of laser machined InP 

As shown in figure 6.5, the 022  SXRT transmission section (TS) image, four 

pairs of symmetric back ‘tails’ can be observed around all laser machined grooves. 

This contrast can been seen when the misorientation of crystal planes exceeds the 

synchrotron x-ray beam divergence, which is 0.06 mrad vertically at the F1 

beamline in HASYLAB. The black tail length, corresponding to the magnitude of 

orientation contrast shift (ΔS), can be calculated as [6.14]: 

2( )BS L                                                (6.2) 

where ΔθB  is the maximum observed shift of the Bragg angle of the severely 

strained crystal region and L is the distance between the sample and film (93 mm 

in this case).  

ΔθB comprises lattice dilatation (Δd/d) parallel to the Burgers vector (g) and the 

component of the tilt angle α of the lattice planes around [0 1 0], the normal to 

the plane of X-ray incidence, and this can be expressed as [6.14]: 
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tan( )B B

d

d
  


                                          (6.3) 

Since white beam radiation can provide a diffracting wavelength for any dilated 

plane, the dilatation components tan( )B

d

d



 can be ignored and ΔθB is equal to 

tilted angle α, which is directly related to the shear strain γxy [6.15]. 

xy B                                                       (6.4) 

The magnitude of shear stress (δxy) can be quantitatively estimated using  

xy xyE                                             (6.5) 

where E = 61.1GPa, the Young’s modulus of InP [6.16]. 

Using the orientation contrast shift (ΔS) measured in figure 6.5 and equations 6.2 

and 6.3, the maximum distorted angle of the 022  lattice plane about the laser 

machined grooves from No.1 to No.4 has been estimated to be 1.74 mrad, 0.54 

mrad, 0.35 mrad and 0.24 mrad, respectively. The magnitude of crystal 

misorientation resulting from femtosecond laser machining is far less than the 

comparable nanosecond process with the same laser pulse energy. With reduced 

laser pulse energy from 1 μJ to 0.35 μJ, the shear stress value about the grooves 

decreases from 106.2 MPa to 33.4 MPa for the nanosecond laser process and 

from 22.2 MPa to 14.1 MPa for the femtosecond processes, as listed in Table 6.1. 

Additionally, as shown in Figure 6.5, the orientation contrast induced black tail, 

which extends upwards on the right hand side of the nanosecond laser machined 

grooves at positions G No.1 and 2, extends downwards on the same side of the 

femtosecond grooves at positions G No.3 and 4. It confirms that the region 
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where the crystal planes are downward misoriented for the femtosecond laser 

machined samples become upward misoriented for the nanosecond machined 

samples and vice versa, as illustrated by figures 6.3(a) and 6.3(b), respectively. 

To further confirm the opposite sign of the distorted crystal planes underneath 

the machined grooves, two typical TS images are simulated for grooves No.3 and 

No.1 with using the Matlab® simulation suite employing the methods of [6.17] 

for the orientation contrast mechanism. The simulation is based on the 

parameters calculated above, such as the strained region width and the maximum 

distorted angle of the 022  lattice planes. The bending directions for both fs and 

ns cases are assumed to be the same as the predictions shown in Figure 6.3. To 

simplify the simulation, only a single distorted (0 0 1) crystal plane several 

micrometers below the surface has been considered. The distorted crystal planes 

on either side of the laser-machined grooves are separated by the groove width of 

4 μm. As shown in Figure 6.6(a) and 6.6(b), the (0 0 1) plane misorientation 

magnitude ΔθB is assumed to increase more rapidly when approaching the 

grooves’ center and is arbitrarily described by a function of distance Y measured 

from the center of the grooves: 

For the nanosecond laser machined groove #1: 

( ) 0B Y                                 when |y|>34 or |y|<2         (6.6a)               

34
( ) (1 cos( )

64MAXB B

Y
Y  


            when  2<|y|<34                   (6.6b) 

For the femtosecond laser machined groove #3: 

  ( ) 0B Y                              when |y|>16 or |y|<2         (6.7a)    
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16
( ) (1 cos( )

28MAXB B

Y
Y  


           when 2<|y|<16                  (6.7b) 

where the positive value of ΔθB represents the clockwise rotation along the [100] 

direction and the Y axis is defined along the [010] direction.  

This simulation method is based purely on orientation contrast and can be 

applied to any diffraction images observed on the detection film. Briefly, a set of 

crystal planes (h k l), which give the h k l diffraction image on the recording film, 

are represented by plane normal B and distorted around the [100] axis A by 

ΔθB(y). The resulting vector C can be calculated as: 

sin( ( ))
( ) cos( ( ))( )B

A A B A

y
C B A B B y B B

A





                (6.8) 

 
2A

A B
B A

A


                                                (6.9) 

Due to the SXRT TS experimental setup, the whole crystal is then rotated around 

the [010] axis D by 13° in order to image reflections of interest. The distorted 

crystal plane [h k l] is therefore rotated to a new direction E [hr kr lr] to reflect the 

incident synchrotron x ray beam along the [0 0 1] direction. 

sin(13 )
( ) cos(13 )( )D D DE C D C C C C

D
                (6.10) 

2D

C D
C D

D


                                          (6.11) 

The angle θr,[001] between the incident synchrotron x-ray beam [0 0 1] and the 

reflecting crystal plane normal E [hr kr lr] is 
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,[001]
2 2 2

arccos( )r
r

r r r

l

h k l
 

 
                                (6.12) 

The distance r between the reflected spot and the film center for the SXRT 

transmission section experimental set up can be calculated as 

,[001]tan(2 )rr L                                           (6.13) 

where L is the distance between sample and film (93 mm in this study).  

Since the distorted reflecting crystal plane normal E [hr kr lr], incident x-ray beam 

[001] and reflected x-ray beam should be inside the same plane, the coordinates xr 

and yr of the simulation point on the film are: 

2 2

2 2

r
r

r r

r
r

r r

h
x r

h k

k
y r

h k







                                           (6.14) 

where xr is along the [100] direction and yr is along the [010] direction. 

Since ΔθB is a function of the initial reflecting point position (y) on the InP 

sample, a set of coordinates for the final reflected points’ positions on the film 

can be calculated and a simulated transmission section image originating from a 

single layer of the distorted crystal plane can be plotted, as shown in figures 6.6(c) 

and 6.6(d). As seen in these two figures the 022  SXRT transmission section 

images show exactly the same black tail directions and lengths as predicted by the 

orientation contrast simulation for both ns, Figure 6.6(c), and fs, Figure 6.6(d), 

laser machining cases.  
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Figure 6.6: Synchrotron x-ray transmission section topography simulation: the 
distorted angle of (001) crystal plane around [100] axis for (a) ns laser machined 
G No.1 and (b) fs laser machined G No.3; Positive values represent clockwise 

rotation along [100] axis. The simulated 022  SXRT transmission section images: 
(c) for nanosecond laser machined G No.1 and (d) femtosecond laser machined 

G No.3 on the backgrounds of the experimental SXRT images.  

Therefore, the [001] crystal plane bending directions as hypothesised in Figure 6.3 

are clearly proven by both large area back reflection and transmission section 

techniques. Although the real curve shape of the distorted [100] crystal plane may 

not be exactly the same as indicated by equations 6.4 and 6.5, we can still 

conclude that, with our current laser machining parameters, femtosecond laser 
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machining will compress the [001] crystal plane underneath while ns laser pulses 

will tilt the [001] crystal plane upwards and leave the same region in tension 

instead. In addition, the simulation shows a gradual reduction in intensity towards 

the end of the diffracted ‘tails’. This is also seen on the experimental film images 

confirming the increased misorientation as one approaches the groove centre. 

SXRT is proven to be a very sensitive tool for detecting crystal plane distortion 

after laser machining treatments. Both the magnitude and sign of the shear strain 

can be calculated after careful modeling. 

6.3.4 Micro-Raman Spectroscopy results 

In the reference spectrum of an untreated (100) InP sample shown as the black 

curve in Figure 6.7, which is obtained far away from the laser machined grooves, 

several first and second order Raman peaks are visible. The first longitudinal 

optical (LO) phonon-peak appears at approximately 339.5cm-1 arising from the 

surface depletion zone. The small LO peak intensity suggests a high carrier 

concentration in the InP sample, which reduces the scattering volume for the 

unscreened LO mode and hence the depletion depth. Adjacent to three second-

order phonon peaks (2TO: 614cm-1, 2LO: 679cm-1 and TO+LO: 648cm-1), a 

broad feature assigned to one of the LO phonon-plasma coupled modes 

(LOPCM: L+) can be observed at ~594cm-1. Since the peak position of the L+ 

coupled mode has been found to be very sensitive to the free-carrier density in n-

InP, a carrier concentration of about 3.5*1018 cm-3 can be estimated by a 

comparison with the data in [6.18]. This is in agreement with the InP sample 

doping level indicated in Section 6.3. At such high doping levels, the photoexcited 

carrier population induced by the incident laser can be neglected and thus the L+ 

peak presents a very slight blue shift with decreasing excitation laser power used 

in the Raman measurements. According to the InP selection rule for the back-

reflection geometry employed in this study, the transverse optical (TO) phonon-

peak at ~306 cm-1 should be forbidden and should show a very low intensity. The 
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overlapping strong peak at ~301.4 cm-1 is attributed to another LOPCM mode 

(L-) instead. Similar Raman spectra can be found in the literature where the 528.7 

nm line of an Ar+ laser has been used as an exciting source for the Raman 

measurements on heavily doped n-InP [6.18].  
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Figure 6.7: Typical Raman spectra on untreated InP (100) crystal and the surface 

at the centre of four different laser machined grooves. 

In contrast, for all the Raman spectra measured inside the grooves, no 

LOPCM:L+ mode can been seen at the high frequency range (500 cm-1 ~ 800 cm-

1), which suggests a greatly reduced free carrier concentration on the laser 

machined surface. Therefore, no L- peak can be expected at the overlapping peak 

position of the TO mode. The two strong Raman peaks observed at approx 300 

cm-1 and 338 cm-1 are now related to TO and LO modes, respectively, excited 

from the top surface recrystallized layer. The presence of the TO mode arises 

from the less than ideal backscattering geometry due to the presence of poly-

crystalline InP and light scattering from the rough laser machined surface. As no 

broad disorder activated optical phonon mode (DAO) peak can been seen at ~ 
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300 cm-1 in any the Raman spectra across the four laser machined grooves, no 

amorphous InP phase has been detected in either the fs or ns laser machined 

surfaces with our current experimental setup [6.2]. From the coexistence of LO 

and TO phonon peaks and the missing LOPCM mode for all the Raman spectra 

obtained inside the machined areas, it appears that all the laser machined grooves 

investigated in this paper are covered by a thick recrystallized polycrystalline layer 

and the layer thickness exceeds the Raman excitation laser penetration depth. 

Considering the linear absorption coefficient of InP at 488 nm [6.19], the 

thickness of poly-InP on the top surface is more than 50 nm, which is consistent 

with the XTEM results on those samples [6.6]. The increased disorder of the 

crystallite orientation in this re-solidified layer is further supported by the fact that 

the full width at half maximum (FWHM) of the LO peak increases by a factor of 

3 to 4 compared to the unprocessed regions.  

For InP, Raman spectroscopy is also very useful for direct mechanical stress 

calculations. Assuming uniaxial stress, the internal stress δ is linearly related to the 

shift of Raman peak ω (compared with the peak position of unstressed InP at 

the surface): 

δ= gω                                              (6.12) 

where a negative value of δ indicates compressive stress in the tested material and 

g has a value of –0.19GPa/cm-1 for the InP LO-phonon mode [6.20]. Therefore, 

a positive shift in the InP LO peak reveals a compressive stress. Since the Raman 

signal inside the grooves is solely derived from a polycrystalline layer, it is very 

important to notice that the shift to lower wavenumber for the InP LO phonon 

peak could also be introduced by the decreased crystallite size due to the quantum 

confinement effect [6.21]. The measured Raman peak shift must be calibrated 

before the stress calculation. 
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As shown in Figure 6.8, which shows the FWHM line profile of the LO peak 

across the four laser machined grooves, the LO peaks broaden to 19 cm-1 for 

nanosecond laser machining and have an average value of 12 to 14 cm-1 in all 

irradiated areas. According to the calculation of Yu et al. using the spatial 

correlation mode for InP along the [100] direction [6.22], the InP LO peak 

broadens with decreasing mean diameter of the InP crystallite size and the 

FWHM values of 12 and 14 cm-1 are correlated to a lateral crystallite dimension 

of 4.1 nm and 3.8 nm, respectively, which will cause a downward shift of the LO 

peak by about -1 cm-1. By assuming that the polycrystalline InP has a 

characteristic LO peak FWHM value of more than 11 cm-1, the re-crystallized 

layer widths on the top surface across the four laser machined grooves from No.1 

to No.4 have been measured to be 14.82 μm, 9 μm, 20 μm and 10 μm, 

respectively. They are much smaller than the subsurface strained crystal width 

measured by the SXRT methods. The big variation of the LO peak FWHM 

outside the grooved area (at the scan position from 45 μm to 57 μm) in Figure 

6.8 (a) is correlated with the presence of droplet particles deposited by a liquid 

phase expulsion process observed on the XTEM images [6.6]. With our current 

experimental configuration, the width of the re-crystallized layer appears to 

increase with decreasing pulse duration and increasing pulse energy. The FWHM 

value variation inside the femtosecond laser machined grooves seems to be much 

smaller than for their nanosecond counterparts. This could be attributed to a 

more homogeneous distribution of polycrystal grain sizes and a smoother laser 

machined top surface due to the non-thermal processing with a shorter laser 

pulse.  
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Figure 6.8: The line profile of calculated uniaxial strain on the top surface and full 
width at half maximum (FWHM) of LO phonon peak (open circles) across four 

laser machined grooves with: (a) 1 uJ pulse power, 8 ns pulse duration, (b) 0.35 uJ 
pulse power, 8 ns pulse duration, (c) 1uJ pulse power, 130 fs pulse duration and 

(d) 0.35 uJ pulse power, 130 fs pulse duration 

After calibrating the InP LO peak position with the corresponding FWHM value 

using the model of Yu et al [6.22], the line profile of uniaxial stress on the top 

surface (~50 nm probe depth) across the four laser machined grooves has been 

calculated as shown in Figure 6.8. Only tensile stress has been found in the poly-

crystalline layer on the top surface and the maximum values for grooves from 

No.1 to No.4 are estimated to be 1.16 GPa, 0.863 GPa, 1.45 GPa and 1.24 GPa, 

respectively. These values are much higher than the shear strain induced by 
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crystal plane distortion estimated by the SXRT images. It should be noted that 

the SXRT information is from the InP crystal to depths of many tens of 

micrometres below the surface, rather than from the the poly-InP layer within a 

50 nm depth from the surface measured by Raman spectroscopy. Inside the laser 

machined grooves, the average tensile stress is higher with femtosecond laser 

pulse durations and higher laser pulse energies. The uniformity of the uniaxial 

strain distribution inside the grooved area has been found to be improved by 

femtosecond laser machining methods. 

Groove:  No.1 No.2 No.3 No.4 

Pulse Duration  8 ns 8 ns 130 
fs 

130 
fs 

Pulse Energy (μJ) 1 0.35 1 0.35 

Maximum rotated angle of crystal plane around 
[100] (mrad) 

1.74 0.54 0.35 0.24 

Width of poly-crystallized InP layer on top 
surface across the grooves (μm) 

14.82 9 20 10 

Width of distorted crystal region underneath 
surface across the grooves (μm) 

64 32 28 24 

Depth of shear strained crystal region (μm) >20 >20 -- -- 

Shear stress magnitude of distorted InP crystal 
about the grooves (MPa) 

106.2 33.4 22.2 14.1 

Tensile stress magnitude in poly-crystalline InP 
layer on top (GPa) 

1.16 0.863 1.45 1.24 

Table 6.1: The SXRT and micro-Raman results summary for the four laser 

machined grooves 

6.4 Conclusion 

We have studied a set of femtosecond and nanosecond laser machined grooves 

on (001) InP substrates using synchrotron x-ray topography (SXRT) and micro-

Raman Spectroscopy (μRS). A three-dimensioned map of strain about the 

grooves running from the recrystallized polycrystalline layer on the top surface 

through to the distorted crystal substrate hundreds of micrometres below the 

surface has been analyzed non-destructively. With our current laser machining 

parameter setup, femtosecond laser machining has been found to compress the 
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(001) crystal plane about the grooves while ns laser pulses tilted the (001) crystal 

plane towards the surface and left the same area in tension instead. This 

conclusion is in good agreement with the measurement results of degree of 

polarization (DOP) photoluminescence (PL), a destructive tool used in strain 

analysis for direct band-gap semiconductors. For both femtosecond and 

nanosecond cases, the tensile stress on the top surface was much bigger than the 

shear stress magnitude in the subsurface distorted crystal and was localized in a 

much smaller volume (a thin layer of re-solidified poly-InP on the groove surface) 

closer to the laser irradiated area. Due to a non-thermal melting process 

achievable with the ultra-short laser pulses, the magnitude of crystal plane 

distortion and the width of the shear strained regions tens of microns below the 

femtosecond laser machined grooves was smaller than the nanosecond 

counterparts with the same pulse energy. In addition, the uniformity of uniaxial 

strain distribution on the groove surface is found improved. However, according 

to the micro-Raman results, the average tensile stress on the machined groove 

surface was slightly higher for femtosecond laser pulse durations and higher laser 

pulse energies. 
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C h a p t e r  7  

RAMAN STUDY OF THE STRAIN AND H2 PRECONDITIONING 
EFFECT ON SELF-ASSEMBLED GE ISLANDS ON SILICON 

7 Raman study of the strain and H2 preconditioning effect on self-

assembled Ge islands on Si substrates 

The content of much of this chapter was published in the journal, Journal of 

Materials Science: Materials in Electronics in 2005. The DOI number is 

10.1007/s10854-005-2320-6. The permission to include this article into my thesis 

has been granted by the publisher and the permission document is included in an  

appendix towards the end of this thesis.  

As the radiative efficiency of indirect optical transitions could be significantly 

increased if the quantum confinement within a semiconductor is in the 

nanometer scale range, low dimensional semiconductor quantum structures have 

attracted great attention. Self-organization provides a possible path to realize 

nanostructure without process induced defects and damage. The influence of the 

growth procedure and the corresponding mechanisms of self-assembly of Ge 

quantum dots (QDs) on Si substrates are of particular interest for obtaining 

highly monodisperse QD arrays in semiconductor optoelectronic device 

applications. 

Although the Stranski-Krastanov (SK) growth mode has been widely accepted as 

a basis for heteroepitaxial growth of lattice mismatched thin film, the islands’ 

growth kinetics remains less clear. In the InAs/GaAs heteroepitaxial system, the 

relatively higher strain field around bigger islands is found to cause a slowing 

down of material transport from the substrate towards the island, and thus helps 

to achieve a more homogeneous island size [7.1]. Recently, a similar strain 
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dependency in atom diffusion ability has been predicted for Ge quantum dot 

(QD) growth. Using a first-principle calculation, van de Walle et al. demonstrated 

that the binding and activation energies of Ge atoms on a strained Ge (001) 

surface increase and decrease, respectively, by 0.21 and 0.12 eV per percentile 

compressive strain [7.2]. The ability of Raman spectroscopy to characterize the 

nanostructure formation makes it possible to investigate this strain dependency 

by qualitatively consistent experimental results. The position, intensity and width 

of Raman lines allow one to obtain information on composition, strain and 

quantum confinement in the nanostructure [7.3]. 

In this chapter, we report on the use of Raman spectroscopy to reveal the 

relationship between the germanium concentration and strain inside islands 

during the growth procedure and explore the influence of high temperature H2 

preconditioning on quantum dot growth. Rutherford backscattering spectrometry 

(RBS) and atomic force microscopy (AFM) have also been employed to 

characterize germanium coverage and island size evolution, which has been 

reported elsewhere in detail [7.11]. 

The low-pressure chemical vapour deposition (LPCVD) reactor used for the 

growth of the samples was an experimental, cold-wall, single wafer system and 

works at growth pressures in the range 10-3 – 1 Torr. For this study, two sets of 

four samples were grown and analyzed by uRS, RBS and AFM.  

100 mm (001) p-type Si wafers were subjected to an ex situ standard RCA-clean 

and the ‘RCA oxide’ was subsequently removed in situ with a H2 bake at 950ºC. 

H2 was then pumped out of the chamber, and a 200 nm thick high-temperature Si 

buffer was grown from SiH4 in order to further secure an inhomogeneity-free 

initial surface. Subsequently, the growth chamber was pumped down to 10-3 Torr 

and the temperature lowered to 650°C, in vacuum for the first set, denoted the 
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‘standard’ set, and in the presence of H2 at 1 Torr for the second set, denoted the 

‘preconditioned’ set. Finally, the pressure was kept at/lowered to 10-3 Torr and 

GeH4 (10.2% in H2) was introduced in the growth chamber to a pressure of 0.5 

Torr. The standard and preconditioning processes were each repeated on four 

different wafers for different durations of 5, 8, 10, 12 seconds, respectively. Apart 

from the hydrogenation during ramp-down of the preconditioned wafers, all 

conditions were kept identical for the two sets of samples. 

Micro-Raman measurements were performed in backscattering geometry using 

488nm Ar+ laser excitation at room temperature on the Jobin Yvon LabRam 

HR800 μRS System equipped with a liquid nitrogen cooled CCD detector 

(wavenumber resolution = 0.4cm-1). Using the Olympus MPlan 100x microscope 

objective, the laser was focused on the sample surface to a diameter of 

approximately 1 um. All the Raman spectra were registered with the same 

accumulation time of 10s and averaged for 15 accumulations to increase signal to 

noise ratio. 

The evolution of the mean Ge coverage on the two types of surfaces was 

obtained by analysis of RBS spectra, using a 2MV Tandetron from High Voltage 

Engineering Europe.  

AFM results were obtained using a Digital Instruments Dimension 3100 scanning 

probe microscope in tapping mode, which provided information on the size, 

height distribution, and density of the Ge self-assembled islands. 

Micro-Raman spectra with the argon ion laser source for both sets of samples 

with and without the high-temperature hydrogenation step and a standard strain 

free Si are shown in Figures 7.1 and 7.2. Software fitting of the spectra with the 

Gauss/Lorentz function indicates a dominating Si-Si phonon mode of the Si 
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substrate at ~520.07cm-1, plus two small features of a Si-Ge mode at ~410 cm-1 

and a Ge-Ge mode at ~294 cm-1 in all measured self-assembling Ge island 

spectra. According to the RBS results for both sets of samples, the Ge coverage 

on Si buffer layer varies from 3.6 to 9.0ML (1ML=1.457Ǻ). The penetration 

depths for the 488nm Ar+ laser in our samples should be almost the same as that 

in Si crystal (558nm) and go straight though to the Si substrate. [7.4] Therefore, 

some Ge related features in the Raman spectra originate from two overlapping 

two-phonon Si TA modes at ~302cm-1 and ~435cm-1.  

In this report, both the intensity and peak position of the dominant LO-like Si 

phonon band has been used as a reference to separate the corresponding Si 

background signal. The characteristic Raman spectra of Ge islands (I islands), have 

been normalized by taking the difference between Raman spectra of the sample 

with islands (I sample) and a reference Si substrate (I Si) 

         *  islands sample SiI I f I                                                                (7.1) 

where f is the intensity ratio of Si-Si phonon mode at ~520.07 cm-1 in the Raman 

spectra for the Ge island samples and standard strain free Si. [7.5] 
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 Figure 7.1: Raman Spectra of samples without high-temperature hydrogenation 

step.
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Figure 7.2: Raman Spectra of samples with high-temperature hydrogenation step. 
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As shown in Figures 7.3 and 7.4, two peaks in at ~294cm-1 and ~410 cm-1 in the 

normalized spectra should be only attributed to Ge-Ge and Si-Ge vibration 

modes, respectively. The broad tails appearing at the low-frequency side, which 

make the Ge-Ge peak rather asymmetric, should be attributed to a decrease in the 

dimensions of the Ge crystalline regions. The initial self-assembled nanostructure 

without the high-temperature hydrogenation step is below the µRS detection limit. 

No difference between its spectrum and that of standard Si can be found.  

The degree of interface intermixing is determined by the integrated peak intensity 

ratio /Si Ge Ge GeI I   since the intensity depends on the relative number of 

corresponding bonds and can be expressed as: 

 /  2 1 /Si Ge Ge GeI I x Bx                                         (7.2) 

where x is the average Ge concentration, and B is 2.218. [7.6] 

The rates of increase of Ge concentration (Δ[Ge]/Δt) are normalized by being 

divided by the average germanium concentration during the three growth periods 

between the 5, 8, 10 and 12s growth times and labelled as %Δ[Ge]/Δt. 

%Δ[Ge]/Δt = ([Ge]t(k+1)-[Ge]tk)/(t(k+1)-tk)/ [([Ge]t(k+1)+[Ge]tk)/2 

(7.3) 

where tk is 5, 8, 10 and 12s. The value of the stress is estimated using the 

expression for the Ge-Ge Raman peak position for Si-Ge alloy after the 

intermixing effect (Germanium concentration) is known.  

w
Ge-Ge

=282.5+16x-384ε                                     (7.4)  
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where ε is strain and x is the Germanium concentration.[7.7] 
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 Figure 7.3: Normalized Raman Spectra of samples without high-temperature 
hydrogenation step. 
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Figure 7.4: Normalized Raman Spectra of samples with high-temperature 

hydrogenation step. 
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The dependency of Ge concentration, strain and normalized rate of increase of 

Ge concentration inside the self-assembling islands on growth time duration for 

both sets of samples is indicated in Figures 7.5 and 7.6. The detailed calculations 

and results can be found in Table 7.1.  

 

Figure 7.5: The dependency of Ge concentration and strain inside self-assembling 
islands on growth time duration for both sets of samples with and without high-

temperature hydrogenation step. 

Figure 7.6: Dependence of normalized Germanium concentration change rate (%

Δ [Ge]/Δt) on growth time duration for both sets of samples with and without 

high-temperature hydrogenation step. 



 

 187 

In all experiments, the average strain inside the self-assembling islands has been 

found to be compressive. In the absence of preconditioning, the Ge 

concentration increases steadily as a function of deposition time. On the H2 

preconditioned surface, a surprisingly abrupt increase in Ge concentration is 

observed for short growth durations, followed by a much slower increase for 

longer growth times and thereafter large intermixing finally occurs. A similar 

tendency in Ge surface coverage has been observed by RBS measurements. 

Assuming that %Δ[Ge]/Δt is linearly dependent on the internal compressive 

strain, for the same growth temperature and LPCVD growth rate, it decreased by 

0.13/s for a 1% strain increase for both sets of samples, as shown in Figure 7.7. 

According to molecular dynamics simulation results, there exists a bending of the 

Si substrate and one expanded region below the islands, which are surrounded by 

a compressive corral. [7.8] It may be argued that the Ge phase at the edge of the 

islands is under higher compressive strain compared to the centre, which appears 

to be the biggest barrier for Ge atom diffusion from the surface of the Ge 

wetting layer to the self-assembling islands.  This Raman result experimentally 

confirmed a first-principles calculation, which indicates the binding and activation 

energies of Ge atoms on a strained Ge (001) surface increase and decrease, 

respectively, by 0.21eV and 0.12 eV per percentile compressive strain. [7.2] 

As shown in Figure 7.6, in H2 preconditioned samples, the normalized rate of 

increase of the Ge concentration falls as the compressive strain increases inside 

the islands. Contrarily, in samples without H2 preconditioning, the strain 

decreased slightly and %Δ [Ge]/Δt increased a little. 

The growth process is much more stable in the samples without H2 

preconditioning. This could due to the fact that Ge dot growth on H2 

preconditioned samples starts from a relatively higher strain at the periphery of 
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the islands and it is almost impossible for the dots to grow too rapidly to be 

controlled by strain at the periphery of the islands without the help of intermixing 

to relieve the strain.  

Growth duration [Ge] (%) ε(%) %Δ[Ge]/Δt (/s) ε’(%) 
5s with H2 44.61 -0.868 -- -- 
8s with H2 51.55 -0.386 0.0481 -0.627 
10s with H2 53.30 -1.649 0.0167 -1.018 
12s with H2 46.98 -1.264 -0.0630 -1.457 

5s without H2 -- -- -- -- 
8s without H2 49.77 -0.981 -- -- 
10s without H2 52.10 -1.045 0.0229 -1.013 
12s without H2 54.91 -0.928 0.0263 -0.987 

Table 7.1: Summary of Ge growth time (T), germanium concentration ([Ge]), 

strain (ε), normalized rates of increase of Ge concentration (%Δ [Ge]/Δt) and 

average strain of each growth period (ε’). 

After linear function fitting for both sets of samples, the %Δ[Ge]/Δt for the 

high-temperature hydrogenation step is always lower than for the other set of 

samples, typically by ~0.015/s. With our growth temperature and rate, this 

difference was quite constant and does not change with strain variation. This 

phenomenon can be attributed to a reduction of the atom diffusion length due to 

the free dangling bonds generated after dihydride sites desorbs across the (001) 

surface. [7.9] On the other hand, the adsorption effect of additional H atoms will 

lower the nucleation energy barrier, causing an increase in the density of 2D 

nuclei and promoting multiple nucleation [7.10]. According to the AFM results, 

the initial density of self-assembled nanostructure on the H2 preconditioned 

surface is almost double that of the unconditioned surface. This relatively larger 

2D to 3D morphology evolution leads to the lowest compressive strain and 

highest %Δ [Ge]/Δt among all the samples after 8s of growth.  
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Figure 7.7: Dependence of normalized Germanium concentration rate of increase 
(%d[Ge]/dt) on average compressive strain for samples with and without the H2 

preconditioning. 
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C h a p t e r  8  

CONCLUSION 

8 Conclusion 

In this thesis, I present the design, construction and test results of a prototype gas 

cell Photoacoustic (PA) Spectrometer and Microscope.  

The instrument development includes the optical system design, mechanical 

design of the PA cell using AutoCAD®, pre-amplifier circuit design, system noise 

analysis, hardware control, data acquisition system and graphical user interface 

(GUI) development using LabView®. A multiple-microphone detection scheme, 

helium gas coupling, acoustic resonance and the employment of a high power 

laser light source are all used to enhance the PA signal and increase the data 

acquisition speed. The PA system is calibrated to remove the acoustic resonance 

effect and the background fingerprint of the light source intensity spectra. The 

linear relationship between the PA signal and the source intensity is verified. The 

impact of the lock-in amplifier performance, the focus offset effect and the 

coupling gas on PA signal is discussed. 

A selection of samples is used to verify the PA system performance. These 

includes silicon wafer pieces, GaAs, multi-layered structures on silicon substrates, 

carbon black powder, laser machined air trenches in Si, bonded Si wafers and a 

packaged IC chip. For PA spectroscopy applications, the PA spectra of two types 

of GaAs wafers (VGF and LPE grown) are characterized successfully. For PA 

microscopy applications, the PA system is proven to have a high vertical 

resolution of ~20 nm and a sub-100 um lateral resolution. Its probe depth could 

be as deep as 450 um below the top surface in silicon. Two high-resolution 

(10,000 pixels) thermal images (one in phase and another in amplitude) of 
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semiconductor devices can be obtained in approximately 500 seconds across a 

Silicon sample of area ~0.9mm x 0.9mm.  

Within the first part of this thesis, the semiconductor characterization capability 

of the prototype Photoacoustic Spectrometer and Microscope was demonstrated. 

It is a low cost, non-contact technique, which can be used to characterize 

electrically semiconductor sub-bandgap electronic defects and for the non-

destructive detection of subsurface mechanical defects such as voids within a 

semiconductor matrix,. The technique requires no liquid coupling and no sample 

surface preparation beforehand. 

In the second part of this thesis, a selection of related non-destructive 

characterization techniques are applied to advanced semiconductor materials.  

Synchrotron X-ray Topography (SXRT) and Micro-Raman Spectroscopy (uRS) 

are used to study a set of femtosecond and nanosecond laser machined grooves 

on InP substrates and H2 preconditioning effect on self-assembled Ge quantum 

dot growth on silicon. Both commercialised metrology techniques have the 

capability to analyze the distribution profile of strain and chemical composition 

on the upper surfaces of these material systems.  The PA system developed in 

chapter 3 can be used as the complementary tool, providing ultra deep probe 

depths for subsurface defects. 
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A p p e n d i x  A  

SAMPLE MATLAB® CODE TO SIMULATE PHOTOAOUSTIC 
FREQUENCY RESPONSE 

Appendix A: Sample Matlab® code to simulate PA signal frequency 

response 

The code is based on incorporating the model for single layer air gaps of Almond 

and Patel [5.1] into the more general Salazar model [5.2] for multi-layered 

structures subjected to plane heating on the top surface. The mathematical 

formulation proceeds as follows: Consider an opaque and stratified material made 

of n parallel layers (i=1, 2, 3, ..., n), the thickness of each layer is defined as lj , its 

thermal diffusivity is Dj and its thermal effusivity is ej.  The light source intensity 

(I0) of the PA system is modulated at a frequency f.  

The temperature at the illuminated surface can be described by the transfer 

matrix method: 
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where jq  is the thermal wave vector. The extra thermal resistance, thR , at the 

layer interfaces can be accounted for by inserting the matrix 
1

0 1

thR 
 
 

between 

the two adjacent matrices j and j+1 into equation 5.6b.  [5.2] 

% The code to calculate the frequency dependence of PA amplitude & Phase for four 

layered structure. 

clear; 

l1=470E-6;D1=89.21E-6;e1=15669.27;   %Si 

l2=0E-6;e2=5.51;D2=22.26E-6;       %Air 

l3=470E-6;D3=89.21E-6;e3=15669.27;   %Si 

l4=3E-3;D4=4.05E-6;e4=8050;%304 Stainless Steel 

f=1:3000; 

w=2.*pi.*f; 

q1=sqrt(i.*w./D1);q2=sqrt(i.*w./D2);q3=sqrt(i.*w./D3);q4=sqrt(i.*w./D4); 

A1=cosh(q1.*l1);A2=cosh(q2.*l2);A3=cosh(q3.*l3);A4=cosh(q4.*l4); 

E1=A1;E2=A2;E3=A3;E4=A4; 

B1=sinh(q1.*l1)./e1./sqrt(i.*w);B2=sinh(q2.*l2)./e2./sqrt(i.*w); 

B3=sinh(q3.*l3)./e3./sqrt(i.*w);B4=sinh(q4.*l4)./e4./sqrt(i.*w); 

C1=e1.*sqrt(i.*w).*sinh(q1.*l1); C2=e2.*sqrt(i.*w).*sinh(q2.*l2);  

C3=e3.*sqrt(i.*w).*sinh(q3.*l3); C4=e4.*sqrt(i.*w).*sinh(q4.*l4); 

Rth=7.5E-6; 

n=1; 

while n<3001 
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    R=[A1(n) B1(n);C1(n) E1(n)]*[A2(n) B2(n);C2(n) E2(n)]*[1 Rth;0 1]*[A3(n) 

B3(n);C3(n) E3(n)]*[A4(n) B4(n);C4(n) E4(n)]; 

    T(n)=R(1, 1)/R(2, 1); 

    Amp(n)=abs(T(n)); 

    Phase(n)=angle(T(n)); 

    n=n+1;  

end 

plot(sqrt(f), Phase./pi.*180) 

% plot(sqrt(f), Amp); 
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