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Figure 5: Evidence for dark energy. Shown are a combination of observations of the cosmic mi-
crowave background (CMB), supernovae (SNe) and baryon acoustic oscillations (BAO)
[12].

Figure 6: The properties of dark energy are close to a cosmological constant, wΛ ≈ −1 [11].

4 Big Bang Puzzles

It is somewhat of a philosophical questions whether initial conditions form part of a physical theory or
should be considered separately. The purpose of physics is to predict the future evolution of a system
given a set of initial conditions; e.g. Newton’s laws of gravity will predict the path of a projectile if
we define its initial position and velocity. It is therefore far from clear whether cosmology should
predict or even just explain the initial conditions of the universe. On the other hand, it would be
very disappointing if only very special and finely-tuned initial conditions would lead to the universe
as we see it, making the observed universe an ‘improbable accident’.
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• the observation:

➡the Universe expands speeding up 
 - Λ > 0 ... we live in de Sitter space!  


• a task:

➡there is a necessary dS condition in supergravity - positive 
sectional curvature of the Kahler potential

➡there’s nothing wrong using e.g. anti-D3s - but it maybe 
worthwhile to get dS from a ‘clean’ system:  
 
try to get a sufficient dS condition for whole class of vacua purely 
in terms of the topological data determining the 4d supergravity 
of F-theory/IIB

[Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca]
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• Try to use just the closed string moduli sector of a 4d 
N=1 F-theory compactification on an elliptically fibered 
CY 4-fold   
 
 
 
 
 
 
to get a dS vacuum from spontaneous F-term breaking

• key ingredient: the leading perturbative O(α’3) correction

• leads to ‘Kahler uplifted’ dS vacua - checked for one 
volume modulus + dilaton S and one complex structure U

dS 

dilaton S

h1,1 volume moduli Ti

h2,1 complex structure moduli Ua

[Balasubramian, Berglund] [AW]
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Kähler corrections ...

• Perturbative α′- and string loop Kähler corrections
Becker-Becker-Haack-Louis 02; Berg-Haack-Körs 05; Llana-Rocek-Saueressig-Theis-Vandoren 06

K = −2 ln
[

V + α′3 (ξ + 1-loop)
]

+ O(α′4)

ξ ∼ −χ · (S + S̄)3/2 ; if h1,1 = 1 : V ∼ 1√
κ
(T + T̄ )3/2

• Fluxes fix S and U . Stabilization of T by an interplay of the leading
O(α′3)-correction above and non-perturbative effects:

W = W0 + e−a T , W0 =

∫

CY

G ∧ Ω

v. Gersdorff-Hebecker

the general setup ...
The Kahler potential for the volume moduli: α’- & loop corrections
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some relationships ...
• 4d N=1 supergravity specified by K and W just given, so far have 3 

known branches of vacua:  
 
i) small W0:  
- α’-corrections are irrelevant  
- vacua are SUSY AdS prior to uplifting 
→ the ‘KKLT‘ branch  
 
ii) arbitrary W0:  
- leading α’-correction is relevant  
- blow-up volume moduli scale as the log of the total volume  
- vacua are non-SUSY AdS prior to uplifting 
→ the ‘LVS‘ branch  
 
iii) |W0| = O(1...50):  
- leading α’-correction is relevant  
- largish rank condensing gauge group → non-SUSY dS vacua (this talk)  

[KKLT]

[Balasubramian, Berglund, Conlon Quevedo]

[Balasubramian, Berglund; AW; Markus Rummel, AW]!5



de Sitter vacua from ‘Kahler uplifting’ at large volume

• 4d N=1 supergravity - scalar potential:

• expand to leading order in ξ/V and e-aT:

V ! 4AW0
ate−at

V2
cos(aτ) +

3W 2
0

4V3
∼ 2C

9x9/2
− e−x

x2

x ≡ at , T = t + iτ , C ≡ −27
64

√
2
3

W0

A

ξa3/2
√

κ

A

dS vacua from Kähler uplifting at large volume ...

• Start looking at the scalar potential: Becker-Becker-Haack-Louis 02

V = eK
{

KT T̄ [a2e−2aTr + (−ae−aTrWKT + c.c)]

+3ξ
ξ2 + 7ξV + V2

(V − ξ)(ξ + 2V)2
|W |2

}

• Has a scaling property: AW 06

N → λN , a =
2π

N
→ λ−1a , Tr → λTr , ξ → λ3/2ξ

⇒ V → λ3/2V , V → λ−3V ,
ξ

2V : invariant

K−1
T T̄
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de Sitter vacua from ‘Kahler uplifting’ at large volume

middle term’ in terms of the analysis of [22]. Here, however, this term shuts down

exponentially fast for large enough x. This combined behavior of being a power-law

at small x and an exponential at larger x is responsible for the fact, that a ‘2-term’

combination with a single positive inverse power-law term is enough to obtain a

tunable dS vacuum.

2.2 A sufficient condition for meta-stable de Sitter vacua

To calculate extrema of eq. (2.14) we need to calculate the first and second derivative

with respect to x (V ′ = ∂V
∂x
)

V ′(x) =
−W0a

3A

2γ2

1

x11/2

(
C − x5/2(x+ 2)e−x

)
, (2.16)

V ′′(x) =
−W0a

3A

2γ2

1

x13/2

(
11

2
C − x5/2(x2 + 4x+ 6)e−x

)
. (2.17)

Solving for an extremum V ′(x) = 0 yields

x5/2(x+ 2)e−x = C (2.18)

which cannot be solved explicitly in an analytic way. Plotting the approximate

expression eq. (2.14) of V (x) for different values of the constant C in figure 1 we

observe the following behavior:

We see that with growing C we first obtain an AdS minimum. This minimum

breaks supersymmetry since

FT " −3W0

2tV̂
#= 0 . (2.19)

Then at some point the minimum transits to dS, and for even larger C the potential

eventually develops a runaway in the x direction. We can analytically calculate the

window for C where we obtain a meta-stable de Sitter vacuum by identifying:

• Lower bound on C: V (xmin) = V ′(xmin) = 0

• Upper bound on C: V ′(xmin) = V ′′(xmin) = 0

In both cases we have to solve two equations for two variables {xmin, C}. For

instance, one can use eq. (2.18) to replace Cex in V (x) = 0 for the lower and in

V ′′(x) = 0 for the upper bound which gives equations maximally quadratic in x and

then use eq. (2.18) again to calculate C. In both cases, there exists only one solution

with xmin > 0.
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note: these last two slides were found independly by [deAlwis, Givens ’11]
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Figure 1. The approximate 2-term scalar potential V (x) from eq. (2.14) for different

values of C.

• Lower bound on C:

{xmin, C} = {5
2
, 225

8

√
5
2
e−

5
2} ! {2.5, 3.65}

• Upper bound on C:

{xmin, C} ! {3+
√
89

4
, 3.89} ! {3.11, 3.89}

The region close to {xmin, C} is the one relevant for obtaining a small positive cos-

mological constant suitable for describing the late-time accelerated expansion of the

universe. For a = 2π/100 the lower bound on x corresponds to a volume V̂ ! 100 so

we are indeed at parametrically large volume. The allowed window for C to obtain

meta-stable de Sitter vacuum is approximately

3.65 ! −27W0ξ̂a
3/2

64
√
2γA

! 3.89 (2.20)

In sections 3 and 4, we will show that fullfilling condition eq. (2.20) is still sufficient

to obtain a meta-stable minimum of the scalar potential when all the remaining

moduli fields of the Calabi-Yau, i.e. the dilaton and the complex structure moduli,

are included in the stabilization analysis. Hence, this is truly a sufficient condition for

meta-stable de Sitter vacua and no tachyonic instabilities occur by including further

moduli, contrary to the standard KKLT scenario [39, 40].
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C is bounded - satisfying the bound guarantees a 
dS vacuum (‘sufficient’ condition)
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de Sitter vacua from ‘Kahler uplifting’ at large volume
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this works for arbitrary h1,1 on Swiss-cheese CYs!
• resulting scalar potential

all VτIτI
> 0 if W0 < 0 at τI = 0;

or if W0 > 0 at τI = π/aI

VtIτJ
= 0 at these points, thus all axions are massive

V =
4W0

V2



atAe−at cos(aτ) +
h1,1∑

i=2

aitiAie
−aiti cos(aiτi)



 +
3ξW 2

0

4V3

+
h1,1∑

i=2

2
√

2
3

a2
i A

2
i

V2

√
ti

γi
e−2aiti V

of O(ξ2/V2)  
at the  minimum
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what about the other moduli?

• Starting point: S and Ua at SUSY locus, T stabilization 
breaks SUSY - expand S and Ua in ξ/V & check that 
shifts are small:

⇒ V ∼ eK(KSS̄ |DSW0|2 + KT T̄ |DT W |2 + KTS̄DT WDSW0)

V0 δV perturbs S away from S0 ...

W = W0 + Ae−aT = C1 − C2 S + Ae−aT

K = −2 ln(V + ξ/2)− ln(S + S̄) , ξ ≡ ξ̃ (S + S̄)3/2 ∼ −χ (S + S̄)3/2

∂V

∂S
= 0S0 = −C1

C2
: DSW0

∣∣
S0

= 0 , ⇒ δS

S0
∼ ξ

V
!10



what about the other moduli?

• mass scales:

m2
t ∼

ξ̂

V3

m2
τ ∼

ξ̂

V3

m2
Re S ∼

1
V2

m2
Im S ∼

1
V2

m2
3/2 = eK |W |2 ∼ 1

V2 ➡ SUSY is broken at 
the GUT scale,  but 
below KK-scale!

As expected, the first non-vanishing contribution to FS is 1-st order. Other than

terms ∝ ξ̂/V̂2 we have to add a term ∝ (s− s0)/V̂ that we evaluate at s = s0 + δs.

Inserting eq. (3.19) we get

FS # − 9C1ξ̂

10
√
2 V̂2 (−C1/C2)

3/2
# −FT · 3 t C2

10C1

· ξ̂
V̂

(3.22)

so supersymmetry is predominantly broken in the T direction which is what one

would expect since t is stabilized in a minimum with spontaneously broken super-

symmetry.

The gravitino mass can be approximated to 0-th order to

m2
3/2 = eK |W |2 # − 2C1C2

V̂2
= − C1C2

4γ2t3
∼ 10−4 . . . 10−3 (3.23)

which is of order ∼ M2
GUT for typical volumes.

We note that m3/2 < ms ,mσ which renders the supersymmetric starting point

for them a self-consistent approximation. Moreover, the KK scale here is given for

a single volume modulus (i.e. no anisotropies are possible) and the volume given in

units of α′ as V̂ = L6 as

mKK =
1

L
√
α′

∼ 1

V̂2/3
(3.24)

while he gravitino mass as well as the moduli masses scale at least ∼ 1/V̂ . Here we

have used the relation between 10d string frame and 4d Einstein frame

1

α′ =
(2π)7

2
M2

P

g2S

V̂
. (3.25)

Therefore, the use of a 4d effective supergravity description is justified, although the

separation
m3/2

mKK

∼ 1

V̂1/3
(3.26)

will typically be only of O(0.1) here. Nevertheless, there is a parametric hierarchy

between the moduli mass scale, the SUSY and the KK-scale in the limit of large

volume V̂ → ∞. This suppresses potential mixing between the moduli masses and

KK masses alleviating their danger of causing additional tachyonic directions.

We have succeeded now in determining the combined scalar potential of the volume

modulus T and the dilaton S in a fully analytical form to first order in a perturbation

expansion around the supersymmetric locus for S. The resulting full minimum is a

tunable dS minimum of the same form and type as found in the previous section for

T alone, and it is perturbatively stable under the inclusion of the dynamics of the

dilaton S.

– 26 –
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what about the other moduli?

• similarly for the complex structures Ua ...

V0 δV perturbs U away from U0 ...

K = . . .− ln
(∫

CY3

Ω(Ua) ∧ Ω̄(Ua)
)

C1, C2 become functions of Ua

⇒ V ∼ eK(Kab̄DUaW0DUb
W0 + KT T̄ |DT W |2 + KTS̄DT WDSW0)

need (∂a∂b̄V0) > 0

Ua,0 : DUaW0

∣∣
Ua,0

= 0 ,
∂V

∂Ua
= 0

[c.f. also: Gallego, Serone]

⇒ δUa

Ua,0
∼ ξ

V
!12



Moduli space of CP1,1,1,6,9 [Denef, Douglas, Florea ’04]

Consider Calabi-Yau 3-fold defined as degree 18 hypersurface in

CP1,1,1,6,9 : (x1, x2, x3, x4, x5) ∼ (λx1,λx2,λx3,λ
6x4,λ

9x5)

e.g. x18
1 + x18

2 + x18
3 + x3

4 + x2
5 = 0 (h1,1 = 2 and h2,1 = 272) .

Kähler moduli:

! Non-perturbative effects: Wn.p. = O(1) e−2π/30 T1 + O(1) e−2π T2 .

Complex structure moduli: [Greene,Plesser’89], [Candelas,Font,Katz,Morrison’94]

! Γ = Z6 × Z18 modding fixes a 2 ⊂ h2,1 = 272 parameter subspace.

! No flux and DiW = 0 on all non-invariant cycles
⇒ Effectively all 272 complex structure moduli stabilized.

! G (z) via mirror symmetry in the large complex structure limit:

G (z1, z2) =
∑

i+j≤3

cijz
i
1z

j
2 + ξ + Ginstanton(e

−2πz1 , e−2πz2)

De Sitter vacua in type IIB string theory/ F-theory by Kähler uplifting Markus Rummel 11/16!13



Finding flux vacua

! The 3-fold fixes all free parameters except of the VEV’s 〈T1〉, 〈T2〉,
〈S〉, 〈z1〉 and 〈z2〉 and flux vectors f = {fi}, h = {hi}, i = 1, .., 6.

! D3-Tadpole constraint:

L =

∫

X

F3 ∧ H3 = Lmax − ND3, Lmax =
χ(4-fold)

24
.

Strategy:

! Fix 〈S〉, 〈z1〉 and 〈z2〉 to rational value.

! Neglect Ginstanton and set ξ to a rational value, such that:

0 = {W0,DSW0,Dz1W0,Dz2W0} = A·{f1, .., f6, h1, .., h6}, with A ∈ Q8×12.

! Find basis of solutions {fi}, {hi} with minimal tadpole L.

! Generate shift in W0, 〈S〉, 〈z1〉 and 〈z2〉 for ξ ∈ iR, Ginstanton &= 0.

De Sitter vacua in type IIB string theory/ F-theory by Kähler uplifting Markus Rummel 12/16!14



Solutions and Kähler moduli stabilization

De Sitter vacuum can be constructed if:

! L < Lmax,

! {W0, gs = 〈ReS〉−1,A} fullfills:

1.25 < |W0|A g
−3/2
s < 1.34,

! V
(c.s.)

za zb > 0.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
gs

5

10

15

20

25
W0

Explicit example:

! {f , h} = {0,−16, 56,−28,−12; 4, 0, 0, 0,−9, 10}, L = 408

!
gs A 〈T1〉 〈T2〉 〈z1〉 〈z2〉 W0 V̂
0.8 1.5 14.3 0.8 0.98 0.99 −1.06 4.2

Finite number of solutions? Statistics?

De Sitter vacua in type IIB string theory/ F-theory by Kähler uplifting Markus Rummel 13/16
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[Denef, Douglas, Florea]
[Denef '08]
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• there is a sufficient condition in terms of  
 
- the Euler characteristic  
- choice of ADE-type singularities,  
- and choice of fluxes / W0 
 
which if satisfied guarantees the existence of classically 
stable dS vacua within the 4d N=1 supergravity 
descending from a IIB/F-theory compactification on an 
elliptically fibered 4-fold.  
They break SUSY at the GUT scale.  


• Compactifications similar to P11169 of IIB provide fully 
explicit examples - ongoing work (to appear)  

Conclusions
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