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Abstract

Investigation of the influence of crystal quality on Borrmann Spectroscopy.

The goal of thesis is to apply the dynamical theory of X-ray diffraction for perfect crystals
to mosaic crystals, which are composed of slightly misoriented blocks. For this purpose statis-
tical methods were used for the description of crystal defects. This concept was combined with
the diffraction theory and implemented in code. This program was used for numerical simula-
tions of diffraction processes in transmission geometry by plane barium titanate crystals. The
computed dependencies on defects for Borrmann spectroscopy satisfy the initial expectations
for medium orders of crystal defects qualitatively.

Zusammenfassung

Untersuchung des Einflusses der Kristallqualität auf Borrmann Spektroskopie.

Das Ziel dieser Arbeit ist die dynamische Theorie der Röntgenbeugung für perfekte Kristalle
auf Mosaikkristalle, die aus leicht fehlohrientierten Blöcken zusammengesetzt sind, anzuwen-
den. Zu diesem Zweck wurden statistische Methoden zur Beschreibung von Kristalldefekten
verwendet und mit der dynamischen Beugungstheorie kombiniert. Darauf basierend wurden nu-
merische Simulationen der Beugungsrozesse in Transmissionsgeometrie für flache Bariumtitanat-
Kristalle durchgeführt. Die berechneten Abhängigkeiten von Defekten für Borrmann-Spektroskopie
erfüllen qualitativ die Erwartungen für Kristalldefekte mittleren Grades.
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Chapter 1

Inroduction

Many crystals of scientific interest lack the high degree of regularity to be ideally perfect, which
caused by defects. The geometry of the diffraction effects observed with these crystals in Bor-
rmann spectroscopy is in complete agreement with the dynamical theory for perfect crystals.
However, crystal defects provoke quantitative deviations of measured values from theoretical
expectations. The aim of this work is to define qualitative variations of Borrmann spectroscopy
characteristics with crystal perfection by using of numerical simulations. This thesis is orga-
nized as follows. Chapter 2 explains the main points of the dynamical diffraction theory for
perfect crystals and introduces to mosaic models of crystals with defects. Chapter 3 is devoted
to description of the crystal structure of barium titanate, which was selected as a particular case
for investigations made in this work. In Chapter 3 schemes of numerical simulations will be
discussed. The results of these computations will be presented in the same chapter.
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Chapter 2

Theory

There are basically two different theories for describing X-ray diffraction by crystals. The first
one, kinematical theory, was suggested by Darwin in 1914 [1]. He has explained a reflection
of X-rays by crystals as their scattering on parallel planes of a crystal. The shortcoming of this
model consists in the omitting of multiply scattering effects and interference of the scattered
waves. This is the reason why kinematical theory is not suitable for relatively large crystals.
A theory, which takes complete account of interference in the infinite crystal, was created by
Ewald in 1917 [2] and by von Laue in 1931 [3] and was called as a dynamical theory of X-ray
diffraction. The dynamical theory was generalized in the books of Authier [4], Pinsker [5] and
Zachariasen [6] and summarized in the article of Batterman and Cole [7]. In terms of this theory
it is possible to describe the Borrmann effect [8, 9], a phenomenon of an anomalous increase in
the intensity of transmitted through a perfect crystal X-rays satisfying Bragg’s law. In the next
section I will present the basic principles of dynamical theory for the transmission geometry of
diffraction.

2.1 Crystal model

In the dynamical theory the following model of crystal structure is used. We observe a per-
fect crystal, which is electrically neutral in absence of external field. An incident electromag-
netic wave will induce the electron density redistribution. Electrons will oscillate and become
dipoles. However we will neglect an influence of X-ray waves to an atomic nucleus. For the
description of the electron density in every point of the three-dimensional crystal one should
introduce the function ρ(r).
An ideal crystal is defined as an infinite medium with translational symmetry, which consist of
identical cells (single or several atoms, molecules etc.). These unit cells are situated with an
invariable translation symmetry, which is described by three linearly independent space vectors
ai. Every unit cell is displaced from another one with a distance defined by translation vector:

T := n1a1 + n2a2 + n3a3 (2.1)
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where ni are arbitrary integers. The translation symmetry also applies to the electron density
function:

ρ(r + T) = ρ(r). (2.2)

This fact gives us the possibility to express ρ(r) as a Fourier sum over the reciprocal lattice:

ρ(r) =
1

V

∑
H

FH e−2πiH·r (2.3)

where V = |a1 ·a2×a3| is the volume of the unit cell and H is a reciprocal lattice vector, which
is defined as

H := hb1 + kb2 + lb3 (2.4)

where bi =
1

V

∑
j,k εijk(aj × ak) are the reciprocal lattice vectors and h, k, l are the Miller

indices, εijk is the Levi-Civita symbol. The Fourier coefficients in (2.3) are the structure factors,
given by

FH =

∫
V

ρ(r)e2πiH·rdv, (2.5)

Suppose the atoms are not vibrating thermally; then FH can be written as

FH =
∑
n

fne
2πiH·rn , (2.6)

where the sum is over every n-th atom in the unit cell with the atomic scattering factor fn.
Geometry of the unit cell and structure factors define an influence of crystal medium on the
incident electromagnetic wave, which is described in the next section.

2.2 Maxwell’s equations

The X-ray wave in a crystal should satisfy macroscopic Maxwell’s equations

curl E = − ∂B
∂t

curl H =
∂D
∂t

+ jf

div D = ρf

div B = 0,

(2.7)

where E is the electric field, B is the magnetic induction, D is the electric displacement and
H is the magnetic field; ρf is free charge density, which is in our case equal ρ(r) defined in
the previous section, jf is free current density caused by moving of free charges. The electron
density redistribution causes a polarization P and is connected with E and D by the material
relation:

D(r) = εE(r) = ε0E(r) + P(r) = ε0(1 + χ(r))E(r) (2.8)
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where χ is the polarizability function, ε0 and ε are the dielectric constants of the vacuum and the
medium, respectively. Assuming that the incident wave is a plane wave and that the frequency
of this wave is always far from the resonance frequencies of electrons, it is possible (see [4]) to
deduce that χ(r) is proportional to the electron density function

χ(r) = −reλ
2

π
ρ(r), (2.9)

where re ≈ 2.82× 10−15 m is the Thomson scattering length. It means that χ(r) is periodic too
and can be expressed as Fourier sum with coefficients

χh = −reλ
2

π
FH = −ΓFH , Γ :=

reλ
2

π
, (2.10)

where λ is the wavelength. In addition, we suppose that

div E = 0 (2.11)

because the crystal is electrically neutral.

Combining (2.8), (2.11) and the first two Maxwell’s equations (2.7), one can obtain the
propagation equation for the electric field of the electromagnetic wave

∆D + curl curl χ(r)D + 4π2k2D = 0,

curl curl E− 4π2k2(1 + χ(r))E = 0,
(2.12)

where k = 1
λ

.

2.3 Dispersion Surface

The solution of (2.12) for each X-ray wave with wave vector K0 is a Bloch-Ewald wave:

D =
∑
H

DHe
−2πi(K0+H)·r (2.13)

Now we shall give the following definition for simplifying of following equations:

KH := K0 + H (2.14)

From (2.8), (2.10) and (2.12) after inserting of the ansatz (2.13) it follows that

[k2(1− ΓF0)− (KH ·KH)]EH − k2Γ
∑
P6=H

FH−PEP + (KH · EH)KH = 0 (2.15)
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This is a general vector equation with complex components, which is describing the electric
field inside the crystal. This system can be solved only after introducing additional conditions.

Now we introduce a concept to pass from general set of equations (2.15) to particular form.
Firstly, we will analyze only one active reflection. In other words, we consider that all field
amplitudes inside the crystal could be disregarded except only E0 and EH. Additionally, we will
make a restriction, which is that we discuss the components of E0 and EH normal to the plane
of incidence (the σ polarization). The calculus for parallel polarization state (π polarization)
is analog to the case of the σ polarization and will be omitted. Now it is possible to convert
equation set (2.15) to an particular form according to the stated conditions:

[k2(1− ΓF0)− (K0 ·K0)]E0 − k2ΓFHEH = 0

−k2ΓFHE0 + [k2(1− ΓF0)− (KH ·KH)]EH = 0
(2.16)

For non-trivial solution of this system of linear equations the determinant of (2.16) must be
equal to zero: ∣∣∣∣∣k2(1− ΓF0)−K0 ·K0 −k2ΓFH

−k2ΓFH k2(1− ΓF0)−KH ·KH

∣∣∣∣∣ = 0 (2.17)

Suppose
√
K0 ·K0 + k

√
1− ΓF0 ≈ 2k we denote the diagonal elements of the determinant

(2.17)

2kξ0 := K0 ·K0 − k2(1− ΓF0) ≈ 2k[
√

K0 ·K0 − k(1− 1
2
ΓF0)]

2kξH := KH ·KH − k2(1− ΓF0) ≈ 2k[
√

KH ·KH − k(1− 1
2
ΓF0)]

(2.18)

and reduce it to the equation of the dispersion surface in reciprocal space

ξ0ξH =
1

4
k2Γ2FHFH , (2.19)

which describes two three-dimensional surfaces of revolution. It is useful to show graphically
a two-dimensional slice of the dispersion surface in the reciprocal space. In a general case,
ξ0 and ξH are complex and only their real parts will be plotted. The point O in Fig.2.1 (left)
is the origin. The point H corresponds to the reciprocal lattice point (hkl) and, by definition,
H = OH. The point La is situated in the equal distance k from both O and H and is called
the Laue point. An incident wave with wave vector LaO and a reflected wave with wave vector
LaH are describing the Bragg reflection. According to the geometrical theory of diffraction, an
angle between these two vectors is equal 2θB, where θB is the angle between the incident ray
and the lattice planes in such a case when Bragg peak is produced. Bragg’s law binds θB with
the wavelength of the incident beam λ and the spacing dhkl between (hkl) planes of the crystal
lattice:

sin θB =
λ

2 dhkl
(2.20)
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Figure 2.1: Diffraction scheme in reciprocal space. O: origin; P: reciprocal lattice point (hkl). (left) La:
Laue point; OLa and HLa, respectively, incident and reflected waves satisfy Bragg’s condition in the
kinematical theory; (right) P: a point on the dispersion surface by the dynamical theory (solid curve);
OP and HP, respectively, incident and reflected waves.

Solid circles in Fig.2.1 (left) have centers in O and H and the same radius k(1 − 1
2
ΓF0). The

point of their intersection L0 is called Lorentz point. Suppose K0 = OP and KH = HP; then
the distances between the point P and intersections of K0 and KH with the circles are defined
by ξ0 and ξH , respectively. In general, 2.19 describes two hyperbolic sheets in the region of
L0, which are asymptotically approaching to the circles (Fig. 2.1, right). The sheet which lies
in the same side of asymptotes as the Laue point is called α branch. Real parts of ξ0 and ξH
are positive at this branch. For the other sheet, called β branch, real parts of ξ0 and ξH are
negative. Let us remark that Fig. 2.1 has only qualitative nature, because the distance between
the hyperbolic sheets is unnoticeable on a scale of OH. An example of real dispersion surface
is presented in Fig. 2.2.

O H

→ → →

→ →
Lo

Figure 2.2: The dispersion surface for BaTiO3-crystal (200 reflection, 4.9 keV) with different scalings.
The zone selected by the dashed rectangle in the first figure is shown in the next figure with 10x scaling.
Only after the third repeating of this operation (10000x scaling) the branches of the dispersion surface
are plainly distinguishable.
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2.4 Geometrical properties

Now we note that in the current work we are analyzing the diffraction effect in a crystal with
parallel surfaces. The incident wave can be arbitrarily oriented to the selected diffraction plane
of the crystal. Nevertheless we are observing only the case of the σ polarization of the incident
light. An angle between them will be expressed in terms of ∆θ, which is the deviation from
Bragg’s angle of the incident wave (see Fig. 2.3, left). The diffraction plane can be also arbi-
trarily oriented to the crystal surface. An angle between these two planes will be designated
as ω (see Fig. 2.3, right). Suppose the reflected wave is directed towards the inside of crystal.
Such a diffraction geometry is called transmission, or Laue, geometry. Let γ0 := n · s0 and
γH := n · sH, where s0 and sH are unit vectors in the incident and diffraction beam directions
and n is the surface normal; then they could be expressed in terms of ∆θ, θB and ω:

γ0 = cos(∆θ + ω + θB)

γH = cos(∆θ + ω − θB)
(2.21)

Their relation is called asymmetry ratio and is designated in literature either γ (e.g. in [4]) or b
(e.g. in [7]):

b = γ−1 :=
γ0

γH
=

cos(∆θ + ω + θB)

cos(∆θ + ω − θB)
(2.22)

The factor b−1 appears for the ratios of the cross-sections for the incident and the reflected
waves (see Fig. 2.4). Additionally the asymmetry ratio will be often used below for reduction
of computations.

n

ΘB
DΘ

sH s0

n
Ω

Figure 2.3: Diffraction in transmission (Laue) geometry. n: the normal to the crystal surface; s0 and
sH: unit vectors in the incident and diffraction beam directions; ∆θ: deviation from Bragg’s angle of the
incident wave; ω: angle between n and lattice planes (dashed)

2.5 Boundary conditions at the entrance surface

Electromagnetic waves are transmitted and reflected at a boundary between vacuum and crystal
media. We assume that the incident wave is a plane wave, which completely penetrates to
the crystal. This implies the following boundary conditions for field amplitudes (see the full
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lh l0

l

lo
HaL

n

K H IΑ,ΒM K 0 IΑ,ΒM

Figure 2.4: The cross-sections l(a)
0 , l0 and lh of the incident, refracted and reflected waves, respectively.

Suppose l is the width of the beam trace on the crystal surface; then it is not hard to prove that l0 = lγ0 =

l
(a)
0 and lh = lγh = b−1l

(a)
0 .

proving at [4]):

E
(a)
0 = E0α + E0β

0 = EHα + EHβ,
(2.23)

where E(a)
0 is the amplitude of the incident wave, E0α and E0β for the refracted waves and EHα

and EHβ for reflected waves by α and β branches, respectively. If one combine this with 2.16,
one gets

E0(α,β) =

√
1 + η2 ∓ η

2
√

1 + η2
E

(a)
0 ,

EH(α,β) = ±
√
FHFH
FH

√
b

2
√

1 + η2
E

(a)
0 ,

(2.24)

where η, called asymmetry ratio, is defined as

η :=
b∆θ sin 2θ + 1

2
ΓF0(1− b)

Γ
√
|b|
√
FHFH

. (2.25)

Application of the boundary conditions for wave vectors makes the following term (see the
proving at [7]): the components of the wave vectors K0α and K0β along the crystal surface
must equal the surface component of the incident wave vector K0. This term yields that

ξ0(α,β) = 1
2
kΓ
√
|b|
√
FHFH [η ±

√
η2 + sgn(b)],

ξH(α,β) = 1
2
kΓ
√

1
|b|

√
FHFH [η ±

√
η2 + sgn(b)]−1.

(2.26)
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Thereby, we can have the possibility to write both the amplitudes and the wave vectors of the
wavefields inside the crystal in the explicit form.

2.6 Absorption

Let us now analyze behaviour of wavefield intensities inside the crystal. Using (2.18), (2.24)
and (2.26) we get the wavefield intensities:

I0(α,β)

I
(a)
0

=

∣∣∣∣E0(α,β)

E
(a)
0

e−2πiK0(α,β)·r
∣∣∣∣2 =

∣∣∣∣E0(α,β)

E
(a)
0

∣∣∣∣2e−4πIm[k(1−1
2

ΓF0)+χ0(α,β)]t/γ0 =

=

∣∣∣∣
√

1 + η2 ∓ η
2
√

1 + η2

∣∣∣∣2e−µeff
(α,β)

t/γ0 ,

IH(α,β)

I
(a)
0

= b−1

∣∣∣∣EH(α,β)

E
(a)
0

e−2πiKH(α,β)·r
∣∣∣∣2 =

∣∣∣∣
√
FHFH
FH

1

2
√

1 + η2

∣∣∣∣2e−µeff
(α,β)

t/γ0 ,

(2.27)

where t is the depth of the observation point along the n and effective absorption coefficient
µeff

(α,β) is defined as

µeff(α,β) := µ0 − 4πIm[ξ0(α,β)], µ0 := 2πkΓIm[F0]. (2.28)

Let us remark the different behaviours of effective absorption coefficients for α and β

branches in the region of an reflexion. In the general case, absorption of the α wavefields in
such region decreases (see Fig. 2.5), and, vice versa, increases for the β wavefields. In regions
which are far from diffraction reflexions the effective absorption coefficients are asymptotically
approaching to µ0, the mean of absorption coefficients by crystal volume. In a proper combina-
tion of the crystal structure and reflexion, absorption of the α wavefields totally disappears (e.g.
in the case shown in the Fig. 2.5). This fact theoretically explains existence of the Borrmann

-10 -5 5 10
ReH Η L

0.5

1.0

1.5

2.0

ΜΑ

eff � Μo HsolidL and Μ Β

eff � Μo HdashedL

Figure 2.5: Variations of the effective absorption coefficients for α (solid) and β (dashed) branches with
the deviation parameter [BaTiO3-crystal, 200 reflection, 4.9 keV, ω = 0]
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effect: the α wavefields will reach an exit surface of the crystal without absorption if the inci-
dent wave satisfies Bragg’s law. We can see in Fig. 2.6 how the effective absorption coefficients
influences to the variations of the wavefield intensities with the deviation parameter. There is
firstly shown the non-absorbing case (µ0t = 0), where I0 wavefields are symmetric and IH

wavefields perfectly coincide. By increasing of the absorption (µ0t = 0.5 and µ0t = 1) the
more active weakening of β wavefields in the region of Re(η) = 0 is present.

-4 -2 2 4
ReHΗL

0.2

0.4

0.6

0.8

1.0

IoΑ� Io
Ha L HsolidL and IoΒ� Io

Ha L HdashedL, Μo t=0.

-4 -2 2 4
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0.2

0.4

0.6

0.8

1.0

IoΑ� Io
Ha L HsolidL and IoΒ� Io

Ha L HdashedL, Μo t=0.5

-4 -2 2 4
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0.2

0.4

0.6

0.8

1.0

IoΑ� Io
Ha L HsolidL and IoΒ� Io

Ha L HdashedL, Μo t=1.

-4 -2 2 4
ReHΗL

0.05

0.10

0.15

0.20
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IHΑ� Io
Ha L HsolidL and IHΒ� Io

Ha L HdashedL, Μo t=0.

-4 -2 2 4
ReHΗL

0.05

0.10

0.15

0.20

0.25

IHΑ� Io
Ha L HsolidL and IHΒ� Io

Ha L HdashedL, Μo t=0.5
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0.20
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Ha L HsolidL and IHΒ� Io

Ha L HdashedL, Μo t=1.

Figure 2.6: Variations of the wavefield intensities with the deviation parameter for the different absorp-
tion [BaTiO3-crystal, 200 reflection, 4.9 keV, ω = 0]

2.7 Boundary conditions at the exit surface

For complete diffraction analysis in a single crystal we should discuss how the wavefields are
passing through the exit surface to vacuum. Owing to the fact that the input and output surfaces
are parallel to each other it is possible to represent an outgoing wavefield as two plane waves
with amplitudes E(d)

0 and E(d)
H . These two waves are results of interference of the wavefields in

the the incident and diffraction beam directions, respectively. Boundary conditions at the exit
surface are analog to conditions at the entrance surface. Applying the boundary conditions to
the amplitudes and the wave vectors of the outgoing wavefields and expressing E(d)

0 and E(d)
0 in

terms of E0(α,β) and EH(α,β) (see [4]), we get

E
(d)
0 = E0α e

−2πi(ξ0α−
1
2
kΓF0)t/γ0 + E0β e

−2πi(ξ0β−
1
2
kΓF0)t/γ0 ,

E
(d)
H = EHα e

−2πi(ξ0α−
1
2
kΓF0)t/γ0 + EHβ e

−2πi(ξ0β−
1
2
kΓF0)t/γ0 ,

(2.29)

where t is the crystal thickness. An example of the variations of the wave intensities with the
deviation parameter is presented in Fig. 2.7 (left). An important specificity of the outgoing
intensities is their antiphased oscillation with the crystal thickness (see Fig. 2.7, right). Such a
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phenomenon has been called the Pendellösung by Ewald because of the resemblance with the
energy transfer between two pendulums. The period of these oscillations Λ is

Λ :=
1√

1 + Re[η]2
ΛL, ΛL :=

√
|b| cos θB

kΓ
√
FHFH

. (2.30)

where ΛL is the maximum value of Λ.

-4 -2 2 4
ReH Η L

0.2

0.4

0.6

0.8

1.0
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Ha L HsolidL and IH
Id M � Io

Ha L HdashedL

1 2 3 4 5
t � LL

0.2

0.4

0.6

0.8

1.0

Io
IdM � Io

HaL HsolidL and IH
IdM � Io

HaL HdashedL

Figure 2.7: Variations of the wave intensities with the deviation parameter for t/ΛL=1.5 (left) and the
Pendellösung for η = 0 (right) [BaTiO3-crystal, 200 reflection, 4.9 keV, ω = 0]

2.8 Mosaic crystal

The theory of X-ray diffraction for ideal crystals in Laue geometry was discussed in the preced-
ing parts of this chapter. However we should extend the theory to the real, not perfectly ordered
crystals. A real crystal is comprised by slightly misoriented blocks, or domains, which can be
considered as perfect crystals (see Fig 2.8). Such a crystal is called mosaic crystal (this term
was proposed by P. P. Ewald [10]) and there are different possible models for describing of its
mosaicity, which will be described in this section.

1 2 ... NStat

1

2

...

NLayer

Figure 2.8: The qualitative illustration of the mosaicity phenomenon of the real crystals: domains (gray
rectangles), which are the ideal crystals, are slightly misoriented with respect to one another.

The simplest model can be created if we suppose that surfaces of all domains of the crystal
are parallel to each other (see Fig. 2.9, left). Then the crystal is defined by the set of domain
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thickness ti and lattice orientation ωi. This model can be slightly modified supposing that all
domains have parallel surfaces, but they are slightly misoriented relative to each other by the set
of angles αi (see Fig. 2.9, center). We consider, that there is vacuum in the space between the
domains. This consideration does not strongly correlate with the real construction of a mosaic
crystal. The most correct possibility to describe the real crystal is to suppose that the surfaces
are not parallel even in each domain (see Fig. 2.9, right). This improved model doesn’t required
an additional expansion of the parameters describing a mosaic crystal. However, the difference
is sensible by a numerical simulation of the wave diffraction by such a crystal.

Figure 2.9: Possible simplified models of the mosaic crystals. (Left): all surfaces of all domains are
parallel; (center): the domains have parallel surfaces, but are not parallel to each other; (right): all
domain surfaces are oriented arbitrarily.

In the first and second cases the number of beams propagating through the crystal is doubled
after each domain layer. This fact leads to the total number of simulated diffractions equals
(2Nlayers+1− 1), where Nlayers is the number of domain layers. For the case of arbitrary oriented
surfaces the number of the beams is quadrupled after the each layer. Therefore, the the total
number of simulation grows to 1

3
(4Nlayers+1 − 1). In this work we will use the model, where all

domain surfaces are parallel to each other, because this model requires the lowest amount of
numerical calculations used for the simulation of the diffraction by a mosaic crystal.
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Chapter 3

Barium titanate

In this chapter will be introduced the main properties and peculiarities of the barium titanate,
the crystal, used in the current work for the numerical modeling and the experimental observ-
ing of Borrmann effect. This crystal is a well known [11, 12, 13, 14] mosaic crystal with
perovskite-like structure and is in possession of such a mosaicity, that can be increased by the
phase transitioning of the crystal.

3.1 Structure and phase transitions

The barium titanate crystals with the chemical formula BaTiO3 have, as stated above, a per-
ovskite structure, i.e. with the same type of crystal structure as the CaTiO3 perovskite mineral.
The ideal perovskite ABO3 structure is a cubic network of corner-linked large cations A, with
oxygen in the edge centers and the smaller cation B in the center of the unit cell. The unit cell
of BaTiO3 cubic structure is shown below in Fig. 3.1.

Figure 3.1: Ideal perovskite-like structure of BaTiO3: The gray spheres are Ti4+ cations, black is the
Ba2+ cation and the white are oxide centers.

However, let us remark that the barium titanate crystals have an ideal cubic structure [11]
only by temperatures above the Curie point (> 120◦C). By the temperature below the Curie
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point the cubic BaTiO3 transforms into a tetragonal crystal. The crystal keeps this lattice ge-
ometry also for the room temperatures. Cooling through about 5◦C causes the tetragonal phase
of barium titanate to transform to a orthorhombic phase and to trigonal below -70◦C (see Fig.
3.2, left).

Figure 3.2: (left) Deformation of the BaTiO3 unit sell by phase transitions. (right) Variations of the
dielectric constant parallel to a- and c-axes with the temperature of the barium titanate crystal [11].

The aforementioned phase transitions of BaTiO3 crystal were investigated in detail in sev-
eral works, for example, by F. W. Forsbergh [12] and A. von Hippel [11]. In the second work
the behaviour of the lattice by the transitions was indicated by measurements of the dielectric
constant parallel to the different axes of the crystal. The result of this measurements is pre-
sented in Fig. 3.2 (right). The phase transitions are characterized by sudden changes of the
dielectric constant. Let us stress the temperature hysteresis accompany the phase transitions
below the Curie point. This phenomenon causes by the complex domain structure of the crystal
and reorientation of this domains during the phase transitions.

3.2 Mosaic structure

In number of works, for example, by H. F. Kay [13] and R. G. Rhodes [14], has been argued
by means of X-rays, that the originally single crystal of BaTiO3 was breaking down into a
multi-domain, mosaic structure by every phase transition. Moreover, this effect appears for
both rising and falling temperature, but with the phenomenon of the temperature hysteresis by
the low-temperature phase transitions. However, the structure of every domain in the crystal
is not changing even after many complete cycles of temperature changing and phase transi-
tions. This feature of the barium titanate crystals can be very helpful for investigations of the
effects, that depends on the mosaicity degree of the crystal. Let us now introduce the concept
of the experiment, which supposedly give the possibility to lead such investigations by the use
of only one sample and changing its mosaicity without interruption of an experiment. As a rule,
the BaTiO3 samples are produced nearly as single-domain crystals with the tetragonal internal
symmetry at room temperature. It means, that the mosaicity phenomenon for this crystal is
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almost absent. Then one should cool down the sample above the temperature of a phase transi-
tion and, after that, restore the former temperature. As a result, the single domain of the crystal
would be broken into slightly misoriented domains, i.e. the mosaicity of the crystal would be
increase, but the internal symmetry of each domain would be still tetragonal. This cycle can be
repeated several times with the stepwise augmentation of domain misorientation.

Figure 3.3: The qualitative illustration of the mosaicity increasing (from left to right) of the BaTiO3

crystal after the full temperature cycles via a phase transition.

The above-described increasing of the mosaicity influences on X-ray spectroscopy of the
crystal, including the Borrmann effect. This complex effect can be numerically simulated and
is described in the next chapter.
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Chapter 4

Simulation

Suppose a crystal has the mosaic structure; then one should combine the dynamical theory (see
Chapter 2) with the probability theory to prognosticate the diffraction process by such a crystal.
This complication of the diffraction theory for the mosaic crystals is provoked by the fact, that
the structure of the crystal is described statistically. In this case it is too complicated to analyze
the diffraction effect analytically. The aim of this chapter is to show how to numerically simu-
late the diffraction by the mosaic crystal on computer. All simulations were made in Wolfram

Mathematica 8 computation system on computers of DESY (Hamburg) research center. The
source codes can be found in the Appendix A. The result of this simulation for the BaTiO3

mosaic crystals will be presented and discussed in the end of this chapter.

4.1 Formation of the crystal model

For simulation of the mosaic structure we will use the model of the mosaic crystal, which
consists of blocks of perfect crystals (domains) with slightly misoriented lattice planes. Let us
assume that all surfaces of the domains are parallel to each other (see Fig. 2.9, left). We claim
that each incident X-ray wave propagate via NLayer layers of the domains with the thickness ti
and the lattice misorientation ωi (see Fig. 2.3, right). Let us note that number of the domains by
every layer, that are inside the beam cross-section, carries no physical, but a statistical meaning
and will be called NStat. Suppose the distribution of ti and ωi is normal, then we can describe
this distribution with parameters of the thickness mean tµ, its standard deviation tσ and the
standard deviation of the lattice misorientation ωσ (the mean of ω is equal zero in this work).
Therefore, the mosaicity of the crystal model is regulated by parameter ωσ: the larger it is the
more considerable is the mosaicity (see Fig. 4.1). We will set the the standard deviation of ωi
in scales of several thousandths of degree.

The generated distributions of ti and ωi fit sufficiently to the ideal normal distribution by
large total number of crystal domains NLayer · NStat (see Fig. 4.2). onsequently, for good
statistics we should set the NStat parameter not smaller than couple hundreds.
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Figure 4.1: Histograms of the generated lattice misorientation ωi of the crystal domains for different
normal distribution ωσ. Solid line: ideal normal probability distribution. In the corners: respective
qualitative illustration of the mosaicity evidence.
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Figure 4.2: Histograms of the generated domain thicknesses ti for fixed parameters of the normal dis-
tribution (tµ = 3ΛL, tσ = 0.5ΛL) and different total numbers of crystal domains NLayer · NStat. Solid
line: ideal normal probability distribution.

4.2 Lattice structure factor

For the numerical simulation of the X-ray diffraction by a specific crystal it is necessary know
the complex values of the structure factor by different reflexions and wavelengths of X-rays. For
the BaTiO3 crystal they are calculated by substituting table values [15] of the atomic scattering
factors in (2.6). However, we have to know the structure factors not only for tabular parameters,
but for the arbitrary wavelength. The solution of this problem is based on the interpolation
of the existing data from tables and is described in detail in the work of S.A.Stepanov and
O.M.Lugovskaya [16].

Additionally, there is the method of a such modification of the structure factor, that it will
be possible to take into account the influence of quadrupole transitions on the absorption in
Borrmann spectroscopy [17]. The dynamical theory omits the quadrupole absorption, which can
be sufficiently strong in X-ray absorption near edge structure (XANES), therefore M. Tolkiehn
[18] has devised the artificial supplement to the structure factor, which imitates the quadrupole
absorption, and specifically the electric dipole (E1) and electric quadrupole (E2) transitions in
Ti, which are situated in the spectrum close to the 1s-3d transition. The theoretical principle
of this modification is described in [19]. Also some experimental values for this model were
borrowed from [20].
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4.3 Propagation grid

Every wavefield splits into two separate wavefields after the propagation via every layer of the
mosaic crystal: to one refracted and one reflected beam. Therefore, the number of the wave-
fields grows by every layer with power of two. To reduce the amount of required calculations we
should introduce the following concept. Suppose the each domain is not thin; then the intensity
of the reflected beam is significantly less than of the refracted beam. Therefore we will omit
all beams inside the crystal, which are reflected more than one time (see Fig. 4.3). As a conse-
quence, one beam comes out in the same direction as the incident beam after NLayer refractions
and NLayer beams interferer in the direction of reflection after one reflection and (NLayer − 1)
refractions. Results of such simulations are produced in the next part.

Io
HaL

Io
HdLIH

HdL

Figure 4.3: Beam propagation grid in the multilayer crystal. Beams, which are reflected more than one
time, are omitted (dashed arrows). I

(a)
0 : incident beam intensity; I(d)

0 : intensity of the NLayer times
refracted incident beam; I(d)

H : total intensity of the outgoing beams in the direction of reflection.

4.4 Results

In this part will be shown numerical simulation results for X-ray diffraction by the BaTiO3

mosaic crystal on the (200) reflection. This choice was caused by pronounced Borrmann effect
and relatively not strong absorption on this reflection. We suppose, the BaTiO3 lattice structure
has a tetragonal form with lattice parameters a = b = 3.986 Å and c = 4.026 Å. The crystal
model used in this simulation is comprised by 10 layers of domains with perfect lattice struc-
ture and with the mean thickness tµ = 30 µm. The standard deviation of domain thickness is
tσ = 2.5 µm. It means, that the total thickness of the mosaic crystal is ≈ 0.3 mm. Raw simu-
lation results generated by the program are rocking curves of variations I(d)

0 /I
(a)
0 and I(d)

H /I
(a)
0

with deviation from Bragg’s angle ∆θ of the incident wave for fixed energies and mosaicities.
Typical rocking curves are shown in Fig. 4.4. The peaks of rocking curves are shifted relatively
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Figure 4.4: Variations I(d)
0 /I

(a)
0 and I(d)

H /I
(a)
0 with deviation from Bragg’s angle ∆θ and energy for (200)

reflection by the BaTiO3 mosaic crystal with parameters tµ = 30 µm, tσ = 2.5 µm, ωσ = 0.004◦,
NLayer = 10, NStat = 300.

to the point ∆θ = 0. This effect is caused by the absorption asymmetry for every diffracted
beam (see Fig. 2.7, left). Dependencies of integrated rocking curves from energy and mosaicity
are of interest for us and are shown below.

To make a comparison, in the beginning it was made the simulation of the diffraction process
by a single-domain 0.3 mm thick crystal. The variation of absorption with X-ray wave energy
from 4945 eV to 4975 eV is shown in Fig. 4.5. This spectrum contains the electric dipole
peak at 4960 eV (peak D) and electric quadrupole peak at 4953 eV (peak Q). The big peak
at 4967 eV corresponds to the 1s-3d transition in Ti. However, simulations with the 0.3 mm
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Figure 4.5: Simulated Ti K edge XANES spectra by (200) reflection of a 0.3 mm thick perfect BaTiO3

crystal. Q and D: electric quadrupole and electric dipole peaks, respectively.

thick crystal composed of ten perfect crystals, which is physically the same as the previously
simulated crystal, give us not the identical result (see Fig. 4.6). The reason is the fact that we
omit a big part of diffracted wavefields inside the crystal, which is too rough for simulation
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of the crystals with tiny imperfections. In this case the next order of approximation should be
used (for example, by taking into account the beams shown as dashed in Fig. 4.3). Analogous
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Figure 4.6: Simulated Ti K edge XANES spectra by (200) reflection of a 0.3 mm thick BaTiO3 crystal
composed of ten layers of perfect crystals. Q and D: electric quadrupole and electric dipole peaks,
respectively.

energy spectrum for mosaic crystal shows (see Fig. 4.7) the increased absorption caused by
defects of crystal structure. Positions of the absorption edge and quadrupole absorption peaks
are evidently the same, but their proportions have been changed respectively to each other.
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Figure 4.7: Simulated Ti K edge XANES spectra by (200) reflection of a 0.3 mm thick mosaic BaTiO3

crystal with parameters tµ = 30 µm, tσ = 2.5 µm, ωσ = 0.004◦, NLayer = 10, NStat = 300. Q and D:
electric quadrupole and electric dipole peaks, respectively.

The influence of mosaicity to the Borrmann effect can be demonstrated by variations with
mosaicity of integrated intensities by fixed wave energies before and after the absorption edge,
which is shown in Fig. 4.8. Intensities of the beams in both reflected and forward diffracted
directions are abating with growth of ωσ. For large values of ωσ the outgoing intensities are
almost vanished. It means, that the Borrmann effect disappears with sufficient defects in the
crystal.

Special interest is presented by variation of the ratio of quadrupole to dipole absorption co-
efficients with ωσ (see Fig. 4.9). One can see, that the quadrupole absorption peak significantly
grows in comparison with the dipole absorption peak with improvement of the crystal quality.
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(200) reflection of a 0.3 mm thick mosaic BaTiO3 crystal with parameters tµ = 30 µm, tσ = 2.5 µm,
NLayer = 10, NStat = 300.
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Chapter 5

Conclusion and Outlook

In this work the method of diffraction simulation for Borrmann spectroscopy in mosaic crys-
tals was developed. Therefore, the theory, which described diffraction processes in a single
perfect crystal, was applied to the complex system of many crystals. The method was imple-
mented in code and tested for the model of the BaTiO3 multidomain crystal. The results of
this simulations qualitative satisfy the initial expectations for medium orders of crystal defects,
but are too rough for the crystals with tiny imperfections. In future the next orders of approx-
imations should be used. Additionally, the models, used in simulations, needs to be specified
to have future possibility of quantitative comparison with experiments. Also computing powers
for simulations should be increased, for example, by computing on graphics processing units
(GPUs), for a better simulation precision and reducing of computation time for more compli-
cated crystal models.
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Appendix A

Source code

This appendix contains the source code of the program for Wolfram Mathematica computation
system, which was used for the numerical simulations made in this work.
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<< Crystallography8‘

H* ---Crystal configurations---*L
BTO = SetupCrystal@

88"Ba", 0, 0, 0<, 8"Ti", .5, .5, .5<,
8"O", .5, .5, 0<, 8"O", 0, .5, .5<,
8"O", .5, 0, .5<<,

Lattice ® Tetragonal@3.992, 4.036DD;

l@a_, x0_, x_D := 1

Π

a

a ^ 2 + Hx - x0L ^ 2
ll@x_D := l@.002, 4.953, xD
TiO2x =

:Atoms ® 88"Ti", 0, 0, 0, 1, 0<,
8"Ti", 0.5‘, 0.5‘, 0.5‘, 1, 0<,
8"Ti", 0.25‘, 0.25‘, 0.25‘, x, 0<,
8"Ti", 0.75‘, 0.75‘, 0.75‘, x, 0<,
8"O", 0.301873‘, 0.301873‘, 0.‘, 1, 0<,
8"O", 0.698127‘, 0.698127‘, 0.‘, 1, 0<,
8"O", 0.801873‘, 0.198127‘, 0.5‘, 1, 0<,
8"O", 0.198127‘, 0.801873‘, 0.5‘, 1, 0<<,

CoordinateSystem ®

884.5845‘, 0.‘, 0.‘<, 80.‘, 4.5845‘, 0.‘<,
80.‘, 0.‘, 2.9533‘<<,

Metrik ® 880.04757908062490507‘, 0.‘, 0.‘<,
80.‘, 0.04757908062490507‘, 0.‘<,
80.‘, 0.‘, 0.11465285381977028‘<<,

FData ®

::1.2807‘ + 1.9021‘ ã-116.105‘ ð22 + 1.6991‘ ã-35.6338‘ ð22 +

9.7595‘ ã-7.8508‘ ð2
2
+ 7.3558‘ ã-0.5‘ ð2

2
+

Cromer@22, 1000 ð1D &, 0, 0, 0, 1, 0>,

:1.2807‘ + 1.9021‘ ã-116.105‘ ð22 + 1.6991‘ ã-35.6338‘ ð22 +

9.7595‘ ã-7.8508‘ ð2
2
+ 7.3558‘ ã-0.5‘ ð2

2
+

Cromer@22, 1000 ð1D &, 0.5‘, 0.5‘, 0.5‘, 1, 0>,
8I ll@ð1D &, 0.25‘, 0.25‘, 0.25‘, x, 0<,
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8I ll@ð1D &, 0.75‘, 0.75‘, 0.75‘, x, 0<,
8I ll@ð1 - .007D &, 0., 0., 0., 200 x, 0<,
8I ll@ð1 - .007D &, 0.5, 0.5, 0.5, 200 x, 0<,
:0.2508‘ + 0.867‘ ã-32.9089‘ ð22 + 3.0485‘ ã-13.2771‘ ð22 +

2.2868‘ ã-5.7011‘ ð2
2
+ 1.5463‘ ã-0.3239‘ ð2

2
+

Cromer@8, 1000 ð1D &, 0.301873‘, 0.301873‘,

0.‘, 1, 0>,

:0.2508‘ + 0.867‘ ã-32.9089‘ ð22 + 3.0485‘ ã-13.2771‘ ð22 +

2.2868‘ ã-5.7011‘ ð2
2
+ 1.5463‘ ã-0.3239‘ ð2

2
+

Cromer@8, 1000 ð1D &, 0.698127‘, 0.698127‘,

0.‘, 1, 0>,

:0.2508‘ + 0.867‘ ã-32.9089‘ ð22 + 3.0485‘ ã-13.2771‘ ð22 +

2.2868‘ ã-5.7011‘ ð2
2
+ 1.5463‘ ã-0.3239‘ ð2

2
+

Cromer@8, 1000 ð1D &, 0.801873‘, 0.198127‘,

0.5‘, 1, 0>,

:0.2508‘ + 0.867‘ ã-32.9089‘ ð22 + 3.0485‘ ã-13.2771‘ ð22 +

2.2868‘ ã-5.7011‘ ð2
2
+ 1.5463‘ ã-0.3239‘ ð2

2
+

Cromer@8, 1000 ð1D &, 0.198127‘, 0.801873‘,

0.5‘, 1, 0>>>;
BTOx =

:Atoms ® 88Ba, 0, 0, 0, 1, 0<,
8Ti, 0.5‘, 0.5‘, 0.515‘, 1, 0<,
8Ti, 0.75‘, 0.75‘, 0.765‘, x, 0<,
8O, 0.5‘, 0.5‘, 0.976‘, 1, 0<,
8O, 0, 0.5‘, 0.48‘, 1, 0<, 8O, 0.5‘, 0, 0.48‘, 1, 0<<,

CoordinateSystem ®

883.986‘, 0.‘, 0.‘<, 80.‘, 3.986‘, 0.‘<,
80.‘, 0.‘, 4.0262586‘<<,

Metrik ® 880.06293980764084228‘, 0.‘, 0.‘<,
80.‘, 0.06293980764084228‘, 0.‘<,
80.‘, 0.‘, 0.06168742884358552‘<<,

FData ®
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::2.7731‘ + 2.6959‘ ã-167.202‘ ð22 + 10.888‘ ã-20.2073‘ ð22 +

20.3361‘ ã-3.216‘ ð2
2
+ 19.297‘ ã-0.2756‘ ð2

2
+

Cromer@56, 1000 ð1D &, 0, 0, 0, 1, 0>,

:1.2807‘ + 1.9021‘ ã-116.105‘ ð22 + 1.6991‘ ã-35.6338‘ ð22 +

9.7595‘ ã-7.8508‘ ð2
2
+ 7.3558‘ ã-0.5‘ ð2

2
+

Cromer@22, 1000 ð1D &, 0.5‘, 0.5‘, 0.515‘, 1, 0>,
8I ll@ð1D &, 0.75‘, 0.75‘, 0.765‘, x, 0<,
8I ll@ð1 - 0.007D &, 0.5‘, 0.5‘, 0.515‘, 40 x, 0<,
:0.2508‘ + 0.867‘ ã-32.9089‘ ð22 + 3.0485‘ ã-13.2771‘ ð22 +

2.2868‘ ã-5.7011‘ ð2
2
+ 1.5463‘ ã-0.3239‘ ð2

2
+

Cromer@8, 1000 ð1D &, 0.5‘, 0.5‘, 0.976‘, 1, 0>,

:0.2508‘ + 0.867‘ ã-32.9089‘ ð22 + 3.0485‘ ã-13.2771‘ ð22 +

2.2868‘ ã-5.7011‘ ð2
2
+ 1.5463‘ ã-0.3239‘ ð2

2
+

Cromer@8, 1000 ð1D &, 0, 0.5‘, 0.48‘, 1, 0>,

:0.2508‘ + 0.867‘ ã-32.9089‘ ð22 + 3.0485‘ ã-13.2771‘ ð22 +

2.2868‘ ã-5.7011‘ ð2
2
+ 1.5463‘ ã-0.3239‘ ð2

2
+

Cromer@8, 1000 ð1D &, 0.5‘, 0, 0.48‘, 1, 0>>>;
TiO2q = TiO2x �. 8x ® 0.00002<;
BTOq = BTOx �. 8x ® 0.00012<;
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InitDiffraction@ene_D := H
hkl = 82, 0, 0<;
cry = BTOq;

StrF = CalcFH@cry, ene, hklD;
StrF0 = CalcFH@cry, ene, 80, 0, 0<D;
GAMMA = DGamma@ene, cryD;
chi0 = -GAMMA * CalcFH@cry, ene, 80, 0, 0<D;
mu0 = Mu0@cry, eneD;
k0 = 1 � Lambda@eneD;
nk = H1 + Re@chi0D � 2L k0;
SinBr = Lambda@eneD *

Norm@Inverse@BTO@@2, 2DDD.hklD � 2;
CosBr = Sqrt@1 - SinBr ^ 2D;
L

gammah@omega_D := Cos@omegaD CosBr + Sin@omegaD SinBr;
gamma0@omega_D := Cos@omegaD CosBr - Sin@omegaD SinBr;
AsRatio@omega_D := gamma0@omegaD � gammah@omegaD;

DevPar@dth_, omega_D :=
Hdth * 2 * SinBr * CosBr * AsRatio@omegaD -

0.5 * chi0 * H1 - AsRatio@omegaDLL �
HGAMMA * Sqrt@Abs@AsRatio@omegaDDD * Sqrt@StrF * StrFDL
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xi0a@dth_, omega_D :=
0.5 * k0 * Sqrt@Abs@AsRatio@omegaDDD * GAMMA *
Sqrt@StrF * StrFD
HDevPar@dth, omegaD +

Sqrt@DevPar@dth, omegaD ^ 2 + Sign@AsRatio@omegaDDDL
xi0b@dth_, omega_D :=
0.5 * k0 * Sqrt@Abs@AsRatio@omegaDDD * GAMMA *
Sqrt@StrF * StrFD
HDevPar@dth, omegaD -

Sqrt@DevPar@dth, omegaD ^ 2 + Sign@AsRatio@omegaDDDL
xiha@dth_, omega_D :=
0.5 * k0 * GAMMA *

Sqrt@StrF * StrFD � Sqrt@Abs@AsRatio@omegaDDD �
HDevPar@dth, omegaD +

Sqrt@DevPar@dth, omegaD ^ 2 + Sign@AsRatio@omegaDDDL
xihb@dth_, omega_D :=
0.5 * k0 * GAMMA *

Sqrt@StrF * StrFD � Sqrt@Abs@AsRatio@omegaDDD �
HDevPar@dth, omegaD -

Sqrt@DevPar@dth, omegaD ^ 2 + Sign@AsRatio@omegaDDDL
mu0effa@dth_, omega_D := mu0 - 4 Π * Im@xi0a@dth, omegaDD
mu0effb@dth_, omega_D := mu0 - 4 Π * Im@xi0b@dth, omegaDD
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E0a@dth_, omega_, t_D :=
Exp@-mu0effa@dth, omegaD * t � gamma0@omegaDD *
H Sqrt@1 + Re@DevPar@dth, omegaDD ^ 2D -

DevPar@dth, omegaD L ^ 2 �
H 4 H1 + Re@DevPar@dth, omegaDD ^ 2LL

E0b@dth_, omega_, t_D :=
Exp@-mu0effb@dth, omegaD * t � gamma0@omegaDD *
H Sqrt@1 + Re@DevPar@dth, omegaDD ^ 2D +

DevPar@dth, omegaD L ^ 2 �
H 4 H1 + Re@DevPar@dth, omegaDD ^ 2LL

EHa@dth_, omega_, t_D :=
Exp@-mu0effa@dth, omegaD * t � gamma0@omegaDD *
AsRatio@omegaD � H 4 H1 + Re@DevPar@dth, omegaDD ^ 2LL

EHb@dth_, omega_, t_D :=
Exp@-mu0effb@dth, omegaD * t � gamma0@omegaDD *
AsRatio@omegaD � H 4 H1 + Re@DevPar@dth, omegaDD ^ 2LL
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PLambda@omega_D :=
Sqrt@Abs@gammah@omegaDD * gamma0@omegaDD � k0 � GAMMA �
Re@Sqrt@StrF * StrFDD

PP@dth_, omega_D :=
Sqrt@1 + Re@DevPar@dth, omegaDD ^ 2D � PLambda@omegaD

I0na@dth_, omega_, t_D :=
1 � H 4 H1 + Re@DevPar@dth, omegaDD ^ 2LL *
HH1 + Re@DevPar@dth, omegaDD ^ 2L H1 + 1L +

2 Cos@2 Π * t * PP@dth, omegaDDL
IHna@dth_, omega_, t_D :=
1 � H 4 H1 + Re@DevPar@dth, omegaDD ^ 2LL *
HH1 + 1L - 2 Cos@2 Π * t * PP@dth, omegaDDL

IH@dth_, omega_, t_D :=
1 � H 4 H1 + Re@DevPar@dth, omegaD ^ 2DLL * H
HExp@-mu0effa@dth, omegaD * t � gamma0@omegaDD +

Exp@-mu0effb@dth, omegaD * t � gamma0@omegaDDL
- 2 Cos@2 Π * t * PP@dth, omegaDD *
HExp@-Hmu0effa@dth, omegaD + mu0effb@dth, omegaDL *

t � gamma0@omegaD � 2DLL
I0@dth_, omega_, t_D :=
1 � H 4 H1 + Re@DevPar@dth, omegaDD ^ 2LL * H
H1 + 2 * Re@DevPar@dth, omegaDD ^ 2 -

2 * Re@DevPar@dth, omegaDD *
Sqrt@1 + Re@DevPar@dth, omegaDD ^ 2DL *

Exp@-mu0effa@dth, omegaD * t � gamma0@omegaDD
+

H1 + 2 * Re@DevPar@dth, omegaDD ^ 2 +
2 * Re@DevPar@dth, omegaDD *
Sqrt@1 + Re@DevPar@dth, omegaDD ^ 2DL *

Exp@-mu0effb@dth, omegaD * t � gamma0@omegaDD
+ 2 Cos@2 Π * t * PP@dth, omegaDD *
HExp@-Hmu0effa@dth, omegaD + mu0effb@dth, omegaDL *

t � gamma0@omegaD � 2DLL
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D0@dth_, omega_, t_D :=
1 � 2 *
H-DevPar@dth, omegaD � Sqrt@1 + DevPar@dth, omegaD ^ 2D +

1L *
Exp@-2 * Π * ä * t * Hxi0a@dth, omegaD + k0 * chi0 � 2L �

gamma0@omegaDD +
1 � 2 *
HDevPar@dth, omegaD � Sqrt@1 + DevPar@dth, omegaD ^ 2D +

1L *
Exp@-2 * Π * ä * t * Hxi0b@dth, omegaD + k0 * chi0 � 2L �

gamma0@omegaDD
DH@dth_, omega_, t_D :=
1 � 2 * 1 � Sqrt@1 + DevPar@dth, omegaD ^ 2D *

Exp@-2 * Π * ä * t * Hxi0a@dth, omegaD + k0 * chi0 � 2L �
gamma0@omegaDD -

1 � 2 * 1 � Sqrt@1 + DevPar@dth, omegaD ^ 2D *
Exp@-2 * Π * ä * t * Hxi0b@dth, omegaD + k0 * chi0 � 2L �

gamma0@omegaDD

GenerateCrystal@NLayers_, Omega_, SigmaOmega_,

t_, Sigmat_D :=
8
H*All structure parameters*L
RandomVariate@NormalDistribution@Omega, SigmaOmegaD,
NLayersD, H*Lattice asymmetry*L

RandomVariate@NormalDistribution@t, SigmatD, NLayersD
H*Crystals’ thickness*L
<

FullI@DTheta_, Layers_D := Module@8NLayers, i, j, m<,
H
NLayers = Length@Layers@@1DDD;
Beams = 8

Table@1, 8NLayers + 1<D,
H*Relative complex amplitudes of beams*L
Table@DTheta, 8NLayers + 1<D<;

H*Delta theta for each beam*L
H*Here we go*L
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For@i = 1, i <= NLayers, i ++,

For @j = 1, j £ i - 1, j ++,

Beams@@2, jDD = Beams@@2, jDD - Layers@@1, iDD;
Beams@@1, jDD = Beams@@1, jDD *

D0@Beams@@2, jDD, -Layers@@1, iDD,
Layers@@2, iDDD;

Beams@@2, jDD = Beams@@2, jDD �
AsRatio@-Layers@@1, iDDD;

D;

Beams@@2, iDD = Beams@@2, iDD + Layers@@1, iDD;
Beams@@1, iDD = Beams@@1, NLayers + 1DD *

DH@Beams@@2, iDD, Layers@@1, iDD, Layers@@2, iDDD;
Beams@@2, iDD =
Beams@@2, iDD � AsRatio@Layers@@1, iDDD;

Beams@@2, NLayers + 1DD =
Beams@@2, NLayers + 1DD + Layers@@1, iDD;

Beams@@1, NLayers + 1DD =
Beams@@1, NLayers + 1DD *
D0@Beams@@2, iDD, Layers@@1, iDD, Layers@@2, iDDD;

Beams@@2, NLayers + 1DD =
Beams@@2, NLayers + 1DD � AsRatio@Layers@@1, iDDD;

D;
H*Sending results back*L
Return@8

Abs@Sum@Beams@@1, mDD, 8m, 1, NLayers<DD ^ 2,
H*Reflected beams*L
Abs@Beams@@1, NLayers + 1DDD ^ 2 H*Refracted beam*L
<D;

LD

H* -------------------------*L
ResetDirectory@D;
SetDirectory@"bachelor�mathematica�simdata�15"D;
H* ---Header file and simulation parameters---*L
"Simulation of Laue X-ray diffraction in a

multilayer crystal" >> HEADER.txt
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"Aram Kalaydzhyan" >>> HEADER.txt

$MachineName >>> HEADER.txt

DateString@D >>> HEADER.txt
" " >>> HEADER.txt

"Crystal:" >>> HEADER.txt

"BTO with quadrupole absorption" >>> HEADER.txt

"Energy, kEv:" >>> HEADER.txt

En = Table@e, 8e, 4.93, 4.97, 0.001<D >>> HEADER.txt
"Reflection:" >>> HEADER.txt

hkl >>> HEADER.txt

"Number of layers in the crystal:" >>> HEADER.txt

NLayers = 20 >>> HEADER.txt

"Normal thickness of every layer, A:" >>> HEADER.txt

LTm = 200 000 >>> HEADER.txt

"Thickness dispersion, A:" >>> HEADER.txt

LTs = 50 000 >>> HEADER.txt

"Normal assymetry of the crystal lattice, grad:" >>>

HEADER.txt

LOmega = 0 >>> HEADER.txt

"Assymetry dispersions, 1�100 grad:" >>> HEADER.txt

Def = 80.5< >>> HEADER.txt
"Number of MC-simulations:" >>> HEADER.txt

MCStat = 50 >>> HEADER.txt

H* -------------------------*L

IntSpectrum = Table@80, 0, 0<, 8Length@EnD<D;
For@ne = 1, ne £ Length@EnD, ne ++,

InitDiffraction@En@@neDDD;
For@nd = 1, nd £ Length@DefD, nd ++,

MCSpectrum = 0;

For@st = 1, st £ MCStat, st ++,

Crystal = GenerateCrystal@NLayers, LOmega,

Def@@ndDD � 100 * Π � 180, LTm, LTsD;
Spectrum = ParallelTable@8x, FullI@x, CrystalD@@kDD<,
8k, 2<, 8x, -0.0003, 0.0001, 0.000002<D;

MCSpectrum = MCSpectrum + Spectrum;

D;
MCSpectrum = MCSpectrum � MCStat;
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Export@
StringJoin@8"MCSp_", ToString@En@@neDDD, ".txt"<D,
8MCSpectrum@@1DD¬@@1DD, MCSpectrum@@1DD¬@@2DD,

MCSpectrum@@1DD¬@@2DD<¬ �� TableForm, "CSV"D;
Export@StringJoin@8"MCSp_R_", ToString@En@@neDDD,

".pdf"<D, ListPlot@MCSpectrum@@1DD,
PlotRange ® AllDD;

Export@StringJoin@8"MCSp_T_", ToString@En@@neDDD,
".pdf"<D, ListPlot@MCSpectrum@@2DD,

PlotRange ® AllDD;
IntSpectrum@@neDD =
8En@@neDD, Total@MCSpectrum@@1DD¬@@2DDD,
Total@MCSpectrum@@2DD¬@@2DDD<;

D;
D;

Export@StringJoin@8"IntSpectrum.txt"<D,
IntSpectrum �� TableForm, "CSV"D;

Export@StringJoin@8"IntSpectrum_R.pdf"<D,
ListPlot@8IntSpectrum¬@@1DD, IntSpectrum¬@@2DD<¬,

PlotRange ® AllDD;
Export@StringJoin@8"IntSpectrum_T.pdf"<D,

ListPlot@8IntSpectrum¬@@1DD, IntSpectrum¬@@3DD<¬,

PlotRange ® AllDD;
H* -------------------------*L
" " >>> HEADER.txt

DateString@D >>> HEADER.txt
H* -------------------------*L
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